Linux Audio

Check our new training course

Loading...
v5.9
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Re-map IO memory to kernel address space so that we can access it.
  4 * This is needed for high PCI addresses that aren't mapped in the
  5 * 640k-1MB IO memory area on PC's
  6 *
  7 * (C) Copyright 1995 1996 Linus Torvalds
  8 */
  9
 10#include <linux/memblock.h>
 11#include <linux/init.h>
 12#include <linux/io.h>
 13#include <linux/ioport.h>
 14#include <linux/slab.h>
 15#include <linux/vmalloc.h>
 16#include <linux/mmiotrace.h>
 17#include <linux/mem_encrypt.h>
 18#include <linux/efi.h>
 19#include <linux/pgtable.h>
 20
 21#include <asm/set_memory.h>
 22#include <asm/e820/api.h>
 23#include <asm/efi.h>
 24#include <asm/fixmap.h>
 
 25#include <asm/tlbflush.h>
 26#include <asm/pgalloc.h>
 27#include <asm/memtype.h>
 28#include <asm/setup.h>
 29
 30#include "physaddr.h"
 31
 32/*
 33 * Descriptor controlling ioremap() behavior.
 34 */
 35struct ioremap_desc {
 36	unsigned int flags;
 37};
 38
 39/*
 40 * Fix up the linear direct mapping of the kernel to avoid cache attribute
 41 * conflicts.
 42 */
 43int ioremap_change_attr(unsigned long vaddr, unsigned long size,
 44			enum page_cache_mode pcm)
 45{
 46	unsigned long nrpages = size >> PAGE_SHIFT;
 47	int err;
 48
 49	switch (pcm) {
 50	case _PAGE_CACHE_MODE_UC:
 51	default:
 52		err = _set_memory_uc(vaddr, nrpages);
 53		break;
 54	case _PAGE_CACHE_MODE_WC:
 55		err = _set_memory_wc(vaddr, nrpages);
 56		break;
 57	case _PAGE_CACHE_MODE_WT:
 58		err = _set_memory_wt(vaddr, nrpages);
 59		break;
 60	case _PAGE_CACHE_MODE_WB:
 61		err = _set_memory_wb(vaddr, nrpages);
 62		break;
 63	}
 64
 65	return err;
 66}
 67
 68/* Does the range (or a subset of) contain normal RAM? */
 69static unsigned int __ioremap_check_ram(struct resource *res)
 70{
 71	unsigned long start_pfn, stop_pfn;
 72	unsigned long i;
 73
 74	if ((res->flags & IORESOURCE_SYSTEM_RAM) != IORESOURCE_SYSTEM_RAM)
 75		return 0;
 76
 77	start_pfn = (res->start + PAGE_SIZE - 1) >> PAGE_SHIFT;
 78	stop_pfn = (res->end + 1) >> PAGE_SHIFT;
 79	if (stop_pfn > start_pfn) {
 80		for (i = 0; i < (stop_pfn - start_pfn); ++i)
 81			if (pfn_valid(start_pfn + i) &&
 82			    !PageReserved(pfn_to_page(start_pfn + i)))
 83				return IORES_MAP_SYSTEM_RAM;
 84	}
 85
 86	return 0;
 87}
 88
 89/*
 90 * In a SEV guest, NONE and RESERVED should not be mapped encrypted because
 91 * there the whole memory is already encrypted.
 92 */
 93static unsigned int __ioremap_check_encrypted(struct resource *res)
 94{
 95	if (!sev_active())
 96		return 0;
 97
 98	switch (res->desc) {
 99	case IORES_DESC_NONE:
100	case IORES_DESC_RESERVED:
101		break;
102	default:
103		return IORES_MAP_ENCRYPTED;
104	}
105
106	return 0;
107}
108
109/*
110 * The EFI runtime services data area is not covered by walk_mem_res(), but must
111 * be mapped encrypted when SEV is active.
112 */
113static void __ioremap_check_other(resource_size_t addr, struct ioremap_desc *desc)
114{
115	if (!sev_active())
116		return;
117
118	if (!IS_ENABLED(CONFIG_EFI))
119		return;
120
121	if (efi_mem_type(addr) == EFI_RUNTIME_SERVICES_DATA)
122		desc->flags |= IORES_MAP_ENCRYPTED;
123}
124
125static int __ioremap_collect_map_flags(struct resource *res, void *arg)
126{
127	struct ioremap_desc *desc = arg;
128
129	if (!(desc->flags & IORES_MAP_SYSTEM_RAM))
130		desc->flags |= __ioremap_check_ram(res);
131
132	if (!(desc->flags & IORES_MAP_ENCRYPTED))
133		desc->flags |= __ioremap_check_encrypted(res);
134
135	return ((desc->flags & (IORES_MAP_SYSTEM_RAM | IORES_MAP_ENCRYPTED)) ==
136			       (IORES_MAP_SYSTEM_RAM | IORES_MAP_ENCRYPTED));
137}
138
139/*
140 * To avoid multiple resource walks, this function walks resources marked as
141 * IORESOURCE_MEM and IORESOURCE_BUSY and looking for system RAM and/or a
142 * resource described not as IORES_DESC_NONE (e.g. IORES_DESC_ACPI_TABLES).
143 *
144 * After that, deal with misc other ranges in __ioremap_check_other() which do
145 * not fall into the above category.
146 */
147static void __ioremap_check_mem(resource_size_t addr, unsigned long size,
148				struct ioremap_desc *desc)
149{
150	u64 start, end;
151
152	start = (u64)addr;
153	end = start + size - 1;
154	memset(desc, 0, sizeof(struct ioremap_desc));
155
156	walk_mem_res(start, end, desc, __ioremap_collect_map_flags);
157
158	__ioremap_check_other(addr, desc);
159}
160
161/*
162 * Remap an arbitrary physical address space into the kernel virtual
163 * address space. It transparently creates kernel huge I/O mapping when
164 * the physical address is aligned by a huge page size (1GB or 2MB) and
165 * the requested size is at least the huge page size.
166 *
167 * NOTE: MTRRs can override PAT memory types with a 4KB granularity.
168 * Therefore, the mapping code falls back to use a smaller page toward 4KB
169 * when a mapping range is covered by non-WB type of MTRRs.
170 *
171 * NOTE! We need to allow non-page-aligned mappings too: we will obviously
172 * have to convert them into an offset in a page-aligned mapping, but the
173 * caller shouldn't need to know that small detail.
174 */
175static void __iomem *
176__ioremap_caller(resource_size_t phys_addr, unsigned long size,
177		 enum page_cache_mode pcm, void *caller, bool encrypted)
178{
179	unsigned long offset, vaddr;
180	resource_size_t last_addr;
181	const resource_size_t unaligned_phys_addr = phys_addr;
182	const unsigned long unaligned_size = size;
183	struct ioremap_desc io_desc;
184	struct vm_struct *area;
185	enum page_cache_mode new_pcm;
186	pgprot_t prot;
187	int retval;
188	void __iomem *ret_addr;
189
190	/* Don't allow wraparound or zero size */
191	last_addr = phys_addr + size - 1;
192	if (!size || last_addr < phys_addr)
193		return NULL;
194
195	if (!phys_addr_valid(phys_addr)) {
196		printk(KERN_WARNING "ioremap: invalid physical address %llx\n",
197		       (unsigned long long)phys_addr);
198		WARN_ON_ONCE(1);
199		return NULL;
200	}
201
202	__ioremap_check_mem(phys_addr, size, &io_desc);
 
