Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/* Common capabilities, needed by capability.o.
3 */
4
5#include <linux/capability.h>
6#include <linux/audit.h>
7#include <linux/init.h>
8#include <linux/kernel.h>
9#include <linux/lsm_hooks.h>
10#include <linux/file.h>
11#include <linux/mm.h>
12#include <linux/mman.h>
13#include <linux/pagemap.h>
14#include <linux/swap.h>
15#include <linux/skbuff.h>
16#include <linux/netlink.h>
17#include <linux/ptrace.h>
18#include <linux/xattr.h>
19#include <linux/hugetlb.h>
20#include <linux/mount.h>
21#include <linux/sched.h>
22#include <linux/prctl.h>
23#include <linux/securebits.h>
24#include <linux/user_namespace.h>
25#include <linux/binfmts.h>
26#include <linux/personality.h>
27
28/*
29 * If a non-root user executes a setuid-root binary in
30 * !secure(SECURE_NOROOT) mode, then we raise capabilities.
31 * However if fE is also set, then the intent is for only
32 * the file capabilities to be applied, and the setuid-root
33 * bit is left on either to change the uid (plausible) or
34 * to get full privilege on a kernel without file capabilities
35 * support. So in that case we do not raise capabilities.
36 *
37 * Warn if that happens, once per boot.
38 */
39static void warn_setuid_and_fcaps_mixed(const char *fname)
40{
41 static int warned;
42 if (!warned) {
43 printk(KERN_INFO "warning: `%s' has both setuid-root and"
44 " effective capabilities. Therefore not raising all"
45 " capabilities.\n", fname);
46 warned = 1;
47 }
48}
49
50/**
51 * cap_capable - Determine whether a task has a particular effective capability
52 * @cred: The credentials to use
53 * @ns: The user namespace in which we need the capability
54 * @cap: The capability to check for
55 * @opts: Bitmask of options defined in include/linux/security.h
56 *
57 * Determine whether the nominated task has the specified capability amongst
58 * its effective set, returning 0 if it does, -ve if it does not.
59 *
60 * NOTE WELL: cap_has_capability() cannot be used like the kernel's capable()
61 * and has_capability() functions. That is, it has the reverse semantics:
62 * cap_has_capability() returns 0 when a task has a capability, but the
63 * kernel's capable() and has_capability() returns 1 for this case.
64 */
65int cap_capable(const struct cred *cred, struct user_namespace *targ_ns,
66 int cap, unsigned int opts)
67{
68 struct user_namespace *ns = targ_ns;
69
70 /* See if cred has the capability in the target user namespace
71 * by examining the target user namespace and all of the target
72 * user namespace's parents.
73 */
74 for (;;) {
75 /* Do we have the necessary capabilities? */
76 if (ns == cred->user_ns)
77 return cap_raised(cred->cap_effective, cap) ? 0 : -EPERM;
78
79 /*
80 * If we're already at a lower level than we're looking for,
81 * we're done searching.
82 */
83 if (ns->level <= cred->user_ns->level)
84 return -EPERM;
85
86 /*
87 * The owner of the user namespace in the parent of the
88 * user namespace has all caps.
89 */
90 if ((ns->parent == cred->user_ns) && uid_eq(ns->owner, cred->euid))
91 return 0;
92
93 /*
94 * If you have a capability in a parent user ns, then you have
95 * it over all children user namespaces as well.
96 */
97 ns = ns->parent;
98 }
99
100 /* We never get here */
101}
102
103/**
104 * cap_settime - Determine whether the current process may set the system clock
105 * @ts: The time to set
106 * @tz: The timezone to set
107 *
108 * Determine whether the current process may set the system clock and timezone
109 * information, returning 0 if permission granted, -ve if denied.
110 */
111int cap_settime(const struct timespec64 *ts, const struct timezone *tz)
112{
113 if (!capable(CAP_SYS_TIME))
114 return -EPERM;
115 return 0;
116}
117
118/**
119 * cap_ptrace_access_check - Determine whether the current process may access
120 * another
121 * @child: The process to be accessed
122 * @mode: The mode of attachment.
123 *
124 * If we are in the same or an ancestor user_ns and have all the target
125 * task's capabilities, then ptrace access is allowed.
126 * If we have the ptrace capability to the target user_ns, then ptrace
127 * access is allowed.
128 * Else denied.
129 *
130 * Determine whether a process may access another, returning 0 if permission
131 * granted, -ve if denied.
132 */
133int cap_ptrace_access_check(struct task_struct *child, unsigned int mode)
134{
135 int ret = 0;
136 const struct cred *cred, *child_cred;
137 const kernel_cap_t *caller_caps;
138
139 rcu_read_lock();
140 cred = current_cred();
141 child_cred = __task_cred(child);
142 if (mode & PTRACE_MODE_FSCREDS)
143 caller_caps = &cred->cap_effective;
144 else
145 caller_caps = &cred->cap_permitted;
146 if (cred->user_ns == child_cred->user_ns &&
147 cap_issubset(child_cred->cap_permitted, *caller_caps))
148 goto out;
149 if (ns_capable(child_cred->user_ns, CAP_SYS_PTRACE))
150 goto out;
151 ret = -EPERM;
152out:
153 rcu_read_unlock();
154 return ret;
155}
156
157/**
158 * cap_ptrace_traceme - Determine whether another process may trace the current
159 * @parent: The task proposed to be the tracer
160 *
161 * If parent is in the same or an ancestor user_ns and has all current's
162 * capabilities, then ptrace access is allowed.
163 * If parent has the ptrace capability to current's user_ns, then ptrace
164 * access is allowed.
165 * Else denied.
166 *
167 * Determine whether the nominated task is permitted to trace the current
168 * process, returning 0 if permission is granted, -ve if denied.
169 */
170int cap_ptrace_traceme(struct task_struct *parent)
171{
172 int ret = 0;
173 const struct cred *cred, *child_cred;
174
175 rcu_read_lock();
176 cred = __task_cred(parent);
177 child_cred = current_cred();
178 if (cred->user_ns == child_cred->user_ns &&
179 cap_issubset(child_cred->cap_permitted, cred->cap_permitted))
180 goto out;
181 if (has_ns_capability(parent, child_cred->user_ns, CAP_SYS_PTRACE))
182 goto out;
183 ret = -EPERM;
184out:
185 rcu_read_unlock();
186 return ret;
187}
188
189/**
190 * cap_capget - Retrieve a task's capability sets
191 * @target: The task from which to retrieve the capability sets
192 * @effective: The place to record the effective set
193 * @inheritable: The place to record the inheritable set
194 * @permitted: The place to record the permitted set
195 *
196 * This function retrieves the capabilities of the nominated task and returns
197 * them to the caller.
198 */
199int cap_capget(struct task_struct *target, kernel_cap_t *effective,
200 kernel_cap_t *inheritable, kernel_cap_t *permitted)
201{
202 const struct cred *cred;
203
204 /* Derived from kernel/capability.c:sys_capget. */
205 rcu_read_lock();
206 cred = __task_cred(target);
207 *effective = cred->cap_effective;
208 *inheritable = cred->cap_inheritable;
209 *permitted = cred->cap_permitted;
210 rcu_read_unlock();
211 return 0;
212}
213
214/*
215 * Determine whether the inheritable capabilities are limited to the old
216 * permitted set. Returns 1 if they are limited, 0 if they are not.
217 */
218static inline int cap_inh_is_capped(void)
219{
220 /* they are so limited unless the current task has the CAP_SETPCAP
221 * capability
222 */
223 if (cap_capable(current_cred(), current_cred()->user_ns,
224 CAP_SETPCAP, CAP_OPT_NONE) == 0)
225 return 0;
226 return 1;
227}
228
229/**
230 * cap_capset - Validate and apply proposed changes to current's capabilities
231 * @new: The proposed new credentials; alterations should be made here
232 * @old: The current task's current credentials
233 * @effective: A pointer to the proposed new effective capabilities set
234 * @inheritable: A pointer to the proposed new inheritable capabilities set
235 * @permitted: A pointer to the proposed new permitted capabilities set
236 *
237 * This function validates and applies a proposed mass change to the current
238 * process's capability sets. The changes are made to the proposed new
239 * credentials, and assuming no error, will be committed by the caller of LSM.
240 */
241int cap_capset(struct cred *new,
242 const struct cred *old,
243 const kernel_cap_t *effective,
244 const kernel_cap_t *inheritable,
245 const kernel_cap_t *permitted)
246{
247 if (cap_inh_is_capped() &&
248 !cap_issubset(*inheritable,
249 cap_combine(old->cap_inheritable,
250 old->cap_permitted)))
251 /* incapable of using this inheritable set */
252 return -EPERM;
253
254 if (!cap_issubset(*inheritable,
255 cap_combine(old->cap_inheritable,
256 old->cap_bset)))
257 /* no new pI capabilities outside bounding set */
258 return -EPERM;
259
260 /* verify restrictions on target's new Permitted set */
261 if (!cap_issubset(*permitted, old->cap_permitted))
262 return -EPERM;
263
264 /* verify the _new_Effective_ is a subset of the _new_Permitted_ */
265 if (!cap_issubset(*effective, *permitted))
266 return -EPERM;
267
268 new->cap_effective = *effective;
269 new->cap_inheritable = *inheritable;
270 new->cap_permitted = *permitted;
271
272 /*
273 * Mask off ambient bits that are no longer both permitted and
274 * inheritable.
275 */
276 new->cap_ambient = cap_intersect(new->cap_ambient,
277 cap_intersect(*permitted,
278 *inheritable));
279 if (WARN_ON(!cap_ambient_invariant_ok(new)))
280 return -EINVAL;
281 return 0;
282}
283
284/**
285 * cap_inode_need_killpriv - Determine if inode change affects privileges
286 * @dentry: The inode/dentry in being changed with change marked ATTR_KILL_PRIV
287 *
288 * Determine if an inode having a change applied that's marked ATTR_KILL_PRIV
289 * affects the security markings on that inode, and if it is, should
290 * inode_killpriv() be invoked or the change rejected.
291 *
292 * Returns 1 if security.capability has a value, meaning inode_killpriv()
293 * is required, 0 otherwise, meaning inode_killpriv() is not required.
294 */
295int cap_inode_need_killpriv(struct dentry *dentry)
296{
297 struct inode *inode = d_backing_inode(dentry);
298 int error;
299
300 error = __vfs_getxattr(dentry, inode, XATTR_NAME_CAPS, NULL, 0);
301 return error > 0;
302}
303
304/**
305 * cap_inode_killpriv - Erase the security markings on an inode
306 * @dentry: The inode/dentry to alter
307 *
308 * Erase the privilege-enhancing security markings on an inode.
309 *
310 * Returns 0 if successful, -ve on error.
311 */
312int cap_inode_killpriv(struct dentry *dentry)
313{
314 int error;
315
316 error = __vfs_removexattr(dentry, XATTR_NAME_CAPS);
317 if (error == -EOPNOTSUPP)
318 error = 0;
319 return error;
320}
321
322static bool rootid_owns_currentns(kuid_t kroot)
323{
324 struct user_namespace *ns;
325
326 if (!uid_valid(kroot))
327 return false;
328
329 for (ns = current_user_ns(); ; ns = ns->parent) {
330 if (from_kuid(ns, kroot) == 0)
331 return true;
332 if (ns == &init_user_ns)
333 break;
334 }
335
336 return false;
337}
338
339static __u32 sansflags(__u32 m)
340{
341 return m & ~VFS_CAP_FLAGS_EFFECTIVE;
342}
343
344static bool is_v2header(size_t size, const struct vfs_cap_data *cap)
345{
346 if (size != XATTR_CAPS_SZ_2)
347 return false;
348 return sansflags(le32_to_cpu(cap->magic_etc)) == VFS_CAP_REVISION_2;
349}
350
351static bool is_v3header(size_t size, const struct vfs_cap_data *cap)
352{
353 if (size != XATTR_CAPS_SZ_3)
354 return false;
355 return sansflags(le32_to_cpu(cap->magic_etc)) == VFS_CAP_REVISION_3;
356}
357
358/*
359 * getsecurity: We are called for security.* before any attempt to read the
360 * xattr from the inode itself.
