Linux Audio

Check our new training course

Loading...
v5.9
  1#ifndef _M68K_BITOPS_H
  2#define _M68K_BITOPS_H
  3/*
  4 * Copyright 1992, Linus Torvalds.
  5 *
  6 * This file is subject to the terms and conditions of the GNU General Public
  7 * License.  See the file COPYING in the main directory of this archive
  8 * for more details.
  9 */
 10
 11#ifndef _LINUX_BITOPS_H
 12#error only <linux/bitops.h> can be included directly
 13#endif
 14
 15#include <linux/compiler.h>
 16#include <asm/barrier.h>
 17
 18/*
 19 *	Bit access functions vary across the ColdFire and 68k families.
 20 *	So we will break them out here, and then macro in the ones we want.
 21 *
 22 *	ColdFire - supports standard bset/bclr/bchg with register operand only
 23 *	68000    - supports standard bset/bclr/bchg with memory operand
 24 *	>= 68020 - also supports the bfset/bfclr/bfchg instructions
 25 *
 26 *	Although it is possible to use only the bset/bclr/bchg with register
 27 *	operands on all platforms you end up with larger generated code.
 28 *	So we use the best form possible on a given platform.
 29 */
 30
 31static inline void bset_reg_set_bit(int nr, volatile unsigned long *vaddr)
 32{
 33	char *p = (char *)vaddr + (nr ^ 31) / 8;
 34
 35	__asm__ __volatile__ ("bset %1,(%0)"
 36		:
 37		: "a" (p), "di" (nr & 7)
 38		: "memory");
 39}
 40
 41static inline void bset_mem_set_bit(int nr, volatile unsigned long *vaddr)
 42{
 43	char *p = (char *)vaddr + (nr ^ 31) / 8;
 44
 45	__asm__ __volatile__ ("bset %1,%0"
 46		: "+m" (*p)
 47		: "di" (nr & 7));
 48}
 49
 50static inline void bfset_mem_set_bit(int nr, volatile unsigned long *vaddr)
 51{
 52	__asm__ __volatile__ ("bfset %1{%0:#1}"
 53		:
 54		: "d" (nr ^ 31), "o" (*vaddr)
 55		: "memory");
 56}
 57
 58#if defined(CONFIG_COLDFIRE)
 59#define	set_bit(nr, vaddr)	bset_reg_set_bit(nr, vaddr)
 60#elif defined(CONFIG_CPU_HAS_NO_BITFIELDS)
 61#define	set_bit(nr, vaddr)	bset_mem_set_bit(nr, vaddr)
 62#else
 63#define set_bit(nr, vaddr)	(__builtin_constant_p(nr) ? \
 64				bset_mem_set_bit(nr, vaddr) : \
 65				bfset_mem_set_bit(nr, vaddr))
 66#endif
 67
 68#define __set_bit(nr, vaddr)	set_bit(nr, vaddr)
 69
 70
 71static inline void bclr_reg_clear_bit(int nr, volatile unsigned long *vaddr)
 72{
 73	char *p = (char *)vaddr + (nr ^ 31) / 8;
 74
 75	__asm__ __volatile__ ("bclr %1,(%0)"
 76		:
 77		: "a" (p), "di" (nr & 7)
 78		: "memory");
 79}
 80
 81static inline void bclr_mem_clear_bit(int nr, volatile unsigned long *vaddr)
 82{
 83	char *p = (char *)vaddr + (nr ^ 31) / 8;
 84
 85	__asm__ __volatile__ ("bclr %1,%0"
 86		: "+m" (*p)
 87		: "di" (nr & 7));
 88}
 89
 90static inline void bfclr_mem_clear_bit(int nr, volatile unsigned long *vaddr)
 91{
 92	__asm__ __volatile__ ("bfclr %1{%0:#1}"
 93		:
 94		: "d" (nr ^ 31), "o" (*vaddr)
 95		: "memory");
 96}
 97
 98#if defined(CONFIG_COLDFIRE)
 99#define	clear_bit(nr, vaddr)	bclr_reg_clear_bit(nr, vaddr)
100#elif defined(CONFIG_CPU_HAS_NO_BITFIELDS)
101#define	clear_bit(nr, vaddr)	bclr_mem_clear_bit(nr, vaddr)
102#else
103#define clear_bit(nr, vaddr)	(__builtin_constant_p(nr) ? \
104				bclr_mem_clear_bit(nr, vaddr) : \
105				bfclr_mem_clear_bit(nr, vaddr))
106#endif
107
108#define __clear_bit(nr, vaddr)	clear_bit(nr, vaddr)
109
110
111static inline void bchg_reg_change_bit(int nr, volatile unsigned long *vaddr)
112{
113	char *p = (char *)vaddr + (nr ^ 31) / 8;
114
115	__asm__ __volatile__ ("bchg %1,(%0)"
116		:
117		: "a" (p), "di" (nr & 7)
118		: "memory");
119}
120
121static inline void bchg_mem_change_bit(int nr, volatile unsigned long *vaddr)
122{
123	char *p = (char *)vaddr + (nr ^ 31) / 8;
