Linux Audio

Check our new training course

Loading...
v5.9
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/* align.c - handle alignment exceptions for the Power PC.
  3 *
  4 * Copyright (c) 1996 Paul Mackerras <paulus@cs.anu.edu.au>
  5 * Copyright (c) 1998-1999 TiVo, Inc.
  6 *   PowerPC 403GCX modifications.
  7 * Copyright (c) 1999 Grant Erickson <grant@lcse.umn.edu>
  8 *   PowerPC 403GCX/405GP modifications.
  9 * Copyright (c) 2001-2002 PPC64 team, IBM Corp
 10 *   64-bit and Power4 support
 11 * Copyright (c) 2005 Benjamin Herrenschmidt, IBM Corp
 12 *                    <benh@kernel.crashing.org>
 13 *   Merge ppc32 and ppc64 implementations
 
 
 
 
 
 14 */
 15
 16#include <linux/kernel.h>
 17#include <linux/mm.h>
 18#include <asm/processor.h>
 19#include <linux/uaccess.h>
 20#include <asm/cache.h>
 21#include <asm/cputable.h>
 22#include <asm/emulated_ops.h>
 23#include <asm/switch_to.h>
 24#include <asm/disassemble.h>
 25#include <asm/cpu_has_feature.h>
 26#include <asm/sstep.h>
 27#include <asm/inst.h>
 28
 29struct aligninfo {
 30	unsigned char len;
 31	unsigned char flags;
 32};
 33
 34
 35#define INVALID	{ 0, 0 }
 36
 37/* Bits in the flags field */
 38#define LD	0	/* load */
 39#define ST	1	/* store */
 40#define SE	2	/* sign-extend value, or FP ld/st as word */
 
 
 
 41#define SW	0x20	/* byte swap */
 
 
 
 42#define E4	0x40	/* SPE endianness is word */
 43#define E8	0x80	/* SPE endianness is double word */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 44
 45#ifdef CONFIG_SPE
 46
 47static struct aligninfo spe_aligninfo[32] = {
 48	{ 8, LD+E8 },		/* 0 00 00: evldd[x] */
 49	{ 8, LD+E4 },		/* 0 00 01: evldw[x] */
 50	{ 8, LD },		/* 0 00 10: evldh[x] */
 51	INVALID,		/* 0 00 11 */
 52	{ 2, LD },		/* 0 01 00: evlhhesplat[x] */
 53	INVALID,		/* 0 01 01 */
 54	{ 2, LD },		/* 0 01 10: evlhhousplat[x] */
 55	{ 2, LD+SE },		/* 0 01 11: evlhhossplat[x] */
 56	{ 4, LD },		/* 0 10 00: evlwhe[x] */
 57	INVALID,		/* 0 10 01 */
 58	{ 4, LD },		/* 0 10 10: evlwhou[x] */
 59	{ 4, LD+SE },		/* 0 10 11: evlwhos[x] */
 60	{ 4, LD+E4 },		/* 0 11 00: evlwwsplat[x] */
 61	INVALID,		/* 0 11 01 */
 62	{ 4, LD },		/* 0 11 10: evlwhsplat[x] */
 63	INVALID,		/* 0 11 11 */
 64
 65	{ 8, ST+E8 },		/* 1 00 00: evstdd[x] */
 66	{ 8, ST+E4 },		/* 1 00 01: evstdw[x] */
 67	{ 8, ST },		/* 1 00 10: evstdh[x] */
 68	INVALID,		/* 1 00 11 */
 69	INVALID,		/* 1 01 00 */
 70	INVALID,		/* 1 01 01 */
 71	INVALID,		/* 1 01 10 */
 72	INVALID,		/* 1 01 11 */
 73	{ 4, ST },		/* 1 10 00: evstwhe[x] */
 74	INVALID,		/* 1 10 01 */
 75	{ 4, ST },		/* 1 10 10: evstwho[x] */
 76	INVALID,		/* 1 10 11 */
 77	{ 4, ST+E4 },		/* 1 11 00: evstwwe[x] */
 78	INVALID,		/* 1 11 01 */
 79	{ 4, ST+E4 },		/* 1 11 10: evstwwo[x] */
 80	INVALID,		/* 1 11 11 */
 81};
 82
 83#define	EVLDD		0x00
 84#define	EVLDW		0x01
 85#define	EVLDH		0x02
 86#define	EVLHHESPLAT	0x04
 87#define	EVLHHOUSPLAT	0x06
 88#define	EVLHHOSSPLAT	0x07
 89#define	EVLWHE		0x08
 90#define	EVLWHOU		0x0A
 91#define	EVLWHOS		0x0B
 92#define	EVLWWSPLAT	0x0C
 93#define	EVLWHSPLAT	0x0E
 94#define	EVSTDD		0x10
 95#define	EVSTDW		0x11
 96#define	EVSTDH		0x12
 97#define	EVSTWHE		0x18
 98#define	EVSTWHO		0x1A
 99#define	EVSTWWE		0x1C
100#define	EVSTWWO		0x1E
101
102/*
103 * Emulate SPE loads and stores.
104 * Only Book-E has these instructions, and it does true little-endian,
105 * so we don't need the address swizzling.
106 */
107static int emulate_spe(struct pt_regs *regs, unsigned int reg,
108		       struct ppc_inst ppc_instr)
109{
110	int ret;
111	union {
112		u64 ll;
113		u32 w[2];
114		u16 h[4];
115		u8 v[8];
116	} data, temp;
117	unsigned char __user *p, *addr;
118	unsigned long *evr = &current->thread.evr[reg];
119	unsigned int nb, flags, instr;
120
121	instr = ppc_inst_val(ppc_instr);
122	instr = (instr >> 1) & 0x1f;
123
124	/* DAR has the operand effective address */
125	addr = (unsigned char __user *)regs->dar;
126
127	nb = spe_aligninfo[instr].len;
128	flags = spe_aligninfo[instr].flags;
129
130	/* Verify the address of the operand */
131	if (unlikely(user_mode(regs) &&
132		     !access_ok(addr, nb)))
 
