Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/* SCTP kernel implementation
3 * (C) Copyright IBM Corp. 2001, 2004
4 * Copyright (c) 1999-2000 Cisco, Inc.
5 * Copyright (c) 1999-2001 Motorola, Inc.
6 * Copyright (c) 2001-2003 Intel Corp.
7 * Copyright (c) 2001-2002 Nokia, Inc.
8 * Copyright (c) 2001 La Monte H.P. Yarroll
9 *
10 * This file is part of the SCTP kernel implementation
11 *
12 * These functions interface with the sockets layer to implement the
13 * SCTP Extensions for the Sockets API.
14 *
15 * Note that the descriptions from the specification are USER level
16 * functions--this file is the functions which populate the struct proto
17 * for SCTP which is the BOTTOM of the sockets interface.
18 *
19 * Please send any bug reports or fixes you make to the
20 * email address(es):
21 * lksctp developers <linux-sctp@vger.kernel.org>
22 *
23 * Written or modified by:
24 * La Monte H.P. Yarroll <piggy@acm.org>
25 * Narasimha Budihal <narsi@refcode.org>
26 * Karl Knutson <karl@athena.chicago.il.us>
27 * Jon Grimm <jgrimm@us.ibm.com>
28 * Xingang Guo <xingang.guo@intel.com>
29 * Daisy Chang <daisyc@us.ibm.com>
30 * Sridhar Samudrala <samudrala@us.ibm.com>
31 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com>
32 * Ardelle Fan <ardelle.fan@intel.com>
33 * Ryan Layer <rmlayer@us.ibm.com>
34 * Anup Pemmaiah <pemmaiah@cc.usu.edu>
35 * Kevin Gao <kevin.gao@intel.com>
36 */
37
38#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
39
40#include <crypto/hash.h>
41#include <linux/types.h>
42#include <linux/kernel.h>
43#include <linux/wait.h>
44#include <linux/time.h>
45#include <linux/sched/signal.h>
46#include <linux/ip.h>
47#include <linux/capability.h>
48#include <linux/fcntl.h>
49#include <linux/poll.h>
50#include <linux/init.h>
51#include <linux/slab.h>
52#include <linux/file.h>
53#include <linux/compat.h>
54#include <linux/rhashtable.h>
55
56#include <net/ip.h>
57#include <net/icmp.h>
58#include <net/route.h>
59#include <net/ipv6.h>
60#include <net/inet_common.h>
61#include <net/busy_poll.h>
62
63#include <linux/socket.h> /* for sa_family_t */
64#include <linux/export.h>
65#include <net/sock.h>
66#include <net/sctp/sctp.h>
67#include <net/sctp/sm.h>
68#include <net/sctp/stream_sched.h>
69
70/* Forward declarations for internal helper functions. */
71static bool sctp_writeable(struct sock *sk);
72static void sctp_wfree(struct sk_buff *skb);
73static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
74 size_t msg_len);
75static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p);
76static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p);
77static int sctp_wait_for_accept(struct sock *sk, long timeo);
78static void sctp_wait_for_close(struct sock *sk, long timeo);
79static void sctp_destruct_sock(struct sock *sk);
80static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
81 union sctp_addr *addr, int len);
82static int sctp_bindx_add(struct sock *, struct sockaddr *, int);
83static int sctp_bindx_rem(struct sock *, struct sockaddr *, int);
84static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int);
85static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int);
86static int sctp_send_asconf(struct sctp_association *asoc,
87 struct sctp_chunk *chunk);
88static int sctp_do_bind(struct sock *, union sctp_addr *, int);
89static int sctp_autobind(struct sock *sk);
90static int sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
91 struct sctp_association *assoc,
92 enum sctp_socket_type type);
93
94static unsigned long sctp_memory_pressure;
95static atomic_long_t sctp_memory_allocated;
96struct percpu_counter sctp_sockets_allocated;
97
98static void sctp_enter_memory_pressure(struct sock *sk)
99{
100 sctp_memory_pressure = 1;
101}
102
103
104/* Get the sndbuf space available at the time on the association. */
105static inline int sctp_wspace(struct sctp_association *asoc)
106{
107 struct sock *sk = asoc->base.sk;
108
109 return asoc->ep->sndbuf_policy ? sk->sk_sndbuf - asoc->sndbuf_used
110 : sk_stream_wspace(sk);
111}
112
113/* Increment the used sndbuf space count of the corresponding association by
114 * the size of the outgoing data chunk.
115 * Also, set the skb destructor for sndbuf accounting later.
116 *
117 * Since it is always 1-1 between chunk and skb, and also a new skb is always
118 * allocated for chunk bundling in sctp_packet_transmit(), we can use the
119 * destructor in the data chunk skb for the purpose of the sndbuf space
120 * tracking.
121 */
122static inline void sctp_set_owner_w(struct sctp_chunk *chunk)
123{
124 struct sctp_association *asoc = chunk->asoc;
125 struct sock *sk = asoc->base.sk;
126
127 /* The sndbuf space is tracked per association. */
128 sctp_association_hold(asoc);
129
130 if (chunk->shkey)
131 sctp_auth_shkey_hold(chunk->shkey);
132
133 skb_set_owner_w(chunk->skb, sk);
134
135 chunk->skb->destructor = sctp_wfree;
136 /* Save the chunk pointer in skb for sctp_wfree to use later. */
137 skb_shinfo(chunk->skb)->destructor_arg = chunk;
138
139 refcount_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
140 asoc->sndbuf_used += chunk->skb->truesize + sizeof(struct sctp_chunk);
141 sk->sk_wmem_queued += chunk->skb->truesize + sizeof(struct sctp_chunk);
142 sk_mem_charge(sk, chunk->skb->truesize);
143}
144
145static void sctp_clear_owner_w(struct sctp_chunk *chunk)
146{
147 skb_orphan(chunk->skb);
148}
149
150#define traverse_and_process() \
151do { \
152 msg = chunk->msg; \
153 if (msg == prev_msg) \
154 continue; \
155 list_for_each_entry(c, &msg->chunks, frag_list) { \
156 if ((clear && asoc->base.sk == c->skb->sk) || \
157 (!clear && asoc->base.sk != c->skb->sk)) \
158 cb(c); \
159 } \
160 prev_msg = msg; \
161} while (0)
162
163static void sctp_for_each_tx_datachunk(struct sctp_association *asoc,
164 bool clear,
165 void (*cb)(struct sctp_chunk *))
166
167{
168 struct sctp_datamsg *msg, *prev_msg = NULL;
169 struct sctp_outq *q = &asoc->outqueue;
170 struct sctp_chunk *chunk, *c;
171 struct sctp_transport *t;
172
173 list_for_each_entry(t, &asoc->peer.transport_addr_list, transports)
174 list_for_each_entry(chunk, &t->transmitted, transmitted_list)
175 traverse_and_process();
176
177 list_for_each_entry(chunk, &q->retransmit, transmitted_list)
178 traverse_and_process();
179
180 list_for_each_entry(chunk, &q->sacked, transmitted_list)
181 traverse_and_process();
182
183 list_for_each_entry(chunk, &q->abandoned, transmitted_list)
184 traverse_and_process();
185
186 list_for_each_entry(chunk, &q->out_chunk_list, list)
187 traverse_and_process();
188}
189
190static void sctp_for_each_rx_skb(struct sctp_association *asoc, struct sock *sk,
191 void (*cb)(struct sk_buff *, struct sock *))
192
193{
194 struct sk_buff *skb, *tmp;
195
196 sctp_skb_for_each(skb, &asoc->ulpq.lobby, tmp)
197 cb(skb, sk);
198
199 sctp_skb_for_each(skb, &asoc->ulpq.reasm, tmp)
200 cb(skb, sk);
201
202 sctp_skb_for_each(skb, &asoc->ulpq.reasm_uo, tmp)
203 cb(skb, sk);
204}
205
206/* Verify that this is a valid address. */
207static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr,
208 int len)
209{
210 struct sctp_af *af;
211
212 /* Verify basic sockaddr. */
213 af = sctp_sockaddr_af(sctp_sk(sk), addr, len);
214 if (!af)
215 return -EINVAL;
216
217 /* Is this a valid SCTP address? */
218 if (!af->addr_valid(addr, sctp_sk(sk), NULL))
219 return -EINVAL;
220
221 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr)))
222 return -EINVAL;
223
224 return 0;
225}
226
227/* Look up the association by its id. If this is not a UDP-style
228 * socket, the ID field is always ignored.
229 */
230struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id)
231{
232 struct sctp_association *asoc = NULL;
233
234 /* If this is not a UDP-style socket, assoc id should be ignored. */
235 if (!sctp_style(sk, UDP)) {
236 /* Return NULL if the socket state is not ESTABLISHED. It
237 * could be a TCP-style listening socket or a socket which
238 * hasn't yet called connect() to establish an association.
239 */
240 if (!sctp_sstate(sk, ESTABLISHED) && !sctp_sstate(sk, CLOSING))
241 return NULL;
242
243 /* Get the first and the only association from the list. */
244 if (!list_empty(&sctp_sk(sk)->ep->asocs))
245 asoc = list_entry(sctp_sk(sk)->ep->asocs.next,
246 struct sctp_association, asocs);
247 return asoc;
248 }
249
250 /* Otherwise this is a UDP-style socket. */
251 if (id <= SCTP_ALL_ASSOC)
252 return NULL;
253
254 spin_lock_bh(&sctp_assocs_id_lock);
255 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id);
256 if (asoc && (asoc->base.sk != sk || asoc->base.dead))
257 asoc = NULL;
258 spin_unlock_bh(&sctp_assocs_id_lock);
259
260 return asoc;
261}
262
263/* Look up the transport from an address and an assoc id. If both address and
264 * id are specified, the associations matching the address and the id should be
265 * the same.
266 */
267static struct sctp_transport *sctp_addr_id2transport(struct sock *sk,
268 struct sockaddr_storage *addr,
269 sctp_assoc_t id)
270{
271 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL;
272 struct sctp_af *af = sctp_get_af_specific(addr->ss_family);
273 union sctp_addr *laddr = (union sctp_addr *)addr;
274 struct sctp_transport *transport;
275
276 if (!af || sctp_verify_addr(sk, laddr, af->sockaddr_len))
277 return NULL;
278
279 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep,
280 laddr,
281 &transport);
282
283 if (!addr_asoc)
284 return NULL;
285
286 id_asoc = sctp_id2assoc(sk, id);
287 if (id_asoc && (id_asoc != addr_asoc))
288 return NULL;
289
290 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk),
291 (union sctp_addr *)addr);
292
293 return transport;
294}
295
296/* API 3.1.2 bind() - UDP Style Syntax
297 * The syntax of bind() is,
298 *
299 * ret = bind(int sd, struct sockaddr *addr, int addrlen);
300 *
301 * sd - the socket descriptor returned by socket().
302 * addr - the address structure (struct sockaddr_in or struct
303 * sockaddr_in6 [RFC 2553]),
304 * addr_len - the size of the address structure.
305 */
306static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len)
307{
308 int retval = 0;
309
310 lock_sock(sk);
311
312 pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk,
313 addr, addr_len);
314
315 /* Disallow binding twice. */
316 if (!sctp_sk(sk)->ep->base.bind_addr.port)
317 retval = sctp_do_bind(sk, (union sctp_addr *)addr,
318 addr_len);
319 else
320 retval = -EINVAL;
321
322 release_sock(sk);
323
324 return retval;
325}
326
327static int sctp_get_port_local(struct sock *, union sctp_addr *);
328
329/* Verify this is a valid sockaddr. */
330static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
331 union sctp_addr *addr, int len)
332{
333 struct sctp_af *af;
334
335 /* Check minimum size. */
336 if (len < sizeof (struct sockaddr))
337 return NULL;
338
339 if (!opt->pf->af_supported(addr->sa.sa_family, opt))
340 return NULL;
341
342 if (addr->sa.sa_family == AF_INET6) {
343 if (len < SIN6_LEN_RFC2133)
344 return NULL;
345 /* V4 mapped address are really of AF_INET family */
346 if (ipv6_addr_v4mapped(&addr->v6.sin6_addr) &&
347 !opt->pf->af_supported(AF_INET, opt))
348 return NULL;
349 }
350
351 /* If we get this far, af is valid. */
352 af = sctp_get_af_specific(addr->sa.sa_family);
353
354 if (len < af->sockaddr_len)
355 return NULL;
356
357 return af;
358}
359
360/* Bind a local address either to an endpoint or to an association. */
361static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len)
362{
363 struct net *net = sock_net(sk);
364 struct sctp_sock *sp = sctp_sk(sk);
365 struct sctp_endpoint *ep = sp->ep;
366 struct sctp_bind_addr *bp = &ep->base.bind_addr;
367 struct sctp_af *af;
368 unsigned short snum;
369 int ret = 0;
370
371 /* Common sockaddr verification. */
372 af = sctp_sockaddr_af(sp, addr, len);
373 if (!af) {
374 pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n",
375 __func__, sk, addr, len);
376 return -EINVAL;
377 }
378
379 snum = ntohs(addr->v4.sin_port);
380
381 pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n",
382 __func__, sk, &addr->sa, bp->port, snum, len);
383
384 /* PF specific bind() address verification. */
385 if (!sp->pf->bind_verify(sp, addr))
386 return -EADDRNOTAVAIL;
387
388 /* We must either be unbound, or bind to the same port.
389 * It's OK to allow 0 ports if we are already bound.
390 * We'll just inhert an already bound port in this case
391 */
392 if (bp->port) {
393 if (!snum)
394 snum = bp->port;
395 else if (snum != bp->port) {
396 pr_debug("%s: new port %d doesn't match existing port "
397 "%d\n", __func__, snum, bp->port);
398 return -EINVAL;
399 }
400 }
401
402 if (snum && inet_port_requires_bind_service(net, snum) &&
403 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE))
404 return -EACCES;
405
406 /* See if the address matches any of the addresses we may have
407 * already bound before checking against other endpoints.
408 */
409 if (sctp_bind_addr_match(bp, addr, sp))
410 return -EINVAL;
411
412 /* Make sure we are allowed to bind here.
413 * The function sctp_get_port_local() does duplicate address
414 * detection.
415 */
416 addr->v4.sin_port = htons(snum);
417 if (sctp_get_port_local(sk, addr))
418 return -EADDRINUSE;
419
420 /* Refresh ephemeral port. */
421 if (!bp->port)
422 bp->port = inet_sk(sk)->inet_num;
423
424 /* Add the address to the bind address list.
425 * Use GFP_ATOMIC since BHs will be disabled.
426 */
427 ret = sctp_add_bind_addr(bp, addr, af->sockaddr_len,
428 SCTP_ADDR_SRC, GFP_ATOMIC);
429
430 if (ret) {
431 sctp_put_port(sk);
432 return ret;
433 }
434 /* Copy back into socket for getsockname() use. */
435 inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num);
436 sp->pf->to_sk_saddr(addr, sk);
437
438 return ret;
439}
440
441 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks
442 *
443 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged
444 * at any one time. If a sender, after sending an ASCONF chunk, decides
445 * it needs to transfer another ASCONF Chunk, it MUST wait until the
446 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a
447 * subsequent ASCONF. Note this restriction binds each side, so at any
448 * time two ASCONF may be in-transit on any given association (one sent
449 * from each endpoint).
450 */
451static int sctp_send_asconf(struct sctp_association *asoc,
452 struct sctp_chunk *chunk)
453{
454 int retval = 0;
455
456 /* If there is an outstanding ASCONF chunk, queue it for later
457 * transmission.
458 */
459 if (asoc->addip_last_asconf) {
460 list_add_tail(&chunk->list, &asoc->addip_chunk_list);
461 goto out;
462 }
463
464 /* Hold the chunk until an ASCONF_ACK is received. */
465 sctp_chunk_hold(chunk);
466 retval = sctp_primitive_ASCONF(asoc->base.net, asoc, chunk);
467 if (retval)
468 sctp_chunk_free(chunk);
469 else
470 asoc->addip_last_asconf = chunk;
471
472out:
473 return retval;
474}
475
476/* Add a list of addresses as bind addresses to local endpoint or
477 * association.
478 *
479 * Basically run through each address specified in the addrs/addrcnt
480 * array/length pair, determine if it is IPv6 or IPv4 and call
481 * sctp_do_bind() on it.
482 *
483 * If any of them fails, then the operation will be reversed and the
484 * ones that were added will be removed.
485 *
486 * Only sctp_setsockopt_bindx() is supposed to call this function.
487 */
488static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt)
489{
490 int cnt;
491 int retval = 0;
492 void *addr_buf;
493 struct sockaddr *sa_addr;
494 struct sctp_af *af;
495
496 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk,
497 addrs, addrcnt);
498
499 addr_buf = addrs;
500 for (cnt = 0; cnt < addrcnt; cnt++) {
501 /* The list may contain either IPv4 or IPv6 address;
502 * determine the address length for walking thru the list.
503 */
504 sa_addr = addr_buf;
505 af = sctp_get_af_specific(sa_addr->sa_family);
506 if (!af) {
507 retval = -EINVAL;
508 goto err_bindx_add;
509 }
510
511 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr,
512 af->sockaddr_len);
513
514 addr_buf += af->sockaddr_len;
515
516err_bindx_add:
517 if (retval < 0) {
518 /* Failed. Cleanup the ones that have been added */
519 if (cnt > 0)
520 sctp_bindx_rem(sk, addrs, cnt);
521 return retval;
522 }
523 }
524
525 return retval;
526}
527
528/* Send an ASCONF chunk with Add IP address parameters to all the peers of the
529 * associations that are part of the endpoint indicating that a list of local
530 * addresses are added to the endpoint.
531 *
532 * If any of the addresses is already in the bind address list of the
533 * association, we do not send the chunk for that association. But it will not
534 * affect other associations.
535 *
536 * Only sctp_setsockopt_bindx() is supposed to call this function.
537 */
538static int sctp_send_asconf_add_ip(struct sock *sk,
539 struct sockaddr *addrs,
540 int addrcnt)
541{
542 struct sctp_sock *sp;
543 struct sctp_endpoint *ep;
544 struct sctp_association *asoc;
545 struct sctp_bind_addr *bp;
546 struct sctp_chunk *chunk;
547 struct sctp_sockaddr_entry *laddr;
548 union sctp_addr *addr;
549 union sctp_addr saveaddr;
550 void *addr_buf;
551 struct sctp_af *af;
552 struct list_head *p;
553 int i;
554 int retval = 0;
555
556 sp = sctp_sk(sk);
557 ep = sp->ep;
558
559 if (!ep->asconf_enable)
560 return retval;
561
562 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
563 __func__, sk, addrs, addrcnt);
564
565 list_for_each_entry(asoc, &ep->asocs, asocs) {
566 if (!asoc->peer.asconf_capable)
567 continue;
568
569 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP)
570 continue;
571
572 if (!sctp_state(asoc, ESTABLISHED))
573 continue;
574
575 /* Check if any address in the packed array of addresses is
576 * in the bind address list of the association. If so,
577 * do not send the asconf chunk to its peer, but continue with
578 * other associations.
579 */
580 addr_buf = addrs;
581 for (i = 0; i < addrcnt; i++) {
582 addr = addr_buf;
583 af = sctp_get_af_specific(addr->v4.sin_family);
584 if (!af) {
585 retval = -EINVAL;
586 goto out;
587 }
588
589 if (sctp_assoc_lookup_laddr(asoc, addr))
590 break;
591
592 addr_buf += af->sockaddr_len;
593 }
594 if (i < addrcnt)
595 continue;
596
597 /* Use the first valid address in bind addr list of
598 * association as Address Parameter of ASCONF CHUNK.
599 */
600 bp = &asoc->base.bind_addr;
601 p = bp->address_list.next;
602 laddr = list_entry(p, struct sctp_sockaddr_entry, list);
603 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs,
604 addrcnt, SCTP_PARAM_ADD_IP);
605 if (!chunk) {
606 retval = -ENOMEM;
607 goto out;
608 }
609
610 /* Add the new addresses to the bind address list with
611 * use_as_src set to 0.
612 */
613 addr_buf = addrs;
614 for (i = 0; i < addrcnt; i++) {
615 addr = addr_buf;
616 af = sctp_get_af_specific(addr->v4.sin_family);
617 memcpy(&saveaddr, addr, af->sockaddr_len);
618 retval = sctp_add_bind_addr(bp, &saveaddr,
619 sizeof(saveaddr),
620 SCTP_ADDR_NEW, GFP_ATOMIC);
621 addr_buf += af->sockaddr_len;
622 }
623 if (asoc->src_out_of_asoc_ok) {
624 struct sctp_transport *trans;
625
626 list_for_each_entry(trans,
627 &asoc->peer.transport_addr_list, transports) {
628 trans->cwnd = min(4*asoc->pathmtu, max_t(__u32,
629 2*asoc->pathmtu, 4380));
630 trans->ssthresh = asoc->peer.i.a_rwnd;
631 trans->rto = asoc->rto_initial;
632 sctp_max_rto(asoc, trans);
633 trans->rtt = trans->srtt = trans->rttvar = 0;
634 /* Clear the source and route cache */
635 sctp_transport_route(trans, NULL,
636 sctp_sk(asoc->base.sk));
637 }
638 }
639 retval = sctp_send_asconf(asoc, chunk);
640 }
641
642out:
643 return retval;
644}
645
646/* Remove a list of addresses from bind addresses list. Do not remove the
647 * last address.
648 *
649 * Basically run through each address specified in the addrs/addrcnt
650 * array/length pair, determine if it is IPv6 or IPv4 and call
651 * sctp_del_bind() on it.
652 *
653 * If any of them fails, then the operation will be reversed and the
654 * ones that were removed will be added back.
655 *
656 * At least one address has to be left; if only one address is
657 * available, the operation will return -EBUSY.
658 *
659 * Only sctp_setsockopt_bindx() is supposed to call this function.
660 */
661static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt)
662{
663 struct sctp_sock *sp = sctp_sk(sk);
664 struct sctp_endpoint *ep = sp->ep;
665 int cnt;
666 struct sctp_bind_addr *bp = &ep->base.bind_addr;
667 int retval = 0;
668 void *addr_buf;
669 union sctp_addr *sa_addr;
670 struct sctp_af *af;
671
672 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
673 __func__, sk, addrs, addrcnt);
674
675 addr_buf = addrs;
676 for (cnt = 0; cnt < addrcnt; cnt++) {
677 /* If the bind address list is empty or if there is only one
678 * bind address, there is nothing more to be removed (we need
679 * at least one address here).
680 */
681 if (list_empty(&bp->address_list) ||
682 (sctp_list_single_entry(&bp->address_list))) {
683 retval = -EBUSY;
684 goto err_bindx_rem;
685 }
686
687 sa_addr = addr_buf;
688 af = sctp_get_af_specific(sa_addr->sa.sa_family);
689 if (!af) {
690 retval = -EINVAL;
691 goto err_bindx_rem;
692 }
693
694 if (!af->addr_valid(sa_addr, sp, NULL)) {
695 retval = -EADDRNOTAVAIL;
696 goto err_bindx_rem;
697 }
698
699 if (sa_addr->v4.sin_port &&
700 sa_addr->v4.sin_port != htons(bp->port)) {
701 retval = -EINVAL;
702 goto err_bindx_rem;
703 }
704
705 if (!sa_addr->v4.sin_port)
706 sa_addr->v4.sin_port = htons(bp->port);
707
708 /* FIXME - There is probably a need to check if sk->sk_saddr and
709 * sk->sk_rcv_addr are currently set to one of the addresses to
710 * be removed. This is something which needs to be looked into
711 * when we are fixing the outstanding issues with multi-homing
712 * socket routing and failover schemes. Refer to comments in
713 * sctp_do_bind(). -daisy
714 */
715 retval = sctp_del_bind_addr(bp, sa_addr);
716
717 addr_buf += af->sockaddr_len;
718err_bindx_rem:
719 if (retval < 0) {
720 /* Failed. Add the ones that has been removed back */
721 if (cnt > 0)
722 sctp_bindx_add(sk, addrs, cnt);
723 return retval;
724 }
725 }
726
727 return retval;
728}
729
730/* Send an ASCONF chunk with Delete IP address parameters to all the peers of
731 * the associations that are part of the endpoint indicating that a list of
732 * local addresses are removed from the endpoint.
733 *
734 * If any of the addresses is already in the bind address list of the
735 * association, we do not send the chunk for that association. But it will not
736 * affect other associations.
737 *
738 * Only sctp_setsockopt_bindx() is supposed to call this function.
739 */
740static int sctp_send_asconf_del_ip(struct sock *sk,
741 struct sockaddr *addrs,
742 int addrcnt)
743{
744 struct sctp_sock *sp;
745 struct sctp_endpoint *ep;
746 struct sctp_association *asoc;
747 struct sctp_transport *transport;
748 struct sctp_bind_addr *bp;
749 struct sctp_chunk *chunk;
750 union sctp_addr *laddr;
751 void *addr_buf;
752 struct sctp_af *af;
753 struct sctp_sockaddr_entry *saddr;
754 int i;
755 int retval = 0;
756 int stored = 0;
757
758 chunk = NULL;
759 sp = sctp_sk(sk);
760 ep = sp->ep;
761
762 if (!ep->asconf_enable)
763 return retval;
764
765 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
766 __func__, sk, addrs, addrcnt);
767
768 list_for_each_entry(asoc, &ep->asocs, asocs) {
769
770 if (!asoc->peer.asconf_capable)
771 continue;
772
773 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP)
774 continue;
775
776 if (!sctp_state(asoc, ESTABLISHED))
777 continue;
778
779 /* Check if any address in the packed array of addresses is
780 * not present in the bind address list of the association.
781 * If so, do not send the asconf chunk to its peer, but
782 * continue with other associations.
783 */
784 addr_buf = addrs;
785 for (i = 0; i < addrcnt; i++) {
786 laddr = addr_buf;
787 af = sctp_get_af_specific(laddr->v4.sin_family);
788 if (!af) {
789 retval = -EINVAL;
790 goto out;
791 }
792
793 if (!sctp_assoc_lookup_laddr(asoc, laddr))
794 break;
795
796 addr_buf += af->sockaddr_len;
797 }
798 if (i < addrcnt)
799 continue;
800
801 /* Find one address in the association's bind address list
802 * that is not in the packed array of addresses. This is to
803 * make sure that we do not delete all the addresses in the
804 * association.
805 */
806 bp = &asoc->base.bind_addr;
807 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs,
808 addrcnt, sp);
809 if ((laddr == NULL) && (addrcnt == 1)) {
810 if (asoc->asconf_addr_del_pending)
811 continue;
812 asoc->asconf_addr_del_pending =
813 kzalloc(sizeof(union sctp_addr), GFP_ATOMIC);
814 if (asoc->asconf_addr_del_pending == NULL) {
815 retval = -ENOMEM;
816 goto out;
817 }
818 asoc->asconf_addr_del_pending->sa.sa_family =
819 addrs->sa_family;
820 asoc->asconf_addr_del_pending->v4.sin_port =
821 htons(bp->port);
822 if (addrs->sa_family == AF_INET) {
823 struct sockaddr_in *sin;
824
825 sin = (struct sockaddr_in *)addrs;
826 asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr;
827 } else if (addrs->sa_family == AF_INET6) {
828 struct sockaddr_in6 *sin6;
829
830 sin6 = (struct sockaddr_in6 *)addrs;
831 asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr;
832 }
833
834 pr_debug("%s: keep the last address asoc:%p %pISc at %p\n",
835 __func__, asoc, &asoc->asconf_addr_del_pending->sa,
836 asoc->asconf_addr_del_pending);
837
838 asoc->src_out_of_asoc_ok = 1;
839 stored = 1;
840 goto skip_mkasconf;
841 }
842
843 if (laddr == NULL)
844 return -EINVAL;
845
846 /* We do not need RCU protection throughout this loop
847 * because this is done under a socket lock from the
848 * setsockopt call.
849 */
850 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt,
851 SCTP_PARAM_DEL_IP);
852 if (!chunk) {
853 retval = -ENOMEM;
854 goto out;
855 }
856
857skip_mkasconf:
858 /* Reset use_as_src flag for the addresses in the bind address
859 * list that are to be deleted.
860 */
861 addr_buf = addrs;
862 for (i = 0; i < addrcnt; i++) {
863 laddr = addr_buf;
864 af = sctp_get_af_specific(laddr->v4.sin_family);
865 list_for_each_entry(saddr, &bp->address_list, list) {
866 if (sctp_cmp_addr_exact(&saddr->a, laddr))
867 saddr->state = SCTP_ADDR_DEL;
868 }
869 addr_buf += af->sockaddr_len;
870 }
871
872 /* Update the route and saddr entries for all the transports
873 * as some of the addresses in the bind address list are
874 * about to be deleted and cannot be used as source addresses.
875 */
876 list_for_each_entry(transport, &asoc->peer.transport_addr_list,
877 transports) {
878 sctp_transport_route(transport, NULL,
879 sctp_sk(asoc->base.sk));
880 }
881
882 if (stored)
883 /* We don't need to transmit ASCONF */
884 continue;
885 retval = sctp_send_asconf(asoc, chunk);
886 }
887out:
888 return retval;
889}
890
891/* set addr events to assocs in the endpoint. ep and addr_wq must be locked */
892int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw)
893{
894 struct sock *sk = sctp_opt2sk(sp);
895 union sctp_addr *addr;
896 struct sctp_af *af;
897
898 /* It is safe to write port space in caller. */
899 addr = &addrw->a;
900 addr->v4.sin_port = htons(sp->ep->base.bind_addr.port);
901 af = sctp_get_af_specific(addr->sa.sa_family);
902 if (!af)
903 return -EINVAL;
904 if (sctp_verify_addr(sk, addr, af->sockaddr_len))
905 return -EINVAL;
906
907 if (addrw->state == SCTP_ADDR_NEW)
908 return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1);
909 else
910 return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1);
911}
912
913/* Helper for tunneling sctp_bindx() requests through sctp_setsockopt()
914 *
915 * API 8.1
916 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt,
917 * int flags);
918 *
919 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
920 * If the sd is an IPv6 socket, the addresses passed can either be IPv4
921 * or IPv6 addresses.
922 *
923 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
924 * Section 3.1.2 for this usage.
925 *
926 * addrs is a pointer to an array of one or more socket addresses. Each
927 * address is contained in its appropriate structure (i.e. struct
928 * sockaddr_in or struct sockaddr_in6) the family of the address type
929 * must be used to distinguish the address length (note that this
930 * representation is termed a "packed array" of addresses). The caller
931 * specifies the number of addresses in the array with addrcnt.
932 *
933 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
934 * -1, and sets errno to the appropriate error code.
935 *
936 * For SCTP, the port given in each socket address must be the same, or
937 * sctp_bindx() will fail, setting errno to EINVAL.
938 *
939 * The flags parameter is formed from the bitwise OR of zero or more of
940 * the following currently defined flags:
941 *
942 * SCTP_BINDX_ADD_ADDR
943 *
944 * SCTP_BINDX_REM_ADDR
945 *
946 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
947 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given
948 * addresses from the association. The two flags are mutually exclusive;
949 * if both are given, sctp_bindx() will fail with EINVAL. A caller may
950 * not remove all addresses from an association; sctp_bindx() will
951 * reject such an attempt with EINVAL.