 
 
 
203
204	/*
205	 * Don't allow anybody to remap normal RAM that we're using..
206	 */
207	if (io_desc.flags & IORES_MAP_SYSTEM_RAM) {
 
 
 
208		WARN_ONCE(1, "ioremap on RAM at %pa - %pa\n",
209			  &phys_addr, &last_addr);
210		return NULL;
211	}
212
213	/*
214	 * Mappings have to be page-aligned
215	 */
216	offset = phys_addr & ~PAGE_MASK;
217	phys_addr &= PHYSICAL_PAGE_MASK;
218	size = PAGE_ALIGN(last_addr+1) - phys_addr;
219
220	retval = memtype_reserve(phys_addr, (u64)phys_addr + size,
221						pcm, &new_pcm);
222	if (retval) {
223		printk(KERN_ERR "ioremap memtype_reserve failed %d\n", retval);
224		return NULL;
225	}
226
227	if (pcm != new_pcm) {
228		if (!is_new_memtype_allowed(phys_addr, size, pcm, new_pcm)) {
229			printk(KERN_ERR
230		"ioremap error for 0x%llx-0x%llx, requested 0x%x, got 0x%x\n",
231				(unsigned long long)phys_addr,
232				(unsigned long long)(phys_addr + size),
233				pcm, new_pcm);
234			goto err_free_memtype;
235		}
236		pcm = new_pcm;
237	}
238
239	/*
240	 * If the page being mapped is in memory and SEV is active then
241	 * make sure the memory encryption attribute is enabled in the
242	 * resulting mapping.
243	 */
244	prot = PAGE_KERNEL_IO;
245	if ((io_desc.flags & IORES_MAP_ENCRYPTED) || encrypted)
246		prot = pgprot_encrypted(prot);
247
248	switch (pcm) {
249	case _PAGE_CACHE_MODE_UC:
250	default:
251		prot = __pgprot(pgprot_val(prot) |
252				cachemode2protval(_PAGE_CACHE_MODE_UC));
253		break;
254	case _PAGE_CACHE_MODE_UC_MINUS:
255		prot = __pgprot(pgprot_val(prot) |
256				cachemode2protval(_PAGE_CACHE_MODE_UC_MINUS));
257		break;
258	case _PAGE_CACHE_MODE_WC:
259		prot = __pgprot(pgprot_val(prot) |
260				cachemode2protval(_PAGE_CACHE_MODE_WC));
261		break;
262	case _PAGE_CACHE_MODE_WT:
263		prot = __pgprot(pgprot_val(prot) |
264				cachemode2protval(_PAGE_CACHE_MODE_WT));
265		break;
266	case _PAGE_CACHE_MODE_WB:
267		break;
268	}
269
270	/*
271	 * Ok, go for it..
272	 */
273	area = get_vm_area_caller(size, VM_IOREMAP, caller);
274	if (!area)
275		goto err_free_memtype;
276	area->phys_addr = phys_addr;
277	vaddr = (unsigned long) area->addr;
278
279	if (memtype_kernel_map_sync(phys_addr, size, pcm))
280		goto err_free_area;
281
282	if (ioremap_page_range(vaddr, vaddr + size, phys_addr, prot))
283		goto err_free_area;
284
285	ret_addr = (void __iomem *) (vaddr + offset);
286	mmiotrace_ioremap(unaligned_phys_addr, unaligned_size, ret_addr);
287
288	/*
289	 * Check if the request spans more than any BAR in the iomem resource
290	 * tree.
291	 */
292	if (iomem_map_sanity_check(unaligned_phys_addr, unaligned_size))
293		pr_warn("caller %pS mapping multiple BARs\n", caller);
294
295	return ret_addr;
296err_free_area:
297	free_vm_area(area);
298err_free_memtype:
299	memtype_free(phys_addr, phys_addr + size);
300	return NULL;
301}
302
303/**
304 * ioremap     -   map bus memory into CPU space
305 * @phys_addr:    bus address of the memory
306 * @size:      size of the resource to map
307 *
308 * ioremap performs a platform specific sequence of operations to
309 * make bus memory CPU accessible via the readb/readw/readl/writeb/
310 * writew/writel functions and the other mmio helpers. The returned
311 * address is not guaranteed to be usable directly as a virtual
312 * address.
313 *
314 * This version of ioremap ensures that the memory is marked uncachable
315 * on the CPU as well as honouring existing caching rules from things like
316 * the PCI bus. Note that there are other caches and buffers on many
317 * busses. In particular driver authors should read up on PCI writes
318 *
319 * It's useful if some control registers are in such an area and
320 * write combining or read caching is not desirable:
321 *
322 * Must be freed with iounmap.
323 */
324void __iomem *ioremap(resource_size_t phys_addr, unsigned long size)
325{
326	/*
327	 * Ideally, this should be:
328	 *	pat_enabled() ? _PAGE_CACHE_MODE_UC : _PAGE_CACHE_MODE_UC_MINUS;
329	 *
330	 * Till we fix all X drivers to use ioremap_wc(), we will use
331	 * UC MINUS. Drivers that are certain they need or can already
332	 * be converted over to strong UC can use ioremap_uc().
333	 */
334	enum page_cache_mode pcm = _PAGE_CACHE_MODE_UC_MINUS;
335
336	return __ioremap_caller(phys_addr, size, pcm,
337				__builtin_return_address(0), false);
338}
339EXPORT_SYMBOL(ioremap);
340
341/**
342 * ioremap_uc     -   map bus memory into CPU space as strongly uncachable
343 * @phys_addr:    bus address of the memory
344 * @size:      size of the resource to map
345 *
346 * ioremap_uc performs a platform specific sequence of operations to
347 * make bus memory CPU accessible via the readb/readw/readl/writeb/
348 * writew/writel functions and the other mmio helpers. The returned
349 * address is not guaranteed to be usable directly as a virtual
350 * address.
351 *
352 * This version of ioremap ensures that the memory is marked with a strong
353 * preference as completely uncachable on the CPU when possible. For non-PAT
354 * systems this ends up setting page-attribute flags PCD=1, PWT=1. For PAT
355 * systems this will set the PAT entry for the pages as strong UC.  This call
356 * will honor existing caching rules from things like the PCI bus. Note that
357 * there are other caches and buffers on many busses. In particular driver
358 * authors should read up on PCI writes.
359 *
360 * It's useful if some control registers are in such an area and
361 * write combining or read caching is not desirable:
362 *
363 * Must be freed with iounmap.
364 */
365void __iomem *ioremap_uc(resource_size_t phys_addr, unsigned long size)
366{
367	enum page_cache_mode pcm = _PAGE_CACHE_MODE_UC;
368
369	return __ioremap_caller(phys_addr, size, pcm,
370				__builtin_return_address(0), false);
371}
372EXPORT_SYMBOL_GPL(ioremap_uc);
373
374/**
375 * ioremap_wc	-	map memory into CPU space write combined
376 * @phys_addr:	bus address of the memory
377 * @size:	size of the resource to map
378 *
379 * This version of ioremap ensures that the memory is marked write combining.
380 * Write combining allows faster writes to some hardware devices.
381 *
382 * Must be freed with iounmap.
383 */
384void __iomem *ioremap_wc(resource_size_t phys_addr, unsigned long size)
385{
386	return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WC,
387					__builtin_return_address(0), false);
388}
389EXPORT_SYMBOL(ioremap_wc);
390
391/**
392 * ioremap_wt	-	map memory into CPU space write through
393 * @phys_addr:	bus address of the memory
394 * @size:	size of the resource to map
395 *
396 * This version of ioremap ensures that the memory is marked write through.
397 * Write through stores data into memory while keeping the cache up-to-date.
398 *
399 * Must be freed with iounmap.
400 */
401void __iomem *ioremap_wt(resource_size_t phys_addr, unsigned long size)
402{
403	return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WT,
404					__builtin_return_address(0), false);
405}
406EXPORT_SYMBOL(ioremap_wt);
407
408void __iomem *ioremap_encrypted(resource_size_t phys_addr, unsigned long size)
409{
410	return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WB,
411				__builtin_return_address(0), true);
412}
413EXPORT_SYMBOL(ioremap_encrypted);
414
415void __iomem *ioremap_cache(resource_size_t phys_addr, unsigned long size)
416{
417	return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WB,
418				__builtin_return_address(0), false);
419}
420EXPORT_SYMBOL(ioremap_cache);
421
422void __iomem *ioremap_prot(resource_size_t phys_addr, unsigned long size,
423				unsigned long prot_val)
424{
425	return __ioremap_caller(phys_addr, size,
426				pgprot2cachemode(__pgprot(prot_val)),
427				__builtin_return_address(0), false);
428}
429EXPORT_SYMBOL(ioremap_prot);
430
431/**
432 * iounmap - Free a IO remapping
433 * @addr: virtual address from ioremap_*
434 *
435 * Caller must ensure there is only one unmapping for the same pointer.
436 */
437void iounmap(volatile void __iomem *addr)
438{
439	struct vm_struct *p, *o;
440
441	if ((void __force *)addr <= high_memory)
442		return;
443
444	/*
445	 * The PCI/ISA range special-casing was removed from __ioremap()
446	 * so this check, in theory, can be removed. However, there are
447	 * cases where iounmap() is called for addresses not obtained via
448	 * ioremap() (vga16fb for example). Add a warning so that these
449	 * cases can be caught and fixed.
450	 */
451	if ((void __force *)addr >= phys_to_virt(ISA_START_ADDRESS) &&
452	    (void __force *)addr < phys_to_virt(ISA_END_ADDRESS)) {
453		WARN(1, "iounmap() called for ISA range not obtained using ioremap()\n");
454		return;
455	}
456
457	mmiotrace_iounmap(addr);
458
459	addr = (volatile void __iomem *)
460		(PAGE_MASK & (unsigned long __force)addr);
461
 