133		return -EFAULT;
134
135	/* userland only */
136	if (unlikely(!user_mode(regs)))
137		return 0;
138
139	flush_spe_to_thread(current);
140
141	/* If we are loading, get the data from user space, else
142	 * get it from register values
143	 */
144	if (flags & ST) {
145		data.ll = 0;
146		switch (instr) {
147		case EVSTDD:
148		case EVSTDW:
149		case EVSTDH:
150			data.w[0] = *evr;
151			data.w[1] = regs->gpr[reg];
152			break;
153		case EVSTWHE:
154			data.h[2] = *evr >> 16;
155			data.h[3] = regs->gpr[reg] >> 16;
156			break;
157		case EVSTWHO:
158			data.h[2] = *evr & 0xffff;
159			data.h[3] = regs->gpr[reg] & 0xffff;
160			break;
161		case EVSTWWE:
162			data.w[1] = *evr;
163			break;
164		case EVSTWWO:
165			data.w[1] = regs->gpr[reg];
166			break;
167		default:
168			return -EINVAL;
169		}
170	} else {
171		temp.ll = data.ll = 0;
172		ret = 0;
173		p = addr;
174
175		switch (nb) {
176		case 8:
177			ret |= __get_user_inatomic(temp.v[0], p++);
178			ret |= __get_user_inatomic(temp.v[1], p++);
179			ret |= __get_user_inatomic(temp.v[2], p++);
180			ret |= __get_user_inatomic(temp.v[3], p++);
181			fallthrough;
182		case 4:
183			ret |= __get_user_inatomic(temp.v[4], p++);
184			ret |= __get_user_inatomic(temp.v[5], p++);
185			fallthrough;
186		case 2:
187			ret |= __get_user_inatomic(temp.v[6], p++);
188			ret |= __get_user_inatomic(temp.v[7], p++);
189			if (unlikely(ret))
190				return -EFAULT;
191		}
192
193		switch (instr) {
194		case EVLDD:
195		case EVLDW:
196		case EVLDH:
197			data.ll = temp.ll;
198			break;
199		case EVLHHESPLAT:
200			data.h[0] = temp.h[3];
201			data.h[2] = temp.h[3];
202			break;
203		case EVLHHOUSPLAT:
204		case EVLHHOSSPLAT:
205			data.h[1] = temp.h[3];
206			data.h[3] = temp.h[3];
207			break;
208		case EVLWHE:
209			data.h[0] = temp.h[2];
210			data.h[2] = temp.h[3];
211			break;
212		case EVLWHOU:
213		case EVLWHOS:
214			data.h[1] = temp.h[2];
215			data.h[3] = temp.h[3];
216			break;
217		case EVLWWSPLAT:
218			data.w[0] = temp.w[1];
219			data.w[1] = temp.w[1];
220			break;
221		case EVLWHSPLAT:
222			data.h[0] = temp.h[2];
223			data.h[1] = temp.h[2];
224			data.h[2] = temp.h[3];
225			data.h[3] = temp.h[3];
226			break;
227		default:
228			return -EINVAL;
229		}
230	}
231
232	if (flags & SW) {
233		switch (flags & 0xf0) {
234		case E8:
235			data.ll = swab64(data.ll);
236			break;
237		case E4:
238			data.w[0] = swab32(data.w[0]);
239			data.w[1] = swab32(data.w[1]);
240			break;
241		/* Its half word endian */
242		default:
243			data.h[0] = swab16(data.h[0]);
244			data.h[1] = swab16(data.h[1]);
245			data.h[2] = swab16(data.h[2]);
246			data.h[3] = swab16(data.h[3]);
247			break;
248		}
249	}
250
251	if (flags & SE) {
252		data.w[0] = (s16)data.h[1];
253		data.w[1] = (s16)data.h[3];
254	}
255
256	/* Store result to memory or update registers */
257	if (flags & ST) {
258		ret = 0;
259		p = addr;
260		switch (nb) {
261		case 8:
262			ret |= __put_user_inatomic(data.v[0], p++);
263			ret |= __put_user_inatomic(data.v[1], p++);
264			ret |= __put_user_inatomic(data.v[2], p++);
265			ret |= __put_user_inatomic(data.v[3], p++);
266			fallthrough;
267		case 4:
268			ret |= __put_user_inatomic(data.v[4], p++);
269			ret |= __put_user_inatomic(data.v[5], p++);
270			fallthrough;
271		case 2:
272			ret |= __put_user_inatomic(data.v[6], p++);
273			ret |= __put_user_inatomic(data.v[7], p++);
274		}
275		if (unlikely(ret))
276			return -EFAULT;
277	} else {
278		*evr = data.w[0];
279		regs->gpr[reg] = data.w[1];
280	}
281
282	return 1;
283}
284#endif /* CONFIG_SPE */
285
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
286/*
287 * Called on alignment exception. Attempts to fixup
288 *
289 * Return 1 on success
290 * Return 0 if unable to handle the interrupt
291 * Return -EFAULT if data address is bad
292 * Other negative return values indicate that the instruction can't
293 * be emulated, and the process should be given a SIGBUS.
294 */
295
296int fix_alignment(struct pt_regs *regs)
297{
298	struct ppc_inst instr;
299	struct instruction_op op;
300	int r, type;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
301
302	/*
303	 * We require a complete register set, if not, then our assembly
304	 * is broken
305	 */
306	CHECK_FULL_REGS(regs);
307
308	if (unlikely(__get_user_instr(instr, (void __user *)regs->nip)))
309		return -EFAULT;
310	if ((regs->msr & MSR_LE) != (MSR_KERNEL & MSR_LE)) {
311		/* We don't handle PPC little-endian any more... */
312		if (cpu_has_feature(CPU_FTR_PPC_LE))
313			return -EIO;
314		instr = ppc_inst_swab(instr);
 
 
 
 
 
 
 
 
 
 
315	}
316
 
 
 
 
317#ifdef CONFIG_SPE
318	if (ppc_inst_primary_opcode(instr) == 0x4) {
319		int reg = (ppc_inst_val(instr) >> 21) & 0x1f;
320		PPC_WARN_ALIGNMENT(spe, regs);
321		return emulate_spe(regs, reg, instr);
322	}
323#endif
324
 
 
325
326	/*
327	 * ISA 3.0 (such as P9) copy, copy_first, paste and paste_last alignment
328	 * check.
329	 *
330	 * Send a SIGBUS to the process that caused the fault.
331	 *
332	 * We do not emulate these because paste may contain additional metadata
333	 * when pasting to a co-processor. Furthermore, paste_last is the
334	 * synchronisation point for preceding copy/paste sequences.
335	 */
336	if ((ppc_inst_val(instr) & 0xfc0006fe) == (PPC_INST_COPY & 0xfc0006fe))
337		return -EIO;
 
338
339	r = analyse_instr(&op, regs, instr);
340	if (r < 0)
341		return -EINVAL;
342
343	type = GETTYPE(op.type);
344	if (!OP_IS_LOAD_STORE(type)) {
345		if (op.type != CACHEOP + DCBZ)
346			return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
347		PPC_WARN_ALIGNMENT(dcbz, regs);
348		r = emulate_dcbz(op.ea, regs);
349	} else {
350		if (type == LARX || type == STCX)
351			return -EIO;
352		PPC_WARN_ALIGNMENT(unaligned, regs);
353		r = emulate_loadstore(regs, &op);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
354	}
355
356	if (!r)
357		return 1;
358	return r;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
359}
v4.6
 
