Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.6.
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Adiantum length-preserving encryption mode
  4 *
  5 * Copyright 2018 Google LLC
  6 */
  7
  8/*
  9 * Adiantum is a tweakable, length-preserving encryption mode designed for fast
 10 * and secure disk encryption, especially on CPUs without dedicated crypto
 11 * instructions.  Adiantum encrypts each sector using the XChaCha12 stream
 12 * cipher, two passes of an ε-almost-∆-universal (ε-∆U) hash function based on
 13 * NH and Poly1305, and an invocation of the AES-256 block cipher on a single
 14 * 16-byte block.  See the paper for details:
 15 *
 16 *	Adiantum: length-preserving encryption for entry-level processors
 17 *      (https://eprint.iacr.org/2018/720.pdf)
 18 *
 19 * For flexibility, this implementation also allows other ciphers:
 20 *
 21 *	- Stream cipher: XChaCha12 or XChaCha20
 22 *	- Block cipher: any with a 128-bit block size and 256-bit key
 23 *
 24 * This implementation doesn't currently allow other ε-∆U hash functions, i.e.
 25 * HPolyC is not supported.  This is because Adiantum is ~20% faster than HPolyC
 26 * but still provably as secure, and also the ε-∆U hash function of HBSH is
 27 * formally defined to take two inputs (tweak, message) which makes it difficult
 28 * to wrap with the crypto_shash API.  Rather, some details need to be handled
 29 * here.  Nevertheless, if needed in the future, support for other ε-∆U hash
 30 * functions could be added here.
 31 */
 32
 33#include <crypto/b128ops.h>
 34#include <crypto/chacha.h>
 35#include <crypto/internal/hash.h>
 36#include <crypto/internal/poly1305.h>
 37#include <crypto/internal/skcipher.h>
 38#include <crypto/nhpoly1305.h>
 39#include <crypto/scatterwalk.h>
 40#include <linux/module.h>
 41
 42/*
 43 * Size of right-hand part of input data, in bytes; also the size of the block
 44 * cipher's block size and the hash function's output.
 45 */
 46#define BLOCKCIPHER_BLOCK_SIZE		16
 47
 48/* Size of the block cipher key (K_E) in bytes */
 49#define BLOCKCIPHER_KEY_SIZE		32
 50
 51/* Size of the hash key (K_H) in bytes */
 52#define HASH_KEY_SIZE		(POLY1305_BLOCK_SIZE + NHPOLY1305_KEY_SIZE)
 53
 54/*
 55 * The specification allows variable-length tweaks, but Linux's crypto API
 56 * currently only allows algorithms to support a single length.  The "natural"
 57 * tweak length for Adiantum is 16, since that fits into one Poly1305 block for
 58 * the best performance.  But longer tweaks are useful for fscrypt, to avoid
 59 * needing to derive per-file keys.  So instead we use two blocks, or 32 bytes.
 60 */
 61#define TWEAK_SIZE		32
 62
 63struct adiantum_instance_ctx {
 64	struct crypto_skcipher_spawn streamcipher_spawn;
 65	struct crypto_cipher_spawn blockcipher_spawn;
 66	struct crypto_shash_spawn hash_spawn;
 67};
 68
 69struct adiantum_tfm_ctx {
 70	struct crypto_skcipher *streamcipher;
 71	struct crypto_cipher *blockcipher;
 72	struct crypto_shash *hash;
 73	struct poly1305_core_key header_hash_key;
 74};
 75
 76struct adiantum_request_ctx {
 77
 78	/*
 79	 * Buffer for right-hand part of data, i.e.
 80	 *
 81	 *    P_L => P_M => C_M => C_R when encrypting, or
 82	 *    C_R => C_M => P_M => P_L when decrypting.
 83	 *
 84	 * Also used to build the IV for the stream cipher.
