Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *  Derived from "arch/i386/kernel/process.c"
   4 *    Copyright (C) 1995  Linus Torvalds
   5 *
   6 *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
   7 *  Paul Mackerras (paulus@cs.anu.edu.au)
   8 *
   9 *  PowerPC version
  10 *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
 
 
 
 
 
  11 */
  12
  13#include <linux/errno.h>
  14#include <linux/sched.h>
  15#include <linux/sched/debug.h>
  16#include <linux/sched/task.h>
  17#include <linux/sched/task_stack.h>
  18#include <linux/kernel.h>
  19#include <linux/mm.h>
  20#include <linux/smp.h>
  21#include <linux/stddef.h>
  22#include <linux/unistd.h>
  23#include <linux/ptrace.h>
  24#include <linux/slab.h>
  25#include <linux/user.h>
  26#include <linux/elf.h>
  27#include <linux/prctl.h>
  28#include <linux/init_task.h>
  29#include <linux/export.h>
  30#include <linux/kallsyms.h>
  31#include <linux/mqueue.h>
  32#include <linux/hardirq.h>
  33#include <linux/utsname.h>
  34#include <linux/ftrace.h>
  35#include <linux/kernel_stat.h>
  36#include <linux/personality.h>
  37#include <linux/random.h>
  38#include <linux/hw_breakpoint.h>
  39#include <linux/uaccess.h>
  40#include <linux/elf-randomize.h>
  41#include <linux/pkeys.h>
  42#include <linux/seq_buf.h>
  43
 
  44#include <asm/io.h>
  45#include <asm/processor.h>
  46#include <asm/mmu.h>
  47#include <asm/prom.h>
  48#include <asm/machdep.h>
  49#include <asm/time.h>
  50#include <asm/runlatch.h>
  51#include <asm/syscalls.h>
  52#include <asm/switch_to.h>
  53#include <asm/tm.h>
  54#include <asm/debug.h>
  55#ifdef CONFIG_PPC64
  56#include <asm/firmware.h>
  57#include <asm/hw_irq.h>
  58#endif
  59#include <asm/code-patching.h>
  60#include <asm/exec.h>
  61#include <asm/livepatch.h>
  62#include <asm/cpu_has_feature.h>
  63#include <asm/asm-prototypes.h>
  64#include <asm/stacktrace.h>
  65#include <asm/hw_breakpoint.h>
  66
  67#include <linux/kprobes.h>
  68#include <linux/kdebug.h>
  69
  70/* Transactional Memory debug */
  71#ifdef TM_DEBUG_SW
  72#define TM_DEBUG(x...) printk(KERN_INFO x)
  73#else
  74#define TM_DEBUG(x...) do { } while(0)
  75#endif
  76
  77extern unsigned long _get_SP(void);
  78
  79#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
  80/*
  81 * Are we running in "Suspend disabled" mode? If so we have to block any
  82 * sigreturn that would get us into suspended state, and we also warn in some
  83 * other paths that we should never reach with suspend disabled.
  84 */
  85bool tm_suspend_disabled __ro_after_init = false;
  86
  87static void check_if_tm_restore_required(struct task_struct *tsk)
  88{
  89	/*
  90	 * If we are saving the current thread's registers, and the
  91	 * thread is in a transactional state, set the TIF_RESTORE_TM
  92	 * bit so that we know to restore the registers before
  93	 * returning to userspace.
  94	 */
  95	if (tsk == current && tsk->thread.regs &&
  96	    MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
  97	    !test_thread_flag(TIF_RESTORE_TM)) {
  98		tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
  99		set_thread_flag(TIF_RESTORE_TM);
 100	}
 101}
 102
 103#else
 104static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
 105#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
 106
 107bool strict_msr_control;
 108EXPORT_SYMBOL(strict_msr_control);
 109
 110static int __init enable_strict_msr_control(char *str)
 111{
 112	strict_msr_control = true;
 113	pr_info("Enabling strict facility control\n");
 114
 115	return 0;
 116}
 117early_param("ppc_strict_facility_enable", enable_strict_msr_control);
 118
 119/* notrace because it's called by restore_math */
 120unsigned long notrace msr_check_and_set(unsigned long bits)
 121{
 122	unsigned long oldmsr = mfmsr();
 123	unsigned long newmsr;
 124
 125	newmsr = oldmsr | bits;
 126
 127#ifdef CONFIG_VSX
 128	if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
 129		newmsr |= MSR_VSX;
 130#endif
 131
 132	if (oldmsr != newmsr)
 133		mtmsr_isync(newmsr);
 134
 135	return newmsr;
 136}
 137EXPORT_SYMBOL_GPL(msr_check_and_set);
 138
 139/* notrace because it's called by restore_math */
 140void notrace __msr_check_and_clear(unsigned long bits)
 141{
 142	unsigned long oldmsr = mfmsr();
 143	unsigned long newmsr;
 144
 145	newmsr = oldmsr & ~bits;
 146
 147#ifdef CONFIG_VSX
 148	if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
 149		newmsr &= ~MSR_VSX;
 150#endif
 151
 152	if (oldmsr != newmsr)
 153		mtmsr_isync(newmsr);
 154}
 155EXPORT_SYMBOL(__msr_check_and_clear);
 156
 157#ifdef CONFIG_PPC_FPU
 158static void __giveup_fpu(struct task_struct *tsk)
 159{
 160	unsigned long msr;
 161
 162	save_fpu(tsk);
 163	msr = tsk->thread.regs->msr;
 164	msr &= ~(MSR_FP|MSR_FE0|MSR_FE1);
 165#ifdef CONFIG_VSX
 166	if (cpu_has_feature(CPU_FTR_VSX))
 167		msr &= ~MSR_VSX;
 168#endif
 169	tsk->thread.regs->msr = msr;
 170}
 171
 172void giveup_fpu(struct task_struct *tsk)
 173{
 174	check_if_tm_restore_required(tsk);
 175
 176	msr_check_and_set(MSR_FP);
 177	__giveup_fpu(tsk);
 178	msr_check_and_clear(MSR_FP);
 179}
 180EXPORT_SYMBOL(giveup_fpu);
 181
 182/*
 183 * Make sure the floating-point register state in the
 184 * the thread_struct is up to date for task tsk.
 185 */
 186void flush_fp_to_thread(struct task_struct *tsk)
 187{
 188	if (tsk->thread.regs) {
 189		/*
 190		 * We need to disable preemption here because if we didn't,
 191		 * another process could get scheduled after the regs->msr
 192		 * test but before we have finished saving the FP registers
 193		 * to the thread_struct.  That process could take over the
 194		 * FPU, and then when we get scheduled again we would store
 195		 * bogus values for the remaining FP registers.
 196		 */
 197		preempt_disable();
 198		if (tsk->thread.regs->msr & MSR_FP) {
 199			/*
 200			 * This should only ever be called for current or
 201			 * for a stopped child process.  Since we save away
 202			 * the FP register state on context switch,
 203			 * there is something wrong if a stopped child appears
 204			 * to still have its FP state in the CPU registers.
 205			 */
 206			BUG_ON(tsk != current);
 207			giveup_fpu(tsk);
 208		}
 209		preempt_enable();
 210	}
 211}
 212EXPORT_SYMBOL_GPL(flush_fp_to_thread);
 213
 214void enable_kernel_fp(void)
 215{
 216	unsigned long cpumsr;
 217
 218	WARN_ON(preemptible());
 219
 220	cpumsr = msr_check_and_set(MSR_FP);
 221
 222	if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
 223		check_if_tm_restore_required(current);
 224		/*
 225		 * If a thread has already been reclaimed then the
 226		 * checkpointed registers are on the CPU but have definitely
 227		 * been saved by the reclaim code. Don't need to and *cannot*
 228		 * giveup as this would save  to the 'live' structure not the
 229		 * checkpointed structure.
 230		 */
 231		if (!MSR_TM_ACTIVE(cpumsr) &&
 232		     MSR_TM_ACTIVE(current->thread.regs->msr))
 233			return;
 234		__giveup_fpu(current);
 235	}
 236}
 237EXPORT_SYMBOL(enable_kernel_fp);
 
 
 
 
 
 
 
 
 
 
 
 238#endif /* CONFIG_PPC_FPU */
 239
 240#ifdef CONFIG_ALTIVEC
 
 
 241static void __giveup_altivec(struct task_struct *tsk)
 242{
 243	unsigned long msr;
 244
 245	save_altivec(tsk);
 246	msr = tsk->thread.regs->msr;
 247	msr &= ~MSR_VEC;
 248#ifdef CONFIG_VSX
 249	if (cpu_has_feature(CPU_FTR_VSX))
 250		msr &= ~MSR_VSX;
 251#endif
 252	tsk->thread.regs->msr = msr;
 253}
 254
 255void giveup_altivec(struct task_struct *tsk)
 256{
 257	check_if_tm_restore_required(tsk);
 258
 259	msr_check_and_set(MSR_VEC);
 260	__giveup_altivec(tsk);
 261	msr_check_and_clear(MSR_VEC);
 262}
 263EXPORT_SYMBOL(giveup_altivec);
 264
 265void enable_kernel_altivec(void)
 266{
 267	unsigned long cpumsr;
 268
 269	WARN_ON(preemptible());
 270
 271	cpumsr = msr_check_and_set(MSR_VEC);
 272
 273	if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
 274		check_if_tm_restore_required(current);
 275		/*
 276		 * If a thread has already been reclaimed then the
 277		 * checkpointed registers are on the CPU but have definitely
 278		 * been saved by the reclaim code. Don't need to and *cannot*
 279		 * giveup as this would save  to the 'live' structure not the
 280		 * checkpointed structure.
 281		 */
 282		if (!MSR_TM_ACTIVE(cpumsr) &&
 283		     MSR_TM_ACTIVE(current->thread.regs->msr))
 284			return;
 285		__giveup_altivec(current);
 286	}
 287}
 288EXPORT_SYMBOL(enable_kernel_altivec);
 289
 290/*
 291 * Make sure the VMX/Altivec register state in the
 292 * the thread_struct is up to date for task tsk.
 293 */
 294void flush_altivec_to_thread(struct task_struct *tsk)
 295{
 296	if (tsk->thread.regs) {
 297		preempt_disable();
 298		if (tsk->thread.regs->msr & MSR_VEC) {
 299			BUG_ON(tsk != current);
 300			giveup_altivec(tsk);
 301		}
 302		preempt_enable();
 303	}
 304}
 305EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 306#endif /* CONFIG_ALTIVEC */
 307
 308#ifdef CONFIG_VSX
 309static void __giveup_vsx(struct task_struct *tsk)
 310{
 311	unsigned long msr = tsk->thread.regs->msr;
 312
 313	/*
 314	 * We should never be ssetting MSR_VSX without also setting
 315	 * MSR_FP and MSR_VEC
 316	 */
 317	WARN_ON((msr & MSR_VSX) && !((msr & MSR_FP) && (msr & MSR_VEC)));
 318
 319	/* __giveup_fpu will clear MSR_VSX */
 320	if (msr & MSR_FP)
 321		__giveup_fpu(tsk);
 322	if (msr & MSR_VEC)
 323		__giveup_altivec(tsk);
 
 324}
 325
 326static void giveup_vsx(struct task_struct *tsk)
 327{
 328	check_if_tm_restore_required(tsk);
 329
 330	msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
 331	__giveup_vsx(tsk);
 332	msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
 333}
 334
 335void enable_kernel_vsx(void)
 336{
 337	unsigned long cpumsr;
 
 
 
 
 338
 
 
 339	WARN_ON(preemptible());
 340
 341	cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
 342
 343	if (current->thread.regs &&
 344	    (current->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP))) {
 345		check_if_tm_restore_required(current);
 346		/*
 347		 * If a thread has already been reclaimed then the
 348		 * checkpointed registers are on the CPU but have definitely
 349		 * been saved by the reclaim code. Don't need to and *cannot*
 350		 * giveup as this would save  to the 'live' structure not the
 351		 * checkpointed structure.
 352		 */
 353		if (!MSR_TM_ACTIVE(cpumsr) &&
 354		     MSR_TM_ACTIVE(current->thread.regs->msr))
 355			return;
 356		__giveup_vsx(current);
 357	}
 358}
 359EXPORT_SYMBOL(enable_kernel_vsx);
 360
 361void flush_vsx_to_thread(struct task_struct *tsk)
 362{
 363	if (tsk->thread.regs) {
 364		preempt_disable();
 365		if (tsk->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP)) {
 366			BUG_ON(tsk != current);
 367			giveup_vsx(tsk);
 368		}
 369		preempt_enable();
 370	}
 371}
 372EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
 
 
 
 
 
 
 
 
 
 
 
 
 
 373#endif /* CONFIG_VSX */
 374
 375#ifdef CONFIG_SPE
 376void giveup_spe(struct task_struct *tsk)
 377{
 378	check_if_tm_restore_required(tsk);
 379
 380	msr_check_and_set(MSR_SPE);
 381	__giveup_spe(tsk);
 382	msr_check_and_clear(MSR_SPE);
 383}
 384EXPORT_SYMBOL(giveup_spe);
 385
 386void enable_kernel_spe(void)
 387{
 388	WARN_ON(preemptible());
 389
 390	msr_check_and_set(MSR_SPE);
 391
 392	if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
 393		check_if_tm_restore_required(current);
 394		__giveup_spe(current);
 395	}
 396}
 397EXPORT_SYMBOL(enable_kernel_spe);
 398
 399void flush_spe_to_thread(struct task_struct *tsk)
 400{
 401	if (tsk->thread.regs) {
 402		preempt_disable();
 403		if (tsk->thread.regs->msr & MSR_SPE) {
 404			BUG_ON(tsk != current);
 405			tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
 406			giveup_spe(tsk);
 407		}
 408		preempt_enable();
 409	}
 410}
 411#endif /* CONFIG_SPE */
 412
 413static unsigned long msr_all_available;
 414
 415static int __init init_msr_all_available(void)
 416{
 417#ifdef CONFIG_PPC_FPU
 418	msr_all_available |= MSR_FP;
 419#endif
 420#ifdef CONFIG_ALTIVEC
 421	if (cpu_has_feature(CPU_FTR_ALTIVEC))
 422		msr_all_available |= MSR_VEC;
 423#endif
 424#ifdef CONFIG_VSX
 425	if (cpu_has_feature(CPU_FTR_VSX))
 426		msr_all_available |= MSR_VSX;
 427#endif
 428#ifdef CONFIG_SPE
 429	if (cpu_has_feature(CPU_FTR_SPE))
 430		msr_all_available |= MSR_SPE;
 431#endif
 432
 433	return 0;
 434}
 435early_initcall(init_msr_all_available);
 436
 437void giveup_all(struct task_struct *tsk)
 438{
 439	unsigned long usermsr;
 440
 441	if (!tsk->thread.regs)
 442		return;
 443
 444	check_if_tm_restore_required(tsk);
 445
 446	usermsr = tsk->thread.regs->msr;
 447
 448	if ((usermsr & msr_all_available) == 0)
 449		return;
 450
 451	msr_check_and_set(msr_all_available);
 452
 453	WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
 454
 455#ifdef CONFIG_PPC_FPU
 456	if (usermsr & MSR_FP)
 457		__giveup_fpu(tsk);
 458#endif
 459#ifdef CONFIG_ALTIVEC
 460	if (usermsr & MSR_VEC)
 461		__giveup_altivec(tsk);
 462#endif
 
 
 
 
 463#ifdef CONFIG_SPE
 464	if (usermsr & MSR_SPE)
 465		__giveup_spe(tsk);
 466#endif
 467
 468	msr_check_and_clear(msr_all_available);
 469}
 470EXPORT_SYMBOL(giveup_all);
 471
 472#ifdef CONFIG_PPC_BOOK3S_64
 473#ifdef CONFIG_PPC_FPU
 474static bool should_restore_fp(void)
 475{
 476	if (current->thread.load_fp) {
 477		current->thread.load_fp++;
 478		return true;
 479	}
 480	return false;
 481}
 482
 483static void do_restore_fp(void)
 484{
 485	load_fp_state(&current->thread.fp_state);
 486}
 487#else
 488static bool should_restore_fp(void) { return false; }
 489static void do_restore_fp(void) { }
 490#endif /* CONFIG_PPC_FPU */
 491
 492#ifdef CONFIG_ALTIVEC
 493static bool should_restore_altivec(void)
 494{
 495	if (cpu_has_feature(CPU_FTR_ALTIVEC) && (current->thread.load_vec)) {
 496		current->thread.load_vec++;
 497		return true;
 498	}
 499	return false;
 500}
 501
 502static void do_restore_altivec(void)
 503{
 504	load_vr_state(&current->thread.vr_state);
 505	current->thread.used_vr = 1;
 506}
 507#else
 508static bool should_restore_altivec(void) { return false; }
 509static void do_restore_altivec(void) { }
 510#endif /* CONFIG_ALTIVEC */
 511
 512#ifdef CONFIG_VSX
 513static bool should_restore_vsx(void)
 514{
 515	if (cpu_has_feature(CPU_FTR_VSX))
 516		return true;
 517	return false;
 518}
 519static void do_restore_vsx(void)
 520{
 521	current->thread.used_vsr = 1;
 522}
 523#else
 524static bool should_restore_vsx(void) { return false; }
 525static void do_restore_vsx(void) { }
 526#endif /* CONFIG_VSX */
 527
 528/*
 529 * The exception exit path calls restore_math() with interrupts hard disabled
 530 * but the soft irq state not "reconciled". ftrace code that calls
 531 * local_irq_save/restore causes warnings.
 532 *
 533 * Rather than complicate the exit path, just don't trace restore_math. This
 534 * could be done by having ftrace entry code check for this un-reconciled
 535 * condition where MSR[EE]=0 and PACA_IRQ_HARD_DIS is not set, and
 536 * temporarily fix it up for the duration of the ftrace call.
 537 */
 538void notrace restore_math(struct pt_regs *regs)
 539{
 540	unsigned long msr;
 541	unsigned long new_msr = 0;
 
 
 542
 543	msr = regs->msr;
 