   1/* align.c - handle alignment exceptions for the Power PC.
   2 *
   3 * Copyright (c) 1996 Paul Mackerras <paulus@cs.anu.edu.au>
   4 * Copyright (c) 1998-1999 TiVo, Inc.
   5 *   PowerPC 403GCX modifications.
   6 * Copyright (c) 1999 Grant Erickson <grant@lcse.umn.edu>
   7 *   PowerPC 403GCX/405GP modifications.
   8 * Copyright (c) 2001-2002 PPC64 team, IBM Corp
   9 *   64-bit and Power4 support
  10 * Copyright (c) 2005 Benjamin Herrenschmidt, IBM Corp
  11 *                    <benh@kernel.crashing.org>
  12 *   Merge ppc32 and ppc64 implementations
  13 *
  14 * This program is free software; you can redistribute it and/or
  15 * modify it under the terms of the GNU General Public License
  16 * as published by the Free Software Foundation; either version
  17 * 2 of the License, or (at your option) any later version.
  18 */
  19
  20#include <linux/kernel.h>
  21#include <linux/mm.h>
  22#include <asm/processor.h>
  23#include <asm/uaccess.h>
  24#include <asm/cache.h>
  25#include <asm/cputable.h>
  26#include <asm/emulated_ops.h>
  27#include <asm/switch_to.h>
  28#include <asm/disassemble.h>
 
 
 
