Linux Audio

Check our new training course

Loading...
v5.9
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Processor cache information made available to userspace via sysfs;
  4 * intended to be compatible with x86 intel_cacheinfo implementation.
  5 *
  6 * Copyright 2008 IBM Corporation
  7 * Author: Nathan Lynch
 
 
 
 
  8 */
  9
 10#define pr_fmt(fmt) "cacheinfo: " fmt
 11
 12#include <linux/cpu.h>
 13#include <linux/cpumask.h>
 14#include <linux/kernel.h>
 15#include <linux/kobject.h>
 16#include <linux/list.h>
 17#include <linux/notifier.h>
 18#include <linux/of.h>
 19#include <linux/percpu.h>
 20#include <linux/slab.h>
 21#include <asm/prom.h>
 22#include <asm/cputhreads.h>
 23#include <asm/smp.h>
 24
 25#include "cacheinfo.h"
 26
 27/* per-cpu object for tracking:
 28 * - a "cache" kobject for the top-level directory
 29 * - a list of "index" objects representing the cpu's local cache hierarchy
 30 */
 31struct cache_dir {
 32	struct kobject *kobj; /* bare (not embedded) kobject for cache
 33			       * directory */
 34	struct cache_index_dir *index; /* list of index objects */
 35};
 36
 37/* "index" object: each cpu's cache directory has an index
 38 * subdirectory corresponding to a cache object associated with the
 39 * cpu.  This object's lifetime is managed via the embedded kobject.
 40 */
 41struct cache_index_dir {
 42	struct kobject kobj;
 43	struct cache_index_dir *next; /* next index in parent directory */
 44	struct cache *cache;
 45};
 46
 47/* Template for determining which OF properties to query for a given
 48 * cache type */
 49struct cache_type_info {
 50	const char *name;
 51	const char *size_prop;
 52
 53	/* Allow for both [di]-cache-line-size and
 54	 * [di]-cache-block-size properties.  According to the PowerPC
 55	 * Processor binding, -line-size should be provided if it
 56	 * differs from the cache block size (that which is operated
 57	 * on by cache instructions), so we look for -line-size first.
 58	 * See cache_get_line_size(). */
 59
 60	const char *line_size_props[2];
 61	const char *nr_sets_prop;
 62};
 63
 64/* These are used to index the cache_type_info array. */
 65#define CACHE_TYPE_UNIFIED     0 /* cache-size, cache-block-size, etc. */
 66#define CACHE_TYPE_UNIFIED_D   1 /* d-cache-size, d-cache-block-size, etc */
 67#define CACHE_TYPE_INSTRUCTION 2
 68#define CACHE_TYPE_DATA        3
 69
 70static const struct cache_type_info cache_type_info[] = {
 71	{
 72		/* Embedded systems that use cache-size, cache-block-size,
 73		 * etc. for the Unified (typically L2) cache. */
 74		.name            = "Unified",
 75		.size_prop       = "cache-size",
 76		.line_size_props = { "cache-line-size",
 77				     "cache-block-size", },
 78		.nr_sets_prop    = "cache-sets",
 79	},
 80	{
 81		/* PowerPC Processor binding says the [di]-cache-*
 82		 * must be equal on unified caches, so just use
 83		 * d-cache properties. */
 84		.name            = "Unified",
 85		.size_prop       = "d-cache-size",
 86		.line_size_props = { "d-cache-line-size",
 87				     "d-cache-block-size", },
 88		.nr_sets_prop    = "d-cache-sets",
 89	},
 90	{
 91		.name            = "Instruction",
 92		.size_prop       = "i-cache-size",
 93		.line_size_props = { "i-cache-line-size",
 94				     "i-cache-block-size", },
 95		.nr_sets_prop    = "i-cache-sets",
 96	},
 97	{
 98		.name            = "Data",
 99		.size_prop       = "d-cache-size",
100		.line_size_props = { "d-cache-line-size",
101				     "d-cache-block-size", },
102		.nr_sets_prop    = "d-cache-sets",
103	},
104};
105
106/* Cache object: each instance of this corresponds to a distinct cache
107 * in the system.  There are separate objects for Harvard caches: one
108 * each for instruction and data, and each refers to the same OF node.
109 * The refcount of the OF node is elevated for the lifetime of the
110 * cache object.  A cache object is released when its shared_cpu_map
111 * is cleared (see cache_cpu_clear).
112 *
113 * A cache object is on two lists: an unsorted global list
114 * (cache_list) of cache objects; and a singly-linked list
115 * representing the local cache hierarchy, which is ordered by level
116 * (e.g. L1d -> L1i -> L2 -> L3).
117 */
118struct cache {
119	struct device_node *ofnode;    /* OF node for this cache, may be cpu */
120	struct cpumask shared_cpu_map; /* online CPUs using this cache */
121	int type;                      /* split cache disambiguation */
122	int level;                     /* level not explicit in device tree */
123	struct list_head list;         /* global list of cache objects */
124	struct cache *next_local;      /* next cache of >= level */
125};
126
127static DEFINE_PER_CPU(struct cache_dir *, cache_dir_pcpu);
128
129/* traversal/modification of this list occurs only at cpu hotplug time;
130 * access is serialized by cpu hotplug locking
131 */
132static LIST_HEAD(cache_list);
133
134static struct cache_index_dir *kobj_to_cache_index_dir(struct kobject *k)
135{
136	return container_of(k, struct cache_index_dir, kobj);
137}
138
139static const char *cache_type_string(const struct cache *cache)
140{
141	return cache_type_info[cache->type].name;
142}
143
144static void cache_init(struct cache *cache, int type, int level,
145		       struct device_node *ofnode)
146{
147	cache->type = type;
148	cache->level = level;
149	cache->ofnode = of_node_get(ofnode);
150	INIT_LIST_HEAD(&cache->list);
151	list_add(&cache->list, &cache_list);
152}
153
154static struct cache *new_cache(int type, int level, struct device_node *ofnode)
155{
156	struct cache *cache;
157
158	cache = kzalloc(sizeof(*cache), GFP_KERNEL);
159	if (cache)
160		cache_init(cache, type, level, ofnode);
161
162	return cache;
163}
164
165static void release_cache_debugcheck(struct cache *cache)
166{
167	struct cache *iter;
168
169	list_for_each_entry(iter, &cache_list, list)
170		WARN_ONCE(iter->next_local == cache,
171			  "cache for %pOFP(%s) refers to cache for %pOFP(%s)\n",
172			  iter->ofnode,
173			  cache_type_string(iter),
174			  cache->ofnode,
175			  cache_type_string(cache));
176}
177
178static void release_cache(struct cache *cache)
179{
180	if (!cache)
181		return;
182
183	pr_debug("freeing L%d %s cache for %pOFP\n", cache->level,
184		 cache_type_string(cache), cache->ofnode);
185
186	release_cache_debugcheck(cache);
187	list_del(&cache->list);
188	of_node_put(cache->ofnode);
189	kfree(cache);
190}
191
192static void cache_cpu_set(struct cache *cache, int cpu)
193{
194	struct cache *next = cache;
195
196	while (next) {
197		WARN_ONCE(cpumask_test_cpu(cpu, &next->shared_cpu_map),
198			  "CPU %i already accounted in %pOFP(%s)\n",
199			  cpu, next->ofnode,
200			  cache_type_string(next));
201		cpumask_set_cpu(cpu, &next->shared_cpu_map);
202		next = next->next_local;
203	}
204}
205
206static int cache_size(const struct cache *cache, unsigned int *ret)
207{
208	const char *propname;
209	const __be32 *cache_size;
210
211	propname = cache_type_info[cache->type].size_prop;
212
213	cache_size = of_get_property(cache->ofnode, propname, NULL);
214	if (!cache_size)
215		return -ENODEV;
216
217	*ret = of_read_number(cache_size, 1);
218	return 0;
219}
220
221static int cache_size_kb(const struct cache *cache, unsigned int *ret)
222{
223	unsigned int size;
224
225	if (cache_size(cache, &size))
226		return -ENODEV;
227
228	*ret = size / 1024;
229	return 0;
230}
231
232/* not cache_line_size() because that's a macro in include/linux/cache.h */
233static int cache_get_line_size(const struct cache *cache, unsigned int *ret)
234{
235	const __be32 *line_size;
236	int i, lim;
237
238	lim = ARRAY_SIZE(cache_type_info[cache->type].line_size_props);
239
240	for (i = 0; i < lim; i++) {
241		const char *propname;
242
243		propname = cache_type_info[cache->type].line_size_props[i];
244		line_size = of_get_property(cache->ofnode, propname, NULL);
245		if (line_size)
246			break;
247	}
248
249	if (!line_size)
250		return -ENODEV;
251
252	*ret = of_read_number(line_size, 1);
253	return 0;
254}
255
256static int cache_nr_sets(const struct cache *cache, unsigned int *ret)
257{
258	const char *propname;
259	const __be32 *nr_sets;
260
261	propname = cache_type_info[cache->type].nr_sets_prop;
262
263	nr_sets = of_get_property(cache->ofnode, propname, NULL);
264	if (!nr_sets)
265		return -ENODEV;
266
267	*ret = of_read_number(nr_sets, 1);
268	return 0;
269}
270
271static int cache_associativity(const struct cache *cache, unsigned int *ret)
272{
273	unsigned int line_size;
274	unsigned int nr_sets;
275	unsigned int size;
276
277	if (cache_nr_sets(cache, &nr_sets))
278		goto err;
279
280	/* If the cache is fully associative, there is no need to
281	 * check the other properties.
282	 */
283	if (nr_sets == 1) {
284		*ret = 0;
285		return 0;
286	}
287
288	if (cache_get_line_size(cache, &line_size))
289		goto err;
290	if (cache_size(cache, &size))
291		goto err;
292
293	if (!(nr_sets > 0 && size > 0 && line_size > 0))
294		goto err;
295
296	*ret = (size / nr_sets) / line_size;
297	return 0;
298err:
299	return -ENODEV;
300}
301
302/* helper for dealing with split caches */
303static struct cache *cache_find_first_sibling(struct cache *cache)
304{
305	struct cache *iter;
306
307	if (cache->type == CACHE_TYPE_UNIFIED ||
308	    cache->type == CACHE_TYPE_UNIFIED_D)
309		return cache;
310
311	list_for_each_entry(iter, &cache_list, list)
312		if (iter->ofnode == cache->ofnode && iter->next_local == cache)
313			return iter;
314
315	return cache;
316}
317
318/* return the first cache on a local list matching node */
319static struct cache *cache_lookup_by_node(const struct device_node *node)
320{
321	struct cache *cache = NULL;
322	struct cache *iter;
323
324	list_for_each_entry(iter, &cache_list, list) {
325		if (iter->ofnode != node)
326			continue;
327		cache = cache_find_first_sibling(iter);
328		break;
329	}
330
331	return cache;
332}
333
334static bool cache_node_is_unified(const struct device_node *np)
335{
336	return of_get_property(np, "cache-unified", NULL);
337}
338
339/*
340 * Unified caches can have two different sets of tags.  Most embedded
341 * use cache-size, etc. for the unified cache size, but open firmware systems
342 * use d-cache-size, etc.   Check on initialization for which type we have, and
343 * return the appropriate structure type.  Assume it's embedded if it isn't
344 * open firmware.  If it's yet a 3rd type, then there will be missing entries
345 * in /sys/devices/system/cpu/cpu0/cache/index2/, and this code will need
346 * to be extended further.
347 */
348static int cache_is_unified_d(const struct device_node *np)
349{
350	return of_get_property(np,
351		cache_type_info[CACHE_TYPE_UNIFIED_D].size_prop, NULL) ?
352		CACHE_TYPE_UNIFIED_D : CACHE_TYPE_UNIFIED;
353}
354
 