124
125	__asm__ __volatile__ ("bchg %1,%0"
126		: "+m" (*p)
127		: "di" (nr & 7));
128}
129
130static inline void bfchg_mem_change_bit(int nr, volatile unsigned long *vaddr)
131{
132	__asm__ __volatile__ ("bfchg %1{%0:#1}"
133		:
134		: "d" (nr ^ 31), "o" (*vaddr)
135		: "memory");
136}
137
138#if defined(CONFIG_COLDFIRE)
139#define	change_bit(nr, vaddr)	bchg_reg_change_bit(nr, vaddr)
140#elif defined(CONFIG_CPU_HAS_NO_BITFIELDS)
141#define	change_bit(nr, vaddr)	bchg_mem_change_bit(nr, vaddr)
142#else
143#define change_bit(nr, vaddr)	(__builtin_constant_p(nr) ? \
144				bchg_mem_change_bit(nr, vaddr) : \
145				bfchg_mem_change_bit(nr, vaddr))
146#endif
147
148#define __change_bit(nr, vaddr)	change_bit(nr, vaddr)
149
150
151static inline int test_bit(int nr, const volatile unsigned long *vaddr)
152{
153	return (vaddr[nr >> 5] & (1UL << (nr & 31))) != 0;
154}
155
156
157static inline int bset_reg_test_and_set_bit(int nr,
158					    volatile unsigned long *vaddr)
159{
160	char *p = (char *)vaddr + (nr ^ 31) / 8;
161	char retval;
162
163	__asm__ __volatile__ ("bset %2,(%1); sne %0"
164		: "=d" (retval)
165		: "a" (p), "di" (nr & 7)
166		: "memory");
167	return retval;
168}
169
170static inline int bset_mem_test_and_set_bit(int nr,
171					    volatile unsigned long *vaddr)
172{
173	char *p = (char *)vaddr + (nr ^ 31) / 8;
174	char retval;
175
176	__asm__ __volatile__ ("bset %2,%1; sne %0"
177		: "=d" (retval), "+m" (*p)
178		: "di" (nr & 7));
179	return retval;
180}
181
182static inline int bfset_mem_test_and_set_bit(int nr,
183					     volatile unsigned long *vaddr)
184{
185	char retval;
186
187	__asm__ __volatile__ ("bfset %2{%1:#1}; sne %0"
188		: "=d" (retval)
189		: "d" (nr ^ 31), "o" (*vaddr)
190		: "memory");
191	return retval;
192}
193
194#if defined(CONFIG_COLDFIRE)
195#define	test_and_set_bit(nr, vaddr)	bset_reg_test_and_set_bit(nr, vaddr)
196#elif defined(CONFIG_CPU_HAS_NO_BITFIELDS)
197#define	test_and_set_bit(nr, vaddr)	bset_mem_test_and_set_bit(nr, vaddr)
198#else
199#define test_and_set_bit(nr, vaddr)	(__builtin_constant_p(nr) ? \
200					bset_mem_test_and_set_bit(nr, vaddr) : \
201					bfset_mem_test_and_set_bit(nr, vaddr))
202#endif
203
204#define __test_and_set_bit(nr, vaddr)	test_and_set_bit(nr, vaddr)
205
206
207static inline int bclr_reg_test_and_clear_bit(int nr,
208					      volatile unsigned long *vaddr)
209{
210	char *p = (char *)vaddr + (nr ^ 31) / 8;
211	char retval;
212
213	__asm__ __volatile__ ("bclr %2,(%1); sne %0"
214		: "=d" (retval)
215		: "a" (p), "di" (nr & 7)
216		: "memory");
217	return retval;
218}
219
220static inline int bclr_mem_test_and_clear_bit(int nr,
221					      volatile unsigned long *vaddr)
222{
223	char *p = (char *)vaddr + (nr ^ 31) / 8;
224	char retval;
225
226	__asm__ __volatile__ ("bclr %2,%1; sne %0"
227		: "=d" (retval), "+m" (*p)
228		: "di" (nr & 7));
229	return retval;
230}
231
232static inline int bfclr_mem_test_and_clear_bit(int nr,
233					       volatile unsigned long *vaddr)
234{
235	char retval;
236
237	__asm__ __volatile__ ("bfclr %2{%1:#1}; sne %0"
238		: "=d" (retval)
239		: "d" (nr ^ 31), "o" (*vaddr)
240		: "memory");
241	return retval;
242}
243
244#if defined(CONFIG_COLDFIRE)
245#define	test_and_clear_bit(nr, vaddr)	bclr_reg_test_and_clear_bit(nr, vaddr)
246#elif defined(CONFIG_CPU_HAS_NO_BITFIELDS)
247#define	test_and_clear_bit(nr, vaddr)	bclr_mem_test_and_clear_bit(nr, vaddr)
248#else
249#define test_and_clear_bit(nr, vaddr)	(__builtin_constant_p(nr) ? \
250					bclr_mem_test_and_clear_bit(nr, vaddr) : \
251					bfclr_mem_test_and_clear_bit(nr, vaddr))