 85	 */
 86	union {
 87		u8 bytes[XCHACHA_IV_SIZE];
 88		__le32 words[XCHACHA_IV_SIZE / sizeof(__le32)];
 89		le128 bignum;	/* interpret as element of Z/(2^{128}Z) */
 90	} rbuf;
 91
 92	bool enc; /* true if encrypting, false if decrypting */
 93
 94	/*
 95	 * The result of the Poly1305 ε-∆U hash function applied to
 96	 * (bulk length, tweak)
 97	 */
 98	le128 header_hash;
 99
100	/* Sub-requests, must be last */
101	union {
102		struct shash_desc hash_desc;
103		struct skcipher_request streamcipher_req;
104	} u;
105};
106
107/*
108 * Given the XChaCha stream key K_S, derive the block cipher key K_E and the
109 * hash key K_H as follows:
110 *
111 *     K_E || K_H || ... = XChaCha(key=K_S, nonce=1||0^191)
112 *
113 * Note that this denotes using bits from the XChaCha keystream, which here we
114 * get indirectly by encrypting a buffer containing all 0's.
115 */
116static int adiantum_setkey(struct crypto_skcipher *tfm, const u8 *key,
117			   unsigned int keylen)
118{
119	struct adiantum_tfm_ctx *tctx = crypto_skcipher_ctx(tfm);
120	struct {
121		u8 iv[XCHACHA_IV_SIZE];
122		u8 derived_keys[BLOCKCIPHER_KEY_SIZE + HASH_KEY_SIZE];
123		struct scatterlist sg;
124		struct crypto_wait wait;
125		struct skcipher_request req; /* must be last */
126	} *data;
127	u8 *keyp;
128	int err;
129
130	/* Set the stream cipher key (K_S) */
131	crypto_skcipher_clear_flags(tctx->streamcipher, CRYPTO_TFM_REQ_MASK);
132	crypto_skcipher_set_flags(tctx->streamcipher,
133				  crypto_skcipher_get_flags(tfm) &
134				  CRYPTO_TFM_REQ_MASK);
135	err = crypto_skcipher_setkey(tctx->streamcipher, key, keylen);
136	if (err)
137		return err;
138
139	/* Derive the subkeys */
140	data = kzalloc(sizeof(*data) +
141		       crypto_skcipher_reqsize(tctx->streamcipher), GFP_KERNEL);
142	if (!data)
143		return -ENOMEM;
144	data->iv[0] = 1;
145	sg_init_one(&data->sg, data->derived_keys, sizeof(data->derived_keys));
146	crypto_init_wait(&data->wait);
147	skcipher_request_set_tfm(&data->req, tctx->streamcipher);
148	skcipher_request_set_callback(&data->req, CRYPTO_TFM_REQ_MAY_SLEEP |
149						  CRYPTO_TFM_REQ_MAY_BACKLOG,
150				      crypto_req_done, &data->wait);
151	skcipher_request_set_crypt(&data->req, &data->sg, &data->sg,
152				   sizeof(data->derived_keys), data->iv);
153	err = crypto_wait_req(crypto_skcipher_encrypt(&data->req), &data->wait);
154	if (err)
155		goto out;
156	keyp = data->derived_keys;
157
158	/* Set the block cipher key (K_E) */
159	crypto_cipher_clear_flags(tctx->blockcipher, CRYPTO_TFM_REQ_MASK);
160	crypto_cipher_set_flags(tctx->blockcipher,
161				crypto_skcipher_get_flags(tfm) &
162				CRYPTO_TFM_REQ_MASK);
163	err = crypto_cipher_setkey(tctx->blockcipher, keyp,
164				   BLOCKCIPHER_KEY_SIZE);
165	if (err)
166		goto out;
167	keyp += BLOCKCIPHER_KEY_SIZE;
168
169	/* Set the hash key (K_H) */
170	poly1305_core_setkey(&tctx->header_hash_key, keyp);
171	keyp += POLY1305_BLOCK_SIZE;
172
173	crypto_shash_clear_flags(tctx->hash, CRYPTO_TFM_REQ_MASK);
174	crypto_shash_set_flags(tctx->hash, crypto_skcipher_get_flags(tfm) &
175					   CRYPTO_TFM_REQ_MASK);
176	err = crypto_shash_setkey(tctx->hash, keyp, NHPOLY1305_KEY_SIZE);
177	keyp += NHPOLY1305_KEY_SIZE;
178	WARN_ON(keyp != &data->derived_keys[ARRAY_SIZE(data->derived_keys)]);