 
355static struct cache *cache_do_one_devnode_unified(struct device_node *node, int level)
356{
357	pr_debug("creating L%d ucache for %pOFP\n", level, node);
358
359	return new_cache(cache_is_unified_d(node), level, node);
360}
361
362static struct cache *cache_do_one_devnode_split(struct device_node *node,
363						int level)
364{
365	struct cache *dcache, *icache;
366
367	pr_debug("creating L%d dcache and icache for %pOFP\n", level,
368		 node);
369
370	dcache = new_cache(CACHE_TYPE_DATA, level, node);
371	icache = new_cache(CACHE_TYPE_INSTRUCTION, level, node);
372
373	if (!dcache || !icache)
374		goto err;
375
376	dcache->next_local = icache;
377
378	return dcache;
379err:
380	release_cache(dcache);
381	release_cache(icache);
382	return NULL;
383}
384
385static struct cache *cache_do_one_devnode(struct device_node *node, int level)
386{
387	struct cache *cache;
388
389	if (cache_node_is_unified(node))
390		cache = cache_do_one_devnode_unified(node, level);
391	else
392		cache = cache_do_one_devnode_split(node, level);
393
394	return cache;
395}
396
397static struct cache *cache_lookup_or_instantiate(struct device_node *node,
398						 int level)
399{
400	struct cache *cache;
401
402	cache = cache_lookup_by_node(node);
403
404	WARN_ONCE(cache && cache->level != level,
405		  "cache level mismatch on lookup (got %d, expected %d)\n",
406		  cache->level, level);
407
408	if (!cache)
409		cache = cache_do_one_devnode(node, level);
410
411	return cache;
412}
413
414static void link_cache_lists(struct cache *smaller, struct cache *bigger)
415{
416	while (smaller->next_local) {
417		if (smaller->next_local == bigger)
418			return; /* already linked */
419		smaller = smaller->next_local;
420	}
421
422	smaller->next_local = bigger;
423
424	/*
425	 * The cache->next_local list sorts by level ascending:
426	 * L1d -> L1i -> L2 -> L3 ...
427	 */
428	WARN_ONCE((smaller->level == 1 && bigger->level > 2) ||
429		  (smaller->level > 1 && bigger->level != smaller->level + 1),
430		  "linking L%i cache %pOFP to L%i cache %pOFP; skipped a level?\n",
431		  smaller->level, smaller->ofnode, bigger->level, bigger->ofnode);
432}
433
434static void do_subsidiary_caches_debugcheck(struct cache *cache)
435{
436	WARN_ONCE(cache->level != 1,
437		  "instantiating cache chain from L%d %s cache for "
438		  "%pOFP instead of an L1\n", cache->level,
439		  cache_type_string(cache), cache->ofnode);
440	WARN_ONCE(!of_node_is_type(cache->ofnode, "cpu"),
441		  "instantiating cache chain from node %pOFP of type '%s' "
442		  "instead of a cpu node\n", cache->ofnode,
443		  of_node_get_device_type(cache->ofnode));
444}
445
446static void do_subsidiary_caches(struct cache *cache)
447{
448	struct device_node *subcache_node;
449	int level = cache->level;
450
451	do_subsidiary_caches_debugcheck(cache);
452
453	while ((subcache_node = of_find_next_cache_node(cache->ofnode))) {
454		struct cache *subcache;
455
456		level++;
457		subcache = cache_lookup_or_instantiate(subcache_node, level);
458		of_node_put(subcache_node);
459		if (!subcache)
460			break;
461
462		link_cache_lists(cache, subcache);
463		cache = subcache;
464	}
465}
466
467static struct cache *cache_chain_instantiate(unsigned int cpu_id)
468{
469	struct device_node *cpu_node;
470	struct cache *cpu_cache = NULL;
471
472	pr_debug("creating cache object(s) for CPU %i\n", cpu_id);
473
474	cpu_node = of_get_cpu_node(cpu_id, NULL);
475	WARN_ONCE(!cpu_node, "no OF node found for CPU %i\n", cpu_id);
476	if (!cpu_node)
477		goto out;
478
479	cpu_cache = cache_lookup_or_instantiate(cpu_node, 1);
480	if (!cpu_cache)
481		goto out;
482
483	do_subsidiary_caches(cpu_cache);
484
485	cache_cpu_set(cpu_cache, cpu_id);
486out:
487	of_node_put(cpu_node);
488
489	return cpu_cache;
490}
491
492static struct cache_dir *cacheinfo_create_cache_dir(unsigned int cpu_id)
493{
494	struct cache_dir *cache_dir;
495	struct device *dev;
496	struct kobject *kobj = NULL;
497
498	dev = get_cpu_device(cpu_id);
499	WARN_ONCE(!dev, "no dev for CPU %i\n", cpu_id);
500	if (!dev)
501		goto err;
502
503	kobj = kobject_create_and_add("cache", &dev->kobj);
504	if (!kobj)
505		goto err;
506
507	cache_dir = kzalloc(sizeof(*cache_dir), GFP_KERNEL);
508	if (!cache_dir)
509		goto err;
510
511	cache_dir->kobj = kobj;
512
513	WARN_ON_ONCE(per_cpu(cache_dir_pcpu, cpu_id) != NULL);
514
515	per_cpu(cache_dir_pcpu, cpu_id) = cache_dir;
516
517	return cache_dir;
518err:
519	kobject_put(kobj);
520	return NULL;
521}
522
523static void cache_index_release(struct kobject *kobj)
524{
525	struct cache_index_dir *index;
526
527	index = kobj_to_cache_index_dir(kobj);
528
529	pr_debug("freeing index directory for L%d %s cache\n",
530		 index->cache->level, cache_type_string(index->cache));
531
532	kfree(index);
533}
534
535static ssize_t cache_index_show(struct kobject *k, struct attribute *attr, char *buf)
536{
537	struct kobj_attribute *kobj_attr;
538
539	kobj_attr = container_of(attr, struct kobj_attribute, attr);
540
541	return kobj_attr->show(k, kobj_attr, buf);
542}
543
544static struct cache *index_kobj_to_cache(struct kobject *k)
545{
546	struct cache_index_dir *index;
547
548	index = kobj_to_cache_index_dir(k);
549
550	return index->cache;
551}
552
553static ssize_t size_show(struct kobject *k, struct kobj_attribute *attr, char *buf)