952 *
953 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
954 * additional addresses with an endpoint after calling bind(). Or use
955 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
956 * socket is associated with so that no new association accepted will be
957 * associated with those addresses. If the endpoint supports dynamic
958 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a
959 * endpoint to send the appropriate message to the peer to change the
960 * peers address lists.
961 *
962 * Adding and removing addresses from a connected association is
963 * optional functionality. Implementations that do not support this
964 * functionality should return EOPNOTSUPP.
965 *
966 * Basically do nothing but copying the addresses from user to kernel
967 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk.
968 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt()
969 * from userspace.
970 *
971 * On exit there is no need to do sockfd_put(), sys_setsockopt() does
972 * it.
973 *
974 * sk The sk of the socket
975 * addrs The pointer to the addresses
976 * addrssize Size of the addrs buffer
977 * op Operation to perform (add or remove, see the flags of
978 * sctp_bindx)
979 *
980 * Returns 0 if ok, <0 errno code on error.
981 */
982static int sctp_setsockopt_bindx(struct sock *sk, struct sockaddr *addrs,
983 int addrs_size, int op)
984{
985 int err;
986 int addrcnt = 0;
987 int walk_size = 0;
988 struct sockaddr *sa_addr;
989 void *addr_buf = addrs;
990 struct sctp_af *af;
991
992 pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n",
993 __func__, sk, addr_buf, addrs_size, op);
994
995 if (unlikely(addrs_size <= 0))
996 return -EINVAL;
997
998 /* Walk through the addrs buffer and count the number of addresses. */
999 while (walk_size < addrs_size) {
1000 if (walk_size + sizeof(sa_family_t) > addrs_size)
1001 return -EINVAL;
1002
1003 sa_addr = addr_buf;
1004 af = sctp_get_af_specific(sa_addr->sa_family);
1005
1006 /* If the address family is not supported or if this address
1007 * causes the address buffer to overflow return EINVAL.
1008 */
1009 if (!af || (walk_size + af->sockaddr_len) > addrs_size)
1010 return -EINVAL;
1011 addrcnt++;
1012 addr_buf += af->sockaddr_len;
1013 walk_size += af->sockaddr_len;
1014 }
1015
1016 /* Do the work. */
1017 switch (op) {
1018 case SCTP_BINDX_ADD_ADDR:
1019 /* Allow security module to validate bindx addresses. */
1020 err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_BINDX_ADD,
1021 addrs, addrs_size);
1022 if (err)
1023 return err;
1024 err = sctp_bindx_add(sk, addrs, addrcnt);
1025 if (err)
1026 return err;
1027 return sctp_send_asconf_add_ip(sk, addrs, addrcnt);
1028 case SCTP_BINDX_REM_ADDR:
1029 err = sctp_bindx_rem(sk, addrs, addrcnt);
1030 if (err)
1031 return err;
1032 return sctp_send_asconf_del_ip(sk, addrs, addrcnt);
1033
1034 default:
1035 return -EINVAL;
1036 }
1037}
1038
1039static int sctp_bind_add(struct sock *sk, struct sockaddr *addrs,
1040 int addrlen)
1041{
1042 int err;
1043
1044 lock_sock(sk);
1045 err = sctp_setsockopt_bindx(sk, addrs, addrlen, SCTP_BINDX_ADD_ADDR);
1046 release_sock(sk);
1047 return err;
1048}
1049
1050static int sctp_connect_new_asoc(struct sctp_endpoint *ep,
1051 const union sctp_addr *daddr,
1052 const struct sctp_initmsg *init,
1053 struct sctp_transport **tp)
1054{
1055 struct sctp_association *asoc;
1056 struct sock *sk = ep->base.sk;
1057 struct net *net = sock_net(sk);
1058 enum sctp_scope scope;
1059 int err;
1060
1061 if (sctp_endpoint_is_peeled_off(ep, daddr))
1062 return -EADDRNOTAVAIL;
1063
1064 if (!ep->base.bind_addr.port) {
1065 if (sctp_autobind(sk))
1066 return -EAGAIN;
1067 } else {
1068 if (inet_port_requires_bind_service(net, ep->base.bind_addr.port) &&
1069 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE))
1070 return -EACCES;
1071 }
1072
1073 scope = sctp_scope(daddr);
1074 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1075 if (!asoc)
1076 return -ENOMEM;
1077
1078 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL);
1079 if (err < 0)
1080 goto free;
1081
1082 *tp = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, SCTP_UNKNOWN);
1083 if (!*tp) {
1084 err = -ENOMEM;
1085 goto free;
1086 }
1087
1088 if (!init)
1089 return 0;
1090
1091 if (init->sinit_num_ostreams) {
1092 __u16 outcnt = init->sinit_num_ostreams;
1093
1094 asoc->c.sinit_num_ostreams = outcnt;
1095 /* outcnt has been changed, need to re-init stream */
1096 err = sctp_stream_init(&asoc->stream, outcnt, 0, GFP_KERNEL);
1097 if (err)
1098 goto free;
1099 }
1100
1101 if (init->sinit_max_instreams)
1102 asoc->c.sinit_max_instreams = init->sinit_max_instreams;
1103
1104 if (init->sinit_max_attempts)
1105 asoc->max_init_attempts = init->sinit_max_attempts;
1106
1107 if (init->sinit_max_init_timeo)
1108 asoc->max_init_timeo =
1109 msecs_to_jiffies(init->sinit_max_init_timeo);
1110
1111 return 0;
1112free:
1113 sctp_association_free(asoc);
1114 return err;
1115}
1116
1117static int sctp_connect_add_peer(struct sctp_association *asoc,
1118 union sctp_addr *daddr, int addr_len)
1119{
1120 struct sctp_endpoint *ep = asoc->ep;
1121 struct sctp_association *old;
1122 struct sctp_transport *t;
1123 int err;
1124
1125 err = sctp_verify_addr(ep->base.sk, daddr, addr_len);
1126 if (err)
1127 return err;
1128
1129 old = sctp_endpoint_lookup_assoc(ep, daddr, &t);
1130 if (old && old != asoc)
1131 return old->state >= SCTP_STATE_ESTABLISHED ? -EISCONN
1132 : -EALREADY;
1133
1134 if (sctp_endpoint_is_peeled_off(ep, daddr))
1135 return -EADDRNOTAVAIL;
1136
1137 t = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, SCTP_UNKNOWN);
1138 if (!t)
1139 return -ENOMEM;
1140
1141 return 0;
1142}
1143
1144/* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size)
1145 *
1146 * Common routine for handling connect() and sctp_connectx().
1147 * Connect will come in with just a single address.
1148 */
1149static int __sctp_connect(struct sock *sk, struct sockaddr *kaddrs,
1150 int addrs_size, int flags, sctp_assoc_t *assoc_id)
1151{
1152 struct sctp_sock *sp = sctp_sk(sk);
1153 struct sctp_endpoint *ep = sp->ep;
1154 struct sctp_transport *transport;
1155 struct sctp_association *asoc;
1156 void *addr_buf = kaddrs;
1157 union sctp_addr *daddr;
1158 struct sctp_af *af;
1159 int walk_size, err;
1160 long timeo;
1161
1162 if (sctp_sstate(sk, ESTABLISHED) || sctp_sstate(sk, CLOSING) ||
1163 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)))
1164 return -EISCONN;
1165
1166 daddr = addr_buf;
1167 af = sctp_get_af_specific(daddr->sa.sa_family);
1168 if (!af || af->sockaddr_len > addrs_size)
1169 return -EINVAL;
1170
1171 err = sctp_verify_addr(sk, daddr, af->sockaddr_len);
1172 if (err)
1173 return err;
1174
1175 asoc = sctp_endpoint_lookup_assoc(ep, daddr, &transport);
1176 if (asoc)
1177 return asoc->state >= SCTP_STATE_ESTABLISHED ? -EISCONN
1178 : -EALREADY;
1179
1180 err = sctp_connect_new_asoc(ep, daddr, NULL, &transport);
1181 if (err)
1182 return err;
1183 asoc = transport->asoc;
1184
1185 addr_buf += af->sockaddr_len;
1186 walk_size = af->sockaddr_len;
1187 while (walk_size < addrs_size) {
1188 err = -EINVAL;
1189 if (walk_size + sizeof(sa_family_t) > addrs_size)
1190 goto out_free;
1191
1192 daddr = addr_buf;
1193 af = sctp_get_af_specific(daddr->sa.sa_family);
1194 if (!af || af->sockaddr_len + walk_size > addrs_size)
1195 goto out_free;
1196
1197 if (asoc->peer.port != ntohs(daddr->v4.sin_port))
1198 goto out_free;
1199
1200 err = sctp_connect_add_peer(asoc, daddr, af->sockaddr_len);
1201 if (err)
1202 goto out_free;
1203
1204 addr_buf += af->sockaddr_len;
1205 walk_size += af->sockaddr_len;
1206 }
1207
1208 /* In case the user of sctp_connectx() wants an association
1209 * id back, assign one now.
1210 */
1211 if (assoc_id) {
1212 err = sctp_assoc_set_id(asoc, GFP_KERNEL);
1213 if (err < 0)
1214 goto out_free;
1215 }
1216
1217 err = sctp_primitive_ASSOCIATE(sock_net(sk), asoc, NULL);
1218 if (err < 0)
1219 goto out_free;
1220
1221 /* Initialize sk's dport and daddr for getpeername() */
1222 inet_sk(sk)->inet_dport = htons(asoc->peer.port);
1223 sp->pf->to_sk_daddr(daddr, sk);
1224 sk->sk_err = 0;
1225
1226 if (assoc_id)
1227 *assoc_id = asoc->assoc_id;
1228
1229 timeo = sock_sndtimeo(sk, flags & O_NONBLOCK);
1230 return sctp_wait_for_connect(asoc, &timeo);
1231
1232out_free:
1233 pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n",
1234 __func__, asoc, kaddrs, err);
1235 sctp_association_free(asoc);
1236 return err;
1237}
1238
1239/* Helper for tunneling sctp_connectx() requests through sctp_setsockopt()
1240 *
1241 * API 8.9
1242 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt,
1243 * sctp_assoc_t *asoc);
1244 *
1245 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
1246 * If the sd is an IPv6 socket, the addresses passed can either be IPv4
1247 * or IPv6 addresses.
1248 *
1249 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
1250 * Section 3.1.2 for this usage.
1251 *
1252 * addrs is a pointer to an array of one or more socket addresses. Each
1253 * address is contained in its appropriate structure (i.e. struct
1254 * sockaddr_in or struct sockaddr_in6) the family of the address type
1255 * must be used to distengish the address length (note that this
1256 * representation is termed a "packed array" of addresses). The caller
1257 * specifies the number of addresses in the array with addrcnt.
1258 *
1259 * On success, sctp_connectx() returns 0. It also sets the assoc_id to
1260 * the association id of the new association. On failure, sctp_connectx()
1261 * returns -1, and sets errno to the appropriate error code. The assoc_id
1262 * is not touched by the kernel.
1263 *
1264 * For SCTP, the port given in each socket address must be the same, or
1265 * sctp_connectx() will fail, setting errno to EINVAL.
1266 *
1267 * An application can use sctp_connectx to initiate an association with
1268 * an endpoint that is multi-homed. Much like sctp_bindx() this call
1269 * allows a caller to specify multiple addresses at which a peer can be
1270 * reached. The way the SCTP stack uses the list of addresses to set up
1271 * the association is implementation dependent. This function only
1272 * specifies that the stack will try to make use of all the addresses in
1273 * the list when needed.
1274 *
1275 * Note that the list of addresses passed in is only used for setting up
1276 * the association. It does not necessarily equal the set of addresses
1277 * the peer uses for the resulting association. If the caller wants to
1278 * find out the set of peer addresses, it must use sctp_getpaddrs() to
1279 * retrieve them after the association has been set up.
1280 *
1281 * Basically do nothing but copying the addresses from user to kernel
1282 * land and invoking either sctp_connectx(). This is used for tunneling
1283 * the sctp_connectx() request through sctp_setsockopt() from userspace.
1284 *
1285 * On exit there is no need to do sockfd_put(), sys_setsockopt() does
1286 * it.
1287 *
1288 * sk The sk of the socket
1289 * addrs The pointer to the addresses
1290 * addrssize Size of the addrs buffer
1291 *
1292 * Returns >=0 if ok, <0 errno code on error.
1293 */
1294static int __sctp_setsockopt_connectx(struct sock *sk, struct sockaddr *kaddrs,
1295 int addrs_size, sctp_assoc_t *assoc_id)
1296{
1297 int err = 0, flags = 0;
1298
1299 pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n",
1300 __func__, sk, kaddrs, addrs_size);
1301
1302 /* make sure the 1st addr's sa_family is accessible later */
1303 if (unlikely(addrs_size < sizeof(sa_family_t)))
1304 return -EINVAL;
1305
1306 /* Allow security module to validate connectx addresses. */
1307 err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_CONNECTX,
1308 (struct sockaddr *)kaddrs,
1309 addrs_size);
1310 if (err)
1311 return err;
1312
1313 /* in-kernel sockets don't generally have a file allocated to them
1314 * if all they do is call sock_create_kern().
1315 */
1316 if (sk->sk_socket->file)
1317 flags = sk->sk_socket->file->f_flags;
1318
1319 return __sctp_connect(sk, kaddrs, addrs_size, flags, assoc_id);
1320}
1321
1322/*
1323 * This is an older interface. It's kept for backward compatibility
1324 * to the option that doesn't provide association id.
1325 */
1326static int sctp_setsockopt_connectx_old(struct sock *sk,
1327 struct sockaddr *kaddrs,
1328 int addrs_size)
1329{
1330 return __sctp_setsockopt_connectx(sk, kaddrs, addrs_size, NULL);
1331}
1332
1333/*
1334 * New interface for the API. The since the API is done with a socket
1335 * option, to make it simple we feed back the association id is as a return
1336 * indication to the call. Error is always negative and association id is
1337 * always positive.
1338 */
1339static int sctp_setsockopt_connectx(struct sock *sk,
1340 struct sockaddr *kaddrs,
1341 int addrs_size)
1342{
1343 sctp_assoc_t assoc_id = 0;
1344 int err = 0;
1345
1346 err = __sctp_setsockopt_connectx(sk, kaddrs, addrs_size, &assoc_id);
1347
1348 if (err)
1349 return err;
1350 else
1351 return assoc_id;
1352}
1353
1354/*
1355 * New (hopefully final) interface for the API.
1356 * We use the sctp_getaddrs_old structure so that use-space library
1357 * can avoid any unnecessary allocations. The only different part
1358 * is that we store the actual length of the address buffer into the
1359 * addrs_num structure member. That way we can re-use the existing
1360 * code.
1361 */
1362#ifdef CONFIG_COMPAT
1363struct compat_sctp_getaddrs_old {
1364 sctp_assoc_t assoc_id;
1365 s32 addr_num;
1366 compat_uptr_t addrs; /* struct sockaddr * */
1367};
1368#endif
1369
1370static int sctp_getsockopt_connectx3(struct sock *sk, int len,
1371 char __user *optval,
1372 int __user *optlen)
1373{
1374 struct sctp_getaddrs_old param;
1375 sctp_assoc_t assoc_id = 0;
1376 struct sockaddr *kaddrs;
1377 int err = 0;
1378
1379#ifdef CONFIG_COMPAT
1380 if (in_compat_syscall()) {
1381 struct compat_sctp_getaddrs_old param32;
1382
1383 if (len < sizeof(param32))
1384 return -EINVAL;
1385 if (copy_from_user(¶m32, optval, sizeof(param32)))
1386 return -EFAULT;
1387
1388 param.assoc_id = param32.assoc_id;
1389 param.addr_num = param32.addr_num;
1390 param.addrs = compat_ptr(param32.addrs);
1391 } else
1392#endif
1393 {
1394 if (len < sizeof(param))
1395 return -EINVAL;
1396 if (copy_from_user(¶m, optval, sizeof(param)))
1397 return -EFAULT;
1398 }
1399
1400 kaddrs = memdup_user(param.addrs, param.addr_num);
1401 if (IS_ERR(kaddrs))
1402 return PTR_ERR(kaddrs);
1403
1404 err = __sctp_setsockopt_connectx(sk, kaddrs, param.addr_num, &assoc_id);
1405 kfree(kaddrs);
1406 if (err == 0 || err == -EINPROGRESS) {
1407 if (copy_to_user(optval, &assoc_id, sizeof(assoc_id)))
1408 return -EFAULT;
1409 if (put_user(sizeof(assoc_id), optlen))
1410 return -EFAULT;
1411 }
1412
1413 return err;
1414}
1415
1416/* API 3.1.4 close() - UDP Style Syntax
1417 * Applications use close() to perform graceful shutdown (as described in
1418 * Section 10.1 of [SCTP]) on ALL the associations currently represented
1419 * by a UDP-style socket.
1420 *
1421 * The syntax is
1422 *
1423 * ret = close(int sd);
1424 *
1425 * sd - the socket descriptor of the associations to be closed.
1426 *
1427 * To gracefully shutdown a specific association represented by the
1428 * UDP-style socket, an application should use the sendmsg() call,
1429 * passing no user data, but including the appropriate flag in the
1430 * ancillary data (see Section xxxx).
1431 *
1432 * If sd in the close() call is a branched-off socket representing only
1433 * one association, the shutdown is performed on that association only.
1434 *
1435 * 4.1.6 close() - TCP Style Syntax
1436 *
1437 * Applications use close() to gracefully close down an association.
1438 *
1439 * The syntax is:
1440 *
1441 * int close(int sd);
1442 *
1443 * sd - the socket descriptor of the association to be closed.
1444 *
1445 * After an application calls close() on a socket descriptor, no further
1446 * socket operations will succeed on that descriptor.
1447 *
1448 * API 7.1.4 SO_LINGER
1449 *
1450 * An application using the TCP-style socket can use this option to
1451 * perform the SCTP ABORT primitive. The linger option structure is:
1452 *
1453 * struct linger {
1454 * int l_onoff; // option on/off
1455 * int l_linger; // linger time
1456 * };
1457 *
1458 * To enable the option, set l_onoff to 1. If the l_linger value is set
1459 * to 0, calling close() is the same as the ABORT primitive. If the
1460 * value is set to a negative value, the setsockopt() call will return
1461 * an error. If the value is set to a positive value linger_time, the
1462 * close() can be blocked for at most linger_time ms. If the graceful
1463 * shutdown phase does not finish during this period, close() will
1464 * return but the graceful shutdown phase continues in the system.
1465 */
1466static void sctp_close(struct sock *sk, long timeout)
1467{
1468 struct net *net = sock_net(sk);
1469 struct sctp_endpoint *ep;
1470 struct sctp_association *asoc;
1471 struct list_head *pos, *temp;
1472 unsigned int data_was_unread;
1473
1474 pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout);
1475
1476 lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
1477 sk->sk_shutdown = SHUTDOWN_MASK;
1478 inet_sk_set_state(sk, SCTP_SS_CLOSING);
1479
1480 ep = sctp_sk(sk)->ep;
1481
1482 /* Clean up any skbs sitting on the receive queue. */
1483 data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue);
1484 data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby);
1485
1486 /* Walk all associations on an endpoint. */
1487 list_for_each_safe(pos, temp, &ep->asocs) {
1488 asoc = list_entry(pos, struct sctp_association, asocs);
1489
1490 if (sctp_style(sk, TCP)) {
1491 /* A closed association can still be in the list if
1492 * it belongs to a TCP-style listening socket that is
1493 * not yet accepted. If so, free it. If not, send an
1494 * ABORT or SHUTDOWN based on the linger options.
1495 */
1496 if (sctp_state(asoc, CLOSED)) {
1497 sctp_association_free(asoc);
1498 continue;
1499 }
1500 }
1501
1502 if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) ||
1503 !skb_queue_empty(&asoc->ulpq.reasm) ||
1504 !skb_queue_empty(&asoc->ulpq.reasm_uo) ||
1505 (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) {
1506 struct sctp_chunk *chunk;
1507
1508 chunk = sctp_make_abort_user(asoc, NULL, 0);
1509 sctp_primitive_ABORT(net, asoc, chunk);
1510 } else
1511 sctp_primitive_SHUTDOWN(net, asoc, NULL);
1512 }
1513
1514 /* On a TCP-style socket, block for at most linger_time if set. */
1515 if (sctp_style(sk, TCP) && timeout)
1516 sctp_wait_for_close(sk, timeout);
1517
1518 /* This will run the backlog queue. */
1519 release_sock(sk);
1520
1521 /* Supposedly, no process has access to the socket, but
1522 * the net layers still may.
1523 * Also, sctp_destroy_sock() needs to be called with addr_wq_lock
1524 * held and that should be grabbed before socket lock.
1525 */
1526 spin_lock_bh(&net->sctp.addr_wq_lock);
1527 bh_lock_sock_nested(sk);
1528
1529 /* Hold the sock, since sk_common_release() will put sock_put()
1530 * and we have just a little more cleanup.
1531 */
1532 sock_hold(sk);
1533 sk_common_release(sk);
1534
1535 bh_unlock_sock(sk);
1536 spin_unlock_bh(&net->sctp.addr_wq_lock);
1537
1538 sock_put(sk);
1539
1540 SCTP_DBG_OBJCNT_DEC(sock);
1541}
1542
1543/* Handle EPIPE error. */
1544static int sctp_error(struct sock *sk, int flags, int err)
1545{
1546 if (err == -EPIPE)
1547 err = sock_error(sk) ? : -EPIPE;
1548 if (err == -EPIPE && !(flags & MSG_NOSIGNAL))
1549 send_sig(SIGPIPE, current, 0);
1550 return err;
1551}
1552
1553/* API 3.1.3 sendmsg() - UDP Style Syntax
1554 *
1555 * An application uses sendmsg() and recvmsg() calls to transmit data to
1556 * and receive data from its peer.
1557 *
1558 * ssize_t sendmsg(int socket, const struct msghdr *message,
1559 * int flags);
1560 *
1561 * socket - the socket descriptor of the endpoint.
1562 * message - pointer to the msghdr structure which contains a single
1563 * user message and possibly some ancillary data.
1564 *
1565 * See Section 5 for complete description of the data
1566 * structures.
1567 *
1568 * flags - flags sent or received with the user message, see Section
1569 * 5 for complete description of the flags.
1570 *
1571 * Note: This function could use a rewrite especially when explicit
1572 * connect support comes in.
1573 */
1574/* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */
1575
1576static int sctp_msghdr_parse(const struct msghdr *msg,
1577 struct sctp_cmsgs *cmsgs);
1578
1579static int sctp_sendmsg_parse(struct sock *sk, struct sctp_cmsgs *cmsgs,
1580 struct sctp_sndrcvinfo *srinfo,
1581 const struct msghdr *msg, size_t msg_len)
1582{
1583 __u16 sflags;
1584 int err;
1585
1586 if (sctp_sstate(sk, LISTENING) && sctp_style(sk, TCP))
1587 return -EPIPE;
1588
1589 if (msg_len > sk->sk_sndbuf)
1590 return -EMSGSIZE;
1591
1592 memset(cmsgs, 0, sizeof(*cmsgs));
1593 err = sctp_msghdr_parse(msg, cmsgs);
1594 if (err) {
1595 pr_debug("%s: msghdr parse err:%x\n", __func__, err);
1596 return err;
1597 }
1598
1599 memset(srinfo, 0, sizeof(*srinfo));
1600 if (cmsgs->srinfo) {
1601 srinfo->sinfo_stream = cmsgs->srinfo->sinfo_stream;
1602 srinfo->sinfo_flags = cmsgs->srinfo->sinfo_flags;
1603 srinfo->sinfo_ppid = cmsgs->srinfo->sinfo_ppid;
1604 srinfo->sinfo_context = cmsgs->srinfo->sinfo_context;
1605 srinfo->sinfo_assoc_id = cmsgs->srinfo->sinfo_assoc_id;
1606 srinfo->sinfo_timetolive = cmsgs->srinfo->sinfo_timetolive;
1607 }
1608
1609 if (cmsgs->sinfo) {
1610 srinfo->sinfo_stream = cmsgs->sinfo->snd_sid;
1611 srinfo->sinfo_flags = cmsgs->sinfo->snd_flags;
1612 srinfo->sinfo_ppid = cmsgs->sinfo->snd_ppid;
1613 srinfo->sinfo_context = cmsgs->sinfo->snd_context;
1614 srinfo->sinfo_assoc_id = cmsgs->sinfo->snd_assoc_id;
1615 }
1616
1617 if (cmsgs->prinfo) {
1618 srinfo->sinfo_timetolive = cmsgs->prinfo->pr_value;
1619 SCTP_PR_SET_POLICY(srinfo->sinfo_flags,
1620 cmsgs->prinfo->pr_policy);
1621 }
1622
1623 sflags = srinfo->sinfo_flags;
1624 if (!sflags && msg_len)
1625 return 0;
1626
1627 if (sctp_style(sk, TCP) && (sflags & (SCTP_EOF | SCTP_ABORT)))
1628 return -EINVAL;
1629
1630 if (((sflags & SCTP_EOF) && msg_len > 0) ||
1631 (!(sflags & (SCTP_EOF | SCTP_ABORT)) && msg_len == 0))
1632 return -EINVAL;
1633
1634 if ((sflags & SCTP_ADDR_OVER) && !msg->msg_name)
1635 return -EINVAL;
1636
1637 return 0;
1638}
1639
1640static int sctp_sendmsg_new_asoc(struct sock *sk, __u16 sflags,
1641 struct sctp_cmsgs *cmsgs,
1642 union sctp_addr *daddr,
1643 struct sctp_transport **tp)
1644{
1645 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
1646 struct sctp_association *asoc;
1647 struct cmsghdr *cmsg;
1648 __be32 flowinfo = 0;
1649 struct sctp_af *af;
1650 int err;
1651
1652 *tp = NULL;
1653
1654 if (sflags & (SCTP_EOF | SCTP_ABORT))
1655 return -EINVAL;
1656
1657 if (sctp_style(sk, TCP) && (sctp_sstate(sk, ESTABLISHED) ||
1658 sctp_sstate(sk, CLOSING)))
1659 return -EADDRNOTAVAIL;
1660
1661 /* Label connection socket for first association 1-to-many
1662 * style for client sequence socket()->sendmsg(). This
1663 * needs to be done before sctp_assoc_add_peer() as that will
1664 * set up the initial packet that needs to account for any
1665 * security ip options (CIPSO/CALIPSO) added to the packet.