179out:
180	kfree_sensitive(data);
181	return err;
182}
183
184/* Addition in Z/(2^{128}Z) */
185static inline void le128_add(le128 *r, const le128 *v1, const le128 *v2)
186{
187	u64 x = le64_to_cpu(v1->b);
188	u64 y = le64_to_cpu(v2->b);
189
190	r->b = cpu_to_le64(x + y);
191	r->a = cpu_to_le64(le64_to_cpu(v1->a) + le64_to_cpu(v2->a) +
192			   (x + y < x));
193}
194
195/* Subtraction in Z/(2^{128}Z) */
196static inline void le128_sub(le128 *r, const le128 *v1, const le128 *v2)
197{
198	u64 x = le64_to_cpu(v1->b);
199	u64 y = le64_to_cpu(v2->b);
200
201	r->b = cpu_to_le64(x - y);
202	r->a = cpu_to_le64(le64_to_cpu(v1->a) - le64_to_cpu(v2->a) -
203			   (x - y > x));
204}
205
206/*
207 * Apply the Poly1305 ε-∆U hash function to (bulk length, tweak) and save the
208 * result to rctx->header_hash.  This is the calculation
209 *
210 *	H_T ← Poly1305_{K_T}(bin_{128}(|L|) || T)
211 *
212 * from the procedure in section 6.4 of the Adiantum paper.  The resulting value
213 * is reused in both the first and second hash steps.  Specifically, it's added
214 * to the result of an independently keyed ε-∆U hash function (for equal length
215 * inputs only) taken over the left-hand part (the "bulk") of the message, to
216 * give the overall Adiantum hash of the (tweak, left-hand part) pair.
217 */
218static void adiantum_hash_header(struct skcipher_request *req)
219{
220	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
221	const struct adiantum_tfm_ctx *tctx = crypto_skcipher_ctx(tfm);
222	struct adiantum_request_ctx *rctx = skcipher_request_ctx(req);
223	const unsigned int bulk_len = req->cryptlen - BLOCKCIPHER_BLOCK_SIZE;
224	struct {
225		__le64 message_bits;
226		__le64 padding;
227	} header = {
228		.message_bits = cpu_to_le64((u64)bulk_len * 8)
229	};
230	struct poly1305_state state;
231
232	poly1305_core_init(&state);
233
234	BUILD_BUG_ON(sizeof(header) % POLY1305_BLOCK_SIZE != 0);
235	poly1305_core_blocks(&state, &tctx->header_hash_key,
236			     &header, sizeof(header) / POLY1305_BLOCK_SIZE, 1);
237
238	BUILD_BUG_ON(TWEAK_SIZE % POLY1305_BLOCK_SIZE != 0);
239	poly1305_core_blocks(&state, &tctx->header_hash_key, req->iv,
240			     TWEAK_SIZE / POLY1305_BLOCK_SIZE, 1);
241
242	poly1305_core_emit(&state, NULL, &rctx->header_hash);
243}
244
245/* Hash the left-hand part (the "bulk") of the message using NHPoly1305 */
246static int adiantum_hash_message(struct skcipher_request *req,
247				 struct scatterlist *sgl, le128 *digest)
248{
249	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
250	const struct adiantum_tfm_ctx *tctx = crypto_skcipher_ctx(tfm);
251	struct adiantum_request_ctx *rctx = skcipher_request_ctx(req);
252	const unsigned int bulk_len = req->cryptlen - BLOCKCIPHER_BLOCK_SIZE;
253	struct shash_desc *hash_desc = &rctx->u.hash_desc;
254	struct sg_mapping_iter miter;
255	unsigned int i, n;
256	int err;
257
258	hash_desc->tfm = tctx->hash;
259
260	err = crypto_shash_init(hash_desc);
261	if (err)
262		return err;
263
264	sg_miter_start(&miter, sgl, sg_nents(sgl),
265		       SG_MITER_FROM_SG | SG_MITER_ATOMIC);
266	for (i = 0; i < bulk_len; i += n) {
267		sg_miter_next(&miter);
268		n = min_t(unsigned int, miter.length, bulk_len - i);
269		err = crypto_shash_update(hash_desc, miter.addr, n);
270		if (err)
