Linux Audio

Check our new training course

Loading...
v5.9
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * HW_breakpoint: a unified kernel/user-space hardware breakpoint facility,
  4 * using the CPU's debug registers. Derived from
  5 * "arch/x86/kernel/hw_breakpoint.c"
  6 *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  7 * Copyright 2010 IBM Corporation
  8 * Author: K.Prasad <prasad@linux.vnet.ibm.com>
 
  9 */
 10
 11#include <linux/hw_breakpoint.h>
 12#include <linux/notifier.h>
 13#include <linux/kprobes.h>
 14#include <linux/percpu.h>
 15#include <linux/kernel.h>
 16#include <linux/sched.h>
 17#include <linux/smp.h>
 18#include <linux/debugfs.h>
 19#include <linux/init.h>
 20
 21#include <asm/hw_breakpoint.h>
 22#include <asm/processor.h>
 23#include <asm/sstep.h>
 24#include <asm/debug.h>
 25#include <asm/debugfs.h>
 26#include <asm/hvcall.h>
 27#include <asm/inst.h>
 28#include <linux/uaccess.h>
 29
 30/*
 31 * Stores the breakpoints currently in use on each breakpoint address
 32 * register for every cpu
 33 */
 34static DEFINE_PER_CPU(struct perf_event *, bp_per_reg[HBP_NUM_MAX]);
 35
 36/*
 37 * Returns total number of data or instruction breakpoints available.
 38 */
 39int hw_breakpoint_slots(int type)
 40{
 41	if (type == TYPE_DATA)
 42		return nr_wp_slots();
 43	return 0;		/* no instruction breakpoints available */
 44}
 45
 46static bool single_step_pending(void)
 47{
 48	int i;
 49
 50	for (i = 0; i < nr_wp_slots(); i++) {
 51		if (current->thread.last_hit_ubp[i])
 52			return true;
 53	}
 54	return false;
 55}
 56
 57/*
 58 * Install a perf counter breakpoint.
 59 *
 60 * We seek a free debug address register and use it for this
 61 * breakpoint.
 62 *
 63 * Atomic: we hold the counter->ctx->lock and we only handle variables
 64 * and registers local to this cpu.
 65 */
 66int arch_install_hw_breakpoint(struct perf_event *bp)
 67{
 68	struct arch_hw_breakpoint *info = counter_arch_bp(bp);
 69	struct perf_event **slot;
 70	int i;
 71
 72	for (i = 0; i < nr_wp_slots(); i++) {
 73		slot = this_cpu_ptr(&bp_per_reg[i]);
 74		if (!*slot) {
 75			*slot = bp;
 76			break;
 77		}
 78	}
 79
 80	if (WARN_ONCE(i == nr_wp_slots(), "Can't find any breakpoint slot"))
 81		return -EBUSY;
 82
 83	/*
 84	 * Do not install DABR values if the instruction must be single-stepped.
 85	 * If so, DABR will be populated in single_step_dabr_instruction().
 86	 */
 87	if (!single_step_pending())
 88		__set_breakpoint(i, info);
 89
 90	return 0;
 91}
 92
 93/*
 94 * Uninstall the breakpoint contained in the given counter.
 95 *
 96 * First we search the debug address register it uses and then we disable
 97 * it.
 98 *
 99 * Atomic: we hold the counter->ctx->lock and we only handle variables
100 * and registers local to this cpu.
101 */
102void arch_uninstall_hw_breakpoint(struct perf_event *bp)
103{
104	struct arch_hw_breakpoint null_brk = {0};
105	struct perf_event **slot;
106	int i;
107
108	for (i = 0; i < nr_wp_slots(); i++) {
109		slot = this_cpu_ptr(&bp_per_reg[i]);
110		if (*slot == bp) {
111			*slot = NULL;
112			break;
113		}
114	}
115
116	if (WARN_ONCE(i == nr_wp_slots(), "Can't find any breakpoint slot"))
 