554{
555	unsigned int size_kb;
556	struct cache *cache;
557
558	cache = index_kobj_to_cache(k);
559
560	if (cache_size_kb(cache, &size_kb))
561		return -ENODEV;
562
563	return sprintf(buf, "%uK\n", size_kb);
564}
565
566static struct kobj_attribute cache_size_attr =
567	__ATTR(size, 0444, size_show, NULL);
568
569
570static ssize_t line_size_show(struct kobject *k, struct kobj_attribute *attr, char *buf)
571{
572	unsigned int line_size;
573	struct cache *cache;
574
575	cache = index_kobj_to_cache(k);
576
577	if (cache_get_line_size(cache, &line_size))
578		return -ENODEV;
579
580	return sprintf(buf, "%u\n", line_size);
581}
582
583static struct kobj_attribute cache_line_size_attr =
584	__ATTR(coherency_line_size, 0444, line_size_show, NULL);
585
586static ssize_t nr_sets_show(struct kobject *k, struct kobj_attribute *attr, char *buf)
587{
588	unsigned int nr_sets;
589	struct cache *cache;
590
591	cache = index_kobj_to_cache(k);
592
593	if (cache_nr_sets(cache, &nr_sets))
594		return -ENODEV;
595
596	return sprintf(buf, "%u\n", nr_sets);
597}
598
599static struct kobj_attribute cache_nr_sets_attr =
600	__ATTR(number_of_sets, 0444, nr_sets_show, NULL);
601
602static ssize_t associativity_show(struct kobject *k, struct kobj_attribute *attr, char *buf)
603{
604	unsigned int associativity;
605	struct cache *cache;
606
607	cache = index_kobj_to_cache(k);
608
609	if (cache_associativity(cache, &associativity))
610		return -ENODEV;
611
612	return sprintf(buf, "%u\n", associativity);
613}
614
615static struct kobj_attribute cache_assoc_attr =
616	__ATTR(ways_of_associativity, 0444, associativity_show, NULL);
617
618static ssize_t type_show(struct kobject *k, struct kobj_attribute *attr, char *buf)
619{
620	struct cache *cache;
621
622	cache = index_kobj_to_cache(k);
623
624	return sprintf(buf, "%s\n", cache_type_string(cache));
625}
626
627static struct kobj_attribute cache_type_attr =
628	__ATTR(type, 0444, type_show, NULL);
629
630static ssize_t level_show(struct kobject *k, struct kobj_attribute *attr, char *buf)
631{
632	struct cache_index_dir *index;
633	struct cache *cache;
634
635	index = kobj_to_cache_index_dir(k);
636	cache = index->cache;
637
638	return sprintf(buf, "%d\n", cache->level);
639}
640
641static struct kobj_attribute cache_level_attr =
642	__ATTR(level, 0444, level_show, NULL);
643
644static unsigned int index_dir_to_cpu(struct cache_index_dir *index)
645{
646	struct kobject *index_dir_kobj = &index->kobj;
647	struct kobject *cache_dir_kobj = index_dir_kobj->parent;
648	struct kobject *cpu_dev_kobj = cache_dir_kobj->parent;
649	struct device *dev = kobj_to_dev(cpu_dev_kobj);
650
651	return dev->id;
652}
653
654/*
655 * On big-core systems, each core has two groups of CPUs each of which
656 * has its own L1-cache. The thread-siblings which share l1-cache with
657 * @cpu can be obtained via cpu_smallcore_mask().
658 */
659static const struct cpumask *get_big_core_shared_cpu_map(int cpu, struct cache *cache)
660{
661	if (cache->level == 1)
662		return cpu_smallcore_mask(cpu);
663
664	return &cache->shared_cpu_map;
665}
666
667static ssize_t
668show_shared_cpumap(struct kobject *k, struct kobj_attribute *attr, char *buf, bool list)
669{
670	struct cache_index_dir *index;
671	struct cache *cache;
672	const struct cpumask *mask;
673	int cpu;
674
675	index = kobj_to_cache_index_dir(k);
676	cache = index->cache;
677
678	if (has_big_cores) {
679		cpu = index_dir_to_cpu(index);
680		mask = get_big_core_shared_cpu_map(cpu, cache);
681	} else {
682		mask  = &cache->shared_cpu_map;
683	}
684
685	return cpumap_print_to_pagebuf(list, buf, mask);
686}
687
688static ssize_t shared_cpu_map_show(struct kobject *k, struct kobj_attribute *attr, char *buf)
689{
690	return show_shared_cpumap(k, attr, buf, false);
691}
692
693static ssize_t shared_cpu_list_show(struct kobject *k, struct kobj_attribute *attr, char *buf)
694{
695	return show_shared_cpumap(k, attr, buf, true);
696}
697
698static struct kobj_attribute cache_shared_cpu_map_attr =
699	__ATTR(shared_cpu_map, 0444, shared_cpu_map_show, NULL);
700
701static struct kobj_attribute cache_shared_cpu_list_attr =
702	__ATTR(shared_cpu_list, 0444, shared_cpu_list_show, NULL);
703
704/* Attributes which should always be created -- the kobject/sysfs core
705 * does this automatically via kobj_type->default_attrs.  This is the
706 * minimum data required to uniquely identify a cache.
707 */
708static struct attribute *cache_index_default_attrs[] = {
709	&cache_type_attr.attr,
710	&cache_level_attr.attr,
711	&cache_shared_cpu_map_attr.attr,
712	&cache_shared_cpu_list_attr.attr,
713	NULL,
714};
715
716/* Attributes which should be created if the cache device node has the
717 * right properties -- see cacheinfo_create_index_opt_attrs
718 */
719static struct kobj_attribute *cache_index_opt_attrs[] = {
720	&cache_size_attr,
721	&cache_line_size_attr,
722	&cache_nr_sets_attr,
723	&cache_assoc_attr,
724};
725
726static const struct sysfs_ops cache_index_ops = {
727	.show = cache_index_show,
728};
729
730static struct kobj_type cache_index_type = {
731	.release = cache_index_release,
732	.sysfs_ops = &cache_index_ops,
733	.default_attrs = cache_index_default_attrs,
734};
735
736static void cacheinfo_create_index_opt_attrs(struct cache_index_dir *dir)
737{
 