271			break;
272	}
273	sg_miter_stop(&miter);
274	if (err)
275		return err;
276
277	return crypto_shash_final(hash_desc, (u8 *)digest);
278}
279
280/* Continue Adiantum encryption/decryption after the stream cipher step */
281static int adiantum_finish(struct skcipher_request *req)
282{
283	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
284	const struct adiantum_tfm_ctx *tctx = crypto_skcipher_ctx(tfm);
285	struct adiantum_request_ctx *rctx = skcipher_request_ctx(req);
286	const unsigned int bulk_len = req->cryptlen - BLOCKCIPHER_BLOCK_SIZE;
287	le128 digest;
288	int err;
289
290	/* If decrypting, decrypt C_M with the block cipher to get P_M */
291	if (!rctx->enc)
292		crypto_cipher_decrypt_one(tctx->blockcipher, rctx->rbuf.bytes,
293					  rctx->rbuf.bytes);
294
295	/*
296	 * Second hash step
297	 *	enc: C_R = C_M - H_{K_H}(T, C_L)
298	 *	dec: P_R = P_M - H_{K_H}(T, P_L)
299	 */
300	err = adiantum_hash_message(req, req->dst, &digest);
301	if (err)
302		return err;
303	le128_add(&digest, &digest, &rctx->header_hash);
304	le128_sub(&rctx->rbuf.bignum, &rctx->rbuf.bignum, &digest);
305	scatterwalk_map_and_copy(&rctx->rbuf.bignum, req->dst,
306				 bulk_len, BLOCKCIPHER_BLOCK_SIZE, 1);
307	return 0;
308}
309
310static void adiantum_streamcipher_done(struct crypto_async_request *areq,
311				       int err)
312{
313	struct skcipher_request *req = areq->data;
314
315	if (!err)
316		err = adiantum_finish(req);
317
318	skcipher_request_complete(req, err);
319}
320
321static int adiantum_crypt(struct skcipher_request *req, bool enc)
322{
323	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
324	const struct adiantum_tfm_ctx *tctx = crypto_skcipher_ctx(tfm);
325	struct adiantum_request_ctx *rctx = skcipher_request_ctx(req);
326	const unsigned int bulk_len = req->cryptlen - BLOCKCIPHER_BLOCK_SIZE;
327	unsigned int stream_len;
328	le128 digest;
329	int err;
330
331	if (req->cryptlen < BLOCKCIPHER_BLOCK_SIZE)
332		return -EINVAL;
333
334	rctx->enc = enc;
335
336	/*
337	 * First hash step
338	 *	enc: P_M = P_R + H_{K_H}(T, P_L)
339	 *	dec: C_M = C_R + H_{K_H}(T, C_L)
340	 */
341	adiantum_hash_header(req);
342	err = adiantum_hash_message(req, req->src, &digest);
343	if (err)
344		return err;
345	le128_add(&digest, &digest, &rctx->header_hash);
346	scatterwalk_map_and_copy(&rctx->rbuf.bignum, req->src,
347				 bulk_len, BLOCKCIPHER_BLOCK_SIZE, 0);
348	le128_add(&rctx->rbuf.bignum, &rctx->rbuf.bignum, &digest);
349
350	/* If encrypting, encrypt P_M with the block cipher to get C_M */
351	if (enc)
352		crypto_cipher_encrypt_one(tctx->blockcipher, rctx->rbuf.bytes,
353					  rctx->rbuf.bytes);
354
355	/* Initialize the rest of the XChaCha IV (first part is C_M) */
356	BUILD_BUG_ON(BLOCKCIPHER_BLOCK_SIZE != 16);
357	BUILD_BUG_ON(XCHACHA_IV_SIZE != 32);	/* nonce || stream position */
358	rctx->rbuf.words[4] = cpu_to_le32(1);
359	rctx->rbuf.words[5] = 0;
360	rctx->rbuf.words[6] = 0;
361	rctx->rbuf.words[7] = 0;
362
363	/*
364	 * XChaCha needs to be done on all the data except the last 16 bytes;
365	 * for disk encryption that usually means 4080 or 496 bytes.  But ChaCha
366	 * implementations tend to be most efficient when passed a whole number
367	 * of 64-byte ChaCha blocks, or sometimes even a multiple of 256 bytes.