252#endif
253
254#define __test_and_clear_bit(nr, vaddr)	test_and_clear_bit(nr, vaddr)
255
256
257static inline int bchg_reg_test_and_change_bit(int nr,
258					       volatile unsigned long *vaddr)
259{
260	char *p = (char *)vaddr + (nr ^ 31) / 8;
261	char retval;
262
263	__asm__ __volatile__ ("bchg %2,(%1); sne %0"
264		: "=d" (retval)
265		: "a" (p), "di" (nr & 7)
266		: "memory");
267	return retval;
268}
269
270static inline int bchg_mem_test_and_change_bit(int nr,
271					       volatile unsigned long *vaddr)
272{
273	char *p = (char *)vaddr + (nr ^ 31) / 8;
274	char retval;
275
276	__asm__ __volatile__ ("bchg %2,%1; sne %0"
277		: "=d" (retval), "+m" (*p)
278		: "di" (nr & 7));
279	return retval;
280}
281
282static inline int bfchg_mem_test_and_change_bit(int nr,
283						volatile unsigned long *vaddr)
284{
285	char retval;
286
287	__asm__ __volatile__ ("bfchg %2{%1:#1}; sne %0"
288		: "=d" (retval)
289		: "d" (nr ^ 31), "o" (*vaddr)
290		: "memory");
291	return retval;
292}
293
294#if defined(CONFIG_COLDFIRE)
295#define	test_and_change_bit(nr, vaddr)	bchg_reg_test_and_change_bit(nr, vaddr)
296#elif defined(CONFIG_CPU_HAS_NO_BITFIELDS)
297#define	test_and_change_bit(nr, vaddr)	bchg_mem_test_and_change_bit(nr, vaddr)
298#else
299#define test_and_change_bit(nr, vaddr)	(__builtin_constant_p(nr) ? \
300					bchg_mem_test_and_change_bit(nr, vaddr) : \
301					bfchg_mem_test_and_change_bit(nr, vaddr))
302#endif
303
304#define __test_and_change_bit(nr, vaddr) test_and_change_bit(nr, vaddr)
305
306
307/*
308 *	The true 68020 and more advanced processors support the "bfffo"
309 *	instruction for finding bits. ColdFire and simple 68000 parts
310 *	(including CPU32) do not support this. They simply use the generic
311 *	functions.
312 */
313#if defined(CONFIG_CPU_HAS_NO_BITFIELDS)
 
314#include <asm-generic/bitops/ffz.h>
315#else
316
317static inline int find_first_zero_bit(const unsigned long *vaddr,
318				      unsigned size)
319{
320	const unsigned long *p = vaddr;
321	int res = 32;
322	unsigned int words;
323	unsigned long num;
324
325	if (!size)
326		return 0;
327
328	words = (size + 31) >> 5;
329	while (!(num = ~*p++)) {
330		if (!--words)
331			goto out;
332	}
333
334	__asm__ __volatile__ ("bfffo %1{#0,#0},%0"
335			      : "=d" (res) : "d" (num & -num));
336	res ^= 31;
337out:
338	res += ((long)p - (long)vaddr - 4) * 8;
339	return res < size ? res : size;
340}
341#define find_first_zero_bit find_first_zero_bit
342
343static inline int find_next_zero_bit(const unsigned long *vaddr, int size,
344				     int offset)
345{
346	const unsigned long *p = vaddr + (offset >> 5);
347	int bit = offset & 31UL, res;
348
349	if (offset >= size)
350		return size;
351
352	if (bit) {
353		unsigned long num = ~*p++ & (~0UL << bit);
354		offset -= bit;
355
356		/* Look for zero in first longword */
357		__asm__ __volatile__ ("bfffo %1{#0,#0},%0"
358				      : "=d" (res) : "d" (num & -num));
359		if (res < 32) {
360			offset += res ^ 31;
361			return offset < size ? offset : size;
362		}
363		offset += 32;
364
365		if (offset >= size)
366			return size;
367	}
368	/* No zero yet, search remaining full bytes for a zero */
369	return offset + find_first_zero_bit(p, size - offset);
370}
371#define find_next_zero_bit find_next_zero_bit
372
373static inline int find_first_bit(const unsigned long *vaddr, unsigned size)
374{
375	const unsigned long *p = vaddr;
376	int res = 32;
377	unsigned int words;
378	unsigned long num;
379
380	if (!size)
381		return 0;
382
383	words = (size + 31) >> 5;
384	while (!(num = *p++)) {
385		if (!--words)
386			goto out;
387	}
388