117		return;
118
119	__set_breakpoint(i, &null_brk);
120}
121
122static bool is_ptrace_bp(struct perf_event *bp)
123{
124	return bp->overflow_handler == ptrace_triggered;
125}
126
127struct breakpoint {
128	struct list_head list;
129	struct perf_event *bp;
130	bool ptrace_bp;
131};
132
133static DEFINE_PER_CPU(struct breakpoint *, cpu_bps[HBP_NUM_MAX]);
134static LIST_HEAD(task_bps);
135
136static struct breakpoint *alloc_breakpoint(struct perf_event *bp)
137{
138	struct breakpoint *tmp;
139
140	tmp = kzalloc(sizeof(*tmp), GFP_KERNEL);
141	if (!tmp)
142		return ERR_PTR(-ENOMEM);
143	tmp->bp = bp;
144	tmp->ptrace_bp = is_ptrace_bp(bp);
145	return tmp;
146}
147
148static bool bp_addr_range_overlap(struct perf_event *bp1, struct perf_event *bp2)
149{
150	__u64 bp1_saddr, bp1_eaddr, bp2_saddr, bp2_eaddr;
151
152	bp1_saddr = ALIGN_DOWN(bp1->attr.bp_addr, HW_BREAKPOINT_SIZE);
153	bp1_eaddr = ALIGN(bp1->attr.bp_addr + bp1->attr.bp_len, HW_BREAKPOINT_SIZE);
154	bp2_saddr = ALIGN_DOWN(bp2->attr.bp_addr, HW_BREAKPOINT_SIZE);
155	bp2_eaddr = ALIGN(bp2->attr.bp_addr + bp2->attr.bp_len, HW_BREAKPOINT_SIZE);
156
157	return (bp1_saddr < bp2_eaddr && bp1_eaddr > bp2_saddr);
158}
159
160static bool alternate_infra_bp(struct breakpoint *b, struct perf_event *bp)
161{
162	return is_ptrace_bp(bp) ? !b->ptrace_bp : b->ptrace_bp;
163}
164
165static bool can_co_exist(struct breakpoint *b, struct perf_event *bp)
166{
167	return !(alternate_infra_bp(b, bp) && bp_addr_range_overlap(b->bp, bp));
168}
169
170static int task_bps_add(struct perf_event *bp)
171{
172	struct breakpoint *tmp;
173
174	tmp = alloc_breakpoint(bp);
175	if (IS_ERR(tmp))
176		return PTR_ERR(tmp);
177
178	list_add(&tmp->list, &task_bps);
179	return 0;
180}
181
182static void task_bps_remove(struct perf_event *bp)
183{
184	struct list_head *pos, *q;
185
186	list_for_each_safe(pos, q, &task_bps) {
187		struct breakpoint *tmp = list_entry(pos, struct breakpoint, list);
188
189		if (tmp->bp == bp) {
190			list_del(&tmp->list);
191			kfree(tmp);
192			break;
193		}
194	}
195}
196
197/*
198 * If any task has breakpoint from alternate infrastructure,
199 * return true. Otherwise return false.
200 */
201static bool all_task_bps_check(struct perf_event *bp)
202{
203	struct breakpoint *tmp;
204
205	list_for_each_entry(tmp, &task_bps, list) {
206		if (!can_co_exist(tmp, bp))
207			return true;
208	}
209	return false;
210}
211
212/*
213 * If same task has breakpoint from alternate infrastructure,
214 * return true. Otherwise return false.
215 */
216static bool same_task_bps_check(struct perf_event *bp)
217{
218	struct breakpoint *tmp;
219
220	list_for_each_entry(tmp, &task_bps, list) {
221		if (tmp->bp->hw.target == bp->hw.target &&
222		    !can_co_exist(tmp, bp))
223			return true;
224	}
225	return false;
226}
227
228static int cpu_bps_add(struct perf_event *bp)
229{
230	struct breakpoint **cpu_bp;
231	struct breakpoint *tmp;
232	int i = 0;
233
234	tmp = alloc_breakpoint(bp);
235	if (IS_ERR(tmp))
236		return PTR_ERR(tmp);
237
238	cpu_bp = per_cpu_ptr(cpu_bps, bp->cpu);
239	for (i = 0; i < nr_wp_slots(); i++) {
240		if (!cpu_bp[i]) {
241			cpu_bp[i] = tmp;
242			break;
243		}
244	}
245	return 0;
246}
247
248static void cpu_bps_remove(struct perf_event *bp)
249{
250	struct breakpoint **cpu_bp;
251	int i = 0;
252
253	cpu_bp = per_cpu_ptr(cpu_bps, bp->cpu);
254	for (i = 0; i < nr_wp_slots(); i++) {
255		if (!cpu_bp[i])
256			continue;
257
258		if (cpu_bp[i]->bp == bp) {
259			kfree(cpu_bp[i]);
260			cpu_bp[i] = NULL;
261			break;
262		}
263	}
264}
265
266static bool cpu_bps_check(int cpu, struct perf_event *bp)
267{
268	struct breakpoint **cpu_bp;
269	int i;
270
271	cpu_bp = per_cpu_ptr(cpu_bps, cpu);
272	for (i = 0; i < nr_wp_slots(); i++) {
273		if (cpu_bp[i] && !can_co_exist(cpu_bp[i], bp))
274			return true;
275	}
276	return false;
277}
278
279static bool all_cpu_bps_check(struct perf_event *bp)
280{
281	int cpu;
282
283	for_each_online_cpu(cpu) {
284		if (cpu_bps_check(cpu, bp))
285			return true;
286	}
287	return false;
288}
289
290/*
291 * We don't use any locks to serialize accesses to cpu_bps or task_bps
292 * because are already inside nr_bp_mutex.
293 */
294int arch_reserve_bp_slot(struct perf_event *bp)
295{
296	int ret;
297
298	/* ptrace breakpoint */
299	if (is_ptrace_bp(bp)) {
300		if (all_cpu_bps_check(bp))
301			return -ENOSPC;
302
303		if (same_task_bps_check(bp))
304			return -ENOSPC;
305
306		return task_bps_add(bp);
307	}
308
309	/* perf breakpoint */
310	if (is_kernel_addr(bp->attr.bp_addr))
311		return 0;
312
313	if (bp->hw.target && bp->cpu == -1) {
314		if (same_task_bps_check(bp))
315			return -ENOSPC;
316
317		return task_bps_add(bp);
318	} else if (!bp->hw.target && bp->cpu != -1) {
319		if (all_task_bps_check(bp))
320			return -ENOSPC;
321
322		return cpu_bps_add(bp);
323	}
324
325	if (same_task_bps_check(bp))
326		return -ENOSPC;
327
328	ret = cpu_bps_add(bp);
329	if (ret)
330		return ret;
331	ret = task_bps_add(bp);
332	if (ret)
333		cpu_bps_remove(bp);
334
335	return ret;
336}
337
338void arch_release_bp_slot(struct perf_event *bp)
339{
340	if (!is_kernel_addr(bp->attr.bp_addr)) {
341		if (bp->hw.target)
342			task_bps_remove(bp);
343		if (bp->cpu != -1)
344			cpu_bps_remove(bp);
345	}
346}
347
348/*
349 * Perform cleanup of arch-specific counters during unregistration
350 * of the perf-event
351 */
352void arch_unregister_hw_breakpoint(struct perf_event *bp)
353{
354	/*
355	 * If the breakpoint is unregistered between a hw_breakpoint_handler()
356	 * and the single_step_dabr_instruction(), then cleanup the breakpoint
357	 * restoration variables to prevent dangling pointers.
358	 * FIXME, this should not be using bp->ctx at all! Sayeth peterz.
359	 */
360	if (bp->ctx && bp->ctx->task && bp->ctx->task != ((void *)-1L)) {
361		int i;
362
363		for (i = 0; i < nr_wp_slots(); i++) {
364			if (bp->ctx->task->thread.last_hit_ubp[i] == bp)
365				bp->ctx->task->thread.last_hit_ubp[i] = NULL;
366		}
367	}
368}
369
370/*
371 * Check for virtual address in kernel space.
372 */
373int arch_check_bp_in_kernelspace(struct arch_hw_breakpoint *hw)
374{
375	return is_kernel_addr(hw->address);
 