 544
 545	/*
 546	 * new_msr tracks the facilities that are to be restored. Only reload
 547	 * if the bit is not set in the user MSR (if it is set, the registers
 548	 * are live for the user thread).
 549	 */
 550	if ((!(msr & MSR_FP)) && should_restore_fp())
 551		new_msr |= MSR_FP;
 552
 553	if ((!(msr & MSR_VEC)) && should_restore_altivec())
 554		new_msr |= MSR_VEC;
 555
 556	if ((!(msr & MSR_VSX)) && should_restore_vsx()) {
 557		if (((msr | new_msr) & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC))
 558			new_msr |= MSR_VSX;
 559	}
 560
 561	if (new_msr) {
 562		unsigned long fpexc_mode = 0;
 563
 564		msr_check_and_set(new_msr);
 565
 566		if (new_msr & MSR_FP) {
 567			do_restore_fp();
 568
 569			// This also covers VSX, because VSX implies FP
 570			fpexc_mode = current->thread.fpexc_mode;
 571		}
 572
 573		if (new_msr & MSR_VEC)
 574			do_restore_altivec();
 575
 576		if (new_msr & MSR_VSX)
 577			do_restore_vsx();
 578
 579		msr_check_and_clear(new_msr);
 580
 581		regs->msr |= new_msr | fpexc_mode;
 582	}
 583}
 584#endif
 585
 586static void save_all(struct task_struct *tsk)
 587{
 588	unsigned long usermsr;
 589
 590	if (!tsk->thread.regs)
 591		return;
 592
 593	usermsr = tsk->thread.regs->msr;
 594
 595	if ((usermsr & msr_all_available) == 0)
 596		return;
 597
 598	msr_check_and_set(msr_all_available);
 599
 600	WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
 601
 602	if (usermsr & MSR_FP)
 603		save_fpu(tsk);
 
 
 
 
 
 604
 605	if (usermsr & MSR_VEC)
 606		save_altivec(tsk);
 
 607
 608	if (usermsr & MSR_SPE)
 609		__giveup_spe(tsk);
 610
 611	msr_check_and_clear(msr_all_available);
 612	thread_pkey_regs_save(&tsk->thread);
 613}
 614
 615void flush_all_to_thread(struct task_struct *tsk)
 616{
 617	if (tsk->thread.regs) {
 618		preempt_disable();
 619		BUG_ON(tsk != current);
 
 
 620#ifdef CONFIG_SPE
 621		if (tsk->thread.regs->msr & MSR_SPE)
 622			tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
 623#endif
 624		save_all(tsk);
 625
 626		preempt_enable();
 627	}
 628}
 629EXPORT_SYMBOL(flush_all_to_thread);
 630
 631#ifdef CONFIG_PPC_ADV_DEBUG_REGS
 632void do_send_trap(struct pt_regs *regs, unsigned long address,
 633		  unsigned long error_code, int breakpt)
 634{
 635	current->thread.trap_nr = TRAP_HWBKPT;
 
 
 636	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
 637			11, SIGSEGV) == NOTIFY_STOP)
 638		return;
 639
 640	/* Deliver the signal to userspace */
 641	force_sig_ptrace_errno_trap(breakpt, /* breakpoint or watchpoint id */
 642				    (void __user *)address);
 
 
 
 643}
 644#else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
 645void do_break (struct pt_regs *regs, unsigned long address,
 646		    unsigned long error_code)
 647{
 
 
 648	current->thread.trap_nr = TRAP_HWBKPT;
 649	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
 650			11, SIGSEGV) == NOTIFY_STOP)
 651		return;
 652
 653	if (debugger_break_match(regs))
 654		return;
 655
 
 
 
 656	/* Deliver the signal to userspace */
 657	force_sig_fault(SIGTRAP, TRAP_HWBKPT, (void __user *)address);
 
 
 
 
 658}
 659#endif	/* CONFIG_PPC_ADV_DEBUG_REGS */
 660
 661static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk[HBP_NUM_MAX]);
 662
 663#ifdef CONFIG_PPC_ADV_DEBUG_REGS
 664/*
 665 * Set the debug registers back to their default "safe" values.
 666 */
 667static void set_debug_reg_defaults(struct thread_struct *thread)
 668{
 669	thread->debug.iac1 = thread->debug.iac2 = 0;
 670#if CONFIG_PPC_ADV_DEBUG_IACS > 2
 671	thread->debug.iac3 = thread->debug.iac4 = 0;
 672#endif
 673	thread->debug.dac1 = thread->debug.dac2 = 0;
 674#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
 675	thread->debug.dvc1 = thread->debug.dvc2 = 0;
 676#endif
 677	thread->debug.dbcr0 = 0;
 678#ifdef CONFIG_BOOKE
 679	/*
 680	 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
 681	 */
 682	thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
 683			DBCR1_IAC3US | DBCR1_IAC4US;
 684	/*
 685	 * Force Data Address Compare User/Supervisor bits to be User-only
 686	 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
 687	 */
 688	thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
 689#else
 690	thread->debug.dbcr1 = 0;
 691#endif
 692}
 693
 694static void prime_debug_regs(struct debug_reg *debug)
 695{
 696	/*
 697	 * We could have inherited MSR_DE from userspace, since
 698	 * it doesn't get cleared on exception entry.  Make sure
 699	 * MSR_DE is clear before we enable any debug events.
 700	 */
 701	mtmsr(mfmsr() & ~MSR_DE);
 702
 703	mtspr(SPRN_IAC1, debug->iac1);
 704	mtspr(SPRN_IAC2, debug->iac2);
 705#if CONFIG_PPC_ADV_DEBUG_IACS > 2
 706	mtspr(SPRN_IAC3, debug->iac3);
 707	mtspr(SPRN_IAC4, debug->iac4);
 708#endif
 709	mtspr(SPRN_DAC1, debug->dac1);
 710	mtspr(SPRN_DAC2, debug->dac2);
 711#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
 712	mtspr(SPRN_DVC1, debug->dvc1);
 713	mtspr(SPRN_DVC2, debug->dvc2);
 714#endif
 715	mtspr(SPRN_DBCR0, debug->dbcr0);
 716	mtspr(SPRN_DBCR1, debug->dbcr1);
 717#ifdef CONFIG_BOOKE
 718	mtspr(SPRN_DBCR2, debug->dbcr2);
 719#endif
 720}
 721/*
 722 * Unless neither the old or new thread are making use of the
 723 * debug registers, set the debug registers from the values
 724 * stored in the new thread.
 725 */
 726void switch_booke_debug_regs(struct debug_reg *new_debug)
 727{
 728	if ((current->thread.debug.dbcr0 & DBCR0_IDM)
 729		|| (new_debug->dbcr0 & DBCR0_IDM))
 730			prime_debug_regs(new_debug);
 731}
 732EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
 733#else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
 734#ifndef CONFIG_HAVE_HW_BREAKPOINT
 735static void set_breakpoint(int i, struct arch_hw_breakpoint *brk)
 736{
 737	preempt_disable();
 738	__set_breakpoint(i, brk);
 739	preempt_enable();
 740}
 741
 742static void set_debug_reg_defaults(struct thread_struct *thread)
 743{
 744	int i;
 745	struct arch_hw_breakpoint null_brk = {0};
 746
 747	for (i = 0; i < nr_wp_slots(); i++) {
 748		thread->hw_brk[i] = null_brk;
 749		if (ppc_breakpoint_available())
 750			set_breakpoint(i, &thread->hw_brk[i]);
 751	}
 752}
 753
 754static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
 755				struct arch_hw_breakpoint *b)
 756{
 757	if (a->address != b->address)
 758		return false;
 759	if (a->type != b->type)
 760		return false;
 761	if (a->len != b->len)
 762		return false;
 763	/* no need to check hw_len. it's calculated from address and len */
 764	return true;
 765}
 766
 767static void switch_hw_breakpoint(struct task_struct *new)
 768{
 769	int i;
 770
 771	for (i = 0; i < nr_wp_slots(); i++) {
 772		if (likely(hw_brk_match(this_cpu_ptr(&current_brk[i]),
 773					&new->thread.hw_brk[i])))
 774			continue;
 775
 776		__set_breakpoint(i, &new->thread.hw_brk[i]);
 777	}
 778}
 779#endif /* !CONFIG_HAVE_HW_BREAKPOINT */
 780#endif	/* CONFIG_PPC_ADV_DEBUG_REGS */
 781
 782#ifdef CONFIG_PPC_ADV_DEBUG_REGS
 783static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
 784{
 785	mtspr(SPRN_DAC1, dabr);
 786#ifdef CONFIG_PPC_47x
 787	isync();
 788#endif
 789	return 0;
 790}
 791#elif defined(CONFIG_PPC_BOOK3S)
 792static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
 793{
 794	mtspr(SPRN_DABR, dabr);
 795	if (cpu_has_feature(CPU_FTR_DABRX))
 796		mtspr(SPRN_DABRX, dabrx);
 797	return 0;
 798}
 799#else
 800static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
 801{
 802	return -EINVAL;
 803}
 804#endif
 805
 806static inline int set_dabr(struct arch_hw_breakpoint *brk)
 807{
 808	unsigned long dabr, dabrx;
 809
 810	dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
 811	dabrx = ((brk->type >> 3) & 0x7);
 812
 813	if (ppc_md.set_dabr)
 814		return ppc_md.set_dabr(dabr, dabrx);
 815
 816	return __set_dabr(dabr, dabrx);
 817}
 818
 819static inline int set_breakpoint_8xx(struct arch_hw_breakpoint *brk)
 820{
 821	unsigned long lctrl1 = LCTRL1_CTE_GT | LCTRL1_CTF_LT | LCTRL1_CRWE_RW |
 822			       LCTRL1_CRWF_RW;
 823	unsigned long lctrl2 = LCTRL2_LW0EN | LCTRL2_LW0LADC | LCTRL2_SLW0EN;
 824	unsigned long start_addr = ALIGN_DOWN(brk->address, HW_BREAKPOINT_SIZE);
 825	unsigned long end_addr = ALIGN(brk->address + brk->len, HW_BREAKPOINT_SIZE);
 826
 827	if (start_addr == 0)
 828		lctrl2 |= LCTRL2_LW0LA_F;
 829	else if (end_addr == 0)
 830		lctrl2 |= LCTRL2_LW0LA_E;
 831	else
 832		lctrl2 |= LCTRL2_LW0LA_EandF;
 833
 834	mtspr(SPRN_LCTRL2, 0);
 835
 836	if ((brk->type & HW_BRK_TYPE_RDWR) == 0)
 837		return 0;
 838
 839	if ((brk->type & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_READ)
 840		lctrl1 |= LCTRL1_CRWE_RO | LCTRL1_CRWF_RO;
 841	if ((brk->type & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_WRITE)
 842		lctrl1 |= LCTRL1_CRWE_WO | LCTRL1_CRWF_WO;
 843
 844	mtspr(SPRN_CMPE, start_addr - 1);
 845	mtspr(SPRN_CMPF, end_addr);
 846	mtspr(SPRN_LCTRL1, lctrl1);
 847	mtspr(SPRN_LCTRL2, lctrl2);
 848
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 849	return 0;
 850}
 851
 852void __set_breakpoint(int nr, struct arch_hw_breakpoint *brk)
 853{
 854	memcpy(this_cpu_ptr(&current_brk[nr]), brk, sizeof(*brk));
 855
 856	if (dawr_enabled())
 857		// Power8 or later
 858		set_dawr(nr, brk);
 859	else if (IS_ENABLED(CONFIG_PPC_8xx))
 860		set_breakpoint_8xx(brk);
 861	else if (!cpu_has_feature(CPU_FTR_ARCH_207S))
 862		// Power7 or earlier
 863		set_dabr(brk);
 864	else
 865		// Shouldn't happen due to higher level checks
 866		WARN_ON_ONCE(1);
 867}
 868
 869/* Check if we have DAWR or DABR hardware */
 870bool ppc_breakpoint_available(void)
 871{
 872	if (dawr_enabled())
 873		return true; /* POWER8 DAWR or POWER9 forced DAWR */
 874	if (cpu_has_feature(CPU_FTR_ARCH_207S))
 875		return false; /* POWER9 with DAWR disabled */
 876	/* DABR: Everything but POWER8 and POWER9 */
 877	return true;
 878}
 879EXPORT_SYMBOL_GPL(ppc_breakpoint_available);
 880
 881#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 
 
 882
 883static inline bool tm_enabled(struct task_struct *tsk)
 
 884{
 885	return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM);
 
 
 
 
 
 
 886}
 887
 888static void tm_reclaim_thread(struct thread_struct *thr, uint8_t cause)
 
 
 889{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 890	/*
 891	 * Use the current MSR TM suspended bit to track if we have
 892	 * checkpointed state outstanding.
 893	 * On signal delivery, we'd normally reclaim the checkpointed
 894	 * state to obtain stack pointer (see:get_tm_stackpointer()).
 895	 * This will then directly return to userspace without going
 896	 * through __switch_to(). However, if the stack frame is bad,
 897	 * we need to exit this thread which calls __switch_to() which
 898	 * will again attempt to reclaim the already saved tm state.
 899	 * Hence we need to check that we've not already reclaimed
 900	 * this state.
 901	 * We do this using the current MSR, rather tracking it in
 902	 * some specific thread_struct bit, as it has the additional
 903	 * benefit of checking for a potential TM bad thing exception.
 904	 */
 905	if (!MSR_TM_SUSPENDED(mfmsr()))
 906		return;
 907
 908	giveup_all(container_of(thr, struct task_struct, thread));
 909
 910	tm_reclaim(thr, cause);
 911
 912	/*
 913	 * If we are in a transaction and FP is off then we can't have
 914	 * used FP inside that transaction. Hence the checkpointed
 915	 * state is the same as the live state. We need to copy the
 916	 * live state to the checkpointed state so that when the
 917	 * transaction is restored, the checkpointed state is correct
 918	 * and the aborted transaction sees the correct state. We use
 919	 * ckpt_regs.msr here as that's what tm_reclaim will use to
 920	 * determine if it's going to write the checkpointed state or
 921	 * not. So either this will write the checkpointed registers,
 922	 * or reclaim will. Similarly for VMX.
 923	 */
 924	if ((thr->ckpt_regs.msr & MSR_FP) == 0)
 925		memcpy(&thr->ckfp_state, &thr->fp_state,
 926		       sizeof(struct thread_fp_state));
 927	if ((thr->ckpt_regs.msr & MSR_VEC) == 0)
 928		memcpy(&thr->ckvr_state, &thr->vr_state,
 929		       sizeof(struct thread_vr_state));
 930}
 931
 932void tm_reclaim_current(uint8_t cause)
 933{
 934	tm_enable();
 935	tm_reclaim_thread(&current->thread, cause);
 936}
 937
 938static inline void tm_reclaim_task(struct task_struct *tsk)
 939{
 940	/* We have to work out if we're switching from/to a task that's in the
 941	 * middle of a transaction.
 942	 *
 943	 * In switching we need to maintain a 2nd register state as
 944	 * oldtask->thread.ckpt_regs.  We tm_reclaim(oldproc); this saves the
 945	 * checkpointed (tbegin) state in ckpt_regs, ckfp_state and
 946	 * ckvr_state
 947	 *
 948	 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
 949	 */
 950	struct thread_struct *thr = &tsk->thread;
 951
 952	if (!thr->regs)
 953		return;
 954
 955	if (!MSR_TM_ACTIVE(thr->regs->msr))
 956		goto out_and_saveregs;
 957
 958	WARN_ON(tm_suspend_disabled);
 
 
 
 
 
 
 959
 960	TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
 961		 "ccr=%lx, msr=%lx, trap=%lx)\n",
 962		 tsk->pid, thr->regs->nip,
 963		 thr->regs->ccr, thr->regs->msr,
 964		 thr->regs->trap);
 965
 966	tm_reclaim_thread(thr, TM_CAUSE_RESCHED);
 967
 968	TM_DEBUG("--- tm_reclaim on pid %d complete\n",
 969		 tsk->pid);
 970
 971out_and_saveregs:
 972	/* Always save the regs here, even if a transaction's not active.
 973	 * This context-switches a thread's TM info SPRs.  We do it here to
 974	 * be consistent with the restore path (in recheckpoint) which
 975	 * cannot happen later in _switch().
 976	 */
 977	tm_save_sprs(thr);
 978}
 979
 980extern void __tm_recheckpoint(struct thread_struct *thread);
 
 981
 982void tm_recheckpoint(struct thread_struct *thread)
 
 983{
 984	unsigned long flags;
 985
 986	if (!(thread->regs->msr & MSR_TM))
 987		return;
 988
 989	/* We really can't be interrupted here as the TEXASR registers can't
 990	 * change and later in the trecheckpoint code, we have a userspace R1.
 991	 * So let's hard disable over this region.
 992	 */
 993	local_irq_save(flags);
 994	hard_irq_disable();
 995
 996	/* The TM SPRs are restored here, so that TEXASR.FS can be set
 997	 * before the trecheckpoint and no explosion occurs.
 998	 */
 999	tm_restore_sprs(thread);
1000
1001	__tm_recheckpoint(thread);
1002
1003	local_irq_restore(flags);
1004}
1005
1006static inline void tm_recheckpoint_new_task(struct task_struct *new)
1007{
 
 
1008	if (!cpu_has_feature(CPU_FTR_TM))
1009		return;
1010
1011	/* Recheckpoint the registers of the thread we're about to switch to.
1012	 *
1013	 * If the task was using FP, we non-lazily reload both the original and
1014	 * the speculative FP register states.  This is because the kernel
1015	 * doesn't see if/when a TM rollback occurs, so if we take an FP
1016	 * unavailable later, we are unable to determine which set of FP regs
1017	 * need to be restored.
1018	 */
1019	if (!tm_enabled(new))
1020		return;
1021
1022	if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
1023		tm_restore_sprs(&new->thread);
1024		return;
1025	}
 