 
462	/* Use the vm area unlocked, assuming the caller
463	   ensures there isn't another iounmap for the same address
464	   in parallel. Reuse of the virtual address is prevented by
465	   leaving it in the global lists until we're done with it.
466	   cpa takes care of the direct mappings. */
467	p = find_vm_area((void __force *)addr);
468
469	if (!p) {
470		printk(KERN_ERR "iounmap: bad address %p\n", addr);
471		dump_stack();
472		return;
473	}
474
475	memtype_free(p->phys_addr, p->phys_addr + get_vm_area_size(p));
476
477	/* Finally remove it */
478	o = remove_vm_area((void __force *)addr);
479	BUG_ON(p != o || o == NULL);
480	kfree(p);
481}
482EXPORT_SYMBOL(iounmap);
483
484int __init arch_ioremap_p4d_supported(void)
485{
486	return 0;
487}
488
489int __init arch_ioremap_pud_supported(void)
490{
491#ifdef CONFIG_X86_64
492	return boot_cpu_has(X86_FEATURE_GBPAGES);
493#else
494	return 0;
495#endif
496}
497
498int __init arch_ioremap_pmd_supported(void)
499{
500	return boot_cpu_has(X86_FEATURE_PSE);
501}
502
503/*
504 * Convert a physical pointer to a virtual kernel pointer for /dev/mem
505 * access
506 */
507void *xlate_dev_mem_ptr(phys_addr_t phys)
508{
509	unsigned long start  = phys &  PAGE_MASK;
510	unsigned long offset = phys & ~PAGE_MASK;
511	void *vaddr;
512
513	/* memremap() maps if RAM, otherwise falls back to ioremap() */
514	vaddr = memremap(start, PAGE_SIZE, MEMREMAP_WB);
 
515
516	/* Only add the offset on success and return NULL if memremap() failed */
 
