Linux Audio

Check our new training course

Loading...
v5.9
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 *   Copyright (C) 2000 Tilmann Bitterberg
  4 *   (tilmann@bitterberg.de)
  5 *
  6 *   RTAS (Runtime Abstraction Services) stuff
  7 *   Intention is to provide a clean user interface
  8 *   to use the RTAS.
  9 *
 10 *   TODO:
 11 *   Split off a header file and maybe move it to a different
 12 *   location. Write Documentation on what the /proc/rtas/ entries
 13 *   actually do.
 14 */
 15
 16#include <linux/errno.h>
 17#include <linux/sched.h>
 18#include <linux/proc_fs.h>
 19#include <linux/stat.h>
 20#include <linux/ctype.h>
 21#include <linux/time.h>
 22#include <linux/string.h>
 23#include <linux/init.h>
 24#include <linux/seq_file.h>
 25#include <linux/bitops.h>
 26#include <linux/rtc.h>
 27
 28#include <linux/uaccess.h>
 29#include <asm/processor.h>
 30#include <asm/io.h>
 31#include <asm/prom.h>
 32#include <asm/rtas.h>
 33#include <asm/machdep.h> /* for ppc_md */
 34#include <asm/time.h>
 35
 36/* Token for Sensors */
 37#define KEY_SWITCH		0x0001
 38#define ENCLOSURE_SWITCH	0x0002
 39#define THERMAL_SENSOR		0x0003
 40#define LID_STATUS		0x0004
 41#define POWER_SOURCE		0x0005
 42#define BATTERY_VOLTAGE		0x0006
 43#define BATTERY_REMAINING	0x0007
 44#define BATTERY_PERCENTAGE	0x0008
 45#define EPOW_SENSOR		0x0009
 46#define BATTERY_CYCLESTATE	0x000a
 47#define BATTERY_CHARGING	0x000b
 48
 49/* IBM specific sensors */
 50#define IBM_SURVEILLANCE	0x2328 /* 9000 */
 51#define IBM_FANRPM		0x2329 /* 9001 */
 52#define IBM_VOLTAGE		0x232a /* 9002 */
 53#define IBM_DRCONNECTOR		0x232b /* 9003 */
 54#define IBM_POWERSUPPLY		0x232c /* 9004 */
 55
 56/* Status return values */
 57#define SENSOR_CRITICAL_HIGH	13
 58#define SENSOR_WARNING_HIGH	12
 59#define SENSOR_NORMAL		11
 60#define SENSOR_WARNING_LOW	10
 61#define SENSOR_CRITICAL_LOW	 9
 62#define SENSOR_SUCCESS		 0
 63#define SENSOR_HW_ERROR		-1
 64#define SENSOR_BUSY		-2
 65#define SENSOR_NOT_EXIST	-3
 66#define SENSOR_DR_ENTITY	-9000
 67
 68/* Location Codes */
 69#define LOC_SCSI_DEV_ADDR	'A'
 70#define LOC_SCSI_DEV_LOC	'B'
 71#define LOC_CPU			'C'
 72#define LOC_DISKETTE		'D'
 73#define LOC_ETHERNET		'E'
 74#define LOC_FAN			'F'
 75#define LOC_GRAPHICS		'G'
 76/* reserved / not used		'H' */
 77#define LOC_IO_ADAPTER		'I'
 78/* reserved / not used		'J' */
 79#define LOC_KEYBOARD		'K'
 80#define LOC_LCD			'L'
 81#define LOC_MEMORY		'M'
 82#define LOC_NV_MEMORY		'N'
 83#define LOC_MOUSE		'O'
 84#define LOC_PLANAR		'P'
 85#define LOC_OTHER_IO		'Q'
 86#define LOC_PARALLEL		'R'
 87#define LOC_SERIAL		'S'
 88#define LOC_DEAD_RING		'T'
 89#define LOC_RACKMOUNTED		'U' /* for _u_nit is rack mounted */
 90#define LOC_VOLTAGE		'V'
 91#define LOC_SWITCH_ADAPTER	'W'
 92#define LOC_OTHER		'X'
 93#define LOC_FIRMWARE		'Y'
 94#define LOC_SCSI		'Z'
 95
 96/* Tokens for indicators */
 97#define TONE_FREQUENCY		0x0001 /* 0 - 1000 (HZ)*/
 98#define TONE_VOLUME		0x0002 /* 0 - 100 (%) */
 99#define SYSTEM_POWER_STATE	0x0003 
100#define WARNING_LIGHT		0x0004
101#define DISK_ACTIVITY_LIGHT	0x0005
102#define HEX_DISPLAY_UNIT	0x0006
103#define BATTERY_WARNING_TIME	0x0007
104#define CONDITION_CYCLE_REQUEST	0x0008
105#define SURVEILLANCE_INDICATOR	0x2328 /* 9000 */
106#define DR_ACTION		0x2329 /* 9001 */
107#define DR_INDICATOR		0x232a /* 9002 */
108/* 9003 - 9004: Vendor specific */
109/* 9006 - 9999: Vendor specific */
110
111/* other */
112#define MAX_SENSORS		 17  /* I only know of 17 sensors */    
113#define MAX_LINELENGTH          256
114#define SENSOR_PREFIX		"ibm,sensor-"
115#define cel_to_fahr(x)		((x*9/5)+32)
116
117struct individual_sensor {
118	unsigned int token;
119	unsigned int quant;
120};
121
122struct rtas_sensors {
123        struct individual_sensor sensor[MAX_SENSORS];
124	unsigned int quant;
125};
126
127/* Globals */
128static struct rtas_sensors sensors;
129static struct device_node *rtas_node = NULL;
130static unsigned long power_on_time = 0; /* Save the time the user set */
131static char progress_led[MAX_LINELENGTH];
132
133static unsigned long rtas_tone_frequency = 1000;
134static unsigned long rtas_tone_volume = 0;
135
136/* ****************************************************************** */
137/* Declarations */
138static int ppc_rtas_sensors_show(struct seq_file *m, void *v);
139static int ppc_rtas_clock_show(struct seq_file *m, void *v);
140static ssize_t ppc_rtas_clock_write(struct file *file,
141		const char __user *buf, size_t count, loff_t *ppos);
142static int ppc_rtas_progress_show(struct seq_file *m, void *v);
143static ssize_t ppc_rtas_progress_write(struct file *file,
144		const char __user *buf, size_t count, loff_t *ppos);
145static int ppc_rtas_poweron_show(struct seq_file *m, void *v);
146static ssize_t ppc_rtas_poweron_write(struct file *file,
147		const char __user *buf, size_t count, loff_t *ppos);
148
149static ssize_t ppc_rtas_tone_freq_write(struct file *file,
150		const char __user *buf, size_t count, loff_t *ppos);
151static int ppc_rtas_tone_freq_show(struct seq_file *m, void *v);
152static ssize_t ppc_rtas_tone_volume_write(struct file *file,
153		const char __user *buf, size_t count, loff_t *ppos);
154static int ppc_rtas_tone_volume_show(struct seq_file *m, void *v);
155static int ppc_rtas_rmo_buf_show(struct seq_file *m, void *v);
156
 
 
 
 
 
 
 
 
 