361 *
362 * This gives us a chance to read the on-disk value and convert it. If we
363 * return -EOPNOTSUPP, then vfs_getxattr() will call the i_op handler.
364 *
365 * Note we are not called by vfs_getxattr_alloc(), but that is only called
366 * by the integrity subsystem, which really wants the unconverted values -
367 * so that's good.
368 */
369int cap_inode_getsecurity(struct inode *inode, const char *name, void **buffer,
370 bool alloc)
371{
372 int size, ret;
373 kuid_t kroot;
374 uid_t root, mappedroot;
375 char *tmpbuf = NULL;
376 struct vfs_cap_data *cap;
377 struct vfs_ns_cap_data *nscap;
378 struct dentry *dentry;
379 struct user_namespace *fs_ns;
380
381 if (strcmp(name, "capability") != 0)
382 return -EOPNOTSUPP;
383
384 dentry = d_find_any_alias(inode);
385 if (!dentry)
386 return -EINVAL;
387
388 size = sizeof(struct vfs_ns_cap_data);
389 ret = (int) vfs_getxattr_alloc(dentry, XATTR_NAME_CAPS,
390 &tmpbuf, size, GFP_NOFS);
391 dput(dentry);
392
393 if (ret < 0)
394 return ret;
395
396 fs_ns = inode->i_sb->s_user_ns;
397 cap = (struct vfs_cap_data *) tmpbuf;
398 if (is_v2header((size_t) ret, cap)) {
399 /* If this is sizeof(vfs_cap_data) then we're ok with the
400 * on-disk value, so return that. */
401 if (alloc)
402 *buffer = tmpbuf;
403 else
404 kfree(tmpbuf);
405 return ret;
406 } else if (!is_v3header((size_t) ret, cap)) {
407 kfree(tmpbuf);
408 return -EINVAL;
409 }
410
411 nscap = (struct vfs_ns_cap_data *) tmpbuf;
412 root = le32_to_cpu(nscap->rootid);
413 kroot = make_kuid(fs_ns, root);
414
415 /* If the root kuid maps to a valid uid in current ns, then return
416 * this as a nscap. */
417 mappedroot = from_kuid(current_user_ns(), kroot);
418 if (mappedroot != (uid_t)-1 && mappedroot != (uid_t)0) {
419 if (alloc) {
420 *buffer = tmpbuf;
421 nscap->rootid = cpu_to_le32(mappedroot);
422 } else
423 kfree(tmpbuf);
424 return size;
425 }
426
427 if (!rootid_owns_currentns(kroot)) {
428 kfree(tmpbuf);
429 return -EOPNOTSUPP;
430 }
431
432 /* This comes from a parent namespace. Return as a v2 capability */
433 size = sizeof(struct vfs_cap_data);
434 if (alloc) {
435 *buffer = kmalloc(size, GFP_ATOMIC);
436 if (*buffer) {
437 struct vfs_cap_data *cap = *buffer;
438 __le32 nsmagic, magic;
439 magic = VFS_CAP_REVISION_2;
440 nsmagic = le32_to_cpu(nscap->magic_etc);
441 if (nsmagic & VFS_CAP_FLAGS_EFFECTIVE)
442 magic |= VFS_CAP_FLAGS_EFFECTIVE;
443 memcpy(&cap->data, &nscap->data, sizeof(__le32) * 2 * VFS_CAP_U32);
444 cap->magic_etc = cpu_to_le32(magic);
445 } else {
446 size = -ENOMEM;
447 }
448 }
449 kfree(tmpbuf);
450 return size;
451}
452
453static kuid_t rootid_from_xattr(const void *value, size_t size,
454 struct user_namespace *task_ns)
455{
456 const struct vfs_ns_cap_data *nscap = value;
457 uid_t rootid = 0;
458
459 if (size == XATTR_CAPS_SZ_3)
460 rootid = le32_to_cpu(nscap->rootid);
461
462 return make_kuid(task_ns, rootid);
463}
464
465static bool validheader(size_t size, const struct vfs_cap_data *cap)
466{
467 return is_v2header(size, cap) || is_v3header(size, cap);
468}
469
470/*
471 * User requested a write of security.capability. If needed, update the
472 * xattr to change from v2 to v3, or to fixup the v3 rootid.
473 *
474 * If all is ok, we return the new size, on error return < 0.
475 */
476int cap_convert_nscap(struct dentry *dentry, void **ivalue, size_t size)
477{
478 struct vfs_ns_cap_data *nscap;
479 uid_t nsrootid;
480 const struct vfs_cap_data *cap = *ivalue;
481 __u32 magic, nsmagic;
482 struct inode *inode = d_backing_inode(dentry);
483 struct user_namespace *task_ns = current_user_ns(),
484 *fs_ns = inode->i_sb->s_user_ns;
485 kuid_t rootid;
486 size_t newsize;
487
488 if (!*ivalue)
489 return -EINVAL;
490 if (!validheader(size, cap))
491 return -EINVAL;
492 if (!capable_wrt_inode_uidgid(inode, CAP_SETFCAP))
493 return -EPERM;
494 if (size == XATTR_CAPS_SZ_2)
495 if (ns_capable(inode->i_sb->s_user_ns, CAP_SETFCAP))
496 /* user is privileged, just write the v2 */
497 return size;
498
499 rootid = rootid_from_xattr(*ivalue, size, task_ns);
500 if (!uid_valid(rootid))
501 return -EINVAL;
502
503 nsrootid = from_kuid(fs_ns, rootid);
504 if (nsrootid == -1)
505 return -EINVAL;
506
507 newsize = sizeof(struct vfs_ns_cap_data);
508 nscap = kmalloc(newsize, GFP_ATOMIC);
509 if (!nscap)
510 return -ENOMEM;
511 nscap->rootid = cpu_to_le32(nsrootid);
512 nsmagic = VFS_CAP_REVISION_3;
513 magic = le32_to_cpu(cap->magic_etc);
514 if (magic & VFS_CAP_FLAGS_EFFECTIVE)
515 nsmagic |= VFS_CAP_FLAGS_EFFECTIVE;
516 nscap->magic_etc = cpu_to_le32(nsmagic);
517 memcpy(&nscap->data, &cap->data, sizeof(__le32) * 2 * VFS_CAP_U32);
518
519 kvfree(*ivalue);
520 *ivalue = nscap;
521 return newsize;
522}
523
524/*
525 * Calculate the new process capability sets from the capability sets attached
526 * to a file.
527 */
528static inline int bprm_caps_from_vfs_caps(struct cpu_vfs_cap_data *caps,
529 struct linux_binprm *bprm,
530 bool *effective,
531 bool *has_fcap)
532{
533 struct cred *new = bprm->cred;
534 unsigned i;
535 int ret = 0;
536
537 if (caps->magic_etc & VFS_CAP_FLAGS_EFFECTIVE)
538 *effective = true;
539
540 if (caps->magic_etc & VFS_CAP_REVISION_MASK)
541 *has_fcap = true;
542
543 CAP_FOR_EACH_U32(i) {
544 __u32 permitted = caps->permitted.cap[i];
545 __u32 inheritable = caps->inheritable.cap[i];
546
547 /*
548 * pP' = (X & fP) | (pI & fI)
549 * The addition of pA' is handled later.
550 */
551 new->cap_permitted.cap[i] =
552 (new->cap_bset.cap[i] & permitted) |
553 (new->cap_inheritable.cap[i] & inheritable);
554
555 if (permitted & ~new->cap_permitted.cap[i])
556 /* insufficient to execute correctly */
557 ret = -EPERM;
558 }
559
560 /*
561 * For legacy apps, with no internal support for recognizing they
562 * do not have enough capabilities, we return an error if they are
563 * missing some "forced" (aka file-permitted) capabilities.
564 */
565 return *effective ? ret : 0;
566}
567
568/*
569 * Extract the on-exec-apply capability sets for an executable file.
570 */
571int get_vfs_caps_from_disk(const struct dentry *dentry, struct cpu_vfs_cap_data *cpu_caps)
572{
573 struct inode *inode = d_backing_inode(dentry);
574 __u32 magic_etc;
575 unsigned tocopy, i;
576 int size;
577 struct vfs_ns_cap_data data, *nscaps = &data;
578 struct vfs_cap_data *caps = (struct vfs_cap_data *) &data;
579 kuid_t rootkuid;
580 struct user_namespace *fs_ns;
581
582 memset(cpu_caps, 0, sizeof(struct cpu_vfs_cap_data));
583
584 if (!inode)
585 return -ENODATA;
586
587 fs_ns = inode->i_sb->s_user_ns;
588 size = __vfs_getxattr((struct dentry *)dentry, inode,
589 XATTR_NAME_CAPS, &data, XATTR_CAPS_SZ);
590 if (size == -ENODATA || size == -EOPNOTSUPP)
591 /* no data, that's ok */
592 return -ENODATA;
593
594 if (size < 0)
595 return size;
596
597 if (size < sizeof(magic_etc))
598 return -EINVAL;
599
600 cpu_caps->magic_etc = magic_etc = le32_to_cpu(caps->magic_etc);
601
602 rootkuid = make_kuid(fs_ns, 0);
603 switch (magic_etc & VFS_CAP_REVISION_MASK) {
604 case VFS_CAP_REVISION_1:
605 if (size != XATTR_CAPS_SZ_1)
606 return -EINVAL;
607 tocopy = VFS_CAP_U32_1;
608 break;
609 case VFS_CAP_REVISION_2:
610 if (size != XATTR_CAPS_SZ_2)
611 return -EINVAL;
612 tocopy = VFS_CAP_U32_2;
613 break;
614 case VFS_CAP_REVISION_3:
615 if (size != XATTR_CAPS_SZ_3)
616 return -EINVAL;
617 tocopy = VFS_CAP_U32_3;
618 rootkuid = make_kuid(fs_ns, le32_to_cpu(nscaps->rootid));
619 break;
620
621 default:
622 return -EINVAL;
623 }
624 /* Limit the caps to the mounter of the filesystem
625 * or the more limited uid specified in the xattr.
626 */
627 if (!rootid_owns_currentns(rootkuid))
628 return -ENODATA;
629
630 CAP_FOR_EACH_U32(i) {
631 if (i >= tocopy)
632 break;
633 cpu_caps->permitted.cap[i] = le32_to_cpu(caps->data[i].permitted);
634 cpu_caps->inheritable.cap[i] = le32_to_cpu(caps->data[i].inheritable);
635 }
636
637 cpu_caps->permitted.cap[CAP_LAST_U32] &= CAP_LAST_U32_VALID_MASK;
638 cpu_caps->inheritable.cap[CAP_LAST_U32] &= CAP_LAST_U32_VALID_MASK;
639
640 cpu_caps->rootid = rootkuid;
641
642 return 0;
643}
644
645/*
646 * Attempt to get the on-exec apply capability sets for an executable file from
647 * its xattrs and, if present, apply them to the proposed credentials being
648 * constructed by execve().
