Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com>
   4 * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org>
   5 *
   6 * Standard functionality for the common clock API.  See Documentation/driver-api/clk.rst
 
 
 
 
   7 */
   8
   9#include <linux/clk.h>
  10#include <linux/clk-provider.h>
  11#include <linux/clk/clk-conf.h>
  12#include <linux/module.h>
  13#include <linux/mutex.h>
  14#include <linux/spinlock.h>
  15#include <linux/err.h>
  16#include <linux/list.h>
  17#include <linux/slab.h>
  18#include <linux/of.h>
  19#include <linux/device.h>
  20#include <linux/init.h>
  21#include <linux/pm_runtime.h>
  22#include <linux/sched.h>
  23#include <linux/clkdev.h>
  24
  25#include "clk.h"
  26
  27static DEFINE_SPINLOCK(enable_lock);
  28static DEFINE_MUTEX(prepare_lock);
  29
  30static struct task_struct *prepare_owner;
  31static struct task_struct *enable_owner;
  32
  33static int prepare_refcnt;
  34static int enable_refcnt;
  35
  36static HLIST_HEAD(clk_root_list);
  37static HLIST_HEAD(clk_orphan_list);
  38static LIST_HEAD(clk_notifier_list);
  39
  40static struct hlist_head *all_lists[] = {
  41	&clk_root_list,
  42	&clk_orphan_list,
  43	NULL,
  44};
  45
  46/***    private data structures    ***/
  47
  48struct clk_parent_map {
  49	const struct clk_hw	*hw;
  50	struct clk_core		*core;
  51	const char		*fw_name;
  52	const char		*name;
  53	int			index;
  54};
  55
  56struct clk_core {
  57	const char		*name;
  58	const struct clk_ops	*ops;
  59	struct clk_hw		*hw;
  60	struct module		*owner;
  61	struct device		*dev;
  62	struct device_node	*of_node;
  63	struct clk_core		*parent;
  64	struct clk_parent_map	*parents;
 
  65	u8			num_parents;
  66	u8			new_parent_index;
  67	unsigned long		rate;
  68	unsigned long		req_rate;
  69	unsigned long		new_rate;
  70	struct clk_core		*new_parent;
  71	struct clk_core		*new_child;
  72	unsigned long		flags;
  73	bool			orphan;
  74	bool			rpm_enabled;
  75	unsigned int		enable_count;
  76	unsigned int		prepare_count;
  77	unsigned int		protect_count;
  78	unsigned long		min_rate;
  79	unsigned long		max_rate;
  80	unsigned long		accuracy;
  81	int			phase;
  82	struct clk_duty		duty;
  83	struct hlist_head	children;
  84	struct hlist_node	child_node;
  85	struct hlist_head	clks;
  86	unsigned int		notifier_count;
  87#ifdef CONFIG_DEBUG_FS
  88	struct dentry		*dentry;
  89	struct hlist_node	debug_node;
  90#endif
  91	struct kref		ref;
  92};
  93
  94#define CREATE_TRACE_POINTS
  95#include <trace/events/clk.h>
  96
  97struct clk {
  98	struct clk_core	*core;
  99	struct device *dev;
 100	const char *dev_id;
 101	const char *con_id;
 102	unsigned long min_rate;
 103	unsigned long max_rate;
 104	unsigned int exclusive_count;
 105	struct hlist_node clks_node;
 106};
 107
 108/***           runtime pm          ***/
 109static int clk_pm_runtime_get(struct clk_core *core)
 110{
 111	int ret;
 112
 113	if (!core->rpm_enabled)
 114		return 0;
 115
 116	ret = pm_runtime_get_sync(core->dev);
 117	if (ret < 0) {
 118		pm_runtime_put_noidle(core->dev);
 119		return ret;
 120	}
 121	return 0;
 122}
 123
 124static void clk_pm_runtime_put(struct clk_core *core)
 125{
 126	if (!core->rpm_enabled)
 127		return;
 128
 129	pm_runtime_put_sync(core->dev);
 130}
 131
 132/***           locking             ***/
 133static void clk_prepare_lock(void)
 134{
 135	if (!mutex_trylock(&prepare_lock)) {
 136		if (prepare_owner == current) {
 137			prepare_refcnt++;
 138			return;
 139		}
 140		mutex_lock(&prepare_lock);
 141	}
 142	WARN_ON_ONCE(prepare_owner != NULL);
 143	WARN_ON_ONCE(prepare_refcnt != 0);
 144	prepare_owner = current;
 145	prepare_refcnt = 1;
 146}
 147
 148static void clk_prepare_unlock(void)
 149{
 150	WARN_ON_ONCE(prepare_owner != current);
 151	WARN_ON_ONCE(prepare_refcnt == 0);
 152
 153	if (--prepare_refcnt)
 154		return;
 155	prepare_owner = NULL;
 156	mutex_unlock(&prepare_lock);
 157}
 158
 159static unsigned long clk_enable_lock(void)
 160	__acquires(enable_lock)
 161{
 162	unsigned long flags;
 163
 164	/*
 165	 * On UP systems, spin_trylock_irqsave() always returns true, even if
 166	 * we already hold the lock. So, in that case, we rely only on
 167	 * reference counting.
 168	 */
 169	if (!IS_ENABLED(CONFIG_SMP) ||
 170	    !spin_trylock_irqsave(&enable_lock, flags)) {
 171		if (enable_owner == current) {
 172			enable_refcnt++;
 173			__acquire(enable_lock);
 174			if (!IS_ENABLED(CONFIG_SMP))
 175				local_save_flags(flags);
 176			return flags;
 177		}
 178		spin_lock_irqsave(&enable_lock, flags);
 179	}
 180	WARN_ON_ONCE(enable_owner != NULL);
 181	WARN_ON_ONCE(enable_refcnt != 0);
 182	enable_owner = current;
 183	enable_refcnt = 1;
 184	return flags;
 185}
 186
 187static void clk_enable_unlock(unsigned long flags)
 188	__releases(enable_lock)
 189{
 190	WARN_ON_ONCE(enable_owner != current);
 191	WARN_ON_ONCE(enable_refcnt == 0);
 192
 193	if (--enable_refcnt) {
 194		__release(enable_lock);
 195		return;
 196	}
 197	enable_owner = NULL;
 198	spin_unlock_irqrestore(&enable_lock, flags);
 199}
 200
 201static bool clk_core_rate_is_protected(struct clk_core *core)
 202{
 203	return core->protect_count;
 204}
 205
 206static bool clk_core_is_prepared(struct clk_core *core)
 207{
 208	bool ret = false;
 209
 210	/*
 211	 * .is_prepared is optional for clocks that can prepare
 212	 * fall back to software usage counter if it is missing
 213	 */
 214	if (!core->ops->is_prepared)
 215		return core->prepare_count;
 216
 217	if (!clk_pm_runtime_get(core)) {
 218		ret = core->ops->is_prepared(core->hw);
 219		clk_pm_runtime_put(core);
 220	}
 221
 222	return ret;
 223}
 224
 225static bool clk_core_is_enabled(struct clk_core *core)
 226{
 227	bool ret = false;
 228
 229	/*
 230	 * .is_enabled is only mandatory for clocks that gate
 231	 * fall back to software usage counter if .is_enabled is missing
 232	 */
 233	if (!core->ops->is_enabled)
 234		return core->enable_count;
 235
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 236	/*
 237	 * Check if clock controller's device is runtime active before
 238	 * calling .is_enabled callback. If not, assume that clock is
 239	 * disabled, because we might be called from atomic context, from
 240	 * which pm_runtime_get() is not allowed.
 241	 * This function is called mainly from clk_disable_unused_subtree,
 242	 * which ensures proper runtime pm activation of controller before
 243	 * taking enable spinlock, but the below check is needed if one tries
 244	 * to call it from other places.
 245	 */
 246	if (core->rpm_enabled) {
 247		pm_runtime_get_noresume(core->dev);
 248		if (!pm_runtime_active(core->dev)) {
 249			ret = false;
 250			goto done;
 251		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 252	}
 253
 254	ret = core->ops->is_enabled(core->hw);
 255done:
 256	if (core->rpm_enabled)
 257		pm_runtime_put(core->dev);
 258
 259	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 260}
 
 261
 262/***    helper functions   ***/
 263
 264const char *__clk_get_name(const struct clk *clk)
 265{
 266	return !clk ? NULL : clk->core->name;
 267}
 268EXPORT_SYMBOL_GPL(__clk_get_name);
 269
 270const char *clk_hw_get_name(const struct clk_hw *hw)
 271{
 272	return hw->core->name;
 273}
 274EXPORT_SYMBOL_GPL(clk_hw_get_name);
 275
 276struct clk_hw *__clk_get_hw(struct clk *clk)
 277{
 278	return !clk ? NULL : clk->core->hw;
 279}
 280EXPORT_SYMBOL_GPL(__clk_get_hw);
 281
 282unsigned int clk_hw_get_num_parents(const struct clk_hw *hw)
 283{
 284	return hw->core->num_parents;
 285}
 286EXPORT_SYMBOL_GPL(clk_hw_get_num_parents);
 287
 288struct clk_hw *clk_hw_get_parent(const struct clk_hw *hw)
 289{
 290	return hw->core->parent ? hw->core->parent->hw : NULL;
 291}
 292EXPORT_SYMBOL_GPL(clk_hw_get_parent);
 293
 294static struct clk_core *__clk_lookup_subtree(const char *name,
 295					     struct clk_core *core)
 296{
 297	struct clk_core *child;
 298	struct clk_core *ret;
 299
 300	if (!strcmp(core->name, name))
 301		return core;
 302
 303	hlist_for_each_entry(child, &core->children, child_node) {
 304		ret = __clk_lookup_subtree(name, child);
 305		if (ret)
 306			return ret;
 307	}
 308
 309	return NULL;
 310}
 311
 312static struct clk_core *clk_core_lookup(const char *name)
 313{
 314	struct clk_core *root_clk;
 315	struct clk_core *ret;
 316
 317	if (!name)
 318		return NULL;
 319
 320	/* search the 'proper' clk tree first */
 321	hlist_for_each_entry(root_clk, &clk_root_list, child_node) {
 322		ret = __clk_lookup_subtree(name, root_clk);
 323		if (ret)
 324			return ret;
 325	}
 326
 327	/* if not found, then search the orphan tree */
 328	hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) {
 329		ret = __clk_lookup_subtree(name, root_clk);
 330		if (ret)
 331			return ret;
 332	}
 333
 334	return NULL;
 335}
 336
 337#ifdef CONFIG_OF
 338static int of_parse_clkspec(const struct device_node *np, int index,
 339			    const char *name, struct of_phandle_args *out_args);
 340static struct clk_hw *
 341of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec);
 342#else
 343static inline int of_parse_clkspec(const struct device_node *np, int index,
 344				   const char *name,
 345				   struct of_phandle_args *out_args)
 346{
 347	return -ENOENT;
 348}
 349static inline struct clk_hw *
 350of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec)
 351{
 352	return ERR_PTR(-ENOENT);
 353}
 354#endif
 355
 356/**
 357 * clk_core_get - Find the clk_core parent of a clk
 358 * @core: clk to find parent of
 359 * @p_index: parent index to search for
 360 *
 361 * This is the preferred method for clk providers to find the parent of a
 362 * clk when that parent is external to the clk controller. The parent_names
 363 * array is indexed and treated as a local name matching a string in the device
 364 * node's 'clock-names' property or as the 'con_id' matching the device's
 365 * dev_name() in a clk_lookup. This allows clk providers to use their own
 366 * namespace instead of looking for a globally unique parent string.
 367 *
 368 * For example the following DT snippet would allow a clock registered by the
 369 * clock-controller@c001 that has a clk_init_data::parent_data array
 370 * with 'xtal' in the 'name' member to find the clock provided by the
 371 * clock-controller@f00abcd without needing to get the globally unique name of
 372 * the xtal clk.
 373 *
 374 *      parent: clock-controller@f00abcd {
 375 *              reg = <0xf00abcd 0xabcd>;
 376 *              #clock-cells = <0>;
 377 *      };
 378 *
 379 *      clock-controller@c001 {
 380 *              reg = <0xc001 0xf00d>;
 381 *              clocks = <&parent>;
 382 *              clock-names = "xtal";
 383 *              #clock-cells = <1>;
 384 *      };
 385 *
 386 * Returns: -ENOENT when the provider can't be found or the clk doesn't
 387 * exist in the provider or the name can't be found in the DT node or
 388 * in a clkdev lookup. NULL when the provider knows about the clk but it
 389 * isn't provided on this system.
 390 * A valid clk_core pointer when the clk can be found in the provider.
 391 */
 392static struct clk_core *clk_core_get(struct clk_core *core, u8 p_index)
 393{
 394	const char *name = core->parents[p_index].fw_name;
 395	int index = core->parents[p_index].index;
 396	struct clk_hw *hw = ERR_PTR(-ENOENT);
 397	struct device *dev = core->dev;
 398	const char *dev_id = dev ? dev_name(dev) : NULL;
 399	struct device_node *np = core->of_node;
 400	struct of_phandle_args clkspec;
 401
 402	if (np && (name || index >= 0) &&
 403	    !of_parse_clkspec(np, index, name, &clkspec)) {
 404		hw = of_clk_get_hw_from_clkspec(&clkspec);
 405		of_node_put(clkspec.np);
 406	} else if (name) {
 407		/*
 408		 * If the DT search above couldn't find the provider fallback to
 409		 * looking up via clkdev based clk_lookups.
 410		 */
 411		hw = clk_find_hw(dev_id, name);
 412	}
 413
 414	if (IS_ERR(hw))
 415		return ERR_CAST(hw);
 416
 417	return hw->core;
 418}
 419
 420static void clk_core_fill_parent_index(struct clk_core *core, u8 index)
 421{
 422	struct clk_parent_map *entry = &core->parents[index];
 423	struct clk_core *parent = ERR_PTR(-ENOENT);
 424
 425	if (entry->hw) {
 426		parent = entry->hw->core;
 427		/*
 428		 * We have a direct reference but it isn't registered yet?
 429		 * Orphan it and let clk_reparent() update the orphan status
 430		 * when the parent is registered.
 431		 */
 432		if (!parent)
 433			parent = ERR_PTR(-EPROBE_DEFER);
 434	} else {
 435		parent = clk_core_get(core, index);
 436		if (PTR_ERR(parent) == -ENOENT && entry->name)
 437			parent = clk_core_lookup(entry->name);
 438	}
 439
 440	/* Only cache it if it's not an error */
 441	if (!IS_ERR(parent))
 442		entry->core = parent;
 443}
 444
 445static struct clk_core *clk_core_get_parent_by_index(struct clk_core *core,
 446							 u8 index)
 447{
 448	if (!core || index >= core->num_parents || !core->parents)
 449		return NULL;
 450
 451	if (!core->parents[index].core)
 452		clk_core_fill_parent_index(core, index);
 
 453
 454	return core->parents[index].core;
 455}
 456
 457struct clk_hw *
 458clk_hw_get_parent_by_index(const struct clk_hw *hw, unsigned int index)
 459{
 460	struct clk_core *parent;
 461
 462	parent = clk_core_get_parent_by_index(hw->core, index);
 463
 464	return !parent ? NULL : parent->hw;
 465}
 466EXPORT_SYMBOL_GPL(clk_hw_get_parent_by_index);
 467
 468unsigned int __clk_get_enable_count(struct clk *clk)
 469{
 470	return !clk ? 0 : clk->core->enable_count;
 471}
 472
 473static unsigned long clk_core_get_rate_nolock(struct clk_core *core)
 474{
 475	if (!core)
 476		return 0;
 477
 478	if (!core->num_parents || core->parent)
 479		return core->rate;
 
 
 480
 481	/*
 482	 * Clk must have a parent because num_parents > 0 but the parent isn't
 483	 * known yet. Best to return 0 as the rate of this clk until we can
 484	 * properly recalc the rate based on the parent's rate.
 485	 */
 486	return 0;
 
 
 
 
 487}
 488
 489unsigned long clk_hw_get_rate(const struct clk_hw *hw)
 490{
 491	return clk_core_get_rate_nolock(hw->core);
 492}
 493EXPORT_SYMBOL_GPL(clk_hw_get_rate);
 494
 495static unsigned long clk_core_get_accuracy_no_lock(struct clk_core *core)
 496{
 497	if (!core)
 498		return 0;
 499
 500	return core->accuracy;
 501}
 502
 
 
 
 
 
 
 503unsigned long clk_hw_get_flags(const struct clk_hw *hw)
 504{
 505	return hw->core->flags;
 506}
 507EXPORT_SYMBOL_GPL(clk_hw_get_flags);
 508
 509bool clk_hw_is_prepared(const struct clk_hw *hw)
 510{
 511	return clk_core_is_prepared(hw->core);
 512}
 513EXPORT_SYMBOL_GPL(clk_hw_is_prepared);
 514
 515bool clk_hw_rate_is_protected(const struct clk_hw *hw)
 516{
 517	return clk_core_rate_is_protected(hw->core);
 518}
 519EXPORT_SYMBOL_GPL(clk_hw_rate_is_protected);
 520
 521bool clk_hw_is_enabled(const struct clk_hw *hw)
 522{
 523	return clk_core_is_enabled(hw->core);
 524}
 525EXPORT_SYMBOL_GPL(clk_hw_is_enabled);
 526
 527bool __clk_is_enabled(struct clk *clk)
 528{
 529	if (!clk)
 530		return false;
 531
 532	return clk_core_is_enabled(clk->core);
 533}
 534EXPORT_SYMBOL_GPL(__clk_is_enabled);
 535
 536static bool mux_is_better_rate(unsigned long rate, unsigned long now,
 537			   unsigned long best, unsigned long flags)
 538{
 539	if (flags & CLK_MUX_ROUND_CLOSEST)
 540		return abs(now - rate) < abs(best - rate);
 541
 542	return now <= rate && now > best;
 543}
 544
 545int clk_mux_determine_rate_flags(struct clk_hw *hw,
 546				 struct clk_rate_request *req,
 547				 unsigned long flags)
 548{
 549	struct clk_core *core = hw->core, *parent, *best_parent = NULL;
 550	int i, num_parents, ret;
 551	unsigned long best = 0;
 552	struct clk_rate_request parent_req = *req;
 553
 554	/* if NO_REPARENT flag set, pass through to current parent */
 555	if (core->flags & CLK_SET_RATE_NO_REPARENT) {
 556		parent = core->parent;
 557		if (core->flags & CLK_SET_RATE_PARENT) {
 558			ret = __clk_determine_rate(parent ? parent->hw : NULL,
 559						   &parent_req);
 560			if (ret)
 561				return ret;
 562
 563			best = parent_req.rate;
 564		} else if (parent) {
 565			best = clk_core_get_rate_nolock(parent);
 566		} else {
 567			best = clk_core_get_rate_nolock(core);
 568		}
 569
 570		goto out;
 571	}
 572
 573	/* find the parent that can provide the fastest rate <= rate */
 574	num_parents = core->num_parents;
 575	for (i = 0; i < num_parents; i++) {
 576		parent = clk_core_get_parent_by_index(core, i);
 577		if (!parent)
 578			continue;
 579
 580		if (core->flags & CLK_SET_RATE_PARENT) {
 581			parent_req = *req;
 582			ret = __clk_determine_rate(parent->hw, &parent_req);
 583			if (ret)
 584				continue;
 585		} else {
 586			parent_req.rate = clk_core_get_rate_nolock(parent);
 587		}
 588
 589		if (mux_is_better_rate(req->rate, parent_req.rate,
 590				       best, flags)) {
 591			best_parent = parent;
 592			best = parent_req.rate;
 593		}
 594	}
 595
 596	if (!best_parent)
 597		return -EINVAL;
 598
 599out:
 600	if (best_parent)
 601		req->best_parent_hw = best_parent->hw;
 602	req->best_parent_rate = best;
 603	req->rate = best;
 604
 605	return 0;
 606}
 607EXPORT_SYMBOL_GPL(clk_mux_determine_rate_flags);
 608
 609struct clk *__clk_lookup(const char *name)
 610{
 611	struct clk_core *core = clk_core_lookup(name);
 612
 613	return !core ? NULL : core->hw->clk;
 614}
 615
 616static void clk_core_get_boundaries(struct clk_core *core,
 617				    unsigned long *min_rate,
 618				    unsigned long *max_rate)
 619{
 620	struct clk *clk_user;
 621
 622	lockdep_assert_held(&prepare_lock);
 623
 624	*min_rate = core->min_rate;
 625	*max_rate = core->max_rate;
 626
 627	hlist_for_each_entry(clk_user, &core->clks, clks_node)
 628		*min_rate = max(*min_rate, clk_user->min_rate);
 629
 630	hlist_for_each_entry(clk_user, &core->clks, clks_node)
 631		*max_rate = min(*max_rate, clk_user->max_rate);
 632}
 633
 634void clk_hw_set_rate_range(struct clk_hw *hw, unsigned long min_rate,
 635			   unsigned long max_rate)
 636{
 637	hw->core->min_rate = min_rate;
 638	hw->core->max_rate = max_rate;
 639}
 640EXPORT_SYMBOL_GPL(clk_hw_set_rate_range);
 641
 642/*
 643 * __clk_mux_determine_rate - clk_ops::determine_rate implementation for a mux type clk
 644 * @hw: mux type clk to determine rate on
 645 * @req: rate request, also used to return preferred parent and frequencies
 646 *
 647 * Helper for finding best parent to provide a given frequency. This can be used
 648 * directly as a determine_rate callback (e.g. for a mux), or from a more
 649 * complex clock that may combine a mux with other operations.
 650 *
 651 * Returns: 0 on success, -EERROR value on error
 652 */
 653int __clk_mux_determine_rate(struct clk_hw *hw,
 654			     struct clk_rate_request *req)
 655{
 656	return clk_mux_determine_rate_flags(hw, req, 0);
 657}
 658EXPORT_SYMBOL_GPL(__clk_mux_determine_rate);
 659
 660int __clk_mux_determine_rate_closest(struct clk_hw *hw,
 661				     struct clk_rate_request *req)
 662{
 663	return clk_mux_determine_rate_flags(hw, req, CLK_MUX_ROUND_CLOSEST);
 664}
 665EXPORT_SYMBOL_GPL(__clk_mux_determine_rate_closest);
 666
 667/***        clk api        ***/
 668
 669static void clk_core_rate_unprotect(struct clk_core *core)
 670{
 671	lockdep_assert_held(&prepare_lock);
 672
 673	if (!core)
 674		return;
 675
 676	if (WARN(core->protect_count == 0,
 677	    "%s already unprotected\n", core->name))
 678		return;
 679
 680	if (--core->protect_count > 0)
 681		return;
 682
 683	clk_core_rate_unprotect(core->parent);
 684}
 685
 686static int clk_core_rate_nuke_protect(struct clk_core *core)
 687{
 688	int ret;
 689
 690	lockdep_assert_held(&prepare_lock);
 691
 692	if (!core)
 693		return -EINVAL;
 694
 695	if (core->protect_count == 0)
 696		return 0;
 697
 698	ret = core->protect_count;
 699	core->protect_count = 1;
 700	clk_core_rate_unprotect(core);
 701
 702	return ret;
 703}
 704
 705/**
 706 * clk_rate_exclusive_put - release exclusivity over clock rate control
 707 * @clk: the clk over which the exclusivity is released
 708 *
 709 * clk_rate_exclusive_put() completes a critical section during which a clock
 710 * consumer cannot tolerate any other consumer making any operation on the
 711 * clock which could result in a rate change or rate glitch. Exclusive clocks
 712 * cannot have their rate changed, either directly or indirectly due to changes
 713 * further up the parent chain of clocks. As a result, clocks up parent chain
 714 * also get under exclusive control of the calling consumer.
 715 *
 716 * If exlusivity is claimed more than once on clock, even by the same consumer,
 717 * the rate effectively gets locked as exclusivity can't be preempted.
 718 *
 719 * Calls to clk_rate_exclusive_put() must be balanced with calls to
 720 * clk_rate_exclusive_get(). Calls to this function may sleep, and do not return
 721 * error status.
 722 */
 723void clk_rate_exclusive_put(struct clk *clk)
 724{
 725	if (!clk)
 726		return;
 727
 728	clk_prepare_lock();
 729
 730	/*
 731	 * if there is something wrong with this consumer protect count, stop
 732	 * here before messing with the provider
 733	 */
 734	if (WARN_ON(clk->exclusive_count <= 0))
 735		goto out;
 736
 737	clk_core_rate_unprotect(clk->core);
 738	clk->exclusive_count--;
 739out:
 740	clk_prepare_unlock();
 741}
 742EXPORT_SYMBOL_GPL(clk_rate_exclusive_put);
 743
 744static void clk_core_rate_protect(struct clk_core *core)
 745{
 746	lockdep_assert_held(&prepare_lock);
 747
 748	if (!core)
 749		return;
 750
 751	if (core->protect_count == 0)
 752		clk_core_rate_protect(core->parent);
 753
 754	core->protect_count++;
 755}
 756
 757static void clk_core_rate_restore_protect(struct clk_core *core, int count)
 758{
 759	lockdep_assert_held(&prepare_lock);
 760
 761	if (!core)
 762		return;
 763
 764	if (count == 0)
 765		return;
 766
 767	clk_core_rate_protect(core);
 768	core->protect_count = count;
 769}
 770
 771/**
 772 * clk_rate_exclusive_get - get exclusivity over the clk rate control
 773 * @clk: the clk over which the exclusity of rate control is requested
 774 *
 775 * clk_rate_exclusive_get() begins a critical section during which a clock
 776 * consumer cannot tolerate any other consumer making any operation on the
 777 * clock which could result in a rate change or rate glitch. Exclusive clocks
 778 * cannot have their rate changed, either directly or indirectly due to changes
 779 * further up the parent chain of clocks. As a result, clocks up parent chain
 780 * also get under exclusive control of the calling consumer.
 781 *
 782 * If exlusivity is claimed more than once on clock, even by the same consumer,
 783 * the rate effectively gets locked as exclusivity can't be preempted.
 784 *
 785 * Calls to clk_rate_exclusive_get() should be balanced with calls to
 786 * clk_rate_exclusive_put(). Calls to this function may sleep.
 787 * Returns 0 on success, -EERROR otherwise
 788 */
 789int clk_rate_exclusive_get(struct clk *clk)
 790{
 791	if (!clk)
 792		return 0;
 793
 794	clk_prepare_lock();
 795	clk_core_rate_protect(clk->core);
 796	clk->exclusive_count++;
 797	clk_prepare_unlock();
 798
 799	return 0;
 800}
 801EXPORT_SYMBOL_GPL(clk_rate_exclusive_get);
 802
 803static void clk_core_unprepare(struct clk_core *core)
 804{
 805	lockdep_assert_held(&prepare_lock);
 806
 807	if (!core)
 808		return;
 809
 810	if (WARN(core->prepare_count == 0,
 811	    "%s already unprepared\n", core->name))
 812		return;
 813
 814	if (WARN(core->prepare_count == 1 && core->flags & CLK_IS_CRITICAL,
 815	    "Unpreparing critical %s\n", core->name))
 816		return;
 817
 818	if (core->flags & CLK_SET_RATE_GATE)
 819		clk_core_rate_unprotect(core);
 820
 821	if (--core->prepare_count > 0)
 822		return;
 823
 824	WARN(core->enable_count > 0, "Unpreparing enabled %s\n", core->name);
 825
 826	trace_clk_unprepare(core);
 827
 828	if (core->ops->unprepare)
 829		core->ops->unprepare(core->hw);
 830
 831	clk_pm_runtime_put(core);
 832
 833	trace_clk_unprepare_complete(core);
 834	clk_core_unprepare(core->parent);
 835}
 836
 837static void clk_core_unprepare_lock(struct clk_core *core)
 838{
 839	clk_prepare_lock();
 840	clk_core_unprepare(core);
 841	clk_prepare_unlock();
 842}
 843
 844/**
 845 * clk_unprepare - undo preparation of a clock source
 846 * @clk: the clk being unprepared
 847 *
 848 * clk_unprepare may sleep, which differentiates it from clk_disable.  In a
 849 * simple case, clk_unprepare can be used instead of clk_disable to gate a clk
 850 * if the operation may sleep.  One example is a clk which is accessed over
 851 * I2c.  In the complex case a clk gate operation may require a fast and a slow
 852 * part.  It is this reason that clk_unprepare and clk_disable are not mutually
 853 * exclusive.  In fact clk_disable must be called before clk_unprepare.
 854 */
 855void clk_unprepare(struct clk *clk)
 856{
 857	if (IS_ERR_OR_NULL(clk))
 858		return;
 859
 860	clk_core_unprepare_lock(clk->core);
 
 
 861}
 862EXPORT_SYMBOL_GPL(clk_unprepare);
 863
 864static int clk_core_prepare(struct clk_core *core)
 865{
 866	int ret = 0;
 867
 868	lockdep_assert_held(&prepare_lock);
 869
 870	if (!core)
 871		return 0;
 872
 873	if (core->prepare_count == 0) {
 874		ret = clk_pm_runtime_get(core);
 875		if (ret)
 876			return ret;
 877
 878		ret = clk_core_prepare(core->parent);
 879		if (ret)
 880			goto runtime_put;
 881
 882		trace_clk_prepare(core);
 883
 884		if (core->ops->prepare)
 885			ret = core->ops->prepare(core->hw);
 886
 887		trace_clk_prepare_complete(core);
 888
 889		if (ret)
 890			goto unprepare;
 
 
 891	}
 892
 893	core->prepare_count++;
 894
 895	/*
 896	 * CLK_SET_RATE_GATE is a special case of clock protection
 897	 * Instead of a consumer claiming exclusive rate control, it is
 898	 * actually the provider which prevents any consumer from making any
 899	 * operation which could result in a rate change or rate glitch while
 900	 * the clock is prepared.
 901	 */
 902	if (core->flags & CLK_SET_RATE_GATE)
 903		clk_core_rate_protect(core);
 904
 905	return 0;
 906unprepare:
 907	clk_core_unprepare(core->parent);
 908runtime_put:
 909	clk_pm_runtime_put(core);
 910	return ret;
 911}
 912
 913static int clk_core_prepare_lock(struct clk_core *core)
 914{
 915	int ret;
 916
 917	clk_prepare_lock();
 918	ret = clk_core_prepare(core);
 919	clk_prepare_unlock();
 920
 921	return ret;
 922}
 923
 924/**
 925 * clk_prepare - prepare a clock source
 926 * @clk: the clk being prepared
 927 *
 928 * clk_prepare may sleep, which differentiates it from clk_enable.  In a simple
 929 * case, clk_prepare can be used instead of clk_enable to ungate a clk if the
 930 * operation may sleep.  One example is a clk which is accessed over I2c.  In
 931 * the complex case a clk ungate operation may require a fast and a slow part.
 932 * It is this reason that clk_prepare and clk_enable are not mutually
 933 * exclusive.  In fact clk_prepare must be called before clk_enable.
 934 * Returns 0 on success, -EERROR otherwise.
 935 */
 936int clk_prepare(struct clk *clk)
 937{
 
 
 938	if (!clk)
 939		return 0;
 940
 941	return clk_core_prepare_lock(clk->core);
 
 
 
 
 942}
 943EXPORT_SYMBOL_GPL(clk_prepare);
 944
 945static void clk_core_disable(struct clk_core *core)
 946{
 947	lockdep_assert_held(&enable_lock);
 948
 949	if (!core)
 950		return;
 951
 952	if (WARN(core->enable_count == 0, "%s already disabled\n", core->name))
 953		return;
 954
 955	if (WARN(core->enable_count == 1 && core->flags & CLK_IS_CRITICAL,
 956	    "Disabling critical %s\n", core->name))
 957		return;
 958
 959	if (--core->enable_count > 0)
 960		return;
 961
 962	trace_clk_disable_rcuidle(core);
 963
 964	if (core->ops->disable)
 965		core->ops->disable(core->hw);
 966
 967	trace_clk_disable_complete_rcuidle(core);
 968
 969	clk_core_disable(core->parent);
 970}
 971
 972static void clk_core_disable_lock(struct clk_core *core)
 973{
 974	unsigned long flags;
 975
 976	flags = clk_enable_lock();
 977	clk_core_disable(core);
 978	clk_enable_unlock(flags);
 979}
 980
 981/**
 982 * clk_disable - gate a clock
 983 * @clk: the clk being gated
 984 *
 985 * clk_disable must not sleep, which differentiates it from clk_unprepare.  In
 986 * a simple case, clk_disable can be used instead of clk_unprepare to gate a
 987 * clk if the operation is fast and will never sleep.  One example is a
 988 * SoC-internal clk which is controlled via simple register writes.  In the
 989 * complex case a clk gate operation may require a fast and a slow part.  It is
 990 * this reason that clk_unprepare and clk_disable are not mutually exclusive.
 991 * In fact clk_disable must be called before clk_unprepare.
 992 */
 993void clk_disable(struct clk *clk)
 994{
 
 
 995	if (IS_ERR_OR_NULL(clk))
 996		return;
 997
 998	clk_core_disable_lock(clk->core);
 