 
 
 
157static int poweron_open(struct inode *inode, struct file *file)
158{
159	return single_open(file, ppc_rtas_poweron_show, NULL);
160}
161
162static const struct proc_ops ppc_rtas_poweron_proc_ops = {
163	.proc_open	= poweron_open,
164	.proc_read	= seq_read,
165	.proc_lseek	= seq_lseek,
166	.proc_write	= ppc_rtas_poweron_write,
167	.proc_release	= single_release,
168};
169
170static int progress_open(struct inode *inode, struct file *file)
171{
172	return single_open(file, ppc_rtas_progress_show, NULL);
173}
174
175static const struct proc_ops ppc_rtas_progress_proc_ops = {
176	.proc_open	= progress_open,
177	.proc_read	= seq_read,
178	.proc_lseek	= seq_lseek,
179	.proc_write	= ppc_rtas_progress_write,
180	.proc_release	= single_release,
181};
182
183static int clock_open(struct inode *inode, struct file *file)
184{
185	return single_open(file, ppc_rtas_clock_show, NULL);
186}
187
188static const struct proc_ops ppc_rtas_clock_proc_ops = {
189	.proc_open	= clock_open,
190	.proc_read	= seq_read,
191	.proc_lseek	= seq_lseek,
192	.proc_write	= ppc_rtas_clock_write,
193	.proc_release	= single_release,
194};
195
196static int tone_freq_open(struct inode *inode, struct file *file)
197{
198	return single_open(file, ppc_rtas_tone_freq_show, NULL);
199}
200
201static const struct proc_ops ppc_rtas_tone_freq_proc_ops = {
202	.proc_open	= tone_freq_open,
203	.proc_read	= seq_read,
204	.proc_lseek	= seq_lseek,
205	.proc_write	= ppc_rtas_tone_freq_write,
206	.proc_release	= single_release,
207};
208
209static int tone_volume_open(struct inode *inode, struct file *file)
210{
211	return single_open(file, ppc_rtas_tone_volume_show, NULL);
212}
213
214static const struct proc_ops ppc_rtas_tone_volume_proc_ops = {
215	.proc_open	= tone_volume_open,
216	.proc_read	= seq_read,
217	.proc_lseek	= seq_lseek,
218	.proc_write	= ppc_rtas_tone_volume_write,
219	.proc_release	= single_release,
 
 
 
 
 
 
 
 
 
 
 