649 */
650static int get_file_caps(struct linux_binprm *bprm, struct file *file,
651 bool *effective, bool *has_fcap)
652{
653 int rc = 0;
654 struct cpu_vfs_cap_data vcaps;
655
656 cap_clear(bprm->cred->cap_permitted);
657
658 if (!file_caps_enabled)
659 return 0;
660
661 if (!mnt_may_suid(file->f_path.mnt))
662 return 0;
663
664 /*
665 * This check is redundant with mnt_may_suid() but is kept to make
666 * explicit that capability bits are limited to s_user_ns and its
667 * descendants.
668 */
669 if (!current_in_userns(file->f_path.mnt->mnt_sb->s_user_ns))
670 return 0;
671
672 rc = get_vfs_caps_from_disk(file->f_path.dentry, &vcaps);
673 if (rc < 0) {
674 if (rc == -EINVAL)
675 printk(KERN_NOTICE "Invalid argument reading file caps for %s\n",
676 bprm->filename);
677 else if (rc == -ENODATA)
678 rc = 0;
679 goto out;
680 }
681
682 rc = bprm_caps_from_vfs_caps(&vcaps, bprm, effective, has_fcap);
683
684out:
685 if (rc)
686 cap_clear(bprm->cred->cap_permitted);
687
688 return rc;
689}
690
691static inline bool root_privileged(void) { return !issecure(SECURE_NOROOT); }
692
693static inline bool __is_real(kuid_t uid, struct cred *cred)
694{ return uid_eq(cred->uid, uid); }
695
696static inline bool __is_eff(kuid_t uid, struct cred *cred)
697{ return uid_eq(cred->euid, uid); }
698
699static inline bool __is_suid(kuid_t uid, struct cred *cred)
700{ return !__is_real(uid, cred) && __is_eff(uid, cred); }
701
702/*
703 * handle_privileged_root - Handle case of privileged root
704 * @bprm: The execution parameters, including the proposed creds
705 * @has_fcap: Are any file capabilities set?
706 * @effective: Do we have effective root privilege?
707 * @root_uid: This namespace' root UID WRT initial USER namespace
708 *
709 * Handle the case where root is privileged and hasn't been neutered by
710 * SECURE_NOROOT. If file capabilities are set, they won't be combined with
711 * set UID root and nothing is changed. If we are root, cap_permitted is
712 * updated. If we have become set UID root, the effective bit is set.
713 */
714static void handle_privileged_root(struct linux_binprm *bprm, bool has_fcap,
715 bool *effective, kuid_t root_uid)
716{
717 const struct cred *old = current_cred();
718 struct cred *new = bprm->cred;
719
720 if (!root_privileged())
721 return;
722 /*
723 * If the legacy file capability is set, then don't set privs
724 * for a setuid root binary run by a non-root user. Do set it
725 * for a root user just to cause least surprise to an admin.
726 */
727 if (has_fcap && __is_suid(root_uid, new)) {
728 warn_setuid_and_fcaps_mixed(bprm->filename);
729 return;
730 }
731 /*
732 * To support inheritance of root-permissions and suid-root
733 * executables under compatibility mode, we override the
734 * capability sets for the file.
735 */
736 if (__is_eff(root_uid, new) || __is_real(root_uid, new)) {
737 /* pP' = (cap_bset & ~0) | (pI & ~0) */
738 new->cap_permitted = cap_combine(old->cap_bset,
739 old->cap_inheritable);
740 }
741 /*
742 * If only the real uid is 0, we do not set the effective bit.
743 */
744 if (__is_eff(root_uid, new))
745 *effective = true;
746}
747
748#define __cap_gained(field, target, source) \
749 !cap_issubset(target->cap_##field, source->cap_##field)
750#define __cap_grew(target, source, cred) \
751 !cap_issubset(cred->cap_##target, cred->cap_##source)
752#define __cap_full(field, cred) \
753 cap_issubset(CAP_FULL_SET, cred->cap_##field)
754
755static inline bool __is_setuid(struct cred *new, const struct cred *old)
756{ return !uid_eq(new->euid, old->uid); }
757
758static inline bool __is_setgid(struct cred *new, const struct cred *old)
759{ return !gid_eq(new->egid, old->gid); }
760
761/*
762 * 1) Audit candidate if current->cap_effective is set
763 *
764 * We do not bother to audit if 3 things are true:
765 * 1) cap_effective has all caps
766 * 2) we became root *OR* are were already root
767 * 3) root is supposed to have all caps (SECURE_NOROOT)
768 * Since this is just a normal root execing a process.
769 *
770 * Number 1 above might fail if you don't have a full bset, but I think
771 * that is interesting information to audit.
772 *
773 * A number of other conditions require logging:
774 * 2) something prevented setuid root getting all caps
775 * 3) non-setuid root gets fcaps
776 * 4) non-setuid root gets ambient
777 */
778static inline bool nonroot_raised_pE(struct cred *new, const struct cred *old,
779 kuid_t root, bool has_fcap)
780{
781 bool ret = false;
782
783 if ((__cap_grew(effective, ambient, new) &&
784 !(__cap_full(effective, new) &&
785 (__is_eff(root, new) || __is_real(root, new)) &&
786 root_privileged())) ||
787 (root_privileged() &&
788 __is_suid(root, new) &&
789 !__cap_full(effective, new)) ||
790 (!__is_setuid(new, old) &&
791 ((has_fcap &&
792 __cap_gained(permitted, new, old)) ||
793 __cap_gained(ambient, new, old))))
794
795 ret = true;
796
797 return ret;
798}
799
800/**
801 * cap_bprm_creds_from_file - Set up the proposed credentials for execve().
802 * @bprm: The execution parameters, including the proposed creds
803 * @file: The file to pull the credentials from
804 *
805 * Set up the proposed credentials for a new execution context being
806 * constructed by execve(). The proposed creds in @bprm->cred is altered,
807 * which won't take effect immediately. Returns 0 if successful, -ve on error.
808 */
809int cap_bprm_creds_from_file(struct linux_binprm *bprm, struct file *file)
810{
811 /* Process setpcap binaries and capabilities for uid 0 */
812 const struct cred *old = current_cred();
813 struct cred *new = bprm->cred;
814 bool effective = false, has_fcap = false, is_setid;
815 int ret;
816 kuid_t root_uid;
817
818 if (WARN_ON(!cap_ambient_invariant_ok(old)))
819 return -EPERM;
820
821 ret = get_file_caps(bprm, file, &effective, &has_fcap);
822 if (ret < 0)
823 return ret;
824
825 root_uid = make_kuid(new->user_ns, 0);
826
827 handle_privileged_root(bprm, has_fcap, &effective, root_uid);
828
829 /* if we have fs caps, clear dangerous personality flags */
830 if (__cap_gained(permitted, new, old))
831 bprm->per_clear |= PER_CLEAR_ON_SETID;
832
833 /* Don't let someone trace a set[ug]id/setpcap binary with the revised
834 * credentials unless they have the appropriate permit.
835 *
836 * In addition, if NO_NEW_PRIVS, then ensure we get no new privs.
837 */
838 is_setid = __is_setuid(new, old) || __is_setgid(new, old);
839
840 if ((is_setid || __cap_gained(permitted, new, old)) &&
841 ((bprm->unsafe & ~LSM_UNSAFE_PTRACE) ||
842 !ptracer_capable(current, new->user_ns))) {
843 /* downgrade; they get no more than they had, and maybe less */
844 if (!ns_capable(new->user_ns, CAP_SETUID) ||
845 (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS)) {
846 new->euid = new->uid;
847 new->egid = new->gid;
848 }
849 new->cap_permitted = cap_intersect(new->cap_permitted,
850 old->cap_permitted);
851 }
852
853 new->suid = new->fsuid = new->euid;
854 new->sgid = new->fsgid = new->egid;
855
856 /* File caps or setid cancels ambient. */
857 if (has_fcap || is_setid)
858 cap_clear(new->cap_ambient);
859
860 /*
861 * Now that we've computed pA', update pP' to give:
862 * pP' = (X & fP) | (pI & fI) | pA'
863 */
864 new->cap_permitted = cap_combine(new->cap_permitted, new->cap_ambient);
865
866 /*
867 * Set pE' = (fE ? pP' : pA'). Because pA' is zero if fE is set,
868 * this is the same as pE' = (fE ? pP' : 0) | pA'.
869 */
870 if (effective)
871 new->cap_effective = new->cap_permitted;
872 else
873 new->cap_effective = new->cap_ambient;
874
875 if (WARN_ON(!cap_ambient_invariant_ok(new)))
876 return -EPERM;
877
878 if (nonroot_raised_pE(new, old, root_uid, has_fcap)) {
879 ret = audit_log_bprm_fcaps(bprm, new, old);
880 if (ret < 0)
881 return ret;
882 }
883
884 new->securebits &= ~issecure_mask(SECURE_KEEP_CAPS);
885
886 if (WARN_ON(!cap_ambient_invariant_ok(new)))
887 return -EPERM;
888
889 /* Check for privilege-elevated exec. */
890 if (is_setid ||
891 (!__is_real(root_uid, new) &&
892 (effective ||
893 __cap_grew(permitted, ambient, new))))
894 bprm->secureexec = 1;
895
896 return 0;
897}
898
899/**
900 * cap_inode_setxattr - Determine whether an xattr may be altered
901 * @dentry: The inode/dentry being altered
902 * @name: The name of the xattr to be changed
903 * @value: The value that the xattr will be changed to
904 * @size: The size of value
905 * @flags: The replacement flag
906 *
907 * Determine whether an xattr may be altered or set on an inode, returning 0 if
908 * permission is granted, -ve if denied.
909 *
910 * This is used to make sure security xattrs don't get updated or set by those
911 * who aren't privileged to do so.
912 */
913int cap_inode_setxattr(struct dentry *dentry, const char *name,
914 const void *value, size_t size, int flags)
915{
916 struct user_namespace *user_ns = dentry->d_sb->s_user_ns;
917
918 /* Ignore non-security xattrs */
919 if (strncmp(name, XATTR_SECURITY_PREFIX,
920 XATTR_SECURITY_PREFIX_LEN) != 0)
921 return 0;
922
923 /*
924 * For XATTR_NAME_CAPS the check will be done in
925 * cap_convert_nscap(), called by setxattr()
926 */
927 if (strcmp(name, XATTR_NAME_CAPS) == 0)
928 return 0;
929
930 if (!ns_capable(user_ns, CAP_SYS_ADMIN))
931 return -EPERM;
932 return 0;
933}
934
935/**
936 * cap_inode_removexattr - Determine whether an xattr may be removed
937 * @dentry: The inode/dentry being altered
938 * @name: The name of the xattr to be changed
939 *
940 * Determine whether an xattr may be removed from an inode, returning 0 if
941 * permission is granted, -ve if denied.
942 *
943 * This is used to make sure security xattrs don't get removed by those who
944 * aren't privileged to remove them.