389	__asm__ __volatile__ ("bfffo %1{#0,#0},%0"
390			      : "=d" (res) : "d" (num & -num));
391	res ^= 31;
392out:
393	res += ((long)p - (long)vaddr - 4) * 8;
394	return res < size ? res : size;
395}
396#define find_first_bit find_first_bit
397
398static inline int find_next_bit(const unsigned long *vaddr, int size,
399				int offset)
400{
401	const unsigned long *p = vaddr + (offset >> 5);
402	int bit = offset & 31UL, res;
403
404	if (offset >= size)
405		return size;
406
407	if (bit) {
408		unsigned long num = *p++ & (~0UL << bit);
409		offset -= bit;
410
411		/* Look for one in first longword */
412		__asm__ __volatile__ ("bfffo %1{#0,#0},%0"
413				      : "=d" (res) : "d" (num & -num));
414		if (res < 32) {
415			offset += res ^ 31;
416			return offset < size ? offset : size;
417		}
418		offset += 32;
419
420		if (offset >= size)
421			return size;
422	}
423	/* No one yet, search remaining full bytes for a one */
424	return offset + find_first_bit(p, size - offset);
425}
426#define find_next_bit find_next_bit
427
428/*
429 * ffz = Find First Zero in word. Undefined if no zero exists,
430 * so code should check against ~0UL first..
431 */
432static inline unsigned long ffz(unsigned long word)
433{
434	int res;
435
436	__asm__ __volatile__ ("bfffo %1{#0,#0},%0"
437			      : "=d" (res) : "d" (~word & -~word));
438	return res ^ 31;
439}
440
441#endif
442
443#include <asm-generic/bitops/find.h>
444
445#ifdef __KERNEL__
446
447#if defined(CONFIG_CPU_HAS_NO_BITFIELDS)
448
449/*
450 *	The newer ColdFire family members support a "bitrev" instruction
451 *	and we can use that to implement a fast ffs. Older Coldfire parts,
452 *	and normal 68000 parts don't have anything special, so we use the
453 *	generic functions for those.
454 */
455#if (defined(__mcfisaaplus__) || defined(__mcfisac__)) && \
456	!defined(CONFIG_M68000) && !defined(CONFIG_MCPU32)
457static inline unsigned long __ffs(unsigned long x)
458{
459	__asm__ __volatile__ ("bitrev %0; ff1 %0"
460		: "=d" (x)
461		: "0" (x));
462	return x;
463}
464
465static inline int ffs(int x)
466{
467	if (!x)
468		return 0;
469	return __ffs(x) + 1;
470}
471
472#else
473#include <asm-generic/bitops/ffs.h>
474#include <asm-generic/bitops/__ffs.h>
475#endif
476
477#include <asm-generic/bitops/fls.h>
478#include <asm-generic/bitops/__fls.h>
479
480#else
481
482/*
483 *	ffs: find first bit set. This is defined the same way as
484 *	the libc and compiler builtin ffs routines, therefore
485 *	differs in spirit from the above ffz (man ffs).
486 */
487static inline int ffs(int x)
488{
489	int cnt;
490
491	__asm__ ("bfffo %1{#0:#0},%0"
492		: "=d" (cnt)
493		: "dm" (x & -x));
494	return 32 - cnt;
495}
496
497static inline unsigned long __ffs(unsigned long x)
498{
499	return ffs(x) - 1;
500}
501
502/*
503 *	fls: find last bit set.
504 */
505static inline int fls(unsigned int x)
506{
507	int cnt;
508
509	__asm__ ("bfffo %1{#0,#0},%0"
510		: "=d" (cnt)
511		: "dm" (x));
512	return 32 - cnt;
513}
514
515static inline int __fls(int x)
516{
517	return fls(x) - 1;
518}
519
520#endif
521
522/* Simple test-and-set bit locks */
523#define test_and_set_bit_lock	test_and_set_bit
524#define clear_bit_unlock	clear_bit
525#define __clear_bit_unlock	clear_bit_unlock
526
527#include <asm-generic/bitops/ext2-atomic.h>
528#include <asm-generic/bitops/le.h>
529#include <asm-generic/bitops/fls64.h>
530#include <asm-generic/bitops/sched.h>
531#include <asm-generic/bitops/hweight.h>
 
532#endif /* __KERNEL__ */
533
534#endif /* _M68K_BITOPS_H */
v4.6
  1#ifndef _M68K_BITOPS_H
  2#define _M68K_BITOPS_H
  3/*
  4 * Copyright 1992, Linus Torvalds.