1026	/* Recheckpoint to restore original checkpointed register state. */
1027	TM_DEBUG("*** tm_recheckpoint of pid %d (new->msr 0x%lx)\n",
1028		 new->pid, new->thread.regs->msr);
1029
1030	tm_recheckpoint(&new->thread);
1031
1032	/*
1033	 * The checkpointed state has been restored but the live state has
1034	 * not, ensure all the math functionality is turned off to trigger
1035	 * restore_math() to reload.
1036	 */
1037	new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX);
 
 
 
 
 
 
 
 
 
 
 
1038
1039	TM_DEBUG("*** tm_recheckpoint of pid %d complete "
1040		 "(kernel msr 0x%lx)\n",
1041		 new->pid, mfmsr());
1042}
1043
1044static inline void __switch_to_tm(struct task_struct *prev,
1045		struct task_struct *new)
1046{
1047	if (cpu_has_feature(CPU_FTR_TM)) {
1048		if (tm_enabled(prev) || tm_enabled(new))
1049			tm_enable();
1050
1051		if (tm_enabled(prev)) {
1052			prev->thread.load_tm++;
1053			tm_reclaim_task(prev);
1054			if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0)
1055				prev->thread.regs->msr &= ~MSR_TM;
1056		}
1057
1058		tm_recheckpoint_new_task(new);
1059	}
1060}
1061
1062/*
1063 * This is called if we are on the way out to userspace and the
1064 * TIF_RESTORE_TM flag is set.  It checks if we need to reload
1065 * FP and/or vector state and does so if necessary.
1066 * If userspace is inside a transaction (whether active or
1067 * suspended) and FP/VMX/VSX instructions have ever been enabled
1068 * inside that transaction, then we have to keep them enabled
1069 * and keep the FP/VMX/VSX state loaded while ever the transaction
1070 * continues.  The reason is that if we didn't, and subsequently
1071 * got a FP/VMX/VSX unavailable interrupt inside a transaction,
1072 * we don't know whether it's the same transaction, and thus we
1073 * don't know which of the checkpointed state and the transactional
1074 * state to use.
1075 */
1076void restore_tm_state(struct pt_regs *regs)
1077{
1078	unsigned long msr_diff;
1079
1080	/*
1081	 * This is the only moment we should clear TIF_RESTORE_TM as
1082	 * it is here that ckpt_regs.msr and pt_regs.msr become the same
1083	 * again, anything else could lead to an incorrect ckpt_msr being
1084	 * saved and therefore incorrect signal contexts.
1085	 */
1086	clear_thread_flag(TIF_RESTORE_TM);
1087	if (!MSR_TM_ACTIVE(regs->msr))
1088		return;
1089
1090	msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
1091	msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
1092
1093	/* Ensure that restore_math() will restore */
1094	if (msr_diff & MSR_FP)
1095		current->thread.load_fp = 1;
1096#ifdef CONFIG_ALTIVEC
1097	if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC)
1098		current->thread.load_vec = 1;
1099#endif
1100	restore_math(regs);
1101
1102	regs->msr |= msr_diff;
1103}
1104
1105#else
1106#define tm_recheckpoint_new_task(new)
1107#define __switch_to_tm(prev, new)
1108#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1109
1110static inline void save_sprs(struct thread_struct *t)
1111{
1112#ifdef CONFIG_ALTIVEC
1113	if (cpu_has_feature(CPU_FTR_ALTIVEC))
1114		t->vrsave = mfspr(SPRN_VRSAVE);
1115#endif
1116#ifdef CONFIG_PPC_BOOK3S_64
1117	if (cpu_has_feature(CPU_FTR_DSCR))
1118		t->dscr = mfspr(SPRN_DSCR);
1119
1120	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1121		t->bescr = mfspr(SPRN_BESCR);
1122		t->ebbhr = mfspr(SPRN_EBBHR);
1123		t->ebbrr = mfspr(SPRN_EBBRR);
1124
1125		t->fscr = mfspr(SPRN_FSCR);
1126
1127		/*
1128		 * Note that the TAR is not available for use in the kernel.
1129		 * (To provide this, the TAR should be backed up/restored on
1130		 * exception entry/exit instead, and be in pt_regs.  FIXME,
1131		 * this should be in pt_regs anyway (for debug).)
1132		 */
1133		t->tar = mfspr(SPRN_TAR);
1134	}
1135#endif
1136
1137	thread_pkey_regs_save(t);
1138}
1139
1140static inline void restore_sprs(struct thread_struct *old_thread,
1141				struct thread_struct *new_thread)
1142{
1143#ifdef CONFIG_ALTIVEC
1144	if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
1145	    old_thread->vrsave != new_thread->vrsave)
1146		mtspr(SPRN_VRSAVE, new_thread->vrsave);
1147#endif
1148#ifdef CONFIG_PPC_BOOK3S_64
1149	if (cpu_has_feature(CPU_FTR_DSCR)) {
1150		u64 dscr = get_paca()->dscr_default;
1151		if (new_thread->dscr_inherit)
 
 
1152			dscr = new_thread->dscr;
 
 
1153
1154		if (old_thread->dscr != dscr)
1155			mtspr(SPRN_DSCR, dscr);
 
 
 
1156	}
1157
1158	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1159		if (old_thread->bescr != new_thread->bescr)
1160			mtspr(SPRN_BESCR, new_thread->bescr);
1161		if (old_thread->ebbhr != new_thread->ebbhr)
1162			mtspr(SPRN_EBBHR, new_thread->ebbhr);
1163		if (old_thread->ebbrr != new_thread->ebbrr)
1164			mtspr(SPRN_EBBRR, new_thread->ebbrr);
1165
1166		if (old_thread->fscr != new_thread->fscr)
1167			mtspr(SPRN_FSCR, new_thread->fscr);
1168
1169		if (old_thread->tar != new_thread->tar)
1170			mtspr(SPRN_TAR, new_thread->tar);
1171	}
1172
1173	if (cpu_has_feature(CPU_FTR_P9_TIDR) &&
1174	    old_thread->tidr != new_thread->tidr)
1175		mtspr(SPRN_TIDR, new_thread->tidr);
1176#endif
1177
1178	thread_pkey_regs_restore(new_thread, old_thread);
1179}
1180
1181struct task_struct *__switch_to(struct task_struct *prev,
1182	struct task_struct *new)
1183{
1184	struct thread_struct *new_thread, *old_thread;
1185	struct task_struct *last;
1186#ifdef CONFIG_PPC_BOOK3S_64
1187	struct ppc64_tlb_batch *batch;
1188#endif
1189
1190	new_thread = &new->thread;
1191	old_thread = &current->thread;
1192
1193	WARN_ON(!irqs_disabled());
1194
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1195#ifdef CONFIG_PPC_BOOK3S_64
1196	batch = this_cpu_ptr(&ppc64_tlb_batch);
1197	if (batch->active) {
1198		current_thread_info()->local_flags |= _TLF_LAZY_MMU;
1199		if (batch->index)
1200			__flush_tlb_pending(batch);
1201		batch->active = 0;
1202	}
1203#endif /* CONFIG_PPC_BOOK3S_64 */
1204
1205#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1206	switch_booke_debug_regs(&new->thread.debug);
1207#else
1208/*
1209 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
1210 * schedule DABR
1211 */
1212#ifndef CONFIG_HAVE_HW_BREAKPOINT
1213	switch_hw_breakpoint(new);
 
1214#endif /* CONFIG_HAVE_HW_BREAKPOINT */
1215#endif
1216
1217	/*
1218	 * We need to save SPRs before treclaim/trecheckpoint as these will
1219	 * change a number of them.
1220	 */
1221	save_sprs(&prev->thread);
1222
 
 
1223	/* Save FPU, Altivec, VSX and SPE state */
1224	giveup_all(prev);
1225
1226	__switch_to_tm(prev, new);
 
 
 
 
 
1227
1228	if (!radix_enabled()) {
1229		/*
1230		 * We can't take a PMU exception inside _switch() since there
1231		 * is a window where the kernel stack SLB and the kernel stack
1232		 * are out of sync. Hard disable here.
1233		 */
1234		hard_irq_disable();
1235	}
1236
1237	/*
1238	 * Call restore_sprs() before calling _switch(). If we move it after
1239	 * _switch() then we miss out on calling it for new tasks. The reason
1240	 * for this is we manually create a stack frame for new tasks that
1241	 * directly returns through ret_from_fork() or
1242	 * ret_from_kernel_thread(). See copy_thread() for details.
1243	 */
1244	restore_sprs(old_thread, new_thread);
1245
1246	last = _switch(old_thread, new_thread);
1247
1248#ifdef CONFIG_PPC_BOOK3S_64
1249	if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
1250		current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
1251		batch = this_cpu_ptr(&ppc64_tlb_batch);
1252		batch->active = 1;
1253	}
1254
1255	if (current->thread.regs) {
1256		restore_math(current->thread.regs);
1257
1258		/*
1259		 * The copy-paste buffer can only store into foreign real
1260		 * addresses, so unprivileged processes can not see the
1261		 * data or use it in any way unless they have foreign real
1262		 * mappings. If the new process has the foreign real address
1263		 * mappings, we must issue a cp_abort to clear any state and
1264		 * prevent snooping, corruption or a covert channel.
1265		 */
1266		if (current->mm &&
1267			atomic_read(&current->mm->context.vas_windows))
1268			asm volatile(PPC_CP_ABORT);
1269	}
1270#endif /* CONFIG_PPC_BOOK3S_64 */
1271
1272	return last;
1273}
1274
1275#define NR_INSN_TO_PRINT	16
1276
1277static void show_instructions(struct pt_regs *regs)
1278{
1279	int i;
1280	unsigned long nip = regs->nip;
1281	unsigned long pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int));
1282
1283	printk("Instruction dump:");
1284
1285	/*
1286	 * If we were executing with the MMU off for instructions, adjust pc
1287	 * rather than printing XXXXXXXX.
1288	 */
1289	if (!IS_ENABLED(CONFIG_BOOKE) && !(regs->msr & MSR_IR)) {
1290		pc = (unsigned long)phys_to_virt(pc);
1291		nip = (unsigned long)phys_to_virt(regs->nip);
1292	}
1293
1294	for (i = 0; i < NR_INSN_TO_PRINT; i++) {
1295		int instr;
1296
1297		if (!(i % 8))
1298			pr_cont("\n");
 
 
 
 
 
 
 
 
1299
1300		if (!__kernel_text_address(pc) ||
1301		    get_kernel_nofault(instr, (const void *)pc)) {
1302			pr_cont("XXXXXXXX ");
1303		} else {
1304			if (nip == pc)
1305				pr_cont("<%08x> ", instr);
1306			else
1307				pr_cont("%08x ", instr);
1308		}
1309
1310		pc += sizeof(int);
1311	}
1312
1313	pr_cont("\n");
1314}
1315
1316void show_user_instructions(struct pt_regs *regs)
1317{
1318	unsigned long pc;
1319	int n = NR_INSN_TO_PRINT;
1320	struct seq_buf s;
1321	char buf[96]; /* enough for 8 times 9 + 2 chars */
1322
1323	pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int));
1324
1325	seq_buf_init(&s, buf, sizeof(buf));
1326
1327	while (n) {
1328		int i;
1329
1330		seq_buf_clear(&s);
1331
1332		for (i = 0; i < 8 && n; i++, n--, pc += sizeof(int)) {
1333			int instr;
1334
1335			if (copy_from_user_nofault(&instr, (void __user *)pc,
1336					sizeof(instr))) {
1337				seq_buf_printf(&s, "XXXXXXXX ");
1338				continue;
1339			}
1340			seq_buf_printf(&s, regs->nip == pc ? "<%08x> " : "%08x ", instr);
1341		}
1342
1343		if (!seq_buf_has_overflowed(&s))
1344			pr_info("%s[%d]: code: %s\n", current->comm,
1345				current->pid, s.buffer);
1346	}
1347}
1348
1349struct regbit {
1350	unsigned long bit;
1351	const char *name;
1352};
1353
1354static struct regbit msr_bits[] = {
1355#if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
1356	{MSR_SF,	"SF"},
1357	{MSR_HV,	"HV"},
1358#endif
1359	{MSR_VEC,	"VEC"},
1360	{MSR_VSX,	"VSX"},
1361#ifdef CONFIG_BOOKE
1362	{MSR_CE,	"CE"},
1363#endif
1364	{MSR_EE,	"EE"},
1365	{MSR_PR,	"PR"},
1366	{MSR_FP,	"FP"},
1367	{MSR_ME,	"ME"},
1368#ifdef CONFIG_BOOKE
1369	{MSR_DE,	"DE"},
1370#else
1371	{MSR_SE,	"SE"},
1372	{MSR_BE,	"BE"},
1373#endif
1374	{MSR_IR,	"IR"},
1375	{MSR_DR,	"DR"},
1376	{MSR_PMM,	"PMM"},
1377#ifndef CONFIG_BOOKE
1378	{MSR_RI,	"RI"},
1379	{MSR_LE,	"LE"},
1380#endif
1381	{0,		NULL}
1382};
1383
1384static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
1385{
1386	const char *s = "";
1387
1388	for (; bits->bit; ++bits)
1389		if (val & bits->bit) {
1390			pr_cont("%s%s", s, bits->name);
1391			s = sep;
1392		}
1393}
1394
1395#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1396static struct regbit msr_tm_bits[] = {
1397	{MSR_TS_T,	"T"},
1398	{MSR_TS_S,	"S"},
1399	{MSR_TM,	"E"},
1400	{0,		NULL}
1401};
1402
1403static void print_tm_bits(unsigned long val)
1404{
1405/*
1406 * This only prints something if at least one of the TM bit is set.
1407 * Inside the TM[], the output means:
1408 *   E: Enabled		(bit 32)
1409 *   S: Suspended	(bit 33)
1410 *   T: Transactional	(bit 34)
1411 */
1412	if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
1413		pr_cont(",TM[");
1414		print_bits(val, msr_tm_bits, "");
1415		pr_cont("]");
1416	}
1417}
1418#else
1419static void print_tm_bits(unsigned long val) {}
1420#endif
1421
1422static void print_msr_bits(unsigned long val)
1423{
1424	pr_cont("<");
1425	print_bits(val, msr_bits, ",");
1426	print_tm_bits(val);
1427	pr_cont(">");
1428}
1429
1430#ifdef CONFIG_PPC64
1431#define REG		"%016lx"
1432#define REGS_PER_LINE	4
1433#define LAST_VOLATILE	13
1434#else
1435#define REG		"%08lx"
1436#define REGS_PER_LINE	8
1437#define LAST_VOLATILE	12
1438#endif
1439
1440void show_regs(struct pt_regs * regs)
1441{
1442	int i, trap;
1443
1444	show_regs_print_info(KERN_DEFAULT);
1445
1446	printk("NIP:  "REG" LR: "REG" CTR: "REG"\n",
1447	       regs->nip, regs->link, regs->ctr);
1448	printk("REGS: %px TRAP: %04lx   %s  (%s)\n",
1449	       regs, regs->trap, print_tainted(), init_utsname()->release);
1450	printk("MSR:  "REG" ", regs->msr);
1451	print_msr_bits(regs->msr);
1452	pr_cont("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
1453	trap = TRAP(regs);
1454	if (!trap_is_syscall(regs) && cpu_has_feature(CPU_FTR_CFAR))
1455		pr_cont("CFAR: "REG" ", regs->orig_gpr3);
1456	if (trap == 0x200 || trap == 0x300 || trap == 0x600)
1457#if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
1458		pr_cont("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
1459#else
1460		pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1461#endif
1462#ifdef CONFIG_PPC64
1463	pr_cont("IRQMASK: %lx ", regs->softe);
1464#endif
1465#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1466	if (MSR_TM_ACTIVE(regs->msr))
1467		pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1468#endif
1469
1470	for (i = 0;  i < 32;  i++) {
1471		if ((i % REGS_PER_LINE) == 0)
1472			pr_cont("\nGPR%02d: ", i);
1473		pr_cont(REG " ", regs->gpr[i]);
1474		if (i == LAST_VOLATILE && !FULL_REGS(regs))
1475			break;
1476	}
1477	pr_cont("\n");
1478#ifdef CONFIG_KALLSYMS
1479	/*
1480	 * Lookup NIP late so we have the best change of getting the
1481	 * above info out without failing
1482	 */
1483	printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1484	printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1485#endif
1486	show_stack(current, (unsigned long *) regs->gpr[1], KERN_DEFAULT);
1487	if (!user_mode(regs))
1488		show_instructions(regs);
1489}
1490
 
 
 