738	const char *cache_type;
739	struct cache *cache;
740	char *buf;
741	int i;
742
743	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
744	if (!buf)
745		return;
746
747	cache = dir->cache;
 
748	cache_type = cache_type_string(cache);
749
750	/* We don't want to create an attribute that can't provide a
751	 * meaningful value.  Check the return value of each optional
752	 * attribute's ->show method before registering the
753	 * attribute.
754	 */
755	for (i = 0; i < ARRAY_SIZE(cache_index_opt_attrs); i++) {
756		struct kobj_attribute *attr;
757		ssize_t rc;
758
759		attr = cache_index_opt_attrs[i];
760
761		rc = attr->show(&dir->kobj, attr, buf);
762		if (rc <= 0) {
763			pr_debug("not creating %s attribute for "
764				 "%pOFP(%s) (rc = %zd)\n",
765				 attr->attr.name, cache->ofnode,
766				 cache_type, rc);
767			continue;
768		}
769		if (sysfs_create_file(&dir->kobj, &attr->attr))
770			pr_debug("could not create %s attribute for %pOFP(%s)\n",
771				 attr->attr.name, cache->ofnode, cache_type);
772	}
773
774	kfree(buf);
775}
776
777static void cacheinfo_create_index_dir(struct cache *cache, int index,
778				       struct cache_dir *cache_dir)
779{
780	struct cache_index_dir *index_dir;
781	int rc;
782
783	index_dir = kzalloc(sizeof(*index_dir), GFP_KERNEL);
784	if (!index_dir)
785		return;
786
787	index_dir->cache = cache;
788
789	rc = kobject_init_and_add(&index_dir->kobj, &cache_index_type,
790				  cache_dir->kobj, "index%d", index);
791	if (rc) {
792		kobject_put(&index_dir->kobj);
793		return;
794	}
795
796	index_dir->next = cache_dir->index;
797	cache_dir->index = index_dir;
798
799	cacheinfo_create_index_opt_attrs(index_dir);
 
 
 
 
800}
801
802static void cacheinfo_sysfs_populate(unsigned int cpu_id,
803				     struct cache *cache_list)
804{
805	struct cache_dir *cache_dir;
806	struct cache *cache;
807	int index = 0;
808
809	cache_dir = cacheinfo_create_cache_dir(cpu_id);
810	if (!cache_dir)
811		return;
812
813	cache = cache_list;
814	while (cache) {
815		cacheinfo_create_index_dir(cache, index, cache_dir);
816		index++;
817		cache = cache->next_local;
818	}
819}
820
821void cacheinfo_cpu_online(unsigned int cpu_id)
822{
823	struct cache *cache;
824
825	cache = cache_chain_instantiate(cpu_id);
826	if (!cache)
827		return;
828
829	cacheinfo_sysfs_populate(cpu_id, cache);
830}
831
832/* functions needed to remove cache entry for cpu offline or suspend/resume */
833
834#if (defined(CONFIG_PPC_PSERIES) && defined(CONFIG_SUSPEND)) || \
835    defined(CONFIG_HOTPLUG_CPU)
836
837static struct cache *cache_lookup_by_cpu(unsigned int cpu_id)
838{
839	struct device_node *cpu_node;
840	struct cache *cache;
841
842	cpu_node = of_get_cpu_node(cpu_id, NULL);
843	WARN_ONCE(!cpu_node, "no OF node found for CPU %i\n", cpu_id);
844	if (!cpu_node)
845		return NULL;
846
847	cache = cache_lookup_by_node(cpu_node);
848	of_node_put(cpu_node);
849
850	return cache;
851}
852
853static void remove_index_dirs(struct cache_dir *cache_dir)
854{
855	struct cache_index_dir *index;
856
857	index = cache_dir->index;
858
859	while (index) {
860		struct cache_index_dir *next;
861
862		next = index->next;
863		kobject_put(&index->kobj);
864		index = next;
865	}
866}
867
868static void remove_cache_dir(struct cache_dir *cache_dir)
869{
870	remove_index_dirs(cache_dir);
871
872	/* Remove cache dir from sysfs */
873	kobject_del(cache_dir->kobj);
874
875	kobject_put(cache_dir->kobj);
876
877	kfree(cache_dir);
878}
879
880static void cache_cpu_clear(struct cache *cache, int cpu)
881{
882	while (cache) {
883		struct cache *next = cache->next_local;
884
885		WARN_ONCE(!cpumask_test_cpu(cpu, &cache->shared_cpu_map),
886			  "CPU %i not accounted in %pOFP(%s)\n",
887			  cpu, cache->ofnode,
888			  cache_type_string(cache));
889
890		cpumask_clear_cpu(cpu, &cache->shared_cpu_map);
891
892		/* Release the cache object if all the cpus using it
893		 * are offline */
894		if (cpumask_empty(&cache->shared_cpu_map))
895			release_cache(cache);
896
897		cache = next;
898	}
899}
900
901void cacheinfo_cpu_offline(unsigned int cpu_id)
902{
903	struct cache_dir *cache_dir;
904	struct cache *cache;
905
906	/* Prevent userspace from seeing inconsistent state - remove
907	 * the sysfs hierarchy first */
908	cache_dir = per_cpu(cache_dir_pcpu, cpu_id);
909
910	/* careful, sysfs population may have failed */
911	if (cache_dir)
912		remove_cache_dir(cache_dir);
913
914	per_cpu(cache_dir_pcpu, cpu_id) = NULL;
915
916	/* clear the CPU's bit in its cache chain, possibly freeing
917	 * cache objects */
918	cache = cache_lookup_by_cpu(cpu_id);
919	if (cache)
920		cache_cpu_clear(cache, cpu_id);
921}
922
923void cacheinfo_teardown(void)
924{
925	unsigned int cpu;
926
927	lockdep_assert_cpus_held();
928
929	for_each_online_cpu(cpu)
930		cacheinfo_cpu_offline(cpu);
931}
932
933void cacheinfo_rebuild(void)
934{
935	unsigned int cpu;
936
937	lockdep_assert_cpus_held();
938
939	for_each_online_cpu(cpu)
940		cacheinfo_cpu_online(cpu);
941}
942
943#endif /* (CONFIG_PPC_PSERIES && CONFIG_SUSPEND) || CONFIG_HOTPLUG_CPU */
v4.6
 