  5 *
  6 * This file is subject to the terms and conditions of the GNU General Public
  7 * License.  See the file COPYING in the main directory of this archive
  8 * for more details.
  9 */
 10
 11#ifndef _LINUX_BITOPS_H
 12#error only <linux/bitops.h> can be included directly
 13#endif
 14
 15#include <linux/compiler.h>
 16#include <asm/barrier.h>
 17
 18/*
 19 *	Bit access functions vary across the ColdFire and 68k families.
 20 *	So we will break them out here, and then macro in the ones we want.
 21 *
 22 *	ColdFire - supports standard bset/bclr/bchg with register operand only
 23 *	68000    - supports standard bset/bclr/bchg with memory operand
 24 *	>= 68020 - also supports the bfset/bfclr/bfchg instructions
 25 *
 26 *	Although it is possible to use only the bset/bclr/bchg with register
 27 *	operands on all platforms you end up with larger generated code.
 28 *	So we use the best form possible on a given platform.
 29 */
 30
 31static inline void bset_reg_set_bit(int nr, volatile unsigned long *vaddr)
 32{
 33	char *p = (char *)vaddr + (nr ^ 31) / 8;
 34
 35	__asm__ __volatile__ ("bset %1,(%0)"
 36		:
 37		: "a" (p), "di" (nr & 7)
 38		: "memory");
 39}
 40
 41static inline void bset_mem_set_bit(int nr, volatile unsigned long *vaddr)
 42{
 43	char *p = (char *)vaddr + (nr ^ 31) / 8;
 44
 45	__asm__ __volatile__ ("bset %1,%0"
 46		: "+m" (*p)
 47		: "di" (nr & 7));
 48}
 49
 50static inline void bfset_mem_set_bit(int nr, volatile unsigned long *vaddr)
 51{
 52	__asm__ __volatile__ ("bfset %1{%0:#1}"
 53		:
 54		: "d" (nr ^ 31), "o" (*vaddr)
 55		: "memory");
 56}
 57
 58#if defined(CONFIG_COLDFIRE)
 59#define	set_bit(nr, vaddr)	bset_reg_set_bit(nr, vaddr)
 60#elif defined(CONFIG_CPU_HAS_NO_BITFIELDS)
 61#define	set_bit(nr, vaddr)	bset_mem_set_bit(nr, vaddr)
 62#else
 63#define set_bit(nr, vaddr)	(__builtin_constant_p(nr) ? \
 64				bset_mem_set_bit(nr, vaddr) : \
 65				bfset_mem_set_bit(nr, vaddr))
 66#endif
 67
 68#define __set_bit(nr, vaddr)	set_bit(nr, vaddr)
 69
 70
 71static inline void bclr_reg_clear_bit(int nr, volatile unsigned long *vaddr)
 72{
 73	char *p = (char *)vaddr + (nr ^ 31) / 8;
 74
 75	__asm__ __volatile__ ("bclr %1,(%0)"
 76		:
 77		: "a" (p), "di" (nr & 7)
 78		: "memory");
 79}
 80
 81static inline void bclr_mem_clear_bit(int nr, volatile unsigned long *vaddr)
 82{
 83	char *p = (char *)vaddr + (nr ^ 31) / 8;
 84
 85	__asm__ __volatile__ ("bclr %1,%0"
 86		: "+m" (*p)
 87		: "di" (nr & 7));
 88}
 89
 90static inline void bfclr_mem_clear_bit(int nr, volatile unsigned long *vaddr)
 91{
 92	__asm__ __volatile__ ("bfclr %1{%0:#1}"
 93		:
 94		: "d" (nr ^ 31), "o" (*vaddr)
 95		: "memory");
 96}
 97
 98#if defined(CONFIG_COLDFIRE)
 99#define	clear_bit(nr, vaddr)	bclr_reg_clear_bit(nr, vaddr)
100#elif defined(CONFIG_CPU_HAS_NO_BITFIELDS)
101#define	clear_bit(nr, vaddr)	bclr_mem_clear_bit(nr, vaddr)
102#else
103#define clear_bit(nr, vaddr)	(__builtin_constant_p(nr) ? \
104				bclr_mem_clear_bit(nr, vaddr) : \
105				bfclr_mem_clear_bit(nr, vaddr))
106#endif
107
108#define __clear_bit(nr, vaddr)	clear_bit(nr, vaddr)
109
110
111static inline void bchg_reg_change_bit(int nr, volatile unsigned long *vaddr)
112{
113	char *p = (char *)vaddr + (nr ^ 31) / 8;
114
115	__asm__ __volatile__ ("bchg %1,(%0)"
116		:
117		: "a" (p), "di" (nr & 7)
118		: "memory");
119}
120
121static inline void bchg_mem_change_bit(int nr, volatile unsigned long *vaddr)
122{
123	char *p = (char *)vaddr + (nr ^ 31) / 8;
124