368	 * And here it doesn't matter whether the last 16 bytes are written to,
369	 * as the second hash step will overwrite them.  Thus, round the XChaCha
370	 * length up to the next 64-byte boundary if possible.
371	 */
372	stream_len = bulk_len;
373	if (round_up(stream_len, CHACHA_BLOCK_SIZE) <= req->cryptlen)
374		stream_len = round_up(stream_len, CHACHA_BLOCK_SIZE);
375
376	skcipher_request_set_tfm(&rctx->u.streamcipher_req, tctx->streamcipher);
377	skcipher_request_set_crypt(&rctx->u.streamcipher_req, req->src,
378				   req->dst, stream_len, &rctx->rbuf);
379	skcipher_request_set_callback(&rctx->u.streamcipher_req,
380				      req->base.flags,
381				      adiantum_streamcipher_done, req);
382	return crypto_skcipher_encrypt(&rctx->u.streamcipher_req) ?:
383		adiantum_finish(req);
384}
385
386static int adiantum_encrypt(struct skcipher_request *req)
387{
388	return adiantum_crypt(req, true);
389}
390
391static int adiantum_decrypt(struct skcipher_request *req)
392{
393	return adiantum_crypt(req, false);
394}
395
396static int adiantum_init_tfm(struct crypto_skcipher *tfm)
397{
398	struct skcipher_instance *inst = skcipher_alg_instance(tfm);
399	struct adiantum_instance_ctx *ictx = skcipher_instance_ctx(inst);
400	struct adiantum_tfm_ctx *tctx = crypto_skcipher_ctx(tfm);
401	struct crypto_skcipher *streamcipher;
402	struct crypto_cipher *blockcipher;
403	struct crypto_shash *hash;
404	unsigned int subreq_size;
405	int err;
406
407	streamcipher = crypto_spawn_skcipher(&ictx->streamcipher_spawn);
408	if (IS_ERR(streamcipher))
409		return PTR_ERR(streamcipher);
410
411	blockcipher = crypto_spawn_cipher(&ictx->blockcipher_spawn);
412	if (IS_ERR(blockcipher)) {
413		err = PTR_ERR(blockcipher);
414		goto err_free_streamcipher;
415	}
416
417	hash = crypto_spawn_shash(&ictx->hash_spawn);
418	if (IS_ERR(hash)) {
419		err = PTR_ERR(hash);
420		goto err_free_blockcipher;
421	}
422
423	tctx->streamcipher = streamcipher;
424	tctx->blockcipher = blockcipher;
425	tctx->hash = hash;
426
427	BUILD_BUG_ON(offsetofend(struct adiantum_request_ctx, u) !=
428		     sizeof(struct adiantum_request_ctx));
429	subreq_size = max(sizeof_field(struct adiantum_request_ctx,
430				       u.hash_desc) +
431			  crypto_shash_descsize(hash),
432			  sizeof_field(struct adiantum_request_ctx,
433				       u.streamcipher_req) +
434			  crypto_skcipher_reqsize(streamcipher));
435
436	crypto_skcipher_set_reqsize(tfm,
437				    offsetof(struct adiantum_request_ctx, u) +
438				    subreq_size);
439	return 0;
440
441err_free_blockcipher:
442	crypto_free_cipher(blockcipher);
443err_free_streamcipher:
444	crypto_free_skcipher(streamcipher);
445	return err;
446}
447
448static void adiantum_exit_tfm(struct crypto_skcipher *tfm)
449{
450	struct adiantum_tfm_ctx *tctx = crypto_skcipher_ctx(tfm);
451
452	crypto_free_skcipher(tctx->streamcipher);
453	crypto_free_cipher(tctx->blockcipher);
454	crypto_free_shash(tctx->hash);
455}
456
457static void adiantum_free_instance(struct skcipher_instance *inst)
458{
459	struct adiantum_instance_ctx *ictx = skcipher_instance_ctx(inst);
460
461	crypto_drop_skcipher(&ictx->streamcipher_spawn);
462	crypto_drop_cipher(&ictx->blockcipher_spawn);
463	crypto_drop_shash(&ictx->hash_spawn);
464	kfree(inst);
465}
466
467/*
468 * Check for a supported set of inner algorithms.