517	if (vaddr)
518		vaddr += offset;
519
520	return vaddr;
521}
522
523void unxlate_dev_mem_ptr(phys_addr_t phys, void *addr)
524{
525	memunmap((void *)((unsigned long)addr & PAGE_MASK));
526}
527
528/*
529 * Examine the physical address to determine if it is an area of memory
530 * that should be mapped decrypted.  If the memory is not part of the
531 * kernel usable area it was accessed and created decrypted, so these
532 * areas should be mapped decrypted. And since the encryption key can
533 * change across reboots, persistent memory should also be mapped
534 * decrypted.
535 *
536 * If SEV is active, that implies that BIOS/UEFI also ran encrypted so
537 * only persistent memory should be mapped decrypted.
538 */
539static bool memremap_should_map_decrypted(resource_size_t phys_addr,
540					  unsigned long size)
541{
542	int is_pmem;
543
544	/*
545	 * Check if the address is part of a persistent memory region.
546	 * This check covers areas added by E820, EFI and ACPI.
547	 */
548	is_pmem = region_intersects(phys_addr, size, IORESOURCE_MEM,
549				    IORES_DESC_PERSISTENT_MEMORY);
550	if (is_pmem != REGION_DISJOINT)
551		return true;
552
553	/*
554	 * Check if the non-volatile attribute is set for an EFI
555	 * reserved area.
556	 */
557	if (efi_enabled(EFI_BOOT)) {
558		switch (efi_mem_type(phys_addr)) {
559		case EFI_RESERVED_TYPE:
560			if (efi_mem_attributes(phys_addr) & EFI_MEMORY_NV)
561				return true;
562			break;
563		default:
564			break;
565		}
566	}
567
568	/* Check if the address is outside kernel usable area */
569	switch (e820__get_entry_type(phys_addr, phys_addr + size - 1)) {
570	case E820_TYPE_RESERVED:
571	case E820_TYPE_ACPI:
572	case E820_TYPE_NVS:
573	case E820_TYPE_UNUSABLE:
574		/* For SEV, these areas are encrypted */
575		if (sev_active())
576			break;
577		fallthrough;
578
579	case E820_TYPE_PRAM:
580		return true;
581	default:
582		break;
583	}
584
585	return false;
586}
587
588/*
589 * Examine the physical address to determine if it is EFI data. Check
590 * it against the boot params structure and EFI tables and memory types.
591 */
592static bool memremap_is_efi_data(resource_size_t phys_addr,
593				 unsigned long size)
594{
595	u64 paddr;
596
597	/* Check if the address is part of EFI boot/runtime data */
598	if (!efi_enabled(EFI_BOOT))
599		return false;
600
601	paddr = boot_params.efi_info.efi_memmap_hi;
602	paddr <<= 32;
603	paddr |= boot_params.efi_info.efi_memmap;
604	if (phys_addr == paddr)
605		return true;
606
607	paddr = boot_params.efi_info.efi_systab_hi;
608	paddr <<= 32;
609	paddr |= boot_params.efi_info.efi_systab;
610	if (phys_addr == paddr)
611		return true;
612
613	if (efi_is_table_address(phys_addr))
614		return true;
615
616	switch (efi_mem_type(phys_addr)) {
617	case EFI_BOOT_SERVICES_DATA:
618	case EFI_RUNTIME_SERVICES_DATA:
619		return true;
620	default:
621		break;
622	}
623
624	return false;
625}
626
627/*
628 * Examine the physical address to determine if it is boot data by checking
629 * it against the boot params setup_data chain.
630 */
631static bool memremap_is_setup_data(resource_size_t phys_addr,
632				   unsigned long size)
633{
634	struct setup_data *data;
635	u64 paddr, paddr_next;
636
637	paddr = boot_params.hdr.setup_data;
638	while (paddr) {
639		unsigned int len;
640
641		if (phys_addr == paddr)
642			return true;
643
644		data = memremap(paddr, sizeof(*data),
645				MEMREMAP_WB | MEMREMAP_DEC);
646
647		paddr_next = data->next;
648		len = data->len;
649
650		if ((phys_addr > paddr) && (phys_addr < (paddr + len))) {
651			memunmap(data);
652			return true;
653		}
654
655		if (data->type == SETUP_INDIRECT &&
656		    ((struct setup_indirect *)data->data)->type != SETUP_INDIRECT) {
657			paddr = ((struct setup_indirect *)data->data)->addr;
658			len = ((struct setup_indirect *)data->data)->len;
659		}
660
661		memunmap(data);
662
663		if ((phys_addr > paddr) && (phys_addr < (paddr + len)))
664			return true;
665
666		paddr = paddr_next;
667	}
668
669	return false;
670}
671
672/*
673 * Examine the physical address to determine if it is boot data by checking
674 * it against the boot params setup_data chain (early boot version).
675 */
676static bool __init early_memremap_is_setup_data(resource_size_t phys_addr,
677						unsigned long size)
678{
679	struct setup_data *data;
680	u64 paddr, paddr_next;
681
682	paddr = boot_params.hdr.setup_data;
683	while (paddr) {
684		unsigned int len;
685
686		if (phys_addr == paddr)
687			return true;
688
689		data = early_memremap_decrypted(paddr, sizeof(*data));
690
691		paddr_next = data->next;
692		len = data->len;
693
694		early_memunmap(data, sizeof(*data));
695
696		if ((phys_addr > paddr) && (phys_addr < (paddr + len)))
697			return true;
698
699		paddr = paddr_next;
700	}
701
702	return false;
703}
704
705/*
706 * Architecture function to determine if RAM remap is allowed. By default, a
707 * RAM remap will map the data as encrypted. Determine if a RAM remap should
708 * not be done so that the data will be mapped decrypted.
709 */
710bool arch_memremap_can_ram_remap(resource_size_t phys_addr, unsigned long size,
711				 unsigned long flags)
712{
713	if (!mem_encrypt_active())
714		return true;