125	__asm__ __volatile__ ("bchg %1,%0"
126		: "+m" (*p)
127		: "di" (nr & 7));
128}
129
130static inline void bfchg_mem_change_bit(int nr, volatile unsigned long *vaddr)
131{
132	__asm__ __volatile__ ("bfchg %1{%0:#1}"
133		:
134		: "d" (nr ^ 31), "o" (*vaddr)
135		: "memory");
136}
137
138#if defined(CONFIG_COLDFIRE)
139#define	change_bit(nr, vaddr)	bchg_reg_change_bit(nr, vaddr)
140#elif defined(CONFIG_CPU_HAS_NO_BITFIELDS)
141#define	change_bit(nr, vaddr)	bchg_mem_change_bit(nr, vaddr)
142#else
143#define change_bit(nr, vaddr)	(__builtin_constant_p(nr) ? \
144				bchg_mem_change_bit(nr, vaddr) : \
145				bfchg_mem_change_bit(nr, vaddr))
146#endif
147
148#define __change_bit(nr, vaddr)	change_bit(nr, vaddr)
149
150
151static inline int test_bit(int nr, const unsigned long *vaddr)
152{
153	return (vaddr[nr >> 5] & (1UL << (nr & 31))) != 0;
154}
155
156
157static inline int bset_reg_test_and_set_bit(int nr,
158					    volatile unsigned long *vaddr)
159{
160	char *p = (char *)vaddr + (nr ^ 31) / 8;
161	char retval;
162
163	__asm__ __volatile__ ("bset %2,(%1); sne %0"
164		: "=d" (retval)
165		: "a" (p), "di" (nr & 7)
166		: "memory");
167	return retval;
168}
169
170static inline int bset_mem_test_and_set_bit(int nr,
171					    volatile unsigned long *vaddr)
172{
173	char *p = (char *)vaddr + (nr ^ 31) / 8;
174	char retval;
175
176	__asm__ __volatile__ ("bset %2,%1; sne %0"
177		: "=d" (retval), "+m" (*p)
178		: "di" (nr & 7));
179	return retval;
180}
181
182static inline int bfset_mem_test_and_set_bit(int nr,
183					     volatile unsigned long *vaddr)
184{
185	char retval;
186
187	__asm__ __volatile__ ("bfset %2{%1:#1}; sne %0"
188		: "=d" (retval)
189		: "d" (nr ^ 31), "o" (*vaddr)
190		: "memory");
191	return retval;
192}
193
194#if defined(CONFIG_COLDFIRE)
195#define	test_and_set_bit(nr, vaddr)	bset_reg_test_and_set_bit(nr, vaddr)
196#elif defined(CONFIG_CPU_HAS_NO_BITFIELDS)
197#define	test_and_set_bit(nr, vaddr)	bset_mem_test_and_set_bit(nr, vaddr)
198#else
199#define test_and_set_bit(nr, vaddr)	(__builtin_constant_p(nr) ? \
200					bset_mem_test_and_set_bit(nr, vaddr) : \
201					bfset_mem_test_and_set_bit(nr, vaddr))
202#endif
203
204#define __test_and_set_bit(nr, vaddr)	test_and_set_bit(nr, vaddr)
205
206
207static inline int bclr_reg_test_and_clear_bit(int nr,
208					      volatile unsigned long *vaddr)
209{
210	char *p = (char *)vaddr + (nr ^ 31) / 8;
211	char retval;
212
213	__asm__ __volatile__ ("bclr %2,(%1); sne %0"
214		: "=d" (retval)
215		: "a" (p), "di" (nr & 7)
216		: "memory");
217	return retval;
218}
219
220static inline int bclr_mem_test_and_clear_bit(int nr,
221					      volatile unsigned long *vaddr)
222{
223	char *p = (char *)vaddr + (nr ^ 31) / 8;
224	char retval;
225
226	__asm__ __volatile__ ("bclr %2,%1; sne %0"
227		: "=d" (retval), "+m" (*p)
228		: "di" (nr & 7));
229	return retval;
230}
231
232static inline int bfclr_mem_test_and_clear_bit(int nr,
233					       volatile unsigned long *vaddr)
234{
235	char retval;
236
237	__asm__ __volatile__ ("bfclr %2{%1:#1}; sne %0"
238		: "=d" (retval)
239		: "d" (nr ^ 31), "o" (*vaddr)
240		: "memory");
241	return retval;
242}
243
244#if defined(CONFIG_COLDFIRE)
245#define	test_and_clear_bit(nr, vaddr)	bclr_reg_test_and_clear_bit(nr, vaddr)
246#elif defined(CONFIG_CPU_HAS_NO_BITFIELDS)
247#define	test_and_clear_bit(nr, vaddr)	bclr_mem_test_and_clear_bit(nr, vaddr)
248#else
249#define test_and_clear_bit(nr, vaddr)	(__builtin_constant_p(nr) ? \
250					bclr_mem_test_and_clear_bit(nr, vaddr) : \