  1/*
  2 * Processor cache information made available to userspace via sysfs;
  3 * intended to be compatible with x86 intel_cacheinfo implementation.
  4 *
  5 * Copyright 2008 IBM Corporation
  6 * Author: Nathan Lynch
  7 *
  8 * This program is free software; you can redistribute it and/or
  9 * modify it under the terms of the GNU General Public License version
 10 * 2 as published by the Free Software Foundation.
 11 */
 12
 
 
 13#include <linux/cpu.h>
 14#include <linux/cpumask.h>
 15#include <linux/kernel.h>
 16#include <linux/kobject.h>
 17#include <linux/list.h>
 18#include <linux/notifier.h>
 19#include <linux/of.h>
 20#include <linux/percpu.h>
 21#include <linux/slab.h>
 22#include <asm/prom.h>
 
 
 23
 24#include "cacheinfo.h"
 25
 26/* per-cpu object for tracking:
 27 * - a "cache" kobject for the top-level directory
 28 * - a list of "index" objects representing the cpu's local cache hierarchy
 29 */
 30struct cache_dir {
 31	struct kobject *kobj; /* bare (not embedded) kobject for cache
 32			       * directory */
 33	struct cache_index_dir *index; /* list of index objects */
 34};
 35
 36/* "index" object: each cpu's cache directory has an index
 37 * subdirectory corresponding to a cache object associated with the
 38 * cpu.  This object's lifetime is managed via the embedded kobject.
 39 */
 40struct cache_index_dir {
 41	struct kobject kobj;
 42	struct cache_index_dir *next; /* next index in parent directory */
 43	struct cache *cache;
 44};
 45
 46/* Template for determining which OF properties to query for a given
 47 * cache type */
 48struct cache_type_info {
 49	const char *name;
 50	const char *size_prop;
 51
 52	/* Allow for both [di]-cache-line-size and
 53	 * [di]-cache-block-size properties.  According to the PowerPC
 54	 * Processor binding, -line-size should be provided if it
 55	 * differs from the cache block size (that which is operated
 56	 * on by cache instructions), so we look for -line-size first.
 57	 * See cache_get_line_size(). */
 58
 59	const char *line_size_props[2];
 60	const char *nr_sets_prop;
 61};
 62
 63/* These are used to index the cache_type_info array. */
 64#define CACHE_TYPE_UNIFIED     0 /* cache-size, cache-block-size, etc. */
 65#define CACHE_TYPE_UNIFIED_D   1 /* d-cache-size, d-cache-block-size, etc */
 66#define CACHE_TYPE_INSTRUCTION 2
 67#define CACHE_TYPE_DATA        3
 68
 69static const struct cache_type_info cache_type_info[] = {
 70	{
 71		/* Embedded systems that use cache-size, cache-block-size,
 72		 * etc. for the Unified (typically L2) cache. */
 73		.name            = "Unified",
 74		.size_prop       = "cache-size",
 75		.line_size_props = { "cache-line-size",
 76				     "cache-block-size", },
 77		.nr_sets_prop    = "cache-sets",
 78	},
 79	{
 80		/* PowerPC Processor binding says the [di]-cache-*
 81		 * must be equal on unified caches, so just use
 82		 * d-cache properties. */
 83		.name            = "Unified",
 84		.size_prop       = "d-cache-size",
 85		.line_size_props = { "d-cache-line-size",
 86				     "d-cache-block-size", },
 87		.nr_sets_prop    = "d-cache-sets",
 88	},
 89	{
 90		.name            = "Instruction",
 91		.size_prop       = "i-cache-size",
 92		.line_size_props = { "i-cache-line-size",
 93				     "i-cache-block-size", },
 94		.nr_sets_prop    = "i-cache-sets",
 95	},
 96	{
 97		.name            = "Data",
 98		.size_prop       = "d-cache-size",
 99		.line_size_props = { "d-cache-line-size",
100				     "d-cache-block-size", },
101		.nr_sets_prop    = "d-cache-sets",
102	},
103};
104
105/* Cache object: each instance of this corresponds to a distinct cache
106 * in the system.  There are separate objects for Harvard caches: one
107 * each for instruction and data, and each refers to the same OF node.
108 * The refcount of the OF node is elevated for the lifetime of the
109 * cache object.  A cache object is released when its shared_cpu_map
110 * is cleared (see cache_cpu_clear).
111 *
112 * A cache object is on two lists: an unsorted global list
113 * (cache_list) of cache objects; and a singly-linked list
114 * representing the local cache hierarchy, which is ordered by level
115 * (e.g. L1d -> L1i -> L2 -> L3).
116 */
117struct cache {
118	struct device_node *ofnode;    /* OF node for this cache, may be cpu */
119	struct cpumask shared_cpu_map; /* online CPUs using this cache */
120	int type;                      /* split cache disambiguation */
121	int level;                     /* level not explicit in device tree */
122	struct list_head list;         /* global list of cache objects */
123	struct cache *next_local;      /* next cache of >= level */
124};
125
126static DEFINE_PER_CPU(struct cache_dir *, cache_dir_pcpu);
127
128/* traversal/modification of this list occurs only at cpu hotplug time;
129 * access is serialized by cpu hotplug locking
130 */
131static LIST_HEAD(cache_list);
132
133static struct cache_index_dir *kobj_to_cache_index_dir(struct kobject *k)
134{
135	return container_of(k, struct cache_index_dir, kobj);
136}
137
138static const char *cache_type_string(const struct cache *cache)
139{
140	return cache_type_info[cache->type].name;
141}
142
143static void cache_init(struct cache *cache, int type, int level,
144		       struct device_node *ofnode)
145{
146	cache->type = type;
147	cache->level = level;
148	cache->ofnode = of_node_get(ofnode);
149	INIT_LIST_HEAD(&cache->list);
150	list_add(&cache->list, &cache_list);
151}
152
153static struct cache *new_cache(int type, int level, struct device_node *ofnode)
154{
155	struct cache *cache;
156
157	cache = kzalloc(sizeof(*cache), GFP_KERNEL);
158	if (cache)
159		cache_init(cache, type, level, ofnode);
160
161	return cache;
162}
163
164static void release_cache_debugcheck(struct cache *cache)
165{
166	struct cache *iter;
167
168	list_for_each_entry(iter, &cache_list, list)
169		WARN_ONCE(iter->next_local == cache,
170			  "cache for %s(%s) refers to cache for %s(%s)\n",
171			  iter->ofnode->full_name,
172			  cache_type_string(iter),
173			  cache->ofnode->full_name,
174			  cache_type_string(cache));
175}
176
177static void release_cache(struct cache *cache)
178{
179	if (!cache)
180		return;
181
182	pr_debug("freeing L%d %s cache for %s\n", cache->level,
183		 cache_type_string(cache), cache->ofnode->full_name);