945 */
946int cap_inode_removexattr(struct dentry *dentry, const char *name)
947{
948 struct user_namespace *user_ns = dentry->d_sb->s_user_ns;
949
950 /* Ignore non-security xattrs */
951 if (strncmp(name, XATTR_SECURITY_PREFIX,
952 XATTR_SECURITY_PREFIX_LEN) != 0)
953 return 0;
954
955 if (strcmp(name, XATTR_NAME_CAPS) == 0) {
956 /* security.capability gets namespaced */
957 struct inode *inode = d_backing_inode(dentry);
958 if (!inode)
959 return -EINVAL;
960 if (!capable_wrt_inode_uidgid(inode, CAP_SETFCAP))
961 return -EPERM;
962 return 0;
963 }
964
965 if (!ns_capable(user_ns, CAP_SYS_ADMIN))
966 return -EPERM;
967 return 0;
968}
969
970/*
971 * cap_emulate_setxuid() fixes the effective / permitted capabilities of
972 * a process after a call to setuid, setreuid, or setresuid.
973 *
974 * 1) When set*uiding _from_ one of {r,e,s}uid == 0 _to_ all of
975 * {r,e,s}uid != 0, the permitted and effective capabilities are
976 * cleared.
977 *
978 * 2) When set*uiding _from_ euid == 0 _to_ euid != 0, the effective
979 * capabilities of the process are cleared.
980 *
981 * 3) When set*uiding _from_ euid != 0 _to_ euid == 0, the effective
982 * capabilities are set to the permitted capabilities.
983 *
984 * fsuid is handled elsewhere. fsuid == 0 and {r,e,s}uid!= 0 should
985 * never happen.
986 *
987 * -astor
988 *
989 * cevans - New behaviour, Oct '99
990 * A process may, via prctl(), elect to keep its capabilities when it
991 * calls setuid() and switches away from uid==0. Both permitted and
992 * effective sets will be retained.
993 * Without this change, it was impossible for a daemon to drop only some
994 * of its privilege. The call to setuid(!=0) would drop all privileges!
995 * Keeping uid 0 is not an option because uid 0 owns too many vital
996 * files..
997 * Thanks to Olaf Kirch and Peter Benie for spotting this.
998 */
999static inline void cap_emulate_setxuid(struct cred *new, const struct cred *old)
1000{
1001 kuid_t root_uid = make_kuid(old->user_ns, 0);
1002
1003 if ((uid_eq(old->uid, root_uid) ||
1004 uid_eq(old->euid, root_uid) ||
1005 uid_eq(old->suid, root_uid)) &&
1006 (!uid_eq(new->uid, root_uid) &&
1007 !uid_eq(new->euid, root_uid) &&
1008 !uid_eq(new->suid, root_uid))) {
1009 if (!issecure(SECURE_KEEP_CAPS)) {
1010 cap_clear(new->cap_permitted);
1011 cap_clear(new->cap_effective);
1012 }
1013
1014 /*
1015 * Pre-ambient programs expect setresuid to nonroot followed
1016 * by exec to drop capabilities. We should make sure that
1017 * this remains the case.
1018 */
1019 cap_clear(new->cap_ambient);
1020 }
1021 if (uid_eq(old->euid, root_uid) && !uid_eq(new->euid, root_uid))
1022 cap_clear(new->cap_effective);
1023 if (!uid_eq(old->euid, root_uid) && uid_eq(new->euid, root_uid))
1024 new->cap_effective = new->cap_permitted;
1025}
1026
1027/**
1028 * cap_task_fix_setuid - Fix up the results of setuid() call
1029 * @new: The proposed credentials
1030 * @old: The current task's current credentials
1031 * @flags: Indications of what has changed
1032 *
1033 * Fix up the results of setuid() call before the credential changes are
1034 * actually applied, returning 0 to grant the changes, -ve to deny them.
1035 */
1036int cap_task_fix_setuid(struct cred *new, const struct cred *old, int flags)
1037{
1038 switch (flags) {
1039 case LSM_SETID_RE:
1040 case LSM_SETID_ID:
1041 case LSM_SETID_RES:
1042 /* juggle the capabilities to follow [RES]UID changes unless
1043 * otherwise suppressed */
1044 if (!issecure(SECURE_NO_SETUID_FIXUP))
1045 cap_emulate_setxuid(new, old);
1046 break;
1047
1048 case LSM_SETID_FS:
1049 /* juggle the capabilties to follow FSUID changes, unless
1050 * otherwise suppressed
1051 *
1052 * FIXME - is fsuser used for all CAP_FS_MASK capabilities?
1053 * if not, we might be a bit too harsh here.
1054 */
1055 if (!issecure(SECURE_NO_SETUID_FIXUP)) {
1056 kuid_t root_uid = make_kuid(old->user_ns, 0);
1057 if (uid_eq(old->fsuid, root_uid) && !uid_eq(new->fsuid, root_uid))
1058 new->cap_effective =
1059 cap_drop_fs_set(new->cap_effective);
1060
1061 if (!uid_eq(old->fsuid, root_uid) && uid_eq(new->fsuid, root_uid))
1062 new->cap_effective =
1063 cap_raise_fs_set(new->cap_effective,
1064 new->cap_permitted);
1065 }
1066 break;
1067
1068 default:
1069 return -EINVAL;
1070 }
1071
1072 return 0;
1073}
1074
1075/*
1076 * Rationale: code calling task_setscheduler, task_setioprio, and
1077 * task_setnice, assumes that
1078 * . if capable(cap_sys_nice), then those actions should be allowed
1079 * . if not capable(cap_sys_nice), but acting on your own processes,
1080 * then those actions should be allowed
1081 * This is insufficient now since you can call code without suid, but
1082 * yet with increased caps.
1083 * So we check for increased caps on the target process.
1084 */
1085static int cap_safe_nice(struct task_struct *p)
1086{
1087 int is_subset, ret = 0;
1088
1089 rcu_read_lock();
1090 is_subset = cap_issubset(__task_cred(p)->cap_permitted,
1091 current_cred()->cap_permitted);
1092 if (!is_subset && !ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE))
1093 ret = -EPERM;
1094 rcu_read_unlock();
1095
1096 return ret;
1097}
1098
1099/**
1100 * cap_task_setscheduler - Detemine if scheduler policy change is permitted
1101 * @p: The task to affect
1102 *
1103 * Detemine if the requested scheduler policy change is permitted for the
1104 * specified task, returning 0 if permission is granted, -ve if denied.
1105 */
1106int cap_task_setscheduler(struct task_struct *p)
1107{
1108 return cap_safe_nice(p);
1109}
1110
1111/**
1112 * cap_task_ioprio - Detemine if I/O priority change is permitted
1113 * @p: The task to affect
1114 * @ioprio: The I/O priority to set
1115 *
1116 * Detemine if the requested I/O priority change is permitted for the specified
1117 * task, returning 0 if permission is granted, -ve if denied.
1118 */
1119int cap_task_setioprio(struct task_struct *p, int ioprio)
1120{
1121 return cap_safe_nice(p);
1122}
1123
1124/**
1125 * cap_task_ioprio - Detemine if task priority change is permitted
1126 * @p: The task to affect
1127 * @nice: The nice value to set
1128 *
1129 * Detemine if the requested task priority change is permitted for the
1130 * specified task, returning 0 if permission is granted, -ve if denied.
1131 */
1132int cap_task_setnice(struct task_struct *p, int nice)
1133{
1134 return cap_safe_nice(p);
1135}
1136
1137/*
1138 * Implement PR_CAPBSET_DROP. Attempt to remove the specified capability from
1139 * the current task's bounding set. Returns 0 on success, -ve on error.
1140 */
1141static int cap_prctl_drop(unsigned long cap)
1142{
1143 struct cred *new;
1144
1145 if (!ns_capable(current_user_ns(), CAP_SETPCAP))
1146 return -EPERM;
1147 if (!cap_valid(cap))
1148 return -EINVAL;
1149
1150 new = prepare_creds();
1151 if (!new)
1152 return -ENOMEM;
1153 cap_lower(new->cap_bset, cap);
1154 return commit_creds(new);
1155}
1156
1157/**
1158 * cap_task_prctl - Implement process control functions for this security module
1159 * @option: The process control function requested
1160 * @arg2, @arg3, @arg4, @arg5: The argument data for this function
1161 *
1162 * Allow process control functions (sys_prctl()) to alter capabilities; may
1163 * also deny access to other functions not otherwise implemented here.
1164 *
1165 * Returns 0 or +ve on success, -ENOSYS if this function is not implemented
1166 * here, other -ve on error. If -ENOSYS is returned, sys_prctl() and other LSM
1167 * modules will consider performing the function.
1168 */
1169int cap_task_prctl(int option, unsigned long arg2, unsigned long arg3,
1170 unsigned long arg4, unsigned long arg5)
1171{
1172 const struct cred *old = current_cred();
1173 struct cred *new;
1174
1175 switch (option) {
1176 case PR_CAPBSET_READ:
1177 if (!cap_valid(arg2))
1178 return -EINVAL;
1179 return !!cap_raised(old->cap_bset, arg2);
1180
1181 case PR_CAPBSET_DROP:
1182 return cap_prctl_drop(arg2);
1183
1184 /*
1185 * The next four prctl's remain to assist with transitioning a
1186 * system from legacy UID=0 based privilege (when filesystem
1187 * capabilities are not in use) to a system using filesystem
1188 * capabilities only - as the POSIX.1e draft intended.
1189 *
1190 * Note:
1191 *
1192 * PR_SET_SECUREBITS =
1193 * issecure_mask(SECURE_KEEP_CAPS_LOCKED)
1194 * | issecure_mask(SECURE_NOROOT)
1195 * | issecure_mask(SECURE_NOROOT_LOCKED)
1196 * | issecure_mask(SECURE_NO_SETUID_FIXUP)
1197 * | issecure_mask(SECURE_NO_SETUID_FIXUP_LOCKED)
1198 *
1199 * will ensure that the current process and all of its
1200 * children will be locked into a pure
1201 * capability-based-privilege environment.