 
376}
377
378int arch_bp_generic_fields(int type, int *gen_bp_type)
379{
380	*gen_bp_type = 0;
381	if (type & HW_BRK_TYPE_READ)
382		*gen_bp_type |= HW_BREAKPOINT_R;
383	if (type & HW_BRK_TYPE_WRITE)
384		*gen_bp_type |= HW_BREAKPOINT_W;
385	if (*gen_bp_type == 0)
386		return -EINVAL;
387	return 0;
388}
389
390/*
391 * Watchpoint match range is always doubleword(8 bytes) aligned on
392 * powerpc. If the given range is crossing doubleword boundary, we
393 * need to increase the length such that next doubleword also get
394 * covered. Ex,
395 *
396 *          address   len = 6 bytes
397 *                |=========.
398 *   |------------v--|------v--------|
399 *   | | | | | | | | | | | | | | | | |
400 *   |---------------|---------------|
401 *    <---8 bytes--->
402 *
403 * In this case, we should configure hw as:
404 *   start_addr = address & ~(HW_BREAKPOINT_SIZE - 1)
405 *   len = 16 bytes
406 *
407 * @start_addr is inclusive but @end_addr is exclusive.
408 */
409static int hw_breakpoint_validate_len(struct arch_hw_breakpoint *hw)
410{
411	u16 max_len = DABR_MAX_LEN;
412	u16 hw_len;
413	unsigned long start_addr, end_addr;
414
415	start_addr = ALIGN_DOWN(hw->address, HW_BREAKPOINT_SIZE);
416	end_addr = ALIGN(hw->address + hw->len, HW_BREAKPOINT_SIZE);
417	hw_len = end_addr - start_addr;
418
419	if (dawr_enabled()) {
420		max_len = DAWR_MAX_LEN;
421		/* DAWR region can't cross 512 bytes boundary on p10 predecessors */
422		if (!cpu_has_feature(CPU_FTR_ARCH_31) &&
423		    (ALIGN_DOWN(start_addr, SZ_512) != ALIGN_DOWN(end_addr - 1, SZ_512)))
424			return -EINVAL;
425	} else if (IS_ENABLED(CONFIG_PPC_8xx)) {
426		/* 8xx can setup a range without limitation */
427		max_len = U16_MAX;
428	}
429
430	if (hw_len > max_len)
431		return -EINVAL;
432
433	hw->hw_len = hw_len;
434	return 0;
435}
436
437/*
438 * Validate the arch-specific HW Breakpoint register settings
439 */
440int hw_breakpoint_arch_parse(struct perf_event *bp,
441			     const struct perf_event_attr *attr,
442			     struct arch_hw_breakpoint *hw)
443{
444	int ret = -EINVAL;
 