  29
  30struct aligninfo {
  31	unsigned char len;
  32	unsigned char flags;
  33};
  34
  35
  36#define INVALID	{ 0, 0 }
  37
  38/* Bits in the flags field */
  39#define LD	0	/* load */
  40#define ST	1	/* store */
  41#define SE	2	/* sign-extend value, or FP ld/st as word */
  42#define F	4	/* to/from fp regs */
  43#define U	8	/* update index register */
  44#define M	0x10	/* multiple load/store */
  45#define SW	0x20	/* byte swap */
  46#define S	0x40	/* single-precision fp or... */
  47#define SX	0x40	/* ... byte count in XER */
  48#define HARD	0x80	/* string, stwcx. */
  49#define E4	0x40	/* SPE endianness is word */
  50#define E8	0x80	/* SPE endianness is double word */
  51#define SPLT	0x80	/* VSX SPLAT load */
  52
  53/* DSISR bits reported for a DCBZ instruction: */
  54#define DCBZ	0x5f	/* 8xx/82xx dcbz faults when cache not enabled */
  55
  56/*
  57 * The PowerPC stores certain bits of the instruction that caused the
  58 * alignment exception in the DSISR register.  This array maps those
  59 * bits to information about the operand length and what the
  60 * instruction would do.
  61 */
  62static struct aligninfo aligninfo[128] = {
  63	{ 4, LD },		/* 00 0 0000: lwz / lwarx */
  64	INVALID,		/* 00 0 0001 */
  65	{ 4, ST },		/* 00 0 0010: stw */
  66	INVALID,		/* 00 0 0011 */
  67	{ 2, LD },		/* 00 0 0100: lhz */
  68	{ 2, LD+SE },		/* 00 0 0101: lha */
  69	{ 2, ST },		/* 00 0 0110: sth */
  70	{ 4, LD+M },		/* 00 0 0111: lmw */
  71	{ 4, LD+F+S },		/* 00 0 1000: lfs */
  72	{ 8, LD+F },		/* 00 0 1001: lfd */
  73	{ 4, ST+F+S },		/* 00 0 1010: stfs */
  74	{ 8, ST+F },		/* 00 0 1011: stfd */
  75	{ 16, LD },		/* 00 0 1100: lq */
  76	{ 8, LD },		/* 00 0 1101: ld/ldu/lwa */
  77	INVALID,		/* 00 0 1110 */
  78	{ 8, ST },		/* 00 0 1111: std/stdu */
  79	{ 4, LD+U },		/* 00 1 0000: lwzu */
  80	INVALID,		/* 00 1 0001 */
  81	{ 4, ST+U },		/* 00 1 0010: stwu */
  82	INVALID,		/* 00 1 0011 */
  83	{ 2, LD+U },		/* 00 1 0100: lhzu */
  84	{ 2, LD+SE+U },		/* 00 1 0101: lhau */
  85	{ 2, ST+U },		/* 00 1 0110: sthu */
  86	{ 4, ST+M },		/* 00 1 0111: stmw */
  87	{ 4, LD+F+S+U },	/* 00 1 1000: lfsu */
  88	{ 8, LD+F+U },		/* 00 1 1001: lfdu */
  89	{ 4, ST+F+S+U },	/* 00 1 1010: stfsu */
  90	{ 8, ST+F+U },		/* 00 1 1011: stfdu */
  91	{ 16, LD+F },		/* 00 1 1100: lfdp */
  92	INVALID,		/* 00 1 1101 */
  93	{ 16, ST+F },		/* 00 1 1110: stfdp */
  94	INVALID,		/* 00 1 1111 */
  95	{ 8, LD },		/* 01 0 0000: ldx */
  96	INVALID,		/* 01 0 0001 */
  97	{ 8, ST },		/* 01 0 0010: stdx */
  98	INVALID,		/* 01 0 0011 */
  99	INVALID,		/* 01 0 0100 */
 100	{ 4, LD+SE },		/* 01 0 0101: lwax */
 101	INVALID,		/* 01 0 0110 */
 102	INVALID,		/* 01 0 0111 */
 103	{ 4, LD+M+HARD+SX },	/* 01 0 1000: lswx */
 104	{ 4, LD+M+HARD },	/* 01 0 1001: lswi */
 105	{ 4, ST+M+HARD+SX },	/* 01 0 1010: stswx */
 106	{ 4, ST+M+HARD },	/* 01 0 1011: stswi */
 107	INVALID,		/* 01 0 1100 */
 108	{ 8, LD+U },		/* 01 0 1101: ldu */
 109	INVALID,		/* 01 0 1110 */
 110	{ 8, ST+U },		/* 01 0 1111: stdu */
 111	{ 8, LD+U },		/* 01 1 0000: ldux */
 112	INVALID,		/* 01 1 0001 */
 113	{ 8, ST+U },		/* 01 1 0010: stdux */
 114	INVALID,		/* 01 1 0011 */
 115	INVALID,		/* 01 1 0100 */
 116	{ 4, LD+SE+U },		/* 01 1 0101: lwaux */
 117	INVALID,		/* 01 1 0110 */
 118	INVALID,		/* 01 1 0111 */
 119	INVALID,		/* 01 1 1000 */
 120	INVALID,		/* 01 1 1001 */
 121	INVALID,		/* 01 1 1010 */
 122	INVALID,		/* 01 1 1011 */
 123	INVALID,		/* 01 1 1100 */
 124	INVALID,		/* 01 1 1101 */
 125	INVALID,		/* 01 1 1110 */
 126	INVALID,		/* 01 1 1111 */
 127	INVALID,		/* 10 0 0000 */
 128	INVALID,		/* 10 0 0001 */
 129	INVALID,		/* 10 0 0010: stwcx. */
 130	INVALID,		/* 10 0 0011 */
 131	INVALID,		/* 10 0 0100 */
 132	INVALID,		/* 10 0 0101 */
 133	INVALID,		/* 10 0 0110 */
 134	INVALID,		/* 10 0 0111 */
 135	{ 4, LD+SW },		/* 10 0 1000: lwbrx */
 136	INVALID,		/* 10 0 1001 */
 137	{ 4, ST+SW },		/* 10 0 1010: stwbrx */
 138	INVALID,		/* 10 0 1011 */
 139	{ 2, LD+SW },		/* 10 0 1100: lhbrx */
 140	{ 4, LD+SE },		/* 10 0 1101  lwa */
 141	{ 2, ST+SW },		/* 10 0 1110: sthbrx */
 142	{ 16, ST },		/* 10 0 1111: stq */
 143	INVALID,		/* 10 1 0000 */
 144	INVALID,		/* 10 1 0001 */
 145	INVALID,		/* 10 1 0010 */
 146	INVALID,		/* 10 1 0011 */
 147	INVALID,		/* 10 1 0100 */
 148	INVALID,		/* 10 1 0101 */
 149	INVALID,		/* 10 1 0110 */
 150	INVALID,		/* 10 1 0111 */
 151	INVALID,		/* 10 1 1000 */
 152	INVALID,		/* 10 1 1001 */
 153	INVALID,		/* 10 1 1010 */
 154	INVALID,		/* 10 1 1011 */
 155	INVALID,		/* 10 1 1100 */
 156	INVALID,		/* 10 1 1101 */
 157	INVALID,		/* 10 1 1110 */
 158	{ 0, ST+HARD },		/* 10 1 1111: dcbz */
 159	{ 4, LD },		/* 11 0 0000: lwzx */
 160	INVALID,		/* 11 0 0001 */
 161	{ 4, ST },		/* 11 0 0010: stwx */
 162	INVALID,		/* 11 0 0011 */
 163	{ 2, LD },		/* 11 0 0100: lhzx */
 164	{ 2, LD+SE },		/* 11 0 0101: lhax */
 165	{ 2, ST },		/* 11 0 0110: sthx */
 166	INVALID,		/* 11 0 0111 */
 167	{ 4, LD+F+S },		/* 11 0 1000: lfsx */
 168	{ 8, LD+F },		/* 11 0 1001: lfdx */
 169	{ 4, ST+F+S },		/* 11 0 1010: stfsx */
 170	{ 8, ST+F },		/* 11 0 1011: stfdx */
 171	{ 16, LD+F },		/* 11 0 1100: lfdpx */
 172	{ 4, LD+F+SE },		/* 11 0 1101: lfiwax */
 173	{ 16, ST+F },		/* 11 0 1110: stfdpx */
 174	{ 4, ST+F },		/* 11 0 1111: stfiwx */
 175	{ 4, LD+U },		/* 11 1 0000: lwzux */
 176	INVALID,		/* 11 1 0001 */
 177	{ 4, ST+U },		/* 11 1 0010: stwux */
 178	INVALID,		/* 11 1 0011 */
 179	{ 2, LD+U },		/* 11 1 0100: lhzux */
 180	{ 2, LD+SE+U },		/* 11 1 0101: lhaux */
 181	{ 2, ST+U },		/* 11 1 0110: sthux */
 182	INVALID,		/* 11 1 0111 */
 183	{ 4, LD+F+S+U },	/* 11 1 1000: lfsux */
 184	{ 8, LD+F+U },		/* 11 1 1001: lfdux */
 185	{ 4, ST+F+S+U },	/* 11 1 1010: stfsux */
 186	{ 8, ST+F+U },		/* 11 1 1011: stfdux */
 187	INVALID,		/* 11 1 1100 */
 188	{ 4, LD+F },		/* 11 1 1101: lfiwzx */
 189	INVALID,		/* 11 1 1110 */
 190	INVALID,		/* 11 1 1111 */
 191};
 192
 193/*
 194 * The dcbz (data cache block zero) instruction
 195 * gives an alignment fault if used on non-cacheable
 196 * memory.  We handle the fault mainly for the
 197 * case when we are running with the cache disabled
 198 * for debugging.
 199 */
 200static int emulate_dcbz(struct pt_regs *regs, unsigned char __user *addr)
 201{
 202	long __user *p;
 203	int i, size;
 204
 205#ifdef __powerpc64__
 206	size = ppc64_caches.dline_size;
 207#else
 208	size = L1_CACHE_BYTES;
 209#endif
 210	p = (long __user *) (regs->dar & -size);
 211	if (user_mode(regs) && !access_ok(VERIFY_WRITE, p, size))
 212		return -EFAULT;
 213	for (i = 0; i < size / sizeof(long); ++i)
 214		if (__put_user_inatomic(0, p+i))
 215			return -EFAULT;
 216	return 1;
 217}
 218
 219/*
 220 * Emulate load & store multiple instructions
 221 * On 64-bit machines, these instructions only affect/use the
 222 * bottom 4 bytes of each register, and the loads clear the
 223 * top 4 bytes of the affected register.
 224 */
 225#ifdef __BIG_ENDIAN__
 226#ifdef CONFIG_PPC64
 227#define REG_BYTE(rp, i)		*((u8 *)((rp) + ((i) >> 2)) + ((i) & 3) + 4)
 228#else
 229#define REG_BYTE(rp, i)		*((u8 *)(rp) + (i))
 230#endif
 231#endif
 232
 233#ifdef __LITTLE_ENDIAN__
 234#define REG_BYTE(rp, i)		(*(((u8 *)((rp) + ((i)>>2)) + ((i)&3))))
 235#endif
 236
 237#define SWIZ_PTR(p)		((unsigned char __user *)((p) ^ swiz))
 238
 239static int emulate_multiple(struct pt_regs *regs, unsigned char __user *addr,
 240			    unsigned int reg, unsigned int nb,
 241			    unsigned int flags, unsigned int instr,
 242			    unsigned long swiz)
 243{
 244	unsigned long *rptr;
 245	unsigned int nb0, i, bswiz;
 246	unsigned long p;
 247
 248	/*
 249	 * We do not try to emulate 8 bytes multiple as they aren't really
 250	 * available in our operating environments and we don't try to
 251	 * emulate multiples operations in kernel land as they should never
 252	 * be used/generated there at least not on unaligned boundaries
 253	 */
 254	if (unlikely((nb > 4) || !user_mode(regs)))
 255		return 0;
 256
 257	/* lmw, stmw, lswi/x, stswi/x */
 258	nb0 = 0;
 259	if (flags & HARD) {
 260		if (flags & SX) {
 261			nb = regs->xer & 127;
 262			if (nb == 0)
 263				return 1;
 264		} else {
 265			unsigned long pc = regs->nip ^ (swiz & 4);
 266
 267			if (__get_user_inatomic(instr,
 268						(unsigned int __user *)pc))
 269				return -EFAULT;
 270			if (swiz == 0 && (flags & SW))
 271				instr = cpu_to_le32(instr);
 272			nb = (instr >> 11) & 0x1f;
 273			if (nb == 0)
 274				nb = 32;
 275		}
 276		if (nb + reg * 4 > 128) {
 277			nb0 = nb + reg * 4 - 128;
 278			nb = 128 - reg * 4;
 279		}
 280#ifdef __LITTLE_ENDIAN__
 281		/*
 282		 *  String instructions are endian neutral but the code
 283		 *  below is not.  Force byte swapping on so that the
 284		 *  effects of swizzling are undone in the load/store
 285		 *  loops below.
 286		 */
 287		flags ^= SW;
 288#endif
 289	} else {
 290		/* lwm, stmw */
 291		nb = (32 - reg) * 4;
 292	}
 293
 294	if (!access_ok((flags & ST ? VERIFY_WRITE: VERIFY_READ), addr, nb+nb0))
 295		return -EFAULT;	/* bad address */
 296
 297	rptr = &regs->gpr[reg];
 298	p = (unsigned long) addr;
 299	bswiz = (flags & SW)? 3: 0;
 300
 301	if (!(flags & ST)) {
 302		/*
 303		 * This zeroes the top 4 bytes of the affected registers
 304		 * in 64-bit mode, and also zeroes out any remaining
 305		 * bytes of the last register for lsw*.
 306		 */
 307		memset(rptr, 0, ((nb + 3) / 4) * sizeof(unsigned long));
 308		if (nb0 > 0)
 309			memset(&regs->gpr[0], 0,
 310			       ((nb0 + 3) / 4) * sizeof(unsigned long));
 311
 312		for (i = 0; i < nb; ++i, ++p)
 313			if (__get_user_inatomic(REG_BYTE(rptr, i ^ bswiz),
 314						SWIZ_PTR(p)))
 315				return -EFAULT;
 316		if (nb0 > 0) {
 317			rptr = &regs->gpr[0];
 318			addr += nb;
 319			for (i = 0; i < nb0; ++i, ++p)
 320				if (__get_user_inatomic(REG_BYTE(rptr,
 321								 i ^ bswiz),
 322							SWIZ_PTR(p)))
 323					return -EFAULT;
 324		}
 325
 326	} else {
 327		for (i = 0; i < nb; ++i, ++p)
 328			if (__put_user_inatomic(REG_BYTE(rptr, i ^ bswiz),
 329						SWIZ_PTR(p)))
 330				return -EFAULT;
 331		if (nb0 > 0) {
 332			rptr = &regs->gpr[0];
 333			addr += nb;
 334			for (i = 0; i < nb0; ++i, ++p)
 335				if (__put_user_inatomic(REG_BYTE(rptr,
 336								 i ^ bswiz),
 337							SWIZ_PTR(p)))
 338					return -EFAULT;
 339		}
 340	}
 341	return 1;
 342}
 343
 344/*
 345 * Emulate floating-point pair loads and stores.
 346 * Only POWER6 has these instructions, and it does true little-endian,
 347 * so we don't need the address swizzling.
 348 */
 349static int emulate_fp_pair(unsigned char __user *addr, unsigned int reg,
 350			   unsigned int flags)
 351{
 352	char *ptr0 = (char *) &current->thread.TS_FPR(reg);
 353	char *ptr1 = (char *) &current->thread.TS_FPR(reg+1);
 354	int i, ret, sw = 0;
 355
 356	if (reg & 1)
 357		return 0;	/* invalid form: FRS/FRT must be even */
 358	if (flags & SW)
 359		sw = 7;
 360	ret = 0;
 361	for (i = 0; i < 8; ++i) {
 362		if (!(flags & ST)) {
 363			ret |= __get_user(ptr0[i^sw], addr + i);
 364			ret |= __get_user(ptr1[i^sw], addr + i + 8);
 365		} else {
 366			ret |= __put_user(ptr0[i^sw], addr + i);
 367			ret |= __put_user(ptr1[i^sw], addr + i + 8);
 368		}
 369	}
 370	if (ret)
 371		return -EFAULT;
 372	return 1;	/* exception handled and fixed up */
 373}
 374
 375#ifdef CONFIG_PPC64
 376static int emulate_lq_stq(struct pt_regs *regs, unsigned char __user *addr,
 377			  unsigned int reg, unsigned int flags)
 378{
 379	char *ptr0 = (char *)&regs->gpr[reg];
 380	char *ptr1 = (char *)&regs->gpr[reg+1];
 381	int i, ret, sw = 0;
 382
 383	if (reg & 1)
 384		return 0;	/* invalid form: GPR must be even */
 385	if (flags & SW)
 386		sw = 7;
 387	ret = 0;
 388	for (i = 0; i < 8; ++i) {
 389		if (!(flags & ST)) {
 390			ret |= __get_user(ptr0[i^sw], addr + i);
 391			ret |= __get_user(ptr1[i^sw], addr + i + 8);
 392		} else {
 393			ret |= __put_user(ptr0[i^sw], addr + i);
 394			ret |= __put_user(ptr1[i^sw], addr + i + 8);
 395		}
 396	}
 397	if (ret)
 398		return -EFAULT;
 399	return 1;	/* exception handled and fixed up */
 400}
 401#endif /* CONFIG_PPC64 */
 402
 403#ifdef CONFIG_SPE
 404
 405static struct aligninfo spe_aligninfo[32] = {
 406	{ 8, LD+E8 },		/* 0 00 00: evldd[x] */
 407	{ 8, LD+E4 },		/* 0 00 01: evldw[x] */
 408	{ 8, LD },		/* 0 00 10: evldh[x] */
 409	INVALID,		/* 0 00 11 */
 410	{ 2, LD },		/* 0 01 00: evlhhesplat[x] */
 411	INVALID,		/* 0 01 01 */
 412	{ 2, LD },		/* 0 01 10: evlhhousplat[x] */
 413	{ 2, LD+SE },		/* 0 01 11: evlhhossplat[x] */
 414	{ 4, LD },		/* 0 10 00: evlwhe[x] */
 415	INVALID,		/* 0 10 01 */
 416	{ 4, LD },		/* 0 10 10: evlwhou[x] */
 417	{ 4, LD+SE },		/* 0 10 11: evlwhos[x] */
 418	{ 4, LD+E4 },		/* 0 11 00: evlwwsplat[x] */
 419	INVALID,		/* 0 11 01 */
 420	{ 4, LD },		/* 0 11 10: evlwhsplat[x] */
 421	INVALID,		/* 0 11 11 */
 422
 423	{ 8, ST+E8 },		/* 1 00 00: evstdd[x] */
 424	{ 8, ST+E4 },		/* 1 00 01: evstdw[x] */
 425	{ 8, ST },		/* 1 00 10: evstdh[x] */
 426	INVALID,		/* 1 00 11 */
 427	INVALID,		/* 1 01 00 */
 428	INVALID,		/* 1 01 01 */
 429	INVALID,		/* 1 01 10 */
 430	INVALID,		/* 1 01 11 */
 431	{ 4, ST },		/* 1 10 00: evstwhe[x] */
 432	INVALID,		/* 1 10 01 */
 433	{ 4, ST },		/* 1 10 10: evstwho[x] */
 434	INVALID,		/* 1 10 11 */
 435	{ 4, ST+E4 },		/* 1 11 00: evstwwe[x] */
 436	INVALID,		/* 1 11 01 */
 437	{ 4, ST+E4 },		/* 1 11 10: evstwwo[x] */
 438	INVALID,		/* 1 11 11 */
 439};
 440
 441#define	EVLDD		0x00
 442#define	EVLDW		0x01
 443#define	EVLDH		0x02
 444#define	EVLHHESPLAT	0x04
 445#define	EVLHHOUSPLAT	0x06
 446#define	EVLHHOSSPLAT	0x07
 447#define	EVLWHE		0x08
 448#define	EVLWHOU		0x0A
 449#define	EVLWHOS		0x0B
 450#define	EVLWWSPLAT	0x0C
 451#define	EVLWHSPLAT	0x0E
 452#define	EVSTDD		0x10
 453#define	EVSTDW		0x11
 454#define	EVSTDH		0x12
 455#define	EVSTWHE		0x18
 456#define	EVSTWHO		0x1A
 457#define	EVSTWWE		0x1C
 458#define	EVSTWWO		0x1E
 459
 460/*
 461 * Emulate SPE loads and stores.
 462 * Only Book-E has these instructions, and it does true little-endian,
 463 * so we don't need the address swizzling.
 464 */
 465static int emulate_spe(struct pt_regs *regs, unsigned int reg,
 466		       unsigned int instr)
 467{
 468	int ret;
 469	union {
 470		u64 ll;
 471		u32 w[2];
 472		u16 h[4];
 473		u8 v[8];
 474	} data, temp;
 475	unsigned char __user *p, *addr;
 476	unsigned long *evr = &current->thread.evr[reg];
 477	unsigned int nb, flags;
 478
 