715
716	if (flags & MEMREMAP_ENC)
717		return true;
718
719	if (flags & MEMREMAP_DEC)
720		return false;
721
722	if (sme_active()) {
723		if (memremap_is_setup_data(phys_addr, size) ||
724		    memremap_is_efi_data(phys_addr, size))
725			return false;
726	}
727
728	return !memremap_should_map_decrypted(phys_addr, size);
729}
730
731/*
732 * Architecture override of __weak function to adjust the protection attributes
733 * used when remapping memory. By default, early_memremap() will map the data
734 * as encrypted. Determine if an encrypted mapping should not be done and set
735 * the appropriate protection attributes.
736 */
737pgprot_t __init early_memremap_pgprot_adjust(resource_size_t phys_addr,
738					     unsigned long size,
739					     pgprot_t prot)
740{
741	bool encrypted_prot;
742
743	if (!mem_encrypt_active())
744		return prot;
745
746	encrypted_prot = true;
747
748	if (sme_active()) {
749		if (early_memremap_is_setup_data(phys_addr, size) ||
750		    memremap_is_efi_data(phys_addr, size))
751			encrypted_prot = false;
752	}
753
754	if (encrypted_prot && memremap_should_map_decrypted(phys_addr, size))
755		encrypted_prot = false;
756
757	return encrypted_prot ? pgprot_encrypted(prot)
758			      : pgprot_decrypted(prot);
759}
760
761bool phys_mem_access_encrypted(unsigned long phys_addr, unsigned long size)
762{
763	return arch_memremap_can_ram_remap(phys_addr, size, 0);
764}
765
766#ifdef CONFIG_AMD_MEM_ENCRYPT
767/* Remap memory with encryption */
768void __init *early_memremap_encrypted(resource_size_t phys_addr,
769				      unsigned long size)
770{
771	return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_ENC);
772}
773
774/*
775 * Remap memory with encryption and write-protected - cannot be called
776 * before pat_init() is called
777 */
778void __init *early_memremap_encrypted_wp(resource_size_t phys_addr,
779					 unsigned long size)
780{
781	if (!x86_has_pat_wp())
782		return NULL;
783	return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_ENC_WP);
784}
785
786/* Remap memory without encryption */
787void __init *early_memremap_decrypted(resource_size_t phys_addr,
788				      unsigned long size)
789{
790	return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_NOENC);
791}
792
793/*
794 * Remap memory without encryption and write-protected - cannot be called
795 * before pat_init() is called
796 */
797void __init *early_memremap_decrypted_wp(resource_size_t phys_addr,
798					 unsigned long size)
799{
800	if (!x86_has_pat_wp())
801		return NULL;
802	return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_NOENC_WP);
803}
804#endif	/* CONFIG_AMD_MEM_ENCRYPT */
805
806static pte_t bm_pte[PAGE_SIZE/sizeof(pte_t)] __page_aligned_bss;
807
808static inline pmd_t * __init early_ioremap_pmd(unsigned long addr)
809{
810	/* Don't assume we're using swapper_pg_dir at this point */
811	pgd_t *base = __va(read_cr3_pa());
812	pgd_t *pgd = &base[pgd_index(addr)];
813	p4d_t *p4d = p4d_offset(pgd, addr);
814	pud_t *pud = pud_offset(p4d, addr);
815	pmd_t *pmd = pmd_offset(pud, addr);
816
817	return pmd;
818}
819
820static inline pte_t * __init early_ioremap_pte(unsigned long addr)
821{
822	return &bm_pte[pte_index(addr)];
823}
824
825bool __init is_early_ioremap_ptep(pte_t *ptep)
826{
827	return ptep >= &bm_pte[0] && ptep < &bm_pte[PAGE_SIZE/sizeof(pte_t)];
828}
829
830void __init early_ioremap_init(void)
831{
832	pmd_t *pmd;
833
834#ifdef CONFIG_X86_64
835	BUILD_BUG_ON((fix_to_virt(0) + PAGE_SIZE) & ((1 << PMD_SHIFT) - 1));
836#else
837	WARN_ON((fix_to_virt(0) + PAGE_SIZE) & ((1 << PMD_SHIFT) - 1));
838#endif
839
840	early_ioremap_setup();
841
842	pmd = early_ioremap_pmd(fix_to_virt(FIX_BTMAP_BEGIN));
843	memset(bm_pte, 0, sizeof(bm_pte));
844	pmd_populate_kernel(&init_mm, pmd, bm_pte);
845
846	/*
847	 * The boot-ioremap range spans multiple pmds, for which
848	 * we are not prepared:
849	 */
850#define __FIXADDR_TOP (-PAGE_SIZE)
851	BUILD_BUG_ON((__fix_to_virt(FIX_BTMAP_BEGIN) >> PMD_SHIFT)
852		     != (__fix_to_virt(FIX_BTMAP_END) >> PMD_SHIFT));
853#undef __FIXADDR_TOP
854	if (pmd != early_ioremap_pmd(fix_to_virt(FIX_BTMAP_END))) {
855		WARN_ON(1);
856		printk(KERN_WARNING "pmd %p != %p\n",
857		       pmd, early_ioremap_pmd(fix_to_virt(FIX_BTMAP_END)));
858		printk(KERN_WARNING "fix_to_virt(FIX_BTMAP_BEGIN): %08lx\n",
859			fix_to_virt(FIX_BTMAP_BEGIN));
860		printk(KERN_WARNING "fix_to_virt(FIX_BTMAP_END):   %08lx\n",
861			fix_to_virt(FIX_BTMAP_END));
862
863		printk(KERN_WARNING "FIX_BTMAP_END:       %d\n", FIX_BTMAP_END);
864		printk(KERN_WARNING "FIX_BTMAP_BEGIN:     %d\n",
865		       FIX_BTMAP_BEGIN);
866	}
867}
868
869void __init __early_set_fixmap(enum fixed_addresses idx,
870			       phys_addr_t phys, pgprot_t flags)
871{
872	unsigned long addr = __fix_to_virt(idx);
873	pte_t *pte;
874
875	if (idx >= __end_of_fixed_addresses) {
876		BUG();
877		return;
878	}
879	pte = early_ioremap_pte(addr);
880
881	/* Sanitize 'prot' against any unsupported bits: */
882	pgprot_val(flags) &= __supported_pte_mask;
883
884	if (pgprot_val(flags))
885		set_pte(pte, pfn_pte(phys >> PAGE_SHIFT, flags));
886	else
887		pte_clear(&init_mm, addr, pte);
888	flush_tlb_one_kernel(addr);
889}
v4.6
 