469 * See the comment at the beginning of this file.
470 */
471static bool adiantum_supported_algorithms(struct skcipher_alg *streamcipher_alg,
472					  struct crypto_alg *blockcipher_alg,
473					  struct shash_alg *hash_alg)
474{
475	if (strcmp(streamcipher_alg->base.cra_name, "xchacha12") != 0 &&
476	    strcmp(streamcipher_alg->base.cra_name, "xchacha20") != 0)
477		return false;
478
479	if (blockcipher_alg->cra_cipher.cia_min_keysize > BLOCKCIPHER_KEY_SIZE ||
480	    blockcipher_alg->cra_cipher.cia_max_keysize < BLOCKCIPHER_KEY_SIZE)
481		return false;
482	if (blockcipher_alg->cra_blocksize != BLOCKCIPHER_BLOCK_SIZE)
483		return false;
484
485	if (strcmp(hash_alg->base.cra_name, "nhpoly1305") != 0)
486		return false;
487
488	return true;
489}
490
491static int adiantum_create(struct crypto_template *tmpl, struct rtattr **tb)
492{
493	u32 mask;
494	const char *nhpoly1305_name;
495	struct skcipher_instance *inst;
496	struct adiantum_instance_ctx *ictx;
497	struct skcipher_alg *streamcipher_alg;
498	struct crypto_alg *blockcipher_alg;
499	struct shash_alg *hash_alg;
500	int err;
501
502	err = crypto_check_attr_type(tb, CRYPTO_ALG_TYPE_SKCIPHER, &mask);
503	if (err)
504		return err;
505
506	inst = kzalloc(sizeof(*inst) + sizeof(*ictx), GFP_KERNEL);
507	if (!inst)
508		return -ENOMEM;
509	ictx = skcipher_instance_ctx(inst);
510
511	/* Stream cipher, e.g. "xchacha12" */
512	err = crypto_grab_skcipher(&ictx->streamcipher_spawn,
513				   skcipher_crypto_instance(inst),
514				   crypto_attr_alg_name(tb[1]), 0, mask);
515	if (err)
516		goto err_free_inst;
517	streamcipher_alg = crypto_spawn_skcipher_alg(&ictx->streamcipher_spawn);
518
519	/* Block cipher, e.g. "aes" */
520	err = crypto_grab_cipher(&ictx->blockcipher_spawn,
521				 skcipher_crypto_instance(inst),
522				 crypto_attr_alg_name(tb[2]), 0, mask);
523	if (err)
524		goto err_free_inst;
525	blockcipher_alg = crypto_spawn_cipher_alg(&ictx->blockcipher_spawn);
526
527	/* NHPoly1305 ε-∆U hash function */
528	nhpoly1305_name = crypto_attr_alg_name(tb[3]);
529	if (nhpoly1305_name == ERR_PTR(-ENOENT))
530		nhpoly1305_name = "nhpoly1305";
531	err = crypto_grab_shash(&ictx->hash_spawn,
532				skcipher_crypto_instance(inst),
533				nhpoly1305_name, 0, mask);
534	if (err)
535		goto err_free_inst;
536	hash_alg = crypto_spawn_shash_alg(&ictx->hash_spawn);
537
538	/* Check the set of algorithms */
539	if (!adiantum_supported_algorithms(streamcipher_alg, blockcipher_alg,
540					   hash_alg)) {
541		pr_warn("Unsupported Adiantum instantiation: (%s,%s,%s)\n",
542			streamcipher_alg->base.cra_name,
543			blockcipher_alg->cra_name, hash_alg->base.cra_name);