 
1491void flush_thread(void)
1492{
1493#ifdef CONFIG_HAVE_HW_BREAKPOINT
1494	flush_ptrace_hw_breakpoint(current);
1495#else /* CONFIG_HAVE_HW_BREAKPOINT */
1496	set_debug_reg_defaults(&current->thread);
1497#endif /* CONFIG_HAVE_HW_BREAKPOINT */
1498}
1499
1500#ifdef CONFIG_PPC_BOOK3S_64
1501void arch_setup_new_exec(void)
1502{
1503	if (radix_enabled())
1504		return;
1505	hash__setup_new_exec();
1506}
1507#endif
1508
1509#ifdef CONFIG_PPC64
1510/**
1511 * Assign a TIDR (thread ID) for task @t and set it in the thread
1512 * structure. For now, we only support setting TIDR for 'current' task.
1513 *
1514 * Since the TID value is a truncated form of it PID, it is possible
1515 * (but unlikely) for 2 threads to have the same TID. In the unlikely event
1516 * that 2 threads share the same TID and are waiting, one of the following
1517 * cases will happen:
1518 *
1519 * 1. The correct thread is running, the wrong thread is not
1520 * In this situation, the correct thread is woken and proceeds to pass it's
1521 * condition check.
1522 *
1523 * 2. Neither threads are running
1524 * In this situation, neither thread will be woken. When scheduled, the waiting
1525 * threads will execute either a wait, which will return immediately, followed
1526 * by a condition check, which will pass for the correct thread and fail
1527 * for the wrong thread, or they will execute the condition check immediately.
1528 *
1529 * 3. The wrong thread is running, the correct thread is not
1530 * The wrong thread will be woken, but will fail it's condition check and
1531 * re-execute wait. The correct thread, when scheduled, will execute either
1532 * it's condition check (which will pass), or wait, which returns immediately
1533 * when called the first time after the thread is scheduled, followed by it's
1534 * condition check (which will pass).
1535 *
1536 * 4. Both threads are running
1537 * Both threads will be woken. The wrong thread will fail it's condition check
1538 * and execute another wait, while the correct thread will pass it's condition
1539 * check.
1540 *
1541 * @t: the task to set the thread ID for
1542 */
1543int set_thread_tidr(struct task_struct *t)
1544{
1545	if (!cpu_has_feature(CPU_FTR_P9_TIDR))
1546		return -EINVAL;
1547
1548	if (t != current)
1549		return -EINVAL;
1550
1551	if (t->thread.tidr)
1552		return 0;
1553
1554	t->thread.tidr = (u16)task_pid_nr(t);
1555	mtspr(SPRN_TIDR, t->thread.tidr);
1556
1557	return 0;
1558}
1559EXPORT_SYMBOL_GPL(set_thread_tidr);
1560
1561#endif /* CONFIG_PPC64 */
1562
1563void
1564release_thread(struct task_struct *t)
1565{
1566}
1567
1568/*
1569 * this gets called so that we can store coprocessor state into memory and
1570 * copy the current task into the new thread.
1571 */
1572int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1573{
1574	flush_all_to_thread(src);
1575	/*
1576	 * Flush TM state out so we can copy it.  __switch_to_tm() does this
1577	 * flush but it removes the checkpointed state from the current CPU and
1578	 * transitions the CPU out of TM mode.  Hence we need to call
1579	 * tm_recheckpoint_new_task() (on the same task) to restore the
1580	 * checkpointed state back and the TM mode.
1581	 *
1582	 * Can't pass dst because it isn't ready. Doesn't matter, passing
1583	 * dst is only important for __switch_to()
1584	 */
1585	__switch_to_tm(src, src);
 
1586
1587	*dst = *src;
1588
1589	clear_task_ebb(dst);
1590
1591	return 0;
1592}
1593
1594static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
1595{
1596#ifdef CONFIG_PPC_BOOK3S_64
1597	unsigned long sp_vsid;
1598	unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1599
1600	if (radix_enabled())
1601		return;
1602
1603	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1604		sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1605			<< SLB_VSID_SHIFT_1T;
1606	else
1607		sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1608			<< SLB_VSID_SHIFT;
1609	sp_vsid |= SLB_VSID_KERNEL | llp;
1610	p->thread.ksp_vsid = sp_vsid;
1611#endif
1612}
1613
1614/*
1615 * Copy a thread..
1616 */
1617
1618/*
1619 * Copy architecture-specific thread state
1620 */
1621int copy_thread(unsigned long clone_flags, unsigned long usp,
1622		unsigned long kthread_arg, struct task_struct *p,
1623		unsigned long tls)
1624{
1625	struct pt_regs *childregs, *kregs;
1626	extern void ret_from_fork(void);
1627	extern void ret_from_fork_scv(void);
1628	extern void ret_from_kernel_thread(void);
1629	void (*f)(void);
1630	unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1631	struct thread_info *ti = task_thread_info(p);
1632#ifdef CONFIG_HAVE_HW_BREAKPOINT
1633	int i;
1634#endif
1635
1636	klp_init_thread_info(p);
1637
1638	/* Copy registers */
1639	sp -= sizeof(struct pt_regs);
1640	childregs = (struct pt_regs *) sp;
1641	if (unlikely(p->flags & PF_KTHREAD)) {
1642		/* kernel thread */
 
1643		memset(childregs, 0, sizeof(struct pt_regs));
1644		childregs->gpr[1] = sp + sizeof(struct pt_regs);
1645		/* function */
1646		if (usp)
1647			childregs->gpr[14] = ppc_function_entry((void *)usp);
1648#ifdef CONFIG_PPC64
1649		clear_tsk_thread_flag(p, TIF_32BIT);
1650		childregs->softe = IRQS_ENABLED;
1651#endif
1652		childregs->gpr[15] = kthread_arg;
1653		p->thread.regs = NULL;	/* no user register state */
1654		ti->flags |= _TIF_RESTOREALL;
1655		f = ret_from_kernel_thread;
1656	} else {
1657		/* user thread */
1658		struct pt_regs *regs = current_pt_regs();
1659		CHECK_FULL_REGS(regs);
1660		*childregs = *regs;
1661		if (usp)
1662			childregs->gpr[1] = usp;
1663		p->thread.regs = childregs;
1664		/* 64s sets this in ret_from_fork */
1665		if (!IS_ENABLED(CONFIG_PPC_BOOK3S_64))
1666			childregs->gpr[3] = 0;  /* Result from fork() */
1667		if (clone_flags & CLONE_SETTLS) {
 
1668			if (!is_32bit_task())
1669				childregs->gpr[13] = tls;
1670			else
1671				childregs->gpr[2] = tls;
 
1672		}
1673
1674		if (trap_is_scv(regs))
1675			f = ret_from_fork_scv;
1676		else
1677			f = ret_from_fork;
1678	}
1679	childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX);
1680	sp -= STACK_FRAME_OVERHEAD;
1681
1682	/*
1683	 * The way this works is that at some point in the future
1684	 * some task will call _switch to switch to the new task.
1685	 * That will pop off the stack frame created below and start
1686	 * the new task running at ret_from_fork.  The new task will
1687	 * do some house keeping and then return from the fork or clone
1688	 * system call, using the stack frame created above.
1689	 */
1690	((unsigned long *)sp)[0] = 0;
1691	sp -= sizeof(struct pt_regs);
1692	kregs = (struct pt_regs *) sp;
1693	sp -= STACK_FRAME_OVERHEAD;
1694	p->thread.ksp = sp;
1695#ifdef CONFIG_PPC32
1696	p->thread.ksp_limit = (unsigned long)end_of_stack(p);
 
1697#endif
1698#ifdef CONFIG_HAVE_HW_BREAKPOINT
1699	for (i = 0; i < nr_wp_slots(); i++)
1700		p->thread.ptrace_bps[i] = NULL;
1701#endif
1702
1703	p->thread.fp_save_area = NULL;
1704#ifdef CONFIG_ALTIVEC
1705	p->thread.vr_save_area = NULL;
1706#endif
1707
1708	setup_ksp_vsid(p, sp);
1709
1710#ifdef CONFIG_PPC64 
1711	if (cpu_has_feature(CPU_FTR_DSCR)) {
1712		p->thread.dscr_inherit = current->thread.dscr_inherit;
1713		p->thread.dscr = mfspr(SPRN_DSCR);
1714	}
1715	if (cpu_has_feature(CPU_FTR_HAS_PPR))
1716		childregs->ppr = DEFAULT_PPR;
1717
1718	p->thread.tidr = 0;
1719#endif
1720	kregs->nip = ppc_function_entry(f);
1721	return 0;
1722}
1723
1724void preload_new_slb_context(unsigned long start, unsigned long sp);
1725
1726/*
1727 * Set up a thread for executing a new program
1728 */
1729void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1730{
1731#ifdef CONFIG_PPC64
1732	unsigned long load_addr = regs->gpr[2];	/* saved by ELF_PLAT_INIT */
1733
1734#ifdef CONFIG_PPC_BOOK3S_64
1735	if (!radix_enabled())
1736		preload_new_slb_context(start, sp);
1737#endif
1738#endif
1739
1740	/*
1741	 * If we exec out of a kernel thread then thread.regs will not be
1742	 * set.  Do it now.
1743	 */
1744	if (!current->thread.regs) {
1745		struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1746		current->thread.regs = regs - 1;
1747	}
1748
1749#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1750	/*
1751	 * Clear any transactional state, we're exec()ing. The cause is
1752	 * not important as there will never be a recheckpoint so it's not
1753	 * user visible.
1754	 */
1755	if (MSR_TM_SUSPENDED(mfmsr()))
1756		tm_reclaim_current(0);
1757#endif
1758
1759	memset(regs->gpr, 0, sizeof(regs->gpr));
1760	regs->ctr = 0;
1761	regs->link = 0;
1762	regs->xer = 0;
1763	regs->ccr = 0;
1764	regs->gpr[1] = sp;
1765
1766	/*
1767	 * We have just cleared all the nonvolatile GPRs, so make
1768	 * FULL_REGS(regs) return true.  This is necessary to allow
1769	 * ptrace to examine the thread immediately after exec.
1770	 */
1771	SET_FULL_REGS(regs);
1772
1773#ifdef CONFIG_PPC32
1774	regs->mq = 0;
1775	regs->nip = start;
1776	regs->msr = MSR_USER;
1777#else
1778	if (!is_32bit_task()) {
1779		unsigned long entry;
1780
1781		if (is_elf2_task()) {
1782			/* Look ma, no function descriptors! */
1783			entry = start;
1784
1785			/*
1786			 * Ulrich says:
1787			 *   The latest iteration of the ABI requires that when
1788			 *   calling a function (at its global entry point),
1789			 *   the caller must ensure r12 holds the entry point
1790			 *   address (so that the function can quickly
1791			 *   establish addressability).
1792			 */
1793			regs->gpr[12] = start;
1794			/* Make sure that's restored on entry to userspace. */
1795			set_thread_flag(TIF_RESTOREALL);
1796		} else {
1797			unsigned long toc;
1798
1799			/* start is a relocated pointer to the function
1800			 * descriptor for the elf _start routine.  The first
1801			 * entry in the function descriptor is the entry
1802			 * address of _start and the second entry is the TOC
1803			 * value we need to use.
1804			 */
1805			__get_user(entry, (unsigned long __user *)start);
1806			__get_user(toc, (unsigned long __user *)start+1);
1807
1808			/* Check whether the e_entry function descriptor entries
1809			 * need to be relocated before we can use them.
1810			 */
1811			if (load_addr != 0) {
1812				entry += load_addr;
1813				toc   += load_addr;
1814			}
1815			regs->gpr[2] = toc;
1816		}
1817		regs->nip = entry;
1818		regs->msr = MSR_USER64;
1819	} else {
1820		regs->nip = start;
1821		regs->gpr[2] = 0;
1822		regs->msr = MSR_USER32;
1823	}
1824#endif
1825#ifdef CONFIG_VSX
1826	current->thread.used_vsr = 0;
1827#endif
1828	current->thread.load_slb = 0;
1829	current->thread.load_fp = 0;
1830	memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
1831	current->thread.fp_save_area = NULL;
1832#ifdef CONFIG_ALTIVEC
1833	memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
1834	current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1835	current->thread.vr_save_area = NULL;
1836	current->thread.vrsave = 0;
1837	current->thread.used_vr = 0;
1838	current->thread.load_vec = 0;
1839#endif /* CONFIG_ALTIVEC */
1840#ifdef CONFIG_SPE
1841	memset(current->thread.evr, 0, sizeof(current->thread.evr));
1842	current->thread.acc = 0;
1843	current->thread.spefscr = 0;
1844	current->thread.used_spe = 0;
1845#endif /* CONFIG_SPE */
1846#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 
 
1847	current->thread.tm_tfhar = 0;
1848	current->thread.tm_texasr = 0;
1849	current->thread.tm_tfiar = 0;
1850	current->thread.load_tm = 0;
1851#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1852
1853	thread_pkey_regs_init(&current->thread);
1854}
1855EXPORT_SYMBOL(start_thread);
1856
1857#define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1858		| PR_FP_EXC_RES | PR_FP_EXC_INV)
1859
1860int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1861{
1862	struct pt_regs *regs = tsk->thread.regs;
1863
1864	/* This is a bit hairy.  If we are an SPE enabled  processor
1865	 * (have embedded fp) we store the IEEE exception enable flags in
1866	 * fpexc_mode.  fpexc_mode is also used for setting FP exception
1867	 * mode (asyn, precise, disabled) for 'Classic' FP. */
1868	if (val & PR_FP_EXC_SW_ENABLE) {
1869#ifdef CONFIG_SPE
1870		if (cpu_has_feature(CPU_FTR_SPE)) {
1871			/*
1872			 * When the sticky exception bits are set
1873			 * directly by userspace, it must call prctl
1874			 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1875			 * in the existing prctl settings) or
1876			 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1877			 * the bits being set).  <fenv.h> functions
1878			 * saving and restoring the whole
1879			 * floating-point environment need to do so
1880			 * anyway to restore the prctl settings from
1881			 * the saved environment.
1882			 */
1883			tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1884			tsk->thread.fpexc_mode = val &
1885				(PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1886			return 0;
1887		} else {
1888			return -EINVAL;
1889		}
1890#else
1891		return -EINVAL;
1892#endif
1893	}
1894
1895	/* on a CONFIG_SPE this does not hurt us.  The bits that
1896	 * __pack_fe01 use do not overlap with bits used for
1897	 * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
1898	 * on CONFIG_SPE implementations are reserved so writing to
1899	 * them does not change anything */
1900	if (val > PR_FP_EXC_PRECISE)
1901		return -EINVAL;
1902	tsk->thread.fpexc_mode = __pack_fe01(val);
1903	if (regs != NULL && (regs->msr & MSR_FP) != 0)
1904		regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1905			| tsk->thread.fpexc_mode;
1906	return 0;
1907}
1908
1909int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1910{
1911	unsigned int val;
1912
1913	if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
1914#ifdef CONFIG_SPE
1915		if (cpu_has_feature(CPU_FTR_SPE)) {
1916			/*
1917			 * When the sticky exception bits are set
1918			 * directly by userspace, it must call prctl
1919			 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1920			 * in the existing prctl settings) or
1921			 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1922			 * the bits being set).  <fenv.h> functions
1923			 * saving and restoring the whole
1924			 * floating-point environment need to do so
1925			 * anyway to restore the prctl settings from
1926			 * the saved environment.
1927			 */
1928			tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1929			val = tsk->thread.fpexc_mode;
1930		} else
1931			return -EINVAL;
1932#else
1933		return -EINVAL;
1934#endif
1935	else
1936		val = __unpack_fe01(tsk->thread.fpexc_mode);
1937	return put_user(val, (unsigned int __user *) adr);
1938}
1939
1940int set_endian(struct task_struct *tsk, unsigned int val)
1941{
1942	struct pt_regs *regs = tsk->thread.regs;
1943
1944	if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1945	    (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1946		return -EINVAL;
1947
1948	if (regs == NULL)
1949		return -EINVAL;
1950
1951	if (val == PR_ENDIAN_BIG)
1952		regs->msr &= ~MSR_LE;
1953	else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1954		regs->msr |= MSR_LE;
1955	else
1956		return -EINVAL;
1957
1958	return 0;
1959}
1960
1961int get_endian(struct task_struct *tsk, unsigned long adr)
1962{
1963	struct pt_regs *regs = tsk->thread.regs;
1964	unsigned int val;
1965
1966	if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1967	    !cpu_has_feature(CPU_FTR_REAL_LE))
1968		return -EINVAL;
1969
1970	if (regs == NULL)
1971		return -EINVAL;
1972
1973	if (regs->msr & MSR_LE) {
1974		if (cpu_has_feature(CPU_FTR_REAL_LE))
1975			val = PR_ENDIAN_LITTLE;
1976		else
1977			val = PR_ENDIAN_PPC_LITTLE;
1978	} else
1979		val = PR_ENDIAN_BIG;
1980
1981	return put_user(val, (unsigned int __user *)adr);
1982}
1983
1984int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
1985{
1986	tsk->thread.align_ctl = val;
1987	return 0;
1988}
1989
1990int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
1991{
1992	return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
1993}
1994
1995static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
1996				  unsigned long nbytes)
1997{
1998	unsigned long stack_page;
1999	unsigned long cpu = task_cpu(p);
2000
2001	stack_page = (unsigned long)hardirq_ctx[cpu];
2002	if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2003		return 1;
2004
2005	stack_page = (unsigned long)softirq_ctx[cpu];
2006	if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2007		return 1;
2008
2009	return 0;
2010}
2011
2012static inline int valid_emergency_stack(unsigned long sp, struct task_struct *p,
2013					unsigned long nbytes)
2014{
2015#ifdef CONFIG_PPC64
2016	unsigned long stack_page;
2017	unsigned long cpu = task_cpu(p);
2018
2019	stack_page = (unsigned long)paca_ptrs[cpu]->emergency_sp - THREAD_SIZE;
2020	if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2021		return 1;
2022
2023# ifdef CONFIG_PPC_BOOK3S_64
2024	stack_page = (unsigned long)paca_ptrs[cpu]->nmi_emergency_sp - THREAD_SIZE;
2025	if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2026		return 1;
2027
2028	stack_page = (unsigned long)paca_ptrs[cpu]->mc_emergency_sp - THREAD_SIZE;
2029	if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2030		return 1;
2031# endif
2032#endif
2033
2034	return 0;
2035}
2036
2037
2038int validate_sp(unsigned long sp, struct task_struct *p,
2039		       unsigned long nbytes)
2040{
2041	unsigned long stack_page = (unsigned long)task_stack_page(p);
2042
2043	if (sp < THREAD_SIZE)
2044		return 0;
2045
2046	if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2047		return 1;
2048
2049	if (valid_irq_stack(sp, p, nbytes))
2050		return 1;
2051
2052	return valid_emergency_stack(sp, p, nbytes);
2053}
2054
2055EXPORT_SYMBOL(validate_sp);
2056
2057static unsigned long __get_wchan(struct task_struct *p)
2058{
2059	unsigned long ip, sp;
2060	int count = 0;
2061
2062	if (!p || p == current || p->state == TASK_RUNNING)
2063		return 0;
2064
2065	sp = p->thread.ksp;
2066	if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
2067		return 0;
2068
2069	do {
2070		sp = *(unsigned long *)sp;
2071		if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD) ||
2072		    p->state == TASK_RUNNING)
2073			return 0;
2074		if (count > 0) {
2075			ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
2076			if (!in_sched_functions(ip))
2077				return ip;
2078		}
2079	} while (count++ < 16);
2080	return 0;
2081}
2082
2083unsigned long get_wchan(struct task_struct *p)
2084{
2085	unsigned long ret;
2086
2087	if (!try_get_task_stack(p))
2088		return 0;
2089
2090	ret = __get_wchan(p);
2091
2092	put_task_stack(p);
2093
2094	return ret;
2095}
2096
2097static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
2098
2099void show_stack(struct task_struct *tsk, unsigned long *stack,
2100		const char *loglvl)
2101{
2102	unsigned long sp, ip, lr, newsp;
2103	int count = 0;
2104	int firstframe = 1;
2105#ifdef CONFIG_FUNCTION_GRAPH_TRACER
2106	unsigned long ret_addr;
2107	int ftrace_idx = 0;
 