 
 999}
1000EXPORT_SYMBOL_GPL(clk_disable);
1001
1002static int clk_core_enable(struct clk_core *core)
1003{
1004	int ret = 0;
1005
1006	lockdep_assert_held(&enable_lock);
1007
1008	if (!core)
1009		return 0;
1010
1011	if (WARN(core->prepare_count == 0,
1012	    "Enabling unprepared %s\n", core->name))
1013		return -ESHUTDOWN;
1014
1015	if (core->enable_count == 0) {
1016		ret = clk_core_enable(core->parent);
1017
1018		if (ret)
1019			return ret;
1020
1021		trace_clk_enable_rcuidle(core);
1022
1023		if (core->ops->enable)
1024			ret = core->ops->enable(core->hw);
1025
1026		trace_clk_enable_complete_rcuidle(core);
1027
1028		if (ret) {
1029			clk_core_disable(core->parent);
1030			return ret;
1031		}
1032	}
1033
1034	core->enable_count++;
1035	return 0;
1036}
1037
1038static int clk_core_enable_lock(struct clk_core *core)
1039{
1040	unsigned long flags;
1041	int ret;
1042
1043	flags = clk_enable_lock();
1044	ret = clk_core_enable(core);
1045	clk_enable_unlock(flags);
1046
1047	return ret;
1048}
1049
1050/**
1051 * clk_gate_restore_context - restore context for poweroff
1052 * @hw: the clk_hw pointer of clock whose state is to be restored
1053 *
1054 * The clock gate restore context function enables or disables
1055 * the gate clocks based on the enable_count. This is done in cases
1056 * where the clock context is lost and based on the enable_count
1057 * the clock either needs to be enabled/disabled. This
1058 * helps restore the state of gate clocks.
1059 */
1060void clk_gate_restore_context(struct clk_hw *hw)
1061{
1062	struct clk_core *core = hw->core;
1063
1064	if (core->enable_count)
1065		core->ops->enable(hw);
1066	else
1067		core->ops->disable(hw);
1068}
1069EXPORT_SYMBOL_GPL(clk_gate_restore_context);
1070
1071static int clk_core_save_context(struct clk_core *core)
1072{
1073	struct clk_core *child;
1074	int ret = 0;
1075
1076	hlist_for_each_entry(child, &core->children, child_node) {
1077		ret = clk_core_save_context(child);
1078		if (ret < 0)
1079			return ret;
1080	}
1081
1082	if (core->ops && core->ops->save_context)
1083		ret = core->ops->save_context(core->hw);
1084
1085	return ret;
1086}
1087
1088static void clk_core_restore_context(struct clk_core *core)
1089{
1090	struct clk_core *child;
1091
1092	if (core->ops && core->ops->restore_context)
1093		core->ops->restore_context(core->hw);
1094
1095	hlist_for_each_entry(child, &core->children, child_node)
1096		clk_core_restore_context(child);
1097}
1098
1099/**
1100 * clk_save_context - save clock context for poweroff
1101 *
1102 * Saves the context of the clock register for powerstates in which the
1103 * contents of the registers will be lost. Occurs deep within the suspend
1104 * code.  Returns 0 on success.
1105 */
1106int clk_save_context(void)
1107{
1108	struct clk_core *clk;
1109	int ret;
1110
1111	hlist_for_each_entry(clk, &clk_root_list, child_node) {
1112		ret = clk_core_save_context(clk);
1113		if (ret < 0)
1114			return ret;
1115	}
1116
1117	hlist_for_each_entry(clk, &clk_orphan_list, child_node) {
1118		ret = clk_core_save_context(clk);
1119		if (ret < 0)
1120			return ret;
1121	}
1122
1123	return 0;
1124}
1125EXPORT_SYMBOL_GPL(clk_save_context);
1126
1127/**
1128 * clk_restore_context - restore clock context after poweroff
1129 *
1130 * Restore the saved clock context upon resume.
1131 *
1132 */
1133void clk_restore_context(void)
1134{
1135	struct clk_core *core;
1136
1137	hlist_for_each_entry(core, &clk_root_list, child_node)
1138		clk_core_restore_context(core);
1139
1140	hlist_for_each_entry(core, &clk_orphan_list, child_node)
1141		clk_core_restore_context(core);
1142}
1143EXPORT_SYMBOL_GPL(clk_restore_context);
1144
1145/**
1146 * clk_enable - ungate a clock
1147 * @clk: the clk being ungated
1148 *
1149 * clk_enable must not sleep, which differentiates it from clk_prepare.  In a
1150 * simple case, clk_enable can be used instead of clk_prepare to ungate a clk
1151 * if the operation will never sleep.  One example is a SoC-internal clk which
1152 * is controlled via simple register writes.  In the complex case a clk ungate
1153 * operation may require a fast and a slow part.  It is this reason that
1154 * clk_enable and clk_prepare are not mutually exclusive.  In fact clk_prepare
1155 * must be called before clk_enable.  Returns 0 on success, -EERROR
1156 * otherwise.
1157 */
1158int clk_enable(struct clk *clk)
1159{
1160	if (!clk)
1161		return 0;
1162
1163	return clk_core_enable_lock(clk->core);
1164}
1165EXPORT_SYMBOL_GPL(clk_enable);
1166
1167static int clk_core_prepare_enable(struct clk_core *core)
1168{
1169	int ret;
1170
1171	ret = clk_core_prepare_lock(core);
1172	if (ret)
1173		return ret;
1174
1175	ret = clk_core_enable_lock(core);
1176	if (ret)
1177		clk_core_unprepare_lock(core);
1178
1179	return ret;
1180}
1181
1182static void clk_core_disable_unprepare(struct clk_core *core)
1183{
1184	clk_core_disable_lock(core);
1185	clk_core_unprepare_lock(core);
1186}
1187
1188static void __init clk_unprepare_unused_subtree(struct clk_core *core)
1189{
1190	struct clk_core *child;
1191
1192	lockdep_assert_held(&prepare_lock);
1193
1194	hlist_for_each_entry(child, &core->children, child_node)
1195		clk_unprepare_unused_subtree(child);
1196
1197	if (core->prepare_count)
1198		return;
1199
1200	if (core->flags & CLK_IGNORE_UNUSED)
1201		return;
1202
1203	if (clk_pm_runtime_get(core))
1204		return;
1205
1206	if (clk_core_is_prepared(core)) {
1207		trace_clk_unprepare(core);
1208		if (core->ops->unprepare_unused)
1209			core->ops->unprepare_unused(core->hw);
1210		else if (core->ops->unprepare)
1211			core->ops->unprepare(core->hw);
1212		trace_clk_unprepare_complete(core);
1213	}
1214
1215	clk_pm_runtime_put(core);
1216}
1217
1218static void __init clk_disable_unused_subtree(struct clk_core *core)
1219{
1220	struct clk_core *child;
1221	unsigned long flags;
 
1222
1223	lockdep_assert_held(&prepare_lock);
1224
1225	hlist_for_each_entry(child, &core->children, child_node)
1226		clk_disable_unused_subtree(child);
1227
1228	if (core->flags & CLK_OPS_PARENT_ENABLE)
1229		clk_core_prepare_enable(core->parent);
1230
1231	if (clk_pm_runtime_get(core))
1232		goto unprepare_out;
1233
1234	flags = clk_enable_lock();
1235
1236	if (core->enable_count)
1237		goto unlock_out;
1238
1239	if (core->flags & CLK_IGNORE_UNUSED)
1240		goto unlock_out;
1241
1242	/*
1243	 * some gate clocks have special needs during the disable-unused
1244	 * sequence.  call .disable_unused if available, otherwise fall
1245	 * back to .disable
1246	 */
1247	if (clk_core_is_enabled(core)) {
1248		trace_clk_disable(core);
1249		if (core->ops->disable_unused)
1250			core->ops->disable_unused(core->hw);
1251		else if (core->ops->disable)
1252			core->ops->disable(core->hw);
1253		trace_clk_disable_complete(core);
1254	}
1255
1256unlock_out:
1257	clk_enable_unlock(flags);
1258	clk_pm_runtime_put(core);
1259unprepare_out:
1260	if (core->flags & CLK_OPS_PARENT_ENABLE)
1261		clk_core_disable_unprepare(core->parent);
1262}
1263
1264static bool clk_ignore_unused __initdata;
1265static int __init clk_ignore_unused_setup(char *__unused)
1266{
1267	clk_ignore_unused = true;
1268	return 1;
1269}
1270__setup("clk_ignore_unused", clk_ignore_unused_setup);
1271
1272static int __init clk_disable_unused(void)
1273{
1274	struct clk_core *core;
1275
1276	if (clk_ignore_unused) {
1277		pr_warn("clk: Not disabling unused clocks\n");
1278		return 0;
1279	}
1280
1281	clk_prepare_lock();
1282
1283	hlist_for_each_entry(core, &clk_root_list, child_node)
1284		clk_disable_unused_subtree(core);
1285
1286	hlist_for_each_entry(core, &clk_orphan_list, child_node)
1287		clk_disable_unused_subtree(core);
1288
1289	hlist_for_each_entry(core, &clk_root_list, child_node)
1290		clk_unprepare_unused_subtree(core);
1291
1292	hlist_for_each_entry(core, &clk_orphan_list, child_node)
1293		clk_unprepare_unused_subtree(core);
1294
1295	clk_prepare_unlock();
1296
1297	return 0;
1298}
1299late_initcall_sync(clk_disable_unused);
1300
1301static int clk_core_determine_round_nolock(struct clk_core *core,
1302					   struct clk_rate_request *req)
1303{
 
1304	long rate;
1305
1306	lockdep_assert_held(&prepare_lock);
1307
1308	if (!core)
1309		return 0;
1310
1311	/*
1312	 * At this point, core protection will be disabled if
1313	 * - if the provider is not protected at all
1314	 * - if the calling consumer is the only one which has exclusivity
1315	 *   over the provider
1316	 */
1317	if (clk_core_rate_is_protected(core)) {
1318		req->rate = core->rate;
1319	} else if (core->ops->determine_rate) {
1320		return core->ops->determine_rate(core->hw, req);
1321	} else if (core->ops->round_rate) {
1322		rate = core->ops->round_rate(core->hw, req->rate,
1323					     &req->best_parent_rate);
1324		if (rate < 0)
1325			return rate;
1326
1327		req->rate = rate;
1328	} else {
1329		return -EINVAL;
1330	}
1331
1332	return 0;
1333}
1334
1335static void clk_core_init_rate_req(struct clk_core * const core,
1336				   struct clk_rate_request *req)
1337{
1338	struct clk_core *parent;
1339
1340	if (WARN_ON(!core || !req))
1341		return;
1342
1343	parent = core->parent;
1344	if (parent) {
1345		req->best_parent_hw = parent->hw;
1346		req->best_parent_rate = parent->rate;
1347	} else {
1348		req->best_parent_hw = NULL;
1349		req->best_parent_rate = 0;
1350	}
1351}
1352
1353static bool clk_core_can_round(struct clk_core * const core)
1354{
1355	return core->ops->determine_rate || core->ops->round_rate;
1356}
1357
1358static int clk_core_round_rate_nolock(struct clk_core *core,
1359				      struct clk_rate_request *req)
1360{
1361	lockdep_assert_held(&prepare_lock);
1362
1363	if (!core) {
1364		req->rate = 0;
1365		return 0;
 
 
1366	}
1367
1368	clk_core_init_rate_req(core, req);
1369
1370	if (clk_core_can_round(core))
1371		return clk_core_determine_round_nolock(core, req);
1372	else if (core->flags & CLK_SET_RATE_PARENT)
1373		return clk_core_round_rate_nolock(core->parent, req);
1374
1375	req->rate = core->rate;
1376	return 0;
1377}
1378
1379/**
1380 * __clk_determine_rate - get the closest rate actually supported by a clock
1381 * @hw: determine the rate of this clock
1382 * @req: target rate request
 
 
1383 *
1384 * Useful for clk_ops such as .set_rate and .determine_rate.
1385 */
1386int __clk_determine_rate(struct clk_hw *hw, struct clk_rate_request *req)
1387{
1388	if (!hw) {
1389		req->rate = 0;
1390		return 0;
1391	}
1392
1393	return clk_core_round_rate_nolock(hw->core, req);
1394}
1395EXPORT_SYMBOL_GPL(__clk_determine_rate);
1396
1397/**
1398 * clk_hw_round_rate() - round the given rate for a hw clk
1399 * @hw: the hw clk for which we are rounding a rate
1400 * @rate: the rate which is to be rounded
1401 *
1402 * Takes in a rate as input and rounds it to a rate that the clk can actually
1403 * use.
1404 *
1405 * Context: prepare_lock must be held.
1406 *          For clk providers to call from within clk_ops such as .round_rate,
1407 *          .determine_rate.
1408 *
1409 * Return: returns rounded rate of hw clk if clk supports round_rate operation
1410 *         else returns the parent rate.
1411 */
1412unsigned long clk_hw_round_rate(struct clk_hw *hw, unsigned long rate)
1413{
1414	int ret;
1415	struct clk_rate_request req;
1416
1417	clk_core_get_boundaries(hw->core, &req.min_rate, &req.max_rate);
1418	req.rate = rate;
1419
1420	ret = clk_core_round_rate_nolock(hw->core, &req);
1421	if (ret)
1422		return 0;
1423
1424	return req.rate;
1425}
1426EXPORT_SYMBOL_GPL(clk_hw_round_rate);
1427
1428/**
1429 * clk_round_rate - round the given rate for a clk
1430 * @clk: the clk for which we are rounding a rate
1431 * @rate: the rate which is to be rounded
1432 *
1433 * Takes in a rate as input and rounds it to a rate that the clk can actually
1434 * use which is then returned.  If clk doesn't support round_rate operation
1435 * then the parent rate is returned.
1436 */
1437long clk_round_rate(struct clk *clk, unsigned long rate)
1438{
1439	struct clk_rate_request req;
1440	int ret;
1441
1442	if (!clk)
1443		return 0;
1444
1445	clk_prepare_lock();
1446
1447	if (clk->exclusive_count)
1448		clk_core_rate_unprotect(clk->core);
1449
1450	clk_core_get_boundaries(clk->core, &req.min_rate, &req.max_rate);
1451	req.rate = rate;
1452
1453	ret = clk_core_round_rate_nolock(clk->core, &req);
1454
1455	if (clk->exclusive_count)
1456		clk_core_rate_protect(clk->core);
1457
1458	clk_prepare_unlock();
1459
1460	if (ret)
1461		return ret;
1462
1463	return req.rate;
1464}
1465EXPORT_SYMBOL_GPL(clk_round_rate);
1466
1467/**
1468 * __clk_notify - call clk notifier chain
1469 * @core: clk that is changing rate
1470 * @msg: clk notifier type (see include/linux/clk.h)
1471 * @old_rate: old clk rate
1472 * @new_rate: new clk rate
1473 *
1474 * Triggers a notifier call chain on the clk rate-change notification
1475 * for 'clk'.  Passes a pointer to the struct clk and the previous
1476 * and current rates to the notifier callback.  Intended to be called by
1477 * internal clock code only.  Returns NOTIFY_DONE from the last driver
1478 * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if
1479 * a driver returns that.
1480 */
1481static int __clk_notify(struct clk_core *core, unsigned long msg,
1482		unsigned long old_rate, unsigned long new_rate)
1483{
1484	struct clk_notifier *cn;
1485	struct clk_notifier_data cnd;
1486	int ret = NOTIFY_DONE;
1487
1488	cnd.old_rate = old_rate;
1489	cnd.new_rate = new_rate;
1490
1491	list_for_each_entry(cn, &clk_notifier_list, node) {
1492		if (cn->clk->core == core) {
1493			cnd.clk = cn->clk;
1494			ret = srcu_notifier_call_chain(&cn->notifier_head, msg,
1495					&cnd);
1496			if (ret & NOTIFY_STOP_MASK)
1497				return ret;
1498		}
1499	}
1500
1501	return ret;
1502}
1503
1504/**
1505 * __clk_recalc_accuracies
1506 * @core: first clk in the subtree
1507 *
1508 * Walks the subtree of clks starting with clk and recalculates accuracies as
1509 * it goes.  Note that if a clk does not implement the .recalc_accuracy
1510 * callback then it is assumed that the clock will take on the accuracy of its
1511 * parent.
1512 */
1513static void __clk_recalc_accuracies(struct clk_core *core)
1514{
1515	unsigned long parent_accuracy = 0;
1516	struct clk_core *child;
1517
1518	lockdep_assert_held(&prepare_lock);
1519
1520	if (core->parent)
1521		parent_accuracy = core->parent->accuracy;
1522
1523	if (core->ops->recalc_accuracy)
1524		core->accuracy = core->ops->recalc_accuracy(core->hw,
1525							  parent_accuracy);
1526	else
1527		core->accuracy = parent_accuracy;
1528
1529	hlist_for_each_entry(child, &core->children, child_node)
1530		__clk_recalc_accuracies(child);
1531}
1532
1533static long clk_core_get_accuracy_recalc(struct clk_core *core)
1534{
 
 
 
1535	if (core && (core->flags & CLK_GET_ACCURACY_NOCACHE))
1536		__clk_recalc_accuracies(core);
1537
1538	return clk_core_get_accuracy_no_lock(core);
 
 
 
1539}
1540
1541/**
1542 * clk_get_accuracy - return the accuracy of clk
1543 * @clk: the clk whose accuracy is being returned
1544 *
1545 * Simply returns the cached accuracy of the clk, unless
1546 * CLK_GET_ACCURACY_NOCACHE flag is set, which means a recalc_rate will be
1547 * issued.
1548 * If clk is NULL then returns 0.
1549 */
1550long clk_get_accuracy(struct clk *clk)
1551{
1552	long accuracy;
1553
1554	if (!clk)
1555		return 0;
1556
1557	clk_prepare_lock();
1558	accuracy = clk_core_get_accuracy_recalc(clk->core);
1559	clk_prepare_unlock();
1560
1561	return accuracy;
1562}
1563EXPORT_SYMBOL_GPL(clk_get_accuracy);
1564
1565static unsigned long clk_recalc(struct clk_core *core,
1566				unsigned long parent_rate)
1567{
1568	unsigned long rate = parent_rate;
1569
1570	if (core->ops->recalc_rate && !clk_pm_runtime_get(core)) {
1571		rate = core->ops->recalc_rate(core->hw, parent_rate);
1572		clk_pm_runtime_put(core);
1573	}
1574	return rate;
1575}
1576
1577/**
1578 * __clk_recalc_rates
1579 * @core: first clk in the subtree
1580 * @msg: notification type (see include/linux/clk.h)
1581 *
1582 * Walks the subtree of clks starting with clk and recalculates rates as it
1583 * goes.  Note that if a clk does not implement the .recalc_rate callback then
1584 * it is assumed that the clock will take on the rate of its parent.
1585 *
1586 * clk_recalc_rates also propagates the POST_RATE_CHANGE notification,
1587 * if necessary.
1588 */
1589static void __clk_recalc_rates(struct clk_core *core, unsigned long msg)
1590{
1591	unsigned long old_rate;
1592	unsigned long parent_rate = 0;
1593	struct clk_core *child;
1594
1595	lockdep_assert_held(&prepare_lock);
1596
1597	old_rate = core->rate;
1598
1599	if (core->parent)
1600		parent_rate = core->parent->rate;
1601
1602	core->rate = clk_recalc(core, parent_rate);
1603
1604	/*
1605	 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE
1606	 * & ABORT_RATE_CHANGE notifiers
1607	 */
1608	if (core->notifier_count && msg)
1609		__clk_notify(core, msg, old_rate, core->rate);
1610
1611	hlist_for_each_entry(child, &core->children, child_node)
1612		__clk_recalc_rates(child, msg);
1613}
1614
1615static unsigned long clk_core_get_rate_recalc(struct clk_core *core)
1616{
 
 
 
 
1617	if (core && (core->flags & CLK_GET_RATE_NOCACHE))
1618		__clk_recalc_rates(core, 0);
1619
1620	return clk_core_get_rate_nolock(core);
 
 
 
1621}
1622
1623/**
1624 * clk_get_rate - return the rate of clk
1625 * @clk: the clk whose rate is being returned
1626 *
1627 * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag
1628 * is set, which means a recalc_rate will be issued.
1629 * If clk is NULL then returns 0.
1630 */
1631unsigned long clk_get_rate(struct clk *clk)
1632{
1633	unsigned long rate;
1634
1635	if (!clk)
1636		return 0;
1637
1638	clk_prepare_lock();
1639	rate = clk_core_get_rate_recalc(clk->core);
1640	clk_prepare_unlock();
1641
1642	return rate;
1643}
1644EXPORT_SYMBOL_GPL(clk_get_rate);
1645
1646static int clk_fetch_parent_index(struct clk_core *core,
1647				  struct clk_core *parent)
1648{
1649	int i;
1650
1651	if (!parent)
1652		return -EINVAL;
1653
1654	for (i = 0; i < core->num_parents; i++) {
1655		/* Found it first try! */
1656		if (core->parents[i].core == parent)
1657			return i;
1658
1659		/* Something else is here, so keep looking */
1660		if (core->parents[i].core)
1661			continue;
1662
1663		/* Maybe core hasn't been cached but the hw is all we know? */
1664		if (core->parents[i].hw) {
1665			if (core->parents[i].hw == parent->hw)
1666				break;
1667
1668			/* Didn't match, but we're expecting a clk_hw */
1669			continue;
1670		}
1671
1672		/* Maybe it hasn't been cached (clk_set_parent() path) */
1673		if (parent == clk_core_get(core, i))
1674			break;
1675
1676		/* Fallback to comparing globally unique names */
1677		if (core->parents[i].name &&
1678		    !strcmp(parent->name, core->parents[i].name))
1679			break;
1680	}
1681
1682	if (i == core->num_parents)
1683		return -EINVAL;
1684
1685	core->parents[i].core = parent;
1686	return i;
1687}
1688
1689/**
1690 * clk_hw_get_parent_index - return the index of the parent clock
1691 * @hw: clk_hw associated with the clk being consumed
1692 *
1693 * Fetches and returns the index of parent clock. Returns -EINVAL if the given
1694 * clock does not have a current parent.
1695 */
1696int clk_hw_get_parent_index(struct clk_hw *hw)
1697{
1698	struct clk_hw *parent = clk_hw_get_parent(hw);
1699
1700	if (WARN_ON(parent == NULL))
1701		return -EINVAL;
1702
1703	return clk_fetch_parent_index(hw->core, parent->core);
1704}
1705EXPORT_SYMBOL_GPL(clk_hw_get_parent_index);
1706
1707/*
1708 * Update the orphan status of @core and all its children.
1709 */
1710static void clk_core_update_orphan_status(struct clk_core *core, bool is_orphan)
1711{
1712	struct clk_core *child;
1713
1714	core->orphan = is_orphan;
1715
1716	hlist_for_each_entry(child, &core->children, child_node)
1717		clk_core_update_orphan_status(child, is_orphan);
1718}
1719
1720static void clk_reparent(struct clk_core *core, struct clk_core *new_parent)
1721{
1722	bool was_orphan = core->orphan;
1723
1724	hlist_del(&core->child_node);
1725
1726	if (new_parent) {
1727		bool becomes_orphan = new_parent->orphan;
1728
1729		/* avoid duplicate POST_RATE_CHANGE notifications */
1730		if (new_parent->new_child == core)
1731			new_parent->new_child = NULL;
1732
1733		hlist_add_head(&core->child_node, &new_parent->children);
1734
1735		if (was_orphan != becomes_orphan)
1736			clk_core_update_orphan_status(core, becomes_orphan);
1737	} else {
1738		hlist_add_head(&core->child_node, &clk_orphan_list);
1739		if (!was_orphan)
1740			clk_core_update_orphan_status(core, true);
1741	}
1742
1743	core->parent = new_parent;
1744}
1745
1746static struct clk_core *__clk_set_parent_before(struct clk_core *core,
1747					   struct clk_core *parent)
1748{
1749	unsigned long flags;
1750	struct clk_core *old_parent = core->parent;
1751
1752	/*
1753	 * 1. enable parents for CLK_OPS_PARENT_ENABLE clock
1754	 *
1755	 * 2. Migrate prepare state between parents and prevent race with
1756	 * clk_enable().
1757	 *
1758	 * If the clock is not prepared, then a race with
1759	 * clk_enable/disable() is impossible since we already have the
1760	 * prepare lock (future calls to clk_enable() need to be preceded by
1761	 * a clk_prepare()).
1762	 *
1763	 * If the clock is prepared, migrate the prepared state to the new
1764	 * parent and also protect against a race with clk_enable() by
1765	 * forcing the clock and the new parent on.  This ensures that all
1766	 * future calls to clk_enable() are practically NOPs with respect to
1767	 * hardware and software states.
1768	 *
1769	 * See also: Comment for clk_set_parent() below.
1770	 */
1771
1772	/* enable old_parent & parent if CLK_OPS_PARENT_ENABLE is set */
1773	if (core->flags & CLK_OPS_PARENT_ENABLE) {
1774		clk_core_prepare_enable(old_parent);
1775		clk_core_prepare_enable(parent);
1776	}
1777
1778	/* migrate prepare count if > 0 */
1779	if (core->prepare_count) {
1780		clk_core_prepare_enable(parent);
1781		clk_core_enable_lock(core);
 
 
 
1782	}
1783
1784	/* update the clk tree topology */
1785	flags = clk_enable_lock();
1786	clk_reparent(core, parent);
1787	clk_enable_unlock(flags);
1788
1789	return old_parent;
1790}
1791
1792static void __clk_set_parent_after(struct clk_core *core,
1793				   struct clk_core *parent,
1794				   struct clk_core *old_parent)
1795{
 
 
1796	/*
1797	 * Finish the migration of prepare state and undo the changes done
1798	 * for preventing a race with clk_enable().
1799	 */
1800	if (core->prepare_count) {
1801		clk_core_disable_lock(core);
1802		clk_core_disable_unprepare(old_parent);
1803	}
1804
1805	/* re-balance ref counting if CLK_OPS_PARENT_ENABLE is set */
1806	if (core->flags & CLK_OPS_PARENT_ENABLE) {
1807		clk_core_disable_unprepare(parent);
1808		clk_core_disable_unprepare(old_parent);
1809	}
1810}
1811
1812static int __clk_set_parent(struct clk_core *core, struct clk_core *parent,
1813			    u8 p_index)
1814{
1815	unsigned long flags;
1816	int ret = 0;
1817	struct clk_core *old_parent;
1818
1819	old_parent = __clk_set_parent_before(core, parent);
1820
1821	trace_clk_set_parent(core, parent);
1822
1823	/* change clock input source */
1824	if (parent && core->ops->set_parent)
1825		ret = core->ops->set_parent(core->hw, p_index);
1826
1827	trace_clk_set_parent_complete(core, parent);
1828
1829	if (ret) {
1830		flags = clk_enable_lock();
1831		clk_reparent(core, old_parent);
1832		clk_enable_unlock(flags);
1833		__clk_set_parent_after(core, old_parent, parent);
1834
1835		return ret;
1836	}
1837
1838	__clk_set_parent_after(core, parent, old_parent);
1839
1840	return 0;
1841}
1842
1843/**
1844 * __clk_speculate_rates
1845 * @core: first clk in the subtree
1846 * @parent_rate: the "future" rate of clk's parent
1847 *
1848 * Walks the subtree of clks starting with clk, speculating rates as it
1849 * goes and firing off PRE_RATE_CHANGE notifications as necessary.
1850 *
1851 * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending
1852 * pre-rate change notifications and returns early if no clks in the
1853 * subtree have subscribed to the notifications.  Note that if a clk does not
1854 * implement the .recalc_rate callback then it is assumed that the clock will
1855 * take on the rate of its parent.
1856 */
1857static int __clk_speculate_rates(struct clk_core *core,
1858				 unsigned long parent_rate)
1859{
1860	struct clk_core *child;
1861	unsigned long new_rate;
1862	int ret = NOTIFY_DONE;
1863
1864	lockdep_assert_held(&prepare_lock);
1865
1866	new_rate = clk_recalc(core, parent_rate);
1867
1868	/* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */
1869	if (core->notifier_count)
1870		ret = __clk_notify(core, PRE_RATE_CHANGE, core->rate, new_rate);
1871
1872	if (ret & NOTIFY_STOP_MASK) {
1873		pr_debug("%s: clk notifier callback for clock %s aborted with error %d\n",
1874				__func__, core->name, ret);
1875		goto out;
1876	}
1877
1878	hlist_for_each_entry(child, &core->children, child_node) {
1879		ret = __clk_speculate_rates(child, new_rate);
1880		if (ret & NOTIFY_STOP_MASK)
1881			break;
1882	}
1883
1884out:
1885	return ret;
1886}
1887
1888static void clk_calc_subtree(struct clk_core *core, unsigned long new_rate,
1889			     struct clk_core *new_parent, u8 p_index)
1890{
1891	struct clk_core *child;
1892
1893	core->new_rate = new_rate;
1894	core->new_parent = new_parent;
1895	core->new_parent_index = p_index;
1896	/* include clk in new parent's PRE_RATE_CHANGE notifications */
1897	core->new_child = NULL;
1898	if (new_parent && new_parent != core->parent)
1899		new_parent->new_child = core;
1900
1901	hlist_for_each_entry(child, &core->children, child_node) {
1902		child->new_rate = clk_recalc(child, new_rate);
1903		clk_calc_subtree(child, child->new_rate, NULL, 0);
1904	}
1905}
1906
1907/*
1908 * calculate the new rates returning the topmost clock that has to be
1909 * changed.
1910 */
1911static struct clk_core *clk_calc_new_rates(struct clk_core *core,
1912					   unsigned long rate)
1913{
1914	struct clk_core *top = core;
1915	struct clk_core *old_parent, *parent;
1916	unsigned long best_parent_rate = 0;
1917	unsigned long new_rate;
1918	unsigned long min_rate;
1919	unsigned long max_rate;
1920	int p_index = 0;
1921	long ret;
1922
1923	/* sanity */
1924	if (IS_ERR_OR_NULL(core))
1925		return NULL;
1926
1927	/* save parent rate, if it exists */
1928	parent = old_parent = core->parent;
1929	if (parent)
1930		best_parent_rate = parent->rate;
1931
1932	clk_core_get_boundaries(core, &min_rate, &max_rate);
1933
1934	/* find the closest rate and parent clk/rate */
1935	if (clk_core_can_round(core)) {
1936		struct clk_rate_request req;
1937
1938		req.rate = rate;
1939		req.min_rate = min_rate;
1940		req.max_rate = max_rate;
 
 
 
 
 
 
 
1941
1942		clk_core_init_rate_req(core, &req);
1943
1944		ret = clk_core_determine_round_nolock(core, &req);
1945		if (ret < 0)
1946			return NULL;
1947
1948		best_parent_rate = req.best_parent_rate;
1949		new_rate = req.rate;
1950		parent = req.best_parent_hw ? req.best_parent_hw->core : NULL;
 
 
 
 
 