  1/*
  2 * Re-map IO memory to kernel address space so that we can access it.
  3 * This is needed for high PCI addresses that aren't mapped in the
  4 * 640k-1MB IO memory area on PC's
  5 *
  6 * (C) Copyright 1995 1996 Linus Torvalds
  7 */
  8
  9#include <linux/bootmem.h>
 10#include <linux/init.h>
 11#include <linux/io.h>
 12#include <linux/module.h>
 13#include <linux/slab.h>
 14#include <linux/vmalloc.h>
 15#include <linux/mmiotrace.h>
 16
 17#include <asm/cacheflush.h>
 18#include <asm/e820.h>
 
 
 
 
 19#include <asm/fixmap.h>
 20#include <asm/pgtable.h>
 21#include <asm/tlbflush.h>
 22#include <asm/pgalloc.h>
 23#include <asm/pat.h>
 
 24
 25#include "physaddr.h"
 26
 27/*
 
 
 
 
 
 
 
 28 * Fix up the linear direct mapping of the kernel to avoid cache attribute
 29 * conflicts.
 30 */
 31int ioremap_change_attr(unsigned long vaddr, unsigned long size,
 32			enum page_cache_mode pcm)
 33{
 34	unsigned long nrpages = size >> PAGE_SHIFT;
 35	int err;
 36
 37	switch (pcm) {
 38	case _PAGE_CACHE_MODE_UC:
 39	default:
 40		err = _set_memory_uc(vaddr, nrpages);
 41		break;
 42	case _PAGE_CACHE_MODE_WC:
 43		err = _set_memory_wc(vaddr, nrpages);
 44		break;
 45	case _PAGE_CACHE_MODE_WT:
 46		err = _set_memory_wt(vaddr, nrpages);
 47		break;
 48	case _PAGE_CACHE_MODE_WB:
 49		err = _set_memory_wb(vaddr, nrpages);
 50		break;
 51	}
 52
 53	return err;
 54}
 55
 56static int __ioremap_check_ram(unsigned long start_pfn, unsigned long nr_pages,
 57			       void *arg)
 58{
 
 59	unsigned long i;
 60
 61	for (i = 0; i < nr_pages; ++i)
 62		if (pfn_valid(start_pfn + i) &&
 63		    !PageReserved(pfn_to_page(start_pfn + i)))
 64			return 1;
 
 
 
 
 
 
 
 65
 66	return 0;
 67}
 68
 69/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 70 * Remap an arbitrary physical address space into the kernel virtual
 71 * address space. It transparently creates kernel huge I/O mapping when
 72 * the physical address is aligned by a huge page size (1GB or 2MB) and
 73 * the requested size is at least the huge page size.
 74 *
 75 * NOTE: MTRRs can override PAT memory types with a 4KB granularity.
 76 * Therefore, the mapping code falls back to use a smaller page toward 4KB
 77 * when a mapping range is covered by non-WB type of MTRRs.
 78 *
 79 * NOTE! We need to allow non-page-aligned mappings too: we will obviously
 80 * have to convert them into an offset in a page-aligned mapping, but the
 81 * caller shouldn't need to know that small detail.
 82 */
 83static void __iomem *__ioremap_caller(resource_size_t phys_addr,
 84		unsigned long size, enum page_cache_mode pcm, void *caller)
 
 85{
 86	unsigned long offset, vaddr;
 87	resource_size_t pfn, last_pfn, last_addr;
 88	const resource_size_t unaligned_phys_addr = phys_addr;
 89	const unsigned long unaligned_size = size;
 
 90	struct vm_struct *area;
 91	enum page_cache_mode new_pcm;
 92	pgprot_t prot;
 93	int retval;
 94	void __iomem *ret_addr;
 95
 96	/* Don't allow wraparound or zero size */
 97	last_addr = phys_addr + size - 1;
 98	if (!size || last_addr < phys_addr)
 99		return NULL;
100
101	if (!phys_addr_valid(phys_addr)) {
102		printk(KERN_WARNING "ioremap: invalid physical address %llx\n",
103		       (unsigned long long)phys_addr);
104		WARN_ON_ONCE(1);
105		return NULL;
106	}
107
108	/*
109	 * Don't remap the low PCI/ISA area, it's always mapped..
110	 */
111	if (is_ISA_range(phys_addr, last_addr))
112		return (__force void __iomem *)phys_to_virt(phys_addr);
113
114	/*
115	 * Don't allow anybody to remap normal RAM that we're using..
116	 */
117	pfn      = phys_addr >> PAGE_SHIFT;
118	last_pfn = last_addr >> PAGE_SHIFT;
119	if (walk_system_ram_range(pfn, last_pfn - pfn + 1, NULL,
120					  __ioremap_check_ram) == 1) {
121		WARN_ONCE(1, "ioremap on RAM at %pa - %pa\n",
122			  &phys_addr, &last_addr);
123		return NULL;
124	}
125
126	/*
127	 * Mappings have to be page-aligned
128	 */
129	offset = phys_addr & ~PAGE_MASK;
130	phys_addr &= PHYSICAL_PAGE_MASK;
131	size = PAGE_ALIGN(last_addr+1) - phys_addr;
132
133	retval = reserve_memtype(phys_addr, (u64)phys_addr + size,
134						pcm, &new_pcm);
135	if (retval) {
136		printk(KERN_ERR "ioremap reserve_memtype failed %d\n", retval);
137		return NULL;
138	}
139
140	if (pcm != new_pcm) {
141		if (!is_new_memtype_allowed(phys_addr, size, pcm, new_pcm)) {
142			printk(KERN_ERR
143		"ioremap error for 0x%llx-0x%llx, requested 0x%x, got 0x%x\n",
144				(unsigned long long)phys_addr,
145				(unsigned long long)(phys_addr + size),
146				pcm, new_pcm);
147			goto err_free_memtype;
148		}
149		pcm = new_pcm;
150	}
151
 
 
 
 
 
152	prot = PAGE_KERNEL_IO;
 
 
 