1666 */
1667 af = sctp_get_af_specific(daddr->sa.sa_family);
1668 if (!af)
1669 return -EINVAL;
1670 err = security_sctp_bind_connect(sk, SCTP_SENDMSG_CONNECT,
1671 (struct sockaddr *)daddr,
1672 af->sockaddr_len);
1673 if (err < 0)
1674 return err;
1675
1676 err = sctp_connect_new_asoc(ep, daddr, cmsgs->init, tp);
1677 if (err)
1678 return err;
1679 asoc = (*tp)->asoc;
1680
1681 if (!cmsgs->addrs_msg)
1682 return 0;
1683
1684 if (daddr->sa.sa_family == AF_INET6)
1685 flowinfo = daddr->v6.sin6_flowinfo;
1686
1687 /* sendv addr list parse */
1688 for_each_cmsghdr(cmsg, cmsgs->addrs_msg) {
1689 union sctp_addr _daddr;
1690 int dlen;
1691
1692 if (cmsg->cmsg_level != IPPROTO_SCTP ||
1693 (cmsg->cmsg_type != SCTP_DSTADDRV4 &&
1694 cmsg->cmsg_type != SCTP_DSTADDRV6))
1695 continue;
1696
1697 daddr = &_daddr;
1698 memset(daddr, 0, sizeof(*daddr));
1699 dlen = cmsg->cmsg_len - sizeof(struct cmsghdr);
1700 if (cmsg->cmsg_type == SCTP_DSTADDRV4) {
1701 if (dlen < sizeof(struct in_addr)) {
1702 err = -EINVAL;
1703 goto free;
1704 }
1705
1706 dlen = sizeof(struct in_addr);
1707 daddr->v4.sin_family = AF_INET;
1708 daddr->v4.sin_port = htons(asoc->peer.port);
1709 memcpy(&daddr->v4.sin_addr, CMSG_DATA(cmsg), dlen);
1710 } else {
1711 if (dlen < sizeof(struct in6_addr)) {
1712 err = -EINVAL;
1713 goto free;
1714 }
1715
1716 dlen = sizeof(struct in6_addr);
1717 daddr->v6.sin6_flowinfo = flowinfo;
1718 daddr->v6.sin6_family = AF_INET6;
1719 daddr->v6.sin6_port = htons(asoc->peer.port);
1720 memcpy(&daddr->v6.sin6_addr, CMSG_DATA(cmsg), dlen);
1721 }
1722
1723 err = sctp_connect_add_peer(asoc, daddr, sizeof(*daddr));
1724 if (err)
1725 goto free;
1726 }
1727
1728 return 0;
1729
1730free:
1731 sctp_association_free(asoc);
1732 return err;
1733}
1734
1735static int sctp_sendmsg_check_sflags(struct sctp_association *asoc,
1736 __u16 sflags, struct msghdr *msg,
1737 size_t msg_len)
1738{
1739 struct sock *sk = asoc->base.sk;
1740 struct net *net = sock_net(sk);
1741
1742 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP))
1743 return -EPIPE;
1744
1745 if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP) &&
1746 !sctp_state(asoc, ESTABLISHED))
1747 return 0;
1748
1749 if (sflags & SCTP_EOF) {
1750 pr_debug("%s: shutting down association:%p\n", __func__, asoc);
1751 sctp_primitive_SHUTDOWN(net, asoc, NULL);
1752
1753 return 0;
1754 }
1755
1756 if (sflags & SCTP_ABORT) {
1757 struct sctp_chunk *chunk;
1758
1759 chunk = sctp_make_abort_user(asoc, msg, msg_len);
1760 if (!chunk)
1761 return -ENOMEM;
1762
1763 pr_debug("%s: aborting association:%p\n", __func__, asoc);
1764 sctp_primitive_ABORT(net, asoc, chunk);
1765 iov_iter_revert(&msg->msg_iter, msg_len);
1766
1767 return 0;
1768 }
1769
1770 return 1;
1771}
1772
1773static int sctp_sendmsg_to_asoc(struct sctp_association *asoc,
1774 struct msghdr *msg, size_t msg_len,
1775 struct sctp_transport *transport,
1776 struct sctp_sndrcvinfo *sinfo)
1777{
1778 struct sock *sk = asoc->base.sk;
1779 struct sctp_sock *sp = sctp_sk(sk);
1780 struct net *net = sock_net(sk);
1781 struct sctp_datamsg *datamsg;
1782 bool wait_connect = false;
1783 struct sctp_chunk *chunk;
1784 long timeo;
1785 int err;
1786
1787 if (sinfo->sinfo_stream >= asoc->stream.outcnt) {
1788 err = -EINVAL;
1789 goto err;
1790 }
1791
1792 if (unlikely(!SCTP_SO(&asoc->stream, sinfo->sinfo_stream)->ext)) {
1793 err = sctp_stream_init_ext(&asoc->stream, sinfo->sinfo_stream);
1794 if (err)
1795 goto err;
1796 }
1797
1798 if (sp->disable_fragments && msg_len > asoc->frag_point) {
1799 err = -EMSGSIZE;
1800 goto err;
1801 }
1802
1803 if (asoc->pmtu_pending) {
1804 if (sp->param_flags & SPP_PMTUD_ENABLE)
1805 sctp_assoc_sync_pmtu(asoc);
1806 asoc->pmtu_pending = 0;
1807 }
1808
1809 if (sctp_wspace(asoc) < (int)msg_len)
1810 sctp_prsctp_prune(asoc, sinfo, msg_len - sctp_wspace(asoc));
1811
1812 if (sk_under_memory_pressure(sk))
1813 sk_mem_reclaim(sk);
1814
1815 if (sctp_wspace(asoc) <= 0 || !sk_wmem_schedule(sk, msg_len)) {
1816 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1817 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len);
1818 if (err)
1819 goto err;
1820 }
1821
1822 if (sctp_state(asoc, CLOSED)) {
1823 err = sctp_primitive_ASSOCIATE(net, asoc, NULL);
1824 if (err)
1825 goto err;
1826
1827 if (asoc->ep->intl_enable) {
1828 timeo = sock_sndtimeo(sk, 0);
1829 err = sctp_wait_for_connect(asoc, &timeo);
1830 if (err) {
1831 err = -ESRCH;
1832 goto err;
1833 }
1834 } else {
1835 wait_connect = true;
1836 }
1837
1838 pr_debug("%s: we associated primitively\n", __func__);
1839 }
1840
1841 datamsg = sctp_datamsg_from_user(asoc, sinfo, &msg->msg_iter);
1842 if (IS_ERR(datamsg)) {
1843 err = PTR_ERR(datamsg);
1844 goto err;
1845 }
1846
1847 asoc->force_delay = !!(msg->msg_flags & MSG_MORE);
1848
1849 list_for_each_entry(chunk, &datamsg->chunks, frag_list) {
1850 sctp_chunk_hold(chunk);
1851 sctp_set_owner_w(chunk);
1852 chunk->transport = transport;
1853 }
1854
1855 err = sctp_primitive_SEND(net, asoc, datamsg);
1856 if (err) {
1857 sctp_datamsg_free(datamsg);
1858 goto err;
1859 }
1860
1861 pr_debug("%s: we sent primitively\n", __func__);
1862
1863 sctp_datamsg_put(datamsg);
1864
1865 if (unlikely(wait_connect)) {
1866 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1867 sctp_wait_for_connect(asoc, &timeo);
1868 }
1869
1870 err = msg_len;
1871
1872err:
1873 return err;
1874}
1875
1876static union sctp_addr *sctp_sendmsg_get_daddr(struct sock *sk,
1877 const struct msghdr *msg,
1878 struct sctp_cmsgs *cmsgs)
1879{
1880 union sctp_addr *daddr = NULL;
1881 int err;
1882
1883 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) {
1884 int len = msg->msg_namelen;
1885
1886 if (len > sizeof(*daddr))
1887 len = sizeof(*daddr);
1888
1889 daddr = (union sctp_addr *)msg->msg_name;
1890
1891 err = sctp_verify_addr(sk, daddr, len);
1892 if (err)
1893 return ERR_PTR(err);
1894 }
1895
1896 return daddr;
1897}
1898
1899static void sctp_sendmsg_update_sinfo(struct sctp_association *asoc,
1900 struct sctp_sndrcvinfo *sinfo,
1901 struct sctp_cmsgs *cmsgs)
1902{
1903 if (!cmsgs->srinfo && !cmsgs->sinfo) {
1904 sinfo->sinfo_stream = asoc->default_stream;
1905 sinfo->sinfo_ppid = asoc->default_ppid;
1906 sinfo->sinfo_context = asoc->default_context;
1907 sinfo->sinfo_assoc_id = sctp_assoc2id(asoc);
1908
1909 if (!cmsgs->prinfo)
1910 sinfo->sinfo_flags = asoc->default_flags;
1911 }
1912
1913 if (!cmsgs->srinfo && !cmsgs->prinfo)
1914 sinfo->sinfo_timetolive = asoc->default_timetolive;
1915
1916 if (cmsgs->authinfo) {
1917 /* Reuse sinfo_tsn to indicate that authinfo was set and
1918 * sinfo_ssn to save the keyid on tx path.
1919 */
1920 sinfo->sinfo_tsn = 1;
1921 sinfo->sinfo_ssn = cmsgs->authinfo->auth_keynumber;
1922 }
1923}
1924
1925static int sctp_sendmsg(struct sock *sk, struct msghdr *msg, size_t msg_len)
1926{
1927 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
1928 struct sctp_transport *transport = NULL;
1929 struct sctp_sndrcvinfo _sinfo, *sinfo;
1930 struct sctp_association *asoc, *tmp;
1931 struct sctp_cmsgs cmsgs;
1932 union sctp_addr *daddr;
1933 bool new = false;
1934 __u16 sflags;
1935 int err;
1936
1937 /* Parse and get snd_info */
1938 err = sctp_sendmsg_parse(sk, &cmsgs, &_sinfo, msg, msg_len);
1939 if (err)
1940 goto out;
1941
1942 sinfo = &_sinfo;
1943 sflags = sinfo->sinfo_flags;
1944
1945 /* Get daddr from msg */
1946 daddr = sctp_sendmsg_get_daddr(sk, msg, &cmsgs);
1947 if (IS_ERR(daddr)) {
1948 err = PTR_ERR(daddr);
1949 goto out;
1950 }
1951
1952 lock_sock(sk);
1953
1954 /* SCTP_SENDALL process */
1955 if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP)) {
1956 list_for_each_entry_safe(asoc, tmp, &ep->asocs, asocs) {
1957 err = sctp_sendmsg_check_sflags(asoc, sflags, msg,
1958 msg_len);
1959 if (err == 0)
1960 continue;
1961 if (err < 0)
1962 goto out_unlock;
1963
1964 sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs);
1965
1966 err = sctp_sendmsg_to_asoc(asoc, msg, msg_len,
1967 NULL, sinfo);
1968 if (err < 0)
1969 goto out_unlock;
1970
1971 iov_iter_revert(&msg->msg_iter, err);
1972 }
1973
1974 goto out_unlock;
1975 }
1976
1977 /* Get and check or create asoc */
1978 if (daddr) {
1979 asoc = sctp_endpoint_lookup_assoc(ep, daddr, &transport);
1980 if (asoc) {
1981 err = sctp_sendmsg_check_sflags(asoc, sflags, msg,
1982 msg_len);
1983 if (err <= 0)
1984 goto out_unlock;
1985 } else {
1986 err = sctp_sendmsg_new_asoc(sk, sflags, &cmsgs, daddr,
1987 &transport);
1988 if (err)
1989 goto out_unlock;
1990
1991 asoc = transport->asoc;
1992 new = true;
1993 }
1994
1995 if (!sctp_style(sk, TCP) && !(sflags & SCTP_ADDR_OVER))
1996 transport = NULL;
1997 } else {
1998 asoc = sctp_id2assoc(sk, sinfo->sinfo_assoc_id);
1999 if (!asoc) {
2000 err = -EPIPE;
2001 goto out_unlock;
2002 }
2003
2004 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, msg_len);
2005 if (err <= 0)
2006 goto out_unlock;
2007 }
2008
2009 /* Update snd_info with the asoc */
2010 sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs);
2011
2012 /* Send msg to the asoc */
2013 err = sctp_sendmsg_to_asoc(asoc, msg, msg_len, transport, sinfo);
2014 if (err < 0 && err != -ESRCH && new)
2015 sctp_association_free(asoc);
2016
2017out_unlock:
2018 release_sock(sk);
2019out:
2020 return sctp_error(sk, msg->msg_flags, err);
2021}
2022
2023/* This is an extended version of skb_pull() that removes the data from the
2024 * start of a skb even when data is spread across the list of skb's in the
2025 * frag_list. len specifies the total amount of data that needs to be removed.
2026 * when 'len' bytes could be removed from the skb, it returns 0.
2027 * If 'len' exceeds the total skb length, it returns the no. of bytes that
2028 * could not be removed.
2029 */
2030static int sctp_skb_pull(struct sk_buff *skb, int len)
2031{
2032 struct sk_buff *list;
2033 int skb_len = skb_headlen(skb);
2034 int rlen;
2035
2036 if (len <= skb_len) {
2037 __skb_pull(skb, len);
2038 return 0;
2039 }
2040 len -= skb_len;
2041 __skb_pull(skb, skb_len);
2042
2043 skb_walk_frags(skb, list) {
2044 rlen = sctp_skb_pull(list, len);
2045 skb->len -= (len-rlen);
2046 skb->data_len -= (len-rlen);
2047
2048 if (!rlen)
2049 return 0;
2050
2051 len = rlen;
2052 }
2053
2054 return len;
2055}
2056
2057/* API 3.1.3 recvmsg() - UDP Style Syntax
2058 *
2059 * ssize_t recvmsg(int socket, struct msghdr *message,
2060 * int flags);
2061 *
2062 * socket - the socket descriptor of the endpoint.
2063 * message - pointer to the msghdr structure which contains a single
2064 * user message and possibly some ancillary data.
2065 *
2066 * See Section 5 for complete description of the data
2067 * structures.
2068 *
2069 * flags - flags sent or received with the user message, see Section
2070 * 5 for complete description of the flags.
2071 */
2072static int sctp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
2073 int noblock, int flags, int *addr_len)
2074{
2075 struct sctp_ulpevent *event = NULL;
2076 struct sctp_sock *sp = sctp_sk(sk);
2077 struct sk_buff *skb, *head_skb;
2078 int copied;
2079 int err = 0;
2080 int skb_len;
2081
2082 pr_debug("%s: sk:%p, msghdr:%p, len:%zd, noblock:%d, flags:0x%x, "
2083 "addr_len:%p)\n", __func__, sk, msg, len, noblock, flags,
2084 addr_len);
2085
2086 lock_sock(sk);
2087
2088 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED) &&
2089 !sctp_sstate(sk, CLOSING) && !sctp_sstate(sk, CLOSED)) {
2090 err = -ENOTCONN;
2091 goto out;
2092 }
2093
2094 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err);
2095 if (!skb)
2096 goto out;
2097
2098 /* Get the total length of the skb including any skb's in the
2099 * frag_list.
2100 */
2101 skb_len = skb->len;
2102
2103 copied = skb_len;
2104 if (copied > len)
2105 copied = len;
2106
2107 err = skb_copy_datagram_msg(skb, 0, msg, copied);
2108
2109 event = sctp_skb2event(skb);
2110
2111 if (err)
2112 goto out_free;
2113
2114 if (event->chunk && event->chunk->head_skb)
2115 head_skb = event->chunk->head_skb;
2116 else
2117 head_skb = skb;
2118 sock_recv_ts_and_drops(msg, sk, head_skb);
2119 if (sctp_ulpevent_is_notification(event)) {
2120 msg->msg_flags |= MSG_NOTIFICATION;
2121 sp->pf->event_msgname(event, msg->msg_name, addr_len);
2122 } else {
2123 sp->pf->skb_msgname(head_skb, msg->msg_name, addr_len);
2124 }
2125
2126 /* Check if we allow SCTP_NXTINFO. */
2127 if (sp->recvnxtinfo)
2128 sctp_ulpevent_read_nxtinfo(event, msg, sk);
2129 /* Check if we allow SCTP_RCVINFO. */
2130 if (sp->recvrcvinfo)
2131 sctp_ulpevent_read_rcvinfo(event, msg);
2132 /* Check if we allow SCTP_SNDRCVINFO. */
2133 if (sctp_ulpevent_type_enabled(sp->subscribe, SCTP_DATA_IO_EVENT))
2134 sctp_ulpevent_read_sndrcvinfo(event, msg);
2135
2136 err = copied;
2137
2138 /* If skb's length exceeds the user's buffer, update the skb and
2139 * push it back to the receive_queue so that the next call to
2140 * recvmsg() will return the remaining data. Don't set MSG_EOR.
2141 */
2142 if (skb_len > copied) {
2143 msg->msg_flags &= ~MSG_EOR;
2144 if (flags & MSG_PEEK)
2145 goto out_free;
2146 sctp_skb_pull(skb, copied);
2147 skb_queue_head(&sk->sk_receive_queue, skb);
2148
2149 /* When only partial message is copied to the user, increase
2150 * rwnd by that amount. If all the data in the skb is read,
2151 * rwnd is updated when the event is freed.
2152 */
2153 if (!sctp_ulpevent_is_notification(event))
2154 sctp_assoc_rwnd_increase(event->asoc, copied);
2155 goto out;
2156 } else if ((event->msg_flags & MSG_NOTIFICATION) ||
2157 (event->msg_flags & MSG_EOR))
2158 msg->msg_flags |= MSG_EOR;
2159 else
2160 msg->msg_flags &= ~MSG_EOR;
2161
2162out_free:
2163 if (flags & MSG_PEEK) {
2164 /* Release the skb reference acquired after peeking the skb in
2165 * sctp_skb_recv_datagram().
2166 */
2167 kfree_skb(skb);
2168 } else {
2169 /* Free the event which includes releasing the reference to
2170 * the owner of the skb, freeing the skb and updating the
2171 * rwnd.
2172 */
2173 sctp_ulpevent_free(event);
2174 }
2175out:
2176 release_sock(sk);
2177 return err;
2178}
2179
2180/* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
2181 *
2182 * This option is a on/off flag. If enabled no SCTP message
2183 * fragmentation will be performed. Instead if a message being sent
2184 * exceeds the current PMTU size, the message will NOT be sent and
2185 * instead a error will be indicated to the user.
2186 */
2187static int sctp_setsockopt_disable_fragments(struct sock *sk, int *val,
2188 unsigned int optlen)
2189{
2190 if (optlen < sizeof(int))
2191 return -EINVAL;
2192 sctp_sk(sk)->disable_fragments = (*val == 0) ? 0 : 1;
2193 return 0;
2194}
2195
2196static int sctp_setsockopt_events(struct sock *sk, __u8 *sn_type,
2197 unsigned int optlen)
2198{
2199 struct sctp_sock *sp = sctp_sk(sk);
2200 struct sctp_association *asoc;
2201 int i;
2202
2203 if (optlen > sizeof(struct sctp_event_subscribe))
2204 return -EINVAL;
2205
2206 for (i = 0; i < optlen; i++)
2207 sctp_ulpevent_type_set(&sp->subscribe, SCTP_SN_TYPE_BASE + i,
2208 sn_type[i]);
2209
2210 list_for_each_entry(asoc, &sp->ep->asocs, asocs)
2211 asoc->subscribe = sctp_sk(sk)->subscribe;
2212
2213 /* At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT,
2214 * if there is no data to be sent or retransmit, the stack will
2215 * immediately send up this notification.
2216 */
2217 if (sctp_ulpevent_type_enabled(sp->subscribe, SCTP_SENDER_DRY_EVENT)) {
2218 struct sctp_ulpevent *event;
2219
2220 asoc = sctp_id2assoc(sk, 0);
2221 if (asoc && sctp_outq_is_empty(&asoc->outqueue)) {
2222 event = sctp_ulpevent_make_sender_dry_event(asoc,
2223 GFP_USER | __GFP_NOWARN);
2224 if (!event)
2225 return -ENOMEM;
2226
2227 asoc->stream.si->enqueue_event(&asoc->ulpq, event);
2228 }
2229 }
2230
2231 return 0;
2232}
2233
2234/* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
2235 *
2236 * This socket option is applicable to the UDP-style socket only. When
2237 * set it will cause associations that are idle for more than the
2238 * specified number of seconds to automatically close. An association
2239 * being idle is defined an association that has NOT sent or received
2240 * user data. The special value of '0' indicates that no automatic
2241 * close of any associations should be performed. The option expects an
2242 * integer defining the number of seconds of idle time before an
2243 * association is closed.
2244 */
2245static int sctp_setsockopt_autoclose(struct sock *sk, u32 *optval,
2246 unsigned int optlen)
2247{
2248 struct sctp_sock *sp = sctp_sk(sk);
2249 struct net *net = sock_net(sk);
2250
2251 /* Applicable to UDP-style socket only */
2252 if (sctp_style(sk, TCP))
2253 return -EOPNOTSUPP;
2254 if (optlen != sizeof(int))
2255 return -EINVAL;
2256
2257 sp->autoclose = *optval;
2258 if (sp->autoclose > net->sctp.max_autoclose)
2259 sp->autoclose = net->sctp.max_autoclose;
2260
2261 return 0;
2262}
2263
2264/* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
2265 *
2266 * Applications can enable or disable heartbeats for any peer address of
2267 * an association, modify an address's heartbeat interval, force a
2268 * heartbeat to be sent immediately, and adjust the address's maximum
2269 * number of retransmissions sent before an address is considered
2270 * unreachable. The following structure is used to access and modify an
2271 * address's parameters:
2272 *
2273 * struct sctp_paddrparams {
2274 * sctp_assoc_t spp_assoc_id;
2275 * struct sockaddr_storage spp_address;
2276 * uint32_t spp_hbinterval;
2277 * uint16_t spp_pathmaxrxt;
2278 * uint32_t spp_pathmtu;
2279 * uint32_t spp_sackdelay;
2280 * uint32_t spp_flags;
2281 * uint32_t spp_ipv6_flowlabel;
2282 * uint8_t spp_dscp;
2283 * };
2284 *
2285 * spp_assoc_id - (one-to-many style socket) This is filled in the
2286 * application, and identifies the association for
2287 * this query.
2288 * spp_address - This specifies which address is of interest.
2289 * spp_hbinterval - This contains the value of the heartbeat interval,
2290 * in milliseconds. If a value of zero
2291 * is present in this field then no changes are to
2292 * be made to this parameter.
2293 * spp_pathmaxrxt - This contains the maximum number of
2294 * retransmissions before this address shall be
2295 * considered unreachable. If a value of zero
2296 * is present in this field then no changes are to
2297 * be made to this parameter.
2298 * spp_pathmtu - When Path MTU discovery is disabled the value
2299 * specified here will be the "fixed" path mtu.
2300 * Note that if the spp_address field is empty
2301 * then all associations on this address will
2302 * have this fixed path mtu set upon them.
2303 *
2304 * spp_sackdelay - When delayed sack is enabled, this value specifies
2305 * the number of milliseconds that sacks will be delayed
2306 * for. This value will apply to all addresses of an
2307 * association if the spp_address field is empty. Note
2308 * also, that if delayed sack is enabled and this
2309 * value is set to 0, no change is made to the last
2310 * recorded delayed sack timer value.
2311 *
2312 * spp_flags - These flags are used to control various features
2313 * on an association. The flag field may contain
2314 * zero or more of the following options.
2315 *
2316 * SPP_HB_ENABLE - Enable heartbeats on the
2317 * specified address. Note that if the address
2318 * field is empty all addresses for the association
2319 * have heartbeats enabled upon them.
2320 *
2321 * SPP_HB_DISABLE - Disable heartbeats on the
2322 * speicifed address. Note that if the address
2323 * field is empty all addresses for the association
2324 * will have their heartbeats disabled. Note also
2325 * that SPP_HB_ENABLE and SPP_HB_DISABLE are
2326 * mutually exclusive, only one of these two should
2327 * be specified. Enabling both fields will have
2328 * undetermined results.
2329 *
2330 * SPP_HB_DEMAND - Request a user initiated heartbeat
2331 * to be made immediately.
2332 *
2333 * SPP_HB_TIME_IS_ZERO - Specify's that the time for
2334 * heartbeat delayis to be set to the value of 0
2335 * milliseconds.
2336 *
2337 * SPP_PMTUD_ENABLE - This field will enable PMTU
2338 * discovery upon the specified address. Note that
2339 * if the address feild is empty then all addresses
2340 * on the association are effected.
2341 *
2342 * SPP_PMTUD_DISABLE - This field will disable PMTU
2343 * discovery upon the specified address. Note that
2344 * if the address feild is empty then all addresses
2345 * on the association are effected. Not also that
2346 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
2347 * exclusive. Enabling both will have undetermined
2348 * results.
2349 *
2350 * SPP_SACKDELAY_ENABLE - Setting this flag turns
2351 * on delayed sack. The time specified in spp_sackdelay
2352 * is used to specify the sack delay for this address. Note
2353 * that if spp_address is empty then all addresses will
2354 * enable delayed sack and take on the sack delay
2355 * value specified in spp_sackdelay.
2356 * SPP_SACKDELAY_DISABLE - Setting this flag turns
2357 * off delayed sack. If the spp_address field is blank then
2358 * delayed sack is disabled for the entire association. Note
2359 * also that this field is mutually exclusive to
2360 * SPP_SACKDELAY_ENABLE, setting both will have undefined
2361 * results.
2362 *
2363 * SPP_IPV6_FLOWLABEL: Setting this flag enables the
2364 * setting of the IPV6 flow label value. The value is
2365 * contained in the spp_ipv6_flowlabel field.
2366 * Upon retrieval, this flag will be set to indicate that
2367 * the spp_ipv6_flowlabel field has a valid value returned.
2368 * If a specific destination address is set (in the
2369 * spp_address field), then the value returned is that of
2370 * the address. If just an association is specified (and
2371 * no address), then the association's default flow label
2372 * is returned. If neither an association nor a destination
2373 * is specified, then the socket's default flow label is
2374 * returned. For non-IPv6 sockets, this flag will be left
2375 * cleared.
2376 *
2377 * SPP_DSCP: Setting this flag enables the setting of the
2378 * Differentiated Services Code Point (DSCP) value
2379 * associated with either the association or a specific
2380 * address. The value is obtained in the spp_dscp field.
2381 * Upon retrieval, this flag will be set to indicate that
2382 * the spp_dscp field has a valid value returned. If a
2383 * specific destination address is set when called (in the
2384 * spp_address field), then that specific destination
2385 * address's DSCP value is returned. If just an association
2386 * is specified, then the association's default DSCP is
2387 * returned. If neither an association nor a destination is
2388 * specified, then the socket's default DSCP is returned.
2389 *
2390 * spp_ipv6_flowlabel
2391 * - This field is used in conjunction with the
2392 * SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label.
2393 * The 20 least significant bits are used for the flow
2394 * label. This setting has precedence over any IPv6-layer
2395 * setting.
2396 *
2397 * spp_dscp - This field is used in conjunction with the SPP_DSCP flag
2398 * and contains the DSCP. The 6 most significant bits are
2399 * used for the DSCP. This setting has precedence over any
2400 * IPv4- or IPv6- layer setting.
2401 */
2402static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params,
2403 struct sctp_transport *trans,
2404 struct sctp_association *asoc,
2405 struct sctp_sock *sp,
2406 int hb_change,
2407 int pmtud_change,
2408 int sackdelay_change)
2409{
2410 int error;
2411
2412 if (params->spp_flags & SPP_HB_DEMAND && trans) {
2413 error = sctp_primitive_REQUESTHEARTBEAT(trans->asoc->base.net,
2414 trans->asoc, trans);
2415 if (error)
2416 return error;
2417 }
2418
2419 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of
2420 * this field is ignored. Note also that a value of zero indicates
2421 * the current setting should be left unchanged.
2422 */
2423 if (params->spp_flags & SPP_HB_ENABLE) {
2424
2425 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is
2426 * set. This lets us use 0 value when this flag
2427 * is set.
2428 */
2429 if (params->spp_flags & SPP_HB_TIME_IS_ZERO)
2430 params->spp_hbinterval = 0;
2431
2432 if (params->spp_hbinterval ||
2433 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) {
2434 if (trans) {
2435 trans->hbinterval =
2436 msecs_to_jiffies(params->spp_hbinterval);
2437 } else if (asoc) {
2438 asoc->hbinterval =
2439 msecs_to_jiffies(params->spp_hbinterval);
2440 } else {
2441 sp->hbinterval = params->spp_hbinterval;
2442 }
2443 }
2444 }
2445
2446 if (hb_change) {
2447 if (trans) {
2448 trans->param_flags =
2449 (trans->param_flags & ~SPP_HB) | hb_change;
2450 } else if (asoc) {
2451 asoc->param_flags =
2452 (asoc->param_flags & ~SPP_HB) | hb_change;
2453 } else {
2454 sp->param_flags =
2455 (sp->param_flags & ~SPP_HB) | hb_change;
2456 }
2457 }
2458
2459 /* When Path MTU discovery is disabled the value specified here will
2460 * be the "fixed" path mtu (i.e. the value of the spp_flags field must
2461 * include the flag SPP_PMTUD_DISABLE for this field to have any
2462 * effect).
2463 */
2464 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) {
2465 if (trans) {
2466 trans->pathmtu = params->spp_pathmtu;
2467 sctp_assoc_sync_pmtu(asoc);
2468 } else if (asoc) {
2469 sctp_assoc_set_pmtu(asoc, params->spp_pathmtu);
2470 } else {
2471 sp->pathmtu = params->spp_pathmtu;
2472 }
2473 }
2474
2475 if (pmtud_change) {
2476 if (trans) {
2477 int update = (trans->param_flags & SPP_PMTUD_DISABLE) &&
2478 (params->spp_flags & SPP_PMTUD_ENABLE);
2479 trans->param_flags =
2480 (trans->param_flags & ~SPP_PMTUD) | pmtud_change;
2481 if (update) {
2482 sctp_transport_pmtu(trans, sctp_opt2sk(sp));
2483 sctp_assoc_sync_pmtu(asoc);
2484 }
2485 } else if (asoc) {
2486 asoc->param_flags =
2487 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change;
2488 } else {
2489 sp->param_flags =
2490 (sp->param_flags & ~SPP_PMTUD) | pmtud_change;
2491 }
2492 }
2493
2494 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the
2495 * value of this field is ignored. Note also that a value of zero
2496 * indicates the current setting should be left unchanged.
2497 */
2498 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) {
2499 if (trans) {
2500 trans->sackdelay =
2501 msecs_to_jiffies(params->spp_sackdelay);
2502 } else if (asoc) {
2503 asoc->sackdelay =
2504 msecs_to_jiffies(params->spp_sackdelay);
2505 } else {
2506 sp->sackdelay = params->spp_sackdelay;
2507 }
2508 }
2509
2510 if (sackdelay_change) {
2511 if (trans) {
2512 trans->param_flags =
2513 (trans->param_flags & ~SPP_SACKDELAY) |
2514 sackdelay_change;
2515 } else if (asoc) {
2516 asoc->param_flags =
2517 (asoc->param_flags & ~SPP_SACKDELAY) |
2518 sackdelay_change;
2519 } else {
2520 sp->param_flags =
2521 (sp->param_flags & ~SPP_SACKDELAY) |
2522 sackdelay_change;
2523 }
2524 }
2525
2526 /* Note that a value of zero indicates the current setting should be
2527 left unchanged.
2528 */
2529 if (params->spp_pathmaxrxt) {
2530 if (trans) {
2531 trans->pathmaxrxt = params->spp_pathmaxrxt;
2532 } else if (asoc) {
2533 asoc->pathmaxrxt = params->spp_pathmaxrxt;
2534 } else {
2535 sp->pathmaxrxt = params->spp_pathmaxrxt;
2536 }
2537 }
2538
2539 if (params->spp_flags & SPP_IPV6_FLOWLABEL) {
2540 if (trans) {
2541 if (trans->ipaddr.sa.sa_family == AF_INET6) {
2542 trans->flowlabel = params->spp_ipv6_flowlabel &
2543 SCTP_FLOWLABEL_VAL_MASK;
2544 trans->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
2545 }
2546 } else if (asoc) {
2547 struct sctp_transport *t;
2548
2549 list_for_each_entry(t, &asoc->peer.transport_addr_list,
2550 transports) {
2551 if (t->ipaddr.sa.sa_family != AF_INET6)
2552 continue;
2553 t->flowlabel = params->spp_ipv6_flowlabel &
2554 SCTP_FLOWLABEL_VAL_MASK;
2555 t->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
2556 }
2557 asoc->flowlabel = params->spp_ipv6_flowlabel &
2558 SCTP_FLOWLABEL_VAL_MASK;
2559 asoc->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
2560 } else if (sctp_opt2sk(sp)->sk_family == AF_INET6) {
2561 sp->flowlabel = params->spp_ipv6_flowlabel &
2562 SCTP_FLOWLABEL_VAL_MASK;
2563 sp->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
2564 }
2565 }
2566
2567 if (params->spp_flags & SPP_DSCP) {
2568 if (trans) {
2569 trans->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK;
2570 trans->dscp |= SCTP_DSCP_SET_MASK;
2571 } else if (asoc) {
2572 struct sctp_transport *t;
2573
2574 list_for_each_entry(t, &asoc->peer.transport_addr_list,
2575 transports) {
2576 t->dscp = params->spp_dscp &
2577 SCTP_DSCP_VAL_MASK;
2578 t->dscp |= SCTP_DSCP_SET_MASK;
2579 }
2580 asoc->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK;
2581 asoc->dscp |= SCTP_DSCP_SET_MASK;
2582 } else {
2583 sp->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK;
2584 sp->dscp |= SCTP_DSCP_SET_MASK;
2585 }
2586 }
2587
2588 return 0;
2589}
2590
2591static int sctp_setsockopt_peer_addr_params(struct sock *sk,
2592 struct sctp_paddrparams *params,
2593 unsigned int optlen)
2594{
2595 struct sctp_transport *trans = NULL;
2596 struct sctp_association *asoc = NULL;
2597 struct sctp_sock *sp = sctp_sk(sk);
2598 int error;
2599 int hb_change, pmtud_change, sackdelay_change;
2600
2601 if (optlen == ALIGN(offsetof(struct sctp_paddrparams,
2602 spp_ipv6_flowlabel), 4)) {
2603 if (params->spp_flags & (SPP_DSCP | SPP_IPV6_FLOWLABEL))
2604 return -EINVAL;
2605 } else if (optlen != sizeof(*params)) {
2606 return -EINVAL;
2607 }
2608
2609 /* Validate flags and value parameters. */
2610 hb_change = params->spp_flags & SPP_HB;
2611 pmtud_change = params->spp_flags & SPP_PMTUD;
2612 sackdelay_change = params->spp_flags & SPP_SACKDELAY;
2613
2614 if (hb_change == SPP_HB ||
2615 pmtud_change == SPP_PMTUD ||
2616 sackdelay_change == SPP_SACKDELAY ||
2617 params->spp_sackdelay > 500 ||
2618 (params->spp_pathmtu &&
2619 params->spp_pathmtu < SCTP_DEFAULT_MINSEGMENT))
2620 return -EINVAL;
2621
2622 /* If an address other than INADDR_ANY is specified, and
2623 * no transport is found, then the request is invalid.