1202 */
1203 case PR_SET_SECUREBITS:
1204 if ((((old->securebits & SECURE_ALL_LOCKS) >> 1)
1205 & (old->securebits ^ arg2)) /*[1]*/
1206 || ((old->securebits & SECURE_ALL_LOCKS & ~arg2)) /*[2]*/
1207 || (arg2 & ~(SECURE_ALL_LOCKS | SECURE_ALL_BITS)) /*[3]*/
1208 || (cap_capable(current_cred(),
1209 current_cred()->user_ns,
1210 CAP_SETPCAP,
1211 CAP_OPT_NONE) != 0) /*[4]*/
1212 /*
1213 * [1] no changing of bits that are locked
1214 * [2] no unlocking of locks
1215 * [3] no setting of unsupported bits
1216 * [4] doing anything requires privilege (go read about
1217 * the "sendmail capabilities bug")
1218 */
1219 )
1220 /* cannot change a locked bit */
1221 return -EPERM;
1222
1223 new = prepare_creds();
1224 if (!new)
1225 return -ENOMEM;
1226 new->securebits = arg2;
1227 return commit_creds(new);
1228
1229 case PR_GET_SECUREBITS:
1230 return old->securebits;
1231
1232 case PR_GET_KEEPCAPS:
1233 return !!issecure(SECURE_KEEP_CAPS);
1234
1235 case PR_SET_KEEPCAPS:
1236 if (arg2 > 1) /* Note, we rely on arg2 being unsigned here */
1237 return -EINVAL;
1238 if (issecure(SECURE_KEEP_CAPS_LOCKED))
1239 return -EPERM;
1240
1241 new = prepare_creds();
1242 if (!new)
1243 return -ENOMEM;
1244 if (arg2)
1245 new->securebits |= issecure_mask(SECURE_KEEP_CAPS);
1246 else
1247 new->securebits &= ~issecure_mask(SECURE_KEEP_CAPS);
1248 return commit_creds(new);
1249
1250 case PR_CAP_AMBIENT:
1251 if (arg2 == PR_CAP_AMBIENT_CLEAR_ALL) {
1252 if (arg3 | arg4 | arg5)
1253 return -EINVAL;
1254
1255 new = prepare_creds();
1256 if (!new)
1257 return -ENOMEM;
1258 cap_clear(new->cap_ambient);
1259 return commit_creds(new);
1260 }
1261
1262 if (((!cap_valid(arg3)) | arg4 | arg5))
1263 return -EINVAL;
1264
1265 if (arg2 == PR_CAP_AMBIENT_IS_SET) {
1266 return !!cap_raised(current_cred()->cap_ambient, arg3);
1267 } else if (arg2 != PR_CAP_AMBIENT_RAISE &&
1268 arg2 != PR_CAP_AMBIENT_LOWER) {
1269 return -EINVAL;
1270 } else {
1271 if (arg2 == PR_CAP_AMBIENT_RAISE &&
1272 (!cap_raised(current_cred()->cap_permitted, arg3) ||
1273 !cap_raised(current_cred()->cap_inheritable,
1274 arg3) ||
1275 issecure(SECURE_NO_CAP_AMBIENT_RAISE)))
1276 return -EPERM;
1277
1278 new = prepare_creds();
1279 if (!new)
1280 return -ENOMEM;
1281 if (arg2 == PR_CAP_AMBIENT_RAISE)
1282 cap_raise(new->cap_ambient, arg3);
1283 else
1284 cap_lower(new->cap_ambient, arg3);
1285 return commit_creds(new);
1286 }
1287
1288 default:
1289 /* No functionality available - continue with default */
1290 return -ENOSYS;
1291 }
1292}
1293
1294/**
1295 * cap_vm_enough_memory - Determine whether a new virtual mapping is permitted
1296 * @mm: The VM space in which the new mapping is to be made
1297 * @pages: The size of the mapping
1298 *
1299 * Determine whether the allocation of a new virtual mapping by the current
1300 * task is permitted, returning 1 if permission is granted, 0 if not.
1301 */
1302int cap_vm_enough_memory(struct mm_struct *mm, long pages)
1303{
1304 int cap_sys_admin = 0;
1305
1306 if (cap_capable(current_cred(), &init_user_ns,
1307 CAP_SYS_ADMIN, CAP_OPT_NOAUDIT) == 0)
1308 cap_sys_admin = 1;
1309
1310 return cap_sys_admin;
1311}
1312
1313/*
1314 * cap_mmap_addr - check if able to map given addr
1315 * @addr: address attempting to be mapped
1316 *
1317 * If the process is attempting to map memory below dac_mmap_min_addr they need
1318 * CAP_SYS_RAWIO. The other parameters to this function are unused by the
1319 * capability security module. Returns 0 if this mapping should be allowed
1320 * -EPERM if not.
1321 */
1322int cap_mmap_addr(unsigned long addr)
1323{
1324 int ret = 0;
1325
1326 if (addr < dac_mmap_min_addr) {
1327 ret = cap_capable(current_cred(), &init_user_ns, CAP_SYS_RAWIO,
1328 CAP_OPT_NONE);
1329 /* set PF_SUPERPRIV if it turns out we allow the low mmap */
1330 if (ret == 0)
1331 current->flags |= PF_SUPERPRIV;
1332 }
1333 return ret;
1334}
1335
1336int cap_mmap_file(struct file *file, unsigned long reqprot,
1337 unsigned long prot, unsigned long flags)
1338{
1339 return 0;
1340}
1341
1342#ifdef CONFIG_SECURITY
1343
1344static struct security_hook_list capability_hooks[] __lsm_ro_after_init = {
1345 LSM_HOOK_INIT(capable, cap_capable),
1346 LSM_HOOK_INIT(settime, cap_settime),
1347 LSM_HOOK_INIT(ptrace_access_check, cap_ptrace_access_check),
1348 LSM_HOOK_INIT(ptrace_traceme, cap_ptrace_traceme),
1349 LSM_HOOK_INIT(capget, cap_capget),
1350 LSM_HOOK_INIT(capset, cap_capset),
1351 LSM_HOOK_INIT(bprm_creds_from_file, cap_bprm_creds_from_file),
1352 LSM_HOOK_INIT(inode_need_killpriv, cap_inode_need_killpriv),
1353 LSM_HOOK_INIT(inode_killpriv, cap_inode_killpriv),
1354 LSM_HOOK_INIT(inode_getsecurity, cap_inode_getsecurity),
1355 LSM_HOOK_INIT(mmap_addr, cap_mmap_addr),
1356 LSM_HOOK_INIT(mmap_file, cap_mmap_file),
1357 LSM_HOOK_INIT(task_fix_setuid, cap_task_fix_setuid),
1358 LSM_HOOK_INIT(task_prctl, cap_task_prctl),
1359 LSM_HOOK_INIT(task_setscheduler, cap_task_setscheduler),
1360 LSM_HOOK_INIT(task_setioprio, cap_task_setioprio),
1361 LSM_HOOK_INIT(task_setnice, cap_task_setnice),
1362 LSM_HOOK_INIT(vm_enough_memory, cap_vm_enough_memory),
1363};
1364
1365static int __init capability_init(void)
1366{
1367 security_add_hooks(capability_hooks, ARRAY_SIZE(capability_hooks),
1368 "capability");
1369 return 0;
1370}
1371
1372DEFINE_LSM(capability) = {
1373 .name = "capability",
1374 .order = LSM_ORDER_FIRST,
1375 .init = capability_init,
1376};
1377
1378#endif /* CONFIG_SECURITY */
1/* Common capabilities, needed by capability.o.
2 *
3 * This program is free software; you can redistribute it and/or modify
4 * it under the terms of the GNU General Public License as published by
5 * the Free Software Foundation; either version 2 of the License, or
6 * (at your option) any later version.
7 *
8 */
9
10#include <linux/capability.h>
11#include <linux/audit.h>
12#include <linux/module.h>
13#include <linux/init.h>
14#include <linux/kernel.h>
15#include <linux/lsm_hooks.h>
16#include <linux/file.h>
17#include <linux/mm.h>
18#include <linux/mman.h>
19#include <linux/pagemap.h>
20#include <linux/swap.h>
21#include <linux/skbuff.h>
22#include <linux/netlink.h>
23#include <linux/ptrace.h>
24#include <linux/xattr.h>
25#include <linux/hugetlb.h>
26#include <linux/mount.h>
27#include <linux/sched.h>
28#include <linux/prctl.h>
29#include <linux/securebits.h>
30#include <linux/user_namespace.h>
31#include <linux/binfmts.h>
32#include <linux/personality.h>
33
34/*
35 * If a non-root user executes a setuid-root binary in
36 * !secure(SECURE_NOROOT) mode, then we raise capabilities.
37 * However if fE is also set, then the intent is for only
38 * the file capabilities to be applied, and the setuid-root
39 * bit is left on either to change the uid (plausible) or
40 * to get full privilege on a kernel without file capabilities
41 * support. So in that case we do not raise capabilities.
42 *
43 * Warn if that happens, once per boot.
44 */
45static void warn_setuid_and_fcaps_mixed(const char *fname)
46{
47 static int warned;
48 if (!warned) {
49 printk(KERN_INFO "warning: `%s' has both setuid-root and"
50 " effective capabilities. Therefore not raising all"
51 " capabilities.\n", fname);
52 warned = 1;
53 }
54}
55
56/**
57 * cap_capable - Determine whether a task has a particular effective capability
58 * @cred: The credentials to use
59 * @ns: The user namespace in which we need the capability
60 * @cap: The capability to check for
61 * @audit: Whether to write an audit message or not
62 *
63 * Determine whether the nominated task has the specified capability amongst
64 * its effective set, returning 0 if it does, -ve if it does not.
65 *
66 * NOTE WELL: cap_has_capability() cannot be used like the kernel's capable()
67 * and has_capability() functions. That is, it has the reverse semantics:
68 * cap_has_capability() returns 0 when a task has a capability, but the
69 * kernel's capable() and has_capability() returns 1 for this case.
70 */
71int cap_capable(const struct cred *cred, struct user_namespace *targ_ns,
72 int cap, int audit)
73{
74 struct user_namespace *ns = targ_ns;
75
76 /* See if cred has the capability in the target user namespace
77 * by examining the target user namespace and all of the target
78 * user namespace's parents.
79 */
80 for (;;) {
81 /* Do we have the necessary capabilities? */
82 if (ns == cred->user_ns)
83 return cap_raised(cred->cap_effective, cap) ? 0 : -EPERM;
84
85 /* Have we tried all of the parent namespaces? */
86 if (ns == &init_user_ns)
87 return -EPERM;
88
89 /*
90 * The owner of the user namespace in the parent of the
91 * user namespace has all caps.
92 */
93 if ((ns->parent == cred->user_ns) && uid_eq(ns->owner, cred->euid))
94 return 0;
95
96 /*
97 * If you have a capability in a parent user ns, then you have
98 * it over all children user namespaces as well.
99 */
100 ns = ns->parent;
101 }
102
103 /* We never get here */
104}
105
106/**
107 * cap_settime - Determine whether the current process may set the system clock
108 * @ts: The time to set
109 * @tz: The timezone to set
110 *
111 * Determine whether the current process may set the system clock and timezone
112 * information, returning 0 if permission granted, -ve if denied.
113 */
114int cap_settime(const struct timespec *ts, const struct timezone *tz)
115{
116 if (!capable(CAP_SYS_TIME))
117 return -EPERM;
118 return 0;
119}
120
121/**
122 * cap_ptrace_access_check - Determine whether the current process may access
123 * another
124 * @child: The process to be accessed
125 * @mode: The mode of attachment.
126 *
127 * If we are in the same or an ancestor user_ns and have all the target
128 * task's capabilities, then ptrace access is allowed.
129 * If we have the ptrace capability to the target user_ns, then ptrace
130 * access is allowed.
131 * Else denied.
132 *
133 * Determine whether a process may access another, returning 0 if permission
134 * granted, -ve if denied.
135 */
136int cap_ptrace_access_check(struct task_struct *child, unsigned int mode)
137{
138 int ret = 0;
139 const struct cred *cred, *child_cred;
140 const kernel_cap_t *caller_caps;
141
142 rcu_read_lock();
143 cred = current_cred();
144 child_cred = __task_cred(child);
145 if (mode & PTRACE_MODE_FSCREDS)
146 caller_caps = &cred->cap_effective;
147 else
148 caller_caps = &cred->cap_permitted;
149 if (cred->user_ns == child_cred->user_ns &&
150 cap_issubset(child_cred->cap_permitted, *caller_caps))
151 goto out;
152 if (ns_capable(child_cred->user_ns, CAP_SYS_PTRACE))
153 goto out;
154 ret = -EPERM;
155out:
156 rcu_read_unlock();
157 return ret;
158}
159
160/**
161 * cap_ptrace_traceme - Determine whether another process may trace the current
162 * @parent: The task proposed to be the tracer
163 *
164 * If parent is in the same or an ancestor user_ns and has all current's
165 * capabilities, then ptrace access is allowed.
166 * If parent has the ptrace capability to current's user_ns, then ptrace
167 * access is allowed.
168 * Else denied.