445
446	if (!bp || !attr->bp_len)
447		return ret;
448
449	hw->type = HW_BRK_TYPE_TRANSLATE;
450	if (attr->bp_type & HW_BREAKPOINT_R)
451		hw->type |= HW_BRK_TYPE_READ;
452	if (attr->bp_type & HW_BREAKPOINT_W)
453		hw->type |= HW_BRK_TYPE_WRITE;
454	if (hw->type == HW_BRK_TYPE_TRANSLATE)
455		/* must set alteast read or write */
456		return ret;
457	if (!attr->exclude_user)
458		hw->type |= HW_BRK_TYPE_USER;
459	if (!attr->exclude_kernel)
460		hw->type |= HW_BRK_TYPE_KERNEL;
461	if (!attr->exclude_hv)
462		hw->type |= HW_BRK_TYPE_HYP;
463	hw->address = attr->bp_addr;
464	hw->len = attr->bp_len;
465
466	if (!ppc_breakpoint_available())
467		return -ENODEV;
468
469	return hw_breakpoint_validate_len(hw);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
470}
471
472/*
473 * Restores the breakpoint on the debug registers.
474 * Invoke this function if it is known that the execution context is
475 * about to change to cause loss of MSR_SE settings.
476 */
477void thread_change_pc(struct task_struct *tsk, struct pt_regs *regs)
478{
479	struct arch_hw_breakpoint *info;
480	int i;
481
482	for (i = 0; i < nr_wp_slots(); i++) {
483		if (unlikely(tsk->thread.last_hit_ubp[i]))
484			goto reset;
485	}
486	return;
487
488reset:
489	regs->msr &= ~MSR_SE;
490	for (i = 0; i < nr_wp_slots(); i++) {
491		info = counter_arch_bp(__this_cpu_read(bp_per_reg[i]));
492		__set_breakpoint(i, info);
493		tsk->thread.last_hit_ubp[i] = NULL;
494	}
495}
496
497static bool dar_in_user_range(unsigned long dar, struct arch_hw_breakpoint *info)
498{
499	return ((info->address <= dar) && (dar - info->address < info->len));
500}
501
502static bool ea_user_range_overlaps(unsigned long ea, int size,
503				   struct arch_hw_breakpoint *info)
504{
505	return ((ea < info->address + info->len) &&
506		(ea + size > info->address));
507}
508
509static bool dar_in_hw_range(unsigned long dar, struct arch_hw_breakpoint *info)
510{
511	unsigned long hw_start_addr, hw_end_addr;
512
513	hw_start_addr = ALIGN_DOWN(info->address, HW_BREAKPOINT_SIZE);
514	hw_end_addr = ALIGN(info->address + info->len, HW_BREAKPOINT_SIZE);
515
516	return ((hw_start_addr <= dar) && (hw_end_addr > dar));
517}
518
519static bool ea_hw_range_overlaps(unsigned long ea, int size,
520				 struct arch_hw_breakpoint *info)
521{
522	unsigned long hw_start_addr, hw_end_addr;
523
524	hw_start_addr = ALIGN_DOWN(info->address, HW_BREAKPOINT_SIZE);
525	hw_end_addr = ALIGN(info->address + info->len, HW_BREAKPOINT_SIZE);
526
527	return ((ea < hw_end_addr) && (ea + size > hw_start_addr));
528}
529
530/*
531 * If hw has multiple DAWR registers, we also need to check all
532 * dawrx constraint bits to confirm this is _really_ a valid event.
533 * If type is UNKNOWN, but privilege level matches, consider it as
534 * a positive match.
535 */
536static bool check_dawrx_constraints(struct pt_regs *regs, int type,
537				    struct arch_hw_breakpoint *info)
538{
539	if (OP_IS_LOAD(type) && !(info->type & HW_BRK_TYPE_READ))
540		return false;
541
542	/*
543	 * The Cache Management instructions other than dcbz never
544	 * cause a match. i.e. if type is CACHEOP, the instruction
545	 * is dcbz, and dcbz is treated as Store.
546	 */
547	if ((OP_IS_STORE(type) || type == CACHEOP) && !(info->type & HW_BRK_TYPE_WRITE))
548		return false;
549
550	if (is_kernel_addr(regs->nip) && !(info->type & HW_BRK_TYPE_KERNEL))
551		return false;
552
553	if (user_mode(regs) && !(info->type & HW_BRK_TYPE_USER))
554		return false;
555
556	return true;
557}
558
559/*
560 * Return true if the event is valid wrt dawr configuration,
561 * including extraneous exception. Otherwise return false.
562 */
563static bool check_constraints(struct pt_regs *regs, struct ppc_inst instr,
564			      unsigned long ea, int type, int size,
565			      struct arch_hw_breakpoint *info)
566{
567	bool in_user_range = dar_in_user_range(regs->dar, info);
568	bool dawrx_constraints;
569
570	/*
571	 * 8xx supports only one breakpoint and thus we can
572	 * unconditionally return true.
573	 */
574	if (IS_ENABLED(CONFIG_PPC_8xx)) {
575		if (!in_user_range)
576			info->type |= HW_BRK_TYPE_EXTRANEOUS_IRQ;
577		return true;
578	}
579
580	if (unlikely(ppc_inst_equal(instr, ppc_inst(0)))) {
581		if (cpu_has_feature(CPU_FTR_ARCH_31) &&
582		    !dar_in_hw_range(regs->dar, info))
583			return false;
584
585		return true;
586	}
587
588	dawrx_constraints = check_dawrx_constraints(regs, type, info);
589
590	if (type == UNKNOWN) {
591		if (cpu_has_feature(CPU_FTR_ARCH_31) &&
592		    !dar_in_hw_range(regs->dar, info))
593			return false;
594
595		return dawrx_constraints;
596	}
597
598	if (ea_user_range_overlaps(ea, size, info))
599		return dawrx_constraints;
600
601	if (ea_hw_range_overlaps(ea, size, info)) {
602		if (dawrx_constraints) {