184
185	release_cache_debugcheck(cache);
186	list_del(&cache->list);
187	of_node_put(cache->ofnode);
188	kfree(cache);
189}
190
191static void cache_cpu_set(struct cache *cache, int cpu)
192{
193	struct cache *next = cache;
194
195	while (next) {
196		WARN_ONCE(cpumask_test_cpu(cpu, &next->shared_cpu_map),
197			  "CPU %i already accounted in %s(%s)\n",
198			  cpu, next->ofnode->full_name,
199			  cache_type_string(next));
200		cpumask_set_cpu(cpu, &next->shared_cpu_map);
201		next = next->next_local;
202	}
203}
204
205static int cache_size(const struct cache *cache, unsigned int *ret)
206{
207	const char *propname;
208	const __be32 *cache_size;
209
210	propname = cache_type_info[cache->type].size_prop;
211
212	cache_size = of_get_property(cache->ofnode, propname, NULL);
213	if (!cache_size)
214		return -ENODEV;
215
216	*ret = of_read_number(cache_size, 1);
217	return 0;
218}
219
220static int cache_size_kb(const struct cache *cache, unsigned int *ret)
221{
222	unsigned int size;
223
224	if (cache_size(cache, &size))
225		return -ENODEV;
226
227	*ret = size / 1024;
228	return 0;
229}
230
231/* not cache_line_size() because that's a macro in include/linux/cache.h */
232static int cache_get_line_size(const struct cache *cache, unsigned int *ret)
233{
234	const __be32 *line_size;
235	int i, lim;
236
237	lim = ARRAY_SIZE(cache_type_info[cache->type].line_size_props);
238
239	for (i = 0; i < lim; i++) {
240		const char *propname;
241
242		propname = cache_type_info[cache->type].line_size_props[i];
243		line_size = of_get_property(cache->ofnode, propname, NULL);
244		if (line_size)
245			break;
246	}
247
248	if (!line_size)
249		return -ENODEV;
250
251	*ret = of_read_number(line_size, 1);
252	return 0;
253}
254
255static int cache_nr_sets(const struct cache *cache, unsigned int *ret)
256{
257	const char *propname;
258	const __be32 *nr_sets;
259
260	propname = cache_type_info[cache->type].nr_sets_prop;
261
262	nr_sets = of_get_property(cache->ofnode, propname, NULL);
263	if (!nr_sets)
264		return -ENODEV;
265
266	*ret = of_read_number(nr_sets, 1);
267	return 0;
268}
269
270static int cache_associativity(const struct cache *cache, unsigned int *ret)
271{
272	unsigned int line_size;
273	unsigned int nr_sets;
274	unsigned int size;
275
276	if (cache_nr_sets(cache, &nr_sets))
277		goto err;
278
279	/* If the cache is fully associative, there is no need to
280	 * check the other properties.
281	 */
282	if (nr_sets == 1) {
283		*ret = 0;
284		return 0;
285	}
286
287	if (cache_get_line_size(cache, &line_size))
288		goto err;
289	if (cache_size(cache, &size))
290		goto err;
291
292	if (!(nr_sets > 0 && size > 0 && line_size > 0))
293		goto err;
294
295	*ret = (size / nr_sets) / line_size;
296	return 0;
297err:
298	return -ENODEV;
299}
300
301/* helper for dealing with split caches */
302static struct cache *cache_find_first_sibling(struct cache *cache)
303{
304	struct cache *iter;
305
306	if (cache->type == CACHE_TYPE_UNIFIED ||
307	    cache->type == CACHE_TYPE_UNIFIED_D)
308		return cache;
309
310	list_for_each_entry(iter, &cache_list, list)
311		if (iter->ofnode == cache->ofnode && iter->next_local == cache)
312			return iter;
313
314	return cache;
315}
316
317/* return the first cache on a local list matching node */
318static struct cache *cache_lookup_by_node(const struct device_node *node)
319{
320	struct cache *cache = NULL;
321	struct cache *iter;
322
323	list_for_each_entry(iter, &cache_list, list) {
324		if (iter->ofnode != node)
325			continue;
326		cache = cache_find_first_sibling(iter);
327		break;
328	}
329
330	return cache;
331}
332
333static bool cache_node_is_unified(const struct device_node *np)
334{
335	return of_get_property(np, "cache-unified", NULL);
336}
337
338/*
339 * Unified caches can have two different sets of tags.  Most embedded
340 * use cache-size, etc. for the unified cache size, but open firmware systems
341 * use d-cache-size, etc.   Check on initialization for which type we have, and
342 * return the appropriate structure type.  Assume it's embedded if it isn't
343 * open firmware.  If it's yet a 3rd type, then there will be missing entries
344 * in /sys/devices/system/cpu/cpu0/cache/index2/, and this code will need
345 * to be extended further.
346 */
347static int cache_is_unified_d(const struct device_node *np)
348{
349	return of_get_property(np,
350		cache_type_info[CACHE_TYPE_UNIFIED_D].size_prop, NULL) ?
351		CACHE_TYPE_UNIFIED_D : CACHE_TYPE_UNIFIED;
352}
353
354/*
355 */
356static struct cache *cache_do_one_devnode_unified(struct device_node *node, int level)
357{
358	pr_debug("creating L%d ucache for %s\n", level, node->full_name);
359
360	return new_cache(cache_is_unified_d(node), level, node);
361}
362
363static struct cache *cache_do_one_devnode_split(struct device_node *node,
364						int level)
365{
366	struct cache *dcache, *icache;
367
368	pr_debug("creating L%d dcache and icache for %s\n", level,
369		 node->full_name);
370
371	dcache = new_cache(CACHE_TYPE_DATA, level, node);
372	icache = new_cache(CACHE_TYPE_INSTRUCTION, level, node);
373
374	if (!dcache || !icache)
375		goto err;
376
377	dcache->next_local = icache;
378
379	return dcache;
380err:
381	release_cache(dcache);
382	release_cache(icache);
383	return NULL;
384}
385
386static struct cache *cache_do_one_devnode(struct device_node *node, int level)
387{
388	struct cache *cache;
389
390	if (cache_node_is_unified(node))
391		cache = cache_do_one_devnode_unified(node, level);
392	else
393		cache = cache_do_one_devnode_split(node, level);
394
395	return cache;
396}
397
398static struct cache *cache_lookup_or_instantiate(struct device_node *node,
399						 int level)
400{
401	struct cache *cache;
402
403	cache = cache_lookup_by_node(node);
404
405	WARN_ONCE(cache && cache->level != level,
406		  "cache level mismatch on lookup (got %d, expected %d)\n",
407		  cache->level, level);
408
409	if (!cache)
410		cache = cache_do_one_devnode(node, level);
411
412	return cache;
413}
414
415static void link_cache_lists(struct cache *smaller, struct cache *bigger)
416{
417	while (smaller->next_local) {
418		if (smaller->next_local == bigger)
419			return; /* already linked */
420		smaller = smaller->next_local;
421	}
422
423	smaller->next_local = bigger;
 