169 *
170 * Determine whether the nominated task is permitted to trace the current
171 * process, returning 0 if permission is granted, -ve if denied.
172 */
173int cap_ptrace_traceme(struct task_struct *parent)
174{
175 int ret = 0;
176 const struct cred *cred, *child_cred;
177
178 rcu_read_lock();
179 cred = __task_cred(parent);
180 child_cred = current_cred();
181 if (cred->user_ns == child_cred->user_ns &&
182 cap_issubset(child_cred->cap_permitted, cred->cap_permitted))
183 goto out;
184 if (has_ns_capability(parent, child_cred->user_ns, CAP_SYS_PTRACE))
185 goto out;
186 ret = -EPERM;
187out:
188 rcu_read_unlock();
189 return ret;
190}
191
192/**
193 * cap_capget - Retrieve a task's capability sets
194 * @target: The task from which to retrieve the capability sets
195 * @effective: The place to record the effective set
196 * @inheritable: The place to record the inheritable set
197 * @permitted: The place to record the permitted set
198 *
199 * This function retrieves the capabilities of the nominated task and returns
200 * them to the caller.
201 */
202int cap_capget(struct task_struct *target, kernel_cap_t *effective,
203 kernel_cap_t *inheritable, kernel_cap_t *permitted)
204{
205 const struct cred *cred;
206
207 /* Derived from kernel/capability.c:sys_capget. */
208 rcu_read_lock();
209 cred = __task_cred(target);
210 *effective = cred->cap_effective;
211 *inheritable = cred->cap_inheritable;
212 *permitted = cred->cap_permitted;
213 rcu_read_unlock();
214 return 0;
215}
216
217/*
218 * Determine whether the inheritable capabilities are limited to the old
219 * permitted set. Returns 1 if they are limited, 0 if they are not.
220 */
221static inline int cap_inh_is_capped(void)
222{
223
224 /* they are so limited unless the current task has the CAP_SETPCAP
225 * capability
226 */
227 if (cap_capable(current_cred(), current_cred()->user_ns,
228 CAP_SETPCAP, SECURITY_CAP_AUDIT) == 0)
229 return 0;
230 return 1;
231}
232
233/**
234 * cap_capset - Validate and apply proposed changes to current's capabilities
235 * @new: The proposed new credentials; alterations should be made here
236 * @old: The current task's current credentials
237 * @effective: A pointer to the proposed new effective capabilities set
238 * @inheritable: A pointer to the proposed new inheritable capabilities set
239 * @permitted: A pointer to the proposed new permitted capabilities set
240 *
241 * This function validates and applies a proposed mass change to the current
242 * process's capability sets. The changes are made to the proposed new
243 * credentials, and assuming no error, will be committed by the caller of LSM.
244 */
245int cap_capset(struct cred *new,
246 const struct cred *old,
247 const kernel_cap_t *effective,
248 const kernel_cap_t *inheritable,
249 const kernel_cap_t *permitted)
250{
251 if (cap_inh_is_capped() &&
252 !cap_issubset(*inheritable,
253 cap_combine(old->cap_inheritable,
254 old->cap_permitted)))
255 /* incapable of using this inheritable set */
256 return -EPERM;
257
258 if (!cap_issubset(*inheritable,
259 cap_combine(old->cap_inheritable,
260 old->cap_bset)))
261 /* no new pI capabilities outside bounding set */
262 return -EPERM;
263
264 /* verify restrictions on target's new Permitted set */
265 if (!cap_issubset(*permitted, old->cap_permitted))
266 return -EPERM;
267
268 /* verify the _new_Effective_ is a subset of the _new_Permitted_ */
269 if (!cap_issubset(*effective, *permitted))
270 return -EPERM;
271
272 new->cap_effective = *effective;
273 new->cap_inheritable = *inheritable;
274 new->cap_permitted = *permitted;
275
276 /*
277 * Mask off ambient bits that are no longer both permitted and
278 * inheritable.
279 */
280 new->cap_ambient = cap_intersect(new->cap_ambient,
281 cap_intersect(*permitted,
282 *inheritable));
283 if (WARN_ON(!cap_ambient_invariant_ok(new)))
284 return -EINVAL;
285 return 0;
286}
287
288/*
289 * Clear proposed capability sets for execve().
290 */
291static inline void bprm_clear_caps(struct linux_binprm *bprm)
292{
293 cap_clear(bprm->cred->cap_permitted);
294 bprm->cap_effective = false;
295}
296
297/**
298 * cap_inode_need_killpriv - Determine if inode change affects privileges
299 * @dentry: The inode/dentry in being changed with change marked ATTR_KILL_PRIV
300 *
301 * Determine if an inode having a change applied that's marked ATTR_KILL_PRIV
302 * affects the security markings on that inode, and if it is, should
303 * inode_killpriv() be invoked or the change rejected?
304 *
305 * Returns 0 if granted; +ve if granted, but inode_killpriv() is required; and
306 * -ve to deny the change.
307 */
308int cap_inode_need_killpriv(struct dentry *dentry)
309{
310 struct inode *inode = d_backing_inode(dentry);
311 int error;
312
313 if (!inode->i_op->getxattr)
314 return 0;
315
316 error = inode->i_op->getxattr(dentry, XATTR_NAME_CAPS, NULL, 0);
317 if (error <= 0)
318 return 0;
319 return 1;
320}
321
322/**
323 * cap_inode_killpriv - Erase the security markings on an inode
324 * @dentry: The inode/dentry to alter
325 *
326 * Erase the privilege-enhancing security markings on an inode.
327 *
328 * Returns 0 if successful, -ve on error.
329 */
330int cap_inode_killpriv(struct dentry *dentry)
331{
332 struct inode *inode = d_backing_inode(dentry);
333
334 if (!inode->i_op->removexattr)
335 return 0;
336
337 return inode->i_op->removexattr(dentry, XATTR_NAME_CAPS);
338}
339
340/*
341 * Calculate the new process capability sets from the capability sets attached
342 * to a file.
343 */
344static inline int bprm_caps_from_vfs_caps(struct cpu_vfs_cap_data *caps,
345 struct linux_binprm *bprm,
346 bool *effective,
347 bool *has_cap)
348{
349 struct cred *new = bprm->cred;
350 unsigned i;
351 int ret = 0;
352
353 if (caps->magic_etc & VFS_CAP_FLAGS_EFFECTIVE)
354 *effective = true;
355
356 if (caps->magic_etc & VFS_CAP_REVISION_MASK)
357 *has_cap = true;
358
359 CAP_FOR_EACH_U32(i) {
360 __u32 permitted = caps->permitted.cap[i];
361 __u32 inheritable = caps->inheritable.cap[i];
362
363 /*
364 * pP' = (X & fP) | (pI & fI)
365 * The addition of pA' is handled later.
366 */
367 new->cap_permitted.cap[i] =
368 (new->cap_bset.cap[i] & permitted) |
369 (new->cap_inheritable.cap[i] & inheritable);
370
371 if (permitted & ~new->cap_permitted.cap[i])
372 /* insufficient to execute correctly */
373 ret = -EPERM;
374 }
375
376 /*
377 * For legacy apps, with no internal support for recognizing they
378 * do not have enough capabilities, we return an error if they are
379 * missing some "forced" (aka file-permitted) capabilities.
380 */
381 return *effective ? ret : 0;
382}
383
384/*
385 * Extract the on-exec-apply capability sets for an executable file.
386 */
387int get_vfs_caps_from_disk(const struct dentry *dentry, struct cpu_vfs_cap_data *cpu_caps)
388{
389 struct inode *inode = d_backing_inode(dentry);
390 __u32 magic_etc;
391 unsigned tocopy, i;
392 int size;
393 struct vfs_cap_data caps;
394
395 memset(cpu_caps, 0, sizeof(struct cpu_vfs_cap_data));
396
397 if (!inode || !inode->i_op->getxattr)
398 return -ENODATA;
399
400 size = inode->i_op->getxattr((struct dentry *)dentry, XATTR_NAME_CAPS, &caps,
401 XATTR_CAPS_SZ);
402 if (size == -ENODATA || size == -EOPNOTSUPP)
403 /* no data, that's ok */
404 return -ENODATA;
405 if (size < 0)
406 return size;
407
408 if (size < sizeof(magic_etc))
409 return -EINVAL;
410
411 cpu_caps->magic_etc = magic_etc = le32_to_cpu(caps.magic_etc);
412
413 switch (magic_etc & VFS_CAP_REVISION_MASK) {
414 case VFS_CAP_REVISION_1:
415 if (size != XATTR_CAPS_SZ_1)
416 return -EINVAL;
417 tocopy = VFS_CAP_U32_1;
418 break;
419 case VFS_CAP_REVISION_2:
420 if (size != XATTR_CAPS_SZ_2)
421 return -EINVAL;
422 tocopy = VFS_CAP_U32_2;
423 break;
424 default:
425 return -EINVAL;
426 }
427
428 CAP_FOR_EACH_U32(i) {
429 if (i >= tocopy)
430 break;
431 cpu_caps->permitted.cap[i] = le32_to_cpu(caps.data[i].permitted);
432 cpu_caps->inheritable.cap[i] = le32_to_cpu(caps.data[i].inheritable);
433 }
434
435 cpu_caps->permitted.cap[CAP_LAST_U32] &= CAP_LAST_U32_VALID_MASK;
436 cpu_caps->inheritable.cap[CAP_LAST_U32] &= CAP_LAST_U32_VALID_MASK;
437
438 return 0;
439}
440
441/*
442 * Attempt to get the on-exec apply capability sets for an executable file from
443 * its xattrs and, if present, apply them to the proposed credentials being
444 * constructed by execve().
445 */
446static int get_file_caps(struct linux_binprm *bprm, bool *effective, bool *has_cap)
447{
448 int rc = 0;
449 struct cpu_vfs_cap_data vcaps;
450
451 bprm_clear_caps(bprm);
452
453 if (!file_caps_enabled)
454 return 0;
455
456 if (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)
457 return 0;
458
459 rc = get_vfs_caps_from_disk(bprm->file->f_path.dentry, &vcaps);
460 if (rc < 0) {
461 if (rc == -EINVAL)
462 printk(KERN_NOTICE "%s: get_vfs_caps_from_disk returned %d for %s\n",
463 __func__, rc, bprm->filename);
464 else if (rc == -ENODATA)
465 rc = 0;
466 goto out;
467 }
468
469 rc = bprm_caps_from_vfs_caps(&vcaps, bprm, effective, has_cap);
470 if (rc == -EINVAL)
471 printk(KERN_NOTICE "%s: cap_from_disk returned %d for %s\n",
472 __func__, rc, bprm->filename);
473
474out:
475 if (rc)
476 bprm_clear_caps(bprm);
477
478 return rc;
479}
480
481/**
482 * cap_bprm_set_creds - Set up the proposed credentials for execve().
483 * @bprm: The execution parameters, including the proposed creds
484 *
485 * Set up the proposed credentials for a new execution context being
486 * constructed by execve(). The proposed creds in @bprm->cred is altered,
487 * which won't take effect immediately. Returns 0 if successful, -ve on error.
488 */
489int cap_bprm_set_creds(struct linux_binprm *bprm)
490{
491 const struct cred *old = current_cred();
492 struct cred *new = bprm->cred;
493 bool effective, has_cap = false, is_setid;
494 int ret;
495 kuid_t root_uid;
496
497 if (WARN_ON(!cap_ambient_invariant_ok(old)))
498 return -EPERM;
499
500 effective = false;
501 ret = get_file_caps(bprm, &effective, &has_cap);
502 if (ret < 0)
503 return ret;
504
505 root_uid = make_kuid(new->user_ns, 0);
506
507 if (!issecure(SECURE_NOROOT)) {
508 /*
509 * If the legacy file capability is set, then don't set privs
510 * for a setuid root binary run by a non-root user. Do set it
511 * for a root user just to cause least surprise to an admin.