603			info->type |= HW_BRK_TYPE_EXTRANEOUS_IRQ;
604			return true;
605		}
606	}
607	return false;
608}
609
610static int cache_op_size(void)
611{
612#ifdef __powerpc64__
613	return ppc64_caches.l1d.block_size;
614#else
615	return L1_CACHE_BYTES;
616#endif
617}
618
619static void get_instr_detail(struct pt_regs *regs, struct ppc_inst *instr,
620			     int *type, int *size, unsigned long *ea)
621{
622	struct instruction_op op;
623
624	if (__get_user_instr_inatomic(*instr, (void __user *)regs->nip))
625		return;
626
627	analyse_instr(&op, regs, *instr);
628	*type = GETTYPE(op.type);
629	*ea = op.ea;
630#ifdef __powerpc64__
631	if (!(regs->msr & MSR_64BIT))
632		*ea &= 0xffffffffUL;
633#endif
634
635	*size = GETSIZE(op.type);
636	if (*type == CACHEOP) {
637		*size = cache_op_size();
638		*ea &= ~(*size - 1);
639	}
640}
641
642static bool is_larx_stcx_instr(int type)
643{
644	return type == LARX || type == STCX;
645}
646
647/*
648 * We've failed in reliably handling the hw-breakpoint. Unregister
649 * it and throw a warning message to let the user know about it.
650 */
651static void handler_error(struct perf_event *bp, struct arch_hw_breakpoint *info)
652{
653	WARN(1, "Unable to handle hardware breakpoint. Breakpoint at 0x%lx will be disabled.",
654	     info->address);
655	perf_event_disable_inatomic(bp);
656}
657
658static void larx_stcx_err(struct perf_event *bp, struct arch_hw_breakpoint *info)
659{
660	printk_ratelimited("Breakpoint hit on instruction that can't be emulated. Breakpoint at 0x%lx will be disabled.\n",
661			   info->address);
662	perf_event_disable_inatomic(bp);
663}
664
665static bool stepping_handler(struct pt_regs *regs, struct perf_event **bp,
666			     struct arch_hw_breakpoint **info, int *hit,
667			     struct ppc_inst instr)
668{
669	int i;
670	int stepped;
671
672	/* Do not emulate user-space instructions, instead single-step them */
673	if (user_mode(regs)) {
674		for (i = 0; i < nr_wp_slots(); i++) {
675			if (!hit[i])
676				continue;
677			current->thread.last_hit_ubp[i] = bp[i];
678			info[i] = NULL;
679		}
680		regs->msr |= MSR_SE;
681		return false;
682	}
683
684	stepped = emulate_step(regs, instr);
685	if (!stepped) {
686		for (i = 0; i < nr_wp_slots(); i++) {
687			if (!hit[i])
688				continue;
689			handler_error(bp[i], info[i]);
690			info[i] = NULL;
691		}
692		return false;
693	}
694	return true;
695}
696
697int hw_breakpoint_handler(struct die_args *args)
698{
699	bool err = false;
700	int rc = NOTIFY_STOP;
701	struct perf_event *bp[HBP_NUM_MAX] = { NULL };
702	struct pt_regs *regs = args->regs;
703	struct arch_hw_breakpoint *info[HBP_NUM_MAX] = { NULL };
704	int i;
705	int hit[HBP_NUM_MAX] = {0};
706	int nr_hit = 0;
707	bool ptrace_bp = false;
708	struct ppc_inst instr = ppc_inst(0);
709	int type = 0;
710	int size = 0;
711	unsigned long ea;
712
713	/* Disable breakpoints during exception handling */
714	hw_breakpoint_disable();
715
716	/*
717	 * The counter may be concurrently released but that can only
718	 * occur from a call_rcu() path. We can then safely fetch
719	 * the breakpoint, use its callback, touch its counter
720	 * while we are in an rcu_read_lock() path.
721	 */
722	rcu_read_lock();
723
724	if (!IS_ENABLED(CONFIG_PPC_8xx))
725		get_instr_detail(regs, &instr, &type, &size, &ea);
726
727	for (i = 0; i < nr_wp_slots(); i++) {
728		bp[i] = __this_cpu_read(bp_per_reg[i]);
729		if (!bp[i])
730			continue;
731
732		info[i] = counter_arch_bp(bp[i]);
733		info[i]->type &= ~HW_BRK_TYPE_EXTRANEOUS_IRQ;
734
735		if (check_constraints(regs, instr, ea, type, size, info[i])) {
736			if (!IS_ENABLED(CONFIG_PPC_8xx) &&
737			    ppc_inst_equal(instr, ppc_inst(0))) {
738				handler_error(bp[i], info[i]);
739				info[i] = NULL;
740				err = 1;
741				continue;
742			}
743
744			if (is_ptrace_bp(bp[i]))
745				ptrace_bp = true;
746			hit[i] = 1;
747			nr_hit++;
748		}
749	}
750
751	if (err)
752		goto reset;
753
754	if (!nr_hit) {
755		rc = NOTIFY_DONE;
756		goto out;
757	}
758
759	/*
760	 * Return early after invoking user-callback function without restoring
761	 * DABR if the breakpoint is from ptrace which always operates in
762	 * one-shot mode. The ptrace-ed process will receive the SIGTRAP signal
763	 * generated in do_dabr().
764	 */
765	if (ptrace_bp) {
766		for (i = 0; i < nr_wp_slots(); i++) {
767			if (!hit[i])
768				continue;
769			perf_bp_event(bp[i], regs);
770			info[i] = NULL;
771		}
772		rc = NOTIFY_DONE;
773		goto reset;
774	}
775
776	if (!IS_ENABLED(CONFIG_PPC_8xx)) {
777		if (is_larx_stcx_instr(type)) {
778			for (i = 0; i < nr_wp_slots(); i++) {
779				if (!hit[i])
780					continue;
781				larx_stcx_err(bp[i], info[i]);
782				info[i] = NULL;
783			}
784			goto reset;
785		}
786
787		if (!stepping_handler(regs, bp, info, hit, instr))
788			goto reset;
 