1951
 
1952		if (new_rate < min_rate || new_rate > max_rate)
1953			return NULL;
1954	} else if (!parent || !(core->flags & CLK_SET_RATE_PARENT)) {
1955		/* pass-through clock without adjustable parent */
1956		core->new_rate = core->rate;
1957		return NULL;
1958	} else {
1959		/* pass-through clock with adjustable parent */
1960		top = clk_calc_new_rates(parent, rate);
1961		new_rate = parent->new_rate;
1962		goto out;
1963	}
1964
1965	/* some clocks must be gated to change parent */
1966	if (parent != old_parent &&
1967	    (core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) {
1968		pr_debug("%s: %s not gated but wants to reparent\n",
1969			 __func__, core->name);
1970		return NULL;
1971	}
1972
1973	/* try finding the new parent index */
1974	if (parent && core->num_parents > 1) {
1975		p_index = clk_fetch_parent_index(core, parent);
1976		if (p_index < 0) {
1977			pr_debug("%s: clk %s can not be parent of clk %s\n",
1978				 __func__, parent->name, core->name);
1979			return NULL;
1980		}
1981	}
1982
1983	if ((core->flags & CLK_SET_RATE_PARENT) && parent &&
1984	    best_parent_rate != parent->rate)
1985		top = clk_calc_new_rates(parent, best_parent_rate);
1986
1987out:
1988	clk_calc_subtree(core, new_rate, parent, p_index);
1989
1990	return top;
1991}
1992
1993/*
1994 * Notify about rate changes in a subtree. Always walk down the whole tree
1995 * so that in case of an error we can walk down the whole tree again and
1996 * abort the change.
1997 */
1998static struct clk_core *clk_propagate_rate_change(struct clk_core *core,
1999						  unsigned long event)
2000{
2001	struct clk_core *child, *tmp_clk, *fail_clk = NULL;
2002	int ret = NOTIFY_DONE;
2003
2004	if (core->rate == core->new_rate)
2005		return NULL;
2006
2007	if (core->notifier_count) {
2008		ret = __clk_notify(core, event, core->rate, core->new_rate);
2009		if (ret & NOTIFY_STOP_MASK)
2010			fail_clk = core;
2011	}
2012
2013	hlist_for_each_entry(child, &core->children, child_node) {
2014		/* Skip children who will be reparented to another clock */
2015		if (child->new_parent && child->new_parent != core)
2016			continue;
2017		tmp_clk = clk_propagate_rate_change(child, event);
2018		if (tmp_clk)
2019			fail_clk = tmp_clk;
2020	}
2021
2022	/* handle the new child who might not be in core->children yet */
2023	if (core->new_child) {
2024		tmp_clk = clk_propagate_rate_change(core->new_child, event);
2025		if (tmp_clk)
2026			fail_clk = tmp_clk;
2027	}
2028
2029	return fail_clk;
2030}
2031
2032/*
2033 * walk down a subtree and set the new rates notifying the rate
2034 * change on the way
2035 */
2036static void clk_change_rate(struct clk_core *core)
2037{
2038	struct clk_core *child;
2039	struct hlist_node *tmp;
2040	unsigned long old_rate;
2041	unsigned long best_parent_rate = 0;
2042	bool skip_set_rate = false;
2043	struct clk_core *old_parent;
2044	struct clk_core *parent = NULL;
2045
2046	old_rate = core->rate;
2047
2048	if (core->new_parent) {
2049		parent = core->new_parent;
2050		best_parent_rate = core->new_parent->rate;
2051	} else if (core->parent) {
2052		parent = core->parent;
2053		best_parent_rate = core->parent->rate;
2054	}
2055
2056	if (clk_pm_runtime_get(core))
2057		return;
2058
2059	if (core->flags & CLK_SET_RATE_UNGATE) {
2060		unsigned long flags;
2061
2062		clk_core_prepare(core);
2063		flags = clk_enable_lock();
2064		clk_core_enable(core);
2065		clk_enable_unlock(flags);
2066	}
2067
2068	if (core->new_parent && core->new_parent != core->parent) {
2069		old_parent = __clk_set_parent_before(core, core->new_parent);
2070		trace_clk_set_parent(core, core->new_parent);
2071
2072		if (core->ops->set_rate_and_parent) {
2073			skip_set_rate = true;
2074			core->ops->set_rate_and_parent(core->hw, core->new_rate,
2075					best_parent_rate,
2076					core->new_parent_index);
2077		} else if (core->ops->set_parent) {
2078			core->ops->set_parent(core->hw, core->new_parent_index);
2079		}
2080
2081		trace_clk_set_parent_complete(core, core->new_parent);
2082		__clk_set_parent_after(core, core->new_parent, old_parent);
2083	}
2084
2085	if (core->flags & CLK_OPS_PARENT_ENABLE)
2086		clk_core_prepare_enable(parent);
2087
2088	trace_clk_set_rate(core, core->new_rate);
2089
2090	if (!skip_set_rate && core->ops->set_rate)
2091		core->ops->set_rate(core->hw, core->new_rate, best_parent_rate);
2092
2093	trace_clk_set_rate_complete(core, core->new_rate);
2094
2095	core->rate = clk_recalc(core, best_parent_rate);
2096
2097	if (core->flags & CLK_SET_RATE_UNGATE) {
2098		unsigned long flags;
2099
2100		flags = clk_enable_lock();
2101		clk_core_disable(core);
2102		clk_enable_unlock(flags);
2103		clk_core_unprepare(core);
2104	}
2105
2106	if (core->flags & CLK_OPS_PARENT_ENABLE)
2107		clk_core_disable_unprepare(parent);
2108
2109	if (core->notifier_count && old_rate != core->rate)
2110		__clk_notify(core, POST_RATE_CHANGE, old_rate, core->rate);
2111
2112	if (core->flags & CLK_RECALC_NEW_RATES)
2113		(void)clk_calc_new_rates(core, core->new_rate);
2114
2115	/*
2116	 * Use safe iteration, as change_rate can actually swap parents
2117	 * for certain clock types.
2118	 */
2119	hlist_for_each_entry_safe(child, tmp, &core->children, child_node) {
2120		/* Skip children who will be reparented to another clock */
2121		if (child->new_parent && child->new_parent != core)
2122			continue;
2123		clk_change_rate(child);
2124	}
2125
2126	/* handle the new child who might not be in core->children yet */
2127	if (core->new_child)
2128		clk_change_rate(core->new_child);
2129
2130	clk_pm_runtime_put(core);
2131}
2132
2133static unsigned long clk_core_req_round_rate_nolock(struct clk_core *core,
2134						     unsigned long req_rate)
2135{
2136	int ret, cnt;
2137	struct clk_rate_request req;
2138
2139	lockdep_assert_held(&prepare_lock);
2140
2141	if (!core)
2142		return 0;
2143
2144	/* simulate what the rate would be if it could be freely set */
2145	cnt = clk_core_rate_nuke_protect(core);
2146	if (cnt < 0)
2147		return cnt;
2148
2149	clk_core_get_boundaries(core, &req.min_rate, &req.max_rate);
2150	req.rate = req_rate;
2151
2152	ret = clk_core_round_rate_nolock(core, &req);
2153
2154	/* restore the protection */
2155	clk_core_rate_restore_protect(core, cnt);
2156
2157	return ret ? 0 : req.rate;
2158}
2159
2160static int clk_core_set_rate_nolock(struct clk_core *core,
2161				    unsigned long req_rate)
2162{
2163	struct clk_core *top, *fail_clk;
2164	unsigned long rate;
2165	int ret = 0;
2166
2167	if (!core)
2168		return 0;
2169
2170	rate = clk_core_req_round_rate_nolock(core, req_rate);
2171
2172	/* bail early if nothing to do */
2173	if (rate == clk_core_get_rate_nolock(core))
2174		return 0;
2175
2176	/* fail on a direct rate set of a protected provider */
2177	if (clk_core_rate_is_protected(core))
2178		return -EBUSY;
2179
2180	/* calculate new rates and get the topmost changed clock */
2181	top = clk_calc_new_rates(core, req_rate);
2182	if (!top)
2183		return -EINVAL;
2184
2185	ret = clk_pm_runtime_get(core);
2186	if (ret)
2187		return ret;
2188
2189	/* notify that we are about to change rates */
2190	fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE);
2191	if (fail_clk) {
2192		pr_debug("%s: failed to set %s rate\n", __func__,
2193				fail_clk->name);
2194		clk_propagate_rate_change(top, ABORT_RATE_CHANGE);
2195		ret = -EBUSY;
2196		goto err;
2197	}
2198
2199	/* change the rates */
2200	clk_change_rate(top);
2201
2202	core->req_rate = req_rate;
2203err:
2204	clk_pm_runtime_put(core);
2205
2206	return ret;
2207}
2208
2209/**
2210 * clk_set_rate - specify a new rate for clk
2211 * @clk: the clk whose rate is being changed
2212 * @rate: the new rate for clk
2213 *
2214 * In the simplest case clk_set_rate will only adjust the rate of clk.
2215 *
2216 * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to
2217 * propagate up to clk's parent; whether or not this happens depends on the
2218 * outcome of clk's .round_rate implementation.  If *parent_rate is unchanged
2219 * after calling .round_rate then upstream parent propagation is ignored.  If
2220 * *parent_rate comes back with a new rate for clk's parent then we propagate
2221 * up to clk's parent and set its rate.  Upward propagation will continue
2222 * until either a clk does not support the CLK_SET_RATE_PARENT flag or
2223 * .round_rate stops requesting changes to clk's parent_rate.
2224 *
2225 * Rate changes are accomplished via tree traversal that also recalculates the
2226 * rates for the clocks and fires off POST_RATE_CHANGE notifiers.
2227 *
2228 * Returns 0 on success, -EERROR otherwise.
2229 */
2230int clk_set_rate(struct clk *clk, unsigned long rate)
2231{
2232	int ret;
2233
2234	if (!clk)
2235		return 0;
2236
2237	/* prevent racing with updates to the clock topology */
2238	clk_prepare_lock();
2239
2240	if (clk->exclusive_count)
2241		clk_core_rate_unprotect(clk->core);
2242
2243	ret = clk_core_set_rate_nolock(clk->core, rate);
2244
2245	if (clk->exclusive_count)
2246		clk_core_rate_protect(clk->core);
2247
2248	clk_prepare_unlock();
2249
2250	return ret;
2251}
2252EXPORT_SYMBOL_GPL(clk_set_rate);
2253
2254/**
2255 * clk_set_rate_exclusive - specify a new rate and get exclusive control
2256 * @clk: the clk whose rate is being changed
2257 * @rate: the new rate for clk
2258 *
2259 * This is a combination of clk_set_rate() and clk_rate_exclusive_get()
2260 * within a critical section
2261 *
2262 * This can be used initially to ensure that at least 1 consumer is
2263 * satisfied when several consumers are competing for exclusivity over the
2264 * same clock provider.
2265 *
2266 * The exclusivity is not applied if setting the rate failed.
2267 *
2268 * Calls to clk_rate_exclusive_get() should be balanced with calls to
2269 * clk_rate_exclusive_put().
2270 *
2271 * Returns 0 on success, -EERROR otherwise.
2272 */
2273int clk_set_rate_exclusive(struct clk *clk, unsigned long rate)
2274{
2275	int ret;
2276
2277	if (!clk)
2278		return 0;
2279
2280	/* prevent racing with updates to the clock topology */
2281	clk_prepare_lock();
2282
2283	/*
2284	 * The temporary protection removal is not here, on purpose
2285	 * This function is meant to be used instead of clk_rate_protect,
2286	 * so before the consumer code path protect the clock provider
2287	 */
2288
2289	ret = clk_core_set_rate_nolock(clk->core, rate);
2290	if (!ret) {
2291		clk_core_rate_protect(clk->core);
2292		clk->exclusive_count++;
2293	}
2294
2295	clk_prepare_unlock();
2296
2297	return ret;
2298}
2299EXPORT_SYMBOL_GPL(clk_set_rate_exclusive);
2300
2301/**
2302 * clk_set_rate_range - set a rate range for a clock source
2303 * @clk: clock source
2304 * @min: desired minimum clock rate in Hz, inclusive
2305 * @max: desired maximum clock rate in Hz, inclusive
2306 *
2307 * Returns success (0) or negative errno.
2308 */
2309int clk_set_rate_range(struct clk *clk, unsigned long min, unsigned long max)
2310{
2311	int ret = 0;
2312	unsigned long old_min, old_max, rate;
2313
2314	if (!clk)
2315		return 0;
2316
2317	if (min > max) {
2318		pr_err("%s: clk %s dev %s con %s: invalid range [%lu, %lu]\n",
2319		       __func__, clk->core->name, clk->dev_id, clk->con_id,
2320		       min, max);
2321		return -EINVAL;
2322	}
2323
2324	clk_prepare_lock();
2325
2326	if (clk->exclusive_count)
2327		clk_core_rate_unprotect(clk->core);
2328
2329	/* Save the current values in case we need to rollback the change */
2330	old_min = clk->min_rate;
2331	old_max = clk->max_rate;
2332	clk->min_rate = min;
2333	clk->max_rate = max;
2334
2335	rate = clk_core_get_rate_nolock(clk->core);
2336	if (rate < min || rate > max) {
2337		/*
2338		 * FIXME:
2339		 * We are in bit of trouble here, current rate is outside the
2340		 * the requested range. We are going try to request appropriate
2341		 * range boundary but there is a catch. It may fail for the
2342		 * usual reason (clock broken, clock protected, etc) but also
2343		 * because:
2344		 * - round_rate() was not favorable and fell on the wrong
2345		 *   side of the boundary
2346		 * - the determine_rate() callback does not really check for
2347		 *   this corner case when determining the rate
2348		 */
2349
2350		if (rate < min)
2351			rate = min;
2352		else
2353			rate = max;
2354
2355		ret = clk_core_set_rate_nolock(clk->core, rate);
2356		if (ret) {
2357			/* rollback the changes */
2358			clk->min_rate = old_min;
2359			clk->max_rate = old_max;
2360		}
2361	}
2362
2363	if (clk->exclusive_count)
2364		clk_core_rate_protect(clk->core);
2365
2366	clk_prepare_unlock();
2367
2368	return ret;
2369}
2370EXPORT_SYMBOL_GPL(clk_set_rate_range);
2371
2372/**
2373 * clk_set_min_rate - set a minimum clock rate for a clock source
2374 * @clk: clock source
2375 * @rate: desired minimum clock rate in Hz, inclusive
2376 *
2377 * Returns success (0) or negative errno.
2378 */
2379int clk_set_min_rate(struct clk *clk, unsigned long rate)
2380{
2381	if (!clk)
2382		return 0;
2383
2384	return clk_set_rate_range(clk, rate, clk->max_rate);
2385}
2386EXPORT_SYMBOL_GPL(clk_set_min_rate);
2387
2388/**
2389 * clk_set_max_rate - set a maximum clock rate for a clock source
2390 * @clk: clock source
2391 * @rate: desired maximum clock rate in Hz, inclusive
2392 *
2393 * Returns success (0) or negative errno.
2394 */
2395int clk_set_max_rate(struct clk *clk, unsigned long rate)
2396{
2397	if (!clk)
2398		return 0;
2399
2400	return clk_set_rate_range(clk, clk->min_rate, rate);
2401}
2402EXPORT_SYMBOL_GPL(clk_set_max_rate);
2403
2404/**
2405 * clk_get_parent - return the parent of a clk
2406 * @clk: the clk whose parent gets returned
2407 *
2408 * Simply returns clk->parent.  Returns NULL if clk is NULL.
2409 */
2410struct clk *clk_get_parent(struct clk *clk)
2411{
2412	struct clk *parent;
2413
2414	if (!clk)
2415		return NULL;
2416
2417	clk_prepare_lock();
2418	/* TODO: Create a per-user clk and change callers to call clk_put */
2419	parent = !clk->core->parent ? NULL : clk->core->parent->hw->clk;
2420	clk_prepare_unlock();
2421
2422	return parent;
2423}
2424EXPORT_SYMBOL_GPL(clk_get_parent);
2425
2426static struct clk_core *__clk_init_parent(struct clk_core *core)
2427{
2428	u8 index = 0;
2429
2430	if (core->num_parents > 1 && core->ops->get_parent)
2431		index = core->ops->get_parent(core->hw);
2432
2433	return clk_core_get_parent_by_index(core, index);
2434}
2435
2436static void clk_core_reparent(struct clk_core *core,
2437				  struct clk_core *new_parent)
2438{
2439	clk_reparent(core, new_parent);
2440	__clk_recalc_accuracies(core);
2441	__clk_recalc_rates(core, POST_RATE_CHANGE);
2442}
2443
2444void clk_hw_reparent(struct clk_hw *hw, struct clk_hw *new_parent)
2445{
2446	if (!hw)
2447		return;
2448
2449	clk_core_reparent(hw->core, !new_parent ? NULL : new_parent->core);
2450}
2451
2452/**
2453 * clk_has_parent - check if a clock is a possible parent for another
2454 * @clk: clock source
2455 * @parent: parent clock source
2456 *
2457 * This function can be used in drivers that need to check that a clock can be
2458 * the parent of another without actually changing the parent.
2459 *
2460 * Returns true if @parent is a possible parent for @clk, false otherwise.
2461 */
2462bool clk_has_parent(struct clk *clk, struct clk *parent)
2463{
2464	struct clk_core *core, *parent_core;
2465	int i;
2466
2467	/* NULL clocks should be nops, so return success if either is NULL. */
2468	if (!clk || !parent)
2469		return true;
2470
2471	core = clk->core;
2472	parent_core = parent->core;
2473
2474	/* Optimize for the case where the parent is already the parent. */
2475	if (core->parent == parent_core)
2476		return true;
2477
2478	for (i = 0; i < core->num_parents; i++)
2479		if (!strcmp(core->parents[i].name, parent_core->name))
2480			return true;
2481
2482	return false;
2483}
2484EXPORT_SYMBOL_GPL(clk_has_parent);
2485
2486static int clk_core_set_parent_nolock(struct clk_core *core,
2487				      struct clk_core *parent)
2488{
2489	int ret = 0;
2490	int p_index = 0;
2491	unsigned long p_rate = 0;
2492
2493	lockdep_assert_held(&prepare_lock);
2494
2495	if (!core)
2496		return 0;
2497
 
 
 
2498	if (core->parent == parent)
2499		return 0;
2500
2501	/* verify ops for multi-parent clks */
2502	if (core->num_parents > 1 && !core->ops->set_parent)
2503		return -EPERM;
 
 
2504
2505	/* check that we are allowed to re-parent if the clock is in use */
2506	if ((core->flags & CLK_SET_PARENT_GATE) && core->prepare_count)
2507		return -EBUSY;
2508
2509	if (clk_core_rate_is_protected(core))
2510		return -EBUSY;
2511
2512	/* try finding the new parent index */
2513	if (parent) {
2514		p_index = clk_fetch_parent_index(core, parent);
2515		if (p_index < 0) {
2516			pr_debug("%s: clk %s can not be parent of clk %s\n",
2517					__func__, parent->name, core->name);
2518			return p_index;
 
2519		}
2520		p_rate = parent->rate;
2521	}
2522
2523	ret = clk_pm_runtime_get(core);
2524	if (ret)
2525		return ret;
2526
2527	/* propagate PRE_RATE_CHANGE notifications */
2528	ret = __clk_speculate_rates(core, p_rate);
2529
2530	/* abort if a driver objects */
2531	if (ret & NOTIFY_STOP_MASK)
2532		goto runtime_put;
2533
2534	/* do the re-parent */
2535	ret = __clk_set_parent(core, parent, p_index);
2536
2537	/* propagate rate an accuracy recalculation accordingly */
2538	if (ret) {
2539		__clk_recalc_rates(core, ABORT_RATE_CHANGE);
2540	} else {
2541		__clk_recalc_rates(core, POST_RATE_CHANGE);
2542		__clk_recalc_accuracies(core);
2543	}
2544
2545runtime_put:
2546	clk_pm_runtime_put(core);
2547
2548	return ret;
2549}
2550
2551int clk_hw_set_parent(struct clk_hw *hw, struct clk_hw *parent)
2552{
2553	return clk_core_set_parent_nolock(hw->core, parent->core);
2554}
2555EXPORT_SYMBOL_GPL(clk_hw_set_parent);
2556
2557/**
2558 * clk_set_parent - switch the parent of a mux clk
2559 * @clk: the mux clk whose input we are switching
2560 * @parent: the new input to clk
2561 *
2562 * Re-parent clk to use parent as its new input source.  If clk is in
2563 * prepared state, the clk will get enabled for the duration of this call. If
2564 * that's not acceptable for a specific clk (Eg: the consumer can't handle
2565 * that, the reparenting is glitchy in hardware, etc), use the
2566 * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared.
2567 *
2568 * After successfully changing clk's parent clk_set_parent will update the
2569 * clk topology, sysfs topology and propagate rate recalculation via
2570 * __clk_recalc_rates.
2571 *
2572 * Returns 0 on success, -EERROR otherwise.
2573 */
2574int clk_set_parent(struct clk *clk, struct clk *parent)
2575{
2576	int ret;
2577
2578	if (!clk)
2579		return 0;
2580
2581	clk_prepare_lock();
2582
2583	if (clk->exclusive_count)
2584		clk_core_rate_unprotect(clk->core);
2585
2586	ret = clk_core_set_parent_nolock(clk->core,
2587					 parent ? parent->core : NULL);
2588
2589	if (clk->exclusive_count)
2590		clk_core_rate_protect(clk->core);
2591
2592	clk_prepare_unlock();
2593
2594	return ret;
2595}
2596EXPORT_SYMBOL_GPL(clk_set_parent);
2597
2598static int clk_core_set_phase_nolock(struct clk_core *core, int degrees)
2599{
2600	int ret = -EINVAL;
2601
2602	lockdep_assert_held(&prepare_lock);
2603
2604	if (!core)
2605		return 0;
2606
2607	if (clk_core_rate_is_protected(core))
2608		return -EBUSY;
2609
2610	trace_clk_set_phase(core, degrees);
2611
2612	if (core->ops->set_phase) {
2613		ret = core->ops->set_phase(core->hw, degrees);
2614		if (!ret)
2615			core->phase = degrees;
2616	}
2617
2618	trace_clk_set_phase_complete(core, degrees);
2619
2620	return ret;
2621}
2622
2623/**
2624 * clk_set_phase - adjust the phase shift of a clock signal
2625 * @clk: clock signal source
2626 * @degrees: number of degrees the signal is shifted
2627 *
2628 * Shifts the phase of a clock signal by the specified
2629 * degrees. Returns 0 on success, -EERROR otherwise.
2630 *
2631 * This function makes no distinction about the input or reference
2632 * signal that we adjust the clock signal phase against. For example
2633 * phase locked-loop clock signal generators we may shift phase with
2634 * respect to feedback clock signal input, but for other cases the
2635 * clock phase may be shifted with respect to some other, unspecified
2636 * signal.
2637 *
2638 * Additionally the concept of phase shift does not propagate through
2639 * the clock tree hierarchy, which sets it apart from clock rates and
2640 * clock accuracy. A parent clock phase attribute does not have an
2641 * impact on the phase attribute of a child clock.
2642 */
2643int clk_set_phase(struct clk *clk, int degrees)
2644{
2645	int ret;
2646
2647	if (!clk)
2648		return 0;
2649
2650	/* sanity check degrees */
2651	degrees %= 360;
2652	if (degrees < 0)
2653		degrees += 360;
2654
2655	clk_prepare_lock();
2656
2657	if (clk->exclusive_count)
2658		clk_core_rate_unprotect(clk->core);
 
 
 
 
 
 
2659
2660	ret = clk_core_set_phase_nolock(clk->core, degrees);
2661
2662	if (clk->exclusive_count)
2663		clk_core_rate_protect(clk->core);
2664
 
2665	clk_prepare_unlock();
2666
2667	return ret;
2668}
2669EXPORT_SYMBOL_GPL(clk_set_phase);
2670
2671static int clk_core_get_phase(struct clk_core *core)
2672{
2673	int ret;
2674
2675	lockdep_assert_held(&prepare_lock);
2676	if (!core->ops->get_phase)
2677		return 0;
2678
2679	/* Always try to update cached phase if possible */
2680	ret = core->ops->get_phase(core->hw);
2681	if (ret >= 0)
2682		core->phase = ret;
2683
2684	return ret;
2685}
2686
2687/**
2688 * clk_get_phase - return the phase shift of a clock signal
2689 * @clk: clock signal source
2690 *
2691 * Returns the phase shift of a clock node in degrees, otherwise returns
2692 * -EERROR.
2693 */
2694int clk_get_phase(struct clk *clk)
2695{
2696	int ret;
2697
2698	if (!clk)
2699		return 0;
2700
2701	clk_prepare_lock();
2702	ret = clk_core_get_phase(clk->core);
2703	clk_prepare_unlock();
2704
2705	return ret;
2706}
2707EXPORT_SYMBOL_GPL(clk_get_phase);
2708
2709static void clk_core_reset_duty_cycle_nolock(struct clk_core *core)
2710{
2711	/* Assume a default value of 50% */
2712	core->duty.num = 1;
2713	core->duty.den = 2;
2714}
2715
2716static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core);
2717
2718static int clk_core_update_duty_cycle_nolock(struct clk_core *core)
2719{
2720	struct clk_duty *duty = &core->duty;
2721	int ret = 0;
2722
2723	if (!core->ops->get_duty_cycle)
2724		return clk_core_update_duty_cycle_parent_nolock(core);
2725
2726	ret = core->ops->get_duty_cycle(core->hw, duty);
2727	if (ret)
2728		goto reset;
2729
2730	/* Don't trust the clock provider too much */
2731	if (duty->den == 0 || duty->num > duty->den) {
2732		ret = -EINVAL;
2733		goto reset;
2734	}
2735
2736	return 0;
2737
2738reset:
2739	clk_core_reset_duty_cycle_nolock(core);
2740	return ret;
2741}
2742
2743static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core)
2744{
2745	int ret = 0;
2746
2747	if (core->parent &&
2748	    core->flags & CLK_DUTY_CYCLE_PARENT) {
2749		ret = clk_core_update_duty_cycle_nolock(core->parent);
2750		memcpy(&core->duty, &core->parent->duty, sizeof(core->duty));
2751	} else {
2752		clk_core_reset_duty_cycle_nolock(core);
2753	}
2754
2755	return ret;
2756}
2757
2758static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core,
2759						 struct clk_duty *duty);
2760
2761static int clk_core_set_duty_cycle_nolock(struct clk_core *core,
2762					  struct clk_duty *duty)
2763{
2764	int ret;
2765
2766	lockdep_assert_held(&prepare_lock);
2767
2768	if (clk_core_rate_is_protected(core))
2769		return -EBUSY;
2770
2771	trace_clk_set_duty_cycle(core, duty);
2772
2773	if (!core->ops->set_duty_cycle)
2774		return clk_core_set_duty_cycle_parent_nolock(core, duty);
2775
2776	ret = core->ops->set_duty_cycle(core->hw, duty);
2777	if (!ret)
2778		memcpy(&core->duty, duty, sizeof(*duty));
2779
2780	trace_clk_set_duty_cycle_complete(core, duty);
2781
2782	return ret;
2783}
2784
2785static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core,
2786						 struct clk_duty *duty)
2787{
2788	int ret = 0;
2789
2790	if (core->parent &&
2791	    core->flags & (CLK_DUTY_CYCLE_PARENT | CLK_SET_RATE_PARENT)) {
2792		ret = clk_core_set_duty_cycle_nolock(core->parent, duty);
2793		memcpy(&core->duty, &core->parent->duty, sizeof(core->duty));
2794	}
2795
2796	return ret;
2797}
2798
2799/**
2800 * clk_set_duty_cycle - adjust the duty cycle ratio of a clock signal
2801 * @clk: clock signal source
2802 * @num: numerator of the duty cycle ratio to be applied
2803 * @den: denominator of the duty cycle ratio to be applied
2804 *
2805 * Apply the duty cycle ratio if the ratio is valid and the clock can
2806 * perform this operation
2807 *
2808 * Returns (0) on success, a negative errno otherwise.
2809 */
2810int clk_set_duty_cycle(struct clk *clk, unsigned int num, unsigned int den)
2811{
2812	int ret;
2813	struct clk_duty duty;
2814
2815	if (!clk)
2816		return 0;
2817
2818	/* sanity check the ratio */
2819	if (den == 0 || num > den)
2820		return -EINVAL;
2821
2822	duty.num = num;
2823	duty.den = den;
2824
2825	clk_prepare_lock();
2826
2827	if (clk->exclusive_count)
2828		clk_core_rate_unprotect(clk->core);
2829
2830	ret = clk_core_set_duty_cycle_nolock(clk->core, &duty);
2831
2832	if (clk->exclusive_count)
2833		clk_core_rate_protect(clk->core);
2834
2835	clk_prepare_unlock();
2836
2837	return ret;
2838}
2839EXPORT_SYMBOL_GPL(clk_set_duty_cycle);
2840
2841static int clk_core_get_scaled_duty_cycle(struct clk_core *core,
2842					  unsigned int scale)
2843{
2844	struct clk_duty *duty = &core->duty;
2845	int ret;
2846
2847	clk_prepare_lock();
2848
2849	ret = clk_core_update_duty_cycle_nolock(core);
2850	if (!ret)
2851		ret = mult_frac(scale, duty->num, duty->den);
2852
2853	clk_prepare_unlock();
2854
2855	return ret;
2856}
2857
2858/**
2859 * clk_get_scaled_duty_cycle - return the duty cycle ratio of a clock signal
2860 * @clk: clock signal source
2861 * @scale: scaling factor to be applied to represent the ratio as an integer
2862 *
2863 * Returns the duty cycle ratio of a clock node multiplied by the provided
2864 * scaling factor, or negative errno on error.
2865 */
2866int clk_get_scaled_duty_cycle(struct clk *clk, unsigned int scale)
2867{
2868	if (!clk)
2869		return 0;
2870
2871	return clk_core_get_scaled_duty_cycle(clk->core, scale);
2872}
2873EXPORT_SYMBOL_GPL(clk_get_scaled_duty_cycle);
2874
2875/**
2876 * clk_is_match - check if two clk's point to the same hardware clock
2877 * @p: clk compared against q
2878 * @q: clk compared against p
2879 *
2880 * Returns true if the two struct clk pointers both point to the same hardware
2881 * clock node. Put differently, returns true if struct clk *p and struct clk *q
2882 * share the same struct clk_core object.
2883 *
2884 * Returns false otherwise. Note that two NULL clks are treated as matching.
2885 */
2886bool clk_is_match(const struct clk *p, const struct clk *q)
2887{
2888	/* trivial case: identical struct clk's or both NULL */
2889	if (p == q)
2890		return true;
2891
2892	/* true if clk->core pointers match. Avoid dereferencing garbage */
2893	if (!IS_ERR_OR_NULL(p) && !IS_ERR_OR_NULL(q))
2894		if (p->core == q->core)
2895			return true;
2896
2897	return false;
2898}
2899EXPORT_SYMBOL_GPL(clk_is_match);
2900
2901/***        debugfs support        ***/
2902
2903#ifdef CONFIG_DEBUG_FS
2904#include <linux/debugfs.h>
2905
2906static struct dentry *rootdir;
2907static int inited = 0;
2908static DEFINE_MUTEX(clk_debug_lock);
2909static HLIST_HEAD(clk_debug_list);
2910
 
 
 
 
 
 
2911static struct hlist_head *orphan_list[] = {
2912	&clk_orphan_list,
2913	NULL,
2914};
2915
2916static void clk_summary_show_one(struct seq_file *s, struct clk_core *c,
2917				 int level)
2918{
2919	int phase;
 
2920
2921	seq_printf(s, "%*s%-*s %7d %8d %8d %11lu %10lu ",
2922		   level * 3 + 1, "",
2923		   30 - level * 3, c->name,
2924		   c->enable_count, c->prepare_count, c->protect_count,
2925		   clk_core_get_rate_recalc(c),
2926		   clk_core_get_accuracy_recalc(c));
2927
2928	phase = clk_core_get_phase(c);
2929	if (phase >= 0)
2930		seq_printf(s, "%5d", phase);
2931	else
2932		seq_puts(s, "-----");
2933
2934	seq_printf(s, " %6d\n", clk_core_get_scaled_duty_cycle(c, 100000));
2935}
2936
2937static void clk_summary_show_subtree(struct seq_file *s, struct clk_core *c,
2938				     int level)
2939{
2940	struct clk_core *child;
2941
 
 
 
2942	clk_summary_show_one(s, c, level);
2943
2944	hlist_for_each_entry(child, &c->children, child_node)
2945		clk_summary_show_subtree(s, child, level + 1);
2946}
2947
2948static int clk_summary_show(struct seq_file *s, void *data)
2949{
2950	struct clk_core *c;
2951	struct hlist_head **lists = (struct hlist_head **)s->private;
2952
2953	seq_puts(s, "                                 enable  prepare  protect                                duty\n");
2954	seq_puts(s, "   clock                          count    count    count        rate   accuracy phase  cycle\n");
2955	seq_puts(s, "---------------------------------------------------------------------------------------------\n");
2956
2957	clk_prepare_lock();
2958
2959	for (; *lists; lists++)
2960		hlist_for_each_entry(c, *lists, child_node)
2961			clk_summary_show_subtree(s, c, 0);
2962
2963	clk_prepare_unlock();
2964
2965	return 0;
2966}
2967DEFINE_SHOW_ATTRIBUTE(clk_summary);
2968
2969static void clk_dump_one(struct seq_file *s, struct clk_core *c, int level)
 
2970{
2971	int phase;
2972	unsigned long min_rate, max_rate;
2973
2974	clk_core_get_boundaries(c, &min_rate, &max_rate);
 
 
 
 
 
 
 
 
 
 
2975
2976	/* This should be JSON format, i.e. elements separated with a comma */
2977	seq_printf(s, "\"%s\": { ", c->name);
2978	seq_printf(s, "\"enable_count\": %d,", c->enable_count);
2979	seq_printf(s, "\"prepare_count\": %d,", c->prepare_count);
2980	seq_printf(s, "\"protect_count\": %d,", c->protect_count);
2981	seq_printf(s, "\"rate\": %lu,", clk_core_get_rate_recalc(c));
2982	seq_printf(s, "\"min_rate\": %lu,", min_rate);
2983	seq_printf(s, "\"max_rate\": %lu,", max_rate);
2984	seq_printf(s, "\"accuracy\": %lu,", clk_core_get_accuracy_recalc(c));
2985	phase = clk_core_get_phase(c);
2986	if (phase >= 0)
2987		seq_printf(s, "\"phase\": %d,", phase);
2988	seq_printf(s, "\"duty_cycle\": %u",
2989		   clk_core_get_scaled_duty_cycle(c, 100000));
2990}
2991
2992static void clk_dump_subtree(struct seq_file *s, struct clk_core *c, int level)
2993{
2994	struct clk_core *child;
2995
 
 
 
2996	clk_dump_one(s, c, level);
2997
2998	hlist_for_each_entry(child, &c->children, child_node) {
2999		seq_putc(s, ',');
3000		clk_dump_subtree(s, child, level + 1);
3001	}
3002
3003	seq_putc(s, '}');
3004}
3005
3006static int clk_dump_show(struct seq_file *s, void *data)
3007{
3008	struct clk_core *c;
3009	bool first_node = true;
3010	struct hlist_head **lists = (struct hlist_head **)s->private;
3011
3012	seq_putc(s, '{');
 