2108#endif
2109
 
2110	if (tsk == NULL)
2111		tsk = current;
2112
2113	if (!try_get_task_stack(tsk))
2114		return;
2115
2116	sp = (unsigned long) stack;
2117	if (sp == 0) {
2118		if (tsk == current)
2119			sp = current_stack_frame();
2120		else
2121			sp = tsk->thread.ksp;
2122	}
2123
2124	lr = 0;
2125	printk("%sCall Trace:\n", loglvl);
2126	do {
2127		if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
2128			break;
2129
2130		stack = (unsigned long *) sp;
2131		newsp = stack[0];
2132		ip = stack[STACK_FRAME_LR_SAVE];
2133		if (!firstframe || ip != lr) {
2134			printk("%s["REG"] ["REG"] %pS",
2135				loglvl, sp, ip, (void *)ip);
2136#ifdef CONFIG_FUNCTION_GRAPH_TRACER
2137			ret_addr = ftrace_graph_ret_addr(current,
2138						&ftrace_idx, ip, stack);
2139			if (ret_addr != ip)
2140				pr_cont(" (%pS)", (void *)ret_addr);
 
2141#endif
2142			if (firstframe)
2143				pr_cont(" (unreliable)");
2144			pr_cont("\n");
2145		}
2146		firstframe = 0;
2147
2148		/*
2149		 * See if this is an exception frame.
2150		 * We look for the "regshere" marker in the current frame.
2151		 */
2152		if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
2153		    && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
2154			struct pt_regs *regs = (struct pt_regs *)
2155				(sp + STACK_FRAME_OVERHEAD);
2156			lr = regs->link;
2157			printk("%s--- interrupt: %lx at %pS\n    LR = %pS\n",
2158			       loglvl, regs->trap,
2159			       (void *)regs->nip, (void *)lr);
2160			firstframe = 1;
2161		}
2162
2163		sp = newsp;
2164	} while (count++ < kstack_depth_to_print);
2165
2166	put_task_stack(tsk);
2167}
2168
2169#ifdef CONFIG_PPC64
2170/* Called with hard IRQs off */
2171void notrace __ppc64_runlatch_on(void)
2172{
2173	struct thread_info *ti = current_thread_info();
 
2174
2175	if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2176		/*
2177		 * Least significant bit (RUN) is the only writable bit of
2178		 * the CTRL register, so we can avoid mfspr. 2.06 is not the
2179		 * earliest ISA where this is the case, but it's convenient.
2180		 */
2181		mtspr(SPRN_CTRLT, CTRL_RUNLATCH);
2182	} else {
2183		unsigned long ctrl;
2184
2185		/*
2186		 * Some architectures (e.g., Cell) have writable fields other
2187		 * than RUN, so do the read-modify-write.
2188		 */
2189		ctrl = mfspr(SPRN_CTRLF);
2190		ctrl |= CTRL_RUNLATCH;
2191		mtspr(SPRN_CTRLT, ctrl);
2192	}
2193
2194	ti->local_flags |= _TLF_RUNLATCH;
2195}
2196
2197/* Called with hard IRQs off */
2198void notrace __ppc64_runlatch_off(void)
2199{
2200	struct thread_info *ti = current_thread_info();
 
2201
2202	ti->local_flags &= ~_TLF_RUNLATCH;
2203
2204	if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2205		mtspr(SPRN_CTRLT, 0);
2206	} else {
2207		unsigned long ctrl;
2208
2209		ctrl = mfspr(SPRN_CTRLF);
2210		ctrl &= ~CTRL_RUNLATCH;
2211		mtspr(SPRN_CTRLT, ctrl);
2212	}
2213}
2214#endif /* CONFIG_PPC64 */
2215
2216unsigned long arch_align_stack(unsigned long sp)
2217{
2218	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
2219		sp -= get_random_int() & ~PAGE_MASK;
2220	return sp & ~0xf;
2221}
2222
2223static inline unsigned long brk_rnd(void)
2224{
2225        unsigned long rnd = 0;
2226
2227	/* 8MB for 32bit, 1GB for 64bit */
2228	if (is_32bit_task())
2229		rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT)));
2230	else
2231		rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT)));
2232
2233	return rnd << PAGE_SHIFT;
2234}
2235
2236unsigned long arch_randomize_brk(struct mm_struct *mm)
2237{
2238	unsigned long base = mm->brk;
2239	unsigned long ret;
2240
2241#ifdef CONFIG_PPC_BOOK3S_64
2242	/*
2243	 * If we are using 1TB segments and we are allowed to randomise
2244	 * the heap, we can put it above 1TB so it is backed by a 1TB
2245	 * segment. Otherwise the heap will be in the bottom 1TB
2246	 * which always uses 256MB segments and this may result in a
2247	 * performance penalty. We don't need to worry about radix. For
2248	 * radix, mmu_highuser_ssize remains unchanged from 256MB.
2249	 */
2250	if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
2251		base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
2252#endif
2253
2254	ret = PAGE_ALIGN(base + brk_rnd());
2255
2256	if (ret < mm->brk)
2257		return mm->brk;
2258
2259	return ret;
2260}
2261
v4.6
 
   1/*
   2 *  Derived from "arch/i386/kernel/process.c"
   3 *    Copyright (C) 1995  Linus Torvalds
   4 *
   5 *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
   6 *  Paul Mackerras (paulus@cs.anu.edu.au)
   7 *
   8 *  PowerPC version
   9 *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
  10 *
  11 *  This program is free software; you can redistribute it and/or
  12 *  modify it under the terms of the GNU General Public License
  13 *  as published by the Free Software Foundation; either version
  14 *  2 of the License, or (at your option) any later version.
  15 */
  16
  17#include <linux/errno.h>
  18#include <linux/sched.h>
 
 
 
  19#include <linux/kernel.h>
  20#include <linux/mm.h>
  21#include <linux/smp.h>
  22#include <linux/stddef.h>
  23#include <linux/unistd.h>
  24#include <linux/ptrace.h>
  25#include <linux/slab.h>
  26#include <linux/user.h>
  27#include <linux/elf.h>
  28#include <linux/prctl.h>
  29#include <linux/init_task.h>
  30#include <linux/export.h>
  31#include <linux/kallsyms.h>
  32#include <linux/mqueue.h>
  33#include <linux/hardirq.h>
  34#include <linux/utsname.h>
  35#include <linux/ftrace.h>
  36#include <linux/kernel_stat.h>
  37#include <linux/personality.h>
  38#include <linux/random.h>
  39#include <linux/hw_breakpoint.h>
  40#include <linux/uaccess.h>
 
 
 
  41
  42#include <asm/pgtable.h>
  43#include <asm/io.h>
  44#include <asm/processor.h>
  45#include <asm/mmu.h>
  46#include <asm/prom.h>
  47#include <asm/machdep.h>
  48#include <asm/time.h>
  49#include <asm/runlatch.h>
  50#include <asm/syscalls.h>
  51#include <asm/switch_to.h>
  52#include <asm/tm.h>
  53#include <asm/debug.h>
  54#ifdef CONFIG_PPC64
  55#include <asm/firmware.h>
 
  56#endif
  57#include <asm/code-patching.h>
 
 
 
 
 
 
 
  58#include <linux/kprobes.h>
  59#include <linux/kdebug.h>
  60
  61/* Transactional Memory debug */
  62#ifdef TM_DEBUG_SW
  63#define TM_DEBUG(x...) printk(KERN_INFO x)
  64#else
  65#define TM_DEBUG(x...) do { } while(0)
  66#endif
  67
  68extern unsigned long _get_SP(void);
  69
  70#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 
 
 
 
 
 
 
  71static void check_if_tm_restore_required(struct task_struct *tsk)
  72{
  73	/*
  74	 * If we are saving the current thread's registers, and the
  75	 * thread is in a transactional state, set the TIF_RESTORE_TM
  76	 * bit so that we know to restore the registers before
  77	 * returning to userspace.
  78	 */
  79	if (tsk == current && tsk->thread.regs &&
  80	    MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
  81	    !test_thread_flag(TIF_RESTORE_TM)) {
  82		tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
  83		set_thread_flag(TIF_RESTORE_TM);
  84	}
  85}
 
  86#else
  87static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
  88#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
  89
  90bool strict_msr_control;
  91EXPORT_SYMBOL(strict_msr_control);
  92
  93static int __init enable_strict_msr_control(char *str)
  94{
  95	strict_msr_control = true;
  96	pr_info("Enabling strict facility control\n");
  97
  98	return 0;
  99}
 100early_param("ppc_strict_facility_enable", enable_strict_msr_control);
 101
 102void msr_check_and_set(unsigned long bits)
 
 103{
 104	unsigned long oldmsr = mfmsr();
 105	unsigned long newmsr;
 106
 107	newmsr = oldmsr | bits;
 108
 109#ifdef CONFIG_VSX
 110	if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
 111		newmsr |= MSR_VSX;
 112#endif
 113
 114	if (oldmsr != newmsr)
 115		mtmsr_isync(newmsr);
 
 
 116}
 
 117
 118void __msr_check_and_clear(unsigned long bits)
 
 119{
 120	unsigned long oldmsr = mfmsr();
 121	unsigned long newmsr;
 122
 123	newmsr = oldmsr & ~bits;
 124
 125#ifdef CONFIG_VSX
 126	if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
 127		newmsr &= ~MSR_VSX;
 128#endif
 129
 130	if (oldmsr != newmsr)
 131		mtmsr_isync(newmsr);
 132}
 133EXPORT_SYMBOL(__msr_check_and_clear);
 134
 135#ifdef CONFIG_PPC_FPU
 136void __giveup_fpu(struct task_struct *tsk)
 137{
 
 
 138	save_fpu(tsk);
 139	tsk->thread.regs->msr &= ~MSR_FP;
 
 140#ifdef CONFIG_VSX
 141	if (cpu_has_feature(CPU_FTR_VSX))
 142		tsk->thread.regs->msr &= ~MSR_VSX;
 143#endif
 
 144}
 145
 146void giveup_fpu(struct task_struct *tsk)
 147{
 148	check_if_tm_restore_required(tsk);
 149
 150	msr_check_and_set(MSR_FP);
 151	__giveup_fpu(tsk);
 152	msr_check_and_clear(MSR_FP);
 153}
 154EXPORT_SYMBOL(giveup_fpu);
 155
 156/*
 157 * Make sure the floating-point register state in the
 158 * the thread_struct is up to date for task tsk.
 159 */
 160void flush_fp_to_thread(struct task_struct *tsk)
 161{
 162	if (tsk->thread.regs) {
 163		/*
 164		 * We need to disable preemption here because if we didn't,
 165		 * another process could get scheduled after the regs->msr
 166		 * test but before we have finished saving the FP registers
 167		 * to the thread_struct.  That process could take over the
 168		 * FPU, and then when we get scheduled again we would store
 169		 * bogus values for the remaining FP registers.
 170		 */
 171		preempt_disable();
 172		if (tsk->thread.regs->msr & MSR_FP) {
 173			/*
 174			 * This should only ever be called for current or
 175			 * for a stopped child process.  Since we save away
 176			 * the FP register state on context switch,
 177			 * there is something wrong if a stopped child appears
 178			 * to still have its FP state in the CPU registers.
 179			 */
 180			BUG_ON(tsk != current);
 181			giveup_fpu(tsk);
 182		}
 183		preempt_enable();
 184	}
 185}
 186EXPORT_SYMBOL_GPL(flush_fp_to_thread);
 187
 188void enable_kernel_fp(void)
 189{
 
 
 190	WARN_ON(preemptible());
 191
 192	msr_check_and_set(MSR_FP);
 193
 194	if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
 195		check_if_tm_restore_required(current);
 
 
 
 
 
 
 
 
 
 
 196		__giveup_fpu(current);
 197	}
 198}
 199EXPORT_SYMBOL(enable_kernel_fp);
 200
 201static int restore_fp(struct task_struct *tsk) {
 202	if (tsk->thread.load_fp) {
 203		load_fp_state(&current->thread.fp_state);
 204		current->thread.load_fp++;
 205		return 1;
 206	}
 207	return 0;
 208}
 209#else
 210static int restore_fp(struct task_struct *tsk) { return 0; }
 211#endif /* CONFIG_PPC_FPU */
 212
 213#ifdef CONFIG_ALTIVEC
 214#define loadvec(thr) ((thr).load_vec)
 215
 216static void __giveup_altivec(struct task_struct *tsk)
 217{
 
 
 218	save_altivec(tsk);
 219	tsk->thread.regs->msr &= ~MSR_VEC;
 
 220#ifdef CONFIG_VSX
 221	if (cpu_has_feature(CPU_FTR_VSX))
 222		tsk->thread.regs->msr &= ~MSR_VSX;
 223#endif
 
 224}
 225
 226void giveup_altivec(struct task_struct *tsk)
 227{
 228	check_if_tm_restore_required(tsk);
 229
 230	msr_check_and_set(MSR_VEC);
 231	__giveup_altivec(tsk);
 232	msr_check_and_clear(MSR_VEC);
 233}
 234EXPORT_SYMBOL(giveup_altivec);
 235
 236void enable_kernel_altivec(void)
 237{
 
 
 238	WARN_ON(preemptible());
 239
 240	msr_check_and_set(MSR_VEC);
 241
 242	if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
 243		check_if_tm_restore_required(current);
 
 
 
 
 
 
 
 
 
 
 244		__giveup_altivec(current);
 245	}
 246}
 247EXPORT_SYMBOL(enable_kernel_altivec);
 248
 249/*
 250 * Make sure the VMX/Altivec register state in the
 251 * the thread_struct is up to date for task tsk.
 252 */
 253void flush_altivec_to_thread(struct task_struct *tsk)
 254{
 255	if (tsk->thread.regs) {
 256		preempt_disable();
 257		if (tsk->thread.regs->msr & MSR_VEC) {
 258			BUG_ON(tsk != current);
 259			giveup_altivec(tsk);
 260		}
 261		preempt_enable();
 262	}
 263}
 264EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
 265
 266static int restore_altivec(struct task_struct *tsk)
 267{
 268	if (cpu_has_feature(CPU_FTR_ALTIVEC) && tsk->thread.load_vec) {
 269		load_vr_state(&tsk->thread.vr_state);
 270		tsk->thread.used_vr = 1;
 271		tsk->thread.load_vec++;
 272
 273		return 1;
 274	}
 275	return 0;
 276}
 277#else
 278#define loadvec(thr) 0
 279static inline int restore_altivec(struct task_struct *tsk) { return 0; }
 280#endif /* CONFIG_ALTIVEC */
 281
 282#ifdef CONFIG_VSX
 283static void __giveup_vsx(struct task_struct *tsk)
 284{
 285	if (tsk->thread.regs->msr & MSR_FP)
 
 
 
 
 
 
 
 
 
 286		__giveup_fpu(tsk);
 287	if (tsk->thread.regs->msr & MSR_VEC)
 288		__giveup_altivec(tsk);
 289	tsk->thread.regs->msr &= ~MSR_VSX;
 290}
 291
 292static void giveup_vsx(struct task_struct *tsk)
 293{
 294	check_if_tm_restore_required(tsk);
 295
 296	msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
 297	__giveup_vsx(tsk);
 298	msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
 299}
 300
 301static void save_vsx(struct task_struct *tsk)
 302{
 303	if (tsk->thread.regs->msr & MSR_FP)
 304		save_fpu(tsk);
 305	if (tsk->thread.regs->msr & MSR_VEC)
 306		save_altivec(tsk);
 307}
 308
 309void enable_kernel_vsx(void)
 310{
 311	WARN_ON(preemptible());
 312
 313	msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
 314
 315	if (current->thread.regs && (current->thread.regs->msr & MSR_VSX)) {
 
 316		check_if_tm_restore_required(current);
 317		if (current->thread.regs->msr & MSR_FP)
 318			__giveup_fpu(current);
 319		if (current->thread.regs->msr & MSR_VEC)
 320			__giveup_altivec(current);
 
 
 
 
 
 
 321		__giveup_vsx(current);
 322	}
 323}
 324EXPORT_SYMBOL(enable_kernel_vsx);
 325
 326void flush_vsx_to_thread(struct task_struct *tsk)
 327{
 328	if (tsk->thread.regs) {
 329		preempt_disable();
 330		if (tsk->thread.regs->msr & MSR_VSX) {
 331			BUG_ON(tsk != current);
 332			giveup_vsx(tsk);
 333		}
 334		preempt_enable();
 335	}
 336}
 337EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
 338
 339static int restore_vsx(struct task_struct *tsk)
 340{
 341	if (cpu_has_feature(CPU_FTR_VSX)) {
 342		tsk->thread.used_vsr = 1;
 343		return 1;
 344	}
 345
 346	return 0;
 347}
 348#else
 349static inline int restore_vsx(struct task_struct *tsk) { return 0; }
 350static inline void save_vsx(struct task_struct *tsk) { }
 351#endif /* CONFIG_VSX */
 352
 353#ifdef CONFIG_SPE
 354void giveup_spe(struct task_struct *tsk)
 355{
 356	check_if_tm_restore_required(tsk);
 357
 358	msr_check_and_set(MSR_SPE);
 359	__giveup_spe(tsk);
 360	msr_check_and_clear(MSR_SPE);
 361}
 362EXPORT_SYMBOL(giveup_spe);
 363
 364void enable_kernel_spe(void)
 365{
 366	WARN_ON(preemptible());
 367
 368	msr_check_and_set(MSR_SPE);
 369
 370	if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
 371		check_if_tm_restore_required(current);
 372		__giveup_spe(current);
 373	}
 374}
 375EXPORT_SYMBOL(enable_kernel_spe);
 376
 377void flush_spe_to_thread(struct task_struct *tsk)
 378{
 379	if (tsk->thread.regs) {
 380		preempt_disable();
 381		if (tsk->thread.regs->msr & MSR_SPE) {
 382			BUG_ON(tsk != current);
 383			tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
 384			giveup_spe(tsk);
 385		}
 386		preempt_enable();
 387	}
 388}
 389#endif /* CONFIG_SPE */
 390
 391static unsigned long msr_all_available;
 392
 393static int __init init_msr_all_available(void)
 394{
 395#ifdef CONFIG_PPC_FPU
 396	msr_all_available |= MSR_FP;
 397#endif
 398#ifdef CONFIG_ALTIVEC
 399	if (cpu_has_feature(CPU_FTR_ALTIVEC))
 400		msr_all_available |= MSR_VEC;
 401#endif
 402#ifdef CONFIG_VSX
 403	if (cpu_has_feature(CPU_FTR_VSX))
 404		msr_all_available |= MSR_VSX;
 405#endif
 406#ifdef CONFIG_SPE
 407	if (cpu_has_feature(CPU_FTR_SPE))
 408		msr_all_available |= MSR_SPE;
 409#endif
 410
 411	return 0;
 412}
 413early_initcall(init_msr_all_available);
 414
 415void giveup_all(struct task_struct *tsk)
 416{
 417	unsigned long usermsr;
 418
 419	if (!tsk->thread.regs)
 420		return;
 421
 