512 */
513 if (has_cap && !uid_eq(new->uid, root_uid) && uid_eq(new->euid, root_uid)) {
514 warn_setuid_and_fcaps_mixed(bprm->filename);
515 goto skip;
516 }
517 /*
518 * To support inheritance of root-permissions and suid-root
519 * executables under compatibility mode, we override the
520 * capability sets for the file.
521 *
522 * If only the real uid is 0, we do not set the effective bit.
523 */
524 if (uid_eq(new->euid, root_uid) || uid_eq(new->uid, root_uid)) {
525 /* pP' = (cap_bset & ~0) | (pI & ~0) */
526 new->cap_permitted = cap_combine(old->cap_bset,
527 old->cap_inheritable);
528 }
529 if (uid_eq(new->euid, root_uid))
530 effective = true;
531 }
532skip:
533
534 /* if we have fs caps, clear dangerous personality flags */
535 if (!cap_issubset(new->cap_permitted, old->cap_permitted))
536 bprm->per_clear |= PER_CLEAR_ON_SETID;
537
538
539 /* Don't let someone trace a set[ug]id/setpcap binary with the revised
540 * credentials unless they have the appropriate permit.
541 *
542 * In addition, if NO_NEW_PRIVS, then ensure we get no new privs.
543 */
544 is_setid = !uid_eq(new->euid, old->uid) || !gid_eq(new->egid, old->gid);
545
546 if ((is_setid ||
547 !cap_issubset(new->cap_permitted, old->cap_permitted)) &&
548 bprm->unsafe & ~LSM_UNSAFE_PTRACE_CAP) {
549 /* downgrade; they get no more than they had, and maybe less */
550 if (!capable(CAP_SETUID) ||
551 (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS)) {
552 new->euid = new->uid;
553 new->egid = new->gid;
554 }
555 new->cap_permitted = cap_intersect(new->cap_permitted,
556 old->cap_permitted);
557 }
558
559 new->suid = new->fsuid = new->euid;
560 new->sgid = new->fsgid = new->egid;
561
562 /* File caps or setid cancels ambient. */
563 if (has_cap || is_setid)
564 cap_clear(new->cap_ambient);
565
566 /*
567 * Now that we've computed pA', update pP' to give:
568 * pP' = (X & fP) | (pI & fI) | pA'
569 */
570 new->cap_permitted = cap_combine(new->cap_permitted, new->cap_ambient);
571
572 /*
573 * Set pE' = (fE ? pP' : pA'). Because pA' is zero if fE is set,
574 * this is the same as pE' = (fE ? pP' : 0) | pA'.
575 */
576 if (effective)
577 new->cap_effective = new->cap_permitted;
578 else
579 new->cap_effective = new->cap_ambient;
580
581 if (WARN_ON(!cap_ambient_invariant_ok(new)))
582 return -EPERM;
583
584 bprm->cap_effective = effective;
585
586 /*
587 * Audit candidate if current->cap_effective is set
588 *
589 * We do not bother to audit if 3 things are true:
590 * 1) cap_effective has all caps
591 * 2) we are root
592 * 3) root is supposed to have all caps (SECURE_NOROOT)
593 * Since this is just a normal root execing a process.
594 *
595 * Number 1 above might fail if you don't have a full bset, but I think
596 * that is interesting information to audit.
597 */
598 if (!cap_issubset(new->cap_effective, new->cap_ambient)) {
599 if (!cap_issubset(CAP_FULL_SET, new->cap_effective) ||
600 !uid_eq(new->euid, root_uid) || !uid_eq(new->uid, root_uid) ||
601 issecure(SECURE_NOROOT)) {
602 ret = audit_log_bprm_fcaps(bprm, new, old);
603 if (ret < 0)
604 return ret;
605 }
606 }
607
608 new->securebits &= ~issecure_mask(SECURE_KEEP_CAPS);
609
610 if (WARN_ON(!cap_ambient_invariant_ok(new)))
611 return -EPERM;
612
613 return 0;
614}
615
616/**
617 * cap_bprm_secureexec - Determine whether a secure execution is required
618 * @bprm: The execution parameters
619 *
620 * Determine whether a secure execution is required, return 1 if it is, and 0
621 * if it is not.
622 *
623 * The credentials have been committed by this point, and so are no longer
624 * available through @bprm->cred.
625 */
626int cap_bprm_secureexec(struct linux_binprm *bprm)
627{
628 const struct cred *cred = current_cred();
629 kuid_t root_uid = make_kuid(cred->user_ns, 0);
630
631 if (!uid_eq(cred->uid, root_uid)) {
632 if (bprm->cap_effective)
633 return 1;
634 if (!cap_issubset(cred->cap_permitted, cred->cap_ambient))
635 return 1;
636 }
637
638 return (!uid_eq(cred->euid, cred->uid) ||
639 !gid_eq(cred->egid, cred->gid));
640}
641
642/**
643 * cap_inode_setxattr - Determine whether an xattr may be altered
644 * @dentry: The inode/dentry being altered
645 * @name: The name of the xattr to be changed
646 * @value: The value that the xattr will be changed to
647 * @size: The size of value
648 * @flags: The replacement flag
649 *
650 * Determine whether an xattr may be altered or set on an inode, returning 0 if
651 * permission is granted, -ve if denied.
652 *
653 * This is used to make sure security xattrs don't get updated or set by those
654 * who aren't privileged to do so.
655 */
656int cap_inode_setxattr(struct dentry *dentry, const char *name,
657 const void *value, size_t size, int flags)
658{
659 if (!strcmp(name, XATTR_NAME_CAPS)) {
660 if (!capable(CAP_SETFCAP))
661 return -EPERM;
662 return 0;
663 }
664
665 if (!strncmp(name, XATTR_SECURITY_PREFIX,
666 sizeof(XATTR_SECURITY_PREFIX) - 1) &&
667 !capable(CAP_SYS_ADMIN))
668 return -EPERM;
669 return 0;
670}
671
672/**
673 * cap_inode_removexattr - Determine whether an xattr may be removed
674 * @dentry: The inode/dentry being altered
675 * @name: The name of the xattr to be changed
676 *
677 * Determine whether an xattr may be removed from an inode, returning 0 if
678 * permission is granted, -ve if denied.
679 *
680 * This is used to make sure security xattrs don't get removed by those who
681 * aren't privileged to remove them.
682 */
683int cap_inode_removexattr(struct dentry *dentry, const char *name)
684{
685 if (!strcmp(name, XATTR_NAME_CAPS)) {
686 if (!capable(CAP_SETFCAP))
687 return -EPERM;
688 return 0;
689 }
690
691 if (!strncmp(name, XATTR_SECURITY_PREFIX,
692 sizeof(XATTR_SECURITY_PREFIX) - 1) &&
693 !capable(CAP_SYS_ADMIN))
694 return -EPERM;
695 return 0;
696}
697
698/*
699 * cap_emulate_setxuid() fixes the effective / permitted capabilities of
700 * a process after a call to setuid, setreuid, or setresuid.
701 *
702 * 1) When set*uiding _from_ one of {r,e,s}uid == 0 _to_ all of
703 * {r,e,s}uid != 0, the permitted and effective capabilities are
704 * cleared.
705 *
706 * 2) When set*uiding _from_ euid == 0 _to_ euid != 0, the effective
707 * capabilities of the process are cleared.
708 *
709 * 3) When set*uiding _from_ euid != 0 _to_ euid == 0, the effective
710 * capabilities are set to the permitted capabilities.
711 *
712 * fsuid is handled elsewhere. fsuid == 0 and {r,e,s}uid!= 0 should
713 * never happen.
714 *
715 * -astor
716 *
717 * cevans - New behaviour, Oct '99
718 * A process may, via prctl(), elect to keep its capabilities when it
719 * calls setuid() and switches away from uid==0. Both permitted and
720 * effective sets will be retained.
721 * Without this change, it was impossible for a daemon to drop only some
722 * of its privilege. The call to setuid(!=0) would drop all privileges!
723 * Keeping uid 0 is not an option because uid 0 owns too many vital
724 * files..
725 * Thanks to Olaf Kirch and Peter Benie for spotting this.
726 */
727static inline void cap_emulate_setxuid(struct cred *new, const struct cred *old)
728{
729 kuid_t root_uid = make_kuid(old->user_ns, 0);
730
731 if ((uid_eq(old->uid, root_uid) ||
732 uid_eq(old->euid, root_uid) ||
733 uid_eq(old->suid, root_uid)) &&
734 (!uid_eq(new->uid, root_uid) &&
735 !uid_eq(new->euid, root_uid) &&
736 !uid_eq(new->suid, root_uid))) {
737 if (!issecure(SECURE_KEEP_CAPS)) {
738 cap_clear(new->cap_permitted);
739 cap_clear(new->cap_effective);
740 }
741
742 /*
743 * Pre-ambient programs expect setresuid to nonroot followed
744 * by exec to drop capabilities. We should make sure that
745 * this remains the case.
746 */
747 cap_clear(new->cap_ambient);
748 }
749 if (uid_eq(old->euid, root_uid) && !uid_eq(new->euid, root_uid))
750 cap_clear(new->cap_effective);
751 if (!uid_eq(old->euid, root_uid) && uid_eq(new->euid, root_uid))
752 new->cap_effective = new->cap_permitted;
753}
754
755/**
756 * cap_task_fix_setuid - Fix up the results of setuid() call
757 * @new: The proposed credentials
758 * @old: The current task's current credentials
759 * @flags: Indications of what has changed
760 *
761 * Fix up the results of setuid() call before the credential changes are
762 * actually applied, returning 0 to grant the changes, -ve to deny them.
763 */
764int cap_task_fix_setuid(struct cred *new, const struct cred *old, int flags)
765{
766 switch (flags) {
767 case LSM_SETID_RE:
768 case LSM_SETID_ID:
769 case LSM_SETID_RES:
770 /* juggle the capabilities to follow [RES]UID changes unless
771 * otherwise suppressed */
772 if (!issecure(SECURE_NO_SETUID_FIXUP))
773 cap_emulate_setxuid(new, old);
774 break;
775
776 case LSM_SETID_FS:
777 /* juggle the capabilties to follow FSUID changes, unless
778 * otherwise suppressed
779 *
780 * FIXME - is fsuser used for all CAP_FS_MASK capabilities?
781 * if not, we might be a bit too harsh here.
782 */
783 if (!issecure(SECURE_NO_SETUID_FIXUP)) {
784 kuid_t root_uid = make_kuid(old->user_ns, 0);
785 if (uid_eq(old->fsuid, root_uid) && !uid_eq(new->fsuid, root_uid))
786 new->cap_effective =
787 cap_drop_fs_set(new->cap_effective);
788
789 if (!uid_eq(old->fsuid, root_uid) && uid_eq(new->fsuid, root_uid))
790 new->cap_effective =
791 cap_raise_fs_set(new->cap_effective,
792 new->cap_permitted);
793 }
794 break;
795
796 default:
797 return -EINVAL;
798 }
799
800 return 0;
801}
802
803/*
804 * Rationale: code calling task_setscheduler, task_setioprio, and
805 * task_setnice, assumes that
806 * . if capable(cap_sys_nice), then those actions should be allowed
807 * . if not capable(cap_sys_nice), but acting on your own processes,
808 * then those actions should be allowed
809 * This is insufficient now since you can call code without suid, but
810 * yet with increased caps.