153	switch (pcm) {
154	case _PAGE_CACHE_MODE_UC:
155	default:
156		prot = __pgprot(pgprot_val(prot) |
157				cachemode2protval(_PAGE_CACHE_MODE_UC));
158		break;
159	case _PAGE_CACHE_MODE_UC_MINUS:
160		prot = __pgprot(pgprot_val(prot) |
161				cachemode2protval(_PAGE_CACHE_MODE_UC_MINUS));
162		break;
163	case _PAGE_CACHE_MODE_WC:
164		prot = __pgprot(pgprot_val(prot) |
165				cachemode2protval(_PAGE_CACHE_MODE_WC));
166		break;
167	case _PAGE_CACHE_MODE_WT:
168		prot = __pgprot(pgprot_val(prot) |
169				cachemode2protval(_PAGE_CACHE_MODE_WT));
170		break;
171	case _PAGE_CACHE_MODE_WB:
172		break;
173	}
174
175	/*
176	 * Ok, go for it..
177	 */
178	area = get_vm_area_caller(size, VM_IOREMAP, caller);
179	if (!area)
180		goto err_free_memtype;
181	area->phys_addr = phys_addr;
182	vaddr = (unsigned long) area->addr;
183
184	if (kernel_map_sync_memtype(phys_addr, size, pcm))
185		goto err_free_area;
186
187	if (ioremap_page_range(vaddr, vaddr + size, phys_addr, prot))
188		goto err_free_area;
189
190	ret_addr = (void __iomem *) (vaddr + offset);
191	mmiotrace_ioremap(unaligned_phys_addr, unaligned_size, ret_addr);
192
193	/*
194	 * Check if the request spans more than any BAR in the iomem resource
195	 * tree.
196	 */
197	if (iomem_map_sanity_check(unaligned_phys_addr, unaligned_size))
198		pr_warn("caller %pS mapping multiple BARs\n", caller);
199
200	return ret_addr;
201err_free_area:
202	free_vm_area(area);
203err_free_memtype:
204	free_memtype(phys_addr, phys_addr + size);
205	return NULL;
206}
207
208/**
209 * ioremap_nocache     -   map bus memory into CPU space
210 * @phys_addr:    bus address of the memory
211 * @size:      size of the resource to map
212 *
213 * ioremap_nocache performs a platform specific sequence of operations to
214 * make bus memory CPU accessible via the readb/readw/readl/writeb/
215 * writew/writel functions and the other mmio helpers. The returned
216 * address is not guaranteed to be usable directly as a virtual
217 * address.
218 *
219 * This version of ioremap ensures that the memory is marked uncachable
220 * on the CPU as well as honouring existing caching rules from things like
221 * the PCI bus. Note that there are other caches and buffers on many
222 * busses. In particular driver authors should read up on PCI writes
223 *
224 * It's useful if some control registers are in such an area and
225 * write combining or read caching is not desirable:
226 *
227 * Must be freed with iounmap.
228 */
229void __iomem *ioremap_nocache(resource_size_t phys_addr, unsigned long size)
230{
231	/*
232	 * Ideally, this should be:
233	 *	pat_enabled() ? _PAGE_CACHE_MODE_UC : _PAGE_CACHE_MODE_UC_MINUS;
234	 *
235	 * Till we fix all X drivers to use ioremap_wc(), we will use
236	 * UC MINUS. Drivers that are certain they need or can already
237	 * be converted over to strong UC can use ioremap_uc().
238	 */
239	enum page_cache_mode pcm = _PAGE_CACHE_MODE_UC_MINUS;
240
241	return __ioremap_caller(phys_addr, size, pcm,
242				__builtin_return_address(0));
243}
244EXPORT_SYMBOL(ioremap_nocache);
245
246/**
247 * ioremap_uc     -   map bus memory into CPU space as strongly uncachable
248 * @phys_addr:    bus address of the memory
249 * @size:      size of the resource to map
250 *
251 * ioremap_uc performs a platform specific sequence of operations to
252 * make bus memory CPU accessible via the readb/readw/readl/writeb/
253 * writew/writel functions and the other mmio helpers. The returned
254 * address is not guaranteed to be usable directly as a virtual
255 * address.
256 *
257 * This version of ioremap ensures that the memory is marked with a strong
258 * preference as completely uncachable on the CPU when possible. For non-PAT
259 * systems this ends up setting page-attribute flags PCD=1, PWT=1. For PAT
260 * systems this will set the PAT entry for the pages as strong UC.  This call
261 * will honor existing caching rules from things like the PCI bus. Note that
262 * there are other caches and buffers on many busses. In particular driver
263 * authors should read up on PCI writes.
264 *
265 * It's useful if some control registers are in such an area and
266 * write combining or read caching is not desirable:
267 *
268 * Must be freed with iounmap.
269 */
270void __iomem *ioremap_uc(resource_size_t phys_addr, unsigned long size)
271{
272	enum page_cache_mode pcm = _PAGE_CACHE_MODE_UC;
273
274	return __ioremap_caller(phys_addr, size, pcm,
275				__builtin_return_address(0));
276}
277EXPORT_SYMBOL_GPL(ioremap_uc);
278
279/**
280 * ioremap_wc	-	map memory into CPU space write combined
281 * @phys_addr:	bus address of the memory
282 * @size:	size of the resource to map
283 *
284 * This version of ioremap ensures that the memory is marked write combining.
285 * Write combining allows faster writes to some hardware devices.
286 *
287 * Must be freed with iounmap.
288 */
289void __iomem *ioremap_wc(resource_size_t phys_addr, unsigned long size)
290{
291	return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WC,
292					__builtin_return_address(0));
293}
294EXPORT_SYMBOL(ioremap_wc);
295
296/**
297 * ioremap_wt	-	map memory into CPU space write through
298 * @phys_addr:	bus address of the memory
299 * @size:	size of the resource to map
300 *
301 * This version of ioremap ensures that the memory is marked write through.
302 * Write through stores data into memory while keeping the cache up-to-date.
303 *
304 * Must be freed with iounmap.
305 */
306void __iomem *ioremap_wt(resource_size_t phys_addr, unsigned long size)
307{
308	return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WT,
309					__builtin_return_address(0));
310}
311EXPORT_SYMBOL(ioremap_wt);
312
 
 
 
 
 
 
 
313void __iomem *ioremap_cache(resource_size_t phys_addr, unsigned long size)
314{
315	return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WB,
316				__builtin_return_address(0));
317}
318EXPORT_SYMBOL(ioremap_cache);
319
320void __iomem *ioremap_prot(resource_size_t phys_addr, unsigned long size,
321				unsigned long prot_val)
322{
323	return __ioremap_caller(phys_addr, size,
324				pgprot2cachemode(__pgprot(prot_val)),
325				__builtin_return_address(0));
326}
327EXPORT_SYMBOL(ioremap_prot);
328
329/**
330 * iounmap - Free a IO remapping
331 * @addr: virtual address from ioremap_*
332 *
333 * Caller must ensure there is only one unmapping for the same pointer.
334 */
335void iounmap(volatile void __iomem *addr)
336{
337	struct vm_struct *p, *o;
338
339	if ((void __force *)addr <= high_memory)
340		return;
341
342	/*
343	 * __ioremap special-cases the PCI/ISA range by not instantiating a
344	 * vm_area and by simply returning an address into the kernel mapping
345	 * of ISA space.   So handle that here.
 