 
 
 
 
 
 
 
 
424}
425
426static void do_subsidiary_caches_debugcheck(struct cache *cache)
427{
428	WARN_ON_ONCE(cache->level != 1);
429	WARN_ON_ONCE(strcmp(cache->ofnode->type, "cpu"));
 
 
 
 
 
 
430}
431
432static void do_subsidiary_caches(struct cache *cache)
433{
434	struct device_node *subcache_node;
435	int level = cache->level;
436
437	do_subsidiary_caches_debugcheck(cache);
438
439	while ((subcache_node = of_find_next_cache_node(cache->ofnode))) {
440		struct cache *subcache;
441
442		level++;
443		subcache = cache_lookup_or_instantiate(subcache_node, level);
444		of_node_put(subcache_node);
445		if (!subcache)
446			break;
447
448		link_cache_lists(cache, subcache);
449		cache = subcache;
450	}
451}
452
453static struct cache *cache_chain_instantiate(unsigned int cpu_id)
454{
455	struct device_node *cpu_node;
456	struct cache *cpu_cache = NULL;
457
458	pr_debug("creating cache object(s) for CPU %i\n", cpu_id);
459
460	cpu_node = of_get_cpu_node(cpu_id, NULL);
461	WARN_ONCE(!cpu_node, "no OF node found for CPU %i\n", cpu_id);
462	if (!cpu_node)
463		goto out;
464
465	cpu_cache = cache_lookup_or_instantiate(cpu_node, 1);
466	if (!cpu_cache)
467		goto out;
468
469	do_subsidiary_caches(cpu_cache);
470
471	cache_cpu_set(cpu_cache, cpu_id);
472out:
473	of_node_put(cpu_node);
474
475	return cpu_cache;
476}
477
478static struct cache_dir *cacheinfo_create_cache_dir(unsigned int cpu_id)
479{
480	struct cache_dir *cache_dir;
481	struct device *dev;
482	struct kobject *kobj = NULL;
483
484	dev = get_cpu_device(cpu_id);
485	WARN_ONCE(!dev, "no dev for CPU %i\n", cpu_id);
486	if (!dev)
487		goto err;
488
489	kobj = kobject_create_and_add("cache", &dev->kobj);
490	if (!kobj)
491		goto err;
492
493	cache_dir = kzalloc(sizeof(*cache_dir), GFP_KERNEL);
494	if (!cache_dir)
495		goto err;
496
497	cache_dir->kobj = kobj;
498
499	WARN_ON_ONCE(per_cpu(cache_dir_pcpu, cpu_id) != NULL);
500
501	per_cpu(cache_dir_pcpu, cpu_id) = cache_dir;
502
503	return cache_dir;
504err:
505	kobject_put(kobj);
506	return NULL;
507}
508
509static void cache_index_release(struct kobject *kobj)
510{
511	struct cache_index_dir *index;
512
513	index = kobj_to_cache_index_dir(kobj);
514
515	pr_debug("freeing index directory for L%d %s cache\n",
516		 index->cache->level, cache_type_string(index->cache));
517
518	kfree(index);
519}
520
521static ssize_t cache_index_show(struct kobject *k, struct attribute *attr, char *buf)
522{
523	struct kobj_attribute *kobj_attr;
524
525	kobj_attr = container_of(attr, struct kobj_attribute, attr);
526
527	return kobj_attr->show(k, kobj_attr, buf);
528}
529
530static struct cache *index_kobj_to_cache(struct kobject *k)
531{
532	struct cache_index_dir *index;
533
534	index = kobj_to_cache_index_dir(k);
535
536	return index->cache;
537}
538
539static ssize_t size_show(struct kobject *k, struct kobj_attribute *attr, char *buf)
540{
541	unsigned int size_kb;
542	struct cache *cache;
543
544	cache = index_kobj_to_cache(k);
545
546	if (cache_size_kb(cache, &size_kb))
547		return -ENODEV;
548
549	return sprintf(buf, "%uK\n", size_kb);
550}
551
552static struct kobj_attribute cache_size_attr =
553	__ATTR(size, 0444, size_show, NULL);
554
555
556static ssize_t line_size_show(struct kobject *k, struct kobj_attribute *attr, char *buf)
557{
558	unsigned int line_size;
559	struct cache *cache;
560
561	cache = index_kobj_to_cache(k);
562
563	if (cache_get_line_size(cache, &line_size))
564		return -ENODEV;
565
566	return sprintf(buf, "%u\n", line_size);
567}
568
569static struct kobj_attribute cache_line_size_attr =
570	__ATTR(coherency_line_size, 0444, line_size_show, NULL);
571
572static ssize_t nr_sets_show(struct kobject *k, struct kobj_attribute *attr, char *buf)
573{
574	unsigned int nr_sets;
575	struct cache *cache;
576
577	cache = index_kobj_to_cache(k);
578
579	if (cache_nr_sets(cache, &nr_sets))
580		return -ENODEV;
581
582	return sprintf(buf, "%u\n", nr_sets);
583}
584
585static struct kobj_attribute cache_nr_sets_attr =
586	__ATTR(number_of_sets, 0444, nr_sets_show, NULL);
587
588static ssize_t associativity_show(struct kobject *k, struct kobj_attribute *attr, char *buf)
589{
590	unsigned int associativity;
591	struct cache *cache;
592
593	cache = index_kobj_to_cache(k);
594
595	if (cache_associativity(cache, &associativity))
596		return -ENODEV;
597
598	return sprintf(buf, "%u\n", associativity);
599}
600
601static struct kobj_attribute cache_assoc_attr =
602	__ATTR(ways_of_associativity, 0444, associativity_show, NULL);
603
604static ssize_t type_show(struct kobject *k, struct kobj_attribute *attr, char *buf)
605{
606	struct cache *cache;
607
608	cache = index_kobj_to_cache(k);
609
610	return sprintf(buf, "%s\n", cache_type_string(cache));
611}
612
613static struct kobj_attribute cache_type_attr =
614	__ATTR(type, 0444, type_show, NULL);
615
616static ssize_t level_show(struct kobject *k, struct kobj_attribute *attr, char *buf)
617{
618	struct cache_index_dir *index;
619	struct cache *cache;
620
621	index = kobj_to_cache_index_dir(k);
622	cache = index->cache;
623
624	return sprintf(buf, "%d\n", cache->level);
625}
626
627static struct kobj_attribute cache_level_attr =
628	__ATTR(level, 0444, level_show, NULL);
629
630static ssize_t shared_cpu_map_show(struct kobject *k, struct kobj_attribute *attr, char *buf)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
631{
632	struct cache_index_dir *index;
633	struct cache *cache;
634	int ret;
 