2624 */
2625 if (!sctp_is_any(sk, (union sctp_addr *)¶ms->spp_address)) {
2626 trans = sctp_addr_id2transport(sk, ¶ms->spp_address,
2627 params->spp_assoc_id);
2628 if (!trans)
2629 return -EINVAL;
2630 }
2631
2632 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the
2633 * socket is a one to many style socket, and an association
2634 * was not found, then the id was invalid.
2635 */
2636 asoc = sctp_id2assoc(sk, params->spp_assoc_id);
2637 if (!asoc && params->spp_assoc_id != SCTP_FUTURE_ASSOC &&
2638 sctp_style(sk, UDP))
2639 return -EINVAL;
2640
2641 /* Heartbeat demand can only be sent on a transport or
2642 * association, but not a socket.
2643 */
2644 if (params->spp_flags & SPP_HB_DEMAND && !trans && !asoc)
2645 return -EINVAL;
2646
2647 /* Process parameters. */
2648 error = sctp_apply_peer_addr_params(params, trans, asoc, sp,
2649 hb_change, pmtud_change,
2650 sackdelay_change);
2651
2652 if (error)
2653 return error;
2654
2655 /* If changes are for association, also apply parameters to each
2656 * transport.
2657 */
2658 if (!trans && asoc) {
2659 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2660 transports) {
2661 sctp_apply_peer_addr_params(params, trans, asoc, sp,
2662 hb_change, pmtud_change,
2663 sackdelay_change);
2664 }
2665 }
2666
2667 return 0;
2668}
2669
2670static inline __u32 sctp_spp_sackdelay_enable(__u32 param_flags)
2671{
2672 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_ENABLE;
2673}
2674
2675static inline __u32 sctp_spp_sackdelay_disable(__u32 param_flags)
2676{
2677 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_DISABLE;
2678}
2679
2680static void sctp_apply_asoc_delayed_ack(struct sctp_sack_info *params,
2681 struct sctp_association *asoc)
2682{
2683 struct sctp_transport *trans;
2684
2685 if (params->sack_delay) {
2686 asoc->sackdelay = msecs_to_jiffies(params->sack_delay);
2687 asoc->param_flags =
2688 sctp_spp_sackdelay_enable(asoc->param_flags);
2689 }
2690 if (params->sack_freq == 1) {
2691 asoc->param_flags =
2692 sctp_spp_sackdelay_disable(asoc->param_flags);
2693 } else if (params->sack_freq > 1) {
2694 asoc->sackfreq = params->sack_freq;
2695 asoc->param_flags =
2696 sctp_spp_sackdelay_enable(asoc->param_flags);
2697 }
2698
2699 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2700 transports) {
2701 if (params->sack_delay) {
2702 trans->sackdelay = msecs_to_jiffies(params->sack_delay);
2703 trans->param_flags =
2704 sctp_spp_sackdelay_enable(trans->param_flags);
2705 }
2706 if (params->sack_freq == 1) {
2707 trans->param_flags =
2708 sctp_spp_sackdelay_disable(trans->param_flags);
2709 } else if (params->sack_freq > 1) {
2710 trans->sackfreq = params->sack_freq;
2711 trans->param_flags =
2712 sctp_spp_sackdelay_enable(trans->param_flags);
2713 }
2714 }
2715}
2716
2717/*
2718 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK)
2719 *
2720 * This option will effect the way delayed acks are performed. This
2721 * option allows you to get or set the delayed ack time, in
2722 * milliseconds. It also allows changing the delayed ack frequency.
2723 * Changing the frequency to 1 disables the delayed sack algorithm. If
2724 * the assoc_id is 0, then this sets or gets the endpoints default
2725 * values. If the assoc_id field is non-zero, then the set or get
2726 * effects the specified association for the one to many model (the
2727 * assoc_id field is ignored by the one to one model). Note that if
2728 * sack_delay or sack_freq are 0 when setting this option, then the
2729 * current values will remain unchanged.
2730 *
2731 * struct sctp_sack_info {
2732 * sctp_assoc_t sack_assoc_id;
2733 * uint32_t sack_delay;
2734 * uint32_t sack_freq;
2735 * };
2736 *
2737 * sack_assoc_id - This parameter, indicates which association the user
2738 * is performing an action upon. Note that if this field's value is
2739 * zero then the endpoints default value is changed (effecting future
2740 * associations only).
2741 *
2742 * sack_delay - This parameter contains the number of milliseconds that
2743 * the user is requesting the delayed ACK timer be set to. Note that
2744 * this value is defined in the standard to be between 200 and 500
2745 * milliseconds.
2746 *
2747 * sack_freq - This parameter contains the number of packets that must
2748 * be received before a sack is sent without waiting for the delay
2749 * timer to expire. The default value for this is 2, setting this
2750 * value to 1 will disable the delayed sack algorithm.
2751 */
2752static int __sctp_setsockopt_delayed_ack(struct sock *sk,
2753 struct sctp_sack_info *params)
2754{
2755 struct sctp_sock *sp = sctp_sk(sk);
2756 struct sctp_association *asoc;
2757
2758 /* Validate value parameter. */
2759 if (params->sack_delay > 500)
2760 return -EINVAL;
2761
2762 /* Get association, if sack_assoc_id != SCTP_FUTURE_ASSOC and the
2763 * socket is a one to many style socket, and an association
2764 * was not found, then the id was invalid.
2765 */
2766 asoc = sctp_id2assoc(sk, params->sack_assoc_id);
2767 if (!asoc && params->sack_assoc_id > SCTP_ALL_ASSOC &&
2768 sctp_style(sk, UDP))
2769 return -EINVAL;
2770
2771 if (asoc) {
2772 sctp_apply_asoc_delayed_ack(params, asoc);
2773
2774 return 0;
2775 }
2776
2777 if (sctp_style(sk, TCP))
2778 params->sack_assoc_id = SCTP_FUTURE_ASSOC;
2779
2780 if (params->sack_assoc_id == SCTP_FUTURE_ASSOC ||
2781 params->sack_assoc_id == SCTP_ALL_ASSOC) {
2782 if (params->sack_delay) {
2783 sp->sackdelay = params->sack_delay;
2784 sp->param_flags =
2785 sctp_spp_sackdelay_enable(sp->param_flags);
2786 }
2787 if (params->sack_freq == 1) {
2788 sp->param_flags =
2789 sctp_spp_sackdelay_disable(sp->param_flags);
2790 } else if (params->sack_freq > 1) {
2791 sp->sackfreq = params->sack_freq;
2792 sp->param_flags =
2793 sctp_spp_sackdelay_enable(sp->param_flags);
2794 }
2795 }
2796
2797 if (params->sack_assoc_id == SCTP_CURRENT_ASSOC ||
2798 params->sack_assoc_id == SCTP_ALL_ASSOC)
2799 list_for_each_entry(asoc, &sp->ep->asocs, asocs)
2800 sctp_apply_asoc_delayed_ack(params, asoc);
2801
2802 return 0;
2803}
2804
2805static int sctp_setsockopt_delayed_ack(struct sock *sk,
2806 struct sctp_sack_info *params,
2807 unsigned int optlen)
2808{
2809 if (optlen == sizeof(struct sctp_assoc_value)) {
2810 struct sctp_assoc_value *v = (struct sctp_assoc_value *)params;
2811 struct sctp_sack_info p;
2812
2813 pr_warn_ratelimited(DEPRECATED
2814 "%s (pid %d) "
2815 "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
2816 "Use struct sctp_sack_info instead\n",
2817 current->comm, task_pid_nr(current));
2818
2819 p.sack_assoc_id = v->assoc_id;
2820 p.sack_delay = v->assoc_value;
2821 p.sack_freq = v->assoc_value ? 0 : 1;
2822 return __sctp_setsockopt_delayed_ack(sk, &p);
2823 }
2824
2825 if (optlen != sizeof(struct sctp_sack_info))
2826 return -EINVAL;
2827 if (params->sack_delay == 0 && params->sack_freq == 0)
2828 return 0;
2829 return __sctp_setsockopt_delayed_ack(sk, params);
2830}
2831
2832/* 7.1.3 Initialization Parameters (SCTP_INITMSG)
2833 *
2834 * Applications can specify protocol parameters for the default association
2835 * initialization. The option name argument to setsockopt() and getsockopt()
2836 * is SCTP_INITMSG.
2837 *
2838 * Setting initialization parameters is effective only on an unconnected
2839 * socket (for UDP-style sockets only future associations are effected
2840 * by the change). With TCP-style sockets, this option is inherited by
2841 * sockets derived from a listener socket.
2842 */
2843static int sctp_setsockopt_initmsg(struct sock *sk, struct sctp_initmsg *sinit,
2844 unsigned int optlen)
2845{
2846 struct sctp_sock *sp = sctp_sk(sk);
2847
2848 if (optlen != sizeof(struct sctp_initmsg))
2849 return -EINVAL;
2850
2851 if (sinit->sinit_num_ostreams)
2852 sp->initmsg.sinit_num_ostreams = sinit->sinit_num_ostreams;
2853 if (sinit->sinit_max_instreams)
2854 sp->initmsg.sinit_max_instreams = sinit->sinit_max_instreams;
2855 if (sinit->sinit_max_attempts)
2856 sp->initmsg.sinit_max_attempts = sinit->sinit_max_attempts;
2857 if (sinit->sinit_max_init_timeo)
2858 sp->initmsg.sinit_max_init_timeo = sinit->sinit_max_init_timeo;
2859
2860 return 0;
2861}
2862
2863/*
2864 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
2865 *
2866 * Applications that wish to use the sendto() system call may wish to
2867 * specify a default set of parameters that would normally be supplied
2868 * through the inclusion of ancillary data. This socket option allows
2869 * such an application to set the default sctp_sndrcvinfo structure.
2870 * The application that wishes to use this socket option simply passes
2871 * in to this call the sctp_sndrcvinfo structure defined in Section
2872 * 5.2.2) The input parameters accepted by this call include
2873 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
2874 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in
2875 * to this call if the caller is using the UDP model.
2876 */
2877static int sctp_setsockopt_default_send_param(struct sock *sk,
2878 struct sctp_sndrcvinfo *info,
2879 unsigned int optlen)
2880{
2881 struct sctp_sock *sp = sctp_sk(sk);
2882 struct sctp_association *asoc;
2883
2884 if (optlen != sizeof(*info))
2885 return -EINVAL;
2886 if (info->sinfo_flags &
2887 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
2888 SCTP_ABORT | SCTP_EOF))
2889 return -EINVAL;
2890
2891 asoc = sctp_id2assoc(sk, info->sinfo_assoc_id);
2892 if (!asoc && info->sinfo_assoc_id > SCTP_ALL_ASSOC &&
2893 sctp_style(sk, UDP))
2894 return -EINVAL;
2895
2896 if (asoc) {
2897 asoc->default_stream = info->sinfo_stream;
2898 asoc->default_flags = info->sinfo_flags;
2899 asoc->default_ppid = info->sinfo_ppid;
2900 asoc->default_context = info->sinfo_context;
2901 asoc->default_timetolive = info->sinfo_timetolive;
2902
2903 return 0;
2904 }
2905
2906 if (sctp_style(sk, TCP))
2907 info->sinfo_assoc_id = SCTP_FUTURE_ASSOC;
2908
2909 if (info->sinfo_assoc_id == SCTP_FUTURE_ASSOC ||
2910 info->sinfo_assoc_id == SCTP_ALL_ASSOC) {
2911 sp->default_stream = info->sinfo_stream;
2912 sp->default_flags = info->sinfo_flags;
2913 sp->default_ppid = info->sinfo_ppid;
2914 sp->default_context = info->sinfo_context;
2915 sp->default_timetolive = info->sinfo_timetolive;
2916 }
2917
2918 if (info->sinfo_assoc_id == SCTP_CURRENT_ASSOC ||
2919 info->sinfo_assoc_id == SCTP_ALL_ASSOC) {
2920 list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
2921 asoc->default_stream = info->sinfo_stream;
2922 asoc->default_flags = info->sinfo_flags;
2923 asoc->default_ppid = info->sinfo_ppid;
2924 asoc->default_context = info->sinfo_context;
2925 asoc->default_timetolive = info->sinfo_timetolive;
2926 }
2927 }
2928
2929 return 0;
2930}
2931
2932/* RFC6458, Section 8.1.31. Set/get Default Send Parameters
2933 * (SCTP_DEFAULT_SNDINFO)
2934 */
2935static int sctp_setsockopt_default_sndinfo(struct sock *sk,
2936 struct sctp_sndinfo *info,
2937 unsigned int optlen)
2938{
2939 struct sctp_sock *sp = sctp_sk(sk);
2940 struct sctp_association *asoc;
2941
2942 if (optlen != sizeof(*info))
2943 return -EINVAL;
2944 if (info->snd_flags &
2945 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
2946 SCTP_ABORT | SCTP_EOF))
2947 return -EINVAL;
2948
2949 asoc = sctp_id2assoc(sk, info->snd_assoc_id);
2950 if (!asoc && info->snd_assoc_id > SCTP_ALL_ASSOC &&
2951 sctp_style(sk, UDP))
2952 return -EINVAL;
2953
2954 if (asoc) {
2955 asoc->default_stream = info->snd_sid;
2956 asoc->default_flags = info->snd_flags;
2957 asoc->default_ppid = info->snd_ppid;
2958 asoc->default_context = info->snd_context;
2959
2960 return 0;
2961 }
2962
2963 if (sctp_style(sk, TCP))
2964 info->snd_assoc_id = SCTP_FUTURE_ASSOC;
2965
2966 if (info->snd_assoc_id == SCTP_FUTURE_ASSOC ||
2967 info->snd_assoc_id == SCTP_ALL_ASSOC) {
2968 sp->default_stream = info->snd_sid;
2969 sp->default_flags = info->snd_flags;
2970 sp->default_ppid = info->snd_ppid;
2971 sp->default_context = info->snd_context;
2972 }
2973
2974 if (info->snd_assoc_id == SCTP_CURRENT_ASSOC ||
2975 info->snd_assoc_id == SCTP_ALL_ASSOC) {
2976 list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
2977 asoc->default_stream = info->snd_sid;
2978 asoc->default_flags = info->snd_flags;
2979 asoc->default_ppid = info->snd_ppid;
2980 asoc->default_context = info->snd_context;
2981 }
2982 }
2983
2984 return 0;
2985}
2986
2987/* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
2988 *
2989 * Requests that the local SCTP stack use the enclosed peer address as
2990 * the association primary. The enclosed address must be one of the
2991 * association peer's addresses.
2992 */
2993static int sctp_setsockopt_primary_addr(struct sock *sk, struct sctp_prim *prim,
2994 unsigned int optlen)
2995{
2996 struct sctp_transport *trans;
2997 struct sctp_af *af;
2998 int err;
2999
3000 if (optlen != sizeof(struct sctp_prim))
3001 return -EINVAL;
3002
3003 /* Allow security module to validate address but need address len. */
3004 af = sctp_get_af_specific(prim->ssp_addr.ss_family);
3005 if (!af)
3006 return -EINVAL;
3007
3008 err = security_sctp_bind_connect(sk, SCTP_PRIMARY_ADDR,
3009 (struct sockaddr *)&prim->ssp_addr,
3010 af->sockaddr_len);
3011 if (err)
3012 return err;
3013
3014 trans = sctp_addr_id2transport(sk, &prim->ssp_addr, prim->ssp_assoc_id);
3015 if (!trans)
3016 return -EINVAL;
3017
3018 sctp_assoc_set_primary(trans->asoc, trans);
3019
3020 return 0;
3021}
3022
3023/*
3024 * 7.1.5 SCTP_NODELAY
3025 *
3026 * Turn on/off any Nagle-like algorithm. This means that packets are
3027 * generally sent as soon as possible and no unnecessary delays are
3028 * introduced, at the cost of more packets in the network. Expects an
3029 * integer boolean flag.
3030 */
3031static int sctp_setsockopt_nodelay(struct sock *sk, int *val,
3032 unsigned int optlen)
3033{
3034 if (optlen < sizeof(int))
3035 return -EINVAL;
3036 sctp_sk(sk)->nodelay = (*val == 0) ? 0 : 1;
3037 return 0;
3038}
3039
3040/*
3041 *
3042 * 7.1.1 SCTP_RTOINFO
3043 *
3044 * The protocol parameters used to initialize and bound retransmission
3045 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
3046 * and modify these parameters.
3047 * All parameters are time values, in milliseconds. A value of 0, when
3048 * modifying the parameters, indicates that the current value should not
3049 * be changed.
3050 *
3051 */
3052static int sctp_setsockopt_rtoinfo(struct sock *sk,
3053 struct sctp_rtoinfo *rtoinfo,
3054 unsigned int optlen)
3055{
3056 struct sctp_association *asoc;
3057 unsigned long rto_min, rto_max;
3058 struct sctp_sock *sp = sctp_sk(sk);
3059
3060 if (optlen != sizeof (struct sctp_rtoinfo))
3061 return -EINVAL;
3062
3063 asoc = sctp_id2assoc(sk, rtoinfo->srto_assoc_id);
3064
3065 /* Set the values to the specific association */
3066 if (!asoc && rtoinfo->srto_assoc_id != SCTP_FUTURE_ASSOC &&
3067 sctp_style(sk, UDP))
3068 return -EINVAL;
3069
3070 rto_max = rtoinfo->srto_max;
3071 rto_min = rtoinfo->srto_min;
3072
3073 if (rto_max)
3074 rto_max = asoc ? msecs_to_jiffies(rto_max) : rto_max;
3075 else
3076 rto_max = asoc ? asoc->rto_max : sp->rtoinfo.srto_max;
3077
3078 if (rto_min)
3079 rto_min = asoc ? msecs_to_jiffies(rto_min) : rto_min;
3080 else
3081 rto_min = asoc ? asoc->rto_min : sp->rtoinfo.srto_min;
3082
3083 if (rto_min > rto_max)
3084 return -EINVAL;
3085
3086 if (asoc) {
3087 if (rtoinfo->srto_initial != 0)
3088 asoc->rto_initial =
3089 msecs_to_jiffies(rtoinfo->srto_initial);
3090 asoc->rto_max = rto_max;
3091 asoc->rto_min = rto_min;
3092 } else {
3093 /* If there is no association or the association-id = 0
3094 * set the values to the endpoint.
3095 */
3096 if (rtoinfo->srto_initial != 0)
3097 sp->rtoinfo.srto_initial = rtoinfo->srto_initial;
3098 sp->rtoinfo.srto_max = rto_max;
3099 sp->rtoinfo.srto_min = rto_min;
3100 }
3101
3102 return 0;
3103}
3104
3105/*
3106 *
3107 * 7.1.2 SCTP_ASSOCINFO
3108 *
3109 * This option is used to tune the maximum retransmission attempts
3110 * of the association.
3111 * Returns an error if the new association retransmission value is
3112 * greater than the sum of the retransmission value of the peer.
3113 * See [SCTP] for more information.
3114 *
3115 */
3116static int sctp_setsockopt_associnfo(struct sock *sk,
3117 struct sctp_assocparams *assocparams,
3118 unsigned int optlen)
3119{
3120
3121 struct sctp_association *asoc;
3122
3123 if (optlen != sizeof(struct sctp_assocparams))
3124 return -EINVAL;
3125
3126 asoc = sctp_id2assoc(sk, assocparams->sasoc_assoc_id);
3127
3128 if (!asoc && assocparams->sasoc_assoc_id != SCTP_FUTURE_ASSOC &&
3129 sctp_style(sk, UDP))
3130 return -EINVAL;
3131
3132 /* Set the values to the specific association */
3133 if (asoc) {
3134 if (assocparams->sasoc_asocmaxrxt != 0) {
3135 __u32 path_sum = 0;
3136 int paths = 0;
3137 struct sctp_transport *peer_addr;
3138
3139 list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list,
3140 transports) {
3141 path_sum += peer_addr->pathmaxrxt;
3142 paths++;
3143 }
3144
3145 /* Only validate asocmaxrxt if we have more than
3146 * one path/transport. We do this because path
3147 * retransmissions are only counted when we have more
3148 * then one path.
3149 */
3150 if (paths > 1 &&
3151 assocparams->sasoc_asocmaxrxt > path_sum)
3152 return -EINVAL;
3153
3154 asoc->max_retrans = assocparams->sasoc_asocmaxrxt;
3155 }
3156
3157 if (assocparams->sasoc_cookie_life != 0)
3158 asoc->cookie_life =
3159 ms_to_ktime(assocparams->sasoc_cookie_life);
3160 } else {
3161 /* Set the values to the endpoint */
3162 struct sctp_sock *sp = sctp_sk(sk);
3163
3164 if (assocparams->sasoc_asocmaxrxt != 0)
3165 sp->assocparams.sasoc_asocmaxrxt =
3166 assocparams->sasoc_asocmaxrxt;
3167 if (assocparams->sasoc_cookie_life != 0)
3168 sp->assocparams.sasoc_cookie_life =
3169 assocparams->sasoc_cookie_life;
3170 }
3171 return 0;
3172}
3173
3174/*
3175 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
3176 *
3177 * This socket option is a boolean flag which turns on or off mapped V4
3178 * addresses. If this option is turned on and the socket is type
3179 * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
3180 * If this option is turned off, then no mapping will be done of V4
3181 * addresses and a user will receive both PF_INET6 and PF_INET type
3182 * addresses on the socket.
3183 */
3184static int sctp_setsockopt_mappedv4(struct sock *sk, int *val,
3185 unsigned int optlen)
3186{
3187 struct sctp_sock *sp = sctp_sk(sk);
3188
3189 if (optlen < sizeof(int))
3190 return -EINVAL;
3191 if (*val)
3192 sp->v4mapped = 1;
3193 else
3194 sp->v4mapped = 0;
3195
3196 return 0;
3197}
3198
3199/*
3200 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
3201 * This option will get or set the maximum size to put in any outgoing
3202 * SCTP DATA chunk. If a message is larger than this size it will be
3203 * fragmented by SCTP into the specified size. Note that the underlying
3204 * SCTP implementation may fragment into smaller sized chunks when the
3205 * PMTU of the underlying association is smaller than the value set by
3206 * the user. The default value for this option is '0' which indicates
3207 * the user is NOT limiting fragmentation and only the PMTU will effect
3208 * SCTP's choice of DATA chunk size. Note also that values set larger
3209 * than the maximum size of an IP datagram will effectively let SCTP
3210 * control fragmentation (i.e. the same as setting this option to 0).
3211 *
3212 * The following structure is used to access and modify this parameter:
3213 *
3214 * struct sctp_assoc_value {
3215 * sctp_assoc_t assoc_id;
3216 * uint32_t assoc_value;
3217 * };
3218 *
3219 * assoc_id: This parameter is ignored for one-to-one style sockets.
3220 * For one-to-many style sockets this parameter indicates which
3221 * association the user is performing an action upon. Note that if
3222 * this field's value is zero then the endpoints default value is
3223 * changed (effecting future associations only).
3224 * assoc_value: This parameter specifies the maximum size in bytes.
3225 */
3226static int sctp_setsockopt_maxseg(struct sock *sk,
3227 struct sctp_assoc_value *params,
3228 unsigned int optlen)
3229{
3230 struct sctp_sock *sp = sctp_sk(sk);
3231 struct sctp_association *asoc;
3232 sctp_assoc_t assoc_id;
3233 int val;
3234
3235 if (optlen == sizeof(int)) {
3236 pr_warn_ratelimited(DEPRECATED
3237 "%s (pid %d) "
3238 "Use of int in maxseg socket option.\n"
3239 "Use struct sctp_assoc_value instead\n",
3240 current->comm, task_pid_nr(current));
3241 assoc_id = SCTP_FUTURE_ASSOC;
3242 val = *(int *)params;
3243 } else if (optlen == sizeof(struct sctp_assoc_value)) {
3244 assoc_id = params->assoc_id;
3245 val = params->assoc_value;
3246 } else {
3247 return -EINVAL;
3248 }
3249
3250 asoc = sctp_id2assoc(sk, assoc_id);
3251 if (!asoc && assoc_id != SCTP_FUTURE_ASSOC &&
3252 sctp_style(sk, UDP))
3253 return -EINVAL;
3254
3255 if (val) {
3256 int min_len, max_len;
3257 __u16 datasize = asoc ? sctp_datachk_len(&asoc->stream) :
3258 sizeof(struct sctp_data_chunk);
3259
3260 min_len = sctp_min_frag_point(sp, datasize);
3261 max_len = SCTP_MAX_CHUNK_LEN - datasize;
3262
3263 if (val < min_len || val > max_len)
3264 return -EINVAL;
3265 }
3266
3267 if (asoc) {
3268 asoc->user_frag = val;
3269 sctp_assoc_update_frag_point(asoc);
3270 } else {
3271 sp->user_frag = val;
3272 }
3273
3274 return 0;
3275}
3276
3277
3278/*
3279 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)
3280 *
3281 * Requests that the peer mark the enclosed address as the association
3282 * primary. The enclosed address must be one of the association's
3283 * locally bound addresses. The following structure is used to make a
3284 * set primary request:
3285 */
3286static int sctp_setsockopt_peer_primary_addr(struct sock *sk,
3287 struct sctp_setpeerprim *prim,
3288 unsigned int optlen)
3289{
3290 struct sctp_sock *sp;
3291 struct sctp_association *asoc = NULL;
3292 struct sctp_chunk *chunk;
3293 struct sctp_af *af;
3294 int err;
3295
3296 sp = sctp_sk(sk);
3297
3298 if (!sp->ep->asconf_enable)
3299 return -EPERM;
3300
3301 if (optlen != sizeof(struct sctp_setpeerprim))
3302 return -EINVAL;
3303
3304 asoc = sctp_id2assoc(sk, prim->sspp_assoc_id);
3305 if (!asoc)
3306 return -EINVAL;
3307
3308 if (!asoc->peer.asconf_capable)
3309 return -EPERM;
3310
3311 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY)
3312 return -EPERM;
3313
3314 if (!sctp_state(asoc, ESTABLISHED))
3315 return -ENOTCONN;
3316
3317 af = sctp_get_af_specific(prim->sspp_addr.ss_family);
3318 if (!af)
3319 return -EINVAL;
3320
3321 if (!af->addr_valid((union sctp_addr *)&prim->sspp_addr, sp, NULL))
3322 return -EADDRNOTAVAIL;
3323
3324 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim->sspp_addr))
3325 return -EADDRNOTAVAIL;
3326
3327 /* Allow security module to validate address. */
3328 err = security_sctp_bind_connect(sk, SCTP_SET_PEER_PRIMARY_ADDR,
3329 (struct sockaddr *)&prim->sspp_addr,
3330 af->sockaddr_len);
3331 if (err)
3332 return err;
3333
3334 /* Create an ASCONF chunk with SET_PRIMARY parameter */
3335 chunk = sctp_make_asconf_set_prim(asoc,
3336 (union sctp_addr *)&prim->sspp_addr);
3337 if (!chunk)
3338 return -ENOMEM;
3339
3340 err = sctp_send_asconf(asoc, chunk);
3341
3342 pr_debug("%s: we set peer primary addr primitively\n", __func__);
3343
3344 return err;
3345}
3346
3347static int sctp_setsockopt_adaptation_layer(struct sock *sk,
3348 struct sctp_setadaptation *adapt,
3349 unsigned int optlen)
3350{
3351 if (optlen != sizeof(struct sctp_setadaptation))
3352 return -EINVAL;
3353
3354 sctp_sk(sk)->adaptation_ind = adapt->ssb_adaptation_ind;
3355
3356 return 0;
3357}
3358
3359/*
3360 * 7.1.29. Set or Get the default context (SCTP_CONTEXT)
3361 *
3362 * The context field in the sctp_sndrcvinfo structure is normally only
3363 * used when a failed message is retrieved holding the value that was
3364 * sent down on the actual send call. This option allows the setting of
3365 * a default context on an association basis that will be received on
3366 * reading messages from the peer. This is especially helpful in the
3367 * one-2-many model for an application to keep some reference to an
3368 * internal state machine that is processing messages on the
3369 * association. Note that the setting of this value only effects
3370 * received messages from the peer and does not effect the value that is
3371 * saved with outbound messages.
3372 */
3373static int sctp_setsockopt_context(struct sock *sk,
3374 struct sctp_assoc_value *params,
3375 unsigned int optlen)
3376{
3377 struct sctp_sock *sp = sctp_sk(sk);
3378 struct sctp_association *asoc;
3379
3380 if (optlen != sizeof(struct sctp_assoc_value))
3381 return -EINVAL;
3382
3383 asoc = sctp_id2assoc(sk, params->assoc_id);
3384 if (!asoc && params->assoc_id > SCTP_ALL_ASSOC &&
3385 sctp_style(sk, UDP))
3386 return -EINVAL;
3387
3388 if (asoc) {
3389 asoc->default_rcv_context = params->assoc_value;
3390
3391 return 0;
3392 }
3393
3394 if (sctp_style(sk, TCP))
3395 params->assoc_id = SCTP_FUTURE_ASSOC;
3396
3397 if (params->assoc_id == SCTP_FUTURE_ASSOC ||
3398 params->assoc_id == SCTP_ALL_ASSOC)
3399 sp->default_rcv_context = params->assoc_value;
3400
3401 if (params->assoc_id == SCTP_CURRENT_ASSOC ||
3402 params->assoc_id == SCTP_ALL_ASSOC)
3403 list_for_each_entry(asoc, &sp->ep->asocs, asocs)
3404 asoc->default_rcv_context = params->assoc_value;
3405
3406 return 0;
3407}
3408
3409/*
3410 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
3411 *
3412 * This options will at a minimum specify if the implementation is doing
3413 * fragmented interleave. Fragmented interleave, for a one to many
3414 * socket, is when subsequent calls to receive a message may return
3415 * parts of messages from different associations. Some implementations
3416 * may allow you to turn this value on or off. If so, when turned off,
3417 * no fragment interleave will occur (which will cause a head of line
3418 * blocking amongst multiple associations sharing the same one to many
3419 * socket). When this option is turned on, then each receive call may
3420 * come from a different association (thus the user must receive data
3421 * with the extended calls (e.g. sctp_recvmsg) to keep track of which
3422 * association each receive belongs to.
3423 *
3424 * This option takes a boolean value. A non-zero value indicates that
3425 * fragmented interleave is on. A value of zero indicates that
3426 * fragmented interleave is off.
3427 *
3428 * Note that it is important that an implementation that allows this
3429 * option to be turned on, have it off by default. Otherwise an unaware
3430 * application using the one to many model may become confused and act
3431 * incorrectly.
3432 */
3433static int sctp_setsockopt_fragment_interleave(struct sock *sk, int *val,
3434 unsigned int optlen)
3435{
3436 if (optlen != sizeof(int))
3437 return -EINVAL;
3438
3439 sctp_sk(sk)->frag_interleave = !!*val;
3440
3441 if (!sctp_sk(sk)->frag_interleave)
3442 sctp_sk(sk)->ep->intl_enable = 0;
3443
3444 return 0;
3445}
3446
3447/*
3448 * 8.1.21. Set or Get the SCTP Partial Delivery Point
3449 * (SCTP_PARTIAL_DELIVERY_POINT)
3450 *
3451 * This option will set or get the SCTP partial delivery point. This
3452 * point is the size of a message where the partial delivery API will be
3453 * invoked to help free up rwnd space for the peer. Setting this to a
3454 * lower value will cause partial deliveries to happen more often. The
3455 * calls argument is an integer that sets or gets the partial delivery
3456 * point. Note also that the call will fail if the user attempts to set
3457 * this value larger than the socket receive buffer size.