 
346	 */
347	if ((void __force *)addr >= phys_to_virt(ISA_START_ADDRESS) &&
348	    (void __force *)addr < phys_to_virt(ISA_END_ADDRESS))
 
349		return;
 
 
 
350
351	addr = (volatile void __iomem *)
352		(PAGE_MASK & (unsigned long __force)addr);
353
354	mmiotrace_iounmap(addr);
355
356	/* Use the vm area unlocked, assuming the caller
357	   ensures there isn't another iounmap for the same address
358	   in parallel. Reuse of the virtual address is prevented by
359	   leaving it in the global lists until we're done with it.
360	   cpa takes care of the direct mappings. */
361	p = find_vm_area((void __force *)addr);
362
363	if (!p) {
364		printk(KERN_ERR "iounmap: bad address %p\n", addr);
365		dump_stack();
366		return;
367	}
368
369	free_memtype(p->phys_addr, p->phys_addr + get_vm_area_size(p));
370
371	/* Finally remove it */
372	o = remove_vm_area((void __force *)addr);
373	BUG_ON(p != o || o == NULL);
374	kfree(p);
375}
376EXPORT_SYMBOL(iounmap);
377
 
 
 
 
 
378int __init arch_ioremap_pud_supported(void)
379{
380#ifdef CONFIG_X86_64
381	return cpu_has_gbpages;
382#else
383	return 0;
384#endif
385}
386
387int __init arch_ioremap_pmd_supported(void)
388{
389	return cpu_has_pse;
390}
391
392/*
393 * Convert a physical pointer to a virtual kernel pointer for /dev/mem
394 * access
395 */
396void *xlate_dev_mem_ptr(phys_addr_t phys)
397{
398	unsigned long start  = phys &  PAGE_MASK;
399	unsigned long offset = phys & ~PAGE_MASK;
400	void *vaddr;
401
402	/* If page is RAM, we can use __va. Otherwise ioremap and unmap. */
403	if (page_is_ram(start >> PAGE_SHIFT))
404		return __va(phys);
405
406	vaddr = ioremap_cache(start, PAGE_SIZE);
407	/* Only add the offset on success and return NULL if the ioremap() failed: */
408	if (vaddr)
409		vaddr += offset;
410
411	return vaddr;
412}
413
414void unxlate_dev_mem_ptr(phys_addr_t phys, void *addr)
415{
416	if (page_is_ram(phys >> PAGE_SHIFT))
417		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
418
419	iounmap((void __iomem *)((unsigned long)addr & PAGE_MASK));
 
 
 
 
 
 
 
 
 
420}
 
421
422static pte_t bm_pte[PAGE_SIZE/sizeof(pte_t)] __page_aligned_bss;
423
424static inline pmd_t * __init early_ioremap_pmd(unsigned long addr)
425{
426	/* Don't assume we're using swapper_pg_dir at this point */
427	pgd_t *base = __va(read_cr3());
428	pgd_t *pgd = &base[pgd_index(addr)];
429	pud_t *pud = pud_offset(pgd, addr);
 
430	pmd_t *pmd = pmd_offset(pud, addr);
431
432	return pmd;
433}
434
435static inline pte_t * __init early_ioremap_pte(unsigned long addr)
436{
437	return &bm_pte[pte_index(addr)];
438}
439
440bool __init is_early_ioremap_ptep(pte_t *ptep)
441{
442	return ptep >= &bm_pte[0] && ptep < &bm_pte[PAGE_SIZE/sizeof(pte_t)];
443}
444
445void __init early_ioremap_init(void)
446{
447	pmd_t *pmd;
448
449#ifdef CONFIG_X86_64
450	BUILD_BUG_ON((fix_to_virt(0) + PAGE_SIZE) & ((1 << PMD_SHIFT) - 1));
451#else
452	WARN_ON((fix_to_virt(0) + PAGE_SIZE) & ((1 << PMD_SHIFT) - 1));
453#endif
454
455	early_ioremap_setup();
456
457	pmd = early_ioremap_pmd(fix_to_virt(FIX_BTMAP_BEGIN));
458	memset(bm_pte, 0, sizeof(bm_pte));
459	pmd_populate_kernel(&init_mm, pmd, bm_pte);
460
461	/*
462	 * The boot-ioremap range spans multiple pmds, for which
463	 * we are not prepared:
464	 */
465#define __FIXADDR_TOP (-PAGE_SIZE)
466	BUILD_BUG_ON((__fix_to_virt(FIX_BTMAP_BEGIN) >> PMD_SHIFT)
467		     != (__fix_to_virt(FIX_BTMAP_END) >> PMD_SHIFT));
468#undef __FIXADDR_TOP
469	if (pmd != early_ioremap_pmd(fix_to_virt(FIX_BTMAP_END))) {
470		WARN_ON(1);
471		printk(KERN_WARNING "pmd %p != %p\n",
472		       pmd, early_ioremap_pmd(fix_to_virt(FIX_BTMAP_END)));
473		printk(KERN_WARNING "fix_to_virt(FIX_BTMAP_BEGIN): %08lx\n",
474			fix_to_virt(FIX_BTMAP_BEGIN));
475		printk(KERN_WARNING "fix_to_virt(FIX_BTMAP_END):   %08lx\n",
476			fix_to_virt(FIX_BTMAP_END));
477
478		printk(KERN_WARNING "FIX_BTMAP_END:       %d\n", FIX_BTMAP_END);
479		printk(KERN_WARNING "FIX_BTMAP_BEGIN:     %d\n",
480		       FIX_BTMAP_BEGIN);
481	}
482}
483
484void __init __early_set_fixmap(enum fixed_addresses idx,
485			       phys_addr_t phys, pgprot_t flags)
486{
487	unsigned long addr = __fix_to_virt(idx);
488	pte_t *pte;
489
490	if (idx >= __end_of_fixed_addresses) {
491		BUG();
492		return;
493	}
494	pte = early_ioremap_pte(addr);
495
 
 
 
496	if (pgprot_val(flags))
497		set_pte(pte, pfn_pte(phys >> PAGE_SHIFT, flags));
498	else
499		pte_clear(&init_mm, addr, pte);
500	__flush_tlb_one(addr);
501}