251					bfclr_mem_test_and_clear_bit(nr, vaddr))
252#endif
253
254#define __test_and_clear_bit(nr, vaddr)	test_and_clear_bit(nr, vaddr)
255
256
257static inline int bchg_reg_test_and_change_bit(int nr,
258					       volatile unsigned long *vaddr)
259{
260	char *p = (char *)vaddr + (nr ^ 31) / 8;
261	char retval;
262
263	__asm__ __volatile__ ("bchg %2,(%1); sne %0"
264		: "=d" (retval)
265		: "a" (p), "di" (nr & 7)
266		: "memory");
267	return retval;
268}
269
270static inline int bchg_mem_test_and_change_bit(int nr,
271					       volatile unsigned long *vaddr)
272{
273	char *p = (char *)vaddr + (nr ^ 31) / 8;
274	char retval;
275
276	__asm__ __volatile__ ("bchg %2,%1; sne %0"
277		: "=d" (retval), "+m" (*p)
278		: "di" (nr & 7));
279	return retval;
280}
281
282static inline int bfchg_mem_test_and_change_bit(int nr,
283						volatile unsigned long *vaddr)
284{
285	char retval;
286
287	__asm__ __volatile__ ("bfchg %2{%1:#1}; sne %0"
288		: "=d" (retval)
289		: "d" (nr ^ 31), "o" (*vaddr)
290		: "memory");
291	return retval;
292}
293
294#if defined(CONFIG_COLDFIRE)
295#define	test_and_change_bit(nr, vaddr)	bchg_reg_test_and_change_bit(nr, vaddr)
296#elif defined(CONFIG_CPU_HAS_NO_BITFIELDS)
297#define	test_and_change_bit(nr, vaddr)	bchg_mem_test_and_change_bit(nr, vaddr)
298#else
299#define test_and_change_bit(nr, vaddr)	(__builtin_constant_p(nr) ? \
300					bchg_mem_test_and_change_bit(nr, vaddr) : \
301					bfchg_mem_test_and_change_bit(nr, vaddr))
302#endif
303
304#define __test_and_change_bit(nr, vaddr) test_and_change_bit(nr, vaddr)
305
306
307/*
308 *	The true 68020 and more advanced processors support the "bfffo"
309 *	instruction for finding bits. ColdFire and simple 68000 parts
310 *	(including CPU32) do not support this. They simply use the generic
311 *	functions.
312 */
313#if defined(CONFIG_CPU_HAS_NO_BITFIELDS)
314#include <asm-generic/bitops/find.h>
315#include <asm-generic/bitops/ffz.h>
316#else
317
318static inline int find_first_zero_bit(const unsigned long *vaddr,
319				      unsigned size)
320{
321	const unsigned long *p = vaddr;
322	int res = 32;
323	unsigned int words;
324	unsigned long num;
325
326	if (!size)
327		return 0;
328
329	words = (size + 31) >> 5;
330	while (!(num = ~*p++)) {
331		if (!--words)
332			goto out;
333	}
334
335	__asm__ __volatile__ ("bfffo %1{#0,#0},%0"
336			      : "=d" (res) : "d" (num & -num));
337	res ^= 31;
338out:
339	res += ((long)p - (long)vaddr - 4) * 8;
340	return res < size ? res : size;
341}
342#define find_first_zero_bit find_first_zero_bit
343
344static inline int find_next_zero_bit(const unsigned long *vaddr, int size,
345				     int offset)
346{
347	const unsigned long *p = vaddr + (offset >> 5);
348	int bit = offset & 31UL, res;
349
350	if (offset >= size)
351		return size;
352
353	if (bit) {
354		unsigned long num = ~*p++ & (~0UL << bit);
355		offset -= bit;
356
357		/* Look for zero in first longword */
358		__asm__ __volatile__ ("bfffo %1{#0,#0},%0"
359				      : "=d" (res) : "d" (num & -num));
360		if (res < 32) {
361			offset += res ^ 31;
362			return offset < size ? offset : size;
363		}
364		offset += 32;
365
366		if (offset >= size)
367			return size;
368	}
369	/* No zero yet, search remaining full bytes for a zero */
370	return offset + find_first_zero_bit(p, size - offset);
371}
372#define find_next_zero_bit find_next_zero_bit
373
374static inline int find_first_bit(const unsigned long *vaddr, unsigned size)
375{
376	const unsigned long *p = vaddr;