3458 *
3459 * Note that any single message having a length smaller than or equal to
3460 * the SCTP partial delivery point will be delivered in one single read
3461 * call as long as the user provided buffer is large enough to hold the
3462 * message.
3463 */
3464static int sctp_setsockopt_partial_delivery_point(struct sock *sk, u32 *val,
3465 unsigned int optlen)
3466{
3467 if (optlen != sizeof(u32))
3468 return -EINVAL;
3469
3470 /* Note: We double the receive buffer from what the user sets
3471 * it to be, also initial rwnd is based on rcvbuf/2.
3472 */
3473 if (*val > (sk->sk_rcvbuf >> 1))
3474 return -EINVAL;
3475
3476 sctp_sk(sk)->pd_point = *val;
3477
3478 return 0; /* is this the right error code? */
3479}
3480
3481/*
3482 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST)
3483 *
3484 * This option will allow a user to change the maximum burst of packets
3485 * that can be emitted by this association. Note that the default value
3486 * is 4, and some implementations may restrict this setting so that it
3487 * can only be lowered.
3488 *
3489 * NOTE: This text doesn't seem right. Do this on a socket basis with
3490 * future associations inheriting the socket value.
3491 */
3492static int sctp_setsockopt_maxburst(struct sock *sk,
3493 struct sctp_assoc_value *params,
3494 unsigned int optlen)
3495{
3496 struct sctp_sock *sp = sctp_sk(sk);
3497 struct sctp_association *asoc;
3498 sctp_assoc_t assoc_id;
3499 u32 assoc_value;
3500
3501 if (optlen == sizeof(int)) {
3502 pr_warn_ratelimited(DEPRECATED
3503 "%s (pid %d) "
3504 "Use of int in max_burst socket option deprecated.\n"
3505 "Use struct sctp_assoc_value instead\n",
3506 current->comm, task_pid_nr(current));
3507 assoc_id = SCTP_FUTURE_ASSOC;
3508 assoc_value = *((int *)params);
3509 } else if (optlen == sizeof(struct sctp_assoc_value)) {
3510 assoc_id = params->assoc_id;
3511 assoc_value = params->assoc_value;
3512 } else
3513 return -EINVAL;
3514
3515 asoc = sctp_id2assoc(sk, assoc_id);
3516 if (!asoc && assoc_id > SCTP_ALL_ASSOC && sctp_style(sk, UDP))
3517 return -EINVAL;
3518
3519 if (asoc) {
3520 asoc->max_burst = assoc_value;
3521
3522 return 0;
3523 }
3524
3525 if (sctp_style(sk, TCP))
3526 assoc_id = SCTP_FUTURE_ASSOC;
3527
3528 if (assoc_id == SCTP_FUTURE_ASSOC || assoc_id == SCTP_ALL_ASSOC)
3529 sp->max_burst = assoc_value;
3530
3531 if (assoc_id == SCTP_CURRENT_ASSOC || assoc_id == SCTP_ALL_ASSOC)
3532 list_for_each_entry(asoc, &sp->ep->asocs, asocs)
3533 asoc->max_burst = assoc_value;
3534
3535 return 0;
3536}
3537
3538/*
3539 * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK)
3540 *
3541 * This set option adds a chunk type that the user is requesting to be
3542 * received only in an authenticated way. Changes to the list of chunks
3543 * will only effect future associations on the socket.
3544 */
3545static int sctp_setsockopt_auth_chunk(struct sock *sk,
3546 struct sctp_authchunk *val,
3547 unsigned int optlen)
3548{
3549 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3550
3551 if (!ep->auth_enable)
3552 return -EACCES;
3553
3554 if (optlen != sizeof(struct sctp_authchunk))
3555 return -EINVAL;
3556
3557 switch (val->sauth_chunk) {
3558 case SCTP_CID_INIT:
3559 case SCTP_CID_INIT_ACK:
3560 case SCTP_CID_SHUTDOWN_COMPLETE:
3561 case SCTP_CID_AUTH:
3562 return -EINVAL;
3563 }
3564
3565 /* add this chunk id to the endpoint */
3566 return sctp_auth_ep_add_chunkid(ep, val->sauth_chunk);
3567}
3568
3569/*
3570 * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT)
3571 *
3572 * This option gets or sets the list of HMAC algorithms that the local
3573 * endpoint requires the peer to use.
3574 */
3575static int sctp_setsockopt_hmac_ident(struct sock *sk,
3576 struct sctp_hmacalgo *hmacs,
3577 unsigned int optlen)
3578{
3579 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3580 u32 idents;
3581
3582 if (!ep->auth_enable)
3583 return -EACCES;
3584
3585 if (optlen < sizeof(struct sctp_hmacalgo))
3586 return -EINVAL;
3587 optlen = min_t(unsigned int, optlen, sizeof(struct sctp_hmacalgo) +
3588 SCTP_AUTH_NUM_HMACS * sizeof(u16));
3589
3590 idents = hmacs->shmac_num_idents;
3591 if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS ||
3592 (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo)))
3593 return -EINVAL;
3594
3595 return sctp_auth_ep_set_hmacs(ep, hmacs);
3596}
3597
3598/*
3599 * 7.1.20. Set a shared key (SCTP_AUTH_KEY)
3600 *
3601 * This option will set a shared secret key which is used to build an
3602 * association shared key.
3603 */
3604static int sctp_setsockopt_auth_key(struct sock *sk,
3605 struct sctp_authkey *authkey,
3606 unsigned int optlen)
3607{
3608 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3609 struct sctp_association *asoc;
3610 int ret = -EINVAL;
3611
3612 if (optlen <= sizeof(struct sctp_authkey))
3613 return -EINVAL;
3614 /* authkey->sca_keylength is u16, so optlen can't be bigger than
3615 * this.
3616 */
3617 optlen = min_t(unsigned int, optlen, USHRT_MAX + sizeof(*authkey));
3618
3619 if (authkey->sca_keylength > optlen - sizeof(*authkey))
3620 goto out;
3621
3622 asoc = sctp_id2assoc(sk, authkey->sca_assoc_id);
3623 if (!asoc && authkey->sca_assoc_id > SCTP_ALL_ASSOC &&
3624 sctp_style(sk, UDP))
3625 goto out;
3626
3627 if (asoc) {
3628 ret = sctp_auth_set_key(ep, asoc, authkey);
3629 goto out;
3630 }
3631
3632 if (sctp_style(sk, TCP))
3633 authkey->sca_assoc_id = SCTP_FUTURE_ASSOC;
3634
3635 if (authkey->sca_assoc_id == SCTP_FUTURE_ASSOC ||
3636 authkey->sca_assoc_id == SCTP_ALL_ASSOC) {
3637 ret = sctp_auth_set_key(ep, asoc, authkey);
3638 if (ret)
3639 goto out;
3640 }
3641
3642 ret = 0;
3643
3644 if (authkey->sca_assoc_id == SCTP_CURRENT_ASSOC ||
3645 authkey->sca_assoc_id == SCTP_ALL_ASSOC) {
3646 list_for_each_entry(asoc, &ep->asocs, asocs) {
3647 int res = sctp_auth_set_key(ep, asoc, authkey);
3648
3649 if (res && !ret)
3650 ret = res;
3651 }
3652 }
3653
3654out:
3655 memzero_explicit(authkey, optlen);
3656 return ret;
3657}
3658
3659/*
3660 * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY)
3661 *
3662 * This option will get or set the active shared key to be used to build
3663 * the association shared key.
3664 */
3665static int sctp_setsockopt_active_key(struct sock *sk,
3666 struct sctp_authkeyid *val,
3667 unsigned int optlen)
3668{
3669 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3670 struct sctp_association *asoc;
3671 int ret = 0;
3672
3673 if (optlen != sizeof(struct sctp_authkeyid))
3674 return -EINVAL;
3675
3676 asoc = sctp_id2assoc(sk, val->scact_assoc_id);
3677 if (!asoc && val->scact_assoc_id > SCTP_ALL_ASSOC &&
3678 sctp_style(sk, UDP))
3679 return -EINVAL;
3680
3681 if (asoc)
3682 return sctp_auth_set_active_key(ep, asoc, val->scact_keynumber);
3683
3684 if (sctp_style(sk, TCP))
3685 val->scact_assoc_id = SCTP_FUTURE_ASSOC;
3686
3687 if (val->scact_assoc_id == SCTP_FUTURE_ASSOC ||
3688 val->scact_assoc_id == SCTP_ALL_ASSOC) {
3689 ret = sctp_auth_set_active_key(ep, asoc, val->scact_keynumber);
3690 if (ret)
3691 return ret;
3692 }
3693
3694 if (val->scact_assoc_id == SCTP_CURRENT_ASSOC ||
3695 val->scact_assoc_id == SCTP_ALL_ASSOC) {
3696 list_for_each_entry(asoc, &ep->asocs, asocs) {
3697 int res = sctp_auth_set_active_key(ep, asoc,
3698 val->scact_keynumber);
3699
3700 if (res && !ret)
3701 ret = res;
3702 }
3703 }
3704
3705 return ret;
3706}
3707
3708/*
3709 * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY)
3710 *
3711 * This set option will delete a shared secret key from use.
3712 */
3713static int sctp_setsockopt_del_key(struct sock *sk,
3714 struct sctp_authkeyid *val,
3715 unsigned int optlen)
3716{
3717 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3718 struct sctp_association *asoc;
3719 int ret = 0;
3720
3721 if (optlen != sizeof(struct sctp_authkeyid))
3722 return -EINVAL;
3723
3724 asoc = sctp_id2assoc(sk, val->scact_assoc_id);
3725 if (!asoc && val->scact_assoc_id > SCTP_ALL_ASSOC &&
3726 sctp_style(sk, UDP))
3727 return -EINVAL;
3728
3729 if (asoc)
3730 return sctp_auth_del_key_id(ep, asoc, val->scact_keynumber);
3731
3732 if (sctp_style(sk, TCP))
3733 val->scact_assoc_id = SCTP_FUTURE_ASSOC;
3734
3735 if (val->scact_assoc_id == SCTP_FUTURE_ASSOC ||
3736 val->scact_assoc_id == SCTP_ALL_ASSOC) {
3737 ret = sctp_auth_del_key_id(ep, asoc, val->scact_keynumber);
3738 if (ret)
3739 return ret;
3740 }
3741
3742 if (val->scact_assoc_id == SCTP_CURRENT_ASSOC ||
3743 val->scact_assoc_id == SCTP_ALL_ASSOC) {
3744 list_for_each_entry(asoc, &ep->asocs, asocs) {
3745 int res = sctp_auth_del_key_id(ep, asoc,
3746 val->scact_keynumber);
3747
3748 if (res && !ret)
3749 ret = res;
3750 }
3751 }
3752
3753 return ret;
3754}
3755
3756/*
3757 * 8.3.4 Deactivate a Shared Key (SCTP_AUTH_DEACTIVATE_KEY)
3758 *
3759 * This set option will deactivate a shared secret key.
3760 */
3761static int sctp_setsockopt_deactivate_key(struct sock *sk,
3762 struct sctp_authkeyid *val,
3763 unsigned int optlen)
3764{
3765 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3766 struct sctp_association *asoc;
3767 int ret = 0;
3768
3769 if (optlen != sizeof(struct sctp_authkeyid))
3770 return -EINVAL;
3771
3772 asoc = sctp_id2assoc(sk, val->scact_assoc_id);
3773 if (!asoc && val->scact_assoc_id > SCTP_ALL_ASSOC &&
3774 sctp_style(sk, UDP))
3775 return -EINVAL;
3776
3777 if (asoc)
3778 return sctp_auth_deact_key_id(ep, asoc, val->scact_keynumber);
3779
3780 if (sctp_style(sk, TCP))
3781 val->scact_assoc_id = SCTP_FUTURE_ASSOC;
3782
3783 if (val->scact_assoc_id == SCTP_FUTURE_ASSOC ||
3784 val->scact_assoc_id == SCTP_ALL_ASSOC) {
3785 ret = sctp_auth_deact_key_id(ep, asoc, val->scact_keynumber);
3786 if (ret)
3787 return ret;
3788 }
3789
3790 if (val->scact_assoc_id == SCTP_CURRENT_ASSOC ||
3791 val->scact_assoc_id == SCTP_ALL_ASSOC) {
3792 list_for_each_entry(asoc, &ep->asocs, asocs) {
3793 int res = sctp_auth_deact_key_id(ep, asoc,
3794 val->scact_keynumber);
3795
3796 if (res && !ret)
3797 ret = res;
3798 }
3799 }
3800
3801 return ret;
3802}
3803
3804/*
3805 * 8.1.23 SCTP_AUTO_ASCONF
3806 *
3807 * This option will enable or disable the use of the automatic generation of
3808 * ASCONF chunks to add and delete addresses to an existing association. Note
3809 * that this option has two caveats namely: a) it only affects sockets that
3810 * are bound to all addresses available to the SCTP stack, and b) the system
3811 * administrator may have an overriding control that turns the ASCONF feature
3812 * off no matter what setting the socket option may have.
3813 * This option expects an integer boolean flag, where a non-zero value turns on
3814 * the option, and a zero value turns off the option.
3815 * Note. In this implementation, socket operation overrides default parameter
3816 * being set by sysctl as well as FreeBSD implementation
3817 */
3818static int sctp_setsockopt_auto_asconf(struct sock *sk, int *val,
3819 unsigned int optlen)
3820{
3821 struct sctp_sock *sp = sctp_sk(sk);
3822
3823 if (optlen < sizeof(int))
3824 return -EINVAL;
3825 if (!sctp_is_ep_boundall(sk) && *val)
3826 return -EINVAL;
3827 if ((*val && sp->do_auto_asconf) || (!*val && !sp->do_auto_asconf))
3828 return 0;
3829
3830 spin_lock_bh(&sock_net(sk)->sctp.addr_wq_lock);
3831 if (*val == 0 && sp->do_auto_asconf) {
3832 list_del(&sp->auto_asconf_list);
3833 sp->do_auto_asconf = 0;
3834 } else if (*val && !sp->do_auto_asconf) {
3835 list_add_tail(&sp->auto_asconf_list,
3836 &sock_net(sk)->sctp.auto_asconf_splist);
3837 sp->do_auto_asconf = 1;
3838 }
3839 spin_unlock_bh(&sock_net(sk)->sctp.addr_wq_lock);
3840 return 0;
3841}
3842
3843/*
3844 * SCTP_PEER_ADDR_THLDS
3845 *
3846 * This option allows us to alter the partially failed threshold for one or all
3847 * transports in an association. See Section 6.1 of:
3848 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
3849 */
3850static int sctp_setsockopt_paddr_thresholds(struct sock *sk,
3851 struct sctp_paddrthlds_v2 *val,
3852 unsigned int optlen, bool v2)
3853{
3854 struct sctp_transport *trans;
3855 struct sctp_association *asoc;
3856 int len;
3857
3858 len = v2 ? sizeof(*val) : sizeof(struct sctp_paddrthlds);
3859 if (optlen < len)
3860 return -EINVAL;
3861
3862 if (v2 && val->spt_pathpfthld > val->spt_pathcpthld)
3863 return -EINVAL;
3864
3865 if (!sctp_is_any(sk, (const union sctp_addr *)&val->spt_address)) {
3866 trans = sctp_addr_id2transport(sk, &val->spt_address,
3867 val->spt_assoc_id);
3868 if (!trans)
3869 return -ENOENT;
3870
3871 if (val->spt_pathmaxrxt)
3872 trans->pathmaxrxt = val->spt_pathmaxrxt;
3873 if (v2)
3874 trans->ps_retrans = val->spt_pathcpthld;
3875 trans->pf_retrans = val->spt_pathpfthld;
3876
3877 return 0;
3878 }
3879
3880 asoc = sctp_id2assoc(sk, val->spt_assoc_id);
3881 if (!asoc && val->spt_assoc_id != SCTP_FUTURE_ASSOC &&
3882 sctp_style(sk, UDP))
3883 return -EINVAL;
3884
3885 if (asoc) {
3886 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
3887 transports) {
3888 if (val->spt_pathmaxrxt)
3889 trans->pathmaxrxt = val->spt_pathmaxrxt;
3890 if (v2)
3891 trans->ps_retrans = val->spt_pathcpthld;
3892 trans->pf_retrans = val->spt_pathpfthld;
3893 }
3894
3895 if (val->spt_pathmaxrxt)
3896 asoc->pathmaxrxt = val->spt_pathmaxrxt;
3897 if (v2)
3898 asoc->ps_retrans = val->spt_pathcpthld;
3899 asoc->pf_retrans = val->spt_pathpfthld;
3900 } else {
3901 struct sctp_sock *sp = sctp_sk(sk);
3902
3903 if (val->spt_pathmaxrxt)
3904 sp->pathmaxrxt = val->spt_pathmaxrxt;
3905 if (v2)
3906 sp->ps_retrans = val->spt_pathcpthld;
3907 sp->pf_retrans = val->spt_pathpfthld;
3908 }
3909
3910 return 0;
3911}
3912
3913static int sctp_setsockopt_recvrcvinfo(struct sock *sk, int *val,
3914 unsigned int optlen)
3915{
3916 if (optlen < sizeof(int))
3917 return -EINVAL;
3918
3919 sctp_sk(sk)->recvrcvinfo = (*val == 0) ? 0 : 1;
3920
3921 return 0;
3922}
3923
3924static int sctp_setsockopt_recvnxtinfo(struct sock *sk, int *val,
3925 unsigned int optlen)
3926{
3927 if (optlen < sizeof(int))
3928 return -EINVAL;
3929
3930 sctp_sk(sk)->recvnxtinfo = (*val == 0) ? 0 : 1;
3931
3932 return 0;
3933}
3934
3935static int sctp_setsockopt_pr_supported(struct sock *sk,
3936 struct sctp_assoc_value *params,
3937 unsigned int optlen)
3938{
3939 struct sctp_association *asoc;
3940
3941 if (optlen != sizeof(*params))
3942 return -EINVAL;
3943
3944 asoc = sctp_id2assoc(sk, params->assoc_id);
3945 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC &&
3946 sctp_style(sk, UDP))
3947 return -EINVAL;
3948
3949 sctp_sk(sk)->ep->prsctp_enable = !!params->assoc_value;
3950
3951 return 0;
3952}
3953
3954static int sctp_setsockopt_default_prinfo(struct sock *sk,
3955 struct sctp_default_prinfo *info,
3956 unsigned int optlen)
3957{
3958 struct sctp_sock *sp = sctp_sk(sk);
3959 struct sctp_association *asoc;
3960 int retval = -EINVAL;
3961
3962 if (optlen != sizeof(*info))
3963 goto out;
3964
3965 if (info->pr_policy & ~SCTP_PR_SCTP_MASK)
3966 goto out;
3967
3968 if (info->pr_policy == SCTP_PR_SCTP_NONE)
3969 info->pr_value = 0;
3970
3971 asoc = sctp_id2assoc(sk, info->pr_assoc_id);
3972 if (!asoc && info->pr_assoc_id > SCTP_ALL_ASSOC &&
3973 sctp_style(sk, UDP))
3974 goto out;
3975
3976 retval = 0;
3977
3978 if (asoc) {
3979 SCTP_PR_SET_POLICY(asoc->default_flags, info->pr_policy);
3980 asoc->default_timetolive = info->pr_value;
3981 goto out;
3982 }
3983
3984 if (sctp_style(sk, TCP))
3985 info->pr_assoc_id = SCTP_FUTURE_ASSOC;
3986
3987 if (info->pr_assoc_id == SCTP_FUTURE_ASSOC ||
3988 info->pr_assoc_id == SCTP_ALL_ASSOC) {
3989 SCTP_PR_SET_POLICY(sp->default_flags, info->pr_policy);
3990 sp->default_timetolive = info->pr_value;
3991 }
3992
3993 if (info->pr_assoc_id == SCTP_CURRENT_ASSOC ||
3994 info->pr_assoc_id == SCTP_ALL_ASSOC) {
3995 list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
3996 SCTP_PR_SET_POLICY(asoc->default_flags,
3997 info->pr_policy);
3998 asoc->default_timetolive = info->pr_value;
3999 }
4000 }
4001
4002out:
4003 return retval;
4004}
4005
4006static int sctp_setsockopt_reconfig_supported(struct sock *sk,
4007 struct sctp_assoc_value *params,
4008 unsigned int optlen)
4009{
4010 struct sctp_association *asoc;
4011 int retval = -EINVAL;
4012
4013 if (optlen != sizeof(*params))
4014 goto out;
4015
4016 asoc = sctp_id2assoc(sk, params->assoc_id);
4017 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC &&
4018 sctp_style(sk, UDP))
4019 goto out;
4020
4021 sctp_sk(sk)->ep->reconf_enable = !!params->assoc_value;
4022
4023 retval = 0;
4024
4025out:
4026 return retval;
4027}
4028
4029static int sctp_setsockopt_enable_strreset(struct sock *sk,
4030 struct sctp_assoc_value *params,
4031 unsigned int optlen)
4032{
4033 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
4034 struct sctp_association *asoc;
4035 int retval = -EINVAL;
4036
4037 if (optlen != sizeof(*params))
4038 goto out;
4039
4040 if (params->assoc_value & (~SCTP_ENABLE_STRRESET_MASK))
4041 goto out;
4042
4043 asoc = sctp_id2assoc(sk, params->assoc_id);
4044 if (!asoc && params->assoc_id > SCTP_ALL_ASSOC &&
4045 sctp_style(sk, UDP))
4046 goto out;
4047
4048 retval = 0;
4049
4050 if (asoc) {
4051 asoc->strreset_enable = params->assoc_value;
4052 goto out;
4053 }
4054
4055 if (sctp_style(sk, TCP))
4056 params->assoc_id = SCTP_FUTURE_ASSOC;
4057
4058 if (params->assoc_id == SCTP_FUTURE_ASSOC ||
4059 params->assoc_id == SCTP_ALL_ASSOC)
4060 ep->strreset_enable = params->assoc_value;
4061
4062 if (params->assoc_id == SCTP_CURRENT_ASSOC ||
4063 params->assoc_id == SCTP_ALL_ASSOC)
4064 list_for_each_entry(asoc, &ep->asocs, asocs)
4065 asoc->strreset_enable = params->assoc_value;
4066
4067out:
4068 return retval;
4069}
4070
4071static int sctp_setsockopt_reset_streams(struct sock *sk,
4072 struct sctp_reset_streams *params,
4073 unsigned int optlen)
4074{
4075 struct sctp_association *asoc;
4076
4077 if (optlen < sizeof(*params))
4078 return -EINVAL;
4079 /* srs_number_streams is u16, so optlen can't be bigger than this. */
4080 optlen = min_t(unsigned int, optlen, USHRT_MAX +
4081 sizeof(__u16) * sizeof(*params));
4082
4083 if (params->srs_number_streams * sizeof(__u16) >
4084 optlen - sizeof(*params))
4085 return -EINVAL;
4086
4087 asoc = sctp_id2assoc(sk, params->srs_assoc_id);
4088 if (!asoc)
4089 return -EINVAL;
4090
4091 return sctp_send_reset_streams(asoc, params);
4092}
4093
4094static int sctp_setsockopt_reset_assoc(struct sock *sk, sctp_assoc_t *associd,
4095 unsigned int optlen)
4096{
4097 struct sctp_association *asoc;
4098
4099 if (optlen != sizeof(*associd))
4100 return -EINVAL;
4101
4102 asoc = sctp_id2assoc(sk, *associd);
4103 if (!asoc)
4104 return -EINVAL;
4105
4106 return sctp_send_reset_assoc(asoc);
4107}
4108
4109static int sctp_setsockopt_add_streams(struct sock *sk,
4110 struct sctp_add_streams *params,
4111 unsigned int optlen)
4112{
4113 struct sctp_association *asoc;
4114
4115 if (optlen != sizeof(*params))
4116 return -EINVAL;
4117
4118 asoc = sctp_id2assoc(sk, params->sas_assoc_id);
4119 if (!asoc)
4120 return -EINVAL;
4121
4122 return sctp_send_add_streams(asoc, params);
4123}
4124
4125static int sctp_setsockopt_scheduler(struct sock *sk,
4126 struct sctp_assoc_value *params,
4127 unsigned int optlen)
4128{
4129 struct sctp_sock *sp = sctp_sk(sk);
4130 struct sctp_association *asoc;
4131 int retval = 0;
4132
4133 if (optlen < sizeof(*params))
4134 return -EINVAL;
4135
4136 if (params->assoc_value > SCTP_SS_MAX)
4137 return -EINVAL;
4138
4139 asoc = sctp_id2assoc(sk, params->assoc_id);
4140 if (!asoc && params->assoc_id > SCTP_ALL_ASSOC &&
4141 sctp_style(sk, UDP))
4142 return -EINVAL;
4143
4144 if (asoc)
4145 return sctp_sched_set_sched(asoc, params->assoc_value);
4146
4147 if (sctp_style(sk, TCP))
4148 params->assoc_id = SCTP_FUTURE_ASSOC;
4149
4150 if (params->assoc_id == SCTP_FUTURE_ASSOC ||
4151 params->assoc_id == SCTP_ALL_ASSOC)
4152 sp->default_ss = params->assoc_value;
4153
4154 if (params->assoc_id == SCTP_CURRENT_ASSOC ||
4155 params->assoc_id == SCTP_ALL_ASSOC) {
4156 list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
4157 int ret = sctp_sched_set_sched(asoc,
4158 params->assoc_value);
4159
4160 if (ret && !retval)
4161 retval = ret;
4162 }
4163 }
4164
4165 return retval;
4166}
4167
4168static int sctp_setsockopt_scheduler_value(struct sock *sk,
4169 struct sctp_stream_value *params,
4170 unsigned int optlen)
4171{
4172 struct sctp_association *asoc;
4173 int retval = -EINVAL;
4174
4175 if (optlen < sizeof(*params))
4176 goto out;
4177
4178 asoc = sctp_id2assoc(sk, params->assoc_id);
4179 if (!asoc && params->assoc_id != SCTP_CURRENT_ASSOC &&
4180 sctp_style(sk, UDP))
4181 goto out;
4182
4183 if (asoc) {
4184 retval = sctp_sched_set_value(asoc, params->stream_id,
4185 params->stream_value, GFP_KERNEL);
4186 goto out;
4187 }
4188
4189 retval = 0;
4190
4191 list_for_each_entry(asoc, &sctp_sk(sk)->ep->asocs, asocs) {
4192 int ret = sctp_sched_set_value(asoc, params->stream_id,
4193 params->stream_value,
4194 GFP_KERNEL);
4195 if (ret && !retval) /* try to return the 1st error. */
4196 retval = ret;
4197 }
4198
4199out:
4200 return retval;
4201}
4202
4203static int sctp_setsockopt_interleaving_supported(struct sock *sk,
4204 struct sctp_assoc_value *p,
4205 unsigned int optlen)
4206{
4207 struct sctp_sock *sp = sctp_sk(sk);
4208 struct sctp_association *asoc;
4209
4210 if (optlen < sizeof(*p))
4211 return -EINVAL;
4212
4213 asoc = sctp_id2assoc(sk, p->assoc_id);
4214 if (!asoc && p->assoc_id != SCTP_FUTURE_ASSOC && sctp_style(sk, UDP))
4215 return -EINVAL;
4216
4217 if (!sock_net(sk)->sctp.intl_enable || !sp->frag_interleave) {
4218 return -EPERM;
4219 }
4220
4221 sp->ep->intl_enable = !!p->assoc_value;
4222 return 0;
4223}
4224
4225static int sctp_setsockopt_reuse_port(struct sock *sk, int *val,
4226 unsigned int optlen)
4227{
4228 if (!sctp_style(sk, TCP))
4229 return -EOPNOTSUPP;
4230
4231 if (sctp_sk(sk)->ep->base.bind_addr.port)
4232 return -EFAULT;
4233
4234 if (optlen < sizeof(int))
4235 return -EINVAL;
4236
4237 sctp_sk(sk)->reuse = !!*val;
4238
4239 return 0;
4240}
4241
4242static int sctp_assoc_ulpevent_type_set(struct sctp_event *param,
4243 struct sctp_association *asoc)
4244{
4245 struct sctp_ulpevent *event;
4246
4247 sctp_ulpevent_type_set(&asoc->subscribe, param->se_type, param->se_on);
4248
4249 if (param->se_type == SCTP_SENDER_DRY_EVENT && param->se_on) {
4250 if (sctp_outq_is_empty(&asoc->outqueue)) {
4251 event = sctp_ulpevent_make_sender_dry_event(asoc,
4252 GFP_USER | __GFP_NOWARN);
4253 if (!event)
4254 return -ENOMEM;
4255
4256 asoc->stream.si->enqueue_event(&asoc->ulpq, event);
4257 }
4258 }
4259
4260 return 0;
4261}
4262
4263static int sctp_setsockopt_event(struct sock *sk, struct sctp_event *param,
4264 unsigned int optlen)
4265{
4266 struct sctp_sock *sp = sctp_sk(sk);
4267 struct sctp_association *asoc;
4268 int retval = 0;
4269
4270 if (optlen < sizeof(*param))
4271 return -EINVAL;
4272
4273 if (param->se_type < SCTP_SN_TYPE_BASE ||
4274 param->se_type > SCTP_SN_TYPE_MAX)
4275 return -EINVAL;
4276
4277 asoc = sctp_id2assoc(sk, param->se_assoc_id);
4278 if (!asoc && param->se_assoc_id > SCTP_ALL_ASSOC &&
4279 sctp_style(sk, UDP))
4280 return -EINVAL;
4281
4282 if (asoc)
4283 return sctp_assoc_ulpevent_type_set(param, asoc);
4284
4285 if (sctp_style(sk, TCP))
4286 param->se_assoc_id = SCTP_FUTURE_ASSOC;
4287
4288 if (param->se_assoc_id == SCTP_FUTURE_ASSOC ||
4289 param->se_assoc_id == SCTP_ALL_ASSOC)
4290 sctp_ulpevent_type_set(&sp->subscribe,
4291 param->se_type, param->se_on);
4292
4293 if (param->se_assoc_id == SCTP_CURRENT_ASSOC ||
4294 param->se_assoc_id == SCTP_ALL_ASSOC) {
4295 list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
4296 int ret = sctp_assoc_ulpevent_type_set(param, asoc);
4297
4298 if (ret && !retval)
4299 retval = ret;
4300 }
4301 }
4302
4303 return retval;
4304}
4305
4306static int sctp_setsockopt_asconf_supported(struct sock *sk,
4307 struct sctp_assoc_value *params,
4308 unsigned int optlen)
4309{
4310 struct sctp_association *asoc;
4311 struct sctp_endpoint *ep;
4312 int retval = -EINVAL;
4313
4314 if (optlen != sizeof(*params))
4315 goto out;
4316
4317 asoc = sctp_id2assoc(sk, params->assoc_id);
4318 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC &&
4319 sctp_style(sk, UDP))
4320 goto out;
4321
4322 ep = sctp_sk(sk)->ep;
4323 ep->asconf_enable = !!params->assoc_value;
4324
4325 if (ep->asconf_enable && ep->auth_enable) {
4326 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF);
4327 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF_ACK);
4328 }
4329
4330 retval = 0;
4331
4332out:
4333 return retval;
4334}
4335
4336static int sctp_setsockopt_auth_supported(struct sock *sk,
4337 struct sctp_assoc_value *params,
4338 unsigned int optlen)
4339{
4340 struct sctp_association *asoc;
4341 struct sctp_endpoint *ep;
4342 int retval = -EINVAL;
4343
4344 if (optlen != sizeof(*params))
4345 goto out;
4346
4347 asoc = sctp_id2assoc(sk, params->assoc_id);
4348 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC &&
4349 sctp_style(sk, UDP))
4350 goto out;
4351
4352 ep = sctp_sk(sk)->ep;
4353 if (params->assoc_value) {
4354 retval = sctp_auth_init(ep, GFP_KERNEL);
4355 if (retval)
4356 goto out;
4357 if (ep->asconf_enable) {
4358 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF);
4359 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF_ACK);
4360 }
4361 }
4362
4363 ep->auth_enable = !!params->assoc_value;
4364 retval = 0;
4365
4366out:
4367 return retval;
4368}
4369
4370static int sctp_setsockopt_ecn_supported(struct sock *sk,
4371 struct sctp_assoc_value *params,
4372 unsigned int optlen)
4373{
4374 struct sctp_association *asoc;
4375 int retval = -EINVAL;
4376
4377 if (optlen != sizeof(*params))
4378 goto out;
4379
4380 asoc = sctp_id2assoc(sk, params->assoc_id);
4381 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC &&
4382 sctp_style(sk, UDP))
4383 goto out;
4384
4385 sctp_sk(sk)->ep->ecn_enable = !!params->assoc_value;
4386 retval = 0;
4387
4388out:
4389 return retval;
4390}
4391
4392static int sctp_setsockopt_pf_expose(struct sock *sk,
4393 struct sctp_assoc_value *params,
4394 unsigned int optlen)
4395{
4396 struct sctp_association *asoc;
4397 int retval = -EINVAL;
4398
4399 if (optlen != sizeof(*params))
4400 goto out;
4401
4402 if (params->assoc_value > SCTP_PF_EXPOSE_MAX)
4403 goto out;
4404
4405 asoc = sctp_id2assoc(sk, params->assoc_id);
4406 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC &&
4407 sctp_style(sk, UDP))
4408 goto out;
4409
4410 if (asoc)
4411 asoc->pf_expose = params->assoc_value;
4412 else
4413 sctp_sk(sk)->pf_expose = params->assoc_value;
4414 retval = 0;
4415
4416out:
4417 return retval;
4418}
4419
4420/* API 6.2 setsockopt(), getsockopt()
4421 *
4422 * Applications use setsockopt() and getsockopt() to set or retrieve
4423 * socket options. Socket options are used to change the default
4424 * behavior of sockets calls. They are described in Section 7.