 
 
789	}
790
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
791	/*
792	 * As a policy, the callback is invoked in a 'trigger-after-execute'
793	 * fashion
794	 */
795	for (i = 0; i < nr_wp_slots(); i++) {
796		if (!hit[i])
797			continue;
798		if (!(info[i]->type & HW_BRK_TYPE_EXTRANEOUS_IRQ))
799			perf_bp_event(bp[i], regs);
800	}
801
802reset:
803	for (i = 0; i < nr_wp_slots(); i++) {
804		if (!info[i])
805			continue;
806		__set_breakpoint(i, info[i]);
807	}
808
 
809out:
810	rcu_read_unlock();
811	return rc;
812}
813NOKPROBE_SYMBOL(hw_breakpoint_handler);
814
815/*
816 * Handle single-step exceptions following a DABR hit.
817 */
818static int single_step_dabr_instruction(struct die_args *args)
819{
820	struct pt_regs *regs = args->regs;
821	struct perf_event *bp = NULL;
822	struct arch_hw_breakpoint *info;
823	int i;
824	bool found = false;
825
 
826	/*
827	 * Check if we are single-stepping as a result of a
828	 * previous HW Breakpoint exception
829	 */
830	for (i = 0; i < nr_wp_slots(); i++) {
831		bp = current->thread.last_hit_ubp[i];
832
833		if (!bp)
834			continue;
835
836		found = true;
837		info = counter_arch_bp(bp);
838
839		/*
840		 * We shall invoke the user-defined callback function in the
841		 * single stepping handler to confirm to 'trigger-after-execute'
842		 * semantics
843		 */
844		if (!(info->type & HW_BRK_TYPE_EXTRANEOUS_IRQ))
845			perf_bp_event(bp, regs);
846		current->thread.last_hit_ubp[i] = NULL;
847	}
848
849	if (!found)
850		return NOTIFY_DONE;
851
852	for (i = 0; i < nr_wp_slots(); i++) {
853		bp = __this_cpu_read(bp_per_reg[i]);
854		if (!bp)
855			continue;
856
857		info = counter_arch_bp(bp);
858		__set_breakpoint(i, info);
859	}
 
 
 
 
 
 
860
861	/*
862	 * If the process was being single-stepped by ptrace, let the
863	 * other single-step actions occur (e.g. generate SIGTRAP).
864	 */
865	if (test_thread_flag(TIF_SINGLESTEP))
866		return NOTIFY_DONE;
867
868	return NOTIFY_STOP;
869}
870NOKPROBE_SYMBOL(single_step_dabr_instruction);
871
872/*
873 * Handle debug exception notifications.
874 */
875int hw_breakpoint_exceptions_notify(
876		struct notifier_block *unused, unsigned long val, void *data)
877{
878	int ret = NOTIFY_DONE;
879
880	switch (val) {
881	case DIE_DABR_MATCH:
882		ret = hw_breakpoint_handler(data);
883		break;
884	case DIE_SSTEP:
885		ret = single_step_dabr_instruction(data);
886		break;
887	}
888
889	return ret;
890}
891NOKPROBE_SYMBOL(hw_breakpoint_exceptions_notify);
892
893/*
894 * Release the user breakpoints used by ptrace
895 */
896void flush_ptrace_hw_breakpoint(struct task_struct *tsk)
897{
898	int i;
899	struct thread_struct *t = &tsk->thread;
900
901	for (i = 0; i < nr_wp_slots(); i++) {
902		unregister_hw_breakpoint(t->ptrace_bps[i]);
903		t->ptrace_bps[i] = NULL;
904	}
905}
906
907void hw_breakpoint_pmu_read(struct perf_event *bp)
908{
909	/* TODO */
910}
911
912void ptrace_triggered(struct perf_event *bp,
913		      struct perf_sample_data *data, struct pt_regs *regs)
914{
915	struct perf_event_attr attr;
916
917	/*
918	 * Disable the breakpoint request here since ptrace has defined a
919	 * one-shot behaviour for breakpoint exceptions in PPC64.
920	 * The SIGTRAP signal is generated automatically for us in do_dabr().
921	 * We don't have to do anything about that here
922	 */
923	attr = bp->attr;
924	attr.disabled = true;
925	modify_user_hw_breakpoint(bp, &attr);
926}
v4.6
 
  1/*
  2 * HW_breakpoint: a unified kernel/user-space hardware breakpoint facility,
  3 * using the CPU's debug registers. Derived from
  4 * "arch/x86/kernel/hw_breakpoint.c"
  5 *
  6 * This program is free software; you can redistribute it and/or modify
  7 * it under the terms of the GNU General Public License as published by
  8 * the Free Software Foundation; either version 2 of the License, or
  9 * (at your option) any later version.
 10 *
 11 * This program is distributed in the hope that it will be useful,
 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 14 * GNU General Public License for more details.
 15 *
 16 * You should have received a copy of the GNU General Public License
 17 * along with this program; if not, write to the Free Software
 18 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 19 *
 20 * Copyright 2010 IBM Corporation
 21 * Author: K.Prasad <prasad@linux.vnet.ibm.com>
 22 *
 23 */
 24
 25#include <linux/hw_breakpoint.h>
 26#include <linux/notifier.h>
 27#include <linux/kprobes.h>
 28#include <linux/percpu.h>
 29#include <linux/kernel.h>
 30#include <linux/sched.h>
 31#include <linux/smp.h>
 
 
 32
 33#include <asm/hw_breakpoint.h>
 34#include <asm/processor.h>
 35#include <asm/sstep.h>
 36#include <asm/uaccess.h>
 
 
 
 
 37
 38/*
 39 * Stores the breakpoints currently in use on each breakpoint address
 40 * register for every cpu
 41 */
 42static DEFINE_PER_CPU(struct perf_event *, bp_per_reg);
 43
 44/*
 45 * Returns total number of data or instruction breakpoints available.
 46 */
 47int hw_breakpoint_slots(int type)
 48{
 49	if (type == TYPE_DATA)
 50		return HBP_NUM;
 51	return 0;		/* no instruction breakpoints available */
 52}
 53
 
 
 
 
 
 
 
 
 
 
 
 54/*
 55 * Install a perf counter breakpoint.
 56 *
 57 * We seek a free debug address register and use it for this
 58 * breakpoint.
 59 *
 60 * Atomic: we hold the counter->ctx->lock and we only handle variables
 61 * and registers local to this cpu.
 62 */
 63int arch_install_hw_breakpoint(struct perf_event *bp)
 64{
 65	struct arch_hw_breakpoint *info = counter_arch_bp(bp);
 66	struct perf_event **slot = this_cpu_ptr(&bp_per_reg);
 