 
220};
221
222static int ppc_rtas_find_all_sensors(void);
223static void ppc_rtas_process_sensor(struct seq_file *m,
224	struct individual_sensor *s, int state, int error, const char *loc);
225static char *ppc_rtas_process_error(int error);
226static void get_location_code(struct seq_file *m,
227	struct individual_sensor *s, const char *loc);
228static void check_location_string(struct seq_file *m, const char *c);
229static void check_location(struct seq_file *m, const char *c);
230
231static int __init proc_rtas_init(void)
232{
233	if (!machine_is(pseries))
234		return -ENODEV;
235
236	rtas_node = of_find_node_by_name(NULL, "rtas");
237	if (rtas_node == NULL)
238		return -ENODEV;
239
240	proc_create("powerpc/rtas/progress", 0644, NULL,
241		    &ppc_rtas_progress_proc_ops);
242	proc_create("powerpc/rtas/clock", 0644, NULL,
243		    &ppc_rtas_clock_proc_ops);
244	proc_create("powerpc/rtas/poweron", 0644, NULL,
245		    &ppc_rtas_poweron_proc_ops);
246	proc_create_single("powerpc/rtas/sensors", 0444, NULL,
247			ppc_rtas_sensors_show);
248	proc_create("powerpc/rtas/frequency", 0644, NULL,
249		    &ppc_rtas_tone_freq_proc_ops);
250	proc_create("powerpc/rtas/volume", 0644, NULL,
251		    &ppc_rtas_tone_volume_proc_ops);
252	proc_create_single("powerpc/rtas/rmo_buffer", 0400, NULL,
253			ppc_rtas_rmo_buf_show);
254	return 0;
255}
256
257__initcall(proc_rtas_init);
258
259static int parse_number(const char __user *p, size_t count, u64 *val)
260{
261	char buf[40];
262	char *end;
263
264	if (count > 39)
265		return -EINVAL;
266
267	if (copy_from_user(buf, p, count))
268		return -EFAULT;
269
270	buf[count] = 0;
271
272	*val = simple_strtoull(buf, &end, 10);
273	if (*end && *end != '\n')
274		return -EINVAL;
275
276	return 0;
277}
278
279/* ****************************************************************** */
280/* POWER-ON-TIME                                                      */
281/* ****************************************************************** */
282static ssize_t ppc_rtas_poweron_write(struct file *file,
283		const char __user *buf, size_t count, loff_t *ppos)
284{
285	struct rtc_time tm;
286	time64_t nowtime;
287	int error = parse_number(buf, count, &nowtime);
288	if (error)
289		return error;
290
291	power_on_time = nowtime; /* save the time */
292
293	rtc_time64_to_tm(nowtime, &tm);
294
295	error = rtas_call(rtas_token("set-time-for-power-on"), 7, 1, NULL, 
296			tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday,
297			tm.tm_hour, tm.tm_min, tm.tm_sec, 0 /* nano */);
298	if (error)
299		printk(KERN_WARNING "error: setting poweron time returned: %s\n", 
300				ppc_rtas_process_error(error));
301	return count;
302}
303/* ****************************************************************** */
304static int ppc_rtas_poweron_show(struct seq_file *m, void *v)
305{
306	if (power_on_time == 0)
307		seq_printf(m, "Power on time not set\n");
308	else
309		seq_printf(m, "%lu\n",power_on_time);
310	return 0;
311}
312
313/* ****************************************************************** */
314/* PROGRESS                                                           */
315/* ****************************************************************** */
316static ssize_t ppc_rtas_progress_write(struct file *file,
317		const char __user *buf, size_t count, loff_t *ppos)
318{
319	unsigned long hex;
320
321	if (count >= MAX_LINELENGTH)
322		count = MAX_LINELENGTH -1;
323	if (copy_from_user(progress_led, buf, count)) { /* save the string */
324		return -EFAULT;
325	}
326	progress_led[count] = 0;
327
328	/* Lets see if the user passed hexdigits */
329	hex = simple_strtoul(progress_led, NULL, 10);
330
331	rtas_progress ((char *)progress_led, hex);
332	return count;
333
334	/* clear the line */
335	/* rtas_progress("                   ", 0xffff);*/
336}
337/* ****************************************************************** */
338static int ppc_rtas_progress_show(struct seq_file *m, void *v)
339{
340	if (progress_led[0])
341		seq_printf(m, "%s\n", progress_led);
342	return 0;
343}
344
345/* ****************************************************************** */
346/* CLOCK                                                              */
347/* ****************************************************************** */
348static ssize_t ppc_rtas_clock_write(struct file *file,
349		const char __user *buf, size_t count, loff_t *ppos)
350{
351	struct rtc_time tm;
352	time64_t nowtime;
353	int error = parse_number(buf, count, &nowtime);
354	if (error)
355		return error;
356
357	rtc_time64_to_tm(nowtime, &tm);
358	error = rtas_call(rtas_token("set-time-of-day"), 7, 1, NULL, 
359			tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday,
360			tm.tm_hour, tm.tm_min, tm.tm_sec, 0);
361	if (error)
362		printk(KERN_WARNING "error: setting the clock returned: %s\n", 
363				ppc_rtas_process_error(error));
364	return count;
365}
366/* ****************************************************************** */
367static int ppc_rtas_clock_show(struct seq_file *m, void *v)
368{
369	int ret[8];
370	int error = rtas_call(rtas_token("get-time-of-day"), 0, 8, ret);
371
372	if (error) {
373		printk(KERN_WARNING "error: reading the clock returned: %s\n", 
374				ppc_rtas_process_error(error));
375		seq_printf(m, "0");
376	} else { 
377		unsigned int year, mon, day, hour, min, sec;
378		year = ret[0]; mon  = ret[1]; day  = ret[2];
379		hour = ret[3]; min  = ret[4]; sec  = ret[5];
380		seq_printf(m, "%lld\n",
381				mktime64(year, mon, day, hour, min, sec));
382	}
383	return 0;
384}
385
386/* ****************************************************************** */
387/* SENSOR STUFF                                                       */
388/* ****************************************************************** */
389static int ppc_rtas_sensors_show(struct seq_file *m, void *v)
390{
391	int i,j;
392	int state, error;
393	int get_sensor_state = rtas_token("get-sensor-state");
394
395	seq_printf(m, "RTAS (RunTime Abstraction Services) Sensor Information\n");
396	seq_printf(m, "Sensor\t\tValue\t\tCondition\tLocation\n");
397	seq_printf(m, "********************************************************\n");
398
399	if (ppc_rtas_find_all_sensors() != 0) {
400		seq_printf(m, "\nNo sensors are available\n");
401		return 0;
402	}
403
404	for (i=0; i<sensors.quant; i++) {
405		struct individual_sensor *p = &sensors.sensor[i];
406		char rstr[64];
407		const char *loc;
408		int llen, offs;
409
410		sprintf (rstr, SENSOR_PREFIX"%04d", p->token);
411		loc = of_get_property(rtas_node, rstr, &llen);
412
413		/* A sensor may have multiple instances */
414		for (j = 0, offs = 0; j <= p->quant; j++) {
415			error =	rtas_call(get_sensor_state, 2, 2, &state, 
416				  	  p->token, j);
417
418			ppc_rtas_process_sensor(m, p, state, error, loc);
419			seq_putc(m, '\n');
420			if (loc) {
421				offs += strlen(loc) + 1;
422				loc += strlen(loc) + 1;
423				if (offs >= llen)
424					loc = NULL;
425			}
426		}
427	}
428	return 0;
429}
430
431/* ****************************************************************** */
432
433static int ppc_rtas_find_all_sensors(void)
434{
435	const unsigned int *utmp;
436	int len, i;
437
438	utmp = of_get_property(rtas_node, "rtas-sensors", &len);
439	if (utmp == NULL) {
440		printk (KERN_ERR "error: could not get rtas-sensors\n");
441		return 1;
442	}
443
444	sensors.quant = len / 8;      /* int + int */
445
446	for (i=0; i<sensors.quant; i++) {
447		sensors.sensor[i].token = *utmp++;
448		sensors.sensor[i].quant = *utmp++;
449	}
450	return 0;
451}
452
453/* ****************************************************************** */
454/*
455 * Builds a string of what rtas returned
456 */
457static char *ppc_rtas_process_error(int error)
458{
459	switch (error) {
460		case SENSOR_CRITICAL_HIGH:
461			return "(critical high)";
462		case SENSOR_WARNING_HIGH:
463			return "(warning high)";
464		case SENSOR_NORMAL:
465			return "(normal)";
466		case SENSOR_WARNING_LOW:
467			return "(warning low)";
468		case SENSOR_CRITICAL_LOW:
469			return "(critical low)";
470		case SENSOR_SUCCESS:
471			return "(read ok)";
472		case SENSOR_HW_ERROR:
473			return "(hardware error)";
474		case SENSOR_BUSY:
475			return "(busy)";
476		case SENSOR_NOT_EXIST:
477			return "(non existent)";
478		case SENSOR_DR_ENTITY:
479			return "(dr entity removed)";
480		default:
481			return "(UNKNOWN)";
482	}
483}
484
485/* ****************************************************************** */
486/*
487 * Builds a string out of what the sensor said