4425 *
4426 * The syntax is:
4427 *
4428 * ret = getsockopt(int sd, int level, int optname, void __user *optval,
4429 * int __user *optlen);
4430 * ret = setsockopt(int sd, int level, int optname, const void __user *optval,
4431 * int optlen);
4432 *
4433 * sd - the socket descript.
4434 * level - set to IPPROTO_SCTP for all SCTP options.
4435 * optname - the option name.
4436 * optval - the buffer to store the value of the option.
4437 * optlen - the size of the buffer.
4438 */
4439static int sctp_setsockopt(struct sock *sk, int level, int optname,
4440 sockptr_t optval, unsigned int optlen)
4441{
4442 void *kopt = NULL;
4443 int retval = 0;
4444
4445 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
4446
4447 /* I can hardly begin to describe how wrong this is. This is
4448 * so broken as to be worse than useless. The API draft
4449 * REALLY is NOT helpful here... I am not convinced that the
4450 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP
4451 * are at all well-founded.
4452 */
4453 if (level != SOL_SCTP) {
4454 struct sctp_af *af = sctp_sk(sk)->pf->af;
4455
4456 return af->setsockopt(sk, level, optname, optval, optlen);
4457 }
4458
4459 if (optlen > 0) {
4460 kopt = memdup_sockptr(optval, optlen);
4461 if (IS_ERR(kopt))
4462 return PTR_ERR(kopt);
4463 }
4464
4465 lock_sock(sk);
4466
4467 switch (optname) {
4468 case SCTP_SOCKOPT_BINDX_ADD:
4469 /* 'optlen' is the size of the addresses buffer. */
4470 retval = sctp_setsockopt_bindx(sk, kopt, optlen,
4471 SCTP_BINDX_ADD_ADDR);
4472 break;
4473
4474 case SCTP_SOCKOPT_BINDX_REM:
4475 /* 'optlen' is the size of the addresses buffer. */
4476 retval = sctp_setsockopt_bindx(sk, kopt, optlen,
4477 SCTP_BINDX_REM_ADDR);
4478 break;
4479
4480 case SCTP_SOCKOPT_CONNECTX_OLD:
4481 /* 'optlen' is the size of the addresses buffer. */
4482 retval = sctp_setsockopt_connectx_old(sk, kopt, optlen);
4483 break;
4484
4485 case SCTP_SOCKOPT_CONNECTX:
4486 /* 'optlen' is the size of the addresses buffer. */
4487 retval = sctp_setsockopt_connectx(sk, kopt, optlen);
4488 break;
4489
4490 case SCTP_DISABLE_FRAGMENTS:
4491 retval = sctp_setsockopt_disable_fragments(sk, kopt, optlen);
4492 break;
4493
4494 case SCTP_EVENTS:
4495 retval = sctp_setsockopt_events(sk, kopt, optlen);
4496 break;
4497
4498 case SCTP_AUTOCLOSE:
4499 retval = sctp_setsockopt_autoclose(sk, kopt, optlen);
4500 break;
4501
4502 case SCTP_PEER_ADDR_PARAMS:
4503 retval = sctp_setsockopt_peer_addr_params(sk, kopt, optlen);
4504 break;
4505
4506 case SCTP_DELAYED_SACK:
4507 retval = sctp_setsockopt_delayed_ack(sk, kopt, optlen);
4508 break;
4509 case SCTP_PARTIAL_DELIVERY_POINT:
4510 retval = sctp_setsockopt_partial_delivery_point(sk, kopt, optlen);
4511 break;
4512
4513 case SCTP_INITMSG:
4514 retval = sctp_setsockopt_initmsg(sk, kopt, optlen);
4515 break;
4516 case SCTP_DEFAULT_SEND_PARAM:
4517 retval = sctp_setsockopt_default_send_param(sk, kopt, optlen);
4518 break;
4519 case SCTP_DEFAULT_SNDINFO:
4520 retval = sctp_setsockopt_default_sndinfo(sk, kopt, optlen);
4521 break;
4522 case SCTP_PRIMARY_ADDR:
4523 retval = sctp_setsockopt_primary_addr(sk, kopt, optlen);
4524 break;
4525 case SCTP_SET_PEER_PRIMARY_ADDR:
4526 retval = sctp_setsockopt_peer_primary_addr(sk, kopt, optlen);
4527 break;
4528 case SCTP_NODELAY:
4529 retval = sctp_setsockopt_nodelay(sk, kopt, optlen);
4530 break;
4531 case SCTP_RTOINFO:
4532 retval = sctp_setsockopt_rtoinfo(sk, kopt, optlen);
4533 break;
4534 case SCTP_ASSOCINFO:
4535 retval = sctp_setsockopt_associnfo(sk, kopt, optlen);
4536 break;
4537 case SCTP_I_WANT_MAPPED_V4_ADDR:
4538 retval = sctp_setsockopt_mappedv4(sk, kopt, optlen);
4539 break;
4540 case SCTP_MAXSEG:
4541 retval = sctp_setsockopt_maxseg(sk, kopt, optlen);
4542 break;
4543 case SCTP_ADAPTATION_LAYER:
4544 retval = sctp_setsockopt_adaptation_layer(sk, kopt, optlen);
4545 break;
4546 case SCTP_CONTEXT:
4547 retval = sctp_setsockopt_context(sk, kopt, optlen);
4548 break;
4549 case SCTP_FRAGMENT_INTERLEAVE:
4550 retval = sctp_setsockopt_fragment_interleave(sk, kopt, optlen);
4551 break;
4552 case SCTP_MAX_BURST:
4553 retval = sctp_setsockopt_maxburst(sk, kopt, optlen);
4554 break;
4555 case SCTP_AUTH_CHUNK:
4556 retval = sctp_setsockopt_auth_chunk(sk, kopt, optlen);
4557 break;
4558 case SCTP_HMAC_IDENT:
4559 retval = sctp_setsockopt_hmac_ident(sk, kopt, optlen);
4560 break;
4561 case SCTP_AUTH_KEY:
4562 retval = sctp_setsockopt_auth_key(sk, kopt, optlen);
4563 break;
4564 case SCTP_AUTH_ACTIVE_KEY:
4565 retval = sctp_setsockopt_active_key(sk, kopt, optlen);
4566 break;
4567 case SCTP_AUTH_DELETE_KEY:
4568 retval = sctp_setsockopt_del_key(sk, kopt, optlen);
4569 break;
4570 case SCTP_AUTH_DEACTIVATE_KEY:
4571 retval = sctp_setsockopt_deactivate_key(sk, kopt, optlen);
4572 break;
4573 case SCTP_AUTO_ASCONF:
4574 retval = sctp_setsockopt_auto_asconf(sk, kopt, optlen);
4575 break;
4576 case SCTP_PEER_ADDR_THLDS:
4577 retval = sctp_setsockopt_paddr_thresholds(sk, kopt, optlen,
4578 false);
4579 break;
4580 case SCTP_PEER_ADDR_THLDS_V2:
4581 retval = sctp_setsockopt_paddr_thresholds(sk, kopt, optlen,
4582 true);
4583 break;
4584 case SCTP_RECVRCVINFO:
4585 retval = sctp_setsockopt_recvrcvinfo(sk, kopt, optlen);
4586 break;
4587 case SCTP_RECVNXTINFO:
4588 retval = sctp_setsockopt_recvnxtinfo(sk, kopt, optlen);
4589 break;
4590 case SCTP_PR_SUPPORTED:
4591 retval = sctp_setsockopt_pr_supported(sk, kopt, optlen);
4592 break;
4593 case SCTP_DEFAULT_PRINFO:
4594 retval = sctp_setsockopt_default_prinfo(sk, kopt, optlen);
4595 break;
4596 case SCTP_RECONFIG_SUPPORTED:
4597 retval = sctp_setsockopt_reconfig_supported(sk, kopt, optlen);
4598 break;
4599 case SCTP_ENABLE_STREAM_RESET:
4600 retval = sctp_setsockopt_enable_strreset(sk, kopt, optlen);
4601 break;
4602 case SCTP_RESET_STREAMS:
4603 retval = sctp_setsockopt_reset_streams(sk, kopt, optlen);
4604 break;
4605 case SCTP_RESET_ASSOC:
4606 retval = sctp_setsockopt_reset_assoc(sk, kopt, optlen);
4607 break;
4608 case SCTP_ADD_STREAMS:
4609 retval = sctp_setsockopt_add_streams(sk, kopt, optlen);
4610 break;
4611 case SCTP_STREAM_SCHEDULER:
4612 retval = sctp_setsockopt_scheduler(sk, kopt, optlen);
4613 break;
4614 case SCTP_STREAM_SCHEDULER_VALUE:
4615 retval = sctp_setsockopt_scheduler_value(sk, kopt, optlen);
4616 break;
4617 case SCTP_INTERLEAVING_SUPPORTED:
4618 retval = sctp_setsockopt_interleaving_supported(sk, kopt,
4619 optlen);
4620 break;
4621 case SCTP_REUSE_PORT:
4622 retval = sctp_setsockopt_reuse_port(sk, kopt, optlen);
4623 break;
4624 case SCTP_EVENT:
4625 retval = sctp_setsockopt_event(sk, kopt, optlen);
4626 break;
4627 case SCTP_ASCONF_SUPPORTED:
4628 retval = sctp_setsockopt_asconf_supported(sk, kopt, optlen);
4629 break;
4630 case SCTP_AUTH_SUPPORTED:
4631 retval = sctp_setsockopt_auth_supported(sk, kopt, optlen);
4632 break;
4633 case SCTP_ECN_SUPPORTED:
4634 retval = sctp_setsockopt_ecn_supported(sk, kopt, optlen);
4635 break;
4636 case SCTP_EXPOSE_POTENTIALLY_FAILED_STATE:
4637 retval = sctp_setsockopt_pf_expose(sk, kopt, optlen);
4638 break;
4639 default:
4640 retval = -ENOPROTOOPT;
4641 break;
4642 }
4643
4644 release_sock(sk);
4645 kfree(kopt);
4646 return retval;
4647}
4648
4649/* API 3.1.6 connect() - UDP Style Syntax
4650 *
4651 * An application may use the connect() call in the UDP model to initiate an
4652 * association without sending data.
4653 *
4654 * The syntax is:
4655 *
4656 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len);
4657 *
4658 * sd: the socket descriptor to have a new association added to.
4659 *
4660 * nam: the address structure (either struct sockaddr_in or struct
4661 * sockaddr_in6 defined in RFC2553 [7]).
4662 *
4663 * len: the size of the address.
4664 */
4665static int sctp_connect(struct sock *sk, struct sockaddr *addr,
4666 int addr_len, int flags)
4667{
4668 struct sctp_af *af;
4669 int err = -EINVAL;
4670
4671 lock_sock(sk);
4672 pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk,
4673 addr, addr_len);
4674
4675 /* Validate addr_len before calling common connect/connectx routine. */
4676 af = sctp_get_af_specific(addr->sa_family);
4677 if (af && addr_len >= af->sockaddr_len)
4678 err = __sctp_connect(sk, addr, af->sockaddr_len, flags, NULL);
4679
4680 release_sock(sk);
4681 return err;
4682}
4683
4684int sctp_inet_connect(struct socket *sock, struct sockaddr *uaddr,
4685 int addr_len, int flags)
4686{
4687 if (addr_len < sizeof(uaddr->sa_family))
4688 return -EINVAL;
4689
4690 if (uaddr->sa_family == AF_UNSPEC)
4691 return -EOPNOTSUPP;
4692
4693 return sctp_connect(sock->sk, uaddr, addr_len, flags);
4694}
4695
4696/* FIXME: Write comments. */
4697static int sctp_disconnect(struct sock *sk, int flags)
4698{
4699 return -EOPNOTSUPP; /* STUB */
4700}
4701
4702/* 4.1.4 accept() - TCP Style Syntax
4703 *
4704 * Applications use accept() call to remove an established SCTP
4705 * association from the accept queue of the endpoint. A new socket
4706 * descriptor will be returned from accept() to represent the newly
4707 * formed association.
4708 */
4709static struct sock *sctp_accept(struct sock *sk, int flags, int *err, bool kern)
4710{
4711 struct sctp_sock *sp;
4712 struct sctp_endpoint *ep;
4713 struct sock *newsk = NULL;
4714 struct sctp_association *asoc;
4715 long timeo;
4716 int error = 0;
4717
4718 lock_sock(sk);
4719
4720 sp = sctp_sk(sk);
4721 ep = sp->ep;
4722
4723 if (!sctp_style(sk, TCP)) {
4724 error = -EOPNOTSUPP;
4725 goto out;
4726 }
4727
4728 if (!sctp_sstate(sk, LISTENING)) {
4729 error = -EINVAL;
4730 goto out;
4731 }
4732
4733 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
4734
4735 error = sctp_wait_for_accept(sk, timeo);
4736 if (error)
4737 goto out;
4738
4739 /* We treat the list of associations on the endpoint as the accept
4740 * queue and pick the first association on the list.
4741 */
4742 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs);
4743
4744 newsk = sp->pf->create_accept_sk(sk, asoc, kern);
4745 if (!newsk) {
4746 error = -ENOMEM;
4747 goto out;
4748 }
4749
4750 /* Populate the fields of the newsk from the oldsk and migrate the
4751 * asoc to the newsk.
4752 */
4753 error = sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP);
4754 if (error) {
4755 sk_common_release(newsk);
4756 newsk = NULL;
4757 }
4758
4759out:
4760 release_sock(sk);
4761 *err = error;
4762 return newsk;
4763}
4764
4765/* The SCTP ioctl handler. */
4766static int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg)
4767{
4768 int rc = -ENOTCONN;
4769
4770 lock_sock(sk);
4771
4772 /*
4773 * SEQPACKET-style sockets in LISTENING state are valid, for
4774 * SCTP, so only discard TCP-style sockets in LISTENING state.
4775 */
4776 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
4777 goto out;
4778
4779 switch (cmd) {
4780 case SIOCINQ: {
4781 struct sk_buff *skb;
4782 unsigned int amount = 0;
4783
4784 skb = skb_peek(&sk->sk_receive_queue);
4785 if (skb != NULL) {
4786 /*
4787 * We will only return the amount of this packet since
4788 * that is all that will be read.
4789 */
4790 amount = skb->len;
4791 }
4792 rc = put_user(amount, (int __user *)arg);
4793 break;
4794 }
4795 default:
4796 rc = -ENOIOCTLCMD;
4797 break;
4798 }
4799out:
4800 release_sock(sk);
4801 return rc;
4802}
4803
4804/* This is the function which gets called during socket creation to
4805 * initialized the SCTP-specific portion of the sock.
4806 * The sock structure should already be zero-filled memory.
4807 */
4808static int sctp_init_sock(struct sock *sk)
4809{
4810 struct net *net = sock_net(sk);
4811 struct sctp_sock *sp;
4812
4813 pr_debug("%s: sk:%p\n", __func__, sk);
4814
4815 sp = sctp_sk(sk);
4816
4817 /* Initialize the SCTP per socket area. */
4818 switch (sk->sk_type) {
4819 case SOCK_SEQPACKET:
4820 sp->type = SCTP_SOCKET_UDP;
4821 break;
4822 case SOCK_STREAM:
4823 sp->type = SCTP_SOCKET_TCP;
4824 break;
4825 default:
4826 return -ESOCKTNOSUPPORT;
4827 }
4828
4829 sk->sk_gso_type = SKB_GSO_SCTP;
4830
4831 /* Initialize default send parameters. These parameters can be
4832 * modified with the SCTP_DEFAULT_SEND_PARAM socket option.
4833 */
4834 sp->default_stream = 0;
4835 sp->default_ppid = 0;
4836 sp->default_flags = 0;
4837 sp->default_context = 0;
4838 sp->default_timetolive = 0;
4839
4840 sp->default_rcv_context = 0;
4841 sp->max_burst = net->sctp.max_burst;
4842
4843 sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg;
4844
4845 /* Initialize default setup parameters. These parameters
4846 * can be modified with the SCTP_INITMSG socket option or
4847 * overridden by the SCTP_INIT CMSG.
4848 */
4849 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams;
4850 sp->initmsg.sinit_max_instreams = sctp_max_instreams;
4851 sp->initmsg.sinit_max_attempts = net->sctp.max_retrans_init;
4852 sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max;
4853
4854 /* Initialize default RTO related parameters. These parameters can
4855 * be modified for with the SCTP_RTOINFO socket option.
4856 */
4857 sp->rtoinfo.srto_initial = net->sctp.rto_initial;
4858 sp->rtoinfo.srto_max = net->sctp.rto_max;
4859 sp->rtoinfo.srto_min = net->sctp.rto_min;
4860
4861 /* Initialize default association related parameters. These parameters
4862 * can be modified with the SCTP_ASSOCINFO socket option.
4863 */
4864 sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association;
4865 sp->assocparams.sasoc_number_peer_destinations = 0;
4866 sp->assocparams.sasoc_peer_rwnd = 0;
4867 sp->assocparams.sasoc_local_rwnd = 0;
4868 sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life;
4869
4870 /* Initialize default event subscriptions. By default, all the
4871 * options are off.
4872 */
4873 sp->subscribe = 0;
4874
4875 /* Default Peer Address Parameters. These defaults can
4876 * be modified via SCTP_PEER_ADDR_PARAMS
4877 */
4878 sp->hbinterval = net->sctp.hb_interval;
4879 sp->pathmaxrxt = net->sctp.max_retrans_path;
4880 sp->pf_retrans = net->sctp.pf_retrans;
4881 sp->ps_retrans = net->sctp.ps_retrans;
4882 sp->pf_expose = net->sctp.pf_expose;
4883 sp->pathmtu = 0; /* allow default discovery */
4884 sp->sackdelay = net->sctp.sack_timeout;
4885 sp->sackfreq = 2;
4886 sp->param_flags = SPP_HB_ENABLE |
4887 SPP_PMTUD_ENABLE |
4888 SPP_SACKDELAY_ENABLE;
4889 sp->default_ss = SCTP_SS_DEFAULT;
4890
4891 /* If enabled no SCTP message fragmentation will be performed.
4892 * Configure through SCTP_DISABLE_FRAGMENTS socket option.
4893 */
4894 sp->disable_fragments = 0;
4895
4896 /* Enable Nagle algorithm by default. */
4897 sp->nodelay = 0;
4898
4899 sp->recvrcvinfo = 0;
4900 sp->recvnxtinfo = 0;
4901
4902 /* Enable by default. */
4903 sp->v4mapped = 1;
4904
4905 /* Auto-close idle associations after the configured
4906 * number of seconds. A value of 0 disables this
4907 * feature. Configure through the SCTP_AUTOCLOSE socket option,
4908 * for UDP-style sockets only.
4909 */
4910 sp->autoclose = 0;
4911
4912 /* User specified fragmentation limit. */
4913 sp->user_frag = 0;
4914
4915 sp->adaptation_ind = 0;
4916
4917 sp->pf = sctp_get_pf_specific(sk->sk_family);
4918
4919 /* Control variables for partial data delivery. */
4920 atomic_set(&sp->pd_mode, 0);
4921 skb_queue_head_init(&sp->pd_lobby);
4922 sp->frag_interleave = 0;
4923
4924 /* Create a per socket endpoint structure. Even if we
4925 * change the data structure relationships, this may still
4926 * be useful for storing pre-connect address information.
4927 */
4928 sp->ep = sctp_endpoint_new(sk, GFP_KERNEL);
4929 if (!sp->ep)
4930 return -ENOMEM;
4931
4932 sp->hmac = NULL;
4933
4934 sk->sk_destruct = sctp_destruct_sock;
4935
4936 SCTP_DBG_OBJCNT_INC(sock);
4937
4938 local_bh_disable();
4939 sk_sockets_allocated_inc(sk);
4940 sock_prot_inuse_add(net, sk->sk_prot, 1);
4941
4942 /* Nothing can fail after this block, otherwise
4943 * sctp_destroy_sock() will be called without addr_wq_lock held
4944 */
4945 if (net->sctp.default_auto_asconf) {
4946 spin_lock(&sock_net(sk)->sctp.addr_wq_lock);
4947 list_add_tail(&sp->auto_asconf_list,
4948 &net->sctp.auto_asconf_splist);
4949 sp->do_auto_asconf = 1;
4950 spin_unlock(&sock_net(sk)->sctp.addr_wq_lock);
4951 } else {
4952 sp->do_auto_asconf = 0;
4953 }
4954
4955 local_bh_enable();
4956
4957 return 0;
4958}
4959
4960/* Cleanup any SCTP per socket resources. Must be called with
4961 * sock_net(sk)->sctp.addr_wq_lock held if sp->do_auto_asconf is true
4962 */
4963static void sctp_destroy_sock(struct sock *sk)
4964{
4965 struct sctp_sock *sp;
4966
4967 pr_debug("%s: sk:%p\n", __func__, sk);
4968
4969 /* Release our hold on the endpoint. */
4970 sp = sctp_sk(sk);
4971 /* This could happen during socket init, thus we bail out
4972 * early, since the rest of the below is not setup either.
4973 */
4974 if (sp->ep == NULL)
4975 return;
4976
4977 if (sp->do_auto_asconf) {
4978 sp->do_auto_asconf = 0;
4979 list_del(&sp->auto_asconf_list);
4980 }
4981 sctp_endpoint_free(sp->ep);
4982 local_bh_disable();
4983 sk_sockets_allocated_dec(sk);
4984 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
4985 local_bh_enable();
4986}
4987
4988/* Triggered when there are no references on the socket anymore */
4989static void sctp_destruct_sock(struct sock *sk)
4990{
4991 struct sctp_sock *sp = sctp_sk(sk);
4992
4993 /* Free up the HMAC transform. */
4994 crypto_free_shash(sp->hmac);
4995
4996 inet_sock_destruct(sk);
4997}
4998
4999/* API 4.1.7 shutdown() - TCP Style Syntax
5000 * int shutdown(int socket, int how);
5001 *
5002 * sd - the socket descriptor of the association to be closed.
5003 * how - Specifies the type of shutdown. The values are
5004 * as follows:
5005 * SHUT_RD
5006 * Disables further receive operations. No SCTP
5007 * protocol action is taken.
5008 * SHUT_WR
5009 * Disables further send operations, and initiates
5010 * the SCTP shutdown sequence.
5011 * SHUT_RDWR
5012 * Disables further send and receive operations
5013 * and initiates the SCTP shutdown sequence.
5014 */
5015static void sctp_shutdown(struct sock *sk, int how)
5016{
5017 struct net *net = sock_net(sk);
5018 struct sctp_endpoint *ep;
5019
5020 if (!sctp_style(sk, TCP))
5021 return;
5022
5023 ep = sctp_sk(sk)->ep;
5024 if (how & SEND_SHUTDOWN && !list_empty(&ep->asocs)) {
5025 struct sctp_association *asoc;
5026
5027 inet_sk_set_state(sk, SCTP_SS_CLOSING);
5028 asoc = list_entry(ep->asocs.next,
5029 struct sctp_association, asocs);
5030 sctp_primitive_SHUTDOWN(net, asoc, NULL);
5031 }
5032}
5033
5034int sctp_get_sctp_info(struct sock *sk, struct sctp_association *asoc,
5035 struct sctp_info *info)
5036{
5037 struct sctp_transport *prim;
5038 struct list_head *pos;
5039 int mask;
5040
5041 memset(info, 0, sizeof(*info));
5042 if (!asoc) {
5043 struct sctp_sock *sp = sctp_sk(sk);
5044
5045 info->sctpi_s_autoclose = sp->autoclose;
5046 info->sctpi_s_adaptation_ind = sp->adaptation_ind;
5047 info->sctpi_s_pd_point = sp->pd_point;
5048 info->sctpi_s_nodelay = sp->nodelay;
5049 info->sctpi_s_disable_fragments = sp->disable_fragments;
5050 info->sctpi_s_v4mapped = sp->v4mapped;
5051 info->sctpi_s_frag_interleave = sp->frag_interleave;
5052 info->sctpi_s_type = sp->type;
5053
5054 return 0;
5055 }
5056
5057 info->sctpi_tag = asoc->c.my_vtag;
5058 info->sctpi_state = asoc->state;
5059 info->sctpi_rwnd = asoc->a_rwnd;
5060 info->sctpi_unackdata = asoc->unack_data;
5061 info->sctpi_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
5062 info->sctpi_instrms = asoc->stream.incnt;
5063 info->sctpi_outstrms = asoc->stream.outcnt;
5064 list_for_each(pos, &asoc->base.inqueue.in_chunk_list)
5065 info->sctpi_inqueue++;
5066 list_for_each(pos, &asoc->outqueue.out_chunk_list)
5067 info->sctpi_outqueue++;
5068 info->sctpi_overall_error = asoc->overall_error_count;
5069 info->sctpi_max_burst = asoc->max_burst;
5070 info->sctpi_maxseg = asoc->frag_point;
5071 info->sctpi_peer_rwnd = asoc->peer.rwnd;
5072 info->sctpi_peer_tag = asoc->c.peer_vtag;
5073
5074 mask = asoc->peer.ecn_capable << 1;
5075 mask = (mask | asoc->peer.ipv4_address) << 1;
5076 mask = (mask | asoc->peer.ipv6_address) << 1;
5077 mask = (mask | asoc->peer.hostname_address) << 1;
5078 mask = (mask | asoc->peer.asconf_capable) << 1;
5079 mask = (mask | asoc->peer.prsctp_capable) << 1;
5080 mask = (mask | asoc->peer.auth_capable);
5081 info->sctpi_peer_capable = mask;
5082 mask = asoc->peer.sack_needed << 1;
5083 mask = (mask | asoc->peer.sack_generation) << 1;
5084 mask = (mask | asoc->peer.zero_window_announced);
5085 info->sctpi_peer_sack = mask;
5086
5087 info->sctpi_isacks = asoc->stats.isacks;
5088 info->sctpi_osacks = asoc->stats.osacks;
5089 info->sctpi_opackets = asoc->stats.opackets;
5090 info->sctpi_ipackets = asoc->stats.ipackets;
5091 info->sctpi_rtxchunks = asoc->stats.rtxchunks;
5092 info->sctpi_outofseqtsns = asoc->stats.outofseqtsns;
5093 info->sctpi_idupchunks = asoc->stats.idupchunks;
5094 info->sctpi_gapcnt = asoc->stats.gapcnt;
5095 info->sctpi_ouodchunks = asoc->stats.ouodchunks;
5096 info->sctpi_iuodchunks = asoc->stats.iuodchunks;
5097 info->sctpi_oodchunks = asoc->stats.oodchunks;
5098 info->sctpi_iodchunks = asoc->stats.iodchunks;
5099 info->sctpi_octrlchunks = asoc->stats.octrlchunks;
5100 info->sctpi_ictrlchunks = asoc->stats.ictrlchunks;
5101
5102 prim = asoc->peer.primary_path;
5103 memcpy(&info->sctpi_p_address, &prim->ipaddr, sizeof(prim->ipaddr));
5104 info->sctpi_p_state = prim->state;
5105 info->sctpi_p_cwnd = prim->cwnd;
5106 info->sctpi_p_srtt = prim->srtt;
5107 info->sctpi_p_rto = jiffies_to_msecs(prim->rto);
5108 info->sctpi_p_hbinterval = prim->hbinterval;
5109 info->sctpi_p_pathmaxrxt = prim->pathmaxrxt;
5110 info->sctpi_p_sackdelay = jiffies_to_msecs(prim->sackdelay);
5111 info->sctpi_p_ssthresh = prim->ssthresh;
5112 info->sctpi_p_partial_bytes_acked = prim->partial_bytes_acked;
5113 info->sctpi_p_flight_size = prim->flight_size;
5114 info->sctpi_p_error = prim->error_count;
5115
5116 return 0;
5117}
5118EXPORT_SYMBOL_GPL(sctp_get_sctp_info);
5119
5120/* use callback to avoid exporting the core structure */
5121void sctp_transport_walk_start(struct rhashtable_iter *iter) __acquires(RCU)
5122{
5123 rhltable_walk_enter(&sctp_transport_hashtable, iter);
5124
5125 rhashtable_walk_start(iter);
5126}
5127
5128void sctp_transport_walk_stop(struct rhashtable_iter *iter) __releases(RCU)
5129{
5130 rhashtable_walk_stop(iter);
5131 rhashtable_walk_exit(iter);
5132}
5133
5134struct sctp_transport *sctp_transport_get_next(struct net *net,
5135 struct rhashtable_iter *iter)
5136{
5137 struct sctp_transport *t;
5138
5139 t = rhashtable_walk_next(iter);
5140 for (; t; t = rhashtable_walk_next(iter)) {
5141 if (IS_ERR(t)) {
5142 if (PTR_ERR(t) == -EAGAIN)
5143 continue;
5144 break;
5145 }
5146
5147 if (!sctp_transport_hold(t))
5148 continue;
5149
5150 if (net_eq(t->asoc->base.net, net) &&
5151 t->asoc->peer.primary_path == t)
5152 break;
5153
5154 sctp_transport_put(t);
5155 }
5156
5157 return t;
5158}
5159
5160struct sctp_transport *sctp_transport_get_idx(struct net *net,
5161 struct rhashtable_iter *iter,
5162 int pos)
5163{
5164 struct sctp_transport *t;
5165
5166 if (!pos)
5167 return SEQ_START_TOKEN;
5168
5169 while ((t = sctp_transport_get_next(net, iter)) && !IS_ERR(t)) {
5170 if (!--pos)
5171 break;
5172 sctp_transport_put(t);
5173 }
5174
5175 return t;
5176}
5177
5178int sctp_for_each_endpoint(int (*cb)(struct sctp_endpoint *, void *),
5179 void *p) {
5180 int err = 0;
5181 int hash = 0;
5182 struct sctp_ep_common *epb;
5183 struct sctp_hashbucket *head;
5184
5185 for (head = sctp_ep_hashtable; hash < sctp_ep_hashsize;
5186 hash++, head++) {
5187 read_lock_bh(&head->lock);
5188 sctp_for_each_hentry(epb, &head->chain) {
5189 err = cb(sctp_ep(epb), p);
5190 if (err)
5191 break;
5192 }
5193 read_unlock_bh(&head->lock);
5194 }
5195
5196 return err;
5197}
5198EXPORT_SYMBOL_GPL(sctp_for_each_endpoint);
5199
5200int sctp_transport_lookup_process(int (*cb)(struct sctp_transport *, void *),
5201 struct net *net,
5202 const union sctp_addr *laddr,
5203 const union sctp_addr *paddr, void *p)
5204{
5205 struct sctp_transport *transport;
5206 int err;
5207
5208 rcu_read_lock();
5209 transport = sctp_addrs_lookup_transport(net, laddr, paddr);
5210 rcu_read_unlock();
5211 if (!transport)
5212 return -ENOENT;
5213
5214 err = cb(transport, p);
5215 sctp_transport_put(transport);
5216
5217 return err;
5218}
5219EXPORT_SYMBOL_GPL(sctp_transport_lookup_process);
5220
5221int sctp_for_each_transport(int (*cb)(struct sctp_transport *, void *),
5222 int (*cb_done)(struct sctp_transport *, void *),
5223 struct net *net, int *pos, void *p) {
5224 struct rhashtable_iter hti;
5225 struct sctp_transport *tsp;
5226 int ret;
5227
5228again:
5229 ret = 0;
5230 sctp_transport_walk_start(&hti);
5231
5232 tsp = sctp_transport_get_idx(net, &hti, *pos + 1);
5233 for (; !IS_ERR_OR_NULL(tsp); tsp = sctp_transport_get_next(net, &hti)) {
5234 ret = cb(tsp, p);
5235 if (ret)
5236 break;
5237 (*pos)++;
5238 sctp_transport_put(tsp);
5239 }
5240 sctp_transport_walk_stop(&hti);
5241
5242 if (ret) {
5243 if (cb_done && !cb_done(tsp, p)) {
5244 (*pos)++;
5245 sctp_transport_put(tsp);
5246 goto again;
5247 }
5248 sctp_transport_put(tsp);
5249 }
5250
5251 return ret;
5252}
5253EXPORT_SYMBOL_GPL(sctp_for_each_transport);
5254
5255/* 7.2.1 Association Status (SCTP_STATUS)
5256
5257 * Applications can retrieve current status information about an
5258 * association, including association state, peer receiver window size,
5259 * number of unacked data chunks, and number of data chunks pending
5260 * receipt. This information is read-only.