 479	instr = (instr >> 1) & 0x1f;
 480
 481	/* DAR has the operand effective address */
 482	addr = (unsigned char __user *)regs->dar;
 483
 484	nb = spe_aligninfo[instr].len;
 485	flags = spe_aligninfo[instr].flags;
 486
 487	/* Verify the address of the operand */
 488	if (unlikely(user_mode(regs) &&
 489		     !access_ok((flags & ST ? VERIFY_WRITE : VERIFY_READ),
 490				addr, nb)))
 491		return -EFAULT;
 492
 493	/* userland only */
 494	if (unlikely(!user_mode(regs)))
 495		return 0;
 496
 497	flush_spe_to_thread(current);
 498
 499	/* If we are loading, get the data from user space, else
 500	 * get it from register values
 501	 */
 502	if (flags & ST) {
 503		data.ll = 0;
 504		switch (instr) {
 505		case EVSTDD:
 506		case EVSTDW:
 507		case EVSTDH:
 508			data.w[0] = *evr;
 509			data.w[1] = regs->gpr[reg];
 510			break;
 511		case EVSTWHE:
 512			data.h[2] = *evr >> 16;
 513			data.h[3] = regs->gpr[reg] >> 16;
 514			break;
 515		case EVSTWHO:
 516			data.h[2] = *evr & 0xffff;
 517			data.h[3] = regs->gpr[reg] & 0xffff;
 518			break;
 519		case EVSTWWE:
 520			data.w[1] = *evr;
 521			break;
 522		case EVSTWWO:
 523			data.w[1] = regs->gpr[reg];
 524			break;
 525		default:
 526			return -EINVAL;
 527		}
 528	} else {
 529		temp.ll = data.ll = 0;
 530		ret = 0;
 531		p = addr;
 532
 533		switch (nb) {
 534		case 8:
 535			ret |= __get_user_inatomic(temp.v[0], p++);
 536			ret |= __get_user_inatomic(temp.v[1], p++);
 537			ret |= __get_user_inatomic(temp.v[2], p++);
 538			ret |= __get_user_inatomic(temp.v[3], p++);
 