488 */
489
490static void ppc_rtas_process_sensor(struct seq_file *m,
491	struct individual_sensor *s, int state, int error, const char *loc)
492{
493	/* Defined return vales */
494	const char * key_switch[]        = { "Off\t", "Normal\t", "Secure\t", 
495						"Maintenance" };
496	const char * enclosure_switch[]  = { "Closed", "Open" };
497	const char * lid_status[]        = { " ", "Open", "Closed" };
498	const char * power_source[]      = { "AC\t", "Battery", 
499		  				"AC & Battery" };
500	const char * battery_remaining[] = { "Very Low", "Low", "Mid", "High" };
501	const char * epow_sensor[]       = { 
502		"EPOW Reset", "Cooling warning", "Power warning",
503		"System shutdown", "System halt", "EPOW main enclosure",
504		"EPOW power off" };
505	const char * battery_cyclestate[]  = { "None", "In progress", 
506						"Requested" };
507	const char * battery_charging[]    = { "Charging", "Discharging",
508						"No current flow" };
509	const char * ibm_drconnector[]     = { "Empty", "Present", "Unusable", 
510						"Exchange" };
511
512	int have_strings = 0;
513	int num_states = 0;
514	int temperature = 0;
515	int unknown = 0;
516
517	/* What kind of sensor do we have here? */
518	
519	switch (s->token) {
520		case KEY_SWITCH:
521			seq_printf(m, "Key switch:\t");
522			num_states = sizeof(key_switch) / sizeof(char *);
523			if (state < num_states) {
524				seq_printf(m, "%s\t", key_switch[state]);
525				have_strings = 1;
526			}
527			break;
528		case ENCLOSURE_SWITCH:
529			seq_printf(m, "Enclosure switch:\t");
530			num_states = sizeof(enclosure_switch) / sizeof(char *);
531			if (state < num_states) {
532				seq_printf(m, "%s\t", 
533						enclosure_switch[state]);
534				have_strings = 1;
535			}
536			break;
537		case THERMAL_SENSOR:
538			seq_printf(m, "Temp. (C/F):\t");
539			temperature = 1;
540			break;
541		case LID_STATUS:
542			seq_printf(m, "Lid status:\t");
543			num_states = sizeof(lid_status) / sizeof(char *);
544			if (state < num_states) {
545				seq_printf(m, "%s\t", lid_status[state]);
546				have_strings = 1;
547			}
548			break;
549		case POWER_SOURCE:
550			seq_printf(m, "Power source:\t");
551			num_states = sizeof(power_source) / sizeof(char *);
552			if (state < num_states) {
553				seq_printf(m, "%s\t", 
554						power_source[state]);
555				have_strings = 1;
556			}
557			break;
558		case BATTERY_VOLTAGE:
559			seq_printf(m, "Battery voltage:\t");
560			break;
561		case BATTERY_REMAINING:
562			seq_printf(m, "Battery remaining:\t");
563			num_states = sizeof(battery_remaining) / sizeof(char *);
564			if (state < num_states)
565			{
566				seq_printf(m, "%s\t", 
567						battery_remaining[state]);
568				have_strings = 1;
569			}
570			break;
571		case BATTERY_PERCENTAGE:
572			seq_printf(m, "Battery percentage:\t");
573			break;
574		case EPOW_SENSOR:
575			seq_printf(m, "EPOW Sensor:\t");
576			num_states = sizeof(epow_sensor) / sizeof(char *);
577			if (state < num_states) {
578				seq_printf(m, "%s\t", epow_sensor[state]);
579				have_strings = 1;
580			}
581			break;
582		case BATTERY_CYCLESTATE:
583			seq_printf(m, "Battery cyclestate:\t");
584			num_states = sizeof(battery_cyclestate) / 
585				     	sizeof(char *);
586			if (state < num_states) {
587				seq_printf(m, "%s\t", 
588						battery_cyclestate[state]);
589				have_strings = 1;
590			}
591			break;
592		case BATTERY_CHARGING:
593			seq_printf(m, "Battery Charging:\t");
594			num_states = sizeof(battery_charging) / sizeof(char *);
595			if (state < num_states) {
596				seq_printf(m, "%s\t", 
597						battery_charging[state]);
598				have_strings = 1;
599			}
600			break;
601		case IBM_SURVEILLANCE:
602			seq_printf(m, "Surveillance:\t");
603			break;
604		case IBM_FANRPM:
605			seq_printf(m, "Fan (rpm):\t");
606			break;
607		case IBM_VOLTAGE:
608			seq_printf(m, "Voltage (mv):\t");
609			break;
610		case IBM_DRCONNECTOR:
611			seq_printf(m, "DR connector:\t");
612			num_states = sizeof(ibm_drconnector) / sizeof(char *);
613			if (state < num_states) {
614				seq_printf(m, "%s\t", 
615						ibm_drconnector[state]);
616				have_strings = 1;
617			}
618			break;
619		case IBM_POWERSUPPLY:
620			seq_printf(m, "Powersupply:\t");
621			break;
622		default:
623			seq_printf(m,  "Unknown sensor (type %d), ignoring it\n",
624					s->token);
625			unknown = 1;
626			have_strings = 1;
627			break;
628	}
629	if (have_strings == 0) {
630		if (temperature) {
631			seq_printf(m, "%4d /%4d\t", state, cel_to_fahr(state));
632		} else
633			seq_printf(m, "%10d\t", state);
634	}
635	if (unknown == 0) {
636		seq_printf(m, "%s\t", ppc_rtas_process_error(error));
637		get_location_code(m, s, loc);
638	}
639}
640
641/* ****************************************************************** */
642
643static void check_location(struct seq_file *m, const char *c)
644{
645	switch (c[0]) {
646		case LOC_PLANAR:
647			seq_printf(m, "Planar #%c", c[1]);
648			break;
649		case LOC_CPU:
650			seq_printf(m, "CPU #%c", c[1]);
651			break;
652		case LOC_FAN:
653			seq_printf(m, "Fan #%c", c[1]);
654			break;
655		case LOC_RACKMOUNTED:
656			seq_printf(m, "Rack #%c", c[1]);
657			break;
658		case LOC_VOLTAGE:
659			seq_printf(m, "Voltage #%c", c[1]);
660			break;
661		case LOC_LCD:
662			seq_printf(m, "LCD #%c", c[1]);
663			break;
664		case '.':
665			seq_printf(m, "- %c", c[1]);
666			break;
667		default:
668			seq_printf(m, "Unknown location");
669			break;
670	}
671}
672
673
674/* ****************************************************************** */
675/* 
676 * Format: 
677 * ${LETTER}${NUMBER}[[-/]${LETTER}${NUMBER} [ ... ] ]
678 * the '.' may be an abbreviation
679 */
680static void check_location_string(struct seq_file *m, const char *c)
681{
682	while (*c) {
683		if (isalpha(*c) || *c == '.')
684			check_location(m, c);
685		else if (*c == '/' || *c == '-')
686			seq_printf(m, " at ");
687		c++;
688	}
689}
690
691
692/* ****************************************************************** */
693
694static void get_location_code(struct seq_file *m, struct individual_sensor *s,
695		const char *loc)
696{
697	if (!loc || !*loc) {
698		seq_printf(m, "---");/* does not have a location */
699	} else {
700		check_location_string(m, loc);
701	}
702	seq_putc(m, ' ');
703}
704/* ****************************************************************** */
705/* INDICATORS - Tone Frequency                                        */
706/* ****************************************************************** */
707static ssize_t ppc_rtas_tone_freq_write(struct file *file,
708		const char __user *buf, size_t count, loff_t *ppos)
709{
710	u64 freq;
711	int error = parse_number(buf, count, &freq);
712	if (error)
713		return error;
714
715	rtas_tone_frequency = freq; /* save it for later */
716	error = rtas_call(rtas_token("set-indicator"), 3, 1, NULL,
717			TONE_FREQUENCY, 0, freq);
718	if (error)
719		printk(KERN_WARNING "error: setting tone frequency returned: %s\n", 
720				ppc_rtas_process_error(error));
721	return count;
722}
723/* ****************************************************************** */
724static int ppc_rtas_tone_freq_show(struct seq_file *m, void *v)
725{
726	seq_printf(m, "%lu\n", rtas_tone_frequency);
727	return 0;
728}
729/* ****************************************************************** */
730/* INDICATORS - Tone Volume                                           */
731/* ****************************************************************** */
732static ssize_t ppc_rtas_tone_volume_write(struct file *file,
733		const char __user *buf, size_t count, loff_t *ppos)
734{
735	u64 volume;
736	int error = parse_number(buf, count, &volume);
737	if (error)
738		return error;
739
740	if (volume > 100)
741		volume = 100;
742	
743        rtas_tone_volume = volume; /* save it for later */
744	error = rtas_call(rtas_token("set-indicator"), 3, 1, NULL,
745			TONE_VOLUME, 0, volume);
746	if (error)
747		printk(KERN_WARNING "error: setting tone volume returned: %s\n", 
748				ppc_rtas_process_error(error));
749	return count;
750}
751/* ****************************************************************** */
752static int ppc_rtas_tone_volume_show(struct seq_file *m, void *v)
753{
754	seq_printf(m, "%lu\n", rtas_tone_volume);
755	return 0;
756}
757
758#define RMO_READ_BUF_MAX 30
759
760/* RTAS Userspace access */
761static int ppc_rtas_rmo_buf_show(struct seq_file *m, void *v)
762{
763	seq_printf(m, "%016lx %x\n", rtas_rmo_buf, RTAS_RMOBUF_MAX);
764	return 0;
765}
v4.6
 