544		err = -EINVAL;
545		goto err_free_inst;
546	}
547
548	/* Instance fields */
549
550	err = -ENAMETOOLONG;
551	if (snprintf(inst->alg.base.cra_name, CRYPTO_MAX_ALG_NAME,
552		     "adiantum(%s,%s)", streamcipher_alg->base.cra_name,
553		     blockcipher_alg->cra_name) >= CRYPTO_MAX_ALG_NAME)
554		goto err_free_inst;
555	if (snprintf(inst->alg.base.cra_driver_name, CRYPTO_MAX_ALG_NAME,
556		     "adiantum(%s,%s,%s)",
557		     streamcipher_alg->base.cra_driver_name,
558		     blockcipher_alg->cra_driver_name,
559		     hash_alg->base.cra_driver_name) >= CRYPTO_MAX_ALG_NAME)
560		goto err_free_inst;
561
562	inst->alg.base.cra_blocksize = BLOCKCIPHER_BLOCK_SIZE;
563	inst->alg.base.cra_ctxsize = sizeof(struct adiantum_tfm_ctx);
564	inst->alg.base.cra_alignmask = streamcipher_alg->base.cra_alignmask |
565				       hash_alg->base.cra_alignmask;
566	/*
567	 * The block cipher is only invoked once per message, so for long
568	 * messages (e.g. sectors for disk encryption) its performance doesn't
569	 * matter as much as that of the stream cipher and hash function.  Thus,
570	 * weigh the block cipher's ->cra_priority less.
571	 */
572	inst->alg.base.cra_priority = (4 * streamcipher_alg->base.cra_priority +
573				       2 * hash_alg->base.cra_priority +
574				       blockcipher_alg->cra_priority) / 7;
575
576	inst->alg.setkey = adiantum_setkey;
577	inst->alg.encrypt = adiantum_encrypt;
578	inst->alg.decrypt = adiantum_decrypt;
579	inst->alg.init = adiantum_init_tfm;
580	inst->alg.exit = adiantum_exit_tfm;
581	inst->alg.min_keysize = crypto_skcipher_alg_min_keysize(streamcipher_alg);
582	inst->alg.max_keysize = crypto_skcipher_alg_max_keysize(streamcipher_alg);
583	inst->alg.ivsize = TWEAK_SIZE;
584
585	inst->free = adiantum_free_instance;
586
587	err = skcipher_register_instance(tmpl, inst);
588	if (err) {
589err_free_inst:
590		adiantum_free_instance(inst);
591	}
592	return err;
593}
594
595/* adiantum(streamcipher_name, blockcipher_name [, nhpoly1305_name]) */
596static struct crypto_template adiantum_tmpl = {
597	.name = "adiantum",
598	.create = adiantum_create,
599	.module = THIS_MODULE,
600};
601
602static int __init adiantum_module_init(void)
603{
604	return crypto_register_template(&adiantum_tmpl);
605}
606
607static void __exit adiantum_module_exit(void)
608{
609	crypto_unregister_template(&adiantum_tmpl);
610}
611
612subsys_initcall(adiantum_module_init);
613module_exit(adiantum_module_exit);
614
615MODULE_DESCRIPTION("Adiantum length-preserving encryption mode");
616MODULE_LICENSE("GPL v2");
617MODULE_AUTHOR("Eric Biggers <ebiggers@google.com>");
618MODULE_ALIAS_CRYPTO("adiantum");