377	int res = 32;
378	unsigned int words;
379	unsigned long num;
380
381	if (!size)
382		return 0;
383
384	words = (size + 31) >> 5;
385	while (!(num = *p++)) {
386		if (!--words)
387			goto out;
388	}
389
390	__asm__ __volatile__ ("bfffo %1{#0,#0},%0"
391			      : "=d" (res) : "d" (num & -num));
392	res ^= 31;
393out:
394	res += ((long)p - (long)vaddr - 4) * 8;
395	return res < size ? res : size;
396}
397#define find_first_bit find_first_bit
398
399static inline int find_next_bit(const unsigned long *vaddr, int size,
400				int offset)
401{
402	const unsigned long *p = vaddr + (offset >> 5);
403	int bit = offset & 31UL, res;
404
405	if (offset >= size)
406		return size;
407
408	if (bit) {
409		unsigned long num = *p++ & (~0UL << bit);
410		offset -= bit;
411
412		/* Look for one in first longword */
413		__asm__ __volatile__ ("bfffo %1{#0,#0},%0"
414				      : "=d" (res) : "d" (num & -num));
415		if (res < 32) {
416			offset += res ^ 31;
417			return offset < size ? offset : size;
418		}
419		offset += 32;
420
421		if (offset >= size)
422			return size;
423	}
424	/* No one yet, search remaining full bytes for a one */
425	return offset + find_first_bit(p, size - offset);
426}
427#define find_next_bit find_next_bit
428
429/*
430 * ffz = Find First Zero in word. Undefined if no zero exists,
431 * so code should check against ~0UL first..
432 */
433static inline unsigned long ffz(unsigned long word)
434{
435	int res;
436
437	__asm__ __volatile__ ("bfffo %1{#0,#0},%0"
438			      : "=d" (res) : "d" (~word & -~word));
439	return res ^ 31;
440}
441
442#endif
443
 
 
444#ifdef __KERNEL__
445
446#if defined(CONFIG_CPU_HAS_NO_BITFIELDS)
447
448/*
449 *	The newer ColdFire family members support a "bitrev" instruction
450 *	and we can use that to implement a fast ffs. Older Coldfire parts,
451 *	and normal 68000 parts don't have anything special, so we use the
452 *	generic functions for those.
453 */
454#if (defined(__mcfisaaplus__) || defined(__mcfisac__)) && \
455	!defined(CONFIG_M68000) && !defined(CONFIG_MCPU32)
456static inline int __ffs(int x)
457{
458	__asm__ __volatile__ ("bitrev %0; ff1 %0"
459		: "=d" (x)
460		: "0" (x));
461	return x;
462}
463
464static inline int ffs(int x)
465{
466	if (!x)
467		return 0;
468	return __ffs(x) + 1;
469}
470
471#else
472#include <asm-generic/bitops/ffs.h>
473#include <asm-generic/bitops/__ffs.h>
474#endif
475
476#include <asm-generic/bitops/fls.h>
477#include <asm-generic/bitops/__fls.h>
478
479#else
480
481/*
482 *	ffs: find first bit set. This is defined the same way as
483 *	the libc and compiler builtin ffs routines, therefore
484 *	differs in spirit from the above ffz (man ffs).
485 */
486static inline int ffs(int x)
487{
488	int cnt;
489
490	__asm__ ("bfffo %1{#0:#0},%0"
491		: "=d" (cnt)
492		: "dm" (x & -x));
493	return 32 - cnt;
494}
495#define __ffs(x) (ffs(x) - 1)
 
 
 
 
496
497/*
498 *	fls: find last bit set.
499 */
500static inline int fls(int x)
501{
502	int cnt;
503
504	__asm__ ("bfffo %1{#0,#0},%0"
505		: "=d" (cnt)
506		: "dm" (x));
507	return 32 - cnt;
508}
509
510static inline int __fls(int x)
511{
512	return fls(x) - 1;
513}
514
515#endif
516
 
 
 
 
 
517#include <asm-generic/bitops/ext2-atomic.h>
518#include <asm-generic/bitops/le.h>
519#include <asm-generic/bitops/fls64.h>
520#include <asm-generic/bitops/sched.h>
521#include <asm-generic/bitops/hweight.h>
522#include <asm-generic/bitops/lock.h>
523#endif /* __KERNEL__ */
524
525#endif /* _M68K_BITOPS_H */