 
 422	usermsr = tsk->thread.regs->msr;
 423
 424	if ((usermsr & msr_all_available) == 0)
 425		return;
 426
 427	msr_check_and_set(msr_all_available);
 428
 
 
 429#ifdef CONFIG_PPC_FPU
 430	if (usermsr & MSR_FP)
 431		__giveup_fpu(tsk);
 432#endif
 433#ifdef CONFIG_ALTIVEC
 434	if (usermsr & MSR_VEC)
 435		__giveup_altivec(tsk);
 436#endif
 437#ifdef CONFIG_VSX
 438	if (usermsr & MSR_VSX)
 439		__giveup_vsx(tsk);
 440#endif
 441#ifdef CONFIG_SPE
 442	if (usermsr & MSR_SPE)
 443		__giveup_spe(tsk);
 444#endif
 445
 446	msr_check_and_clear(msr_all_available);
 447}
 448EXPORT_SYMBOL(giveup_all);
 449
 450void restore_math(struct pt_regs *regs)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 451{
 452	unsigned long msr;
 453
 454	if (!current->thread.load_fp && !loadvec(current->thread))
 455		return;
 456
 457	msr = regs->msr;
 458	msr_check_and_set(msr_all_available);
 459
 460	/*
 461	 * Only reload if the bit is not set in the user MSR, the bit BEING set
 462	 * indicates that the registers are hot
 
 463	 */
 464	if ((!(msr & MSR_FP)) && restore_fp(current))
 465		msr |= MSR_FP | current->thread.fpexc_mode;
 466
 467	if ((!(msr & MSR_VEC)) && restore_altivec(current))
 468		msr |= MSR_VEC;
 469
 470	if ((msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC) &&
 471			restore_vsx(current)) {
 472		msr |= MSR_VSX;
 473	}
 474
 475	msr_check_and_clear(msr_all_available);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 476
 477	regs->msr = msr;
 
 478}
 
 479
 480void save_all(struct task_struct *tsk)
 481{
 482	unsigned long usermsr;
 483
 484	if (!tsk->thread.regs)
 485		return;
 486
 487	usermsr = tsk->thread.regs->msr;
 488
 489	if ((usermsr & msr_all_available) == 0)
 490		return;
 491
 492	msr_check_and_set(msr_all_available);
 493
 494	/*
 495	 * Saving the way the register space is in hardware, save_vsx boils
 496	 * down to a save_fpu() and save_altivec()
 497	 */
 498	if (usermsr & MSR_VSX) {
 499		save_vsx(tsk);
 500	} else {
 501		if (usermsr & MSR_FP)
 502			save_fpu(tsk);
 503
 504		if (usermsr & MSR_VEC)
 505			save_altivec(tsk);
 506	}
 507
 508	if (usermsr & MSR_SPE)
 509		__giveup_spe(tsk);
 510
 511	msr_check_and_clear(msr_all_available);
 
 512}
 513
 514void flush_all_to_thread(struct task_struct *tsk)
 515{
 516	if (tsk->thread.regs) {
 517		preempt_disable();
 518		BUG_ON(tsk != current);
 519		save_all(tsk);
 520
 521#ifdef CONFIG_SPE
 522		if (tsk->thread.regs->msr & MSR_SPE)
 523			tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
 524#endif
 
 525
 526		preempt_enable();
 527	}
 528}
 529EXPORT_SYMBOL(flush_all_to_thread);
 530
 531#ifdef CONFIG_PPC_ADV_DEBUG_REGS
 532void do_send_trap(struct pt_regs *regs, unsigned long address,
 533		  unsigned long error_code, int signal_code, int breakpt)
 534{
 535	siginfo_t info;
 536
 537	current->thread.trap_nr = signal_code;
 538	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
 539			11, SIGSEGV) == NOTIFY_STOP)
 540		return;
 541
 542	/* Deliver the signal to userspace */
 543	info.si_signo = SIGTRAP;
 544	info.si_errno = breakpt;	/* breakpoint or watchpoint id */
 545	info.si_code = signal_code;
 546	info.si_addr = (void __user *)address;
 547	force_sig_info(SIGTRAP, &info, current);
 548}
 549#else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
 550void do_break (struct pt_regs *regs, unsigned long address,
 551		    unsigned long error_code)
 552{
 553	siginfo_t info;
 554
 555	current->thread.trap_nr = TRAP_HWBKPT;
 556	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
 557			11, SIGSEGV) == NOTIFY_STOP)
 558		return;
 559
 560	if (debugger_break_match(regs))
 561		return;
 562
 563	/* Clear the breakpoint */
 564	hw_breakpoint_disable();
 565
 566	/* Deliver the signal to userspace */
 567	info.si_signo = SIGTRAP;
 568	info.si_errno = 0;
 569	info.si_code = TRAP_HWBKPT;
 570	info.si_addr = (void __user *)address;
 571	force_sig_info(SIGTRAP, &info, current);
 572}
 573#endif	/* CONFIG_PPC_ADV_DEBUG_REGS */
 574
 575static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
 576
 577#ifdef CONFIG_PPC_ADV_DEBUG_REGS
 578/*
 579 * Set the debug registers back to their default "safe" values.
 580 */
 581static void set_debug_reg_defaults(struct thread_struct *thread)
 582{
 583	thread->debug.iac1 = thread->debug.iac2 = 0;
 584#if CONFIG_PPC_ADV_DEBUG_IACS > 2
 585	thread->debug.iac3 = thread->debug.iac4 = 0;
 586#endif
 587	thread->debug.dac1 = thread->debug.dac2 = 0;
 588#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
 589	thread->debug.dvc1 = thread->debug.dvc2 = 0;
 590#endif
 591	thread->debug.dbcr0 = 0;
 592#ifdef CONFIG_BOOKE
 593	/*
 594	 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
 595	 */
 596	thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
 597			DBCR1_IAC3US | DBCR1_IAC4US;
 598	/*
 599	 * Force Data Address Compare User/Supervisor bits to be User-only
 600	 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
 601	 */
 602	thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
 603#else
 604	thread->debug.dbcr1 = 0;
 605#endif
 606}
 607
 608static void prime_debug_regs(struct debug_reg *debug)
 609{
 610	/*
 611	 * We could have inherited MSR_DE from userspace, since
 612	 * it doesn't get cleared on exception entry.  Make sure
 613	 * MSR_DE is clear before we enable any debug events.
 614	 */
 615	mtmsr(mfmsr() & ~MSR_DE);
 616
 617	mtspr(SPRN_IAC1, debug->iac1);
 618	mtspr(SPRN_IAC2, debug->iac2);
 619#if CONFIG_PPC_ADV_DEBUG_IACS > 2
 620	mtspr(SPRN_IAC3, debug->iac3);
 621	mtspr(SPRN_IAC4, debug->iac4);
 622#endif
 623	mtspr(SPRN_DAC1, debug->dac1);
 624	mtspr(SPRN_DAC2, debug->dac2);
 625#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
 626	mtspr(SPRN_DVC1, debug->dvc1);
 627	mtspr(SPRN_DVC2, debug->dvc2);
 628#endif
 629	mtspr(SPRN_DBCR0, debug->dbcr0);
 630	mtspr(SPRN_DBCR1, debug->dbcr1);
 631#ifdef CONFIG_BOOKE
 632	mtspr(SPRN_DBCR2, debug->dbcr2);
 633#endif
 634}
 635/*
 636 * Unless neither the old or new thread are making use of the
 637 * debug registers, set the debug registers from the values
 638 * stored in the new thread.
 639 */
 640void switch_booke_debug_regs(struct debug_reg *new_debug)
 641{
 642	if ((current->thread.debug.dbcr0 & DBCR0_IDM)
 643		|| (new_debug->dbcr0 & DBCR0_IDM))
 644			prime_debug_regs(new_debug);
 645}
 646EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
 647#else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
 648#ifndef CONFIG_HAVE_HW_BREAKPOINT
 
 
 
 
 
 
 
 649static void set_debug_reg_defaults(struct thread_struct *thread)
 650{
 651	thread->hw_brk.address = 0;
 652	thread->hw_brk.type = 0;
 653	set_breakpoint(&thread->hw_brk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 654}
 655#endif /* !CONFIG_HAVE_HW_BREAKPOINT */
 656#endif	/* CONFIG_PPC_ADV_DEBUG_REGS */
 657
 658#ifdef CONFIG_PPC_ADV_DEBUG_REGS
 659static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
 660{
 661	mtspr(SPRN_DAC1, dabr);
 662#ifdef CONFIG_PPC_47x
 663	isync();
 664#endif
 665	return 0;
 666}
 667#elif defined(CONFIG_PPC_BOOK3S)
 668static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
 669{
 670	mtspr(SPRN_DABR, dabr);
 671	if (cpu_has_feature(CPU_FTR_DABRX))
 672		mtspr(SPRN_DABRX, dabrx);
 673	return 0;
 674}
 675#else
 676static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
 677{
 678	return -EINVAL;
 679}
 680#endif
 681
 682static inline int set_dabr(struct arch_hw_breakpoint *brk)
 683{
 684	unsigned long dabr, dabrx;
 685
 686	dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
 687	dabrx = ((brk->type >> 3) & 0x7);
 688
 689	if (ppc_md.set_dabr)
 690		return ppc_md.set_dabr(dabr, dabrx);
 691
 692	return __set_dabr(dabr, dabrx);
 693}
 694
 695static inline int set_dawr(struct arch_hw_breakpoint *brk)
 696{
 697	unsigned long dawr, dawrx, mrd;
 
 
 
 
 
 
 
 
 
 
 
 
 
 698
 699	dawr = brk->address;
 
 
 
 
 
 
 
 
 
 
 
 700
 701	dawrx  = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
 702		                   << (63 - 58); //* read/write bits */
 703	dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
 704		                   << (63 - 59); //* translate */
 705	dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
 706		                   >> 3; //* PRIM bits */
 707	/* dawr length is stored in field MDR bits 48:53.  Matches range in
 708	   doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
 709	   0b111111=64DW.
 710	   brk->len is in bytes.
 711	   This aligns up to double word size, shifts and does the bias.
 712	*/
 713	mrd = ((brk->len + 7) >> 3) - 1;
 714	dawrx |= (mrd & 0x3f) << (63 - 53);
 715
 716	if (ppc_md.set_dawr)
 717		return ppc_md.set_dawr(dawr, dawrx);
 718	mtspr(SPRN_DAWR, dawr);
 719	mtspr(SPRN_DAWRX, dawrx);
 720	return 0;
 721}
 722
 723void __set_breakpoint(struct arch_hw_breakpoint *brk)
 724{
 725	memcpy(this_cpu_ptr(&current_brk), brk, sizeof(*brk));
 726
 727	if (cpu_has_feature(CPU_FTR_DAWR))
 728		set_dawr(brk);
 
 
 
 
 
 
 729	else
 730		set_dabr(brk);
 
 731}
 732
 733void set_breakpoint(struct arch_hw_breakpoint *brk)
 
 734{
 735	preempt_disable();
 736	__set_breakpoint(brk);
 737	preempt_enable();
 
 
 
 738}
 
 739
 740#ifdef CONFIG_PPC64
 741DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
 742#endif
 743
 744static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
 745			      struct arch_hw_breakpoint *b)
 746{
 747	if (a->address != b->address)
 748		return false;
 749	if (a->type != b->type)
 750		return false;
 751	if (a->len != b->len)
 752		return false;
 753	return true;
 754}
 755
 756#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
 757static void tm_reclaim_thread(struct thread_struct *thr,
 758			      struct thread_info *ti, uint8_t cause)
 759{
 760	unsigned long msr_diff = 0;
 761
 762	/*
 763	 * If FP/VSX registers have been already saved to the
 764	 * thread_struct, move them to the transact_fp array.
 765	 * We clear the TIF_RESTORE_TM bit since after the reclaim
 766	 * the thread will no longer be transactional.
 767	 */
 768	if (test_ti_thread_flag(ti, TIF_RESTORE_TM)) {
 769		msr_diff = thr->ckpt_regs.msr & ~thr->regs->msr;
 770		if (msr_diff & MSR_FP)
 771			memcpy(&thr->transact_fp, &thr->fp_state,
 772			       sizeof(struct thread_fp_state));
 773		if (msr_diff & MSR_VEC)
 774			memcpy(&thr->transact_vr, &thr->vr_state,
 775			       sizeof(struct thread_vr_state));
 776		clear_ti_thread_flag(ti, TIF_RESTORE_TM);
 777		msr_diff &= MSR_FP | MSR_VEC | MSR_VSX | MSR_FE0 | MSR_FE1;
 778	}
 779
 780	/*
 781	 * Use the current MSR TM suspended bit to track if we have
 782	 * checkpointed state outstanding.
 783	 * On signal delivery, we'd normally reclaim the checkpointed
 784	 * state to obtain stack pointer (see:get_tm_stackpointer()).
 785	 * This will then directly return to userspace without going
 786	 * through __switch_to(). However, if the stack frame is bad,
 787	 * we need to exit this thread which calls __switch_to() which
 788	 * will again attempt to reclaim the already saved tm state.
 789	 * Hence we need to check that we've not already reclaimed
 790	 * this state.
 791	 * We do this using the current MSR, rather tracking it in
 792	 * some specific thread_struct bit, as it has the additional
 793	 * benifit of checking for a potential TM bad thing exception.
 794	 */
 795	if (!MSR_TM_SUSPENDED(mfmsr()))
 796		return;
 797
 798	tm_reclaim(thr, thr->regs->msr, cause);
 
 
 799
 800	/* Having done the reclaim, we now have the checkpointed
 801	 * FP/VSX values in the registers.  These might be valid
 802	 * even if we have previously called enable_kernel_fp() or
 803	 * flush_fp_to_thread(), so update thr->regs->msr to
 804	 * indicate their current validity.
 805	 */
 806	thr->regs->msr |= msr_diff;
 
 
 
 
 
 
 
 
 
 
 
 807}
 808
 809void tm_reclaim_current(uint8_t cause)
 810{
 811	tm_enable();
 812	tm_reclaim_thread(&current->thread, current_thread_info(), cause);
 813}
 814
 815static inline void tm_reclaim_task(struct task_struct *tsk)
 816{
 817	/* We have to work out if we're switching from/to a task that's in the
 818	 * middle of a transaction.
 819	 *
 820	 * In switching we need to maintain a 2nd register state as
 821	 * oldtask->thread.ckpt_regs.  We tm_reclaim(oldproc); this saves the
 822	 * checkpointed (tbegin) state in ckpt_regs and saves the transactional
 823	 * (current) FPRs into oldtask->thread.transact_fpr[].
 824	 *
 825	 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
 826	 */
 827	struct thread_struct *thr = &tsk->thread;
 828
 829	if (!thr->regs)
 830		return;
 831
 832	if (!MSR_TM_ACTIVE(thr->regs->msr))
 833		goto out_and_saveregs;
 834
 835	/* Stash the original thread MSR, as giveup_fpu et al will
 836	 * modify it.  We hold onto it to see whether the task used
 837	 * FP & vector regs.  If the TIF_RESTORE_TM flag is set,
 838	 * ckpt_regs.msr is already set.
 839	 */
 840	if (!test_ti_thread_flag(task_thread_info(tsk), TIF_RESTORE_TM))
 841		thr->ckpt_regs.msr = thr->regs->msr;
 842
 843	TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
 844		 "ccr=%lx, msr=%lx, trap=%lx)\n",
 845		 tsk->pid, thr->regs->nip,
 846		 thr->regs->ccr, thr->regs->msr,
 847		 thr->regs->trap);
 848
 849	tm_reclaim_thread(thr, task_thread_info(tsk), TM_CAUSE_RESCHED);
 850
 851	TM_DEBUG("--- tm_reclaim on pid %d complete\n",
 852		 tsk->pid);
 853
 854out_and_saveregs:
 855	/* Always save the regs here, even if a transaction's not active.
 856	 * This context-switches a thread's TM info SPRs.  We do it here to
 857	 * be consistent with the restore path (in recheckpoint) which
 858	 * cannot happen later in _switch().
 859	 */
 860	tm_save_sprs(thr);
 861}
 862
 863extern void __tm_recheckpoint(struct thread_struct *thread,
 864			      unsigned long orig_msr);
 865
 866void tm_recheckpoint(struct thread_struct *thread,
 867		     unsigned long orig_msr)
 868{
 869	unsigned long flags;
 870
 
 
 