635
636	index = kobj_to_cache_index_dir(k);
637	cache = index->cache;
638
639	ret = scnprintf(buf, PAGE_SIZE - 1, "%*pb\n",
640			cpumask_pr_args(&cache->shared_cpu_map));
641	buf[ret++] = '\n';
642	buf[ret] = '\0';
643	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
644}
645
646static struct kobj_attribute cache_shared_cpu_map_attr =
647	__ATTR(shared_cpu_map, 0444, shared_cpu_map_show, NULL);
648
 
 
 
649/* Attributes which should always be created -- the kobject/sysfs core
650 * does this automatically via kobj_type->default_attrs.  This is the
651 * minimum data required to uniquely identify a cache.
652 */
653static struct attribute *cache_index_default_attrs[] = {
654	&cache_type_attr.attr,
655	&cache_level_attr.attr,
656	&cache_shared_cpu_map_attr.attr,
 
657	NULL,
658};
659
660/* Attributes which should be created if the cache device node has the
661 * right properties -- see cacheinfo_create_index_opt_attrs
662 */
663static struct kobj_attribute *cache_index_opt_attrs[] = {
664	&cache_size_attr,
665	&cache_line_size_attr,
666	&cache_nr_sets_attr,
667	&cache_assoc_attr,
668};
669
670static const struct sysfs_ops cache_index_ops = {
671	.show = cache_index_show,
672};
673
674static struct kobj_type cache_index_type = {
675	.release = cache_index_release,
676	.sysfs_ops = &cache_index_ops,
677	.default_attrs = cache_index_default_attrs,
678};
679
680static void cacheinfo_create_index_opt_attrs(struct cache_index_dir *dir)
681{
682	const char *cache_name;
683	const char *cache_type;
684	struct cache *cache;
685	char *buf;
686	int i;
687
688	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
689	if (!buf)
690		return;
691
692	cache = dir->cache;
693	cache_name = cache->ofnode->full_name;
694	cache_type = cache_type_string(cache);
695
696	/* We don't want to create an attribute that can't provide a
697	 * meaningful value.  Check the return value of each optional
698	 * attribute's ->show method before registering the
699	 * attribute.
700	 */
701	for (i = 0; i < ARRAY_SIZE(cache_index_opt_attrs); i++) {
702		struct kobj_attribute *attr;
703		ssize_t rc;
704
705		attr = cache_index_opt_attrs[i];
706
707		rc = attr->show(&dir->kobj, attr, buf);
708		if (rc <= 0) {
709			pr_debug("not creating %s attribute for "
710				 "%s(%s) (rc = %zd)\n",
711				 attr->attr.name, cache_name,
712				 cache_type, rc);
713			continue;
714		}
715		if (sysfs_create_file(&dir->kobj, &attr->attr))
716			pr_debug("could not create %s attribute for %s(%s)\n",
717				 attr->attr.name, cache_name, cache_type);
718	}
719
720	kfree(buf);
721}
722
723static void cacheinfo_create_index_dir(struct cache *cache, int index,
724				       struct cache_dir *cache_dir)
725{
726	struct cache_index_dir *index_dir;
727	int rc;
728
729	index_dir = kzalloc(sizeof(*index_dir), GFP_KERNEL);
730	if (!index_dir)
731		goto err;
732
733	index_dir->cache = cache;
734
735	rc = kobject_init_and_add(&index_dir->kobj, &cache_index_type,
736				  cache_dir->kobj, "index%d", index);
737	if (rc)
738		goto err;
 
 
739
740	index_dir->next = cache_dir->index;
741	cache_dir->index = index_dir;
742
743	cacheinfo_create_index_opt_attrs(index_dir);
744
745	return;
746err:
747	kfree(index_dir);
748}
749
750static void cacheinfo_sysfs_populate(unsigned int cpu_id,
751				     struct cache *cache_list)
752{
753	struct cache_dir *cache_dir;
754	struct cache *cache;
755	int index = 0;
756
757	cache_dir = cacheinfo_create_cache_dir(cpu_id);
758	if (!cache_dir)
759		return;
760
761	cache = cache_list;
762	while (cache) {
763		cacheinfo_create_index_dir(cache, index, cache_dir);
764		index++;
765		cache = cache->next_local;
766	}
767}
768
769void cacheinfo_cpu_online(unsigned int cpu_id)
770{
771	struct cache *cache;
772
773	cache = cache_chain_instantiate(cpu_id);
774	if (!cache)
775		return;
776
777	cacheinfo_sysfs_populate(cpu_id, cache);
778}
779
780/* functions needed to remove cache entry for cpu offline or suspend/resume */
781
782#if (defined(CONFIG_PPC_PSERIES) && defined(CONFIG_SUSPEND)) || \
783    defined(CONFIG_HOTPLUG_CPU)
784
785static struct cache *cache_lookup_by_cpu(unsigned int cpu_id)
786{
787	struct device_node *cpu_node;
788	struct cache *cache;
789
790	cpu_node = of_get_cpu_node(cpu_id, NULL);
791	WARN_ONCE(!cpu_node, "no OF node found for CPU %i\n", cpu_id);
792	if (!cpu_node)
793		return NULL;
794
795	cache = cache_lookup_by_node(cpu_node);
796	of_node_put(cpu_node);
797
798	return cache;
799}
800
801static void remove_index_dirs(struct cache_dir *cache_dir)
802{
803	struct cache_index_dir *index;
804
805	index = cache_dir->index;
806
807	while (index) {
808		struct cache_index_dir *next;
809
810		next = index->next;
811		kobject_put(&index->kobj);
812		index = next;
813	}
814}
815
816static void remove_cache_dir(struct cache_dir *cache_dir)
817{
818	remove_index_dirs(cache_dir);
819
820	/* Remove cache dir from sysfs */
821	kobject_del(cache_dir->kobj);
822
823	kobject_put(cache_dir->kobj);
824
825	kfree(cache_dir);
826}
827
828static void cache_cpu_clear(struct cache *cache, int cpu)
829{
830	while (cache) {
831		struct cache *next = cache->next_local;
832
833		WARN_ONCE(!cpumask_test_cpu(cpu, &cache->shared_cpu_map),
834			  "CPU %i not accounted in %s(%s)\n",
835			  cpu, cache->ofnode->full_name,
836			  cache_type_string(cache));
837
838		cpumask_clear_cpu(cpu, &cache->shared_cpu_map);
839
840		/* Release the cache object if all the cpus using it
841		 * are offline */
842		if (cpumask_empty(&cache->shared_cpu_map))
843			release_cache(cache);
844
845		cache = next;
846	}
847}
848
849void cacheinfo_cpu_offline(unsigned int cpu_id)
850{
851	struct cache_dir *cache_dir;
852	struct cache *cache;
853
854	/* Prevent userspace from seeing inconsistent state - remove
855	 * the sysfs hierarchy first */
856	cache_dir = per_cpu(cache_dir_pcpu, cpu_id);
857
858	/* careful, sysfs population may have failed */
859	if (cache_dir)
860		remove_cache_dir(cache_dir);
861
862	per_cpu(cache_dir_pcpu, cpu_id) = NULL;
863
864	/* clear the CPU's bit in its cache chain, possibly freeing
865	 * cache objects */
866	cache = cache_lookup_by_cpu(cpu_id);
867	if (cache)
868		cache_cpu_clear(cache, cpu_id);
869}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
870#endif /* (CONFIG_PPC_PSERIES && CONFIG_SUSPEND) || CONFIG_HOTPLUG_CPU */