3013	clk_prepare_lock();
3014
3015	for (; *lists; lists++) {
3016		hlist_for_each_entry(c, *lists, child_node) {
3017			if (!first_node)
3018				seq_putc(s, ',');
3019			first_node = false;
3020			clk_dump_subtree(s, c, 0);
3021		}
3022	}
3023
3024	clk_prepare_unlock();
3025
3026	seq_puts(s, "}\n");
3027	return 0;
3028}
3029DEFINE_SHOW_ATTRIBUTE(clk_dump);
3030
3031#undef CLOCK_ALLOW_WRITE_DEBUGFS
3032#ifdef CLOCK_ALLOW_WRITE_DEBUGFS
3033/*
3034 * This can be dangerous, therefore don't provide any real compile time
3035 * configuration option for this feature.
3036 * People who want to use this will need to modify the source code directly.
3037 */
3038static int clk_rate_set(void *data, u64 val)
3039{
3040	struct clk_core *core = data;
3041	int ret;
3042
3043	clk_prepare_lock();
3044	ret = clk_core_set_rate_nolock(core, val);
3045	clk_prepare_unlock();
3046
3047	return ret;
3048}
3049
3050#define clk_rate_mode	0644
3051
3052static int clk_prepare_enable_set(void *data, u64 val)
3053{
3054	struct clk_core *core = data;
3055	int ret = 0;
3056
3057	if (val)
3058		ret = clk_prepare_enable(core->hw->clk);
3059	else
3060		clk_disable_unprepare(core->hw->clk);
3061
3062	return ret;
3063}
3064
3065static int clk_prepare_enable_get(void *data, u64 *val)
3066{
3067	struct clk_core *core = data;
3068
3069	*val = core->enable_count && core->prepare_count;
3070	return 0;
3071}
3072
3073DEFINE_DEBUGFS_ATTRIBUTE(clk_prepare_enable_fops, clk_prepare_enable_get,
3074			 clk_prepare_enable_set, "%llu\n");
3075
3076#else
3077#define clk_rate_set	NULL
3078#define clk_rate_mode	0444
3079#endif
3080
3081static int clk_rate_get(void *data, u64 *val)
3082{
3083	struct clk_core *core = data;
3084
3085	*val = core->rate;
3086	return 0;
3087}
3088
3089DEFINE_DEBUGFS_ATTRIBUTE(clk_rate_fops, clk_rate_get, clk_rate_set, "%llu\n");
3090
3091static const struct {
3092	unsigned long flag;
3093	const char *name;
3094} clk_flags[] = {
3095#define ENTRY(f) { f, #f }
3096	ENTRY(CLK_SET_RATE_GATE),
3097	ENTRY(CLK_SET_PARENT_GATE),
3098	ENTRY(CLK_SET_RATE_PARENT),
3099	ENTRY(CLK_IGNORE_UNUSED),
3100	ENTRY(CLK_GET_RATE_NOCACHE),
3101	ENTRY(CLK_SET_RATE_NO_REPARENT),
3102	ENTRY(CLK_GET_ACCURACY_NOCACHE),
3103	ENTRY(CLK_RECALC_NEW_RATES),
3104	ENTRY(CLK_SET_RATE_UNGATE),
3105	ENTRY(CLK_IS_CRITICAL),
3106	ENTRY(CLK_OPS_PARENT_ENABLE),
3107	ENTRY(CLK_DUTY_CYCLE_PARENT),
3108#undef ENTRY
3109};
3110
3111static int clk_flags_show(struct seq_file *s, void *data)
3112{
3113	struct clk_core *core = s->private;
3114	unsigned long flags = core->flags;
3115	unsigned int i;
3116
3117	for (i = 0; flags && i < ARRAY_SIZE(clk_flags); i++) {
3118		if (flags & clk_flags[i].flag) {
3119			seq_printf(s, "%s\n", clk_flags[i].name);
3120			flags &= ~clk_flags[i].flag;
3121		}
3122	}
3123	if (flags) {
3124		/* Unknown flags */
3125		seq_printf(s, "0x%lx\n", flags);
3126	}
3127
3128	return 0;
3129}
3130DEFINE_SHOW_ATTRIBUTE(clk_flags);
3131
3132static void possible_parent_show(struct seq_file *s, struct clk_core *core,
3133				 unsigned int i, char terminator)
3134{
3135	struct clk_core *parent;
3136
3137	/*
3138	 * Go through the following options to fetch a parent's name.
3139	 *
3140	 * 1. Fetch the registered parent clock and use its name
3141	 * 2. Use the global (fallback) name if specified
3142	 * 3. Use the local fw_name if provided
3143	 * 4. Fetch parent clock's clock-output-name if DT index was set
3144	 *
3145	 * This may still fail in some cases, such as when the parent is
3146	 * specified directly via a struct clk_hw pointer, but it isn't
3147	 * registered (yet).
3148	 */
3149	parent = clk_core_get_parent_by_index(core, i);
3150	if (parent)
3151		seq_puts(s, parent->name);
3152	else if (core->parents[i].name)
3153		seq_puts(s, core->parents[i].name);
3154	else if (core->parents[i].fw_name)
3155		seq_printf(s, "<%s>(fw)", core->parents[i].fw_name);
3156	else if (core->parents[i].index >= 0)
3157		seq_puts(s,
3158			 of_clk_get_parent_name(core->of_node,
3159						core->parents[i].index));
3160	else
3161		seq_puts(s, "(missing)");
3162
3163	seq_putc(s, terminator);
3164}
3165
3166static int possible_parents_show(struct seq_file *s, void *data)
3167{
3168	struct clk_core *core = s->private;
3169	int i;
3170
3171	for (i = 0; i < core->num_parents - 1; i++)
3172		possible_parent_show(s, core, i, ' ');
3173
3174	possible_parent_show(s, core, i, '\n');
3175
3176	return 0;
3177}
3178DEFINE_SHOW_ATTRIBUTE(possible_parents);
3179
3180static int current_parent_show(struct seq_file *s, void *data)
3181{
3182	struct clk_core *core = s->private;
3183
3184	if (core->parent)
3185		seq_printf(s, "%s\n", core->parent->name);
3186
3187	return 0;
3188}
3189DEFINE_SHOW_ATTRIBUTE(current_parent);
3190
3191static int clk_duty_cycle_show(struct seq_file *s, void *data)
3192{
3193	struct clk_core *core = s->private;
3194	struct clk_duty *duty = &core->duty;
3195
3196	seq_printf(s, "%u/%u\n", duty->num, duty->den);
3197
3198	return 0;
3199}
3200DEFINE_SHOW_ATTRIBUTE(clk_duty_cycle);
3201
3202static int clk_min_rate_show(struct seq_file *s, void *data)
3203{
3204	struct clk_core *core = s->private;
3205	unsigned long min_rate, max_rate;
3206
3207	clk_prepare_lock();
3208	clk_core_get_boundaries(core, &min_rate, &max_rate);
3209	clk_prepare_unlock();
3210	seq_printf(s, "%lu\n", min_rate);
3211
3212	return 0;
3213}
3214DEFINE_SHOW_ATTRIBUTE(clk_min_rate);
3215
3216static int clk_max_rate_show(struct seq_file *s, void *data)
3217{
3218	struct clk_core *core = s->private;
3219	unsigned long min_rate, max_rate;
3220
3221	clk_prepare_lock();
3222	clk_core_get_boundaries(core, &min_rate, &max_rate);
3223	clk_prepare_unlock();
3224	seq_printf(s, "%lu\n", max_rate);
3225
3226	return 0;
3227}
3228DEFINE_SHOW_ATTRIBUTE(clk_max_rate);
3229
3230static void clk_debug_create_one(struct clk_core *core, struct dentry *pdentry)
3231{
3232	struct dentry *root;
3233
3234	if (!core || !pdentry)
3235		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3236
3237	root = debugfs_create_dir(core->name, pdentry);
3238	core->dentry = root;
3239
3240	debugfs_create_file("clk_rate", clk_rate_mode, root, core,
3241			    &clk_rate_fops);
3242	debugfs_create_file("clk_min_rate", 0444, root, core, &clk_min_rate_fops);
3243	debugfs_create_file("clk_max_rate", 0444, root, core, &clk_max_rate_fops);
3244	debugfs_create_ulong("clk_accuracy", 0444, root, &core->accuracy);
3245	debugfs_create_u32("clk_phase", 0444, root, &core->phase);
3246	debugfs_create_file("clk_flags", 0444, root, core, &clk_flags_fops);
3247	debugfs_create_u32("clk_prepare_count", 0444, root, &core->prepare_count);
3248	debugfs_create_u32("clk_enable_count", 0444, root, &core->enable_count);
3249	debugfs_create_u32("clk_protect_count", 0444, root, &core->protect_count);
3250	debugfs_create_u32("clk_notifier_count", 0444, root, &core->notifier_count);
3251	debugfs_create_file("clk_duty_cycle", 0444, root, core,
3252			    &clk_duty_cycle_fops);
3253#ifdef CLOCK_ALLOW_WRITE_DEBUGFS
3254	debugfs_create_file("clk_prepare_enable", 0644, root, core,
3255			    &clk_prepare_enable_fops);
3256#endif
3257
3258	if (core->num_parents > 0)
3259		debugfs_create_file("clk_parent", 0444, root, core,
3260				    &current_parent_fops);
3261
3262	if (core->num_parents > 1)
3263		debugfs_create_file("clk_possible_parents", 0444, root, core,
3264				    &possible_parents_fops);
3265
3266	if (core->ops->debug_init)
3267		core->ops->debug_init(core->hw, core->dentry);
 
 
 
3268}
3269
3270/**
3271 * clk_debug_register - add a clk node to the debugfs clk directory
3272 * @core: the clk being added to the debugfs clk directory
3273 *
3274 * Dynamically adds a clk to the debugfs clk directory if debugfs has been
3275 * initialized.  Otherwise it bails out early since the debugfs clk directory
3276 * will be created lazily by clk_debug_init as part of a late_initcall.
3277 */
3278static void clk_debug_register(struct clk_core *core)
3279{
 
 
3280	mutex_lock(&clk_debug_lock);
3281	hlist_add_head(&core->debug_node, &clk_debug_list);
3282	if (inited)
3283		clk_debug_create_one(core, rootdir);
 
 
 
 
3284	mutex_unlock(&clk_debug_lock);
 
 
3285}
3286
3287 /**
3288 * clk_debug_unregister - remove a clk node from the debugfs clk directory
3289 * @core: the clk being removed from the debugfs clk directory
3290 *
3291 * Dynamically removes a clk and all its child nodes from the
3292 * debugfs clk directory if clk->dentry points to debugfs created by
3293 * clk_debug_register in __clk_core_init.
3294 */
3295static void clk_debug_unregister(struct clk_core *core)
3296{
3297	mutex_lock(&clk_debug_lock);
3298	hlist_del_init(&core->debug_node);
3299	debugfs_remove_recursive(core->dentry);
3300	core->dentry = NULL;
3301	mutex_unlock(&clk_debug_lock);
3302}
3303
 
 
 
 
 
 
 
 
 
 
 
 
 
3304/**
3305 * clk_debug_init - lazily populate the debugfs clk directory
3306 *
3307 * clks are often initialized very early during boot before memory can be
3308 * dynamically allocated and well before debugfs is setup. This function
3309 * populates the debugfs clk directory once at boot-time when we know that
3310 * debugfs is setup. It should only be called once at boot-time, all other clks
3311 * added dynamically will be done so with clk_debug_register.
3312 */
3313static int __init clk_debug_init(void)
3314{
3315	struct clk_core *core;
 
3316
3317	rootdir = debugfs_create_dir("clk", NULL);
3318
3319	debugfs_create_file("clk_summary", 0444, rootdir, &all_lists,
3320			    &clk_summary_fops);
3321	debugfs_create_file("clk_dump", 0444, rootdir, &all_lists,
3322			    &clk_dump_fops);
3323	debugfs_create_file("clk_orphan_summary", 0444, rootdir, &orphan_list,
3324			    &clk_summary_fops);
3325	debugfs_create_file("clk_orphan_dump", 0444, rootdir, &orphan_list,
3326			    &clk_dump_fops);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3327
3328	mutex_lock(&clk_debug_lock);
3329	hlist_for_each_entry(core, &clk_debug_list, debug_node)
3330		clk_debug_create_one(core, rootdir);
3331
3332	inited = 1;
3333	mutex_unlock(&clk_debug_lock);
3334
3335	return 0;
3336}
3337late_initcall(clk_debug_init);
3338#else
3339static inline void clk_debug_register(struct clk_core *core) { }
3340static inline void clk_debug_unregister(struct clk_core *core)
 
3341{
3342}
3343#endif
3344
3345static void clk_core_reparent_orphans_nolock(void)
3346{
3347	struct clk_core *orphan;
3348	struct hlist_node *tmp2;
3349
3350	/*
3351	 * walk the list of orphan clocks and reparent any that newly finds a
3352	 * parent.
3353	 */
3354	hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) {
3355		struct clk_core *parent = __clk_init_parent(orphan);
3356
3357		/*
3358		 * We need to use __clk_set_parent_before() and _after() to
3359		 * to properly migrate any prepare/enable count of the orphan
3360		 * clock. This is important for CLK_IS_CRITICAL clocks, which
3361		 * are enabled during init but might not have a parent yet.
3362		 */
3363		if (parent) {
3364			/* update the clk tree topology */
3365			__clk_set_parent_before(orphan, parent);
3366			__clk_set_parent_after(orphan, parent, NULL);
3367			__clk_recalc_accuracies(orphan);
3368			__clk_recalc_rates(orphan, 0);
3369		}
3370	}
3371}
 
3372
3373/**
3374 * __clk_core_init - initialize the data structures in a struct clk_core
3375 * @core:	clk_core being initialized
3376 *
3377 * Initializes the lists in struct clk_core, queries the hardware for the
3378 * parent and rate and sets them both.
3379 */
3380static int __clk_core_init(struct clk_core *core)
3381{
3382	int ret;
3383	struct clk_core *parent;
 
3384	unsigned long rate;
3385	int phase;
3386
3387	if (!core)
3388		return -EINVAL;
3389
3390	clk_prepare_lock();
3391
3392	ret = clk_pm_runtime_get(core);
3393	if (ret)
3394		goto unlock;
3395
3396	/* check to see if a clock with this name is already registered */
3397	if (clk_core_lookup(core->name)) {
3398		pr_debug("%s: clk %s already initialized\n",
3399				__func__, core->name);
3400		ret = -EEXIST;
3401		goto out;
3402	}
3403
3404	/* check that clk_ops are sane.  See Documentation/driver-api/clk.rst */
3405	if (core->ops->set_rate &&
3406	    !((core->ops->round_rate || core->ops->determine_rate) &&
3407	      core->ops->recalc_rate)) {
3408		pr_err("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n",
3409		       __func__, core->name);
3410		ret = -EINVAL;
3411		goto out;
3412	}
3413
3414	if (core->ops->set_parent && !core->ops->get_parent) {
3415		pr_err("%s: %s must implement .get_parent & .set_parent\n",
3416		       __func__, core->name);
3417		ret = -EINVAL;
3418		goto out;
3419	}
3420
3421	if (core->num_parents > 1 && !core->ops->get_parent) {
3422		pr_err("%s: %s must implement .get_parent as it has multi parents\n",
3423		       __func__, core->name);
3424		ret = -EINVAL;
3425		goto out;
3426	}
3427
3428	if (core->ops->set_rate_and_parent &&
3429			!(core->ops->set_parent && core->ops->set_rate)) {
3430		pr_err("%s: %s must implement .set_parent & .set_rate\n",
3431				__func__, core->name);
3432		ret = -EINVAL;
3433		goto out;
3434	}
3435
3436	/*
3437	 * optional platform-specific magic
3438	 *
3439	 * The .init callback is not used by any of the basic clock types, but
3440	 * exists for weird hardware that must perform initialization magic for
3441	 * CCF to get an accurate view of clock for any other callbacks. It may
3442	 * also be used needs to perform dynamic allocations. Such allocation
3443	 * must be freed in the terminate() callback.
3444	 * This callback shall not be used to initialize the parameters state,
3445	 * such as rate, parent, etc ...
3446	 *
3447	 * If it exist, this callback should called before any other callback of
3448	 * the clock
3449	 */
3450	if (core->ops->init) {
3451		ret = core->ops->init(core->hw);
3452		if (ret)
3453			goto out;
3454	}
3455
3456	parent = core->parent = __clk_init_parent(core);
3457
3458	/*
3459	 * Populate core->parent if parent has already been clk_core_init'd. If
3460	 * parent has not yet been clk_core_init'd then place clk in the orphan
3461	 * list.  If clk doesn't have any parents then place it in the root
3462	 * clk list.
3463	 *
3464	 * Every time a new clk is clk_init'd then we walk the list of orphan
3465	 * clocks and re-parent any that are children of the clock currently
3466	 * being clk_init'd.
3467	 */
3468	if (parent) {
3469		hlist_add_head(&core->child_node, &parent->children);
3470		core->orphan = parent->orphan;
 
3471	} else if (!core->num_parents) {
3472		hlist_add_head(&core->child_node, &clk_root_list);
3473		core->orphan = false;
3474	} else {
3475		hlist_add_head(&core->child_node, &clk_orphan_list);
3476		core->orphan = true;
3477	}
3478
3479	/*
3480	 * Set clk's accuracy.  The preferred method is to use
3481	 * .recalc_accuracy. For simple clocks and lazy developers the default
3482	 * fallback is to use the parent's accuracy.  If a clock doesn't have a
3483	 * parent (or is orphaned) then accuracy is set to zero (perfect
3484	 * clock).
3485	 */
3486	if (core->ops->recalc_accuracy)
3487		core->accuracy = core->ops->recalc_accuracy(core->hw,
3488					clk_core_get_accuracy_no_lock(parent));
3489	else if (parent)
3490		core->accuracy = parent->accuracy;
3491	else
3492		core->accuracy = 0;
3493
3494	/*
3495	 * Set clk's phase by clk_core_get_phase() caching the phase.
3496	 * Since a phase is by definition relative to its parent, just
3497	 * query the current clock phase, or just assume it's in phase.
3498	 */
3499	phase = clk_core_get_phase(core);
3500	if (phase < 0) {
3501		ret = phase;
3502		pr_warn("%s: Failed to get phase for clk '%s'\n", __func__,
3503			core->name);
3504		goto out;
3505	}
3506
3507	/*
3508	 * Set clk's duty cycle.
3509	 */
3510	clk_core_update_duty_cycle_nolock(core);
3511
3512	/*
3513	 * Set clk's rate.  The preferred method is to use .recalc_rate.  For
3514	 * simple clocks and lazy developers the default fallback is to use the
3515	 * parent's rate.  If a clock doesn't have a parent (or is orphaned)
3516	 * then rate is set to zero.
3517	 */
3518	if (core->ops->recalc_rate)
3519		rate = core->ops->recalc_rate(core->hw,
3520				clk_core_get_rate_nolock(parent));
3521	else if (parent)
3522		rate = parent->rate;
3523	else
3524		rate = 0;
3525	core->rate = core->req_rate = rate;
3526
3527	/*
3528	 * Enable CLK_IS_CRITICAL clocks so newly added critical clocks
3529	 * don't get accidentally disabled when walking the orphan tree and
3530	 * reparenting clocks
3531	 */
3532	if (core->flags & CLK_IS_CRITICAL) {
3533		unsigned long flags;
3534
3535		ret = clk_core_prepare(core);
3536		if (ret) {
3537			pr_warn("%s: critical clk '%s' failed to prepare\n",
3538			       __func__, core->name);
3539			goto out;
3540		}
3541
3542		flags = clk_enable_lock();
3543		ret = clk_core_enable(core);
3544		clk_enable_unlock(flags);
3545		if (ret) {
3546			pr_warn("%s: critical clk '%s' failed to enable\n",
3547			       __func__, core->name);
3548			clk_core_unprepare(core);
3549			goto out;
3550		}
3551	}
3552
3553	clk_core_reparent_orphans_nolock();
3554
 
 
 
 
 
 
 
 
3555
3556	kref_init(&core->ref);
3557out:
3558	clk_pm_runtime_put(core);
3559unlock:
3560	if (ret)
3561		hlist_del_init(&core->child_node);
3562
3563	clk_prepare_unlock();
3564
3565	if (!ret)
3566		clk_debug_register(core);
3567
3568	return ret;
3569}
3570
3571/**
3572 * clk_core_link_consumer - Add a clk consumer to the list of consumers in a clk_core
3573 * @core: clk to add consumer to
3574 * @clk: consumer to link to a clk
3575 */
3576static void clk_core_link_consumer(struct clk_core *core, struct clk *clk)
3577{
3578	clk_prepare_lock();
3579	hlist_add_head(&clk->clks_node, &core->clks);
3580	clk_prepare_unlock();
3581}
3582
3583/**
3584 * clk_core_unlink_consumer - Remove a clk consumer from the list of consumers in a clk_core
3585 * @clk: consumer to unlink
3586 */
3587static void clk_core_unlink_consumer(struct clk *clk)
3588{
3589	lockdep_assert_held(&prepare_lock);
3590	hlist_del(&clk->clks_node);
3591}
3592
3593/**
3594 * alloc_clk - Allocate a clk consumer, but leave it unlinked to the clk_core
3595 * @core: clk to allocate a consumer for
3596 * @dev_id: string describing device name
3597 * @con_id: connection ID string on device
3598 *
3599 * Returns: clk consumer left unlinked from the consumer list
3600 */
3601static struct clk *alloc_clk(struct clk_core *core, const char *dev_id,
3602			     const char *con_id)
3603{
3604	struct clk *clk;
3605
 
 
 
 
3606	clk = kzalloc(sizeof(*clk), GFP_KERNEL);
3607	if (!clk)
3608		return ERR_PTR(-ENOMEM);
3609
3610	clk->core = core;
3611	clk->dev_id = dev_id;
3612	clk->con_id = kstrdup_const(con_id, GFP_KERNEL);
3613	clk->max_rate = ULONG_MAX;
3614
 
 
 
 
3615	return clk;
3616}
3617
3618/**
3619 * free_clk - Free a clk consumer
3620 * @clk: clk consumer to free
3621 *
3622 * Note, this assumes the clk has been unlinked from the clk_core consumer
3623 * list.
3624 */
3625static void free_clk(struct clk *clk)
3626{
3627	kfree_const(clk->con_id);
 
 
 
3628	kfree(clk);
3629}
3630
3631/**
3632 * clk_hw_create_clk: Allocate and link a clk consumer to a clk_core given
3633 * a clk_hw
3634 * @dev: clk consumer device
3635 * @hw: clk_hw associated with the clk being consumed
3636 * @dev_id: string describing device name
3637 * @con_id: connection ID string on device
3638 *
3639 * This is the main function used to create a clk pointer for use by clk
3640 * consumers. It connects a consumer to the clk_core and clk_hw structures
3641 * used by the framework and clk provider respectively.
3642 */
3643struct clk *clk_hw_create_clk(struct device *dev, struct clk_hw *hw,
3644			      const char *dev_id, const char *con_id)
3645{
3646	struct clk *clk;
3647	struct clk_core *core;
3648
3649	/* This is to allow this function to be chained to others */
3650	if (IS_ERR_OR_NULL(hw))
3651		return ERR_CAST(hw);
3652
3653	core = hw->core;
3654	clk = alloc_clk(core, dev_id, con_id);
3655	if (IS_ERR(clk))
3656		return clk;
3657	clk->dev = dev;
3658
3659	if (!try_module_get(core->owner)) {
3660		free_clk(clk);
3661		return ERR_PTR(-ENOENT);
3662	}
3663
3664	kref_get(&core->ref);
3665	clk_core_link_consumer(core, clk);
3666
3667	return clk;
3668}
3669
3670static int clk_cpy_name(const char **dst_p, const char *src, bool must_exist)
3671{
3672	const char *dst;
3673
3674	if (!src) {
3675		if (must_exist)
3676			return -EINVAL;
3677		return 0;
3678	}
3679
3680	*dst_p = dst = kstrdup_const(src, GFP_KERNEL);
3681	if (!dst)
3682		return -ENOMEM;
3683
3684	return 0;
3685}
3686
3687static int clk_core_populate_parent_map(struct clk_core *core,
3688					const struct clk_init_data *init)
3689{
3690	u8 num_parents = init->num_parents;
3691	const char * const *parent_names = init->parent_names;
3692	const struct clk_hw **parent_hws = init->parent_hws;
3693	const struct clk_parent_data *parent_data = init->parent_data;
3694	int i, ret = 0;
3695	struct clk_parent_map *parents, *parent;
3696
3697	if (!num_parents)
3698		return 0;
3699
3700	/*
3701	 * Avoid unnecessary string look-ups of clk_core's possible parents by
3702	 * having a cache of names/clk_hw pointers to clk_core pointers.
3703	 */
3704	parents = kcalloc(num_parents, sizeof(*parents), GFP_KERNEL);
3705	core->parents = parents;
3706	if (!parents)
3707		return -ENOMEM;
3708
3709	/* Copy everything over because it might be __initdata */
3710	for (i = 0, parent = parents; i < num_parents; i++, parent++) {
3711		parent->index = -1;
3712		if (parent_names) {
3713			/* throw a WARN if any entries are NULL */
3714			WARN(!parent_names[i],
3715				"%s: invalid NULL in %s's .parent_names\n",
3716				__func__, core->name);
3717			ret = clk_cpy_name(&parent->name, parent_names[i],
3718					   true);
3719		} else if (parent_data) {
3720			parent->hw = parent_data[i].hw;
3721			parent->index = parent_data[i].index;
3722			ret = clk_cpy_name(&parent->fw_name,
3723					   parent_data[i].fw_name, false);
3724			if (!ret)
3725				ret = clk_cpy_name(&parent->name,
3726						   parent_data[i].name,
3727						   false);
3728		} else if (parent_hws) {
3729			parent->hw = parent_hws[i];
3730		} else {
3731			ret = -EINVAL;
3732			WARN(1, "Must specify parents if num_parents > 0\n");
3733		}
3734
3735		if (ret) {
3736			do {
3737				kfree_const(parents[i].name);
3738				kfree_const(parents[i].fw_name);
3739			} while (--i >= 0);
3740			kfree(parents);
3741
3742			return ret;
3743		}
3744	}
3745
3746	return 0;
3747}
3748
3749static void clk_core_free_parent_map(struct clk_core *core)
3750{
3751	int i = core->num_parents;
3752
3753	if (!core->num_parents)
3754		return;
3755
3756	while (--i >= 0) {
3757		kfree_const(core->parents[i].name);
3758		kfree_const(core->parents[i].fw_name);
3759	}
3760
3761	kfree(core->parents);
3762}
3763
3764static struct clk *
3765__clk_register(struct device *dev, struct device_node *np, struct clk_hw *hw)
3766{
3767	int ret;
3768	struct clk_core *core;
3769	const struct clk_init_data *init = hw->init;
3770
3771	/*
3772	 * The init data is not supposed to be used outside of registration path.
3773	 * Set it to NULL so that provider drivers can't use it either and so that
3774	 * we catch use of hw->init early on in the core.
3775	 */
3776	hw->init = NULL;
3777
3778	core = kzalloc(sizeof(*core), GFP_KERNEL);
3779	if (!core) {
3780		ret = -ENOMEM;
3781		goto fail_out;
3782	}
3783
3784	core->name = kstrdup_const(init->name, GFP_KERNEL);
3785	if (!core->name) {
3786		ret = -ENOMEM;
3787		goto fail_name;
3788	}
3789
3790	if (WARN_ON(!init->ops)) {
3791		ret = -EINVAL;
3792		goto fail_ops;
3793	}
3794	core->ops = init->ops;
3795
3796	if (dev && pm_runtime_enabled(dev))
3797		core->rpm_enabled = true;
3798	core->dev = dev;
3799	core->of_node = np;
3800	if (dev && dev->driver)
3801		core->owner = dev->driver->owner;
3802	core->hw = hw;
3803	core->flags = init->flags;
3804	core->num_parents = init->num_parents;
3805	core->min_rate = 0;
3806	core->max_rate = ULONG_MAX;
3807	hw->core = core;
3808
3809	ret = clk_core_populate_parent_map(core, init);
3810	if (ret)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3811		goto fail_parents;
 
3812
3813	INIT_HLIST_HEAD(&core->clks);
3814
3815	/*
3816	 * Don't call clk_hw_create_clk() here because that would pin the
3817	 * provider module to itself and prevent it from ever being removed.
3818	 */
3819	hw->clk = alloc_clk(core, NULL, NULL);
3820	if (IS_ERR(hw->clk)) {
3821		ret = PTR_ERR(hw->clk);
3822		goto fail_create_clk;
3823	}
3824
3825	clk_core_link_consumer(hw->core, hw->clk);
3826
3827	ret = __clk_core_init(core);
3828	if (!ret)
3829		return hw->clk;
3830
3831	clk_prepare_lock();
3832	clk_core_unlink_consumer(hw->clk);
3833	clk_prepare_unlock();
3834
3835	free_clk(hw->clk);
3836	hw->clk = NULL;
3837
3838fail_create_clk:
3839	clk_core_free_parent_map(core);
3840fail_parents:
3841fail_ops:
 
 
 
 
 
3842	kfree_const(core->name);
3843fail_name:
3844	kfree(core);
3845fail_out:
3846	return ERR_PTR(ret);
3847}
3848
3849/**
3850 * dev_or_parent_of_node() - Get device node of @dev or @dev's parent
3851 * @dev: Device to get device node of
3852 *
3853 * Return: device node pointer of @dev, or the device node pointer of
3854 * @dev->parent if dev doesn't have a device node, or NULL if neither
3855 * @dev or @dev->parent have a device node.
3856 */
3857static struct device_node *dev_or_parent_of_node(struct device *dev)
3858{
3859	struct device_node *np;
3860
3861	if (!dev)
3862		return NULL;
3863
3864	np = dev_of_node(dev);
3865	if (!np)
3866		np = dev_of_node(dev->parent);
3867
3868	return np;
3869}
3870
3871/**
3872 * clk_register - allocate a new clock, register it and return an opaque cookie
3873 * @dev: device that is registering this clock
3874 * @hw: link to hardware-specific clock data
3875 *
3876 * clk_register is the *deprecated* interface for populating the clock tree with
3877 * new clock nodes. Use clk_hw_register() instead.
3878 *
3879 * Returns: a pointer to the newly allocated struct clk which
3880 * cannot be dereferenced by driver code but may be used in conjunction with the
3881 * rest of the clock API.  In the event of an error clk_register will return an
3882 * error code; drivers must test for an error code after calling clk_register.
3883 */
3884struct clk *clk_register(struct device *dev, struct clk_hw *hw)
3885{
3886	return __clk_register(dev, dev_or_parent_of_node(dev), hw);
3887}
3888EXPORT_SYMBOL_GPL(clk_register);
3889
3890/**
3891 * clk_hw_register - register a clk_hw and return an error code
3892 * @dev: device that is registering this clock
3893 * @hw: link to hardware-specific clock data
3894 *
3895 * clk_hw_register is the primary interface for populating the clock tree with
3896 * new clock nodes. It returns an integer equal to zero indicating success or
3897 * less than zero indicating failure. Drivers must test for an error code after
3898 * calling clk_hw_register().
3899 */
3900int clk_hw_register(struct device *dev, struct clk_hw *hw)
3901{
3902	return PTR_ERR_OR_ZERO(__clk_register(dev, dev_or_parent_of_node(dev),
3903			       hw));
3904}
3905EXPORT_SYMBOL_GPL(clk_hw_register);
3906
3907/*
3908 * of_clk_hw_register - register a clk_hw and return an error code
3909 * @node: device_node of device that is registering this clock
3910 * @hw: link to hardware-specific clock data
3911 *
3912 * of_clk_hw_register() is the primary interface for populating the clock tree
3913 * with new clock nodes when a struct device is not available, but a struct
3914 * device_node is. It returns an integer equal to zero indicating success or
3915 * less than zero indicating failure. Drivers must test for an error code after
3916 * calling of_clk_hw_register().
3917 */
3918int of_clk_hw_register(struct device_node *node, struct clk_hw *hw)
3919{
3920	return PTR_ERR_OR_ZERO(__clk_register(NULL, node, hw));
3921}
3922EXPORT_SYMBOL_GPL(of_clk_hw_register);
3923
3924/* Free memory allocated for a clock. */
3925static void __clk_release(struct kref *ref)
3926{
3927	struct clk_core *core = container_of(ref, struct clk_core, ref);
 
3928
3929	lockdep_assert_held(&prepare_lock);
3930
3931	clk_core_free_parent_map(core);
 
 
 
 
3932	kfree_const(core->name);
3933	kfree(core);
3934}
3935
3936/*
3937 * Empty clk_ops for unregistered clocks. These are used temporarily
3938 * after clk_unregister() was called on a clock and until last clock
3939 * consumer calls clk_put() and the struct clk object is freed.
3940 */
3941static int clk_nodrv_prepare_enable(struct clk_hw *hw)
3942{
3943	return -ENXIO;
3944}
3945
3946static void clk_nodrv_disable_unprepare(struct clk_hw *hw)
3947{
3948	WARN_ON_ONCE(1);
3949}
3950
3951static int clk_nodrv_set_rate(struct clk_hw *hw, unsigned long rate,
3952					unsigned long parent_rate)
3953{
3954	return -ENXIO;
3955}
3956
3957static int clk_nodrv_set_parent(struct clk_hw *hw, u8 index)
3958{
3959	return -ENXIO;
3960}
3961
3962static const struct clk_ops clk_nodrv_ops = {
3963	.enable		= clk_nodrv_prepare_enable,
3964	.disable	= clk_nodrv_disable_unprepare,
3965	.prepare	= clk_nodrv_prepare_enable,
3966	.unprepare	= clk_nodrv_disable_unprepare,
3967	.set_rate	= clk_nodrv_set_rate,
3968	.set_parent	= clk_nodrv_set_parent,
3969};
3970
3971static void clk_core_evict_parent_cache_subtree(struct clk_core *root,
3972						struct clk_core *target)
3973{
3974	int i;
3975	struct clk_core *child;
3976
3977	for (i = 0; i < root->num_parents; i++)
3978		if (root->parents[i].core == target)
3979			root->parents[i].core = NULL;
3980
3981	hlist_for_each_entry(child, &root->children, child_node)
3982		clk_core_evict_parent_cache_subtree(child, target);
3983}
3984
3985/* Remove this clk from all parent caches */
3986static void clk_core_evict_parent_cache(struct clk_core *core)
3987{
3988	struct hlist_head **lists;
3989	struct clk_core *root;
3990
3991	lockdep_assert_held(&prepare_lock);
3992
3993	for (lists = all_lists; *lists; lists++)
3994		hlist_for_each_entry(root, *lists, child_node)
3995			clk_core_evict_parent_cache_subtree(root, core);
3996
3997}
3998
3999/**
4000 * clk_unregister - unregister a currently registered clock
4001 * @clk: clock to unregister
4002 */
4003void clk_unregister(struct clk *clk)
4004{
4005	unsigned long flags;
4006	const struct clk_ops *ops;
4007
4008	if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
4009		return;
4010
4011	clk_debug_unregister(clk->core);
4012
4013	clk_prepare_lock();
4014
4015	ops = clk->core->ops;
4016	if (ops == &clk_nodrv_ops) {
4017		pr_err("%s: unregistered clock: %s\n", __func__,
4018		       clk->core->name);
4019		goto unlock;
4020	}
4021	/*
4022	 * Assign empty clock ops for consumers that might still hold
4023	 * a reference to this clock.
4024	 */
4025	flags = clk_enable_lock();
4026	clk->core->ops = &clk_nodrv_ops;
4027	clk_enable_unlock(flags);
4028
4029	if (ops->terminate)
4030		ops->terminate(clk->core->hw);
4031
4032	if (!hlist_empty(&clk->core->children)) {
4033		struct clk_core *child;
4034		struct hlist_node *t;
4035
4036		/* Reparent all children to the orphan list. */
4037		hlist_for_each_entry_safe(child, t, &clk->core->children,
4038					  child_node)
4039			clk_core_set_parent_nolock(child, NULL);
4040	}
4041
4042	clk_core_evict_parent_cache(clk->core);
4043
4044	hlist_del_init(&clk->core->child_node);
4045
4046	if (clk->core->prepare_count)
4047		pr_warn("%s: unregistering prepared clock: %s\n",
4048					__func__, clk->core->name);
4049
4050	if (clk->core->protect_count)
4051		pr_warn("%s: unregistering protected clock: %s\n",
4052					__func__, clk->core->name);
4053
4054	kref_put(&clk->core->ref, __clk_release);
4055	free_clk(clk);
4056unlock:
4057	clk_prepare_unlock();
4058}
4059EXPORT_SYMBOL_GPL(clk_unregister);
4060
4061/**
4062 * clk_hw_unregister - unregister a currently registered clk_hw
4063 * @hw: hardware-specific clock data to unregister
4064 */
4065void clk_hw_unregister(struct clk_hw *hw)
4066{
4067	clk_unregister(hw->clk);
4068}
4069EXPORT_SYMBOL_GPL(clk_hw_unregister);
4070
4071static void devm_clk_release(struct device *dev, void *res)
4072{
4073	clk_unregister(*(struct clk **)res);
4074}
4075
4076static void devm_clk_hw_release(struct device *dev, void *res)
4077{
4078	clk_hw_unregister(*(struct clk_hw **)res);
4079}
4080
4081/**
4082 * devm_clk_register - resource managed clk_register()
4083 * @dev: device that is registering this clock
4084 * @hw: link to hardware-specific clock data
4085 *
4086 * Managed clk_register(). This function is *deprecated*, use devm_clk_hw_register() instead.
4087 *
4088 * Clocks returned from this function are automatically clk_unregister()ed on
4089 * driver detach. See clk_register() for more information.
4090 */
4091struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw)
4092{
4093	struct clk *clk;
4094	struct clk **clkp;
4095
4096	clkp = devres_alloc(devm_clk_release, sizeof(*clkp), GFP_KERNEL);
4097	if (!clkp)
4098		return ERR_PTR(-ENOMEM);
4099
4100	clk = clk_register(dev, hw);
4101	if (!IS_ERR(clk)) {
4102		*clkp = clk;
4103		devres_add(dev, clkp);
4104	} else {
4105		devres_free(clkp);
4106	}
4107
4108	return clk;
4109}
4110EXPORT_SYMBOL_GPL(devm_clk_register);
4111
4112/**
4113 * devm_clk_hw_register - resource managed clk_hw_register()
4114 * @dev: device that is registering this clock
4115 * @hw: link to hardware-specific clock data
4116 *
4117 * Managed clk_hw_register(). Clocks registered by this function are
4118 * automatically clk_hw_unregister()ed on driver detach. See clk_hw_register()
4119 * for more information.
4120 */
4121int devm_clk_hw_register(struct device *dev, struct clk_hw *hw)
4122{
4123	struct clk_hw **hwp;
4124	int ret;
4125
4126	hwp = devres_alloc(devm_clk_hw_release, sizeof(*hwp), GFP_KERNEL);
4127	if (!hwp)
4128		return -ENOMEM;
4129
4130	ret = clk_hw_register(dev, hw);
4131	if (!ret) {
4132		*hwp = hw;
4133		devres_add(dev, hwp);
4134	} else {
4135		devres_free(hwp);
4136	}
4137
4138	return ret;
4139}
4140EXPORT_SYMBOL_GPL(devm_clk_hw_register);
4141
4142static int devm_clk_match(struct device *dev, void *res, void *data)
4143{
4144	struct clk *c = res;
4145	if (WARN_ON(!c))
4146		return 0;
4147	return c == data;
4148}
4149
4150static int devm_clk_hw_match(struct device *dev, void *res, void *data)
4151{
4152	struct clk_hw *hw = res;
4153
4154	if (WARN_ON(!hw))
4155		return 0;
4156	return hw == data;
4157}
4158
4159/**
4160 * devm_clk_unregister - resource managed clk_unregister()
4161 * @dev: device that is unregistering the clock data
4162 * @clk: clock to unregister
4163 *
4164 * Deallocate a clock allocated with devm_clk_register(). Normally
4165 * this function will not need to be called and the resource management
4166 * code will ensure that the resource is freed.
4167 */
4168void devm_clk_unregister(struct device *dev, struct clk *clk)
4169{
4170	WARN_ON(devres_release(dev, devm_clk_release, devm_clk_match, clk));
4171}
4172EXPORT_SYMBOL_GPL(devm_clk_unregister);
4173
4174/**
4175 * devm_clk_hw_unregister - resource managed clk_hw_unregister()
4176 * @dev: device that is unregistering the hardware-specific clock data
4177 * @hw: link to hardware-specific clock data
4178 *
4179 * Unregister a clk_hw registered with devm_clk_hw_register(). Normally
4180 * this function will not need to be called and the resource management
4181 * code will ensure that the resource is freed.
4182 */
4183void devm_clk_hw_unregister(struct device *dev, struct clk_hw *hw)
4184{
4185	WARN_ON(devres_release(dev, devm_clk_hw_release, devm_clk_hw_match,
4186				hw));
4187}
4188EXPORT_SYMBOL_GPL(devm_clk_hw_unregister);
4189
4190/*
4191 * clkdev helpers
4192 */
 