  1/*
  2 *   Copyright (C) 2000 Tilmann Bitterberg
  3 *   (tilmann@bitterberg.de)
  4 *
  5 *   RTAS (Runtime Abstraction Services) stuff
  6 *   Intention is to provide a clean user interface
  7 *   to use the RTAS.
  8 *
  9 *   TODO:
 10 *   Split off a header file and maybe move it to a different
 11 *   location. Write Documentation on what the /proc/rtas/ entries
 12 *   actually do.
 13 */
 14
 15#include <linux/errno.h>
 16#include <linux/sched.h>
 17#include <linux/proc_fs.h>
 18#include <linux/stat.h>
 19#include <linux/ctype.h>
 20#include <linux/time.h>
 21#include <linux/string.h>
 22#include <linux/init.h>
 23#include <linux/seq_file.h>
 24#include <linux/bitops.h>
 25#include <linux/rtc.h>
 26
 27#include <asm/uaccess.h>
 28#include <asm/processor.h>
 29#include <asm/io.h>
 30#include <asm/prom.h>
 31#include <asm/rtas.h>
 32#include <asm/machdep.h> /* for ppc_md */
 33#include <asm/time.h>
 34
 35/* Token for Sensors */
 36#define KEY_SWITCH		0x0001
 37#define ENCLOSURE_SWITCH	0x0002
 38#define THERMAL_SENSOR		0x0003
 39#define LID_STATUS		0x0004
 40#define POWER_SOURCE		0x0005
 41#define BATTERY_VOLTAGE		0x0006
 42#define BATTERY_REMAINING	0x0007
 43#define BATTERY_PERCENTAGE	0x0008
 44#define EPOW_SENSOR		0x0009
 45#define BATTERY_CYCLESTATE	0x000a
 46#define BATTERY_CHARGING	0x000b
 47
 48/* IBM specific sensors */
 49#define IBM_SURVEILLANCE	0x2328 /* 9000 */
 50#define IBM_FANRPM		0x2329 /* 9001 */
 51#define IBM_VOLTAGE		0x232a /* 9002 */
 52#define IBM_DRCONNECTOR		0x232b /* 9003 */
 53#define IBM_POWERSUPPLY		0x232c /* 9004 */
 54
 55/* Status return values */
 56#define SENSOR_CRITICAL_HIGH	13
 57#define SENSOR_WARNING_HIGH	12
 58#define SENSOR_NORMAL		11
 59#define SENSOR_WARNING_LOW	10
 60#define SENSOR_CRITICAL_LOW	 9
 61#define SENSOR_SUCCESS		 0
 62#define SENSOR_HW_ERROR		-1
 63#define SENSOR_BUSY		-2
 64#define SENSOR_NOT_EXIST	-3
 65#define SENSOR_DR_ENTITY	-9000
 66
 67/* Location Codes */
 68#define LOC_SCSI_DEV_ADDR	'A'
 69#define LOC_SCSI_DEV_LOC	'B'
 70#define LOC_CPU			'C'
 71#define LOC_DISKETTE		'D'
 72#define LOC_ETHERNET		'E'
 73#define LOC_FAN			'F'
 74#define LOC_GRAPHICS		'G'
 75/* reserved / not used		'H' */
 76#define LOC_IO_ADAPTER		'I'
 77/* reserved / not used		'J' */
 78#define LOC_KEYBOARD		'K'
 79#define LOC_LCD			'L'
 80#define LOC_MEMORY		'M'
 81#define LOC_NV_MEMORY		'N'
 82#define LOC_MOUSE		'O'
 83#define LOC_PLANAR		'P'
 84#define LOC_OTHER_IO		'Q'
 85#define LOC_PARALLEL		'R'
 86#define LOC_SERIAL		'S'
 87#define LOC_DEAD_RING		'T'
 88#define LOC_RACKMOUNTED		'U' /* for _u_nit is rack mounted */
 89#define LOC_VOLTAGE		'V'
 90#define LOC_SWITCH_ADAPTER	'W'
 91#define LOC_OTHER		'X'
 92#define LOC_FIRMWARE		'Y'
 93#define LOC_SCSI		'Z'
 94
 95/* Tokens for indicators */
 96#define TONE_FREQUENCY		0x0001 /* 0 - 1000 (HZ)*/
 97#define TONE_VOLUME		0x0002 /* 0 - 100 (%) */
 98#define SYSTEM_POWER_STATE	0x0003 
 99#define WARNING_LIGHT		0x0004
100#define DISK_ACTIVITY_LIGHT	0x0005
101#define HEX_DISPLAY_UNIT	0x0006
102#define BATTERY_WARNING_TIME	0x0007
103#define CONDITION_CYCLE_REQUEST	0x0008
104#define SURVEILLANCE_INDICATOR	0x2328 /* 9000 */
105#define DR_ACTION		0x2329 /* 9001 */
106#define DR_INDICATOR		0x232a /* 9002 */
107/* 9003 - 9004: Vendor specific */
108/* 9006 - 9999: Vendor specific */
109
110/* other */
111#define MAX_SENSORS		 17  /* I only know of 17 sensors */    
112#define MAX_LINELENGTH          256
113#define SENSOR_PREFIX		"ibm,sensor-"
114#define cel_to_fahr(x)		((x*9/5)+32)
115
116struct individual_sensor {
117	unsigned int token;
118	unsigned int quant;
119};
120
121struct rtas_sensors {
122        struct individual_sensor sensor[MAX_SENSORS];
123	unsigned int quant;
124};
125
126/* Globals */
127static struct rtas_sensors sensors;
128static struct device_node *rtas_node = NULL;
129static unsigned long power_on_time = 0; /* Save the time the user set */
130static char progress_led[MAX_LINELENGTH];
131
132static unsigned long rtas_tone_frequency = 1000;
133static unsigned long rtas_tone_volume = 0;
134
135/* ****************************************************************** */
136/* Declarations */
137static int ppc_rtas_sensors_show(struct seq_file *m, void *v);
138static int ppc_rtas_clock_show(struct seq_file *m, void *v);
139static ssize_t ppc_rtas_clock_write(struct file *file,
140		const char __user *buf, size_t count, loff_t *ppos);
141static int ppc_rtas_progress_show(struct seq_file *m, void *v);
142static ssize_t ppc_rtas_progress_write(struct file *file,
143		const char __user *buf, size_t count, loff_t *ppos);
144static int ppc_rtas_poweron_show(struct seq_file *m, void *v);
145static ssize_t ppc_rtas_poweron_write(struct file *file,
146		const char __user *buf, size_t count, loff_t *ppos);
147
148static ssize_t ppc_rtas_tone_freq_write(struct file *file,
149		const char __user *buf, size_t count, loff_t *ppos);
150static int ppc_rtas_tone_freq_show(struct seq_file *m, void *v);
151static ssize_t ppc_rtas_tone_volume_write(struct file *file,
152		const char __user *buf, size_t count, loff_t *ppos);
153static int ppc_rtas_tone_volume_show(struct seq_file *m, void *v);
154static int ppc_rtas_rmo_buf_show(struct seq_file *m, void *v);
155
156static int sensors_open(struct inode *inode, struct file *file)
157{
158	return single_open(file, ppc_rtas_sensors_show, NULL);
159}
160
161static const struct file_operations ppc_rtas_sensors_operations = {
162	.open		= sensors_open,
163	.read		= seq_read,
164	.llseek		= seq_lseek,
165	.release	= single_release,
166};
167
168static int poweron_open(struct inode *inode, struct file *file)
169{
170	return single_open(file, ppc_rtas_poweron_show, NULL);
171}
172
173static const struct file_operations ppc_rtas_poweron_operations = {
174	.open		= poweron_open,
175	.read		= seq_read,
176	.llseek		= seq_lseek,
177	.write		= ppc_rtas_poweron_write,
178	.release	= single_release,
179};
180
181static int progress_open(struct inode *inode, struct file *file)
182{
183	return single_open(file, ppc_rtas_progress_show, NULL);
184}
185
186static const struct file_operations ppc_rtas_progress_operations = {
187	.open		= progress_open,
188	.read		= seq_read,