 
 
 
 
 
 
 
 
 67
 68	*slot = bp;
 
 69
 70	/*
 71	 * Do not install DABR values if the instruction must be single-stepped.
 72	 * If so, DABR will be populated in single_step_dabr_instruction().
 73	 */
 74	if (current->thread.last_hit_ubp != bp)
 75		__set_breakpoint(info);
 76
 77	return 0;
 78}
 79
 80/*
 81 * Uninstall the breakpoint contained in the given counter.
 82 *
 83 * First we search the debug address register it uses and then we disable
 84 * it.
 85 *
 86 * Atomic: we hold the counter->ctx->lock and we only handle variables
 87 * and registers local to this cpu.
 88 */
 89void arch_uninstall_hw_breakpoint(struct perf_event *bp)
 90{
 91	struct perf_event **slot = this_cpu_ptr(&bp_per_reg);
 
 
 
 
 
 
 
 
 
 
 92
 93	if (*slot != bp) {
 94		WARN_ONCE(1, "Can't find the breakpoint");
 95		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 96	}
 97
 98	*slot = NULL;
 99	hw_breakpoint_disable();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
100}
101
102/*
103 * Perform cleanup of arch-specific counters during unregistration
104 * of the perf-event
105 */
106void arch_unregister_hw_breakpoint(struct perf_event *bp)
107{
108	/*
109	 * If the breakpoint is unregistered between a hw_breakpoint_handler()
110	 * and the single_step_dabr_instruction(), then cleanup the breakpoint
111	 * restoration variables to prevent dangling pointers.
112	 * FIXME, this should not be using bp->ctx at all! Sayeth peterz.
113	 */
114	if (bp->ctx && bp->ctx->task && bp->ctx->task != ((void *)-1L))
115		bp->ctx->task->thread.last_hit_ubp = NULL;
 
 
 
 
 
 
116}
117
118/*
119 * Check for virtual address in kernel space.
120 */
121int arch_check_bp_in_kernelspace(struct perf_event *bp)
122{
123	struct arch_hw_breakpoint *info = counter_arch_bp(bp);
124
125	return is_kernel_addr(info->address);
126}
127
128int arch_bp_generic_fields(int type, int *gen_bp_type)
129{
130	*gen_bp_type = 0;
131	if (type & HW_BRK_TYPE_READ)
132		*gen_bp_type |= HW_BREAKPOINT_R;
133	if (type & HW_BRK_TYPE_WRITE)
134		*gen_bp_type |= HW_BREAKPOINT_W;
135	if (*gen_bp_type == 0)
136		return -EINVAL;
137	return 0;
138}
139
140/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
141 * Validate the arch-specific HW Breakpoint register settings
142 */
143int arch_validate_hwbkpt_settings(struct perf_event *bp)
 
 
144{
145	int ret = -EINVAL, length_max;
146	struct arch_hw_breakpoint *info = counter_arch_bp(bp);
147
148	if (!bp)
149		return ret;
150
151	info->type = HW_BRK_TYPE_TRANSLATE;
152	if (bp->attr.bp_type & HW_BREAKPOINT_R)
153		info->type |= HW_BRK_TYPE_READ;
154	if (bp->attr.bp_type & HW_BREAKPOINT_W)
155		info->type |= HW_BRK_TYPE_WRITE;
156	if (info->type == HW_BRK_TYPE_TRANSLATE)
157		/* must set alteast read or write */
158		return ret;
159	if (!(bp->attr.exclude_user))
160		info->type |= HW_BRK_TYPE_USER;
161	if (!(bp->attr.exclude_kernel))
162		info->type |= HW_BRK_TYPE_KERNEL;
163	if (!(bp->attr.exclude_hv))
164		info->type |= HW_BRK_TYPE_HYP;
165	info->address = bp->attr.bp_addr;
166	info->len = bp->attr.bp_len;
167
168	/*
169	 * Since breakpoint length can be a maximum of HW_BREAKPOINT_LEN(8)
170	 * and breakpoint addresses are aligned to nearest double-word
171	 * HW_BREAKPOINT_ALIGN by rounding off to the lower address, the
172	 * 'symbolsize' should satisfy the check below.
173	 */
174	length_max = 8; /* DABR */
175	if (cpu_has_feature(CPU_FTR_DAWR)) {
176		length_max = 512 ; /* 64 doublewords */
177		/* DAWR region can't cross 512 boundary */
178		if ((bp->attr.bp_addr >> 10) != 
179		    ((bp->attr.bp_addr + bp->attr.bp_len - 1) >> 10))
180			return -EINVAL;
181	}
182	if (info->len >
183	    (length_max - (info->address & HW_BREAKPOINT_ALIGN)))
184		return -EINVAL;
185	return 0;
186}
187
188/*
189 * Restores the breakpoint on the debug registers.
190 * Invoke this function if it is known that the execution context is
191 * about to change to cause loss of MSR_SE settings.
192 */
193void thread_change_pc(struct task_struct *tsk, struct pt_regs *regs)
194{
195	struct arch_hw_breakpoint *info;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
196
197	if (likely(!tsk->thread.last_hit_ubp))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
198		return;
199
200	info = counter_arch_bp(tsk->thread.last_hit_ubp);
201	regs->msr &= ~MSR_SE;
202	__set_breakpoint(info);
203	tsk->thread.last_hit_ubp = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
204}
205
206/*
207 * Handle debug exception notifications.
 