 
 
 
 
 
 
 
 
 
 
 
4193
4194void __clk_put(struct clk *clk)
4195{
4196	struct module *owner;
4197
4198	if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
4199		return;
4200
4201	clk_prepare_lock();
4202
4203	/*
4204	 * Before calling clk_put, all calls to clk_rate_exclusive_get() from a
4205	 * given user should be balanced with calls to clk_rate_exclusive_put()
4206	 * and by that same consumer
4207	 */
4208	if (WARN_ON(clk->exclusive_count)) {
4209		/* We voiced our concern, let's sanitize the situation */
4210		clk->core->protect_count -= (clk->exclusive_count - 1);
4211		clk_core_rate_unprotect(clk->core);
4212		clk->exclusive_count = 0;
4213	}
4214
4215	hlist_del(&clk->clks_node);
4216	if (clk->min_rate > clk->core->req_rate ||
4217	    clk->max_rate < clk->core->req_rate)
4218		clk_core_set_rate_nolock(clk->core, clk->core->req_rate);
4219
4220	owner = clk->core->owner;
4221	kref_put(&clk->core->ref, __clk_release);
4222
4223	clk_prepare_unlock();
4224
4225	module_put(owner);
4226
4227	free_clk(clk);
4228}
4229
4230/***        clk rate change notifiers        ***/
4231
4232/**
4233 * clk_notifier_register - add a clk rate change notifier
4234 * @clk: struct clk * to watch
4235 * @nb: struct notifier_block * with callback info
4236 *
4237 * Request notification when clk's rate changes.  This uses an SRCU
4238 * notifier because we want it to block and notifier unregistrations are
4239 * uncommon.  The callbacks associated with the notifier must not
4240 * re-enter into the clk framework by calling any top-level clk APIs;
4241 * this will cause a nested prepare_lock mutex.
4242 *
4243 * In all notification cases (pre, post and abort rate change) the original
4244 * clock rate is passed to the callback via struct clk_notifier_data.old_rate
4245 * and the new frequency is passed via struct clk_notifier_data.new_rate.
4246 *
4247 * clk_notifier_register() must be called from non-atomic context.
4248 * Returns -EINVAL if called with null arguments, -ENOMEM upon
4249 * allocation failure; otherwise, passes along the return value of
4250 * srcu_notifier_chain_register().
4251 */
4252int clk_notifier_register(struct clk *clk, struct notifier_block *nb)
4253{
4254	struct clk_notifier *cn;
4255	int ret = -ENOMEM;
4256
4257	if (!clk || !nb)
4258		return -EINVAL;
4259
4260	clk_prepare_lock();
4261
4262	/* search the list of notifiers for this clk */
4263	list_for_each_entry(cn, &clk_notifier_list, node)
4264		if (cn->clk == clk)
4265			break;
4266
4267	/* if clk wasn't in the notifier list, allocate new clk_notifier */
4268	if (cn->clk != clk) {
4269		cn = kzalloc(sizeof(*cn), GFP_KERNEL);
4270		if (!cn)
4271			goto out;
4272
4273		cn->clk = clk;
4274		srcu_init_notifier_head(&cn->notifier_head);
4275
4276		list_add(&cn->node, &clk_notifier_list);
4277	}
4278
4279	ret = srcu_notifier_chain_register(&cn->notifier_head, nb);
4280
4281	clk->core->notifier_count++;
4282
4283out:
4284	clk_prepare_unlock();
4285
4286	return ret;
4287}
4288EXPORT_SYMBOL_GPL(clk_notifier_register);
4289
4290/**
4291 * clk_notifier_unregister - remove a clk rate change notifier
4292 * @clk: struct clk *
4293 * @nb: struct notifier_block * with callback info
4294 *
4295 * Request no further notification for changes to 'clk' and frees memory
4296 * allocated in clk_notifier_register.
4297 *
4298 * Returns -EINVAL if called with null arguments; otherwise, passes
4299 * along the return value of srcu_notifier_chain_unregister().
4300 */
4301int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb)
4302{
4303	struct clk_notifier *cn = NULL;
4304	int ret = -EINVAL;
4305
4306	if (!clk || !nb)
4307		return -EINVAL;
4308
4309	clk_prepare_lock();
4310
4311	list_for_each_entry(cn, &clk_notifier_list, node)
4312		if (cn->clk == clk)
4313			break;
4314
4315	if (cn->clk == clk) {
4316		ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb);
4317
4318		clk->core->notifier_count--;
4319
4320		/* XXX the notifier code should handle this better */
4321		if (!cn->notifier_head.head) {
4322			srcu_cleanup_notifier_head(&cn->notifier_head);
4323			list_del(&cn->node);
4324			kfree(cn);
4325		}
4326
4327	} else {
4328		ret = -ENOENT;
4329	}
4330
4331	clk_prepare_unlock();
4332
4333	return ret;
4334}
4335EXPORT_SYMBOL_GPL(clk_notifier_unregister);
4336
4337#ifdef CONFIG_OF
4338static void clk_core_reparent_orphans(void)
4339{
4340	clk_prepare_lock();
4341	clk_core_reparent_orphans_nolock();
4342	clk_prepare_unlock();
4343}
4344
4345/**
4346 * struct of_clk_provider - Clock provider registration structure
4347 * @link: Entry in global list of clock providers
4348 * @node: Pointer to device tree node of clock provider
4349 * @get: Get clock callback.  Returns NULL or a struct clk for the
4350 *       given clock specifier
4351 * @get_hw: Get clk_hw callback.  Returns NULL, ERR_PTR or a
4352 *       struct clk_hw for the given clock specifier
4353 * @data: context pointer to be passed into @get callback
4354 */
4355struct of_clk_provider {
4356	struct list_head link;
4357
4358	struct device_node *node;
4359	struct clk *(*get)(struct of_phandle_args *clkspec, void *data);
4360	struct clk_hw *(*get_hw)(struct of_phandle_args *clkspec, void *data);
4361	void *data;
4362};
4363
4364extern struct of_device_id __clk_of_table;
4365static const struct of_device_id __clk_of_table_sentinel
4366	__used __section(__clk_of_table_end);
4367
4368static LIST_HEAD(of_clk_providers);
4369static DEFINE_MUTEX(of_clk_mutex);
4370
4371struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec,
4372				     void *data)
4373{
4374	return data;
4375}
4376EXPORT_SYMBOL_GPL(of_clk_src_simple_get);
4377
4378struct clk_hw *of_clk_hw_simple_get(struct of_phandle_args *clkspec, void *data)
4379{
4380	return data;
4381}
4382EXPORT_SYMBOL_GPL(of_clk_hw_simple_get);
4383
4384struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data)
4385{
4386	struct clk_onecell_data *clk_data = data;
4387	unsigned int idx = clkspec->args[0];
4388
4389	if (idx >= clk_data->clk_num) {
4390		pr_err("%s: invalid clock index %u\n", __func__, idx);
4391		return ERR_PTR(-EINVAL);
4392	}
4393
4394	return clk_data->clks[idx];
4395}
4396EXPORT_SYMBOL_GPL(of_clk_src_onecell_get);
4397
4398struct clk_hw *
4399of_clk_hw_onecell_get(struct of_phandle_args *clkspec, void *data)
4400{
4401	struct clk_hw_onecell_data *hw_data = data;
4402	unsigned int idx = clkspec->args[0];
4403
4404	if (idx >= hw_data->num) {
4405		pr_err("%s: invalid index %u\n", __func__, idx);
4406		return ERR_PTR(-EINVAL);
4407	}
4408
4409	return hw_data->hws[idx];
4410}
4411EXPORT_SYMBOL_GPL(of_clk_hw_onecell_get);
4412
4413/**
4414 * of_clk_add_provider() - Register a clock provider for a node
4415 * @np: Device node pointer associated with clock provider
4416 * @clk_src_get: callback for decoding clock
4417 * @data: context pointer for @clk_src_get callback.
4418 *
4419 * This function is *deprecated*. Use of_clk_add_hw_provider() instead.
4420 */
4421int of_clk_add_provider(struct device_node *np,
4422			struct clk *(*clk_src_get)(struct of_phandle_args *clkspec,
4423						   void *data),
4424			void *data)
4425{
4426	struct of_clk_provider *cp;
4427	int ret;
4428
4429	cp = kzalloc(sizeof(*cp), GFP_KERNEL);
4430	if (!cp)
4431		return -ENOMEM;
4432
4433	cp->node = of_node_get(np);
4434	cp->data = data;
4435	cp->get = clk_src_get;
4436
4437	mutex_lock(&of_clk_mutex);
4438	list_add(&cp->link, &of_clk_providers);
4439	mutex_unlock(&of_clk_mutex);
4440	pr_debug("Added clock from %pOF\n", np);
4441
4442	clk_core_reparent_orphans();
4443
4444	ret = of_clk_set_defaults(np, true);
4445	if (ret < 0)
4446		of_clk_del_provider(np);
4447
4448	return ret;
4449}
4450EXPORT_SYMBOL_GPL(of_clk_add_provider);
4451
4452/**
4453 * of_clk_add_hw_provider() - Register a clock provider for a node
4454 * @np: Device node pointer associated with clock provider
4455 * @get: callback for decoding clk_hw
4456 * @data: context pointer for @get callback.
4457 */
4458int of_clk_add_hw_provider(struct device_node *np,
4459			   struct clk_hw *(*get)(struct of_phandle_args *clkspec,
4460						 void *data),
4461			   void *data)
4462{
4463	struct of_clk_provider *cp;
4464	int ret;
4465
4466	cp = kzalloc(sizeof(*cp), GFP_KERNEL);
4467	if (!cp)
4468		return -ENOMEM;
4469
4470	cp->node = of_node_get(np);
4471	cp->data = data;
4472	cp->get_hw = get;
4473
4474	mutex_lock(&of_clk_mutex);
4475	list_add(&cp->link, &of_clk_providers);
4476	mutex_unlock(&of_clk_mutex);
4477	pr_debug("Added clk_hw provider from %pOF\n", np);
4478
4479	clk_core_reparent_orphans();
4480
4481	ret = of_clk_set_defaults(np, true);
4482	if (ret < 0)
4483		of_clk_del_provider(np);
4484
4485	return ret;
4486}
4487EXPORT_SYMBOL_GPL(of_clk_add_hw_provider);
4488
4489static void devm_of_clk_release_provider(struct device *dev, void *res)
4490{
4491	of_clk_del_provider(*(struct device_node **)res);
4492}
4493
4494/*
4495 * We allow a child device to use its parent device as the clock provider node
4496 * for cases like MFD sub-devices where the child device driver wants to use
4497 * devm_*() APIs but not list the device in DT as a sub-node.
4498 */
4499static struct device_node *get_clk_provider_node(struct device *dev)
4500{
4501	struct device_node *np, *parent_np;
4502
4503	np = dev->of_node;
4504	parent_np = dev->parent ? dev->parent->of_node : NULL;
4505
4506	if (!of_find_property(np, "#clock-cells", NULL))
4507		if (of_find_property(parent_np, "#clock-cells", NULL))
4508			np = parent_np;
4509
4510	return np;
4511}
4512
4513/**
4514 * devm_of_clk_add_hw_provider() - Managed clk provider node registration
4515 * @dev: Device acting as the clock provider (used for DT node and lifetime)
4516 * @get: callback for decoding clk_hw
4517 * @data: context pointer for @get callback
4518 *
4519 * Registers clock provider for given device's node. If the device has no DT
4520 * node or if the device node lacks of clock provider information (#clock-cells)
4521 * then the parent device's node is scanned for this information. If parent node
4522 * has the #clock-cells then it is used in registration. Provider is
4523 * automatically released at device exit.
4524 *
4525 * Return: 0 on success or an errno on failure.
4526 */
4527int devm_of_clk_add_hw_provider(struct device *dev,
4528			struct clk_hw *(*get)(struct of_phandle_args *clkspec,
4529					      void *data),
4530			void *data)
4531{
4532	struct device_node **ptr, *np;
4533	int ret;
4534
4535	ptr = devres_alloc(devm_of_clk_release_provider, sizeof(*ptr),
4536			   GFP_KERNEL);
4537	if (!ptr)
4538		return -ENOMEM;
4539
4540	np = get_clk_provider_node(dev);
4541	ret = of_clk_add_hw_provider(np, get, data);
4542	if (!ret) {
4543		*ptr = np;
4544		devres_add(dev, ptr);
4545	} else {
4546		devres_free(ptr);
4547	}
4548
4549	return ret;
4550}
4551EXPORT_SYMBOL_GPL(devm_of_clk_add_hw_provider);
4552
4553/**
4554 * of_clk_del_provider() - Remove a previously registered clock provider
4555 * @np: Device node pointer associated with clock provider
4556 */
4557void of_clk_del_provider(struct device_node *np)
4558{
4559	struct of_clk_provider *cp;
4560
4561	mutex_lock(&of_clk_mutex);
4562	list_for_each_entry(cp, &of_clk_providers, link) {
4563		if (cp->node == np) {
4564			list_del(&cp->link);
4565			of_node_put(cp->node);
4566			kfree(cp);
4567			break;
4568		}
4569	}
4570	mutex_unlock(&of_clk_mutex);
4571}
4572EXPORT_SYMBOL_GPL(of_clk_del_provider);
4573
4574static int devm_clk_provider_match(struct device *dev, void *res, void *data)
4575{
4576	struct device_node **np = res;
4577
4578	if (WARN_ON(!np || !*np))
4579		return 0;
4580
4581	return *np == data;
4582}
4583
4584/**
4585 * devm_of_clk_del_provider() - Remove clock provider registered using devm
4586 * @dev: Device to whose lifetime the clock provider was bound
4587 */
4588void devm_of_clk_del_provider(struct device *dev)
4589{
4590	int ret;
4591	struct device_node *np = get_clk_provider_node(dev);
4592
4593	ret = devres_release(dev, devm_of_clk_release_provider,
4594			     devm_clk_provider_match, np);
4595
4596	WARN_ON(ret);
4597}
4598EXPORT_SYMBOL(devm_of_clk_del_provider);
4599
4600/**
4601 * of_parse_clkspec() - Parse a DT clock specifier for a given device node
4602 * @np: device node to parse clock specifier from
4603 * @index: index of phandle to parse clock out of. If index < 0, @name is used
4604 * @name: clock name to find and parse. If name is NULL, the index is used
4605 * @out_args: Result of parsing the clock specifier
4606 *
4607 * Parses a device node's "clocks" and "clock-names" properties to find the
4608 * phandle and cells for the index or name that is desired. The resulting clock
4609 * specifier is placed into @out_args, or an errno is returned when there's a
4610 * parsing error. The @index argument is ignored if @name is non-NULL.
4611 *
4612 * Example:
4613 *
4614 * phandle1: clock-controller@1 {
4615 *	#clock-cells = <2>;
4616 * }
4617 *
4618 * phandle2: clock-controller@2 {
4619 *	#clock-cells = <1>;
4620 * }
4621 *
4622 * clock-consumer@3 {
4623 *	clocks = <&phandle1 1 2 &phandle2 3>;
4624 *	clock-names = "name1", "name2";
4625 * }
4626 *
4627 * To get a device_node for `clock-controller@2' node you may call this
4628 * function a few different ways:
4629 *
4630 *   of_parse_clkspec(clock-consumer@3, -1, "name2", &args);
4631 *   of_parse_clkspec(clock-consumer@3, 1, NULL, &args);
4632 *   of_parse_clkspec(clock-consumer@3, 1, "name2", &args);
4633 *
4634 * Return: 0 upon successfully parsing the clock specifier. Otherwise, -ENOENT
4635 * if @name is NULL or -EINVAL if @name is non-NULL and it can't be found in
4636 * the "clock-names" property of @np.
4637 */
4638static int of_parse_clkspec(const struct device_node *np, int index,
4639			    const char *name, struct of_phandle_args *out_args)
4640{
4641	int ret = -ENOENT;
4642
4643	/* Walk up the tree of devices looking for a clock property that matches */
4644	while (np) {
4645		/*
4646		 * For named clocks, first look up the name in the
4647		 * "clock-names" property.  If it cannot be found, then index
4648		 * will be an error code and of_parse_phandle_with_args() will
4649		 * return -EINVAL.
4650		 */
4651		if (name)
4652			index = of_property_match_string(np, "clock-names", name);
4653		ret = of_parse_phandle_with_args(np, "clocks", "#clock-cells",
4654						 index, out_args);
4655		if (!ret)
4656			break;
4657		if (name && index >= 0)
4658			break;
4659
4660		/*
4661		 * No matching clock found on this node.  If the parent node
4662		 * has a "clock-ranges" property, then we can try one of its
4663		 * clocks.
4664		 */
4665		np = np->parent;
4666		if (np && !of_get_property(np, "clock-ranges", NULL))
4667			break;
4668		index = 0;
4669	}
4670
4671	return ret;
4672}
4673
4674static struct clk_hw *
4675__of_clk_get_hw_from_provider(struct of_clk_provider *provider,
4676			      struct of_phandle_args *clkspec)
4677{
4678	struct clk *clk;
4679
4680	if (provider->get_hw)
4681		return provider->get_hw(clkspec, provider->data);
4682
4683	clk = provider->get(clkspec, provider->data);
4684	if (IS_ERR(clk))
4685		return ERR_CAST(clk);
4686	return __clk_get_hw(clk);
4687}
4688
4689static struct clk_hw *
4690of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec)
4691{
4692	struct of_clk_provider *provider;
4693	struct clk_hw *hw = ERR_PTR(-EPROBE_DEFER);
4694
4695	if (!clkspec)
4696		return ERR_PTR(-EINVAL);
4697
 
4698	mutex_lock(&of_clk_mutex);
4699	list_for_each_entry(provider, &of_clk_providers, link) {
4700		if (provider->node == clkspec->np) {
4701			hw = __of_clk_get_hw_from_provider(provider, clkspec);
4702			if (!IS_ERR(hw))
4703				break;
 
 
 
 
 
 
 
 
4704		}
4705	}
4706	mutex_unlock(&of_clk_mutex);
4707
4708	return hw;
4709}
4710
4711/**
4712 * of_clk_get_from_provider() - Lookup a clock from a clock provider
4713 * @clkspec: pointer to a clock specifier data structure
4714 *
4715 * This function looks up a struct clk from the registered list of clock
4716 * providers, an input is a clock specifier data structure as returned
4717 * from the of_parse_phandle_with_args() function call.
4718 */
4719struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec)
4720{
4721	struct clk_hw *hw = of_clk_get_hw_from_clkspec(clkspec);
4722
4723	return clk_hw_create_clk(NULL, hw, NULL, __func__);
4724}
4725EXPORT_SYMBOL_GPL(of_clk_get_from_provider);
4726
4727struct clk_hw *of_clk_get_hw(struct device_node *np, int index,
4728			     const char *con_id)
4729{
4730	int ret;
4731	struct clk_hw *hw;
4732	struct of_phandle_args clkspec;
4733
4734	ret = of_parse_clkspec(np, index, con_id, &clkspec);
4735	if (ret)
4736		return ERR_PTR(ret);
4737
4738	hw = of_clk_get_hw_from_clkspec(&clkspec);
4739	of_node_put(clkspec.np);
4740
4741	return hw;
4742}
4743
4744static struct clk *__of_clk_get(struct device_node *np,
4745				int index, const char *dev_id,
4746				const char *con_id)
4747{
4748	struct clk_hw *hw = of_clk_get_hw(np, index, con_id);
4749
4750	return clk_hw_create_clk(NULL, hw, dev_id, con_id);
4751}
4752
4753struct clk *of_clk_get(struct device_node *np, int index)
4754{
4755	return __of_clk_get(np, index, np->full_name, NULL);
4756}
4757EXPORT_SYMBOL(of_clk_get);
4758
4759/**
4760 * of_clk_get_by_name() - Parse and lookup a clock referenced by a device node
4761 * @np: pointer to clock consumer node
4762 * @name: name of consumer's clock input, or NULL for the first clock reference
4763 *
4764 * This function parses the clocks and clock-names properties,
4765 * and uses them to look up the struct clk from the registered list of clock
4766 * providers.
4767 */
4768struct clk *of_clk_get_by_name(struct device_node *np, const char *name)
4769{
4770	if (!np)
4771		return ERR_PTR(-ENOENT);
4772
4773	return __of_clk_get(np, 0, np->full_name, name);
4774}
4775EXPORT_SYMBOL(of_clk_get_by_name);
4776
4777/**
4778 * of_clk_get_parent_count() - Count the number of clocks a device node has
4779 * @np: device node to count
4780 *
4781 * Returns: The number of clocks that are possible parents of this node
4782 */
4783unsigned int of_clk_get_parent_count(const struct device_node *np)
4784{
4785	int count;
4786
4787	count = of_count_phandle_with_args(np, "clocks", "#clock-cells");
4788	if (count < 0)
4789		return 0;
4790
4791	return count;
4792}
4793EXPORT_SYMBOL_GPL(of_clk_get_parent_count);
4794
4795const char *of_clk_get_parent_name(const struct device_node *np, int index)
4796{
4797	struct of_phandle_args clkspec;
4798	struct property *prop;
4799	const char *clk_name;
4800	const __be32 *vp;
4801	u32 pv;
4802	int rc;
4803	int count;
4804	struct clk *clk;
4805
4806	rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index,
4807					&clkspec);
4808	if (rc)
4809		return NULL;
4810
4811	index = clkspec.args_count ? clkspec.args[0] : 0;
4812	count = 0;
4813
4814	/* if there is an indices property, use it to transfer the index
4815	 * specified into an array offset for the clock-output-names property.
4816	 */
4817	of_property_for_each_u32(clkspec.np, "clock-indices", prop, vp, pv) {
4818		if (index == pv) {
4819			index = count;
4820			break;
4821		}
4822		count++;
4823	}
4824	/* We went off the end of 'clock-indices' without finding it */
4825	if (prop && !vp)
4826		return NULL;
4827
4828	if (of_property_read_string_index(clkspec.np, "clock-output-names",
4829					  index,
4830					  &clk_name) < 0) {
4831		/*
4832		 * Best effort to get the name if the clock has been
4833		 * registered with the framework. If the clock isn't
4834		 * registered, we return the node name as the name of
4835		 * the clock as long as #clock-cells = 0.
4836		 */
4837		clk = of_clk_get_from_provider(&clkspec);
4838		if (IS_ERR(clk)) {
4839			if (clkspec.args_count == 0)
4840				clk_name = clkspec.np->name;
4841			else
4842				clk_name = NULL;
4843		} else {
4844			clk_name = __clk_get_name(clk);
4845			clk_put(clk);
4846		}
4847	}
4848
4849
4850	of_node_put(clkspec.np);
4851	return clk_name;
4852}
4853EXPORT_SYMBOL_GPL(of_clk_get_parent_name);
4854
4855/**
4856 * of_clk_parent_fill() - Fill @parents with names of @np's parents and return
4857 * number of parents
4858 * @np: Device node pointer associated with clock provider
4859 * @parents: pointer to char array that hold the parents' names
4860 * @size: size of the @parents array
4861 *
4862 * Return: number of parents for the clock node.
4863 */
4864int of_clk_parent_fill(struct device_node *np, const char **parents,
4865		       unsigned int size)
4866{
4867	unsigned int i = 0;
4868
4869	while (i < size && (parents[i] = of_clk_get_parent_name(np, i)) != NULL)
4870		i++;
4871
4872	return i;
4873}
4874EXPORT_SYMBOL_GPL(of_clk_parent_fill);
4875
4876struct clock_provider {
4877	void (*clk_init_cb)(struct device_node *);
4878	struct device_node *np;
4879	struct list_head node;
4880};
4881
4882/*
4883 * This function looks for a parent clock. If there is one, then it
4884 * checks that the provider for this parent clock was initialized, in
4885 * this case the parent clock will be ready.
4886 */
4887static int parent_ready(struct device_node *np)
4888{
4889	int i = 0;
4890
4891	while (true) {
4892		struct clk *clk = of_clk_get(np, i);
4893
4894		/* this parent is ready we can check the next one */
4895		if (!IS_ERR(clk)) {
4896			clk_put(clk);
4897			i++;
4898			continue;
4899		}
4900
4901		/* at least one parent is not ready, we exit now */
4902		if (PTR_ERR(clk) == -EPROBE_DEFER)
4903			return 0;
4904
4905		/*
4906		 * Here we make assumption that the device tree is
4907		 * written correctly. So an error means that there is
4908		 * no more parent. As we didn't exit yet, then the
4909		 * previous parent are ready. If there is no clock
4910		 * parent, no need to wait for them, then we can
4911		 * consider their absence as being ready
4912		 */
4913		return 1;
4914	}
4915}
4916
4917/**
4918 * of_clk_detect_critical() - set CLK_IS_CRITICAL flag from Device Tree
4919 * @np: Device node pointer associated with clock provider
4920 * @index: clock index
4921 * @flags: pointer to top-level framework flags
4922 *
4923 * Detects if the clock-critical property exists and, if so, sets the
4924 * corresponding CLK_IS_CRITICAL flag.
4925 *
4926 * Do not use this function. It exists only for legacy Device Tree
4927 * bindings, such as the one-clock-per-node style that are outdated.
4928 * Those bindings typically put all clock data into .dts and the Linux
4929 * driver has no clock data, thus making it impossible to set this flag
4930 * correctly from the driver. Only those drivers may call
4931 * of_clk_detect_critical from their setup functions.
4932 *
4933 * Return: error code or zero on success
4934 */
4935int of_clk_detect_critical(struct device_node *np, int index,
4936			   unsigned long *flags)
4937{
4938	struct property *prop;
4939	const __be32 *cur;
4940	uint32_t idx;
4941
4942	if (!np || !flags)
4943		return -EINVAL;
4944
4945	of_property_for_each_u32(np, "clock-critical", prop, cur, idx)
4946		if (index == idx)
4947			*flags |= CLK_IS_CRITICAL;
4948
4949	return 0;
4950}
4951
4952/**
4953 * of_clk_init() - Scan and init clock providers from the DT
4954 * @matches: array of compatible values and init functions for providers.
4955 *
4956 * This function scans the device tree for matching clock providers
4957 * and calls their initialization functions. It also does it by trying
4958 * to follow the dependencies.
4959 */
4960void __init of_clk_init(const struct of_device_id *matches)
4961{
4962	const struct of_device_id *match;
4963	struct device_node *np;
4964	struct clock_provider *clk_provider, *next;
4965	bool is_init_done;
4966	bool force = false;
4967	LIST_HEAD(clk_provider_list);
4968
4969	if (!matches)
4970		matches = &__clk_of_table;
4971
4972	/* First prepare the list of the clocks providers */
4973	for_each_matching_node_and_match(np, matches, &match) {
4974		struct clock_provider *parent;
4975
4976		if (!of_device_is_available(np))
4977			continue;
4978
4979		parent = kzalloc(sizeof(*parent), GFP_KERNEL);
4980		if (!parent) {
4981			list_for_each_entry_safe(clk_provider, next,
4982						 &clk_provider_list, node) {
4983				list_del(&clk_provider->node);
4984				of_node_put(clk_provider->np);
4985				kfree(clk_provider);
4986			}
4987			of_node_put(np);
4988			return;
4989		}
4990
4991		parent->clk_init_cb = match->data;
4992		parent->np = of_node_get(np);
4993		list_add_tail(&parent->node, &clk_provider_list);
4994	}
4995
4996	while (!list_empty(&clk_provider_list)) {
4997		is_init_done = false;
4998		list_for_each_entry_safe(clk_provider, next,
4999					&clk_provider_list, node) {
5000			if (force || parent_ready(clk_provider->np)) {
5001
5002				/* Don't populate platform devices */
5003				of_node_set_flag(clk_provider->np,
5004						 OF_POPULATED);
5005
5006				clk_provider->clk_init_cb(clk_provider->np);
5007				of_clk_set_defaults(clk_provider->np, true);
5008
5009				list_del(&clk_provider->node);
5010				of_node_put(clk_provider->np);
5011				kfree(clk_provider);
5012				is_init_done = true;
5013			}
5014		}
5015
5016		/*
5017		 * We didn't manage to initialize any of the
5018		 * remaining providers during the last loop, so now we
5019		 * initialize all the remaining ones unconditionally
5020		 * in case the clock parent was not mandatory
5021		 */
5022		if (!is_init_done)
5023			force = true;
5024	}
5025}
5026#endif
v4.6
 
   1/*
   2 * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com>
   3 * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org>
   4 *
   5 * This program is free software; you can redistribute it and/or modify
   6 * it under the terms of the GNU General Public License version 2 as
   7 * published by the Free Software Foundation.
   8 *
   9 * Standard functionality for the common clock API.  See Documentation/clk.txt
  10 */
  11
  12#include <linux/clk.h>
  13#include <linux/clk-provider.h>
  14#include <linux/clk/clk-conf.h>
  15#include <linux/module.h>
  16#include <linux/mutex.h>
  17#include <linux/spinlock.h>
  18#include <linux/err.h>
  19#include <linux/list.h>
  20#include <linux/slab.h>
  21#include <linux/of.h>
  22#include <linux/device.h>
  23#include <linux/init.h>
 
  24#include <linux/sched.h>
  25#include <linux/clkdev.h>
  26
  27#include "clk.h"
  28
  29static DEFINE_SPINLOCK(enable_lock);
  30static DEFINE_MUTEX(prepare_lock);
  31
  32static struct task_struct *prepare_owner;
  33static struct task_struct *enable_owner;
  34
  35static int prepare_refcnt;
  36static int enable_refcnt;
  37
  38static HLIST_HEAD(clk_root_list);
  39static HLIST_HEAD(clk_orphan_list);
  40static LIST_HEAD(clk_notifier_list);
  41
 
 
 
 
 
 
  42/***    private data structures    ***/
  43
 
 
 
 
 
 
 
 
  44struct clk_core {
  45	const char		*name;
  46	const struct clk_ops	*ops;
  47	struct clk_hw		*hw;
  48	struct module		*owner;
 
 
  49	struct clk_core		*parent;
  50	const char		**parent_names;
  51	struct clk_core		**parents;
  52	u8			num_parents;
  53	u8			new_parent_index;
  54	unsigned long		rate;
  55	unsigned long		req_rate;
  56	unsigned long		new_rate;
  57	struct clk_core		*new_parent;
  58	struct clk_core		*new_child;
  59	unsigned long		flags;
  60	bool			orphan;
 
  61	unsigned int		enable_count;
  62	unsigned int		prepare_count;
 
  63	unsigned long		min_rate;
  64	unsigned long		max_rate;
  65	unsigned long		accuracy;
  66	int			phase;
 
  67	struct hlist_head	children;
  68	struct hlist_node	child_node;
  69	struct hlist_head	clks;
  70	unsigned int		notifier_count;
  71#ifdef CONFIG_DEBUG_FS
  72	struct dentry		*dentry;
  73	struct hlist_node	debug_node;
  74#endif
  75	struct kref		ref;
  76};
  77
  78#define CREATE_TRACE_POINTS
  79#include <trace/events/clk.h>
  80
  81struct clk {
  82	struct clk_core	*core;
 
  83	const char *dev_id;
  84	const char *con_id;
  85	unsigned long min_rate;
  86	unsigned long max_rate;
 