189	.llseek		= seq_lseek,
190	.write		= ppc_rtas_progress_write,
191	.release	= single_release,
192};
193
194static int clock_open(struct inode *inode, struct file *file)
195{
196	return single_open(file, ppc_rtas_clock_show, NULL);
197}
198
199static const struct file_operations ppc_rtas_clock_operations = {
200	.open		= clock_open,
201	.read		= seq_read,
202	.llseek		= seq_lseek,
203	.write		= ppc_rtas_clock_write,
204	.release	= single_release,
205};
206
207static int tone_freq_open(struct inode *inode, struct file *file)
208{
209	return single_open(file, ppc_rtas_tone_freq_show, NULL);
210}
211
212static const struct file_operations ppc_rtas_tone_freq_operations = {
213	.open		= tone_freq_open,
214	.read		= seq_read,
215	.llseek		= seq_lseek,
216	.write		= ppc_rtas_tone_freq_write,
217	.release	= single_release,
218};
219
220static int tone_volume_open(struct inode *inode, struct file *file)
221{
222	return single_open(file, ppc_rtas_tone_volume_show, NULL);
223}
224
225static const struct file_operations ppc_rtas_tone_volume_operations = {
226	.open		= tone_volume_open,
227	.read		= seq_read,
228	.llseek		= seq_lseek,
229	.write		= ppc_rtas_tone_volume_write,
230	.release	= single_release,
231};
232
233static int rmo_buf_open(struct inode *inode, struct file *file)
234{
235	return single_open(file, ppc_rtas_rmo_buf_show, NULL);
236}
237
238static const struct file_operations ppc_rtas_rmo_buf_ops = {
239	.open		= rmo_buf_open,
240	.read		= seq_read,
241	.llseek		= seq_lseek,
242	.release	= single_release,
243};
244
245static int ppc_rtas_find_all_sensors(void);
246static void ppc_rtas_process_sensor(struct seq_file *m,
247	struct individual_sensor *s, int state, int error, const char *loc);
248static char *ppc_rtas_process_error(int error);
249static void get_location_code(struct seq_file *m,
250	struct individual_sensor *s, const char *loc);
251static void check_location_string(struct seq_file *m, const char *c);
252static void check_location(struct seq_file *m, const char *c);
253
254static int __init proc_rtas_init(void)
255{
256	if (!machine_is(pseries))
257		return -ENODEV;
258
259	rtas_node = of_find_node_by_name(NULL, "rtas");
260	if (rtas_node == NULL)
261		return -ENODEV;
262
263	proc_create("powerpc/rtas/progress", S_IRUGO|S_IWUSR, NULL,
264		    &ppc_rtas_progress_operations);
265	proc_create("powerpc/rtas/clock", S_IRUGO|S_IWUSR, NULL,
266		    &ppc_rtas_clock_operations);
267	proc_create("powerpc/rtas/poweron", S_IWUSR|S_IRUGO, NULL,
268		    &ppc_rtas_poweron_operations);
269	proc_create("powerpc/rtas/sensors", S_IRUGO, NULL,
270		    &ppc_rtas_sensors_operations);
271	proc_create("powerpc/rtas/frequency", S_IWUSR|S_IRUGO, NULL,
272		    &ppc_rtas_tone_freq_operations);
273	proc_create("powerpc/rtas/volume", S_IWUSR|S_IRUGO, NULL,
274		    &ppc_rtas_tone_volume_operations);
275	proc_create("powerpc/rtas/rmo_buffer", S_IRUSR, NULL,
276		    &ppc_rtas_rmo_buf_ops);
277	return 0;
278}
279
280__initcall(proc_rtas_init);
281
282static int parse_number(const char __user *p, size_t count, unsigned long *val)
283{
284	char buf[40];
285	char *end;
286
287	if (count > 39)
288		return -EINVAL;
289
290	if (copy_from_user(buf, p, count))
291		return -EFAULT;
292
293	buf[count] = 0;
294
295	*val = simple_strtoul(buf, &end, 10);
296	if (*end && *end != '\n')
297		return -EINVAL;
298
299	return 0;
300}
301
302/* ****************************************************************** */
303/* POWER-ON-TIME                                                      */
304/* ****************************************************************** */
305static ssize_t ppc_rtas_poweron_write(struct file *file,
306		const char __user *buf, size_t count, loff_t *ppos)
307{
308	struct rtc_time tm;
309	unsigned long nowtime;
310	int error = parse_number(buf, count, &nowtime);
311	if (error)
312		return error;
313
314	power_on_time = nowtime; /* save the time */
315
316	to_tm(nowtime, &tm);
317
318	error = rtas_call(rtas_token("set-time-for-power-on"), 7, 1, NULL, 
319			tm.tm_year, tm.tm_mon, tm.tm_mday, 
320			tm.tm_hour, tm.tm_min, tm.tm_sec, 0 /* nano */);
321	if (error)
322		printk(KERN_WARNING "error: setting poweron time returned: %s\n", 
323				ppc_rtas_process_error(error));
324	return count;
325}
326/* ****************************************************************** */
327static int ppc_rtas_poweron_show(struct seq_file *m, void *v)
328{
329	if (power_on_time == 0)
330		seq_printf(m, "Power on time not set\n");
331	else
332		seq_printf(m, "%lu\n",power_on_time);
333	return 0;
334}
335
336/* ****************************************************************** */
337/* PROGRESS                                                           */
338/* ****************************************************************** */
339static ssize_t ppc_rtas_progress_write(struct file *file,
340		const char __user *buf, size_t count, loff_t *ppos)
341{
342	unsigned long hex;
343
344	if (count >= MAX_LINELENGTH)
345		count = MAX_LINELENGTH -1;
346	if (copy_from_user(progress_led, buf, count)) { /* save the string */
347		return -EFAULT;
348	}
349	progress_led[count] = 0;
350
351	/* Lets see if the user passed hexdigits */
352	hex = simple_strtoul(progress_led, NULL, 10);
353
354	rtas_progress ((char *)progress_led, hex);
355	return count;
356
357	/* clear the line */
358	/* rtas_progress("                   ", 0xffff);*/
359}
360/* ****************************************************************** */
361static int ppc_rtas_progress_show(struct seq_file *m, void *v)
362{
363	if (progress_led[0])
364		seq_printf(m, "%s\n", progress_led);
365	return 0;
366}
367
368/* ****************************************************************** */
369/* CLOCK                                                              */
370/* ****************************************************************** */
371static ssize_t ppc_rtas_clock_write(struct file *file,
372		const char __user *buf, size_t count, loff_t *ppos)
373{
374	struct rtc_time tm;
375	unsigned long nowtime;
376	int error = parse_number(buf, count, &nowtime);
377	if (error)
378		return error;
379
380	to_tm(nowtime, &tm);
381	error = rtas_call(rtas_token("set-time-of-day"), 7, 1, NULL, 