5261 */
5262static int sctp_getsockopt_sctp_status(struct sock *sk, int len,
5263 char __user *optval,
5264 int __user *optlen)
5265{
5266 struct sctp_status status;
5267 struct sctp_association *asoc = NULL;
5268 struct sctp_transport *transport;
5269 sctp_assoc_t associd;
5270 int retval = 0;
5271
5272 if (len < sizeof(status)) {
5273 retval = -EINVAL;
5274 goto out;
5275 }
5276
5277 len = sizeof(status);
5278 if (copy_from_user(&status, optval, len)) {
5279 retval = -EFAULT;
5280 goto out;
5281 }
5282
5283 associd = status.sstat_assoc_id;
5284 asoc = sctp_id2assoc(sk, associd);
5285 if (!asoc) {
5286 retval = -EINVAL;
5287 goto out;
5288 }
5289
5290 transport = asoc->peer.primary_path;
5291
5292 status.sstat_assoc_id = sctp_assoc2id(asoc);
5293 status.sstat_state = sctp_assoc_to_state(asoc);
5294 status.sstat_rwnd = asoc->peer.rwnd;
5295 status.sstat_unackdata = asoc->unack_data;
5296
5297 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
5298 status.sstat_instrms = asoc->stream.incnt;
5299 status.sstat_outstrms = asoc->stream.outcnt;
5300 status.sstat_fragmentation_point = asoc->frag_point;
5301 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
5302 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr,
5303 transport->af_specific->sockaddr_len);
5304 /* Map ipv4 address into v4-mapped-on-v6 address. */
5305 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk),
5306 (union sctp_addr *)&status.sstat_primary.spinfo_address);
5307 status.sstat_primary.spinfo_state = transport->state;
5308 status.sstat_primary.spinfo_cwnd = transport->cwnd;
5309 status.sstat_primary.spinfo_srtt = transport->srtt;
5310 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto);
5311 status.sstat_primary.spinfo_mtu = transport->pathmtu;
5312
5313 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN)
5314 status.sstat_primary.spinfo_state = SCTP_ACTIVE;
5315
5316 if (put_user(len, optlen)) {
5317 retval = -EFAULT;
5318 goto out;
5319 }
5320
5321 pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n",
5322 __func__, len, status.sstat_state, status.sstat_rwnd,
5323 status.sstat_assoc_id);
5324
5325 if (copy_to_user(optval, &status, len)) {
5326 retval = -EFAULT;
5327 goto out;
5328 }
5329
5330out:
5331 return retval;
5332}
5333
5334
5335/* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO)
5336 *
5337 * Applications can retrieve information about a specific peer address
5338 * of an association, including its reachability state, congestion
5339 * window, and retransmission timer values. This information is
5340 * read-only.
5341 */
5342static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len,
5343 char __user *optval,
5344 int __user *optlen)
5345{
5346 struct sctp_paddrinfo pinfo;
5347 struct sctp_transport *transport;
5348 int retval = 0;
5349
5350 if (len < sizeof(pinfo)) {
5351 retval = -EINVAL;
5352 goto out;
5353 }
5354
5355 len = sizeof(pinfo);
5356 if (copy_from_user(&pinfo, optval, len)) {
5357 retval = -EFAULT;
5358 goto out;
5359 }
5360
5361 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address,
5362 pinfo.spinfo_assoc_id);
5363 if (!transport) {
5364 retval = -EINVAL;
5365 goto out;
5366 }
5367
5368 if (transport->state == SCTP_PF &&
5369 transport->asoc->pf_expose == SCTP_PF_EXPOSE_DISABLE) {
5370 retval = -EACCES;
5371 goto out;
5372 }
5373
5374 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
5375 pinfo.spinfo_state = transport->state;
5376 pinfo.spinfo_cwnd = transport->cwnd;
5377 pinfo.spinfo_srtt = transport->srtt;
5378 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto);
5379 pinfo.spinfo_mtu = transport->pathmtu;
5380
5381 if (pinfo.spinfo_state == SCTP_UNKNOWN)
5382 pinfo.spinfo_state = SCTP_ACTIVE;
5383
5384 if (put_user(len, optlen)) {
5385 retval = -EFAULT;
5386 goto out;
5387 }
5388
5389 if (copy_to_user(optval, &pinfo, len)) {
5390 retval = -EFAULT;
5391 goto out;
5392 }
5393
5394out:
5395 return retval;
5396}
5397
5398/* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
5399 *
5400 * This option is a on/off flag. If enabled no SCTP message
5401 * fragmentation will be performed. Instead if a message being sent
5402 * exceeds the current PMTU size, the message will NOT be sent and
5403 * instead a error will be indicated to the user.
5404 */
5405static int sctp_getsockopt_disable_fragments(struct sock *sk, int len,
5406 char __user *optval, int __user *optlen)
5407{
5408 int val;
5409
5410 if (len < sizeof(int))
5411 return -EINVAL;
5412
5413 len = sizeof(int);
5414 val = (sctp_sk(sk)->disable_fragments == 1);
5415 if (put_user(len, optlen))
5416 return -EFAULT;
5417 if (copy_to_user(optval, &val, len))
5418 return -EFAULT;
5419 return 0;
5420}
5421
5422/* 7.1.15 Set notification and ancillary events (SCTP_EVENTS)
5423 *
5424 * This socket option is used to specify various notifications and
5425 * ancillary data the user wishes to receive.
5426 */
5427static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval,
5428 int __user *optlen)
5429{
5430 struct sctp_event_subscribe subscribe;
5431 __u8 *sn_type = (__u8 *)&subscribe;
5432 int i;
5433
5434 if (len == 0)
5435 return -EINVAL;
5436 if (len > sizeof(struct sctp_event_subscribe))
5437 len = sizeof(struct sctp_event_subscribe);
5438 if (put_user(len, optlen))
5439 return -EFAULT;
5440
5441 for (i = 0; i < len; i++)
5442 sn_type[i] = sctp_ulpevent_type_enabled(sctp_sk(sk)->subscribe,
5443 SCTP_SN_TYPE_BASE + i);
5444
5445 if (copy_to_user(optval, &subscribe, len))
5446 return -EFAULT;
5447
5448 return 0;
5449}
5450
5451/* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
5452 *
5453 * This socket option is applicable to the UDP-style socket only. When
5454 * set it will cause associations that are idle for more than the
5455 * specified number of seconds to automatically close. An association
5456 * being idle is defined an association that has NOT sent or received
5457 * user data. The special value of '0' indicates that no automatic
5458 * close of any associations should be performed. The option expects an
5459 * integer defining the number of seconds of idle time before an
5460 * association is closed.
5461 */
5462static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen)
5463{
5464 /* Applicable to UDP-style socket only */
5465 if (sctp_style(sk, TCP))
5466 return -EOPNOTSUPP;
5467 if (len < sizeof(int))
5468 return -EINVAL;
5469 len = sizeof(int);
5470 if (put_user(len, optlen))
5471 return -EFAULT;
5472 if (put_user(sctp_sk(sk)->autoclose, (int __user *)optval))
5473 return -EFAULT;
5474 return 0;
5475}
5476
5477/* Helper routine to branch off an association to a new socket. */
5478int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp)
5479{
5480 struct sctp_association *asoc = sctp_id2assoc(sk, id);
5481 struct sctp_sock *sp = sctp_sk(sk);
5482 struct socket *sock;
5483 int err = 0;
5484
5485 /* Do not peel off from one netns to another one. */
5486 if (!net_eq(current->nsproxy->net_ns, sock_net(sk)))
5487 return -EINVAL;
5488
5489 if (!asoc)
5490 return -EINVAL;
5491
5492 /* An association cannot be branched off from an already peeled-off
5493 * socket, nor is this supported for tcp style sockets.
5494 */
5495 if (!sctp_style(sk, UDP))
5496 return -EINVAL;
5497
5498 /* Create a new socket. */
5499 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock);
5500 if (err < 0)
5501 return err;
5502
5503 sctp_copy_sock(sock->sk, sk, asoc);
5504
5505 /* Make peeled-off sockets more like 1-1 accepted sockets.
5506 * Set the daddr and initialize id to something more random and also
5507 * copy over any ip options.
5508 */
5509 sp->pf->to_sk_daddr(&asoc->peer.primary_addr, sk);
5510 sp->pf->copy_ip_options(sk, sock->sk);
5511
5512 /* Populate the fields of the newsk from the oldsk and migrate the
5513 * asoc to the newsk.
5514 */
5515 err = sctp_sock_migrate(sk, sock->sk, asoc,
5516 SCTP_SOCKET_UDP_HIGH_BANDWIDTH);
5517 if (err) {
5518 sock_release(sock);
5519 sock = NULL;
5520 }
5521
5522 *sockp = sock;
5523
5524 return err;
5525}
5526EXPORT_SYMBOL(sctp_do_peeloff);
5527
5528static int sctp_getsockopt_peeloff_common(struct sock *sk, sctp_peeloff_arg_t *peeloff,
5529 struct file **newfile, unsigned flags)
5530{
5531 struct socket *newsock;
5532 int retval;
5533
5534 retval = sctp_do_peeloff(sk, peeloff->associd, &newsock);
5535 if (retval < 0)
5536 goto out;
5537
5538 /* Map the socket to an unused fd that can be returned to the user. */
5539 retval = get_unused_fd_flags(flags & SOCK_CLOEXEC);
5540 if (retval < 0) {
5541 sock_release(newsock);
5542 goto out;
5543 }
5544
5545 *newfile = sock_alloc_file(newsock, 0, NULL);
5546 if (IS_ERR(*newfile)) {
5547 put_unused_fd(retval);
5548 retval = PTR_ERR(*newfile);
5549 *newfile = NULL;
5550 return retval;
5551 }
5552
5553 pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk,
5554 retval);
5555
5556 peeloff->sd = retval;
5557
5558 if (flags & SOCK_NONBLOCK)
5559 (*newfile)->f_flags |= O_NONBLOCK;
5560out:
5561 return retval;
5562}
5563
5564static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen)
5565{
5566 sctp_peeloff_arg_t peeloff;
5567 struct file *newfile = NULL;
5568 int retval = 0;
5569
5570 if (len < sizeof(sctp_peeloff_arg_t))
5571 return -EINVAL;
5572 len = sizeof(sctp_peeloff_arg_t);
5573 if (copy_from_user(&peeloff, optval, len))
5574 return -EFAULT;
5575
5576 retval = sctp_getsockopt_peeloff_common(sk, &peeloff, &newfile, 0);
5577 if (retval < 0)
5578 goto out;
5579
5580 /* Return the fd mapped to the new socket. */
5581 if (put_user(len, optlen)) {
5582 fput(newfile);
5583 put_unused_fd(retval);
5584 return -EFAULT;
5585 }
5586
5587 if (copy_to_user(optval, &peeloff, len)) {
5588 fput(newfile);
5589 put_unused_fd(retval);
5590 return -EFAULT;
5591 }
5592 fd_install(retval, newfile);
5593out:
5594 return retval;
5595}
5596
5597static int sctp_getsockopt_peeloff_flags(struct sock *sk, int len,
5598 char __user *optval, int __user *optlen)
5599{
5600 sctp_peeloff_flags_arg_t peeloff;
5601 struct file *newfile = NULL;
5602 int retval = 0;
5603
5604 if (len < sizeof(sctp_peeloff_flags_arg_t))
5605 return -EINVAL;
5606 len = sizeof(sctp_peeloff_flags_arg_t);
5607 if (copy_from_user(&peeloff, optval, len))
5608 return -EFAULT;
5609
5610 retval = sctp_getsockopt_peeloff_common(sk, &peeloff.p_arg,
5611 &newfile, peeloff.flags);
5612 if (retval < 0)
5613 goto out;
5614
5615 /* Return the fd mapped to the new socket. */
5616 if (put_user(len, optlen)) {
5617 fput(newfile);
5618 put_unused_fd(retval);
5619 return -EFAULT;
5620 }
5621
5622 if (copy_to_user(optval, &peeloff, len)) {
5623 fput(newfile);
5624 put_unused_fd(retval);
5625 return -EFAULT;
5626 }
5627 fd_install(retval, newfile);
5628out:
5629 return retval;
5630}
5631
5632/* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
5633 *
5634 * Applications can enable or disable heartbeats for any peer address of
5635 * an association, modify an address's heartbeat interval, force a
5636 * heartbeat to be sent immediately, and adjust the address's maximum
5637 * number of retransmissions sent before an address is considered
5638 * unreachable. The following structure is used to access and modify an
5639 * address's parameters:
5640 *
5641 * struct sctp_paddrparams {
5642 * sctp_assoc_t spp_assoc_id;
5643 * struct sockaddr_storage spp_address;
5644 * uint32_t spp_hbinterval;
5645 * uint16_t spp_pathmaxrxt;
5646 * uint32_t spp_pathmtu;
5647 * uint32_t spp_sackdelay;
5648 * uint32_t spp_flags;
5649 * };
5650 *
5651 * spp_assoc_id - (one-to-many style socket) This is filled in the
5652 * application, and identifies the association for
5653 * this query.
5654 * spp_address - This specifies which address is of interest.
5655 * spp_hbinterval - This contains the value of the heartbeat interval,
5656 * in milliseconds. If a value of zero
5657 * is present in this field then no changes are to
5658 * be made to this parameter.
5659 * spp_pathmaxrxt - This contains the maximum number of
5660 * retransmissions before this address shall be
5661 * considered unreachable. If a value of zero
5662 * is present in this field then no changes are to
5663 * be made to this parameter.
5664 * spp_pathmtu - When Path MTU discovery is disabled the value
5665 * specified here will be the "fixed" path mtu.
5666 * Note that if the spp_address field is empty
5667 * then all associations on this address will
5668 * have this fixed path mtu set upon them.
5669 *
5670 * spp_sackdelay - When delayed sack is enabled, this value specifies
5671 * the number of milliseconds that sacks will be delayed
5672 * for. This value will apply to all addresses of an
5673 * association if the spp_address field is empty. Note
5674 * also, that if delayed sack is enabled and this
5675 * value is set to 0, no change is made to the last
5676 * recorded delayed sack timer value.
5677 *
5678 * spp_flags - These flags are used to control various features
5679 * on an association. The flag field may contain
5680 * zero or more of the following options.
5681 *
5682 * SPP_HB_ENABLE - Enable heartbeats on the
5683 * specified address. Note that if the address
5684 * field is empty all addresses for the association
5685 * have heartbeats enabled upon them.
5686 *
5687 * SPP_HB_DISABLE - Disable heartbeats on the
5688 * speicifed address. Note that if the address
5689 * field is empty all addresses for the association
5690 * will have their heartbeats disabled. Note also
5691 * that SPP_HB_ENABLE and SPP_HB_DISABLE are
5692 * mutually exclusive, only one of these two should
5693 * be specified. Enabling both fields will have
5694 * undetermined results.
5695 *
5696 * SPP_HB_DEMAND - Request a user initiated heartbeat
5697 * to be made immediately.
5698 *
5699 * SPP_PMTUD_ENABLE - This field will enable PMTU
5700 * discovery upon the specified address. Note that
5701 * if the address feild is empty then all addresses
5702 * on the association are effected.
5703 *
5704 * SPP_PMTUD_DISABLE - This field will disable PMTU
5705 * discovery upon the specified address. Note that
5706 * if the address feild is empty then all addresses
5707 * on the association are effected. Not also that
5708 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
5709 * exclusive. Enabling both will have undetermined
5710 * results.
5711 *
5712 * SPP_SACKDELAY_ENABLE - Setting this flag turns
5713 * on delayed sack. The time specified in spp_sackdelay
5714 * is used to specify the sack delay for this address. Note
5715 * that if spp_address is empty then all addresses will
5716 * enable delayed sack and take on the sack delay
5717 * value specified in spp_sackdelay.
5718 * SPP_SACKDELAY_DISABLE - Setting this flag turns
5719 * off delayed sack. If the spp_address field is blank then
5720 * delayed sack is disabled for the entire association. Note
5721 * also that this field is mutually exclusive to
5722 * SPP_SACKDELAY_ENABLE, setting both will have undefined
5723 * results.
5724 *
5725 * SPP_IPV6_FLOWLABEL: Setting this flag enables the
5726 * setting of the IPV6 flow label value. The value is
5727 * contained in the spp_ipv6_flowlabel field.
5728 * Upon retrieval, this flag will be set to indicate that
5729 * the spp_ipv6_flowlabel field has a valid value returned.
5730 * If a specific destination address is set (in the
5731 * spp_address field), then the value returned is that of
5732 * the address. If just an association is specified (and
5733 * no address), then the association's default flow label
5734 * is returned. If neither an association nor a destination
5735 * is specified, then the socket's default flow label is
5736 * returned. For non-IPv6 sockets, this flag will be left
5737 * cleared.
5738 *
5739 * SPP_DSCP: Setting this flag enables the setting of the
5740 * Differentiated Services Code Point (DSCP) value
5741 * associated with either the association or a specific
5742 * address. The value is obtained in the spp_dscp field.
5743 * Upon retrieval, this flag will be set to indicate that
5744 * the spp_dscp field has a valid value returned. If a
5745 * specific destination address is set when called (in the
5746 * spp_address field), then that specific destination
5747 * address's DSCP value is returned. If just an association
5748 * is specified, then the association's default DSCP is
5749 * returned. If neither an association nor a destination is
5750 * specified, then the socket's default DSCP is returned.
5751 *
5752 * spp_ipv6_flowlabel
5753 * - This field is used in conjunction with the
5754 * SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label.
5755 * The 20 least significant bits are used for the flow
5756 * label. This setting has precedence over any IPv6-layer
5757 * setting.
5758 *
5759 * spp_dscp - This field is used in conjunction with the SPP_DSCP flag
5760 * and contains the DSCP. The 6 most significant bits are
5761 * used for the DSCP. This setting has precedence over any
5762 * IPv4- or IPv6- layer setting.
5763 */
5764static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len,
5765 char __user *optval, int __user *optlen)
5766{
5767 struct sctp_paddrparams params;
5768 struct sctp_transport *trans = NULL;
5769 struct sctp_association *asoc = NULL;
5770 struct sctp_sock *sp = sctp_sk(sk);
5771
5772 if (len >= sizeof(params))
5773 len = sizeof(params);
5774 else if (len >= ALIGN(offsetof(struct sctp_paddrparams,
5775 spp_ipv6_flowlabel), 4))
5776 len = ALIGN(offsetof(struct sctp_paddrparams,
5777 spp_ipv6_flowlabel), 4);
5778 else
5779 return -EINVAL;
5780
5781 if (copy_from_user(¶ms, optval, len))
5782 return -EFAULT;
5783
5784 /* If an address other than INADDR_ANY is specified, and
5785 * no transport is found, then the request is invalid.
5786 */
5787 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spp_address)) {
5788 trans = sctp_addr_id2transport(sk, ¶ms.spp_address,
5789 params.spp_assoc_id);
5790 if (!trans) {
5791 pr_debug("%s: failed no transport\n", __func__);
5792 return -EINVAL;
5793 }
5794 }
5795
5796 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the
5797 * socket is a one to many style socket, and an association
5798 * was not found, then the id was invalid.
5799 */
5800 asoc = sctp_id2assoc(sk, params.spp_assoc_id);
5801 if (!asoc && params.spp_assoc_id != SCTP_FUTURE_ASSOC &&
5802 sctp_style(sk, UDP)) {
5803 pr_debug("%s: failed no association\n", __func__);
5804 return -EINVAL;
5805 }
5806
5807 if (trans) {
5808 /* Fetch transport values. */
5809 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval);
5810 params.spp_pathmtu = trans->pathmtu;
5811 params.spp_pathmaxrxt = trans->pathmaxrxt;
5812 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay);
5813
5814 /*draft-11 doesn't say what to return in spp_flags*/
5815 params.spp_flags = trans->param_flags;
5816 if (trans->flowlabel & SCTP_FLOWLABEL_SET_MASK) {
5817 params.spp_ipv6_flowlabel = trans->flowlabel &
5818 SCTP_FLOWLABEL_VAL_MASK;
5819 params.spp_flags |= SPP_IPV6_FLOWLABEL;
5820 }
5821 if (trans->dscp & SCTP_DSCP_SET_MASK) {
5822 params.spp_dscp = trans->dscp & SCTP_DSCP_VAL_MASK;
5823 params.spp_flags |= SPP_DSCP;
5824 }
5825 } else if (asoc) {
5826 /* Fetch association values. */
5827 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval);
5828 params.spp_pathmtu = asoc->pathmtu;
5829 params.spp_pathmaxrxt = asoc->pathmaxrxt;
5830 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay);
5831
5832 /*draft-11 doesn't say what to return in spp_flags*/
5833 params.spp_flags = asoc->param_flags;
5834 if (asoc->flowlabel & SCTP_FLOWLABEL_SET_MASK) {
5835 params.spp_ipv6_flowlabel = asoc->flowlabel &
5836 SCTP_FLOWLABEL_VAL_MASK;
5837 params.spp_flags |= SPP_IPV6_FLOWLABEL;
5838 }
5839 if (asoc->dscp & SCTP_DSCP_SET_MASK) {
5840 params.spp_dscp = asoc->dscp & SCTP_DSCP_VAL_MASK;
5841 params.spp_flags |= SPP_DSCP;
5842 }
5843 } else {
5844 /* Fetch socket values. */
5845 params.spp_hbinterval = sp->hbinterval;
5846 params.spp_pathmtu = sp->pathmtu;
5847 params.spp_sackdelay = sp->sackdelay;
5848 params.spp_pathmaxrxt = sp->pathmaxrxt;
5849
5850 /*draft-11 doesn't say what to return in spp_flags*/
5851 params.spp_flags = sp->param_flags;
5852 if (sp->flowlabel & SCTP_FLOWLABEL_SET_MASK) {
5853 params.spp_ipv6_flowlabel = sp->flowlabel &
5854 SCTP_FLOWLABEL_VAL_MASK;
5855 params.spp_flags |= SPP_IPV6_FLOWLABEL;
5856 }
5857 if (sp->dscp & SCTP_DSCP_SET_MASK) {
5858 params.spp_dscp = sp->dscp & SCTP_DSCP_VAL_MASK;
5859 params.spp_flags |= SPP_DSCP;
5860 }
5861 }
5862
5863 if (copy_to_user(optval, ¶ms, len))
5864 return -EFAULT;
5865
5866 if (put_user(len, optlen))
5867 return -EFAULT;
5868
5869 return 0;
5870}
5871
5872/*
5873 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK)
5874 *
5875 * This option will effect the way delayed acks are performed. This
5876 * option allows you to get or set the delayed ack time, in
5877 * milliseconds. It also allows changing the delayed ack frequency.
5878 * Changing the frequency to 1 disables the delayed sack algorithm. If
5879 * the assoc_id is 0, then this sets or gets the endpoints default
5880 * values. If the assoc_id field is non-zero, then the set or get
5881 * effects the specified association for the one to many model (the
5882 * assoc_id field is ignored by the one to one model). Note that if
5883 * sack_delay or sack_freq are 0 when setting this option, then the
5884 * current values will remain unchanged.
5885 *
5886 * struct sctp_sack_info {
5887 * sctp_assoc_t sack_assoc_id;
5888 * uint32_t sack_delay;
5889 * uint32_t sack_freq;
5890 * };
5891 *
5892 * sack_assoc_id - This parameter, indicates which association the user
5893 * is performing an action upon. Note that if this field's value is
5894 * zero then the endpoints default value is changed (effecting future
5895 * associations only).
5896 *
5897 * sack_delay - This parameter contains the number of milliseconds that
5898 * the user is requesting the delayed ACK timer be set to. Note that
5899 * this value is defined in the standard to be between 200 and 500
5900 * milliseconds.
5901 *
5902 * sack_freq - This parameter contains the number of packets that must
5903 * be received before a sack is sent without waiting for the delay
5904 * timer to expire. The default value for this is 2, setting this
5905 * value to 1 will disable the delayed sack algorithm.
5906 */
5907static int sctp_getsockopt_delayed_ack(struct sock *sk, int len,
5908 char __user *optval,
5909 int __user *optlen)
5910{
5911 struct sctp_sack_info params;
5912 struct sctp_association *asoc = NULL;
5913 struct sctp_sock *sp = sctp_sk(sk);
5914
5915 if (len >= sizeof(struct sctp_sack_info)) {
5916 len = sizeof(struct sctp_sack_info);
5917
5918 if (copy_from_user(¶ms, optval, len))
5919 return -EFAULT;
5920 } else if (len == sizeof(struct sctp_assoc_value)) {
5921 pr_warn_ratelimited(DEPRECATED
5922 "%s (pid %d) "
5923 "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
5924 "Use struct sctp_sack_info instead\n",
5925 current->comm, task_pid_nr(current));
5926 if (copy_from_user(¶ms, optval, len))
5927 return -EFAULT;
5928 } else
5929 return -EINVAL;
5930
5931 /* Get association, if sack_assoc_id != SCTP_FUTURE_ASSOC and the
5932 * socket is a one to many style socket, and an association
5933 * was not found, then the id was invalid.
5934 */
5935 asoc = sctp_id2assoc(sk, params.sack_assoc_id);
5936 if (!asoc && params.sack_assoc_id != SCTP_FUTURE_ASSOC &&
5937 sctp_style(sk, UDP))
5938 return -EINVAL;
5939
5940 if (asoc) {
5941 /* Fetch association values. */
5942 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) {
5943 params.sack_delay = jiffies_to_msecs(asoc->sackdelay);
5944 params.sack_freq = asoc->sackfreq;
5945
5946 } else {
5947 params.sack_delay = 0;
5948 params.sack_freq = 1;
5949 }
5950 } else {
5951 /* Fetch socket values. */
5952 if (sp->param_flags & SPP_SACKDELAY_ENABLE) {
5953 params.sack_delay = sp->sackdelay;
5954 params.sack_freq = sp->sackfreq;
5955 } else {
5956 params.sack_delay = 0;
5957 params.sack_freq = 1;
5958 }
5959 }
5960
5961 if (copy_to_user(optval, ¶ms, len))
5962 return -EFAULT;
5963
5964 if (put_user(len, optlen))
5965 return -EFAULT;
5966
5967 return 0;
5968}
5969
5970/* 7.1.3 Initialization Parameters (SCTP_INITMSG)
5971 *
5972 * Applications can specify protocol parameters for the default association
5973 * initialization. The option name argument to setsockopt() and getsockopt()
5974 * is SCTP_INITMSG.