 539		case 4:
 540			ret |= __get_user_inatomic(temp.v[4], p++);
 541			ret |= __get_user_inatomic(temp.v[5], p++);
 
 542		case 2:
 543			ret |= __get_user_inatomic(temp.v[6], p++);
 544			ret |= __get_user_inatomic(temp.v[7], p++);
 545			if (unlikely(ret))
 546				return -EFAULT;
 547		}
 548
 549		switch (instr) {
 550		case EVLDD:
 551		case EVLDW:
 552		case EVLDH:
 553			data.ll = temp.ll;
 554			break;
 555		case EVLHHESPLAT:
 556			data.h[0] = temp.h[3];
 557			data.h[2] = temp.h[3];
 558			break;
 559		case EVLHHOUSPLAT:
 560		case EVLHHOSSPLAT:
 561			data.h[1] = temp.h[3];
 562			data.h[3] = temp.h[3];
 563			break;
 564		case EVLWHE:
 565			data.h[0] = temp.h[2];
 566			data.h[2] = temp.h[3];
 567			break;
 568		case EVLWHOU:
 569		case EVLWHOS:
 570			data.h[1] = temp.h[2];
 571			data.h[3] = temp.h[3];
 572			break;
 573		case EVLWWSPLAT:
 574			data.w[0] = temp.w[1];
 575			data.w[1] = temp.w[1];
 576			break;
 577		case EVLWHSPLAT:
 578			data.h[0] = temp.h[2];
 579			data.h[1] = temp.h[2];
 580			data.h[2] = temp.h[3];
 581			data.h[3] = temp.h[3];
 582			break;
 583		default:
 584			return -EINVAL;
 585		}
 586	}
 587
 588	if (flags & SW) {
 589		switch (flags & 0xf0) {
 590		case E8:
 591			data.ll = swab64(data.ll);
 592			break;
 593		case E4:
 594			data.w[0] = swab32(data.w[0]);
 595			data.w[1] = swab32(data.w[1]);
 596			break;
 597		/* Its half word endian */
 598		default:
 599			data.h[0] = swab16(data.h[0]);
 600			data.h[1] = swab16(data.h[1]);
 601			data.h[2] = swab16(data.h[2]);
 602			data.h[3] = swab16(data.h[3]);
 603			break;
 604		}
 605	}
 606
 607	if (flags & SE) {
 608		data.w[0] = (s16)data.h[1];
 609		data.w[1] = (s16)data.h[3];
 610	}
 611
 612	/* Store result to memory or update registers */
 613	if (flags & ST) {
 614		ret = 0;
 615		p = addr;
 616		switch (nb) {
 617		case 8:
 618			ret |= __put_user_inatomic(data.v[0], p++);
 619			ret |= __put_user_inatomic(data.v[1], p++);
 620			ret |= __put_user_inatomic(data.v[2], p++);
 621			ret |= __put_user_inatomic(data.v[3], p++);
 
 622		case 4:
 623			ret |= __put_user_inatomic(data.v[4], p++);
 624			ret |= __put_user_inatomic(data.v[5], p++);
 