382			tm.tm_year, tm.tm_mon, tm.tm_mday, 
383			tm.tm_hour, tm.tm_min, tm.tm_sec, 0);
384	if (error)
385		printk(KERN_WARNING "error: setting the clock returned: %s\n", 
386				ppc_rtas_process_error(error));
387	return count;
388}
389/* ****************************************************************** */
390static int ppc_rtas_clock_show(struct seq_file *m, void *v)
391{
392	int ret[8];
393	int error = rtas_call(rtas_token("get-time-of-day"), 0, 8, ret);
394
395	if (error) {
396		printk(KERN_WARNING "error: reading the clock returned: %s\n", 
397				ppc_rtas_process_error(error));
398		seq_printf(m, "0");
399	} else { 
400		unsigned int year, mon, day, hour, min, sec;
401		year = ret[0]; mon  = ret[1]; day  = ret[2];
402		hour = ret[3]; min  = ret[4]; sec  = ret[5];
403		seq_printf(m, "%lu\n",
404				mktime(year, mon, day, hour, min, sec));
405	}
406	return 0;
407}
408
409/* ****************************************************************** */
410/* SENSOR STUFF                                                       */
411/* ****************************************************************** */
412static int ppc_rtas_sensors_show(struct seq_file *m, void *v)
413{
414	int i,j;
415	int state, error;
416	int get_sensor_state = rtas_token("get-sensor-state");
417
418	seq_printf(m, "RTAS (RunTime Abstraction Services) Sensor Information\n");
419	seq_printf(m, "Sensor\t\tValue\t\tCondition\tLocation\n");
420	seq_printf(m, "********************************************************\n");
421
422	if (ppc_rtas_find_all_sensors() != 0) {
423		seq_printf(m, "\nNo sensors are available\n");
424		return 0;
425	}
426
427	for (i=0; i<sensors.quant; i++) {
428		struct individual_sensor *p = &sensors.sensor[i];
429		char rstr[64];
430		const char *loc;
431		int llen, offs;
432
433		sprintf (rstr, SENSOR_PREFIX"%04d", p->token);
434		loc = of_get_property(rtas_node, rstr, &llen);
435
436		/* A sensor may have multiple instances */
437		for (j = 0, offs = 0; j <= p->quant; j++) {
438			error =	rtas_call(get_sensor_state, 2, 2, &state, 
439				  	  p->token, j);
440
441			ppc_rtas_process_sensor(m, p, state, error, loc);
442			seq_putc(m, '\n');
443			if (loc) {
444				offs += strlen(loc) + 1;
445				loc += strlen(loc) + 1;
446				if (offs >= llen)
447					loc = NULL;
448			}
449		}
450	}
451	return 0;
452}
453
454/* ****************************************************************** */
455
456static int ppc_rtas_find_all_sensors(void)
457{
458	const unsigned int *utmp;
459	int len, i;
460
461	utmp = of_get_property(rtas_node, "rtas-sensors", &len);
462	if (utmp == NULL) {
463		printk (KERN_ERR "error: could not get rtas-sensors\n");
464		return 1;
465	}
466
467	sensors.quant = len / 8;      /* int + int */
468
469	for (i=0; i<sensors.quant; i++) {
470		sensors.sensor[i].token = *utmp++;
471		sensors.sensor[i].quant = *utmp++;
472	}
473	return 0;
474}
475
476/* ****************************************************************** */
477/*
478 * Builds a string of what rtas returned
479 */
480static char *ppc_rtas_process_error(int error)
481{
482	switch (error) {
483		case SENSOR_CRITICAL_HIGH:
484			return "(critical high)";
485		case SENSOR_WARNING_HIGH:
486			return "(warning high)";
487		case SENSOR_NORMAL:
488			return "(normal)";
489		case SENSOR_WARNING_LOW:
490			return "(warning low)";
491		case SENSOR_CRITICAL_LOW:
492			return "(critical low)";
493		case SENSOR_SUCCESS:
494			return "(read ok)";
495		case SENSOR_HW_ERROR:
496			return "(hardware error)";
497		case SENSOR_BUSY:
498			return "(busy)";
499		case SENSOR_NOT_EXIST:
500			return "(non existent)";
501		case SENSOR_DR_ENTITY:
502			return "(dr entity removed)";
503		default:
504			return "(UNKNOWN)";
505	}
506}
507
508/* ****************************************************************** */
509/*
510 * Builds a string out of what the sensor said
511 */
512
513static void ppc_rtas_process_sensor(struct seq_file *m,
514	struct individual_sensor *s, int state, int error, const char *loc)
515{
516	/* Defined return vales */
517	const char * key_switch[]        = { "Off\t", "Normal\t", "Secure\t", 
518						"Maintenance" };
519	const char * enclosure_switch[]  = { "Closed", "Open" };
520	const char * lid_status[]        = { " ", "Open", "Closed" };
521	const char * power_source[]      = { "AC\t", "Battery", 
522		  				"AC & Battery" };
523	const char * battery_remaining[] = { "Very Low", "Low", "Mid", "High" };
524	const char * epow_sensor[]       = { 
525		"EPOW Reset", "Cooling warning", "Power warning",
526		"System shutdown", "System halt", "EPOW main enclosure",
527		"EPOW power off" };
528	const char * battery_cyclestate[]  = { "None", "In progress", 
529						"Requested" };
530	const char * battery_charging[]    = { "Charging", "Discharching", 
531						"No current flow" };
532	const char * ibm_drconnector[]     = { "Empty", "Present", "Unusable", 
533						"Exchange" };
534
535	int have_strings = 0;
536	int num_states = 0;
537	int temperature = 0;
538	int unknown = 0;
539
540	/* What kind of sensor do we have here? */
541	
542	switch (s->token) {
543		case KEY_SWITCH:
544			seq_printf(m, "Key switch:\t");
545			num_states = sizeof(key_switch) / sizeof(char *);
546			if (state < num_states) {
547				seq_printf(m, "%s\t", key_switch[state]);
548				have_strings = 1;
549			}
550			break;
551		case ENCLOSURE_SWITCH:
552			seq_printf(m, "Enclosure switch:\t");
553			num_states = sizeof(enclosure_switch) / sizeof(char *);
554			if (state < num_states) {
555				seq_printf(m, "%s\t", 
556						enclosure_switch[state]);
557				have_strings = 1;
558			}
559			break;
560		case THERMAL_SENSOR:
561			seq_printf(m, "Temp. (C/F):\t");
562			temperature = 1;
563			break;
564		case LID_STATUS:
565			seq_printf(m, "Lid status:\t");
566			num_states = sizeof(lid_status) / sizeof(char *);
567			if (state < num_states) {
568				seq_printf(m, "%s\t", lid_status[state]);
569				have_strings = 1;
570			}
571			break;
572		case POWER_SOURCE:
573			seq_printf(m, "Power source:\t");
574			num_states = sizeof(power_source) / sizeof(char *);
575			if (state < num_states) {
576				seq_printf(m, "%s\t", 
577						power_source[state]);