  87	struct hlist_node clks_node;
  88};
  89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  90/***           locking             ***/
  91static void clk_prepare_lock(void)
  92{
  93	if (!mutex_trylock(&prepare_lock)) {
  94		if (prepare_owner == current) {
  95			prepare_refcnt++;
  96			return;
  97		}
  98		mutex_lock(&prepare_lock);
  99	}
 100	WARN_ON_ONCE(prepare_owner != NULL);
 101	WARN_ON_ONCE(prepare_refcnt != 0);
 102	prepare_owner = current;
 103	prepare_refcnt = 1;
 104}
 105
 106static void clk_prepare_unlock(void)
 107{
 108	WARN_ON_ONCE(prepare_owner != current);
 109	WARN_ON_ONCE(prepare_refcnt == 0);
 110
 111	if (--prepare_refcnt)
 112		return;
 113	prepare_owner = NULL;
 114	mutex_unlock(&prepare_lock);
 115}
 116
 117static unsigned long clk_enable_lock(void)
 118	__acquires(enable_lock)
 119{
 120	unsigned long flags;
 121
 122	if (!spin_trylock_irqsave(&enable_lock, flags)) {
 
 
 
 
 
 
 123		if (enable_owner == current) {
 124			enable_refcnt++;
 125			__acquire(enable_lock);
 
 
 126			return flags;
 127		}
 128		spin_lock_irqsave(&enable_lock, flags);
 129	}
 130	WARN_ON_ONCE(enable_owner != NULL);
 131	WARN_ON_ONCE(enable_refcnt != 0);
 132	enable_owner = current;
 133	enable_refcnt = 1;
 134	return flags;
 135}
 136
 137static void clk_enable_unlock(unsigned long flags)
 138	__releases(enable_lock)
 139{
 140	WARN_ON_ONCE(enable_owner != current);
 141	WARN_ON_ONCE(enable_refcnt == 0);
 142
 143	if (--enable_refcnt) {
 144		__release(enable_lock);
 145		return;
 146	}
 147	enable_owner = NULL;
 148	spin_unlock_irqrestore(&enable_lock, flags);
 149}
 150
 
 
 
 
 
 151static bool clk_core_is_prepared(struct clk_core *core)
 152{
 
 
 153	/*
 154	 * .is_prepared is optional for clocks that can prepare
 155	 * fall back to software usage counter if it is missing
 156	 */
 157	if (!core->ops->is_prepared)
 158		return core->prepare_count;
 159
 160	return core->ops->is_prepared(core->hw);
 
 
 
 
 
 161}
 162
 163static bool clk_core_is_enabled(struct clk_core *core)
 164{
 
 
 165	/*
 166	 * .is_enabled is only mandatory for clocks that gate
 167	 * fall back to software usage counter if .is_enabled is missing
 168	 */
 169	if (!core->ops->is_enabled)
 170		return core->enable_count;
 171
 172	return core->ops->is_enabled(core->hw);
 173}
 174
 175static void clk_unprepare_unused_subtree(struct clk_core *core)
 176{
 177	struct clk_core *child;
 178
 179	lockdep_assert_held(&prepare_lock);
 180
 181	hlist_for_each_entry(child, &core->children, child_node)
 182		clk_unprepare_unused_subtree(child);
 183
 184	if (core->prepare_count)
 185		return;
 186
 187	if (core->flags & CLK_IGNORE_UNUSED)
 188		return;
 189
 190	if (clk_core_is_prepared(core)) {
 191		trace_clk_unprepare(core);
 192		if (core->ops->unprepare_unused)
 193			core->ops->unprepare_unused(core->hw);
 194		else if (core->ops->unprepare)
 195			core->ops->unprepare(core->hw);
 196		trace_clk_unprepare_complete(core);
 197	}
 198}
 199
 200static void clk_disable_unused_subtree(struct clk_core *core)
 201{
 202	struct clk_core *child;
 203	unsigned long flags;
 204
 205	lockdep_assert_held(&prepare_lock);
 206
 207	hlist_for_each_entry(child, &core->children, child_node)
 208		clk_disable_unused_subtree(child);
 209
 210	flags = clk_enable_lock();
 211
 212	if (core->enable_count)
 213		goto unlock_out;
 214
 215	if (core->flags & CLK_IGNORE_UNUSED)
 216		goto unlock_out;
 217
 218	/*
 219	 * some gate clocks have special needs during the disable-unused
 220	 * sequence.  call .disable_unused if available, otherwise fall
 221	 * back to .disable
 
 
 
 
 
 222	 */
 223	if (clk_core_is_enabled(core)) {
 224		trace_clk_disable(core);
 225		if (core->ops->disable_unused)
 226			core->ops->disable_unused(core->hw);
 227		else if (core->ops->disable)
 228			core->ops->disable(core->hw);
 229		trace_clk_disable_complete(core);
 230	}
 231
 232unlock_out:
 233	clk_enable_unlock(flags);
 234}
 235
 236static bool clk_ignore_unused;
 237static int __init clk_ignore_unused_setup(char *__unused)
 238{
 239	clk_ignore_unused = true;
 240	return 1;
 241}
 242__setup("clk_ignore_unused", clk_ignore_unused_setup);
 243
 244static int clk_disable_unused(void)
 245{
 246	struct clk_core *core;
 247
 248	if (clk_ignore_unused) {
 249		pr_warn("clk: Not disabling unused clocks\n");
 250		return 0;
 251	}
 252
 253	clk_prepare_lock();
 
 
 
 254
 255	hlist_for_each_entry(core, &clk_root_list, child_node)
 256		clk_disable_unused_subtree(core);
 257
 258	hlist_for_each_entry(core, &clk_orphan_list, child_node)
 259		clk_disable_unused_subtree(core);
 260
 261	hlist_for_each_entry(core, &clk_root_list, child_node)
 262		clk_unprepare_unused_subtree(core);
 263
 264	hlist_for_each_entry(core, &clk_orphan_list, child_node)
 265		clk_unprepare_unused_subtree(core);
 266
 267	clk_prepare_unlock();
 268
 269	return 0;
 270}
 271late_initcall_sync(clk_disable_unused);
 272
 273/***    helper functions   ***/
 274
 275const char *__clk_get_name(const struct clk *clk)
 276{
 277	return !clk ? NULL : clk->core->name;
 278}
 279EXPORT_SYMBOL_GPL(__clk_get_name);
 280
 281const char *clk_hw_get_name(const struct clk_hw *hw)
 282{
 283	return hw->core->name;
 284}
 285EXPORT_SYMBOL_GPL(clk_hw_get_name);
 286
 287struct clk_hw *__clk_get_hw(struct clk *clk)
 288{
 289	return !clk ? NULL : clk->core->hw;
 290}
 291EXPORT_SYMBOL_GPL(__clk_get_hw);
 292
 293unsigned int clk_hw_get_num_parents(const struct clk_hw *hw)
 294{
 295	return hw->core->num_parents;
 296}
 297EXPORT_SYMBOL_GPL(clk_hw_get_num_parents);
 298
 299struct clk_hw *clk_hw_get_parent(const struct clk_hw *hw)
 300{
 301	return hw->core->parent ? hw->core->parent->hw : NULL;
 302}
 303EXPORT_SYMBOL_GPL(clk_hw_get_parent);
 304
 305static struct clk_core *__clk_lookup_subtree(const char *name,
 306					     struct clk_core *core)
 307{
 308	struct clk_core *child;
 309	struct clk_core *ret;
 310
 311	if (!strcmp(core->name, name))
 312		return core;
 313
 314	hlist_for_each_entry(child, &core->children, child_node) {
 315		ret = __clk_lookup_subtree(name, child);
 316		if (ret)
 317			return ret;
 318	}
 319
 320	return NULL;
 321}
 322
 323static struct clk_core *clk_core_lookup(const char *name)
 324{
 325	struct clk_core *root_clk;
 326	struct clk_core *ret;
 327
 328	if (!name)
 329		return NULL;
 330
 331	/* search the 'proper' clk tree first */
 332	hlist_for_each_entry(root_clk, &clk_root_list, child_node) {
 333		ret = __clk_lookup_subtree(name, root_clk);
 334		if (ret)
 335			return ret;
 336	}
 337
 338	/* if not found, then search the orphan tree */
 339	hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) {
 340		ret = __clk_lookup_subtree(name, root_clk);
 341		if (ret)
 342			return ret;
 343	}
 344
 345	return NULL;
 346}
 347
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 348static struct clk_core *clk_core_get_parent_by_index(struct clk_core *core,
 349							 u8 index)
 350{
 351	if (!core || index >= core->num_parents)
 352		return NULL;
 353
 354	if (!core->parents[index])
 355		core->parents[index] =
 356				clk_core_lookup(core->parent_names[index]);
 357
 358	return core->parents[index];
 359}
 360
 361struct clk_hw *
 362clk_hw_get_parent_by_index(const struct clk_hw *hw, unsigned int index)
 363{
 364	struct clk_core *parent;
 365
 366	parent = clk_core_get_parent_by_index(hw->core, index);
 367
 368	return !parent ? NULL : parent->hw;
 369}
 370EXPORT_SYMBOL_GPL(clk_hw_get_parent_by_index);
 371
 372unsigned int __clk_get_enable_count(struct clk *clk)
 373{
 374	return !clk ? 0 : clk->core->enable_count;
 375}
 376
 377static unsigned long clk_core_get_rate_nolock(struct clk_core *core)
 378{
 379	unsigned long ret;
 
 380
 381	if (!core) {
 382		ret = 0;
 383		goto out;
 384	}
 385
 386	ret = core->rate;
 387
 388	if (!core->num_parents)
 389		goto out;
 390
 391	if (!core->parent)
 392		ret = 0;
 393
 394out:
 395	return ret;
 396}
 397
 398unsigned long clk_hw_get_rate(const struct clk_hw *hw)
 399{
 400	return clk_core_get_rate_nolock(hw->core);
 401}
 402EXPORT_SYMBOL_GPL(clk_hw_get_rate);
 403
 404static unsigned long __clk_get_accuracy(struct clk_core *core)
 405{
 406	if (!core)
 407		return 0;
 408
 409	return core->accuracy;
 410}
 411
 412unsigned long __clk_get_flags(struct clk *clk)
 413{
 414	return !clk ? 0 : clk->core->flags;
 415}
 416EXPORT_SYMBOL_GPL(__clk_get_flags);
 417
 418unsigned long clk_hw_get_flags(const struct clk_hw *hw)
 419{
 420	return hw->core->flags;
 421}
 422EXPORT_SYMBOL_GPL(clk_hw_get_flags);
 423
 424bool clk_hw_is_prepared(const struct clk_hw *hw)
 425{
 426	return clk_core_is_prepared(hw->core);
 427}
 
 
 
 
 
 
 
 428
 429bool clk_hw_is_enabled(const struct clk_hw *hw)
 430{
 431	return clk_core_is_enabled(hw->core);
 432}
 
 433
 434bool __clk_is_enabled(struct clk *clk)
 435{
 436	if (!clk)
 437		return false;
 438
 439	return clk_core_is_enabled(clk->core);
 440}
 441EXPORT_SYMBOL_GPL(__clk_is_enabled);
 442
 443static bool mux_is_better_rate(unsigned long rate, unsigned long now,
 444			   unsigned long best, unsigned long flags)
 445{
 446	if (flags & CLK_MUX_ROUND_CLOSEST)
 447		return abs(now - rate) < abs(best - rate);
 448
 449	return now <= rate && now > best;
 450}
 451
 452static int
 453clk_mux_determine_rate_flags(struct clk_hw *hw, struct clk_rate_request *req,
 454			     unsigned long flags)
 455{
 456	struct clk_core *core = hw->core, *parent, *best_parent = NULL;
 457	int i, num_parents, ret;
 458	unsigned long best = 0;
 459	struct clk_rate_request parent_req = *req;
 460
 461	/* if NO_REPARENT flag set, pass through to current parent */
 462	if (core->flags & CLK_SET_RATE_NO_REPARENT) {
 463		parent = core->parent;
 464		if (core->flags & CLK_SET_RATE_PARENT) {
 465			ret = __clk_determine_rate(parent ? parent->hw : NULL,
 466						   &parent_req);
 467			if (ret)
 468				return ret;
 469
 470			best = parent_req.rate;
 471		} else if (parent) {
 472			best = clk_core_get_rate_nolock(parent);
 473		} else {
 474			best = clk_core_get_rate_nolock(core);
 475		}
 476
 477		goto out;
 478	}
 479
 480	/* find the parent that can provide the fastest rate <= rate */
 481	num_parents = core->num_parents;
 482	for (i = 0; i < num_parents; i++) {
 483		parent = clk_core_get_parent_by_index(core, i);
 484		if (!parent)
 485			continue;
 486
 487		if (core->flags & CLK_SET_RATE_PARENT) {
 488			parent_req = *req;
 489			ret = __clk_determine_rate(parent->hw, &parent_req);
 490			if (ret)
 491				continue;
 492		} else {
 493			parent_req.rate = clk_core_get_rate_nolock(parent);
 494		}
 495
 496		if (mux_is_better_rate(req->rate, parent_req.rate,
 497				       best, flags)) {
 498			best_parent = parent;
 499			best = parent_req.rate;
 500		}
 501	}
 502
 503	if (!best_parent)
 504		return -EINVAL;
 505
 506out:
 507	if (best_parent)
 508		req->best_parent_hw = best_parent->hw;
 509	req->best_parent_rate = best;
 510	req->rate = best;
 511
 512	return 0;
 513}
 
 514
 515struct clk *__clk_lookup(const char *name)
 516{
 517	struct clk_core *core = clk_core_lookup(name);
 518
 519	return !core ? NULL : core->hw->clk;
 520}
 521
 522static void clk_core_get_boundaries(struct clk_core *core,
 523				    unsigned long *min_rate,
 524				    unsigned long *max_rate)
 525{
 526	struct clk *clk_user;
 527
 
 
 528	*min_rate = core->min_rate;
 529	*max_rate = core->max_rate;
 530
 531	hlist_for_each_entry(clk_user, &core->clks, clks_node)
 532		*min_rate = max(*min_rate, clk_user->min_rate);
 533
 534	hlist_for_each_entry(clk_user, &core->clks, clks_node)
 535		*max_rate = min(*max_rate, clk_user->max_rate);
 536}
 537
 538void clk_hw_set_rate_range(struct clk_hw *hw, unsigned long min_rate,
 539			   unsigned long max_rate)
 540{
 541	hw->core->min_rate = min_rate;
 542	hw->core->max_rate = max_rate;
 543}
 544EXPORT_SYMBOL_GPL(clk_hw_set_rate_range);
 545
 546/*
 
 
 
 
 547 * Helper for finding best parent to provide a given frequency. This can be used
 548 * directly as a determine_rate callback (e.g. for a mux), or from a more
 549 * complex clock that may combine a mux with other operations.
 
 
 550 */
 551int __clk_mux_determine_rate(struct clk_hw *hw,
 552			     struct clk_rate_request *req)
 553{
 554	return clk_mux_determine_rate_flags(hw, req, 0);
 555}
 556EXPORT_SYMBOL_GPL(__clk_mux_determine_rate);
 557
 558int __clk_mux_determine_rate_closest(struct clk_hw *hw,
 559				     struct clk_rate_request *req)
 560{
 561	return clk_mux_determine_rate_flags(hw, req, CLK_MUX_ROUND_CLOSEST);
 562}
 563EXPORT_SYMBOL_GPL(__clk_mux_determine_rate_closest);
 564
 565/***        clk api        ***/
 566
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 567static void clk_core_unprepare(struct clk_core *core)
 568{
 569	lockdep_assert_held(&prepare_lock);
 570
 571	if (!core)
 572		return;
 573
 574	if (WARN_ON(core->prepare_count == 0))
 
 
 
 
 
 575		return;
 576
 
 
 
 577	if (--core->prepare_count > 0)
 578		return;
 579
 580	WARN_ON(core->enable_count > 0);
 581
 582	trace_clk_unprepare(core);
 583
 584	if (core->ops->unprepare)
 585		core->ops->unprepare(core->hw);
 586
 
 
 587	trace_clk_unprepare_complete(core);
 588	clk_core_unprepare(core->parent);
 589}
 590
 
 
 
 
 
 
 
 591/**
 592 * clk_unprepare - undo preparation of a clock source
 593 * @clk: the clk being unprepared
 594 *
 595 * clk_unprepare may sleep, which differentiates it from clk_disable.  In a
 596 * simple case, clk_unprepare can be used instead of clk_disable to gate a clk
 597 * if the operation may sleep.  One example is a clk which is accessed over
 598 * I2c.  In the complex case a clk gate operation may require a fast and a slow
 599 * part.  It is this reason that clk_unprepare and clk_disable are not mutually
 600 * exclusive.  In fact clk_disable must be called before clk_unprepare.
 601 */
 602void clk_unprepare(struct clk *clk)
 603{
 604	if (IS_ERR_OR_NULL(clk))
 605		return;
 606
 607	clk_prepare_lock();
 608	clk_core_unprepare(clk->core);
 609	clk_prepare_unlock();
 610}
 611EXPORT_SYMBOL_GPL(clk_unprepare);
 612
 613static int clk_core_prepare(struct clk_core *core)
 614{
 615	int ret = 0;
 616
 617	lockdep_assert_held(&prepare_lock);
 618
 619	if (!core)
 620		return 0;
 621
 622	if (core->prepare_count == 0) {
 
 
 
 
 623		ret = clk_core_prepare(core->parent);
 624		if (ret)
 625			return ret;
 626
 627		trace_clk_prepare(core);
 628
 629		if (core->ops->prepare)
 630			ret = core->ops->prepare(core->hw);
 631
 632		trace_clk_prepare_complete(core);
 633
 634		if (ret) {
 635			clk_core_unprepare(core->parent);
 636			return ret;
 637		}
 638	}
 639
 640	core->prepare_count++;
 641
 
 
 
 
 
 
 
 
 
 
 642	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 643}
 644
 645/**
 646 * clk_prepare - prepare a clock source
 647 * @clk: the clk being prepared
 648 *
 649 * clk_prepare may sleep, which differentiates it from clk_enable.  In a simple
 650 * case, clk_prepare can be used instead of clk_enable to ungate a clk if the
 651 * operation may sleep.  One example is a clk which is accessed over I2c.  In
 652 * the complex case a clk ungate operation may require a fast and a slow part.
 653 * It is this reason that clk_prepare and clk_enable are not mutually
 654 * exclusive.  In fact clk_prepare must be called before clk_enable.
 655 * Returns 0 on success, -EERROR otherwise.
 656 */
 657int clk_prepare(struct clk *clk)
 658{
 659	int ret;
 660
 661	if (!clk)
 662		return 0;
 663
 664	clk_prepare_lock();
 665	ret = clk_core_prepare(clk->core);
 666	clk_prepare_unlock();
 667
 668	return ret;
 669}
 670EXPORT_SYMBOL_GPL(clk_prepare);
 671
 672static void clk_core_disable(struct clk_core *core)
 673{
 674	lockdep_assert_held(&enable_lock);
 675
 676	if (!core)
 677		return;
 678
 679	if (WARN_ON(core->enable_count == 0))
 
 
 
 
 680		return;
 681
 682	if (--core->enable_count > 0)
 683		return;
 684
 685	trace_clk_disable(core);
 686
 687	if (core->ops->disable)
 688		core->ops->disable(core->hw);
 689
 690	trace_clk_disable_complete(core);
 691
 692	clk_core_disable(core->parent);
 693}
 694
 
 
 
 
 
 
 
 
 
 695/**
 696 * clk_disable - gate a clock
 697 * @clk: the clk being gated
 698 *
 699 * clk_disable must not sleep, which differentiates it from clk_unprepare.  In
 700 * a simple case, clk_disable can be used instead of clk_unprepare to gate a
 701 * clk if the operation is fast and will never sleep.  One example is a
 702 * SoC-internal clk which is controlled via simple register writes.  In the
 703 * complex case a clk gate operation may require a fast and a slow part.  It is
 704 * this reason that clk_unprepare and clk_disable are not mutually exclusive.
 705 * In fact clk_disable must be called before clk_unprepare.
 706 */
 707void clk_disable(struct clk *clk)
 708{
 709	unsigned long flags;
 710
 711	if (IS_ERR_OR_NULL(clk))
 712		return;
 713
 714	flags = clk_enable_lock();
 715	clk_core_disable(clk->core);
 716	clk_enable_unlock(flags);
 717}
 718EXPORT_SYMBOL_GPL(clk_disable);
 719
 720static int clk_core_enable(struct clk_core *core)
 721{
 722	int ret = 0;
 723
 724	lockdep_assert_held(&enable_lock);
 725
 726	if (!core)
 727		return 0;
 728
 729	if (WARN_ON(core->prepare_count == 0))
 
 730		return -ESHUTDOWN;
 731
 732	if (core->enable_count == 0) {
 733		ret = clk_core_enable(core->parent);
 734
 735		if (ret)
 736			return ret;
 737
 738		trace_clk_enable(core);
 739
 740		if (core->ops->enable)
 741			ret = core->ops->enable(core->hw);
 742
 743		trace_clk_enable_complete(core);
 744
 745		if (ret) {
 746			clk_core_disable(core->parent);
 747			return ret;
 748		}
 749	}
 750
 751	core->enable_count++;
 752	return 0;
 753}
 754
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 755/**
 756 * clk_enable - ungate a clock
 757 * @clk: the clk being ungated
 758 *
 759 * clk_enable must not sleep, which differentiates it from clk_prepare.  In a
 760 * simple case, clk_enable can be used instead of clk_prepare to ungate a clk
 761 * if the operation will never sleep.  One example is a SoC-internal clk which
 762 * is controlled via simple register writes.  In the complex case a clk ungate
 763 * operation may require a fast and a slow part.  It is this reason that
 764 * clk_enable and clk_prepare are not mutually exclusive.  In fact clk_prepare
 765 * must be called before clk_enable.  Returns 0 on success, -EERROR
 766 * otherwise.
 767 */
 768int clk_enable(struct clk *clk)
 769{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 770	unsigned long flags;
 771	int ret;
 772
 773	if (!clk)
 774		return 0;
 
 
 
 
 
 
 
 
 775
 776	flags = clk_enable_lock();
 777	ret = clk_core_enable(clk->core);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 778	clk_enable_unlock(flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 779
 780	return ret;
 781}
 782EXPORT_SYMBOL_GPL(clk_enable);
 783
 784static int clk_core_round_rate_nolock(struct clk_core *core,
 785				      struct clk_rate_request *req)
 786{
 787	struct clk_core *parent;
 788	long rate;
 789
 790	lockdep_assert_held(&prepare_lock);
 791
 792	if (!core)
 793		return 0;
 794
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 795	parent = core->parent;
 796	if (parent) {
 797		req->best_parent_hw = parent->hw;
 798		req->best_parent_rate = parent->rate;
 799	} else {
 800		req->best_parent_hw = NULL;
 801		req->best_parent_rate = 0;
 802	}
 
 803
 804	if (core->ops->determine_rate) {
 805		return core->ops->determine_rate(core->hw, req);
 806	} else if (core->ops->round_rate) {
 807		rate = core->ops->round_rate(core->hw, req->rate,
 808					     &req->best_parent_rate);
 809		if (rate < 0)
 810			return rate;
 
 
 811
 812		req->rate = rate;
 813	} else if (core->flags & CLK_SET_RATE_PARENT) {
 814		return clk_core_round_rate_nolock(parent, req);
 815	} else {
 816		req->rate = core->rate;
 817	}
 818
 
 
 
 
 
 
 
 
 819	return 0;
 820}
 821
 822/**
 823 * __clk_determine_rate - get the closest rate actually supported by a clock
 824 * @hw: determine the rate of this clock
 825 * @rate: target rate
 826 * @min_rate: returned rate must be greater than this rate
 827 * @max_rate: returned rate must be less than this rate
 828 *
 829 * Useful for clk_ops such as .set_rate and .determine_rate.
 830 */
 831int __clk_determine_rate(struct clk_hw *hw, struct clk_rate_request *req)
 832{
 833	if (!hw) {
 834		req->rate = 0;
 835		return 0;
 836	}
 837
 838	return clk_core_round_rate_nolock(hw->core, req);
 839}
 840EXPORT_SYMBOL_GPL(__clk_determine_rate);
 841
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 842unsigned long clk_hw_round_rate(struct clk_hw *hw, unsigned long rate)
 843{
 844	int ret;
 845	struct clk_rate_request req;
 846
 847	clk_core_get_boundaries(hw->core, &req.min_rate, &req.max_rate);
 848	req.rate = rate;
 849
 850	ret = clk_core_round_rate_nolock(hw->core, &req);
 851	if (ret)
 852		return 0;
 853
 854	return req.rate;
 855}
 856EXPORT_SYMBOL_GPL(clk_hw_round_rate);
 857
 858/**
 859 * clk_round_rate - round the given rate for a clk
 860 * @clk: the clk for which we are rounding a rate
 861 * @rate: the rate which is to be rounded
 862 *
 863 * Takes in a rate as input and rounds it to a rate that the clk can actually
 864 * use which is then returned.  If clk doesn't support round_rate operation
 865 * then the parent rate is returned.
 866 */
 867long clk_round_rate(struct clk *clk, unsigned long rate)
 868{
 869	struct clk_rate_request req;
 870	int ret;
 871
 872	if (!clk)
 873		return 0;
 874
 875	clk_prepare_lock();
 876
 
 
 
 877	clk_core_get_boundaries(clk->core, &req.min_rate, &req.max_rate);
 878	req.rate = rate;
 879
 880	ret = clk_core_round_rate_nolock(clk->core, &req);
 
 
 
 
 881	clk_prepare_unlock();
 882
 883	if (ret)
 884		return ret;
 885
 886	return req.rate;
 887}
 888EXPORT_SYMBOL_GPL(clk_round_rate);
 889
 890/**
 891 * __clk_notify - call clk notifier chain
 892 * @core: clk that is changing rate
 893 * @msg: clk notifier type (see include/linux/clk.h)
 894 * @old_rate: old clk rate
 895 * @new_rate: new clk rate
 896 *
 897 * Triggers a notifier call chain on the clk rate-change notification
 898 * for 'clk'.  Passes a pointer to the struct clk and the previous
 899 * and current rates to the notifier callback.  Intended to be called by
 900 * internal clock code only.  Returns NOTIFY_DONE from the last driver
 901 * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if
 902 * a driver returns that.
 903 */
 904static int __clk_notify(struct clk_core *core, unsigned long msg,
 905		unsigned long old_rate, unsigned long new_rate)
 906{
 907	struct clk_notifier *cn;
 908	struct clk_notifier_data cnd;
 909	int ret = NOTIFY_DONE;
 910
 911	cnd.old_rate = old_rate;
 912	cnd.new_rate = new_rate;
 913
 914	list_for_each_entry(cn, &clk_notifier_list, node) {
 915		if (cn->clk->core == core) {
 916			cnd.clk = cn->clk;
 917			ret = srcu_notifier_call_chain(&cn->notifier_head, msg,
 918					&cnd);
 
 
 919		}
 920	}
 921
 922	return ret;
 923}
 924
 925/**
 926 * __clk_recalc_accuracies
 927 * @core: first clk in the subtree
 928 *
 929 * Walks the subtree of clks starting with clk and recalculates accuracies as
 930 * it goes.  Note that if a clk does not implement the .recalc_accuracy
 931 * callback then it is assumed that the clock will take on the accuracy of its
 932 * parent.
 933 */
 934static void __clk_recalc_accuracies(struct clk_core *core)
 935{
 936	unsigned long parent_accuracy = 0;
 937	struct clk_core *child;
 938
 939	lockdep_assert_held(&prepare_lock);
 940
 941	if (core->parent)
 942		parent_accuracy = core->parent->accuracy;
 943
 944	if (core->ops->recalc_accuracy)
 945		core->accuracy = core->ops->recalc_accuracy(core->hw,
 946							  parent_accuracy);
 947	else
 948		core->accuracy = parent_accuracy;
 949
 950	hlist_for_each_entry(child, &core->children, child_node)
 951		__clk_recalc_accuracies(child);
 952}
 953
 954static long clk_core_get_accuracy(struct clk_core *core)
 955{
 956	unsigned long accuracy;
 957
 958	clk_prepare_lock();
 959	if (core && (core->flags & CLK_GET_ACCURACY_NOCACHE))
 960		__clk_recalc_accuracies(core);
 961
 962	accuracy = __clk_get_accuracy(core);
 963	clk_prepare_unlock();
 964
 965	return accuracy;
 966}
 967
 968/**
 969 * clk_get_accuracy - return the accuracy of clk
 970 * @clk: the clk whose accuracy is being returned
 971 *
 972 * Simply returns the cached accuracy of the clk, unless
 973 * CLK_GET_ACCURACY_NOCACHE flag is set, which means a recalc_rate will be
 974 * issued.
 975 * If clk is NULL then returns 0.
 976 */
 977long clk_get_accuracy(struct clk *clk)
 978{
 
 
 979	if (!clk)
 980		return 0;
 981
 982	return clk_core_get_accuracy(clk->core);
 
 
 
 
 983}
 984EXPORT_SYMBOL_GPL(clk_get_accuracy);
 985
 986static unsigned long clk_recalc(struct clk_core *core,
 987				unsigned long parent_rate)
 988{
 989	if (core->ops->recalc_rate)
 990		return core->ops->recalc_rate(core->hw, parent_rate);
 991	return parent_rate;
 
 
 
 
 992}
 993
 994/**
 995 * __clk_recalc_rates
 996 * @core: first clk in the subtree
 997 * @msg: notification type (see include/linux/clk.h)
 998 *
 999 * Walks the subtree of clks starting with clk and recalculates rates as it
1000 * goes.  Note that if a clk does not implement the .recalc_rate callback then
1001 * it is assumed that the clock will take on the rate of its parent.
1002 *
1003 * clk_recalc_rates also propagates the POST_RATE_CHANGE notification,
1004 * if necessary.
1005 */
1006static void __clk_recalc_rates(struct clk_core *core, unsigned long msg)
1007{
1008	unsigned long old_rate;
1009	unsigned long parent_rate = 0;
1010	struct clk_core *child;
1011
1012	lockdep_assert_held(&prepare_lock);
1013
1014	old_rate = core->rate;
1015
1016	if (core->parent)
1017		parent_rate = core->parent->rate;
1018
1019	core->rate = clk_recalc(core, parent_rate);
1020
1021	/*
1022	 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE
1023	 * & ABORT_RATE_CHANGE notifiers
1024	 */
1025	if (core->notifier_count && msg)
1026		__clk_notify(core, msg, old_rate, core->rate);
1027
1028	hlist_for_each_entry(child, &core->children, child_node)
1029		__clk_recalc_rates(child, msg);
1030}
1031
1032static unsigned long clk_core_get_rate(struct clk_core *core)
1033{
1034	unsigned long rate;
1035
1036	clk_prepare_lock();
1037
1038	if (core && (core->flags & CLK_GET_RATE_NOCACHE))
1039		__clk_recalc_rates(core, 0);
1040
1041	rate = clk_core_get_rate_nolock(core);
1042	clk_prepare_unlock();
1043
1044	return rate;
1045}
1046
1047/**
1048 * clk_get_rate - return the rate of clk
1049 * @clk: the clk whose rate is being returned
1050 *
1051 * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag
1052 * is set, which means a recalc_rate will be issued.
1053 * If clk is NULL then returns 0.
1054 */
1055unsigned long clk_get_rate(struct clk *clk)
1056{
 
 
1057	if (!clk)
1058		return 0;
1059
1060	return clk_core_get_rate(clk->core);
 
 
 
 
1061}
1062EXPORT_SYMBOL_GPL(clk_get_rate);
1063
1064static int clk_fetch_parent_index(struct clk_core *core,
1065				  struct clk_core *parent)
1066{
1067	int i;
1068
1069	if (!parent)
1070		return -EINVAL;
1071
1072	for (i = 0; i < core->num_parents; i++)
1073		if (clk_core_get_parent_by_index(core, i) == parent)
 
1074			return i;
1075
1076	return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1077}
 
1078
1079/*
1080 * Update the orphan status of @core and all its children.
1081 */
1082static void clk_core_update_orphan_status(struct clk_core *core, bool is_orphan)
1083{
1084	struct clk_core *child;
1085
1086	core->orphan = is_orphan;
1087
1088	hlist_for_each_entry(child, &core->children, child_node)
1089		clk_core_update_orphan_status(child, is_orphan);
1090}
1091
1092static void clk_reparent(struct clk_core *core, struct clk_core *new_parent)
1093{
1094	bool was_orphan = core->orphan;
1095
1096	hlist_del(&core->child_node);
1097
1098	if (new_parent) {
1099		bool becomes_orphan = new_parent->orphan;
1100
1101		/* avoid duplicate POST_RATE_CHANGE notifications */
1102		if (new_parent->new_child == core)
1103			new_parent->new_child = NULL;
1104
1105		hlist_add_head(&core->child_node, &new_parent->children);
1106
1107		if (was_orphan != becomes_orphan)
1108			clk_core_update_orphan_status(core, becomes_orphan);
1109	} else {
1110		hlist_add_head(&core->child_node, &clk_orphan_list);
1111		if (!was_orphan)
1112			clk_core_update_orphan_status(core, true);
1113	}
1114
1115	core->parent = new_parent;
1116}
1117
1118static struct clk_core *__clk_set_parent_before(struct clk_core *core,
1119					   struct clk_core *parent)
1120{
1121	unsigned long flags;
1122	struct clk_core *old_parent = core->parent;
1123
1124	/*
1125	 * Migrate prepare state between parents and prevent race with
 
 
1126	 * clk_enable().
1127	 *
1128	 * If the clock is not prepared, then a race with
1129	 * clk_enable/disable() is impossible since we already have the
1130	 * prepare lock (future calls to clk_enable() need to be preceded by
1131	 * a clk_prepare()).
1132	 *
1133	 * If the clock is prepared, migrate the prepared state to the new
1134	 * parent and also protect against a race with clk_enable() by
1135	 * forcing the clock and the new parent on.  This ensures that all
1136	 * future calls to clk_enable() are practically NOPs with respect to
1137	 * hardware and software states.
1138	 *
1139	 * See also: Comment for clk_set_parent() below.
1140	 */
 
 
 
 
 
 
 