 625		case 2:
 626			ret |= __put_user_inatomic(data.v[6], p++);
 627			ret |= __put_user_inatomic(data.v[7], p++);
 628		}
 629		if (unlikely(ret))
 630			return -EFAULT;
 631	} else {
 632		*evr = data.w[0];
 633		regs->gpr[reg] = data.w[1];
 634	}
 635
 636	return 1;
 637}
 638#endif /* CONFIG_SPE */
 639
 640#ifdef CONFIG_VSX
 641/*
 642 * Emulate VSX instructions...
 643 */
 644static int emulate_vsx(unsigned char __user *addr, unsigned int reg,
 645		       unsigned int areg, struct pt_regs *regs,
 646		       unsigned int flags, unsigned int length,
 647		       unsigned int elsize)
 648{
 649	char *ptr;
 650	unsigned long *lptr;
 651	int ret = 0;
 652	int sw = 0;
 653	int i, j;
 654
 655	/* userland only */
 656	if (unlikely(!user_mode(regs)))
 657		return 0;
 658
 659	flush_vsx_to_thread(current);
 660
 661	if (reg < 32)
 662		ptr = (char *) &current->thread.fp_state.fpr[reg][0];
 663	else
 664		ptr = (char *) &current->thread.vr_state.vr[reg - 32];
 665
 666	lptr = (unsigned long *) ptr;
 667
 668#ifdef __LITTLE_ENDIAN__
 669	if (flags & SW) {
 670		elsize = length;
 671		sw = length-1;
 672	} else {
 673		/*
 674		 * The elements are BE ordered, even in LE mode, so process
 675		 * them in reverse order.
 676		 */
 677		addr += length - elsize;
 678
 679		/* 8 byte memory accesses go in the top 8 bytes of the VR */
 680		if (length == 8)
 681			ptr += 8;
 682	}
 683#else
 684	if (flags & SW)
 685		sw = elsize-1;
 686#endif
 687
 688	for (j = 0; j < length; j += elsize) {
 689		for (i = 0; i < elsize; ++i) {
 690			if (flags & ST)
 691				ret |= __put_user(ptr[i^sw], addr + i);
 692			else
 693				ret |= __get_user(ptr[i^sw], addr + i);
 694		}
 695		ptr  += elsize;
 696#ifdef __LITTLE_ENDIAN__
 697		addr -= elsize;
 698#else
 699		addr += elsize;
 700#endif
 701	}
 702
 703#ifdef __BIG_ENDIAN__
 704#define VSX_HI 0
 705#define VSX_LO 1
 706#else
 707#define VSX_HI 1
 708#define VSX_LO 0
 709#endif
 710
 711	if (!ret) {
 712		if (flags & U)
 713			regs->gpr[areg] = regs->dar;
 714
 715		/* Splat load copies the same data to top and bottom 8 bytes */
 716		if (flags & SPLT)
 717			lptr[VSX_LO] = lptr[VSX_HI];
 718		/* For 8 byte loads, zero the low 8 bytes */
 719		else if (!(flags & ST) && (8 == length))
 720			lptr[VSX_LO] = 0;
 721	} else
 722		return -EFAULT;
 723
 724	return 1;
 725}
 726#endif
 727
 728/*
 729 * Called on alignment exception. Attempts to fixup
 730 *
 731 * Return 1 on success
 732 * Return 0 if unable to handle the interrupt
 733 * Return -EFAULT if data address is bad
 
 
 734 */
 735
 736int fix_alignment(struct pt_regs *regs)
 737{
 738	unsigned int instr, nb, flags, instruction = 0;
 739	unsigned int reg, areg;
 740	unsigned int dsisr;
 741	unsigned char __user *addr;
 742	unsigned long p, swiz;
 743	int ret, i;
 744	union data {
 745		u64 ll;
 746		double dd;
 747		unsigned char v[8];
 748		struct {
 749#ifdef __LITTLE_ENDIAN__
 750			int	 low32;
 751			unsigned hi32;
 752#else
 753			unsigned hi32;
 754			int	 low32;
 755#endif
 756		} x32;
 757		struct {
 758#ifdef __LITTLE_ENDIAN__
 759			short	      low16;
 760			unsigned char hi48[6];
 761#else
 762			unsigned char hi48[6];
 763			short	      low16;
 764#endif
 765		} x16;
 766	} data;
 767
 768	/*
 769	 * We require a complete register set, if not, then our assembly
 770	 * is broken
 771	 */
 772	CHECK_FULL_REGS(regs);
 773
 774	dsisr = regs->dsisr;
 775
 776	/* Some processors don't provide us with a DSISR we can use here,
 777	 * let's make one up from the instruction
 778	 */
 779	if (cpu_has_feature(CPU_FTR_NODSISRALIGN)) {
 780		unsigned long pc = regs->nip;
 781
 782		if (cpu_has_feature(CPU_FTR_PPC_LE) && (regs->msr & MSR_LE))
 783			pc ^= 4;
 784		if (unlikely(__get_user_inatomic(instr,
 785						 (unsigned int __user *)pc)))
 786			return -EFAULT;
 787		if (cpu_has_feature(CPU_FTR_REAL_LE) && (regs->msr & MSR_LE))
 788			instr = cpu_to_le32(instr);
 789		dsisr = make_dsisr(instr);
 790		instruction = instr;
 791	}
 792
 793	/* extract the operation and registers from the dsisr */
 794	reg = (dsisr >> 5) & 0x1f;	/* source/dest register */
 795	areg = dsisr & 0x1f;		/* register to update */
 796
 797#ifdef CONFIG_SPE
 798	if ((instr >> 26) == 0x4) {
 