 871	/* We really can't be interrupted here as the TEXASR registers can't
 872	 * change and later in the trecheckpoint code, we have a userspace R1.
 873	 * So let's hard disable over this region.
 874	 */
 875	local_irq_save(flags);
 876	hard_irq_disable();
 877
 878	/* The TM SPRs are restored here, so that TEXASR.FS can be set
 879	 * before the trecheckpoint and no explosion occurs.
 880	 */
 881	tm_restore_sprs(thread);
 882
 883	__tm_recheckpoint(thread, orig_msr);
 884
 885	local_irq_restore(flags);
 886}
 887
 888static inline void tm_recheckpoint_new_task(struct task_struct *new)
 889{
 890	unsigned long msr;
 891
 892	if (!cpu_has_feature(CPU_FTR_TM))
 893		return;
 894
 895	/* Recheckpoint the registers of the thread we're about to switch to.
 896	 *
 897	 * If the task was using FP, we non-lazily reload both the original and
 898	 * the speculative FP register states.  This is because the kernel
 899	 * doesn't see if/when a TM rollback occurs, so if we take an FP
 900	 * unavoidable later, we are unable to determine which set of FP regs
 901	 * need to be restored.
 902	 */
 903	if (!new->thread.regs)
 904		return;
 905
 906	if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
 907		tm_restore_sprs(&new->thread);
 908		return;
 909	}
 910	msr = new->thread.ckpt_regs.msr;
 911	/* Recheckpoint to restore original checkpointed register state. */
 912	TM_DEBUG("*** tm_recheckpoint of pid %d "
 913		 "(new->msr 0x%lx, new->origmsr 0x%lx)\n",
 914		 new->pid, new->thread.regs->msr, msr);
 915
 916	/* This loads the checkpointed FP/VEC state, if used */
 917	tm_recheckpoint(&new->thread, msr);
 918
 919	/* This loads the speculative FP/VEC state, if used */
 920	if (msr & MSR_FP) {
 921		do_load_up_transact_fpu(&new->thread);
 922		new->thread.regs->msr |=
 923			(MSR_FP | new->thread.fpexc_mode);
 924	}
 925#ifdef CONFIG_ALTIVEC
 926	if (msr & MSR_VEC) {
 927		do_load_up_transact_altivec(&new->thread);
 928		new->thread.regs->msr |= MSR_VEC;
 929	}
 930#endif
 931	/* We may as well turn on VSX too since all the state is restored now */
 932	if (msr & MSR_VSX)
 933		new->thread.regs->msr |= MSR_VSX;
 934
 935	TM_DEBUG("*** tm_recheckpoint of pid %d complete "
 936		 "(kernel msr 0x%lx)\n",
 937		 new->pid, mfmsr());
 938}
 939
 940static inline void __switch_to_tm(struct task_struct *prev)
 
 941{
 942	if (cpu_has_feature(CPU_FTR_TM)) {
 943		tm_enable();
 944		tm_reclaim_task(prev);
 
 
 
 
 
 
 
 
 
 945	}
 946}
 947
 948/*
 949 * This is called if we are on the way out to userspace and the
 950 * TIF_RESTORE_TM flag is set.  It checks if we need to reload
 951 * FP and/or vector state and does so if necessary.
 952 * If userspace is inside a transaction (whether active or
 953 * suspended) and FP/VMX/VSX instructions have ever been enabled
 954 * inside that transaction, then we have to keep them enabled
 955 * and keep the FP/VMX/VSX state loaded while ever the transaction
 956 * continues.  The reason is that if we didn't, and subsequently
 957 * got a FP/VMX/VSX unavailable interrupt inside a transaction,
 958 * we don't know whether it's the same transaction, and thus we
 959 * don't know which of the checkpointed state and the transactional
 960 * state to use.
 961 */
 962void restore_tm_state(struct pt_regs *regs)
 963{
 964	unsigned long msr_diff;
 965
 
 
 
 
 
 
 966	clear_thread_flag(TIF_RESTORE_TM);
 967	if (!MSR_TM_ACTIVE(regs->msr))
 968		return;
 969
 970	msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
 971	msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
 972
 
 
 
 
 
 
 
 973	restore_math(regs);
 974
 975	regs->msr |= msr_diff;
 976}
 977
 978#else
 979#define tm_recheckpoint_new_task(new)
 980#define __switch_to_tm(prev)
 981#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
 982
 983static inline void save_sprs(struct thread_struct *t)
 984{
 985#ifdef CONFIG_ALTIVEC
 986	if (cpu_has_feature(CPU_FTR_ALTIVEC))
 987		t->vrsave = mfspr(SPRN_VRSAVE);
 988#endif
 989#ifdef CONFIG_PPC_BOOK3S_64
 990	if (cpu_has_feature(CPU_FTR_DSCR))
 991		t->dscr = mfspr(SPRN_DSCR);
 992
 993	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
 994		t->bescr = mfspr(SPRN_BESCR);
 995		t->ebbhr = mfspr(SPRN_EBBHR);
 996		t->ebbrr = mfspr(SPRN_EBBRR);
 997
 998		t->fscr = mfspr(SPRN_FSCR);
 999
1000		/*
1001		 * Note that the TAR is not available for use in the kernel.
1002		 * (To provide this, the TAR should be backed up/restored on
1003		 * exception entry/exit instead, and be in pt_regs.  FIXME,
1004		 * this should be in pt_regs anyway (for debug).)
1005		 */
1006		t->tar = mfspr(SPRN_TAR);
1007	}
1008#endif
 
 
1009}
1010
1011static inline void restore_sprs(struct thread_struct *old_thread,
1012				struct thread_struct *new_thread)
1013{
1014#ifdef CONFIG_ALTIVEC
1015	if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
1016	    old_thread->vrsave != new_thread->vrsave)
1017		mtspr(SPRN_VRSAVE, new_thread->vrsave);
1018#endif
1019#ifdef CONFIG_PPC_BOOK3S_64
1020	if (cpu_has_feature(CPU_FTR_DSCR)) {
1021		u64 dscr = get_paca()->dscr_default;
1022		u64 fscr = old_thread->fscr & ~FSCR_DSCR;
1023
1024		if (new_thread->dscr_inherit) {
1025			dscr = new_thread->dscr;
1026			fscr |= FSCR_DSCR;
1027		}
1028
1029		if (old_thread->dscr != dscr)
1030			mtspr(SPRN_DSCR, dscr);
1031
1032		if (old_thread->fscr != fscr)
1033			mtspr(SPRN_FSCR, fscr);
1034	}
1035
1036	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1037		if (old_thread->bescr != new_thread->bescr)
1038			mtspr(SPRN_BESCR, new_thread->bescr);
1039		if (old_thread->ebbhr != new_thread->ebbhr)
1040			mtspr(SPRN_EBBHR, new_thread->ebbhr);
1041		if (old_thread->ebbrr != new_thread->ebbrr)
1042			mtspr(SPRN_EBBRR, new_thread->ebbrr);
1043
 
 
 
1044		if (old_thread->tar != new_thread->tar)
1045			mtspr(SPRN_TAR, new_thread->tar);
1046	}
 
 
 
 
1047#endif
 
 
1048}
1049
1050struct task_struct *__switch_to(struct task_struct *prev,
1051	struct task_struct *new)
1052{
1053	struct thread_struct *new_thread, *old_thread;
1054	struct task_struct *last;
1055#ifdef CONFIG_PPC_BOOK3S_64
1056	struct ppc64_tlb_batch *batch;
1057#endif
1058
1059	new_thread = &new->thread;
1060	old_thread = &current->thread;
1061
1062	WARN_ON(!irqs_disabled());
1063
1064#ifdef CONFIG_PPC64
1065	/*
1066	 * Collect processor utilization data per process
1067	 */
1068	if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
1069		struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array);
1070		long unsigned start_tb, current_tb;
1071		start_tb = old_thread->start_tb;
1072		cu->current_tb = current_tb = mfspr(SPRN_PURR);
1073		old_thread->accum_tb += (current_tb - start_tb);
1074		new_thread->start_tb = current_tb;
1075	}
1076#endif /* CONFIG_PPC64 */
1077
1078#ifdef CONFIG_PPC_BOOK3S_64
1079	batch = this_cpu_ptr(&ppc64_tlb_batch);
1080	if (batch->active) {
1081		current_thread_info()->local_flags |= _TLF_LAZY_MMU;
1082		if (batch->index)
1083			__flush_tlb_pending(batch);
1084		batch->active = 0;
1085	}
1086#endif /* CONFIG_PPC_BOOK3S_64 */
1087
1088#ifdef CONFIG_PPC_ADV_DEBUG_REGS
1089	switch_booke_debug_regs(&new->thread.debug);
1090#else
1091/*
1092 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
1093 * schedule DABR
1094 */
1095#ifndef CONFIG_HAVE_HW_BREAKPOINT
1096	if (unlikely(!hw_brk_match(this_cpu_ptr(&current_brk), &new->thread.hw_brk)))
1097		__set_breakpoint(&new->thread.hw_brk);
1098#endif /* CONFIG_HAVE_HW_BREAKPOINT */
1099#endif
1100
1101	/*
1102	 * We need to save SPRs before treclaim/trecheckpoint as these will
1103	 * change a number of them.
1104	 */
1105	save_sprs(&prev->thread);
1106
1107	__switch_to_tm(prev);
1108
1109	/* Save FPU, Altivec, VSX and SPE state */
1110	giveup_all(prev);
1111
1112	/*
1113	 * We can't take a PMU exception inside _switch() since there is a
1114	 * window where the kernel stack SLB and the kernel stack are out
1115	 * of sync. Hard disable here.
1116	 */
1117	hard_irq_disable();
1118
1119	tm_recheckpoint_new_task(new);
 
 
 
 
 
 
 
1120
1121	/*
1122	 * Call restore_sprs() before calling _switch(). If we move it after
1123	 * _switch() then we miss out on calling it for new tasks. The reason
1124	 * for this is we manually create a stack frame for new tasks that
1125	 * directly returns through ret_from_fork() or
1126	 * ret_from_kernel_thread(). See copy_thread() for details.
1127	 */
1128	restore_sprs(old_thread, new_thread);
1129
1130	last = _switch(old_thread, new_thread);
1131
1132#ifdef CONFIG_PPC_BOOK3S_64
1133	if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
1134		current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
1135		batch = this_cpu_ptr(&ppc64_tlb_batch);
1136		batch->active = 1;
1137	}
1138
1139	if (current_thread_info()->task->thread.regs)
1140		restore_math(current_thread_info()->task->thread.regs);
1141
 
 
 
 
 
 
 
 
 
 
 
 
1142#endif /* CONFIG_PPC_BOOK3S_64 */
1143
1144	return last;
1145}
1146
1147static int instructions_to_print = 16;
1148
1149static void show_instructions(struct pt_regs *regs)
1150{
1151	int i;
1152	unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
1153			sizeof(int));
1154
1155	printk("Instruction dump:");
1156
1157	for (i = 0; i < instructions_to_print; i++) {
 
 
 
 
 
 
 
 
 
1158		int instr;
1159
1160		if (!(i % 8))
1161			printk("\n");
1162
1163#if !defined(CONFIG_BOOKE)
1164		/* If executing with the IMMU off, adjust pc rather
1165		 * than print XXXXXXXX.
1166		 */
1167		if (!(regs->msr & MSR_IR))
1168			pc = (unsigned long)phys_to_virt(pc);
1169#endif
1170
1171		if (!__kernel_text_address(pc) ||
1172		     probe_kernel_address((unsigned int __user *)pc, instr)) {
1173			printk(KERN_CONT "XXXXXXXX ");
1174		} else {
1175			if (regs->nip == pc)
1176				printk(KERN_CONT "<%08x> ", instr);
1177			else
1178				printk(KERN_CONT "%08x ", instr);
1179		}
1180
1181		pc += sizeof(int);
1182	}
1183
1184	printk("\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1185}
1186
1187struct regbit {
1188	unsigned long bit;
1189	const char *name;
1190};
1191
1192static struct regbit msr_bits[] = {
1193#if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
1194	{MSR_SF,	"SF"},
1195	{MSR_HV,	"HV"},
1196#endif
1197	{MSR_VEC,	"VEC"},
1198	{MSR_VSX,	"VSX"},
1199#ifdef CONFIG_BOOKE
1200	{MSR_CE,	"CE"},
1201#endif
1202	{MSR_EE,	"EE"},
1203	{MSR_PR,	"PR"},
1204	{MSR_FP,	"FP"},
1205	{MSR_ME,	"ME"},
1206#ifdef CONFIG_BOOKE
1207	{MSR_DE,	"DE"},
1208#else
1209	{MSR_SE,	"SE"},
1210	{MSR_BE,	"BE"},
1211#endif
1212	{MSR_IR,	"IR"},
1213	{MSR_DR,	"DR"},
1214	{MSR_PMM,	"PMM"},
1215#ifndef CONFIG_BOOKE
1216	{MSR_RI,	"RI"},
1217	{MSR_LE,	"LE"},
1218#endif
1219	{0,		NULL}
1220};
1221
1222static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
1223{
1224	const char *s = "";
1225
1226	for (; bits->bit; ++bits)
1227		if (val & bits->bit) {
1228			printk("%s%s", s, bits->name);
1229			s = sep;
1230		}
1231}
1232
1233#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1234static struct regbit msr_tm_bits[] = {
1235	{MSR_TS_T,	"T"},
1236	{MSR_TS_S,	"S"},
1237	{MSR_TM,	"E"},
1238	{0,		NULL}
1239};
1240
1241static void print_tm_bits(unsigned long val)
1242{
1243/*
1244 * This only prints something if at least one of the TM bit is set.
1245 * Inside the TM[], the output means:
1246 *   E: Enabled		(bit 32)
1247 *   S: Suspended	(bit 33)
1248 *   T: Transactional	(bit 34)
1249 */
1250	if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
1251		printk(",TM[");
1252		print_bits(val, msr_tm_bits, "");
1253		printk("]");
1254	}
1255}
1256#else
1257static void print_tm_bits(unsigned long val) {}
1258#endif
1259
1260static void print_msr_bits(unsigned long val)
1261{
1262	printk("<");
1263	print_bits(val, msr_bits, ",");
1264	print_tm_bits(val);
1265	printk(">");
1266}
1267
1268#ifdef CONFIG_PPC64
1269#define REG		"%016lx"
1270#define REGS_PER_LINE	4
1271#define LAST_VOLATILE	13
1272#else
1273#define REG		"%08lx"
1274#define REGS_PER_LINE	8
1275#define LAST_VOLATILE	12
1276#endif
1277
1278void show_regs(struct pt_regs * regs)
1279{
1280	int i, trap;
1281
1282	show_regs_print_info(KERN_DEFAULT);
1283
1284	printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
1285	       regs->nip, regs->link, regs->ctr);
1286	printk("REGS: %p TRAP: %04lx   %s  (%s)\n",
1287	       regs, regs->trap, print_tainted(), init_utsname()->release);
1288	printk("MSR: "REG" ", regs->msr);
1289	print_msr_bits(regs->msr);
1290	printk("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
1291	trap = TRAP(regs);
1292	if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
1293		printk("CFAR: "REG" ", regs->orig_gpr3);
1294	if (trap == 0x200 || trap == 0x300 || trap == 0x600)
1295#if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
1296		printk("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
1297#else
1298		printk("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1299#endif
1300#ifdef CONFIG_PPC64
1301	printk("SOFTE: %ld ", regs->softe);
1302#endif
1303#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1304	if (MSR_TM_ACTIVE(regs->msr))
1305		printk("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1306#endif
1307
1308	for (i = 0;  i < 32;  i++) {
1309		if ((i % REGS_PER_LINE) == 0)
1310			printk("\nGPR%02d: ", i);
1311		printk(REG " ", regs->gpr[i]);
1312		if (i == LAST_VOLATILE && !FULL_REGS(regs))
1313			break;
1314	}
1315	printk("\n");
1316#ifdef CONFIG_KALLSYMS
1317	/*
1318	 * Lookup NIP late so we have the best change of getting the
1319	 * above info out without failing
1320	 */
1321	printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1322	printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1323#endif
1324	show_stack(current, (unsigned long *) regs->gpr[1]);
1325	if (!user_mode(regs))
1326		show_instructions(regs);
1327}
1328
1329void exit_thread(void)
1330{
1331}
1332
1333void flush_thread(void)
1334{
1335#ifdef CONFIG_HAVE_HW_BREAKPOINT
1336	flush_ptrace_hw_breakpoint(current);
1337#else /* CONFIG_HAVE_HW_BREAKPOINT */
1338	set_debug_reg_defaults(&current->thread);
1339#endif /* CONFIG_HAVE_HW_BREAKPOINT */
1340}
1341
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1342void
1343release_thread(struct task_struct *t)
1344{
1345}
1346
1347/*
1348 * this gets called so that we can store coprocessor state into memory and
1349 * copy the current task into the new thread.
1350 */
1351int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1352{
1353	flush_all_to_thread(src);
1354	/*
1355	 * Flush TM state out so we can copy it.  __switch_to_tm() does this
1356	 * flush but it removes the checkpointed state from the current CPU and
1357	 * transitions the CPU out of TM mode.  Hence we need to call
1358	 * tm_recheckpoint_new_task() (on the same task) to restore the
1359	 * checkpointed state back and the TM mode.
 