 
1141	if (core->prepare_count) {
1142		clk_core_prepare(parent);
1143		flags = clk_enable_lock();
1144		clk_core_enable(parent);
1145		clk_core_enable(core);
1146		clk_enable_unlock(flags);
1147	}
1148
1149	/* update the clk tree topology */
1150	flags = clk_enable_lock();
1151	clk_reparent(core, parent);
1152	clk_enable_unlock(flags);
1153
1154	return old_parent;
1155}
1156
1157static void __clk_set_parent_after(struct clk_core *core,
1158				   struct clk_core *parent,
1159				   struct clk_core *old_parent)
1160{
1161	unsigned long flags;
1162
1163	/*
1164	 * Finish the migration of prepare state and undo the changes done
1165	 * for preventing a race with clk_enable().
1166	 */
1167	if (core->prepare_count) {
1168		flags = clk_enable_lock();
1169		clk_core_disable(core);
1170		clk_core_disable(old_parent);
1171		clk_enable_unlock(flags);
1172		clk_core_unprepare(old_parent);
 
 
 
1173	}
1174}
1175
1176static int __clk_set_parent(struct clk_core *core, struct clk_core *parent,
1177			    u8 p_index)
1178{
1179	unsigned long flags;
1180	int ret = 0;
1181	struct clk_core *old_parent;
1182
1183	old_parent = __clk_set_parent_before(core, parent);
1184
1185	trace_clk_set_parent(core, parent);
1186
1187	/* change clock input source */
1188	if (parent && core->ops->set_parent)
1189		ret = core->ops->set_parent(core->hw, p_index);
1190
1191	trace_clk_set_parent_complete(core, parent);
1192
1193	if (ret) {
1194		flags = clk_enable_lock();
1195		clk_reparent(core, old_parent);
1196		clk_enable_unlock(flags);
1197		__clk_set_parent_after(core, old_parent, parent);
1198
1199		return ret;
1200	}
1201
1202	__clk_set_parent_after(core, parent, old_parent);
1203
1204	return 0;
1205}
1206
1207/**
1208 * __clk_speculate_rates
1209 * @core: first clk in the subtree
1210 * @parent_rate: the "future" rate of clk's parent
1211 *
1212 * Walks the subtree of clks starting with clk, speculating rates as it
1213 * goes and firing off PRE_RATE_CHANGE notifications as necessary.
1214 *
1215 * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending
1216 * pre-rate change notifications and returns early if no clks in the
1217 * subtree have subscribed to the notifications.  Note that if a clk does not
1218 * implement the .recalc_rate callback then it is assumed that the clock will
1219 * take on the rate of its parent.
1220 */
1221static int __clk_speculate_rates(struct clk_core *core,
1222				 unsigned long parent_rate)
1223{
1224	struct clk_core *child;
1225	unsigned long new_rate;
1226	int ret = NOTIFY_DONE;
1227
1228	lockdep_assert_held(&prepare_lock);
1229
1230	new_rate = clk_recalc(core, parent_rate);
1231
1232	/* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */
1233	if (core->notifier_count)
1234		ret = __clk_notify(core, PRE_RATE_CHANGE, core->rate, new_rate);
1235
1236	if (ret & NOTIFY_STOP_MASK) {
1237		pr_debug("%s: clk notifier callback for clock %s aborted with error %d\n",
1238				__func__, core->name, ret);
1239		goto out;
1240	}
1241
1242	hlist_for_each_entry(child, &core->children, child_node) {
1243		ret = __clk_speculate_rates(child, new_rate);
1244		if (ret & NOTIFY_STOP_MASK)
1245			break;
1246	}
1247
1248out:
1249	return ret;
1250}
1251
1252static void clk_calc_subtree(struct clk_core *core, unsigned long new_rate,
1253			     struct clk_core *new_parent, u8 p_index)
1254{
1255	struct clk_core *child;
1256
1257	core->new_rate = new_rate;
1258	core->new_parent = new_parent;
1259	core->new_parent_index = p_index;
1260	/* include clk in new parent's PRE_RATE_CHANGE notifications */
1261	core->new_child = NULL;
1262	if (new_parent && new_parent != core->parent)
1263		new_parent->new_child = core;
1264
1265	hlist_for_each_entry(child, &core->children, child_node) {
1266		child->new_rate = clk_recalc(child, new_rate);
1267		clk_calc_subtree(child, child->new_rate, NULL, 0);
1268	}
1269}
1270
1271/*
1272 * calculate the new rates returning the topmost clock that has to be
1273 * changed.
1274 */
1275static struct clk_core *clk_calc_new_rates(struct clk_core *core,
1276					   unsigned long rate)
1277{
1278	struct clk_core *top = core;
1279	struct clk_core *old_parent, *parent;
1280	unsigned long best_parent_rate = 0;
1281	unsigned long new_rate;
1282	unsigned long min_rate;
1283	unsigned long max_rate;
1284	int p_index = 0;
1285	long ret;
1286
1287	/* sanity */
1288	if (IS_ERR_OR_NULL(core))
1289		return NULL;
1290
1291	/* save parent rate, if it exists */
1292	parent = old_parent = core->parent;
1293	if (parent)
1294		best_parent_rate = parent->rate;
1295
1296	clk_core_get_boundaries(core, &min_rate, &max_rate);
1297
1298	/* find the closest rate and parent clk/rate */
1299	if (core->ops->determine_rate) {
1300		struct clk_rate_request req;
1301
1302		req.rate = rate;
1303		req.min_rate = min_rate;
1304		req.max_rate = max_rate;
1305		if (parent) {
1306			req.best_parent_hw = parent->hw;
1307			req.best_parent_rate = parent->rate;
1308		} else {
1309			req.best_parent_hw = NULL;
1310			req.best_parent_rate = 0;
1311		}
1312
1313		ret = core->ops->determine_rate(core->hw, &req);
 
 
1314		if (ret < 0)
1315			return NULL;
1316
1317		best_parent_rate = req.best_parent_rate;
1318		new_rate = req.rate;
1319		parent = req.best_parent_hw ? req.best_parent_hw->core : NULL;
1320	} else if (core->ops->round_rate) {
1321		ret = core->ops->round_rate(core->hw, rate,
1322					    &best_parent_rate);
1323		if (ret < 0)
1324			return NULL;
1325
1326		new_rate = ret;
1327		if (new_rate < min_rate || new_rate > max_rate)
1328			return NULL;
1329	} else if (!parent || !(core->flags & CLK_SET_RATE_PARENT)) {
1330		/* pass-through clock without adjustable parent */
1331		core->new_rate = core->rate;
1332		return NULL;
1333	} else {
1334		/* pass-through clock with adjustable parent */
1335		top = clk_calc_new_rates(parent, rate);
1336		new_rate = parent->new_rate;
1337		goto out;
1338	}
1339
1340	/* some clocks must be gated to change parent */
1341	if (parent != old_parent &&
1342	    (core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) {
1343		pr_debug("%s: %s not gated but wants to reparent\n",
1344			 __func__, core->name);
1345		return NULL;
1346	}
1347
1348	/* try finding the new parent index */
1349	if (parent && core->num_parents > 1) {
1350		p_index = clk_fetch_parent_index(core, parent);
1351		if (p_index < 0) {
1352			pr_debug("%s: clk %s can not be parent of clk %s\n",
1353				 __func__, parent->name, core->name);
1354			return NULL;
1355		}
1356	}
1357
1358	if ((core->flags & CLK_SET_RATE_PARENT) && parent &&
1359	    best_parent_rate != parent->rate)
1360		top = clk_calc_new_rates(parent, best_parent_rate);
1361
1362out:
1363	clk_calc_subtree(core, new_rate, parent, p_index);
1364
1365	return top;
1366}
1367
1368/*
1369 * Notify about rate changes in a subtree. Always walk down the whole tree
1370 * so that in case of an error we can walk down the whole tree again and
1371 * abort the change.
1372 */
1373static struct clk_core *clk_propagate_rate_change(struct clk_core *core,
1374						  unsigned long event)
1375{
1376	struct clk_core *child, *tmp_clk, *fail_clk = NULL;
1377	int ret = NOTIFY_DONE;
1378
1379	if (core->rate == core->new_rate)
1380		return NULL;
1381
1382	if (core->notifier_count) {
1383		ret = __clk_notify(core, event, core->rate, core->new_rate);
1384		if (ret & NOTIFY_STOP_MASK)
1385			fail_clk = core;
1386	}
1387
1388	hlist_for_each_entry(child, &core->children, child_node) {
1389		/* Skip children who will be reparented to another clock */
1390		if (child->new_parent && child->new_parent != core)
1391			continue;
1392		tmp_clk = clk_propagate_rate_change(child, event);
1393		if (tmp_clk)
1394			fail_clk = tmp_clk;
1395	}
1396
1397	/* handle the new child who might not be in core->children yet */
1398	if (core->new_child) {
1399		tmp_clk = clk_propagate_rate_change(core->new_child, event);
1400		if (tmp_clk)
1401			fail_clk = tmp_clk;
1402	}
1403
1404	return fail_clk;
1405}
1406
1407/*
1408 * walk down a subtree and set the new rates notifying the rate
1409 * change on the way
1410 */
1411static void clk_change_rate(struct clk_core *core)
1412{
1413	struct clk_core *child;
1414	struct hlist_node *tmp;
1415	unsigned long old_rate;
1416	unsigned long best_parent_rate = 0;
1417	bool skip_set_rate = false;
1418	struct clk_core *old_parent;
 
1419
1420	old_rate = core->rate;
1421
1422	if (core->new_parent)
 
1423		best_parent_rate = core->new_parent->rate;
1424	else if (core->parent)
 
1425		best_parent_rate = core->parent->rate;
 
 
 
 
1426
1427	if (core->flags & CLK_SET_RATE_UNGATE) {
1428		unsigned long flags;
1429
1430		clk_core_prepare(core);
1431		flags = clk_enable_lock();
1432		clk_core_enable(core);
1433		clk_enable_unlock(flags);
1434	}
1435
1436	if (core->new_parent && core->new_parent != core->parent) {
1437		old_parent = __clk_set_parent_before(core, core->new_parent);
1438		trace_clk_set_parent(core, core->new_parent);
1439
1440		if (core->ops->set_rate_and_parent) {
1441			skip_set_rate = true;
1442			core->ops->set_rate_and_parent(core->hw, core->new_rate,
1443					best_parent_rate,
1444					core->new_parent_index);
1445		} else if (core->ops->set_parent) {
1446			core->ops->set_parent(core->hw, core->new_parent_index);
1447		}
1448
1449		trace_clk_set_parent_complete(core, core->new_parent);
1450		__clk_set_parent_after(core, core->new_parent, old_parent);
1451	}
1452
 
 
 
1453	trace_clk_set_rate(core, core->new_rate);
1454
1455	if (!skip_set_rate && core->ops->set_rate)
1456		core->ops->set_rate(core->hw, core->new_rate, best_parent_rate);
1457
1458	trace_clk_set_rate_complete(core, core->new_rate);
1459
1460	core->rate = clk_recalc(core, best_parent_rate);
1461
1462	if (core->flags & CLK_SET_RATE_UNGATE) {
1463		unsigned long flags;
1464
1465		flags = clk_enable_lock();
1466		clk_core_disable(core);
1467		clk_enable_unlock(flags);
1468		clk_core_unprepare(core);
1469	}
1470
 
 
 
1471	if (core->notifier_count && old_rate != core->rate)
1472		__clk_notify(core, POST_RATE_CHANGE, old_rate, core->rate);
1473
1474	if (core->flags & CLK_RECALC_NEW_RATES)
1475		(void)clk_calc_new_rates(core, core->new_rate);
1476
1477	/*
1478	 * Use safe iteration, as change_rate can actually swap parents
1479	 * for certain clock types.
1480	 */
1481	hlist_for_each_entry_safe(child, tmp, &core->children, child_node) {
1482		/* Skip children who will be reparented to another clock */
1483		if (child->new_parent && child->new_parent != core)
1484			continue;
1485		clk_change_rate(child);
1486	}
1487
1488	/* handle the new child who might not be in core->children yet */
1489	if (core->new_child)
1490		clk_change_rate(core->new_child);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1491}
1492
1493static int clk_core_set_rate_nolock(struct clk_core *core,
1494				    unsigned long req_rate)
1495{
1496	struct clk_core *top, *fail_clk;
1497	unsigned long rate = req_rate;
1498	int ret = 0;
1499
1500	if (!core)
1501		return 0;
1502
 
 
1503	/* bail early if nothing to do */
1504	if (rate == clk_core_get_rate_nolock(core))
1505		return 0;
1506
1507	if ((core->flags & CLK_SET_RATE_GATE) && core->prepare_count)
 
1508		return -EBUSY;
1509
1510	/* calculate new rates and get the topmost changed clock */
1511	top = clk_calc_new_rates(core, rate);
1512	if (!top)
1513		return -EINVAL;
1514
 
 
 
 
1515	/* notify that we are about to change rates */
1516	fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE);
1517	if (fail_clk) {
1518		pr_debug("%s: failed to set %s rate\n", __func__,
1519				fail_clk->name);
1520		clk_propagate_rate_change(top, ABORT_RATE_CHANGE);
1521		return -EBUSY;
 
1522	}
1523
1524	/* change the rates */
1525	clk_change_rate(top);
1526
1527	core->req_rate = req_rate;
 
 
1528
1529	return ret;
1530}
1531
1532/**
1533 * clk_set_rate - specify a new rate for clk
1534 * @clk: the clk whose rate is being changed
1535 * @rate: the new rate for clk
1536 *
1537 * In the simplest case clk_set_rate will only adjust the rate of clk.
1538 *
1539 * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to
1540 * propagate up to clk's parent; whether or not this happens depends on the
1541 * outcome of clk's .round_rate implementation.  If *parent_rate is unchanged
1542 * after calling .round_rate then upstream parent propagation is ignored.  If
1543 * *parent_rate comes back with a new rate for clk's parent then we propagate
1544 * up to clk's parent and set its rate.  Upward propagation will continue
1545 * until either a clk does not support the CLK_SET_RATE_PARENT flag or
1546 * .round_rate stops requesting changes to clk's parent_rate.
1547 *
1548 * Rate changes are accomplished via tree traversal that also recalculates the
1549 * rates for the clocks and fires off POST_RATE_CHANGE notifiers.
1550 *
1551 * Returns 0 on success, -EERROR otherwise.
1552 */
1553int clk_set_rate(struct clk *clk, unsigned long rate)
1554{
1555	int ret;
1556
1557	if (!clk)
1558		return 0;
1559
1560	/* prevent racing with updates to the clock topology */
1561	clk_prepare_lock();
1562
 
 
 
1563	ret = clk_core_set_rate_nolock(clk->core, rate);
1564
 
 
 
1565	clk_prepare_unlock();
1566
1567	return ret;
1568}
1569EXPORT_SYMBOL_GPL(clk_set_rate);
1570
1571/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1572 * clk_set_rate_range - set a rate range for a clock source
1573 * @clk: clock source
1574 * @min: desired minimum clock rate in Hz, inclusive
1575 * @max: desired maximum clock rate in Hz, inclusive
1576 *
1577 * Returns success (0) or negative errno.
1578 */
1579int clk_set_rate_range(struct clk *clk, unsigned long min, unsigned long max)
1580{
1581	int ret = 0;
 
1582
1583	if (!clk)
1584		return 0;
1585
1586	if (min > max) {
1587		pr_err("%s: clk %s dev %s con %s: invalid range [%lu, %lu]\n",
1588		       __func__, clk->core->name, clk->dev_id, clk->con_id,
1589		       min, max);
1590		return -EINVAL;
1591	}
1592
1593	clk_prepare_lock();
1594
1595	if (min != clk->min_rate || max != clk->max_rate) {
1596		clk->min_rate = min;
1597		clk->max_rate = max;
1598		ret = clk_core_set_rate_nolock(clk->core, clk->core->req_rate);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1599	}
1600
 
 
 
1601	clk_prepare_unlock();
1602
1603	return ret;
1604}
1605EXPORT_SYMBOL_GPL(clk_set_rate_range);
1606
1607/**
1608 * clk_set_min_rate - set a minimum clock rate for a clock source
1609 * @clk: clock source
1610 * @rate: desired minimum clock rate in Hz, inclusive
1611 *
1612 * Returns success (0) or negative errno.
1613 */
1614int clk_set_min_rate(struct clk *clk, unsigned long rate)
1615{
1616	if (!clk)
1617		return 0;
1618
1619	return clk_set_rate_range(clk, rate, clk->max_rate);
1620}
1621EXPORT_SYMBOL_GPL(clk_set_min_rate);
1622
1623/**
1624 * clk_set_max_rate - set a maximum clock rate for a clock source
1625 * @clk: clock source
1626 * @rate: desired maximum clock rate in Hz, inclusive
1627 *
1628 * Returns success (0) or negative errno.
1629 */
1630int clk_set_max_rate(struct clk *clk, unsigned long rate)
1631{
1632	if (!clk)
1633		return 0;
1634
1635	return clk_set_rate_range(clk, clk->min_rate, rate);
1636}
1637EXPORT_SYMBOL_GPL(clk_set_max_rate);
1638
1639/**
1640 * clk_get_parent - return the parent of a clk
1641 * @clk: the clk whose parent gets returned
1642 *
1643 * Simply returns clk->parent.  Returns NULL if clk is NULL.
1644 */
1645struct clk *clk_get_parent(struct clk *clk)
1646{
1647	struct clk *parent;
1648
1649	if (!clk)
1650		return NULL;
1651
1652	clk_prepare_lock();
1653	/* TODO: Create a per-user clk and change callers to call clk_put */
1654	parent = !clk->core->parent ? NULL : clk->core->parent->hw->clk;
1655	clk_prepare_unlock();
1656
1657	return parent;
1658}
1659EXPORT_SYMBOL_GPL(clk_get_parent);
1660
1661static struct clk_core *__clk_init_parent(struct clk_core *core)
1662{
1663	u8 index = 0;
1664
1665	if (core->num_parents > 1 && core->ops->get_parent)
1666		index = core->ops->get_parent(core->hw);
1667
1668	return clk_core_get_parent_by_index(core, index);
1669}
1670
1671static void clk_core_reparent(struct clk_core *core,
1672				  struct clk_core *new_parent)
1673{
1674	clk_reparent(core, new_parent);
1675	__clk_recalc_accuracies(core);
1676	__clk_recalc_rates(core, POST_RATE_CHANGE);
1677}
1678
1679void clk_hw_reparent(struct clk_hw *hw, struct clk_hw *new_parent)
1680{
1681	if (!hw)
1682		return;
1683
1684	clk_core_reparent(hw->core, !new_parent ? NULL : new_parent->core);
1685}
1686
1687/**
1688 * clk_has_parent - check if a clock is a possible parent for another
1689 * @clk: clock source
1690 * @parent: parent clock source
1691 *
1692 * This function can be used in drivers that need to check that a clock can be
1693 * the parent of another without actually changing the parent.
1694 *
1695 * Returns true if @parent is a possible parent for @clk, false otherwise.
1696 */
1697bool clk_has_parent(struct clk *clk, struct clk *parent)
1698{
1699	struct clk_core *core, *parent_core;
1700	unsigned int i;
1701
1702	/* NULL clocks should be nops, so return success if either is NULL. */
1703	if (!clk || !parent)
1704		return true;
1705
1706	core = clk->core;
1707	parent_core = parent->core;
1708
1709	/* Optimize for the case where the parent is already the parent. */
1710	if (core->parent == parent_core)
1711		return true;
1712
1713	for (i = 0; i < core->num_parents; i++)
1714		if (strcmp(core->parent_names[i], parent_core->name) == 0)
1715			return true;
1716
1717	return false;
1718}
1719EXPORT_SYMBOL_GPL(clk_has_parent);
1720
1721static int clk_core_set_parent(struct clk_core *core, struct clk_core *parent)
 
1722{
1723	int ret = 0;
1724	int p_index = 0;
1725	unsigned long p_rate = 0;
1726
 
 
1727	if (!core)
1728		return 0;
1729
1730	/* prevent racing with updates to the clock topology */
1731	clk_prepare_lock();
1732
1733	if (core->parent == parent)
1734		goto out;
1735
1736	/* verify ops for for multi-parent clks */
1737	if ((core->num_parents > 1) && (!core->ops->set_parent)) {
1738		ret = -ENOSYS;
1739		goto out;
1740	}
1741
1742	/* check that we are allowed to re-parent if the clock is in use */
1743	if ((core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) {
1744		ret = -EBUSY;
1745		goto out;
1746	}
 
1747
1748	/* try finding the new parent index */
1749	if (parent) {
1750		p_index = clk_fetch_parent_index(core, parent);
1751		if (p_index < 0) {
1752			pr_debug("%s: clk %s can not be parent of clk %s\n",
1753					__func__, parent->name, core->name);
1754			ret = p_index;
1755			goto out;
1756		}
1757		p_rate = parent->rate;
1758	}
1759
 
 
 
 
1760	/* propagate PRE_RATE_CHANGE notifications */
1761	ret = __clk_speculate_rates(core, p_rate);
1762
1763	/* abort if a driver objects */
1764	if (ret & NOTIFY_STOP_MASK)
1765		goto out;
1766
1767	/* do the re-parent */
1768	ret = __clk_set_parent(core, parent, p_index);
1769
1770	/* propagate rate an accuracy recalculation accordingly */
1771	if (ret) {
1772		__clk_recalc_rates(core, ABORT_RATE_CHANGE);
1773	} else {
1774		__clk_recalc_rates(core, POST_RATE_CHANGE);
1775		__clk_recalc_accuracies(core);
1776	}
1777
1778out:
1779	clk_prepare_unlock();
1780
1781	return ret;
1782}
1783
 
 
 
 
 
 
1784/**
1785 * clk_set_parent - switch the parent of a mux clk
1786 * @clk: the mux clk whose input we are switching
1787 * @parent: the new input to clk
1788 *
1789 * Re-parent clk to use parent as its new input source.  If clk is in
1790 * prepared state, the clk will get enabled for the duration of this call. If
1791 * that's not acceptable for a specific clk (Eg: the consumer can't handle
1792 * that, the reparenting is glitchy in hardware, etc), use the
1793 * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared.
1794 *
1795 * After successfully changing clk's parent clk_set_parent will update the
1796 * clk topology, sysfs topology and propagate rate recalculation via
1797 * __clk_recalc_rates.
1798 *
1799 * Returns 0 on success, -EERROR otherwise.
1800 */
1801int clk_set_parent(struct clk *clk, struct clk *parent)
1802{
 
 
1803	if (!clk)
1804		return 0;
1805
1806	return clk_core_set_parent(clk->core, parent ? parent->core : NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
1807}
1808EXPORT_SYMBOL_GPL(clk_set_parent);
1809
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1810/**
1811 * clk_set_phase - adjust the phase shift of a clock signal
1812 * @clk: clock signal source
1813 * @degrees: number of degrees the signal is shifted
1814 *
1815 * Shifts the phase of a clock signal by the specified
1816 * degrees. Returns 0 on success, -EERROR otherwise.
1817 *
1818 * This function makes no distinction about the input or reference
1819 * signal that we adjust the clock signal phase against. For example
1820 * phase locked-loop clock signal generators we may shift phase with
1821 * respect to feedback clock signal input, but for other cases the
1822 * clock phase may be shifted with respect to some other, unspecified
1823 * signal.
1824 *
1825 * Additionally the concept of phase shift does not propagate through
1826 * the clock tree hierarchy, which sets it apart from clock rates and
1827 * clock accuracy. A parent clock phase attribute does not have an
1828 * impact on the phase attribute of a child clock.
1829 */
1830int clk_set_phase(struct clk *clk, int degrees)
1831{
1832	int ret = -EINVAL;
1833
1834	if (!clk)
1835		return 0;
1836
1837	/* sanity check degrees */
1838	degrees %= 360;
1839	if (degrees < 0)
1840		degrees += 360;
1841
1842	clk_prepare_lock();
1843
1844	/* bail early if nothing to do */
1845	if (degrees == clk->core->phase)
1846		goto out;
1847
1848	trace_clk_set_phase(clk->core, degrees);
1849
1850	if (clk->core->ops->set_phase)
1851		ret = clk->core->ops->set_phase(clk->core->hw, degrees);
1852
1853	trace_clk_set_phase_complete(clk->core, degrees);
1854
1855	if (!ret)
1856		clk->core->phase = degrees;
1857
1858out:
1859	clk_prepare_unlock();
1860
1861	return ret;
1862}
1863EXPORT_SYMBOL_GPL(clk_set_phase);
1864
1865static int clk_core_get_phase(struct clk_core *core)
1866{
1867	int ret;
1868
1869	clk_prepare_lock();
1870	ret = core->phase;
1871	clk_prepare_unlock();
 
 
 
 
 
1872
1873	return ret;
1874}
1875
1876/**
1877 * clk_get_phase - return the phase shift of a clock signal
1878 * @clk: clock signal source
1879 *
1880 * Returns the phase shift of a clock node in degrees, otherwise returns
1881 * -EERROR.
1882 */
1883int clk_get_phase(struct clk *clk)
1884{
 
 
1885	if (!clk)
1886		return 0;
1887
1888	return clk_core_get_phase(clk->core);
 
 
 
 
1889}
1890EXPORT_SYMBOL_GPL(clk_get_phase);
1891
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1892/**
1893 * clk_is_match - check if two clk's point to the same hardware clock
1894 * @p: clk compared against q
1895 * @q: clk compared against p
1896 *
1897 * Returns true if the two struct clk pointers both point to the same hardware
1898 * clock node. Put differently, returns true if struct clk *p and struct clk *q
1899 * share the same struct clk_core object.
1900 *
1901 * Returns false otherwise. Note that two NULL clks are treated as matching.
1902 */
1903bool clk_is_match(const struct clk *p, const struct clk *q)
1904{
1905	/* trivial case: identical struct clk's or both NULL */
1906	if (p == q)
1907		return true;
1908
1909	/* true if clk->core pointers match. Avoid dereferencing garbage */
1910	if (!IS_ERR_OR_NULL(p) && !IS_ERR_OR_NULL(q))
1911		if (p->core == q->core)
1912			return true;
1913
1914	return false;
1915}
1916EXPORT_SYMBOL_GPL(clk_is_match);
1917
1918/***        debugfs support        ***/
1919
1920#ifdef CONFIG_DEBUG_FS
1921#include <linux/debugfs.h>
1922
1923static struct dentry *rootdir;
1924static int inited = 0;
1925static DEFINE_MUTEX(clk_debug_lock);
1926static HLIST_HEAD(clk_debug_list);
1927
1928static struct hlist_head *all_lists[] = {
1929	&clk_root_list,
1930	&clk_orphan_list,
1931	NULL,
1932};
1933
1934static struct hlist_head *orphan_list[] = {
1935	&clk_orphan_list,
1936	NULL,
1937};
1938
1939static void clk_summary_show_one(struct seq_file *s, struct clk_core *c,
1940				 int level)
1941{
1942	if (!c)
1943		return;
1944
1945	seq_printf(s, "%*s%-*s %11d %12d %11lu %10lu %-3d\n",
1946		   level * 3 + 1, "",
1947		   30 - level * 3, c->name,
1948		   c->enable_count, c->prepare_count, clk_core_get_rate(c),
1949		   clk_core_get_accuracy(c), clk_core_get_phase(c));
 
 
 
 
 
 
 
 
 
1950}
1951
1952static void clk_summary_show_subtree(struct seq_file *s, struct clk_core *c,
1953				     int level)
1954{
1955	struct clk_core *child;
1956
1957	if (!c)
1958		return;
1959
1960	clk_summary_show_one(s, c, level);
1961
1962	hlist_for_each_entry(child, &c->children, child_node)
1963		clk_summary_show_subtree(s, child, level + 1);
1964}
1965
1966static int clk_summary_show(struct seq_file *s, void *data)
1967{
1968	struct clk_core *c;
1969	struct hlist_head **lists = (struct hlist_head **)s->private;
1970
1971	seq_puts(s, "   clock                         enable_cnt  prepare_cnt        rate   accuracy   phase\n");
1972	seq_puts(s, "----------------------------------------------------------------------------------------\n");
 
1973
1974	clk_prepare_lock();
1975
1976	for (; *lists; lists++)
1977		hlist_for_each_entry(c, *lists, child_node)
1978			clk_summary_show_subtree(s, c, 0);
1979
1980	clk_prepare_unlock();
1981
1982	return 0;
1983}
 
1984
1985
1986static int clk_summary_open(struct inode *inode, struct file *file)
1987{
1988	return single_open(file, clk_summary_show, inode->i_private);
1989}
1990
1991static const struct file_operations clk_summary_fops = {
1992	.open		= clk_summary_open,
1993	.read		= seq_read,
1994	.llseek		= seq_lseek,
1995	.release	= single_release,
1996};
1997
1998static void clk_dump_one(struct seq_file *s, struct clk_core *c, int level)
1999{
2000	if (!c)
2001		return;
2002
2003	/* This should be JSON format, i.e. elements separated with a comma */
2004	seq_printf(s, "\"%s\": { ", c->name);
2005	seq_printf(s, "\"enable_count\": %d,", c->enable_count);
2006	seq_printf(s, "\"prepare_count\": %d,", c->prepare_count);
2007	seq_printf(s, "\"rate\": %lu,", clk_core_get_rate(c));
2008	seq_printf(s, "\"accuracy\": %lu,", clk_core_get_accuracy(c));
2009	seq_printf(s, "\"phase\": %d", clk_core_get_phase(c));
 
 
 
 
 
 
 
2010}
2011
2012static void clk_dump_subtree(struct seq_file *s, struct clk_core *c, int level)
2013{
2014	struct clk_core *child;
2015
2016	if (!c)
2017		return;
2018
2019	clk_dump_one(s, c, level);
2020
2021	hlist_for_each_entry(child, &c->children, child_node) {
2022		seq_printf(s, ",");
2023		clk_dump_subtree(s, child, level + 1);
2024	}
2025
2026	seq_printf(s, "}");
2027}
2028
2029static int clk_dump(struct seq_file *s, void *data)
2030{
2031	struct clk_core *c;
2032	bool first_node = true;
2033	struct hlist_head **lists = (struct hlist_head **)s->private;
2034
2035	seq_printf(s, "{");
2036
2037	clk_prepare_lock();
2038
2039	for (; *lists; lists++) {
2040		hlist_for_each_entry(c, *lists, child_node) {
2041			if (!first_node)
2042				seq_puts(s, ",");
2043			first_node = false;
2044			clk_dump_subtree(s, c, 0);
2045		}
2046	}
2047
2048	clk_prepare_unlock();
2049
2050	seq_puts(s, "}\n");
2051	return 0;
2052}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2053
 
 
 
 
2054
2055static int clk_dump_open(struct inode *inode, struct file *file)
2056{
2057	return single_open(file, clk_dump, inode->i_private);
 
 
 
2058}
2059
2060static const struct file_operations clk_dump_fops = {
2061	.open		= clk_dump_open,
2062	.read		= seq_read,
2063	.llseek		= seq_lseek,
2064	.release	= single_release,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2065};
2066
2067static int clk_debug_create_one(struct clk_core *core, struct dentry *pdentry)
2068{
2069	struct dentry *d;
2070	int ret = -ENOMEM;
 
2071
2072	if (!core || !pdentry) {
2073		ret = -EINVAL;
2074		goto out;
 
 
 
 
 
 
2075	}
2076
2077	d = debugfs_create_dir(core->name, pdentry);
2078	if (!d)
2079		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2080
2081	core->dentry = d;
 
 
2082
2083	d = debugfs_create_u32("clk_rate", S_IRUGO, core->dentry,
2084			(u32 *)&core->rate);
2085	if (!d)
2086		goto err_out;
2087
2088	d = debugfs_create_u32("clk_accuracy", S_IRUGO, core->dentry,
2089			(u32 *)&core->accuracy);
2090	if (!d)
2091		goto err_out;
2092
2093	d = debugfs_create_u32("clk_phase", S_IRUGO, core->dentry,
2094			(u32 *)&core->phase);
2095	if (!d)
2096		goto err_out;
2097
2098	d = debugfs_create_x32("clk_flags", S_IRUGO, core->dentry,
2099			(u32 *)&core->flags);
2100	if (!d)
2101		goto err_out;
2102
2103	d = debugfs_create_u32("clk_prepare_count", S_IRUGO, core->dentry,
2104			(u32 *)&core->prepare_count);
2105	if (!d)
2106		goto err_out;
2107
2108	d = debugfs_create_u32("clk_enable_count", S_IRUGO, core->dentry,
2109			(u32 *)&core->enable_count);
2110	if (!d)
2111		goto err_out;
2112
2113	d = debugfs_create_u32("clk_notifier_count", S_IRUGO, core->dentry,
2114			(u32 *)&core->notifier_count);
2115	if (!d)
2116		goto err_out;
2117
2118	if (core->ops->debug_init) {
2119		ret = core->ops->debug_init(core->hw, core->dentry);
2120		if (ret)
2121			goto err_out;
2122	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2123
2124	ret = 0;
2125	goto out;
 
 
 
 
 