 799		PPC_WARN_ALIGNMENT(spe, regs);
 800		return emulate_spe(regs, reg, instr);
 801	}
 802#endif
 803
 804	instr = (dsisr >> 10) & 0x7f;
 805	instr |= (dsisr >> 13) & 0x60;
 806
 807	/* Lookup the operation in our table */
 808	nb = aligninfo[instr].len;
 809	flags = aligninfo[instr].flags;
 810
 811	/* ldbrx/stdbrx overlap lfs/stfs in the DSISR unfortunately */
 812	if (IS_XFORM(instruction) && ((instruction >> 1) & 0x3ff) == 532) {
 813		nb = 8;
 814		flags = LD+SW;
 815	} else if (IS_XFORM(instruction) &&
 816		   ((instruction >> 1) & 0x3ff) == 660) {
 817		nb = 8;
 818		flags = ST+SW;
 819	}
 820
 821	/* Byteswap little endian loads and stores */
 822	swiz = 0;
 823	if ((regs->msr & MSR_LE) != (MSR_KERNEL & MSR_LE)) {
 824		flags ^= SW;
 825#ifdef __BIG_ENDIAN__
 826		/*
 827		 * So-called "PowerPC little endian" mode works by
 828		 * swizzling addresses rather than by actually doing
 829		 * any byte-swapping.  To emulate this, we XOR each
 830		 * byte address with 7.  We also byte-swap, because
 831		 * the processor's address swizzling depends on the
 832		 * operand size (it xors the address with 7 for bytes,
 833		 * 6 for halfwords, 4 for words, 0 for doublewords) but
 834		 * we will xor with 7 and load/store each byte separately.
 835		 */
 836		if (cpu_has_feature(CPU_FTR_PPC_LE))
 837			swiz = 7;
 838#endif
 839	}
 840
 841	/* DAR has the operand effective address */
 842	addr = (unsigned char __user *)regs->dar;
 843
 844#ifdef CONFIG_VSX
 845	if ((instruction & 0xfc00003e) == 0x7c000018) {
 846		unsigned int elsize;
 847
 848		/* Additional register addressing bit (64 VSX vs 32 FPR/GPR) */
 849		reg |= (instruction & 0x1) << 5;
 850		/* Simple inline decoder instead of a table */
 851		/* VSX has only 8 and 16 byte memory accesses */
 852		nb = 8;
 853		if (instruction & 0x200)
 854			nb = 16;
 855
 856		/* Vector stores in little-endian mode swap individual
 857		   elements, so process them separately */
 858		elsize = 4;
 859		if (instruction & 0x80)
 860			elsize = 8;
 861
 862		flags = 0;
 863		if ((regs->msr & MSR_LE) != (MSR_KERNEL & MSR_LE))
 864			flags |= SW;
 865		if (instruction & 0x100)
 866			flags |= ST;
 867		if (instruction & 0x040)
 868			flags |= U;
 869		/* splat load needs a special decoder */
 870		if ((instruction & 0x400) == 0){
 871			flags |= SPLT;
 872			nb = 8;
 873		}
 874		PPC_WARN_ALIGNMENT(vsx, regs);
 875		return emulate_vsx(addr, reg, areg, regs, flags, nb, elsize);
 876	}
 877#endif
 878	/* A size of 0 indicates an instruction we don't support, with
 879	 * the exception of DCBZ which is handled as a special case here
 880	 */
 881	if (instr == DCBZ) {
 882		PPC_WARN_ALIGNMENT(dcbz, regs);
 883		return emulate_dcbz(regs, addr);
 884	}
 885	if (unlikely(nb == 0))
 886		return 0;
 887
 888	/* Load/Store Multiple instructions are handled in their own
 889	 * function
 890	 */
 891	if (flags & M) {
 892		PPC_WARN_ALIGNMENT(multiple, regs);
 893		return emulate_multiple(regs, addr, reg, nb,
 894					flags, instr, swiz);
 895	}
 896
 897	/* Verify the address of the operand */
 898	if (unlikely(user_mode(regs) &&
 899		     !access_ok((flags & ST ? VERIFY_WRITE : VERIFY_READ),
 900				addr, nb)))
 901		return -EFAULT;
 902
 903	/* Force the fprs into the save area so we can reference them */
 904	if (flags & F) {
 905		/* userland only */
 906		if (unlikely(!user_mode(regs)))
 907			return 0;
 908		flush_fp_to_thread(current);
 909	}
 910
 911	if (nb == 16) {
 912		if (flags & F) {
 913			/* Special case for 16-byte FP loads and stores */
 914			PPC_WARN_ALIGNMENT(fp_pair, regs);
 915			return emulate_fp_pair(addr, reg, flags);
 916		} else {
 917#ifdef CONFIG_PPC64
 918			/* Special case for 16-byte loads and stores */
 919			PPC_WARN_ALIGNMENT(lq_stq, regs);
 920			return emulate_lq_stq(regs, addr, reg, flags);
 921#else
 922			return 0;
 923#endif
 924		}
 925	}
 926
 927	PPC_WARN_ALIGNMENT(unaligned, regs);
 928
 929	/* If we are loading, get the data from user space, else
 930	 * get it from register values
 931	 */
 932	if (!(flags & ST)) {
 933		unsigned int start = 0;
 934
 935		switch (nb) {
 936		case 4:
 937			start = offsetof(union data, x32.low32);
 938			break;
 939		case 2:
 940			start = offsetof(union data, x16.low16);
 941			break;
 942		}
 943
 944		data.ll = 0;
 945		ret = 0;
 946		p = (unsigned long)addr;
 947
 948		for (i = 0; i < nb; i++)
 949			ret |= __get_user_inatomic(data.v[start + i],
 950						   SWIZ_PTR(p++));
 951
 952		if (unlikely(ret))
 953			return -EFAULT;
 954
 955	} else if (flags & F) {
 956		data.ll = current->thread.TS_FPR(reg);
 957		if (flags & S) {
 958			/* Single-precision FP store requires conversion... */
 959#ifdef CONFIG_PPC_FPU
 960			preempt_disable();
 961			enable_kernel_fp();
 962			cvt_df(&data.dd, (float *)&data.x32.low32);
 963			disable_kernel_fp();
 964			preempt_enable();
 965#else
 966			return 0;
 967#endif
 968		}
 969	} else
 970		data.ll = regs->gpr[reg];
 971
 972	if (flags & SW) {
 973		switch (nb) {
 974		case 8:
 975			data.ll = swab64(data.ll);
 976			break;
 977		case 4:
 978			data.x32.low32 = swab32(data.x32.low32);
 979			break;
 980		case 2:
 981			data.x16.low16 = swab16(data.x16.low16);
 982			break;
 983		}
 984	}
 985
 986	/* Perform other misc operations like sign extension
 987	 * or floating point single precision conversion
 988	 */
 989	switch (flags & ~(U|SW)) {
 990	case LD+SE:	/* sign extending integer loads */
 991	case LD+F+SE:	/* sign extend for lfiwax */
 992		if ( nb == 2 )
 993			data.ll = data.x16.low16;
 994		else	/* nb must be 4 */
 995			data.ll = data.x32.low32;
 996		break;
 997
 998	/* Single-precision FP load requires conversion... */
 999	case LD+F+S:
1000#ifdef CONFIG_PPC_FPU
1001		preempt_disable();
1002		enable_kernel_fp();
1003		cvt_fd((float *)&data.x32.low32, &data.dd);
1004		disable_kernel_fp();
1005		preempt_enable();
1006#else
1007		return 0;
1008#endif
1009		break;
1010	}
1011
1012	/* Store result to memory or update registers */
1013	if (flags & ST) {
1014		unsigned int start = 0;
1015
1016		switch (nb) {
1017		case 4:
1018			start = offsetof(union data, x32.low32);
1019			break;
1020		case 2:
1021			start = offsetof(union data, x16.low16);
1022			break;
1023		}
1024
1025		ret = 0;
1026		p = (unsigned long)addr;
1027
1028		for (i = 0; i < nb; i++)
1029			ret |= __put_user_inatomic(data.v[start + i],
1030						   SWIZ_PTR(p++));
1031
1032		if (unlikely(ret))
1033			return -EFAULT;
1034	} else if (flags & F)
1035		current->thread.TS_FPR(reg) = data.ll;
1036	else
1037		regs->gpr[reg] = data.ll;
1038
1039	/* Update RA as needed */
1040	if (flags & U)
1041		regs->gpr[areg] = regs->dar;
1042
1043	return 1;
1044}