 
 
1360	 */
1361	__switch_to_tm(src);
1362	tm_recheckpoint_new_task(src);
1363
1364	*dst = *src;
1365
1366	clear_task_ebb(dst);
1367
1368	return 0;
1369}
1370
1371static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
1372{
1373#ifdef CONFIG_PPC_STD_MMU_64
1374	unsigned long sp_vsid;
1375	unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1376
 
 
 
1377	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1378		sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1379			<< SLB_VSID_SHIFT_1T;
1380	else
1381		sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1382			<< SLB_VSID_SHIFT;
1383	sp_vsid |= SLB_VSID_KERNEL | llp;
1384	p->thread.ksp_vsid = sp_vsid;
1385#endif
1386}
1387
1388/*
1389 * Copy a thread..
1390 */
1391
1392/*
1393 * Copy architecture-specific thread state
1394 */
1395int copy_thread(unsigned long clone_flags, unsigned long usp,
1396		unsigned long kthread_arg, struct task_struct *p)
 
1397{
1398	struct pt_regs *childregs, *kregs;
1399	extern void ret_from_fork(void);
 
1400	extern void ret_from_kernel_thread(void);
1401	void (*f)(void);
1402	unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
 
 
 
 
 
 
1403
1404	/* Copy registers */
1405	sp -= sizeof(struct pt_regs);
1406	childregs = (struct pt_regs *) sp;
1407	if (unlikely(p->flags & PF_KTHREAD)) {
1408		/* kernel thread */
1409		struct thread_info *ti = (void *)task_stack_page(p);
1410		memset(childregs, 0, sizeof(struct pt_regs));
1411		childregs->gpr[1] = sp + sizeof(struct pt_regs);
1412		/* function */
1413		if (usp)
1414			childregs->gpr[14] = ppc_function_entry((void *)usp);
1415#ifdef CONFIG_PPC64
1416		clear_tsk_thread_flag(p, TIF_32BIT);
1417		childregs->softe = 1;
1418#endif
1419		childregs->gpr[15] = kthread_arg;
1420		p->thread.regs = NULL;	/* no user register state */
1421		ti->flags |= _TIF_RESTOREALL;
1422		f = ret_from_kernel_thread;
1423	} else {
1424		/* user thread */
1425		struct pt_regs *regs = current_pt_regs();
1426		CHECK_FULL_REGS(regs);
1427		*childregs = *regs;
1428		if (usp)
1429			childregs->gpr[1] = usp;
1430		p->thread.regs = childregs;
1431		childregs->gpr[3] = 0;  /* Result from fork() */
 
 
1432		if (clone_flags & CLONE_SETTLS) {
1433#ifdef CONFIG_PPC64
1434			if (!is_32bit_task())
1435				childregs->gpr[13] = childregs->gpr[6];
1436			else
1437#endif
1438				childregs->gpr[2] = childregs->gpr[6];
1439		}
1440
1441		f = ret_from_fork;
 
 
 
1442	}
1443	childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX);
1444	sp -= STACK_FRAME_OVERHEAD;
1445
1446	/*
1447	 * The way this works is that at some point in the future
1448	 * some task will call _switch to switch to the new task.
1449	 * That will pop off the stack frame created below and start
1450	 * the new task running at ret_from_fork.  The new task will
1451	 * do some house keeping and then return from the fork or clone
1452	 * system call, using the stack frame created above.
1453	 */
1454	((unsigned long *)sp)[0] = 0;
1455	sp -= sizeof(struct pt_regs);
1456	kregs = (struct pt_regs *) sp;
1457	sp -= STACK_FRAME_OVERHEAD;
1458	p->thread.ksp = sp;
1459#ifdef CONFIG_PPC32
1460	p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
1461				_ALIGN_UP(sizeof(struct thread_info), 16);
1462#endif
1463#ifdef CONFIG_HAVE_HW_BREAKPOINT
1464	p->thread.ptrace_bps[0] = NULL;
 
1465#endif
1466
1467	p->thread.fp_save_area = NULL;
1468#ifdef CONFIG_ALTIVEC
1469	p->thread.vr_save_area = NULL;
1470#endif
1471
1472	setup_ksp_vsid(p, sp);
1473
1474#ifdef CONFIG_PPC64 
1475	if (cpu_has_feature(CPU_FTR_DSCR)) {
1476		p->thread.dscr_inherit = current->thread.dscr_inherit;
1477		p->thread.dscr = mfspr(SPRN_DSCR);
1478	}
1479	if (cpu_has_feature(CPU_FTR_HAS_PPR))
1480		p->thread.ppr = INIT_PPR;
 
 
1481#endif
1482	kregs->nip = ppc_function_entry(f);
1483	return 0;
1484}
1485
 
 
1486/*
1487 * Set up a thread for executing a new program
1488 */
1489void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1490{
1491#ifdef CONFIG_PPC64
1492	unsigned long load_addr = regs->gpr[2];	/* saved by ELF_PLAT_INIT */
 
 
 
 
 
1493#endif
1494
1495	/*
1496	 * If we exec out of a kernel thread then thread.regs will not be
1497	 * set.  Do it now.
1498	 */
1499	if (!current->thread.regs) {
1500		struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1501		current->thread.regs = regs - 1;
1502	}
1503
 
 
 
 
 
 
 
 
 
 
1504	memset(regs->gpr, 0, sizeof(regs->gpr));
1505	regs->ctr = 0;
1506	regs->link = 0;
1507	regs->xer = 0;
1508	regs->ccr = 0;
1509	regs->gpr[1] = sp;
1510
1511	/*
1512	 * We have just cleared all the nonvolatile GPRs, so make
1513	 * FULL_REGS(regs) return true.  This is necessary to allow
1514	 * ptrace to examine the thread immediately after exec.
1515	 */
1516	regs->trap &= ~1UL;
1517
1518#ifdef CONFIG_PPC32
1519	regs->mq = 0;
1520	regs->nip = start;
1521	regs->msr = MSR_USER;
1522#else
1523	if (!is_32bit_task()) {
1524		unsigned long entry;
1525
1526		if (is_elf2_task()) {
1527			/* Look ma, no function descriptors! */
1528			entry = start;
1529
1530			/*
1531			 * Ulrich says:
1532			 *   The latest iteration of the ABI requires that when
1533			 *   calling a function (at its global entry point),
1534			 *   the caller must ensure r12 holds the entry point
1535			 *   address (so that the function can quickly
1536			 *   establish addressability).
1537			 */
1538			regs->gpr[12] = start;
1539			/* Make sure that's restored on entry to userspace. */
1540			set_thread_flag(TIF_RESTOREALL);
1541		} else {
1542			unsigned long toc;
1543
1544			/* start is a relocated pointer to the function
1545			 * descriptor for the elf _start routine.  The first
1546			 * entry in the function descriptor is the entry
1547			 * address of _start and the second entry is the TOC
1548			 * value we need to use.
1549			 */
1550			__get_user(entry, (unsigned long __user *)start);
1551			__get_user(toc, (unsigned long __user *)start+1);
1552
1553			/* Check whether the e_entry function descriptor entries
1554			 * need to be relocated before we can use them.
1555			 */
1556			if (load_addr != 0) {
1557				entry += load_addr;
1558				toc   += load_addr;
1559			}
1560			regs->gpr[2] = toc;
1561		}
1562		regs->nip = entry;
1563		regs->msr = MSR_USER64;
1564	} else {
1565		regs->nip = start;
1566		regs->gpr[2] = 0;
1567		regs->msr = MSR_USER32;
1568	}
1569#endif
1570#ifdef CONFIG_VSX
1571	current->thread.used_vsr = 0;
1572#endif
 
 
1573	memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
1574	current->thread.fp_save_area = NULL;
1575#ifdef CONFIG_ALTIVEC
1576	memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
1577	current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1578	current->thread.vr_save_area = NULL;
1579	current->thread.vrsave = 0;
1580	current->thread.used_vr = 0;
 
1581#endif /* CONFIG_ALTIVEC */
1582#ifdef CONFIG_SPE
1583	memset(current->thread.evr, 0, sizeof(current->thread.evr));
1584	current->thread.acc = 0;
1585	current->thread.spefscr = 0;
1586	current->thread.used_spe = 0;
1587#endif /* CONFIG_SPE */
1588#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1589	if (cpu_has_feature(CPU_FTR_TM))
1590		regs->msr |= MSR_TM;
1591	current->thread.tm_tfhar = 0;
1592	current->thread.tm_texasr = 0;
1593	current->thread.tm_tfiar = 0;
 
1594#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
 
 
1595}
1596EXPORT_SYMBOL(start_thread);
1597
1598#define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1599		| PR_FP_EXC_RES | PR_FP_EXC_INV)
1600
1601int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1602{
1603	struct pt_regs *regs = tsk->thread.regs;
1604
1605	/* This is a bit hairy.  If we are an SPE enabled  processor
1606	 * (have embedded fp) we store the IEEE exception enable flags in
1607	 * fpexc_mode.  fpexc_mode is also used for setting FP exception
1608	 * mode (asyn, precise, disabled) for 'Classic' FP. */
1609	if (val & PR_FP_EXC_SW_ENABLE) {
1610#ifdef CONFIG_SPE
1611		if (cpu_has_feature(CPU_FTR_SPE)) {
1612			/*
1613			 * When the sticky exception bits are set
1614			 * directly by userspace, it must call prctl
1615			 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1616			 * in the existing prctl settings) or
1617			 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1618			 * the bits being set).  <fenv.h> functions
1619			 * saving and restoring the whole
1620			 * floating-point environment need to do so
1621			 * anyway to restore the prctl settings from
1622			 * the saved environment.
1623			 */
1624			tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1625			tsk->thread.fpexc_mode = val &
1626				(PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1627			return 0;
1628		} else {
1629			return -EINVAL;
1630		}
1631#else
1632		return -EINVAL;
1633#endif
1634	}
1635
1636	/* on a CONFIG_SPE this does not hurt us.  The bits that
1637	 * __pack_fe01 use do not overlap with bits used for
1638	 * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
1639	 * on CONFIG_SPE implementations are reserved so writing to
1640	 * them does not change anything */
1641	if (val > PR_FP_EXC_PRECISE)
1642		return -EINVAL;
1643	tsk->thread.fpexc_mode = __pack_fe01(val);
1644	if (regs != NULL && (regs->msr & MSR_FP) != 0)
1645		regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1646			| tsk->thread.fpexc_mode;
1647	return 0;
1648}
1649
1650int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1651{
1652	unsigned int val;
1653
1654	if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
1655#ifdef CONFIG_SPE
1656		if (cpu_has_feature(CPU_FTR_SPE)) {
1657			/*
1658			 * When the sticky exception bits are set
1659			 * directly by userspace, it must call prctl
1660			 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1661			 * in the existing prctl settings) or
1662			 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1663			 * the bits being set).  <fenv.h> functions
1664			 * saving and restoring the whole
1665			 * floating-point environment need to do so
1666			 * anyway to restore the prctl settings from
1667			 * the saved environment.
1668			 */
1669			tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1670			val = tsk->thread.fpexc_mode;
1671		} else
1672			return -EINVAL;
1673#else
1674		return -EINVAL;
1675#endif
1676	else
1677		val = __unpack_fe01(tsk->thread.fpexc_mode);
1678	return put_user(val, (unsigned int __user *) adr);
1679}
1680
1681int set_endian(struct task_struct *tsk, unsigned int val)
1682{
1683	struct pt_regs *regs = tsk->thread.regs;
1684
1685	if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1686	    (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1687		return -EINVAL;
1688
1689	if (regs == NULL)
1690		return -EINVAL;
1691
1692	if (val == PR_ENDIAN_BIG)
1693		regs->msr &= ~MSR_LE;
1694	else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1695		regs->msr |= MSR_LE;
1696	else
1697		return -EINVAL;
1698
1699	return 0;
1700}
1701
1702int get_endian(struct task_struct *tsk, unsigned long adr)
1703{
1704	struct pt_regs *regs = tsk->thread.regs;
1705	unsigned int val;
1706
1707	if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1708	    !cpu_has_feature(CPU_FTR_REAL_LE))
1709		return -EINVAL;
1710
1711	if (regs == NULL)
1712		return -EINVAL;
1713
1714	if (regs->msr & MSR_LE) {
1715		if (cpu_has_feature(CPU_FTR_REAL_LE))
1716			val = PR_ENDIAN_LITTLE;
1717		else
1718			val = PR_ENDIAN_PPC_LITTLE;
1719	} else
1720		val = PR_ENDIAN_BIG;
1721
1722	return put_user(val, (unsigned int __user *)adr);
1723}
1724
1725int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
1726{
1727	tsk->thread.align_ctl = val;
1728	return 0;
1729}
1730
1731int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
1732{
1733	return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
1734}
1735
1736static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
1737				  unsigned long nbytes)
1738{
1739	unsigned long stack_page;
1740	unsigned long cpu = task_cpu(p);
1741
1742	/*
1743	 * Avoid crashing if the stack has overflowed and corrupted
1744	 * task_cpu(p), which is in the thread_info struct.
1745	 */
1746	if (cpu < NR_CPUS && cpu_possible(cpu)) {
1747		stack_page = (unsigned long) hardirq_ctx[cpu];
1748		if (sp >= stack_page + sizeof(struct thread_struct)
1749		    && sp <= stack_page + THREAD_SIZE - nbytes)
1750			return 1;
1751
1752		stack_page = (unsigned long) softirq_ctx[cpu];
1753		if (sp >= stack_page + sizeof(struct thread_struct)
1754		    && sp <= stack_page + THREAD_SIZE - nbytes)
1755			return 1;
1756	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1757	return 0;
1758}
1759
 
1760int validate_sp(unsigned long sp, struct task_struct *p,
1761		       unsigned long nbytes)
1762{
1763	unsigned long stack_page = (unsigned long)task_stack_page(p);
1764
1765	if (sp >= stack_page + sizeof(struct thread_struct)
1766	    && sp <= stack_page + THREAD_SIZE - nbytes)
 
 
1767		return 1;
1768
1769	return valid_irq_stack(sp, p, nbytes);
 
 
 
1770}
1771
1772EXPORT_SYMBOL(validate_sp);
1773
1774unsigned long get_wchan(struct task_struct *p)
1775{
1776	unsigned long ip, sp;
1777	int count = 0;
1778
1779	if (!p || p == current || p->state == TASK_RUNNING)
1780		return 0;
1781
1782	sp = p->thread.ksp;
1783	if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1784		return 0;
1785
1786	do {
1787		sp = *(unsigned long *)sp;
1788		if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
 
1789			return 0;
1790		if (count > 0) {
1791			ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
1792			if (!in_sched_functions(ip))
1793				return ip;
1794		}
1795	} while (count++ < 16);
1796	return 0;
1797}
1798
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1799static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
1800
1801void show_stack(struct task_struct *tsk, unsigned long *stack)
 
1802{
1803	unsigned long sp, ip, lr, newsp;
1804	int count = 0;
1805	int firstframe = 1;
1806#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1807	int curr_frame = current->curr_ret_stack;
1808	extern void return_to_handler(void);
1809	unsigned long rth = (unsigned long)return_to_handler;
1810#endif
1811
1812	sp = (unsigned long) stack;
1813	if (tsk == NULL)
1814		tsk = current;
 
 
 
 
 
1815	if (sp == 0) {
1816		if (tsk == current)
1817			sp = current_stack_pointer();
1818		else
1819			sp = tsk->thread.ksp;
1820	}
1821
1822	lr = 0;
1823	printk("Call Trace:\n");
1824	do {
1825		if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
1826			return;
1827
1828		stack = (unsigned long *) sp;
1829		newsp = stack[0];
1830		ip = stack[STACK_FRAME_LR_SAVE];
1831		if (!firstframe || ip != lr) {
1832			printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
 
1833#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1834			if ((ip == rth) && curr_frame >= 0) {
1835				printk(" (%pS)",
1836				       (void *)current->ret_stack[curr_frame].ret);
1837				curr_frame--;
1838			}
1839#endif
1840			if (firstframe)
1841				printk(" (unreliable)");
1842			printk("\n");
1843		}
1844		firstframe = 0;
1845
1846		/*
1847		 * See if this is an exception frame.
1848		 * We look for the "regshere" marker in the current frame.
1849		 */
1850		if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
1851		    && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
1852			struct pt_regs *regs = (struct pt_regs *)
1853				(sp + STACK_FRAME_OVERHEAD);
1854			lr = regs->link;
1855			printk("--- interrupt: %lx at %pS\n    LR = %pS\n",
1856			       regs->trap, (void *)regs->nip, (void *)lr);
 
1857			firstframe = 1;
1858		}
1859
1860		sp = newsp;
1861	} while (count++ < kstack_depth_to_print);
 
 
1862}
1863
1864#ifdef CONFIG_PPC64
1865/* Called with hard IRQs off */
1866void notrace __ppc64_runlatch_on(void)
1867{
1868	struct thread_info *ti = current_thread_info();
1869	unsigned long ctrl;
1870
1871	ctrl = mfspr(SPRN_CTRLF);
1872	ctrl |= CTRL_RUNLATCH;
1873	mtspr(SPRN_CTRLT, ctrl);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1874
1875	ti->local_flags |= _TLF_RUNLATCH;
1876}
1877
1878/* Called with hard IRQs off */
1879void notrace __ppc64_runlatch_off(void)
1880{
1881	struct thread_info *ti = current_thread_info();
1882	unsigned long ctrl;
1883
1884	ti->local_flags &= ~_TLF_RUNLATCH;
1885
1886	ctrl = mfspr(SPRN_CTRLF);
1887	ctrl &= ~CTRL_RUNLATCH;
1888	mtspr(SPRN_CTRLT, ctrl);
 
 
 
 
 
 
1889}
1890#endif /* CONFIG_PPC64 */
1891
1892unsigned long arch_align_stack(unsigned long sp)
1893{
1894	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
1895		sp -= get_random_int() & ~PAGE_MASK;
1896	return sp & ~0xf;
1897}
1898
1899static inline unsigned long brk_rnd(void)
1900{
1901        unsigned long rnd = 0;
1902
1903	/* 8MB for 32bit, 1GB for 64bit */
1904	if (is_32bit_task())
1905		rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT)));
1906	else
1907		rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT)));
1908
1909	return rnd << PAGE_SHIFT;
1910}
1911
1912unsigned long arch_randomize_brk(struct mm_struct *mm)
1913{
1914	unsigned long base = mm->brk;
1915	unsigned long ret;
1916
1917#ifdef CONFIG_PPC_STD_MMU_64
1918	/*
1919	 * If we are using 1TB segments and we are allowed to randomise
1920	 * the heap, we can put it above 1TB so it is backed by a 1TB
1921	 * segment. Otherwise the heap will be in the bottom 1TB
1922	 * which always uses 256MB segments and this may result in a
1923	 * performance penalty.
 
1924	 */
1925	if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
1926		base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
1927#endif
1928
1929	ret = PAGE_ALIGN(base + brk_rnd());
1930
1931	if (ret < mm->brk)
1932		return mm->brk;
1933
1934	return ret;
1935}
1936