578				have_strings = 1;
579			}
580			break;
581		case BATTERY_VOLTAGE:
582			seq_printf(m, "Battery voltage:\t");
583			break;
584		case BATTERY_REMAINING:
585			seq_printf(m, "Battery remaining:\t");
586			num_states = sizeof(battery_remaining) / sizeof(char *);
587			if (state < num_states)
588			{
589				seq_printf(m, "%s\t", 
590						battery_remaining[state]);
591				have_strings = 1;
592			}
593			break;
594		case BATTERY_PERCENTAGE:
595			seq_printf(m, "Battery percentage:\t");
596			break;
597		case EPOW_SENSOR:
598			seq_printf(m, "EPOW Sensor:\t");
599			num_states = sizeof(epow_sensor) / sizeof(char *);
600			if (state < num_states) {
601				seq_printf(m, "%s\t", epow_sensor[state]);
602				have_strings = 1;
603			}
604			break;
605		case BATTERY_CYCLESTATE:
606			seq_printf(m, "Battery cyclestate:\t");
607			num_states = sizeof(battery_cyclestate) / 
608				     	sizeof(char *);
609			if (state < num_states) {
610				seq_printf(m, "%s\t", 
611						battery_cyclestate[state]);
612				have_strings = 1;
613			}
614			break;
615		case BATTERY_CHARGING:
616			seq_printf(m, "Battery Charging:\t");
617			num_states = sizeof(battery_charging) / sizeof(char *);
618			if (state < num_states) {
619				seq_printf(m, "%s\t", 
620						battery_charging[state]);
621				have_strings = 1;
622			}
623			break;
624		case IBM_SURVEILLANCE:
625			seq_printf(m, "Surveillance:\t");
626			break;
627		case IBM_FANRPM:
628			seq_printf(m, "Fan (rpm):\t");
629			break;
630		case IBM_VOLTAGE:
631			seq_printf(m, "Voltage (mv):\t");
632			break;
633		case IBM_DRCONNECTOR:
634			seq_printf(m, "DR connector:\t");
635			num_states = sizeof(ibm_drconnector) / sizeof(char *);
636			if (state < num_states) {
637				seq_printf(m, "%s\t", 
638						ibm_drconnector[state]);
639				have_strings = 1;
640			}
641			break;
642		case IBM_POWERSUPPLY:
643			seq_printf(m, "Powersupply:\t");
644			break;
645		default:
646			seq_printf(m,  "Unknown sensor (type %d), ignoring it\n",
647					s->token);
648			unknown = 1;
649			have_strings = 1;
650			break;
651	}
652	if (have_strings == 0) {
653		if (temperature) {
654			seq_printf(m, "%4d /%4d\t", state, cel_to_fahr(state));
655		} else
656			seq_printf(m, "%10d\t", state);
657	}
658	if (unknown == 0) {
659		seq_printf(m, "%s\t", ppc_rtas_process_error(error));
660		get_location_code(m, s, loc);
661	}
662}
663
664/* ****************************************************************** */
665
666static void check_location(struct seq_file *m, const char *c)
667{
668	switch (c[0]) {
669		case LOC_PLANAR:
670			seq_printf(m, "Planar #%c", c[1]);
671			break;
672		case LOC_CPU:
673			seq_printf(m, "CPU #%c", c[1]);
674			break;
675		case LOC_FAN:
676			seq_printf(m, "Fan #%c", c[1]);
677			break;
678		case LOC_RACKMOUNTED:
679			seq_printf(m, "Rack #%c", c[1]);
680			break;
681		case LOC_VOLTAGE:
682			seq_printf(m, "Voltage #%c", c[1]);
683			break;
684		case LOC_LCD:
685			seq_printf(m, "LCD #%c", c[1]);
686			break;
687		case '.':
688			seq_printf(m, "- %c", c[1]);
689			break;
690		default:
691			seq_printf(m, "Unknown location");
692			break;
693	}
694}
695
696
697/* ****************************************************************** */
698/* 
699 * Format: 
700 * ${LETTER}${NUMBER}[[-/]${LETTER}${NUMBER} [ ... ] ]
701 * the '.' may be an abbrevation
702 */
703static void check_location_string(struct seq_file *m, const char *c)
704{
705	while (*c) {
706		if (isalpha(*c) || *c == '.')
707			check_location(m, c);
708		else if (*c == '/' || *c == '-')
709			seq_printf(m, " at ");
710		c++;
711	}
712}
713
714
715/* ****************************************************************** */
716
717static void get_location_code(struct seq_file *m, struct individual_sensor *s,
718		const char *loc)
719{
720	if (!loc || !*loc) {
721		seq_printf(m, "---");/* does not have a location */
722	} else {
723		check_location_string(m, loc);
724	}
725	seq_putc(m, ' ');
726}
727/* ****************************************************************** */
728/* INDICATORS - Tone Frequency                                        */
729/* ****************************************************************** */
730static ssize_t ppc_rtas_tone_freq_write(struct file *file,
731		const char __user *buf, size_t count, loff_t *ppos)
732{
733	unsigned long freq;
734	int error = parse_number(buf, count, &freq);
735	if (error)
736		return error;
737
738	rtas_tone_frequency = freq; /* save it for later */
739	error = rtas_call(rtas_token("set-indicator"), 3, 1, NULL,
740			TONE_FREQUENCY, 0, freq);
741	if (error)
742		printk(KERN_WARNING "error: setting tone frequency returned: %s\n", 
743				ppc_rtas_process_error(error));
744	return count;
745}
746/* ****************************************************************** */
747static int ppc_rtas_tone_freq_show(struct seq_file *m, void *v)
748{
749	seq_printf(m, "%lu\n", rtas_tone_frequency);
750	return 0;
751}
752/* ****************************************************************** */
753/* INDICATORS - Tone Volume                                           */
754/* ****************************************************************** */
755static ssize_t ppc_rtas_tone_volume_write(struct file *file,
756		const char __user *buf, size_t count, loff_t *ppos)
757{
758	unsigned long volume;
759	int error = parse_number(buf, count, &volume);
760	if (error)
761		return error;
762
763	if (volume > 100)
764		volume = 100;
765	
766        rtas_tone_volume = volume; /* save it for later */
767	error = rtas_call(rtas_token("set-indicator"), 3, 1, NULL,
768			TONE_VOLUME, 0, volume);
769	if (error)
770		printk(KERN_WARNING "error: setting tone volume returned: %s\n", 
771				ppc_rtas_process_error(error));
772	return count;
773}
774/* ****************************************************************** */
775static int ppc_rtas_tone_volume_show(struct seq_file *m, void *v)
776{
777	seq_printf(m, "%lu\n", rtas_tone_volume);
778	return 0;
779}
780
781#define RMO_READ_BUF_MAX 30
782
783/* RTAS Userspace access */
784static int ppc_rtas_rmo_buf_show(struct seq_file *m, void *v)
785{
786	seq_printf(m, "%016lx %x\n", rtas_rmo_buf, RTAS_RMOBUF_MAX);
787	return 0;
788}