811 * So we check for increased caps on the target process.
812 */
813static int cap_safe_nice(struct task_struct *p)
814{
815 int is_subset, ret = 0;
816
817 rcu_read_lock();
818 is_subset = cap_issubset(__task_cred(p)->cap_permitted,
819 current_cred()->cap_permitted);
820 if (!is_subset && !ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE))
821 ret = -EPERM;
822 rcu_read_unlock();
823
824 return ret;
825}
826
827/**
828 * cap_task_setscheduler - Detemine if scheduler policy change is permitted
829 * @p: The task to affect
830 *
831 * Detemine if the requested scheduler policy change is permitted for the
832 * specified task, returning 0 if permission is granted, -ve if denied.
833 */
834int cap_task_setscheduler(struct task_struct *p)
835{
836 return cap_safe_nice(p);
837}
838
839/**
840 * cap_task_ioprio - Detemine if I/O priority change is permitted
841 * @p: The task to affect
842 * @ioprio: The I/O priority to set
843 *
844 * Detemine if the requested I/O priority change is permitted for the specified
845 * task, returning 0 if permission is granted, -ve if denied.
846 */
847int cap_task_setioprio(struct task_struct *p, int ioprio)
848{
849 return cap_safe_nice(p);
850}
851
852/**
853 * cap_task_ioprio - Detemine if task priority change is permitted
854 * @p: The task to affect
855 * @nice: The nice value to set
856 *
857 * Detemine if the requested task priority change is permitted for the
858 * specified task, returning 0 if permission is granted, -ve if denied.
859 */
860int cap_task_setnice(struct task_struct *p, int nice)
861{
862 return cap_safe_nice(p);
863}
864
865/*
866 * Implement PR_CAPBSET_DROP. Attempt to remove the specified capability from
867 * the current task's bounding set. Returns 0 on success, -ve on error.
868 */
869static int cap_prctl_drop(unsigned long cap)
870{
871 struct cred *new;
872
873 if (!ns_capable(current_user_ns(), CAP_SETPCAP))
874 return -EPERM;
875 if (!cap_valid(cap))
876 return -EINVAL;
877
878 new = prepare_creds();
879 if (!new)
880 return -ENOMEM;
881 cap_lower(new->cap_bset, cap);
882 return commit_creds(new);
883}
884
885/**
886 * cap_task_prctl - Implement process control functions for this security module
887 * @option: The process control function requested
888 * @arg2, @arg3, @arg4, @arg5: The argument data for this function
889 *
890 * Allow process control functions (sys_prctl()) to alter capabilities; may
891 * also deny access to other functions not otherwise implemented here.
892 *
893 * Returns 0 or +ve on success, -ENOSYS if this function is not implemented
894 * here, other -ve on error. If -ENOSYS is returned, sys_prctl() and other LSM
895 * modules will consider performing the function.
896 */
897int cap_task_prctl(int option, unsigned long arg2, unsigned long arg3,
898 unsigned long arg4, unsigned long arg5)
899{
900 const struct cred *old = current_cred();
901 struct cred *new;
902
903 switch (option) {
904 case PR_CAPBSET_READ:
905 if (!cap_valid(arg2))
906 return -EINVAL;
907 return !!cap_raised(old->cap_bset, arg2);
908
909 case PR_CAPBSET_DROP:
910 return cap_prctl_drop(arg2);
911
912 /*
913 * The next four prctl's remain to assist with transitioning a
914 * system from legacy UID=0 based privilege (when filesystem
915 * capabilities are not in use) to a system using filesystem
916 * capabilities only - as the POSIX.1e draft intended.
917 *
918 * Note:
919 *
920 * PR_SET_SECUREBITS =
921 * issecure_mask(SECURE_KEEP_CAPS_LOCKED)
922 * | issecure_mask(SECURE_NOROOT)
923 * | issecure_mask(SECURE_NOROOT_LOCKED)
924 * | issecure_mask(SECURE_NO_SETUID_FIXUP)
925 * | issecure_mask(SECURE_NO_SETUID_FIXUP_LOCKED)
926 *
927 * will ensure that the current process and all of its
928 * children will be locked into a pure
929 * capability-based-privilege environment.
930 */
931 case PR_SET_SECUREBITS:
932 if ((((old->securebits & SECURE_ALL_LOCKS) >> 1)
933 & (old->securebits ^ arg2)) /*[1]*/
934 || ((old->securebits & SECURE_ALL_LOCKS & ~arg2)) /*[2]*/
935 || (arg2 & ~(SECURE_ALL_LOCKS | SECURE_ALL_BITS)) /*[3]*/
936 || (cap_capable(current_cred(),
937 current_cred()->user_ns, CAP_SETPCAP,
938 SECURITY_CAP_AUDIT) != 0) /*[4]*/
939 /*
940 * [1] no changing of bits that are locked
941 * [2] no unlocking of locks
942 * [3] no setting of unsupported bits
943 * [4] doing anything requires privilege (go read about
944 * the "sendmail capabilities bug")
945 */
946 )
947 /* cannot change a locked bit */
948 return -EPERM;
949
950 new = prepare_creds();
951 if (!new)
952 return -ENOMEM;
953 new->securebits = arg2;
954 return commit_creds(new);
955
956 case PR_GET_SECUREBITS:
957 return old->securebits;
958
959 case PR_GET_KEEPCAPS:
960 return !!issecure(SECURE_KEEP_CAPS);
961
962 case PR_SET_KEEPCAPS:
963 if (arg2 > 1) /* Note, we rely on arg2 being unsigned here */
964 return -EINVAL;
965 if (issecure(SECURE_KEEP_CAPS_LOCKED))
966 return -EPERM;
967
968 new = prepare_creds();
969 if (!new)
970 return -ENOMEM;
971 if (arg2)
972 new->securebits |= issecure_mask(SECURE_KEEP_CAPS);
973 else
974 new->securebits &= ~issecure_mask(SECURE_KEEP_CAPS);
975 return commit_creds(new);
976
977 case PR_CAP_AMBIENT:
978 if (arg2 == PR_CAP_AMBIENT_CLEAR_ALL) {
979 if (arg3 | arg4 | arg5)
980 return -EINVAL;
981
982 new = prepare_creds();
983 if (!new)
984 return -ENOMEM;
985 cap_clear(new->cap_ambient);
986 return commit_creds(new);
987 }
988
989 if (((!cap_valid(arg3)) | arg4 | arg5))
990 return -EINVAL;
991
992 if (arg2 == PR_CAP_AMBIENT_IS_SET) {
993 return !!cap_raised(current_cred()->cap_ambient, arg3);
994 } else if (arg2 != PR_CAP_AMBIENT_RAISE &&
995 arg2 != PR_CAP_AMBIENT_LOWER) {
996 return -EINVAL;
997 } else {
998 if (arg2 == PR_CAP_AMBIENT_RAISE &&
999 (!cap_raised(current_cred()->cap_permitted, arg3) ||
1000 !cap_raised(current_cred()->cap_inheritable,
1001 arg3) ||
1002 issecure(SECURE_NO_CAP_AMBIENT_RAISE)))
1003 return -EPERM;
1004
1005 new = prepare_creds();
1006 if (!new)
1007 return -ENOMEM;
1008 if (arg2 == PR_CAP_AMBIENT_RAISE)
1009 cap_raise(new->cap_ambient, arg3);
1010 else
1011 cap_lower(new->cap_ambient, arg3);
1012 return commit_creds(new);
1013 }
1014
1015 default:
1016 /* No functionality available - continue with default */
1017 return -ENOSYS;
1018 }
1019}
1020
1021/**
1022 * cap_vm_enough_memory - Determine whether a new virtual mapping is permitted
1023 * @mm: The VM space in which the new mapping is to be made
1024 * @pages: The size of the mapping
1025 *
1026 * Determine whether the allocation of a new virtual mapping by the current
1027 * task is permitted, returning 1 if permission is granted, 0 if not.
1028 */
1029int cap_vm_enough_memory(struct mm_struct *mm, long pages)
1030{
1031 int cap_sys_admin = 0;
1032
1033 if (cap_capable(current_cred(), &init_user_ns, CAP_SYS_ADMIN,
1034 SECURITY_CAP_NOAUDIT) == 0)
1035 cap_sys_admin = 1;
1036 return cap_sys_admin;
1037}
1038
1039/*
1040 * cap_mmap_addr - check if able to map given addr
1041 * @addr: address attempting to be mapped
1042 *
1043 * If the process is attempting to map memory below dac_mmap_min_addr they need
1044 * CAP_SYS_RAWIO. The other parameters to this function are unused by the
1045 * capability security module. Returns 0 if this mapping should be allowed
1046 * -EPERM if not.
1047 */
1048int cap_mmap_addr(unsigned long addr)
1049{
1050 int ret = 0;
1051
1052 if (addr < dac_mmap_min_addr) {
1053 ret = cap_capable(current_cred(), &init_user_ns, CAP_SYS_RAWIO,
1054 SECURITY_CAP_AUDIT);
1055 /* set PF_SUPERPRIV if it turns out we allow the low mmap */
1056 if (ret == 0)
1057 current->flags |= PF_SUPERPRIV;
1058 }
1059 return ret;
1060}
1061
1062int cap_mmap_file(struct file *file, unsigned long reqprot,
1063 unsigned long prot, unsigned long flags)
1064{
1065 return 0;
1066}
1067
1068#ifdef CONFIG_SECURITY
1069
1070struct security_hook_list capability_hooks[] = {
1071 LSM_HOOK_INIT(capable, cap_capable),
1072 LSM_HOOK_INIT(settime, cap_settime),
1073 LSM_HOOK_INIT(ptrace_access_check, cap_ptrace_access_check),
1074 LSM_HOOK_INIT(ptrace_traceme, cap_ptrace_traceme),
1075 LSM_HOOK_INIT(capget, cap_capget),
1076 LSM_HOOK_INIT(capset, cap_capset),
1077 LSM_HOOK_INIT(bprm_set_creds, cap_bprm_set_creds),
1078 LSM_HOOK_INIT(bprm_secureexec, cap_bprm_secureexec),
1079 LSM_HOOK_INIT(inode_need_killpriv, cap_inode_need_killpriv),
1080 LSM_HOOK_INIT(inode_killpriv, cap_inode_killpriv),
1081 LSM_HOOK_INIT(mmap_addr, cap_mmap_addr),
1082 LSM_HOOK_INIT(mmap_file, cap_mmap_file),
1083 LSM_HOOK_INIT(task_fix_setuid, cap_task_fix_setuid),
1084 LSM_HOOK_INIT(task_prctl, cap_task_prctl),
1085 LSM_HOOK_INIT(task_setscheduler, cap_task_setscheduler),
1086 LSM_HOOK_INIT(task_setioprio, cap_task_setioprio),
1087 LSM_HOOK_INIT(task_setnice, cap_task_setnice),
1088 LSM_HOOK_INIT(vm_enough_memory, cap_vm_enough_memory),
1089};
1090
1091void __init capability_add_hooks(void)
1092{
1093 security_add_hooks(capability_hooks, ARRAY_SIZE(capability_hooks));
1094}
1095
1096#endif /* CONFIG_SECURITY */