2126
2127err_out:
2128	debugfs_remove_recursive(core->dentry);
2129	core->dentry = NULL;
2130out:
2131	return ret;
2132}
2133
2134/**
2135 * clk_debug_register - add a clk node to the debugfs clk directory
2136 * @core: the clk being added to the debugfs clk directory
2137 *
2138 * Dynamically adds a clk to the debugfs clk directory if debugfs has been
2139 * initialized.  Otherwise it bails out early since the debugfs clk directory
2140 * will be created lazily by clk_debug_init as part of a late_initcall.
2141 */
2142static int clk_debug_register(struct clk_core *core)
2143{
2144	int ret = 0;
2145
2146	mutex_lock(&clk_debug_lock);
2147	hlist_add_head(&core->debug_node, &clk_debug_list);
2148
2149	if (!inited)
2150		goto unlock;
2151
2152	ret = clk_debug_create_one(core, rootdir);
2153unlock:
2154	mutex_unlock(&clk_debug_lock);
2155
2156	return ret;
2157}
2158
2159 /**
2160 * clk_debug_unregister - remove a clk node from the debugfs clk directory
2161 * @core: the clk being removed from the debugfs clk directory
2162 *
2163 * Dynamically removes a clk and all its child nodes from the
2164 * debugfs clk directory if clk->dentry points to debugfs created by
2165 * clk_debug_register in __clk_core_init.
2166 */
2167static void clk_debug_unregister(struct clk_core *core)
2168{
2169	mutex_lock(&clk_debug_lock);
2170	hlist_del_init(&core->debug_node);
2171	debugfs_remove_recursive(core->dentry);
2172	core->dentry = NULL;
2173	mutex_unlock(&clk_debug_lock);
2174}
2175
2176struct dentry *clk_debugfs_add_file(struct clk_hw *hw, char *name, umode_t mode,
2177				void *data, const struct file_operations *fops)
2178{
2179	struct dentry *d = NULL;
2180
2181	if (hw->core->dentry)
2182		d = debugfs_create_file(name, mode, hw->core->dentry, data,
2183					fops);
2184
2185	return d;
2186}
2187EXPORT_SYMBOL_GPL(clk_debugfs_add_file);
2188
2189/**
2190 * clk_debug_init - lazily populate the debugfs clk directory
2191 *
2192 * clks are often initialized very early during boot before memory can be
2193 * dynamically allocated and well before debugfs is setup. This function
2194 * populates the debugfs clk directory once at boot-time when we know that
2195 * debugfs is setup. It should only be called once at boot-time, all other clks
2196 * added dynamically will be done so with clk_debug_register.
2197 */
2198static int __init clk_debug_init(void)
2199{
2200	struct clk_core *core;
2201	struct dentry *d;
2202
2203	rootdir = debugfs_create_dir("clk", NULL);
2204
2205	if (!rootdir)
2206		return -ENOMEM;
2207
2208	d = debugfs_create_file("clk_summary", S_IRUGO, rootdir, &all_lists,
2209				&clk_summary_fops);
2210	if (!d)
2211		return -ENOMEM;
2212
2213	d = debugfs_create_file("clk_dump", S_IRUGO, rootdir, &all_lists,
2214				&clk_dump_fops);
2215	if (!d)
2216		return -ENOMEM;
2217
2218	d = debugfs_create_file("clk_orphan_summary", S_IRUGO, rootdir,
2219				&orphan_list, &clk_summary_fops);
2220	if (!d)
2221		return -ENOMEM;
2222
2223	d = debugfs_create_file("clk_orphan_dump", S_IRUGO, rootdir,
2224				&orphan_list, &clk_dump_fops);
2225	if (!d)
2226		return -ENOMEM;
2227
2228	mutex_lock(&clk_debug_lock);
2229	hlist_for_each_entry(core, &clk_debug_list, debug_node)
2230		clk_debug_create_one(core, rootdir);
2231
2232	inited = 1;
2233	mutex_unlock(&clk_debug_lock);
2234
2235	return 0;
2236}
2237late_initcall(clk_debug_init);
2238#else
2239static inline int clk_debug_register(struct clk_core *core) { return 0; }
2240static inline void clk_debug_reparent(struct clk_core *core,
2241				      struct clk_core *new_parent)
2242{
2243}
2244static inline void clk_debug_unregister(struct clk_core *core)
 
 
2245{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2246}
2247#endif
2248
2249/**
2250 * __clk_core_init - initialize the data structures in a struct clk_core
2251 * @core:	clk_core being initialized
2252 *
2253 * Initializes the lists in struct clk_core, queries the hardware for the
2254 * parent and rate and sets them both.
2255 */
2256static int __clk_core_init(struct clk_core *core)
2257{
2258	int i, ret = 0;
2259	struct clk_core *orphan;
2260	struct hlist_node *tmp2;
2261	unsigned long rate;
 
2262
2263	if (!core)
2264		return -EINVAL;
2265
2266	clk_prepare_lock();
2267
 
 
 
 
2268	/* check to see if a clock with this name is already registered */
2269	if (clk_core_lookup(core->name)) {
2270		pr_debug("%s: clk %s already initialized\n",
2271				__func__, core->name);
2272		ret = -EEXIST;
2273		goto out;
2274	}
2275
2276	/* check that clk_ops are sane.  See Documentation/clk.txt */
2277	if (core->ops->set_rate &&
2278	    !((core->ops->round_rate || core->ops->determine_rate) &&
2279	      core->ops->recalc_rate)) {
2280		pr_err("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n",
2281		       __func__, core->name);
2282		ret = -EINVAL;
2283		goto out;
2284	}
2285
2286	if (core->ops->set_parent && !core->ops->get_parent) {
2287		pr_err("%s: %s must implement .get_parent & .set_parent\n",
2288		       __func__, core->name);
2289		ret = -EINVAL;
2290		goto out;
2291	}
2292
2293	if (core->num_parents > 1 && !core->ops->get_parent) {
2294		pr_err("%s: %s must implement .get_parent as it has multi parents\n",
2295		       __func__, core->name);
2296		ret = -EINVAL;
2297		goto out;
2298	}
2299
2300	if (core->ops->set_rate_and_parent &&
2301			!(core->ops->set_parent && core->ops->set_rate)) {
2302		pr_err("%s: %s must implement .set_parent & .set_rate\n",
2303				__func__, core->name);
2304		ret = -EINVAL;
2305		goto out;
2306	}
2307
2308	/* throw a WARN if any entries in parent_names are NULL */
2309	for (i = 0; i < core->num_parents; i++)
2310		WARN(!core->parent_names[i],
2311				"%s: invalid NULL in %s's .parent_names\n",
2312				__func__, core->name);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2313
2314	core->parent = __clk_init_parent(core);
2315
2316	/*
2317	 * Populate core->parent if parent has already been clk_core_init'd. If
2318	 * parent has not yet been clk_core_init'd then place clk in the orphan
2319	 * list.  If clk doesn't have any parents then place it in the root
2320	 * clk list.
2321	 *
2322	 * Every time a new clk is clk_init'd then we walk the list of orphan
2323	 * clocks and re-parent any that are children of the clock currently
2324	 * being clk_init'd.
2325	 */
2326	if (core->parent) {
2327		hlist_add_head(&core->child_node,
2328				&core->parent->children);
2329		core->orphan = core->parent->orphan;
2330	} else if (!core->num_parents) {
2331		hlist_add_head(&core->child_node, &clk_root_list);
2332		core->orphan = false;
2333	} else {
2334		hlist_add_head(&core->child_node, &clk_orphan_list);
2335		core->orphan = true;
2336	}
2337
2338	/*
2339	 * Set clk's accuracy.  The preferred method is to use
2340	 * .recalc_accuracy. For simple clocks and lazy developers the default
2341	 * fallback is to use the parent's accuracy.  If a clock doesn't have a
2342	 * parent (or is orphaned) then accuracy is set to zero (perfect
2343	 * clock).
2344	 */
2345	if (core->ops->recalc_accuracy)
2346		core->accuracy = core->ops->recalc_accuracy(core->hw,
2347					__clk_get_accuracy(core->parent));
2348	else if (core->parent)
2349		core->accuracy = core->parent->accuracy;
2350	else
2351		core->accuracy = 0;
2352
2353	/*
2354	 * Set clk's phase.
2355	 * Since a phase is by definition relative to its parent, just
2356	 * query the current clock phase, or just assume it's in phase.
2357	 */
2358	if (core->ops->get_phase)
2359		core->phase = core->ops->get_phase(core->hw);
2360	else
2361		core->phase = 0;
 
 
 
 
 
 
 
 
2362
2363	/*
2364	 * Set clk's rate.  The preferred method is to use .recalc_rate.  For
2365	 * simple clocks and lazy developers the default fallback is to use the
2366	 * parent's rate.  If a clock doesn't have a parent (or is orphaned)
2367	 * then rate is set to zero.
2368	 */
2369	if (core->ops->recalc_rate)
2370		rate = core->ops->recalc_rate(core->hw,
2371				clk_core_get_rate_nolock(core->parent));
2372	else if (core->parent)
2373		rate = core->parent->rate;
2374	else
2375		rate = 0;
2376	core->rate = core->req_rate = rate;
2377
2378	/*
2379	 * walk the list of orphan clocks and reparent any that newly finds a
2380	 * parent.
 
2381	 */
2382	hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) {
2383		struct clk_core *parent = __clk_init_parent(orphan);
 
 
 
 
 
 
 
2384
2385		if (parent)
2386			clk_core_reparent(orphan, parent);
 
 
 
 
 
 
 
2387	}
2388
2389	/*
2390	 * optional platform-specific magic
2391	 *
2392	 * The .init callback is not used by any of the basic clock types, but
2393	 * exists for weird hardware that must perform initialization magic.
2394	 * Please consider other ways of solving initialization problems before
2395	 * using this callback, as its use is discouraged.
2396	 */
2397	if (core->ops->init)
2398		core->ops->init(core->hw);
2399
2400	kref_init(&core->ref);
2401out:
 
 
 
 
 
2402	clk_prepare_unlock();
2403
2404	if (!ret)
2405		clk_debug_register(core);
2406
2407	return ret;
2408}
2409
2410struct clk *__clk_create_clk(struct clk_hw *hw, const char *dev_id,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2411			     const char *con_id)
2412{
2413	struct clk *clk;
2414
2415	/* This is to allow this function to be chained to others */
2416	if (IS_ERR_OR_NULL(hw))
2417		return (struct clk *) hw;
2418
2419	clk = kzalloc(sizeof(*clk), GFP_KERNEL);
2420	if (!clk)
2421		return ERR_PTR(-ENOMEM);
2422
2423	clk->core = hw->core;
2424	clk->dev_id = dev_id;
2425	clk->con_id = con_id;
2426	clk->max_rate = ULONG_MAX;
2427
2428	clk_prepare_lock();
2429	hlist_add_head(&clk->clks_node, &hw->core->clks);
2430	clk_prepare_unlock();
2431
2432	return clk;
2433}
2434
2435void __clk_free_clk(struct clk *clk)
 
 
 
 
 
 
 
2436{
2437	clk_prepare_lock();
2438	hlist_del(&clk->clks_node);
2439	clk_prepare_unlock();
2440
2441	kfree(clk);
2442}
2443
2444/**
2445 * clk_register - allocate a new clock, register it and return an opaque cookie
2446 * @dev: device that is registering this clock
2447 * @hw: link to hardware-specific clock data
2448 *
2449 * clk_register is the primary interface for populating the clock tree with new
2450 * clock nodes.  It returns a pointer to the newly allocated struct clk which
2451 * cannot be dereferenced by driver code but may be used in conjunction with the
2452 * rest of the clock API.  In the event of an error clk_register will return an
2453 * error code; drivers must test for an error code after calling clk_register.
 
2454 */
2455struct clk *clk_register(struct device *dev, struct clk_hw *hw)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2456{
2457	int i, ret;
2458	struct clk_core *core;
 
 
 
 
 
 
 
 
2459
2460	core = kzalloc(sizeof(*core), GFP_KERNEL);
2461	if (!core) {
2462		ret = -ENOMEM;
2463		goto fail_out;
2464	}
2465
2466	core->name = kstrdup_const(hw->init->name, GFP_KERNEL);
2467	if (!core->name) {
2468		ret = -ENOMEM;
2469		goto fail_name;
2470	}
2471	core->ops = hw->init->ops;
 
 
 
 
 
 
 
 
 
 
2472	if (dev && dev->driver)
2473		core->owner = dev->driver->owner;
2474	core->hw = hw;
2475	core->flags = hw->init->flags;
2476	core->num_parents = hw->init->num_parents;
2477	core->min_rate = 0;
2478	core->max_rate = ULONG_MAX;
2479	hw->core = core;
2480
2481	/* allocate local copy in case parent_names is __initdata */
2482	core->parent_names = kcalloc(core->num_parents, sizeof(char *),
2483					GFP_KERNEL);
2484
2485	if (!core->parent_names) {
2486		ret = -ENOMEM;
2487		goto fail_parent_names;
2488	}
2489
2490
2491	/* copy each string name in case parent_names is __initdata */
2492	for (i = 0; i < core->num_parents; i++) {
2493		core->parent_names[i] = kstrdup_const(hw->init->parent_names[i],
2494						GFP_KERNEL);
2495		if (!core->parent_names[i]) {
2496			ret = -ENOMEM;
2497			goto fail_parent_names_copy;
2498		}
2499	}
2500
2501	/* avoid unnecessary string look-ups of clk_core's possible parents. */
2502	core->parents = kcalloc(core->num_parents, sizeof(*core->parents),
2503				GFP_KERNEL);
2504	if (!core->parents) {
2505		ret = -ENOMEM;
2506		goto fail_parents;
2507	};
2508
2509	INIT_HLIST_HEAD(&core->clks);
2510
2511	hw->clk = __clk_create_clk(hw, NULL, NULL);
 
 
 
 
2512	if (IS_ERR(hw->clk)) {
2513		ret = PTR_ERR(hw->clk);
2514		goto fail_parents;
2515	}
2516
 
 
2517	ret = __clk_core_init(core);
2518	if (!ret)
2519		return hw->clk;
2520
2521	__clk_free_clk(hw->clk);
 
 
 
 
2522	hw->clk = NULL;
2523
 
 
2524fail_parents:
2525	kfree(core->parents);
2526fail_parent_names_copy:
2527	while (--i >= 0)
2528		kfree_const(core->parent_names[i]);
2529	kfree(core->parent_names);
2530fail_parent_names:
2531	kfree_const(core->name);
2532fail_name:
2533	kfree(core);
2534fail_out:
2535	return ERR_PTR(ret);
2536}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2537EXPORT_SYMBOL_GPL(clk_register);
2538
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2539/* Free memory allocated for a clock. */
2540static void __clk_release(struct kref *ref)
2541{
2542	struct clk_core *core = container_of(ref, struct clk_core, ref);
2543	int i = core->num_parents;
2544
2545	lockdep_assert_held(&prepare_lock);
2546
2547	kfree(core->parents);
2548	while (--i >= 0)
2549		kfree_const(core->parent_names[i]);
2550
2551	kfree(core->parent_names);
2552	kfree_const(core->name);
2553	kfree(core);
2554}
2555
2556/*
2557 * Empty clk_ops for unregistered clocks. These are used temporarily
2558 * after clk_unregister() was called on a clock and until last clock
2559 * consumer calls clk_put() and the struct clk object is freed.
2560 */
2561static int clk_nodrv_prepare_enable(struct clk_hw *hw)
2562{
2563	return -ENXIO;
2564}
2565
2566static void clk_nodrv_disable_unprepare(struct clk_hw *hw)
2567{
2568	WARN_ON_ONCE(1);
2569}
2570
2571static int clk_nodrv_set_rate(struct clk_hw *hw, unsigned long rate,
2572					unsigned long parent_rate)
2573{
2574	return -ENXIO;
2575}
2576
2577static int clk_nodrv_set_parent(struct clk_hw *hw, u8 index)
2578{
2579	return -ENXIO;
2580}
2581
2582static const struct clk_ops clk_nodrv_ops = {
2583	.enable		= clk_nodrv_prepare_enable,
2584	.disable	= clk_nodrv_disable_unprepare,
2585	.prepare	= clk_nodrv_prepare_enable,
2586	.unprepare	= clk_nodrv_disable_unprepare,
2587	.set_rate	= clk_nodrv_set_rate,
2588	.set_parent	= clk_nodrv_set_parent,
2589};
2590
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2591/**
2592 * clk_unregister - unregister a currently registered clock
2593 * @clk: clock to unregister
2594 */
2595void clk_unregister(struct clk *clk)
2596{
2597	unsigned long flags;
 
2598
2599	if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
2600		return;
2601
2602	clk_debug_unregister(clk->core);
2603
2604	clk_prepare_lock();
2605
2606	if (clk->core->ops == &clk_nodrv_ops) {
 
2607		pr_err("%s: unregistered clock: %s\n", __func__,
2608		       clk->core->name);
2609		goto unlock;
2610	}
2611	/*
2612	 * Assign empty clock ops for consumers that might still hold
2613	 * a reference to this clock.
2614	 */
2615	flags = clk_enable_lock();
2616	clk->core->ops = &clk_nodrv_ops;
2617	clk_enable_unlock(flags);
2618
 
 
 
2619	if (!hlist_empty(&clk->core->children)) {
2620		struct clk_core *child;
2621		struct hlist_node *t;
2622
2623		/* Reparent all children to the orphan list. */
2624		hlist_for_each_entry_safe(child, t, &clk->core->children,
2625					  child_node)
2626			clk_core_set_parent(child, NULL);
2627	}
2628
 
 
2629	hlist_del_init(&clk->core->child_node);
2630
2631	if (clk->core->prepare_count)
2632		pr_warn("%s: unregistering prepared clock: %s\n",
2633					__func__, clk->core->name);
 
 
 
 
 
2634	kref_put(&clk->core->ref, __clk_release);
 
2635unlock:
2636	clk_prepare_unlock();
2637}
2638EXPORT_SYMBOL_GPL(clk_unregister);
2639
 
 
 
 
 
 
 
 
 
 
2640static void devm_clk_release(struct device *dev, void *res)
2641{
2642	clk_unregister(*(struct clk **)res);
2643}
2644
 
 
 
 
 
2645/**
2646 * devm_clk_register - resource managed clk_register()
2647 * @dev: device that is registering this clock
2648 * @hw: link to hardware-specific clock data
2649 *
2650 * Managed clk_register(). Clocks returned from this function are
2651 * automatically clk_unregister()ed on driver detach. See clk_register() for
2652 * more information.
 
2653 */
2654struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw)
2655{
2656	struct clk *clk;
2657	struct clk **clkp;
2658
2659	clkp = devres_alloc(devm_clk_release, sizeof(*clkp), GFP_KERNEL);
2660	if (!clkp)
2661		return ERR_PTR(-ENOMEM);
2662
2663	clk = clk_register(dev, hw);
2664	if (!IS_ERR(clk)) {
2665		*clkp = clk;
2666		devres_add(dev, clkp);
2667	} else {
2668		devres_free(clkp);
2669	}
2670
2671	return clk;
2672}
2673EXPORT_SYMBOL_GPL(devm_clk_register);
2674
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2675static int devm_clk_match(struct device *dev, void *res, void *data)
2676{
2677	struct clk *c = res;
2678	if (WARN_ON(!c))
2679		return 0;
2680	return c == data;
2681}
2682
 
 
 
 
 
 
 
 
 
2683/**
2684 * devm_clk_unregister - resource managed clk_unregister()
 
2685 * @clk: clock to unregister
2686 *
2687 * Deallocate a clock allocated with devm_clk_register(). Normally
2688 * this function will not need to be called and the resource management
2689 * code will ensure that the resource is freed.
2690 */
2691void devm_clk_unregister(struct device *dev, struct clk *clk)
2692{
2693	WARN_ON(devres_release(dev, devm_clk_release, devm_clk_match, clk));
2694}
2695EXPORT_SYMBOL_GPL(devm_clk_unregister);
2696
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2697/*
2698 * clkdev helpers
2699 */
2700int __clk_get(struct clk *clk)
2701{
2702	struct clk_core *core = !clk ? NULL : clk->core;
2703
2704	if (core) {
2705		if (!try_module_get(core->owner))
2706			return 0;
2707
2708		kref_get(&core->ref);
2709	}
2710	return 1;
2711}
2712
2713void __clk_put(struct clk *clk)
2714{
2715	struct module *owner;
2716
2717	if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
2718		return;
2719
2720	clk_prepare_lock();
2721
 
 
 
 
 
 
 
 
 
 
 
 
2722	hlist_del(&clk->clks_node);
2723	if (clk->min_rate > clk->core->req_rate ||
2724	    clk->max_rate < clk->core->req_rate)
2725		clk_core_set_rate_nolock(clk->core, clk->core->req_rate);
2726
2727	owner = clk->core->owner;
2728	kref_put(&clk->core->ref, __clk_release);
2729
2730	clk_prepare_unlock();
2731
2732	module_put(owner);
2733
2734	kfree(clk);
2735}
2736
2737/***        clk rate change notifiers        ***/
2738
2739/**
2740 * clk_notifier_register - add a clk rate change notifier
2741 * @clk: struct clk * to watch
2742 * @nb: struct notifier_block * with callback info
2743 *
2744 * Request notification when clk's rate changes.  This uses an SRCU
2745 * notifier because we want it to block and notifier unregistrations are
2746 * uncommon.  The callbacks associated with the notifier must not
2747 * re-enter into the clk framework by calling any top-level clk APIs;
2748 * this will cause a nested prepare_lock mutex.
2749 *
2750 * In all notification cases (pre, post and abort rate change) the original
2751 * clock rate is passed to the callback via struct clk_notifier_data.old_rate
2752 * and the new frequency is passed via struct clk_notifier_data.new_rate.
2753 *
2754 * clk_notifier_register() must be called from non-atomic context.
2755 * Returns -EINVAL if called with null arguments, -ENOMEM upon
2756 * allocation failure; otherwise, passes along the return value of
2757 * srcu_notifier_chain_register().
2758 */
2759int clk_notifier_register(struct clk *clk, struct notifier_block *nb)
2760{
2761	struct clk_notifier *cn;
2762	int ret = -ENOMEM;
2763
2764	if (!clk || !nb)
2765		return -EINVAL;
2766
2767	clk_prepare_lock();
2768
2769	/* search the list of notifiers for this clk */
2770	list_for_each_entry(cn, &clk_notifier_list, node)
2771		if (cn->clk == clk)
2772			break;
2773
2774	/* if clk wasn't in the notifier list, allocate new clk_notifier */
2775	if (cn->clk != clk) {
2776		cn = kzalloc(sizeof(struct clk_notifier), GFP_KERNEL);
2777		if (!cn)
2778			goto out;
2779
2780		cn->clk = clk;
2781		srcu_init_notifier_head(&cn->notifier_head);
2782
2783		list_add(&cn->node, &clk_notifier_list);
2784	}
2785
2786	ret = srcu_notifier_chain_register(&cn->notifier_head, nb);
2787
2788	clk->core->notifier_count++;
2789
2790out:
2791	clk_prepare_unlock();
2792
2793	return ret;
2794}
2795EXPORT_SYMBOL_GPL(clk_notifier_register);
2796
2797/**
2798 * clk_notifier_unregister - remove a clk rate change notifier
2799 * @clk: struct clk *
2800 * @nb: struct notifier_block * with callback info
2801 *
2802 * Request no further notification for changes to 'clk' and frees memory
2803 * allocated in clk_notifier_register.
2804 *
2805 * Returns -EINVAL if called with null arguments; otherwise, passes
2806 * along the return value of srcu_notifier_chain_unregister().
2807 */
2808int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb)
2809{
2810	struct clk_notifier *cn = NULL;
2811	int ret = -EINVAL;
2812
2813	if (!clk || !nb)
2814		return -EINVAL;
2815
2816	clk_prepare_lock();
2817
2818	list_for_each_entry(cn, &clk_notifier_list, node)
2819		if (cn->clk == clk)
2820			break;
2821
2822	if (cn->clk == clk) {
2823		ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb);
2824
2825		clk->core->notifier_count--;
2826
2827		/* XXX the notifier code should handle this better */
2828		if (!cn->notifier_head.head) {
2829			srcu_cleanup_notifier_head(&cn->notifier_head);
2830			list_del(&cn->node);
2831			kfree(cn);
2832		}
2833
2834	} else {
2835		ret = -ENOENT;
2836	}
2837
2838	clk_prepare_unlock();
2839
2840	return ret;
2841}
2842EXPORT_SYMBOL_GPL(clk_notifier_unregister);
2843
2844#ifdef CONFIG_OF
 
 
 
 
 
 
 
2845/**
2846 * struct of_clk_provider - Clock provider registration structure
2847 * @link: Entry in global list of clock providers
2848 * @node: Pointer to device tree node of clock provider
2849 * @get: Get clock callback.  Returns NULL or a struct clk for the
2850 *       given clock specifier
 
 
2851 * @data: context pointer to be passed into @get callback
2852 */
2853struct of_clk_provider {
2854	struct list_head link;
2855
2856	struct device_node *node;
2857	struct clk *(*get)(struct of_phandle_args *clkspec, void *data);
 
2858	void *data;
2859};
2860
 
2861static const struct of_device_id __clk_of_table_sentinel
2862	__used __section(__clk_of_table_end);
2863
2864static LIST_HEAD(of_clk_providers);
2865static DEFINE_MUTEX(of_clk_mutex);
2866
2867struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec,
2868				     void *data)
2869{
2870	return data;
2871}
2872EXPORT_SYMBOL_GPL(of_clk_src_simple_get);
2873
 
 
 
 
 
 
2874struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data)
2875{
2876	struct clk_onecell_data *clk_data = data;
2877	unsigned int idx = clkspec->args[0];
2878
2879	if (idx >= clk_data->clk_num) {
2880		pr_err("%s: invalid clock index %u\n", __func__, idx);
2881		return ERR_PTR(-EINVAL);
2882	}
2883
2884	return clk_data->clks[idx];
2885}
2886EXPORT_SYMBOL_GPL(of_clk_src_onecell_get);
2887
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2888/**
2889 * of_clk_add_provider() - Register a clock provider for a node
2890 * @np: Device node pointer associated with clock provider
2891 * @clk_src_get: callback for decoding clock
2892 * @data: context pointer for @clk_src_get callback.
 
 
2893 */
2894int of_clk_add_provider(struct device_node *np,
2895			struct clk *(*clk_src_get)(struct of_phandle_args *clkspec,
2896						   void *data),
2897			void *data)
2898{
2899	struct of_clk_provider *cp;
2900	int ret;
2901
2902	cp = kzalloc(sizeof(struct of_clk_provider), GFP_KERNEL);
2903	if (!cp)
2904		return -ENOMEM;
2905
2906	cp->node = of_node_get(np);
2907	cp->data = data;
2908	cp->get = clk_src_get;
2909
2910	mutex_lock(&of_clk_mutex);
2911	list_add(&cp->link, &of_clk_providers);
2912	mutex_unlock(&of_clk_mutex);
2913	pr_debug("Added clock from %s\n", np->full_name);
 
 
2914
2915	ret = of_clk_set_defaults(np, true);
2916	if (ret < 0)
2917		of_clk_del_provider(np);
2918
2919	return ret;
2920}
2921EXPORT_SYMBOL_GPL(of_clk_add_provider);
2922
2923/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2924 * of_clk_del_provider() - Remove a previously registered clock provider
2925 * @np: Device node pointer associated with clock provider
2926 */
2927void of_clk_del_provider(struct device_node *np)
2928{
2929	struct of_clk_provider *cp;
2930
2931	mutex_lock(&of_clk_mutex);
2932	list_for_each_entry(cp, &of_clk_providers, link) {
2933		if (cp->node == np) {
2934			list_del(&cp->link);
2935			of_node_put(cp->node);
2936			kfree(cp);
2937			break;
2938		}
2939	}
2940	mutex_unlock(&of_clk_mutex);
2941}
2942EXPORT_SYMBOL_GPL(of_clk_del_provider);
2943
2944struct clk *__of_clk_get_from_provider(struct of_phandle_args *clkspec,
2945				       const char *dev_id, const char *con_id)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2946{
2947	struct of_clk_provider *provider;
2948	struct clk *clk = ERR_PTR(-EPROBE_DEFER);
2949
2950	if (!clkspec)
2951		return ERR_PTR(-EINVAL);
2952
2953	/* Check if we have such a provider in our array */
2954	mutex_lock(&of_clk_mutex);
2955	list_for_each_entry(provider, &of_clk_providers, link) {
2956		if (provider->node == clkspec->np)
2957			clk = provider->get(clkspec, provider->data);
2958		if (!IS_ERR(clk)) {
2959			clk = __clk_create_clk(__clk_get_hw(clk), dev_id,
2960					       con_id);
2961
2962			if (!IS_ERR(clk) && !__clk_get(clk)) {
2963				__clk_free_clk(clk);
2964				clk = ERR_PTR(-ENOENT);
2965			}
2966
2967			break;
2968		}
2969	}
2970	mutex_unlock(&of_clk_mutex);
2971
2972	return clk;
2973}
2974
2975/**
2976 * of_clk_get_from_provider() - Lookup a clock from a clock provider
2977 * @clkspec: pointer to a clock specifier data structure
2978 *
2979 * This function looks up a struct clk from the registered list of clock
2980 * providers, an input is a clock specifier data structure as returned
2981 * from the of_parse_phandle_with_args() function call.
2982 */
2983struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec)
2984{
2985	return __of_clk_get_from_provider(clkspec, NULL, __func__);
 
 
2986}
2987EXPORT_SYMBOL_GPL(of_clk_get_from_provider);
2988
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2989/**
2990 * of_clk_get_parent_count() - Count the number of clocks a device node has
2991 * @np: device node to count
2992 *
2993 * Returns: The number of clocks that are possible parents of this node
2994 */
2995unsigned int of_clk_get_parent_count(struct device_node *np)
2996{
2997	int count;
2998
2999	count = of_count_phandle_with_args(np, "clocks", "#clock-cells");
3000	if (count < 0)
3001		return 0;
3002
3003	return count;
3004}
3005EXPORT_SYMBOL_GPL(of_clk_get_parent_count);
3006
3007const char *of_clk_get_parent_name(struct device_node *np, int index)
3008{
3009	struct of_phandle_args clkspec;
3010	struct property *prop;
3011	const char *clk_name;
3012	const __be32 *vp;
3013	u32 pv;
3014	int rc;
3015	int count;
3016	struct clk *clk;
3017
3018	rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index,
3019					&clkspec);
3020	if (rc)
3021		return NULL;
3022
3023	index = clkspec.args_count ? clkspec.args[0] : 0;
3024	count = 0;
3025
3026	/* if there is an indices property, use it to transfer the index
3027	 * specified into an array offset for the clock-output-names property.
3028	 */
3029	of_property_for_each_u32(clkspec.np, "clock-indices", prop, vp, pv) {
3030		if (index == pv) {
3031			index = count;
3032			break;
3033		}
3034		count++;
3035	}
3036	/* We went off the end of 'clock-indices' without finding it */
3037	if (prop && !vp)
3038		return NULL;
3039
3040	if (of_property_read_string_index(clkspec.np, "clock-output-names",
3041					  index,
3042					  &clk_name) < 0) {
3043		/*
3044		 * Best effort to get the name if the clock has been
3045		 * registered with the framework. If the clock isn't
3046		 * registered, we return the node name as the name of
3047		 * the clock as long as #clock-cells = 0.
3048		 */
3049		clk = of_clk_get_from_provider(&clkspec);
3050		if (IS_ERR(clk)) {
3051			if (clkspec.args_count == 0)
3052				clk_name = clkspec.np->name;
3053			else
3054				clk_name = NULL;
3055		} else {
3056			clk_name = __clk_get_name(clk);
3057			clk_put(clk);
3058		}
3059	}
3060
3061
3062	of_node_put(clkspec.np);
3063	return clk_name;
3064}
3065EXPORT_SYMBOL_GPL(of_clk_get_parent_name);
3066
3067/**
3068 * of_clk_parent_fill() - Fill @parents with names of @np's parents and return
3069 * number of parents
3070 * @np: Device node pointer associated with clock provider
3071 * @parents: pointer to char array that hold the parents' names
3072 * @size: size of the @parents array
3073 *
3074 * Return: number of parents for the clock node.
3075 */
3076int of_clk_parent_fill(struct device_node *np, const char **parents,
3077		       unsigned int size)
3078{
3079	unsigned int i = 0;
3080
3081	while (i < size && (parents[i] = of_clk_get_parent_name(np, i)) != NULL)
3082		i++;
3083
3084	return i;
3085}
3086EXPORT_SYMBOL_GPL(of_clk_parent_fill);
3087
3088struct clock_provider {
3089	of_clk_init_cb_t clk_init_cb;
3090	struct device_node *np;
3091	struct list_head node;
3092};
3093
3094/*
3095 * This function looks for a parent clock. If there is one, then it
3096 * checks that the provider for this parent clock was initialized, in
3097 * this case the parent clock will be ready.
3098 */
3099static int parent_ready(struct device_node *np)
3100{
3101	int i = 0;
3102
3103	while (true) {
3104		struct clk *clk = of_clk_get(np, i);
3105
3106		/* this parent is ready we can check the next one */
3107		if (!IS_ERR(clk)) {
3108			clk_put(clk);
3109			i++;
3110			continue;
3111		}
3112
3113		/* at least one parent is not ready, we exit now */
3114		if (PTR_ERR(clk) == -EPROBE_DEFER)
3115			return 0;
3116
3117		/*
3118		 * Here we make assumption that the device tree is
3119		 * written correctly. So an error means that there is
3120		 * no more parent. As we didn't exit yet, then the
3121		 * previous parent are ready. If there is no clock
3122		 * parent, no need to wait for them, then we can
3123		 * consider their absence as being ready
3124		 */
3125		return 1;
3126	}
3127}
3128
3129/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3130 * of_clk_init() - Scan and init clock providers from the DT
3131 * @matches: array of compatible values and init functions for providers.
3132 *
3133 * This function scans the device tree for matching clock providers
3134 * and calls their initialization functions. It also does it by trying
3135 * to follow the dependencies.
3136 */
3137void __init of_clk_init(const struct of_device_id *matches)
3138{
3139	const struct of_device_id *match;
3140	struct device_node *np;
3141	struct clock_provider *clk_provider, *next;
3142	bool is_init_done;
3143	bool force = false;
3144	LIST_HEAD(clk_provider_list);
3145
3146	if (!matches)
3147		matches = &__clk_of_table;
3148
3149	/* First prepare the list of the clocks providers */
3150	for_each_matching_node_and_match(np, matches, &match) {
3151		struct clock_provider *parent;
3152
3153		if (!of_device_is_available(np))
3154			continue;
3155
3156		parent = kzalloc(sizeof(*parent), GFP_KERNEL);
3157		if (!parent) {
3158			list_for_each_entry_safe(clk_provider, next,
3159						 &clk_provider_list, node) {
3160				list_del(&clk_provider->node);
3161				of_node_put(clk_provider->np);
3162				kfree(clk_provider);
3163			}
3164			of_node_put(np);
3165			return;
3166		}
3167
3168		parent->clk_init_cb = match->data;
3169		parent->np = of_node_get(np);
3170		list_add_tail(&parent->node, &clk_provider_list);
3171	}
3172
3173	while (!list_empty(&clk_provider_list)) {
3174		is_init_done = false;
3175		list_for_each_entry_safe(clk_provider, next,
3176					&clk_provider_list, node) {
3177			if (force || parent_ready(clk_provider->np)) {
 
 
 
 
3178
3179				clk_provider->clk_init_cb(clk_provider->np);
3180				of_clk_set_defaults(clk_provider->np, true);
3181
3182				list_del(&clk_provider->node);
3183				of_node_put(clk_provider->np);
3184				kfree(clk_provider);
3185				is_init_done = true;
3186			}
3187		}
3188
3189		/*
3190		 * We didn't manage to initialize any of the
3191		 * remaining providers during the last loop, so now we
3192		 * initialize all the remaining ones unconditionally
3193		 * in case the clock parent was not mandatory
3194		 */
3195		if (!is_init_done)
3196			force = true;
3197	}
3198}
3199#endif