208 */
209int __kprobes hw_breakpoint_handler(struct die_args *args)
 
 
 
 
 
 
 
210{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
211	int rc = NOTIFY_STOP;
212	struct perf_event *bp;
213	struct pt_regs *regs = args->regs;
214	int stepped = 1;
215	struct arch_hw_breakpoint *info;
216	unsigned int instr;
217	unsigned long dar = regs->dar;
 
 
 
 
 
218
219	/* Disable breakpoints during exception handling */
220	hw_breakpoint_disable();
221
222	/*
223	 * The counter may be concurrently released but that can only
224	 * occur from a call_rcu() path. We can then safely fetch
225	 * the breakpoint, use its callback, touch its counter
226	 * while we are in an rcu_read_lock() path.
227	 */
228	rcu_read_lock();
229
230	bp = __this_cpu_read(bp_per_reg);
231	if (!bp)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
232		goto out;
233	info = counter_arch_bp(bp);
234
235	/*
236	 * Return early after invoking user-callback function without restoring
237	 * DABR if the breakpoint is from ptrace which always operates in
238	 * one-shot mode. The ptrace-ed process will receive the SIGTRAP signal
239	 * generated in do_dabr().
240	 */
241	if (bp->overflow_handler == ptrace_triggered) {
242		perf_bp_event(bp, regs);
 
 
 
 
 
243		rc = NOTIFY_DONE;
244		goto out;
245	}
246
247	/*
248	 * Verify if dar lies within the address range occupied by the symbol
249	 * being watched to filter extraneous exceptions.  If it doesn't,
250	 * we still need to single-step the instruction, but we don't
251	 * generate an event.
252	 */
253	info->type &= ~HW_BRK_TYPE_EXTRANEOUS_IRQ;
254	if (!((bp->attr.bp_addr <= dar) &&
255	      (dar - bp->attr.bp_addr < bp->attr.bp_len)))
256		info->type |= HW_BRK_TYPE_EXTRANEOUS_IRQ;
257
258	/* Do not emulate user-space instructions, instead single-step them */
259	if (user_mode(regs)) {
260		current->thread.last_hit_ubp = bp;
261		regs->msr |= MSR_SE;
262		goto out;
263	}
264
265	stepped = 0;
266	instr = 0;
267	if (!__get_user_inatomic(instr, (unsigned int *) regs->nip))
268		stepped = emulate_step(regs, instr);
269
270	/*
271	 * emulate_step() could not execute it. We've failed in reliably
272	 * handling the hw-breakpoint. Unregister it and throw a warning
273	 * message to let the user know about it.
274	 */
275	if (!stepped) {
276		WARN(1, "Unable to handle hardware breakpoint. Breakpoint at "
277			"0x%lx will be disabled.", info->address);
278		perf_event_disable(bp);
279		goto out;
280	}
281	/*
282	 * As a policy, the callback is invoked in a 'trigger-after-execute'
283	 * fashion
284	 */
285	if (!(info->type & HW_BRK_TYPE_EXTRANEOUS_IRQ))
286		perf_bp_event(bp, regs);
 
 
 
 
 
 
 
 
 
 
 
287
288	__set_breakpoint(info);
289out:
290	rcu_read_unlock();
291	return rc;
292}
 
293
294/*
295 * Handle single-step exceptions following a DABR hit.
296 */
297static int __kprobes single_step_dabr_instruction(struct die_args *args)
298{
299	struct pt_regs *regs = args->regs;
300	struct perf_event *bp = NULL;
301	struct arch_hw_breakpoint *info;
 
 
302
303	bp = current->thread.last_hit_ubp;
304	/*
305	 * Check if we are single-stepping as a result of a
306	 * previous HW Breakpoint exception
307	 */
308	if (!bp)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
309		return NOTIFY_DONE;
310
311	info = counter_arch_bp(bp);
 
 
 
312
313	/*
314	 * We shall invoke the user-defined callback function in the single
315	 * stepping handler to confirm to 'trigger-after-execute' semantics
316	 */
317	if (!(info->type & HW_BRK_TYPE_EXTRANEOUS_IRQ))
318		perf_bp_event(bp, regs);
319
320	__set_breakpoint(info);
321	current->thread.last_hit_ubp = NULL;
322
323	/*
324	 * If the process was being single-stepped by ptrace, let the
325	 * other single-step actions occur (e.g. generate SIGTRAP).
326	 */
327	if (test_thread_flag(TIF_SINGLESTEP))
328		return NOTIFY_DONE;
329
330	return NOTIFY_STOP;
331}
 
332
333/*
334 * Handle debug exception notifications.
335 */
336int __kprobes hw_breakpoint_exceptions_notify(
337		struct notifier_block *unused, unsigned long val, void *data)
338{
339	int ret = NOTIFY_DONE;
340
341	switch (val) {
342	case DIE_DABR_MATCH:
343		ret = hw_breakpoint_handler(data);
344		break;
345	case DIE_SSTEP:
346		ret = single_step_dabr_instruction(data);
347		break;
348	}
349
350	return ret;
351}
 
352
353/*
354 * Release the user breakpoints used by ptrace
355 */
356void flush_ptrace_hw_breakpoint(struct task_struct *tsk)
357{
 
358	struct thread_struct *t = &tsk->thread;
359
360	unregister_hw_breakpoint(t->ptrace_bps[0]);
361	t->ptrace_bps[0] = NULL;
 
 
362}
363
364void hw_breakpoint_pmu_read(struct perf_event *bp)
365{
366	/* TODO */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
367}