5975 *
5976 * Setting initialization parameters is effective only on an unconnected
5977 * socket (for UDP-style sockets only future associations are effected
5978 * by the change). With TCP-style sockets, this option is inherited by
5979 * sockets derived from a listener socket.
5980 */
5981static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen)
5982{
5983 if (len < sizeof(struct sctp_initmsg))
5984 return -EINVAL;
5985 len = sizeof(struct sctp_initmsg);
5986 if (put_user(len, optlen))
5987 return -EFAULT;
5988 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len))
5989 return -EFAULT;
5990 return 0;
5991}
5992
5993
5994static int sctp_getsockopt_peer_addrs(struct sock *sk, int len,
5995 char __user *optval, int __user *optlen)
5996{
5997 struct sctp_association *asoc;
5998 int cnt = 0;
5999 struct sctp_getaddrs getaddrs;
6000 struct sctp_transport *from;
6001 void __user *to;
6002 union sctp_addr temp;
6003 struct sctp_sock *sp = sctp_sk(sk);
6004 int addrlen;
6005 size_t space_left;
6006 int bytes_copied;
6007
6008 if (len < sizeof(struct sctp_getaddrs))
6009 return -EINVAL;
6010
6011 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
6012 return -EFAULT;
6013
6014 /* For UDP-style sockets, id specifies the association to query. */
6015 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
6016 if (!asoc)
6017 return -EINVAL;
6018
6019 to = optval + offsetof(struct sctp_getaddrs, addrs);
6020 space_left = len - offsetof(struct sctp_getaddrs, addrs);
6021
6022 list_for_each_entry(from, &asoc->peer.transport_addr_list,
6023 transports) {
6024 memcpy(&temp, &from->ipaddr, sizeof(temp));
6025 addrlen = sctp_get_pf_specific(sk->sk_family)
6026 ->addr_to_user(sp, &temp);
6027 if (space_left < addrlen)
6028 return -ENOMEM;
6029 if (copy_to_user(to, &temp, addrlen))
6030 return -EFAULT;
6031 to += addrlen;
6032 cnt++;
6033 space_left -= addrlen;
6034 }
6035
6036 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
6037 return -EFAULT;
6038 bytes_copied = ((char __user *)to) - optval;
6039 if (put_user(bytes_copied, optlen))
6040 return -EFAULT;
6041
6042 return 0;
6043}
6044
6045static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to,
6046 size_t space_left, int *bytes_copied)
6047{
6048 struct sctp_sockaddr_entry *addr;
6049 union sctp_addr temp;
6050 int cnt = 0;
6051 int addrlen;
6052 struct net *net = sock_net(sk);
6053
6054 rcu_read_lock();
6055 list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) {
6056 if (!addr->valid)
6057 continue;
6058
6059 if ((PF_INET == sk->sk_family) &&
6060 (AF_INET6 == addr->a.sa.sa_family))
6061 continue;
6062 if ((PF_INET6 == sk->sk_family) &&
6063 inet_v6_ipv6only(sk) &&
6064 (AF_INET == addr->a.sa.sa_family))
6065 continue;
6066 memcpy(&temp, &addr->a, sizeof(temp));
6067 if (!temp.v4.sin_port)
6068 temp.v4.sin_port = htons(port);
6069
6070 addrlen = sctp_get_pf_specific(sk->sk_family)
6071 ->addr_to_user(sctp_sk(sk), &temp);
6072
6073 if (space_left < addrlen) {
6074 cnt = -ENOMEM;
6075 break;
6076 }
6077 memcpy(to, &temp, addrlen);
6078
6079 to += addrlen;
6080 cnt++;
6081 space_left -= addrlen;
6082 *bytes_copied += addrlen;
6083 }
6084 rcu_read_unlock();
6085
6086 return cnt;
6087}
6088
6089
6090static int sctp_getsockopt_local_addrs(struct sock *sk, int len,
6091 char __user *optval, int __user *optlen)
6092{
6093 struct sctp_bind_addr *bp;
6094 struct sctp_association *asoc;
6095 int cnt = 0;
6096 struct sctp_getaddrs getaddrs;
6097 struct sctp_sockaddr_entry *addr;
6098 void __user *to;
6099 union sctp_addr temp;
6100 struct sctp_sock *sp = sctp_sk(sk);
6101 int addrlen;
6102 int err = 0;
6103 size_t space_left;
6104 int bytes_copied = 0;
6105 void *addrs;
6106 void *buf;
6107
6108 if (len < sizeof(struct sctp_getaddrs))
6109 return -EINVAL;
6110
6111 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
6112 return -EFAULT;
6113
6114 /*
6115 * For UDP-style sockets, id specifies the association to query.
6116 * If the id field is set to the value '0' then the locally bound
6117 * addresses are returned without regard to any particular
6118 * association.
6119 */
6120 if (0 == getaddrs.assoc_id) {
6121 bp = &sctp_sk(sk)->ep->base.bind_addr;
6122 } else {
6123 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
6124 if (!asoc)
6125 return -EINVAL;
6126 bp = &asoc->base.bind_addr;
6127 }
6128
6129 to = optval + offsetof(struct sctp_getaddrs, addrs);
6130 space_left = len - offsetof(struct sctp_getaddrs, addrs);
6131
6132 addrs = kmalloc(space_left, GFP_USER | __GFP_NOWARN);
6133 if (!addrs)
6134 return -ENOMEM;
6135
6136 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
6137 * addresses from the global local address list.
6138 */
6139 if (sctp_list_single_entry(&bp->address_list)) {
6140 addr = list_entry(bp->address_list.next,
6141 struct sctp_sockaddr_entry, list);
6142 if (sctp_is_any(sk, &addr->a)) {
6143 cnt = sctp_copy_laddrs(sk, bp->port, addrs,
6144 space_left, &bytes_copied);
6145 if (cnt < 0) {
6146 err = cnt;
6147 goto out;
6148 }
6149 goto copy_getaddrs;
6150 }
6151 }
6152
6153 buf = addrs;
6154 /* Protection on the bound address list is not needed since
6155 * in the socket option context we hold a socket lock and
6156 * thus the bound address list can't change.
6157 */
6158 list_for_each_entry(addr, &bp->address_list, list) {
6159 memcpy(&temp, &addr->a, sizeof(temp));
6160 addrlen = sctp_get_pf_specific(sk->sk_family)
6161 ->addr_to_user(sp, &temp);
6162 if (space_left < addrlen) {
6163 err = -ENOMEM; /*fixme: right error?*/
6164 goto out;
6165 }
6166 memcpy(buf, &temp, addrlen);
6167 buf += addrlen;
6168 bytes_copied += addrlen;
6169 cnt++;
6170 space_left -= addrlen;
6171 }
6172
6173copy_getaddrs:
6174 if (copy_to_user(to, addrs, bytes_copied)) {
6175 err = -EFAULT;
6176 goto out;
6177 }
6178 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) {
6179 err = -EFAULT;
6180 goto out;
6181 }
6182 /* XXX: We should have accounted for sizeof(struct sctp_getaddrs) too,
6183 * but we can't change it anymore.
6184 */
6185 if (put_user(bytes_copied, optlen))
6186 err = -EFAULT;
6187out:
6188 kfree(addrs);
6189 return err;
6190}
6191
6192/* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
6193 *
6194 * Requests that the local SCTP stack use the enclosed peer address as
6195 * the association primary. The enclosed address must be one of the
6196 * association peer's addresses.
6197 */
6198static int sctp_getsockopt_primary_addr(struct sock *sk, int len,
6199 char __user *optval, int __user *optlen)
6200{
6201 struct sctp_prim prim;
6202 struct sctp_association *asoc;
6203 struct sctp_sock *sp = sctp_sk(sk);
6204
6205 if (len < sizeof(struct sctp_prim))
6206 return -EINVAL;
6207
6208 len = sizeof(struct sctp_prim);
6209
6210 if (copy_from_user(&prim, optval, len))
6211 return -EFAULT;
6212
6213 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id);
6214 if (!asoc)
6215 return -EINVAL;
6216
6217 if (!asoc->peer.primary_path)
6218 return -ENOTCONN;
6219
6220 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr,
6221 asoc->peer.primary_path->af_specific->sockaddr_len);
6222
6223 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sp,
6224 (union sctp_addr *)&prim.ssp_addr);
6225
6226 if (put_user(len, optlen))
6227 return -EFAULT;
6228 if (copy_to_user(optval, &prim, len))
6229 return -EFAULT;
6230
6231 return 0;
6232}
6233
6234/*
6235 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER)
6236 *
6237 * Requests that the local endpoint set the specified Adaptation Layer
6238 * Indication parameter for all future INIT and INIT-ACK exchanges.
6239 */
6240static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len,
6241 char __user *optval, int __user *optlen)
6242{
6243 struct sctp_setadaptation adaptation;
6244
6245 if (len < sizeof(struct sctp_setadaptation))
6246 return -EINVAL;
6247
6248 len = sizeof(struct sctp_setadaptation);
6249
6250 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind;
6251
6252 if (put_user(len, optlen))
6253 return -EFAULT;
6254 if (copy_to_user(optval, &adaptation, len))
6255 return -EFAULT;
6256
6257 return 0;
6258}
6259
6260/*
6261 *
6262 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
6263 *
6264 * Applications that wish to use the sendto() system call may wish to
6265 * specify a default set of parameters that would normally be supplied
6266 * through the inclusion of ancillary data. This socket option allows
6267 * such an application to set the default sctp_sndrcvinfo structure.
6268
6269
6270 * The application that wishes to use this socket option simply passes
6271 * in to this call the sctp_sndrcvinfo structure defined in Section
6272 * 5.2.2) The input parameters accepted by this call include
6273 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
6274 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in
6275 * to this call if the caller is using the UDP model.
6276 *
6277 * For getsockopt, it get the default sctp_sndrcvinfo structure.
6278 */
6279static int sctp_getsockopt_default_send_param(struct sock *sk,
6280 int len, char __user *optval,
6281 int __user *optlen)
6282{
6283 struct sctp_sock *sp = sctp_sk(sk);
6284 struct sctp_association *asoc;
6285 struct sctp_sndrcvinfo info;
6286
6287 if (len < sizeof(info))
6288 return -EINVAL;
6289
6290 len = sizeof(info);
6291
6292 if (copy_from_user(&info, optval, len))
6293 return -EFAULT;
6294
6295 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
6296 if (!asoc && info.sinfo_assoc_id != SCTP_FUTURE_ASSOC &&
6297 sctp_style(sk, UDP))
6298 return -EINVAL;
6299
6300 if (asoc) {
6301 info.sinfo_stream = asoc->default_stream;
6302 info.sinfo_flags = asoc->default_flags;
6303 info.sinfo_ppid = asoc->default_ppid;
6304 info.sinfo_context = asoc->default_context;
6305 info.sinfo_timetolive = asoc->default_timetolive;
6306 } else {
6307 info.sinfo_stream = sp->default_stream;
6308 info.sinfo_flags = sp->default_flags;
6309 info.sinfo_ppid = sp->default_ppid;
6310 info.sinfo_context = sp->default_context;
6311 info.sinfo_timetolive = sp->default_timetolive;
6312 }
6313
6314 if (put_user(len, optlen))
6315 return -EFAULT;
6316 if (copy_to_user(optval, &info, len))
6317 return -EFAULT;
6318
6319 return 0;
6320}
6321
6322/* RFC6458, Section 8.1.31. Set/get Default Send Parameters
6323 * (SCTP_DEFAULT_SNDINFO)
6324 */
6325static int sctp_getsockopt_default_sndinfo(struct sock *sk, int len,
6326 char __user *optval,
6327 int __user *optlen)
6328{
6329 struct sctp_sock *sp = sctp_sk(sk);
6330 struct sctp_association *asoc;
6331 struct sctp_sndinfo info;
6332
6333 if (len < sizeof(info))
6334 return -EINVAL;
6335
6336 len = sizeof(info);
6337
6338 if (copy_from_user(&info, optval, len))
6339 return -EFAULT;
6340
6341 asoc = sctp_id2assoc(sk, info.snd_assoc_id);
6342 if (!asoc && info.snd_assoc_id != SCTP_FUTURE_ASSOC &&
6343 sctp_style(sk, UDP))
6344 return -EINVAL;
6345
6346 if (asoc) {
6347 info.snd_sid = asoc->default_stream;
6348 info.snd_flags = asoc->default_flags;
6349 info.snd_ppid = asoc->default_ppid;
6350 info.snd_context = asoc->default_context;
6351 } else {
6352 info.snd_sid = sp->default_stream;
6353 info.snd_flags = sp->default_flags;
6354 info.snd_ppid = sp->default_ppid;
6355 info.snd_context = sp->default_context;
6356 }
6357
6358 if (put_user(len, optlen))
6359 return -EFAULT;
6360 if (copy_to_user(optval, &info, len))
6361 return -EFAULT;
6362
6363 return 0;
6364}
6365
6366/*
6367 *
6368 * 7.1.5 SCTP_NODELAY
6369 *
6370 * Turn on/off any Nagle-like algorithm. This means that packets are
6371 * generally sent as soon as possible and no unnecessary delays are
6372 * introduced, at the cost of more packets in the network. Expects an
6373 * integer boolean flag.
6374 */
6375
6376static int sctp_getsockopt_nodelay(struct sock *sk, int len,
6377 char __user *optval, int __user *optlen)
6378{
6379 int val;
6380
6381 if (len < sizeof(int))
6382 return -EINVAL;
6383
6384 len = sizeof(int);
6385 val = (sctp_sk(sk)->nodelay == 1);
6386 if (put_user(len, optlen))
6387 return -EFAULT;
6388 if (copy_to_user(optval, &val, len))
6389 return -EFAULT;
6390 return 0;
6391}
6392
6393/*
6394 *
6395 * 7.1.1 SCTP_RTOINFO
6396 *
6397 * The protocol parameters used to initialize and bound retransmission
6398 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
6399 * and modify these parameters.
6400 * All parameters are time values, in milliseconds. A value of 0, when
6401 * modifying the parameters, indicates that the current value should not
6402 * be changed.
6403 *
6404 */
6405static int sctp_getsockopt_rtoinfo(struct sock *sk, int len,
6406 char __user *optval,
6407 int __user *optlen) {
6408 struct sctp_rtoinfo rtoinfo;
6409 struct sctp_association *asoc;
6410
6411 if (len < sizeof (struct sctp_rtoinfo))
6412 return -EINVAL;
6413
6414 len = sizeof(struct sctp_rtoinfo);
6415
6416 if (copy_from_user(&rtoinfo, optval, len))
6417 return -EFAULT;
6418
6419 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
6420
6421 if (!asoc && rtoinfo.srto_assoc_id != SCTP_FUTURE_ASSOC &&
6422 sctp_style(sk, UDP))
6423 return -EINVAL;
6424
6425 /* Values corresponding to the specific association. */
6426 if (asoc) {
6427 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial);
6428 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max);
6429 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min);
6430 } else {
6431 /* Values corresponding to the endpoint. */
6432 struct sctp_sock *sp = sctp_sk(sk);
6433
6434 rtoinfo.srto_initial = sp->rtoinfo.srto_initial;
6435 rtoinfo.srto_max = sp->rtoinfo.srto_max;
6436 rtoinfo.srto_min = sp->rtoinfo.srto_min;
6437 }
6438
6439 if (put_user(len, optlen))
6440 return -EFAULT;
6441
6442 if (copy_to_user(optval, &rtoinfo, len))
6443 return -EFAULT;
6444
6445 return 0;
6446}
6447
6448/*
6449 *
6450 * 7.1.2 SCTP_ASSOCINFO
6451 *
6452 * This option is used to tune the maximum retransmission attempts
6453 * of the association.
6454 * Returns an error if the new association retransmission value is
6455 * greater than the sum of the retransmission value of the peer.
6456 * See [SCTP] for more information.
6457 *
6458 */
6459static int sctp_getsockopt_associnfo(struct sock *sk, int len,
6460 char __user *optval,
6461 int __user *optlen)
6462{
6463
6464 struct sctp_assocparams assocparams;
6465 struct sctp_association *asoc;
6466 struct list_head *pos;
6467 int cnt = 0;
6468
6469 if (len < sizeof (struct sctp_assocparams))
6470 return -EINVAL;
6471
6472 len = sizeof(struct sctp_assocparams);
6473
6474 if (copy_from_user(&assocparams, optval, len))
6475 return -EFAULT;
6476
6477 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
6478
6479 if (!asoc && assocparams.sasoc_assoc_id != SCTP_FUTURE_ASSOC &&
6480 sctp_style(sk, UDP))
6481 return -EINVAL;
6482
6483 /* Values correspoinding to the specific association */
6484 if (asoc) {
6485 assocparams.sasoc_asocmaxrxt = asoc->max_retrans;
6486 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd;
6487 assocparams.sasoc_local_rwnd = asoc->a_rwnd;
6488 assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life);
6489
6490 list_for_each(pos, &asoc->peer.transport_addr_list) {
6491 cnt++;
6492 }
6493
6494 assocparams.sasoc_number_peer_destinations = cnt;
6495 } else {
6496 /* Values corresponding to the endpoint */
6497 struct sctp_sock *sp = sctp_sk(sk);
6498
6499 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt;
6500 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd;
6501 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd;
6502 assocparams.sasoc_cookie_life =
6503 sp->assocparams.sasoc_cookie_life;
6504 assocparams.sasoc_number_peer_destinations =
6505 sp->assocparams.
6506 sasoc_number_peer_destinations;
6507 }
6508
6509 if (put_user(len, optlen))
6510 return -EFAULT;
6511
6512 if (copy_to_user(optval, &assocparams, len))
6513 return -EFAULT;
6514
6515 return 0;
6516}
6517
6518/*
6519 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
6520 *
6521 * This socket option is a boolean flag which turns on or off mapped V4
6522 * addresses. If this option is turned on and the socket is type
6523 * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
6524 * If this option is turned off, then no mapping will be done of V4
6525 * addresses and a user will receive both PF_INET6 and PF_INET type
6526 * addresses on the socket.
6527 */
6528static int sctp_getsockopt_mappedv4(struct sock *sk, int len,
6529 char __user *optval, int __user *optlen)
6530{
6531 int val;
6532 struct sctp_sock *sp = sctp_sk(sk);
6533
6534 if (len < sizeof(int))
6535 return -EINVAL;
6536
6537 len = sizeof(int);
6538 val = sp->v4mapped;
6539 if (put_user(len, optlen))
6540 return -EFAULT;
6541 if (copy_to_user(optval, &val, len))
6542 return -EFAULT;
6543
6544 return 0;
6545}
6546
6547/*
6548 * 7.1.29. Set or Get the default context (SCTP_CONTEXT)
6549 * (chapter and verse is quoted at sctp_setsockopt_context())
6550 */
6551static int sctp_getsockopt_context(struct sock *sk, int len,
6552 char __user *optval, int __user *optlen)
6553{
6554 struct sctp_assoc_value params;
6555 struct sctp_association *asoc;
6556
6557 if (len < sizeof(struct sctp_assoc_value))
6558 return -EINVAL;
6559
6560 len = sizeof(struct sctp_assoc_value);
6561
6562 if (copy_from_user(¶ms, optval, len))
6563 return -EFAULT;
6564
6565 asoc = sctp_id2assoc(sk, params.assoc_id);
6566 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
6567 sctp_style(sk, UDP))
6568 return -EINVAL;
6569
6570 params.assoc_value = asoc ? asoc->default_rcv_context
6571 : sctp_sk(sk)->default_rcv_context;
6572
6573 if (put_user(len, optlen))
6574 return -EFAULT;
6575 if (copy_to_user(optval, ¶ms, len))
6576 return -EFAULT;
6577
6578 return 0;
6579}
6580
6581/*
6582 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
6583 * This option will get or set the maximum size to put in any outgoing
6584 * SCTP DATA chunk. If a message is larger than this size it will be
6585 * fragmented by SCTP into the specified size. Note that the underlying
6586 * SCTP implementation may fragment into smaller sized chunks when the
6587 * PMTU of the underlying association is smaller than the value set by
6588 * the user. The default value for this option is '0' which indicates
6589 * the user is NOT limiting fragmentation and only the PMTU will effect
6590 * SCTP's choice of DATA chunk size. Note also that values set larger
6591 * than the maximum size of an IP datagram will effectively let SCTP
6592 * control fragmentation (i.e. the same as setting this option to 0).
6593 *
6594 * The following structure is used to access and modify this parameter:
6595 *
6596 * struct sctp_assoc_value {
6597 * sctp_assoc_t assoc_id;
6598 * uint32_t assoc_value;
6599 * };
6600 *
6601 * assoc_id: This parameter is ignored for one-to-one style sockets.
6602 * For one-to-many style sockets this parameter indicates which
6603 * association the user is performing an action upon. Note that if
6604 * this field's value is zero then the endpoints default value is
6605 * changed (effecting future associations only).
6606 * assoc_value: This parameter specifies the maximum size in bytes.
6607 */
6608static int sctp_getsockopt_maxseg(struct sock *sk, int len,
6609 char __user *optval, int __user *optlen)
6610{
6611 struct sctp_assoc_value params;
6612 struct sctp_association *asoc;
6613
6614 if (len == sizeof(int)) {
6615 pr_warn_ratelimited(DEPRECATED
6616 "%s (pid %d) "
6617 "Use of int in maxseg socket option.\n"
6618 "Use struct sctp_assoc_value instead\n",
6619 current->comm, task_pid_nr(current));
6620 params.assoc_id = SCTP_FUTURE_ASSOC;
6621 } else if (len >= sizeof(struct sctp_assoc_value)) {
6622 len = sizeof(struct sctp_assoc_value);
6623 if (copy_from_user(¶ms, optval, len))
6624 return -EFAULT;
6625 } else
6626 return -EINVAL;
6627
6628 asoc = sctp_id2assoc(sk, params.assoc_id);
6629 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
6630 sctp_style(sk, UDP))
6631 return -EINVAL;
6632
6633 if (asoc)
6634 params.assoc_value = asoc->frag_point;
6635 else
6636 params.assoc_value = sctp_sk(sk)->user_frag;
6637
6638 if (put_user(len, optlen))
6639 return -EFAULT;
6640 if (len == sizeof(int)) {
6641 if (copy_to_user(optval, ¶ms.assoc_value, len))
6642 return -EFAULT;
6643 } else {
6644 if (copy_to_user(optval, ¶ms, len))
6645 return -EFAULT;
6646 }
6647
6648 return 0;
6649}
6650
6651/*
6652 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
6653 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave())
6654 */
6655static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len,
6656 char __user *optval, int __user *optlen)
6657{
6658 int val;
6659
6660 if (len < sizeof(int))
6661 return -EINVAL;
6662
6663 len = sizeof(int);
6664
6665 val = sctp_sk(sk)->frag_interleave;
6666 if (put_user(len, optlen))
6667 return -EFAULT;
6668 if (copy_to_user(optval, &val, len))
6669 return -EFAULT;
6670
6671 return 0;
6672}
6673
6674/*
6675 * 7.1.25. Set or Get the sctp partial delivery point
6676 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point())
6677 */
6678static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len,
6679 char __user *optval,
6680 int __user *optlen)
6681{
6682 u32 val;
6683
6684 if (len < sizeof(u32))
6685 return -EINVAL;
6686
6687 len = sizeof(u32);
6688
6689 val = sctp_sk(sk)->pd_point;
6690 if (put_user(len, optlen))
6691 return -EFAULT;
6692 if (copy_to_user(optval, &val, len))
6693 return -EFAULT;
6694
6695 return 0;
6696}
6697
6698/*
6699 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST)
6700 * (chapter and verse is quoted at sctp_setsockopt_maxburst())
6701 */
6702static int sctp_getsockopt_maxburst(struct sock *sk, int len,
6703 char __user *optval,
6704 int __user *optlen)
6705{
6706 struct sctp_assoc_value params;
6707 struct sctp_association *asoc;
6708
6709 if (len == sizeof(int)) {
6710 pr_warn_ratelimited(DEPRECATED
6711 "%s (pid %d) "
6712 "Use of int in max_burst socket option.\n"
6713 "Use struct sctp_assoc_value instead\n",
6714 current->comm, task_pid_nr(current));
6715 params.assoc_id = SCTP_FUTURE_ASSOC;
6716 } else if (len >= sizeof(struct sctp_assoc_value)) {
6717 len = sizeof(struct sctp_assoc_value);
6718 if (copy_from_user(¶ms, optval, len))
6719 return -EFAULT;
6720 } else
6721 return -EINVAL;
6722
6723 asoc = sctp_id2assoc(sk, params.assoc_id);
6724 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
6725 sctp_style(sk, UDP))
6726 return -EINVAL;
6727
6728 params.assoc_value = asoc ? asoc->max_burst : sctp_sk(sk)->max_burst;
6729
6730 if (len == sizeof(int)) {
6731 if (copy_to_user(optval, ¶ms.assoc_value, len))
6732 return -EFAULT;
6733 } else {
6734 if (copy_to_user(optval, ¶ms, len))
6735 return -EFAULT;
6736 }
6737
6738 return 0;
6739
6740}
6741
6742static int sctp_getsockopt_hmac_ident(struct sock *sk, int len,
6743 char __user *optval, int __user *optlen)
6744{
6745 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6746 struct sctp_hmacalgo __user *p = (void __user *)optval;
6747 struct sctp_hmac_algo_param *hmacs;
6748 __u16 data_len = 0;
6749 u32 num_idents;
6750 int i;
6751
6752 if (!ep->auth_enable)
6753 return -EACCES;
6754
6755 hmacs = ep->auth_hmacs_list;
6756 data_len = ntohs(hmacs->param_hdr.length) -
6757 sizeof(struct sctp_paramhdr);
6758
6759 if (len < sizeof(struct sctp_hmacalgo) + data_len)
6760 return -EINVAL;
6761
6762 len = sizeof(struct sctp_hmacalgo) + data_len;
6763 num_idents = data_len / sizeof(u16);
6764
6765 if (put_user(len, optlen))
6766 return -EFAULT;
6767 if (put_user(num_idents, &p->shmac_num_idents))
6768 return -EFAULT;
6769 for (i = 0; i < num_idents; i++) {
6770 __u16 hmacid = ntohs(hmacs->hmac_ids[i]);
6771
6772 if (copy_to_user(&p->shmac_idents[i], &hmacid, sizeof(__u16)))
6773 return -EFAULT;
6774 }
6775 return 0;
6776}
6777
6778static int sctp_getsockopt_active_key(struct sock *sk, int len,
6779 char __user *optval, int __user *optlen)
6780{
6781 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6782 struct sctp_authkeyid val;
6783 struct sctp_association *asoc;
6784
6785 if (len < sizeof(struct sctp_authkeyid))
6786 return -EINVAL;
6787
6788 len = sizeof(struct sctp_authkeyid);
6789 if (copy_from_user(&val, optval, len))
6790 return -EFAULT;
6791
6792 asoc = sctp_id2assoc(sk, val.scact_assoc_id);
6793 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
6794 return -EINVAL;
6795
6796 if (asoc) {
6797 if (!asoc->peer.auth_capable)
6798 return -EACCES;
6799 val.scact_keynumber = asoc->active_key_id;
6800 } else {
6801 if (!ep->auth_enable)
6802 return -EACCES;
6803 val.scact_keynumber = ep->active_key_id;
6804 }
6805
6806 if (put_user(len, optlen))
6807 return -EFAULT;
6808 if (copy_to_user(optval, &val, len))
6809 return -EFAULT;
6810
6811 return 0;
6812}
6813
6814static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len,
6815 char __user *optval, int __user *optlen)
6816{
6817 struct sctp_authchunks __user *p = (void __user *)optval;
6818 struct sctp_authchunks val;
6819 struct sctp_association *asoc;
6820 struct sctp_chunks_param *ch;
6821 u32 num_chunks = 0;
6822 char __user *to;
6823
6824 if (len < sizeof(struct sctp_authchunks))
6825 return -EINVAL;
6826
6827 if (copy_from_user(&val, optval, sizeof(val)))
6828 return -EFAULT;
6829
6830 to = p->gauth_chunks;
6831 asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
6832 if (!asoc)
6833 return -EINVAL;
6834
6835 if (!asoc->peer.auth_capable)
6836 return -EACCES;
6837
6838 ch = asoc->peer.peer_chunks;
6839 if (!ch)
6840 goto num;
6841
6842 /* See if the user provided enough room for all the data */
6843 num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr);
6844 if (len < num_chunks)
6845 return -EINVAL;
6846
6847 if (copy_to_user(to, ch->chunks, num_chunks))
6848 return -EFAULT;
6849num:
6850 len = sizeof(struct sctp_authchunks) + num_chunks;
6851 if (put_user(len, optlen))
6852 return -EFAULT;
6853 if (put_user(num_chunks, &p->gauth_number_of_chunks))
6854 return -EFAULT;
6855 return 0;
6856}
6857
6858static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len,
6859 char __user *optval, int __user *optlen)
6860{
6861 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6862 struct sctp_authchunks __user *p = (void __user *)optval;
6863 struct sctp_authchunks val;
6864 struct sctp_association *asoc;
6865 struct sctp_chunks_param *ch;
6866 u32 num_chunks = 0;
6867 char __user *to;
6868
6869 if (len < sizeof(struct sctp_authchunks))
6870 return -EINVAL;
6871
6872 if (copy_from_user(&val, optval, sizeof(val)))
6873 return -EFAULT;
6874
6875 to = p->gauth_chunks;
6876 asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
6877 if (!asoc && val.gauth_assoc_id != SCTP_FUTURE_ASSOC &&
6878 sctp_style(sk, UDP))
6879 return -EINVAL;
6880
6881 if (asoc) {
6882 if (!asoc->peer.auth_capable)
6883 return -EACCES;
6884 ch = (struct sctp_chunks_param *)asoc->c.auth_chunks;
6885 } else {
6886 if (!ep->auth_enable)
6887 return -EACCES;
6888 ch = ep->auth_chunk_list;
6889 }
6890 if (!ch)
6891 goto num;
6892
6893 num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr);
6894 if (len < sizeof(struct sctp_authchunks) + num_chunks)
6895 return -EINVAL;
6896
6897 if (copy_to_user(to, ch->chunks, num_chunks))
6898 return -EFAULT;
6899num:
6900 len = sizeof(struct sctp_authchunks) + num_chunks;
6901 if (put_user(len, optlen))
6902 return -EFAULT;
6903 if (put_user(num_chunks, &p->gauth_number_of_chunks))
6904 return -EFAULT;
6905
6906 return 0;
6907}
6908
6909/*
6910 * 8.2.5. Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER)
6911 * This option gets the current number of associations that are attached
6912 * to a one-to-many style socket. The option value is an uint32_t.
6913 */
6914static int sctp_getsockopt_assoc_number(struct sock *sk, int len,
6915 char __user *optval, int __user *optlen)
6916{
6917 struct sctp_sock *sp = sctp_sk(sk);
6918 struct sctp_association *asoc;
6919 u32 val = 0;
6920
6921 if (sctp_style(sk, TCP))
6922 return -EOPNOTSUPP;
6923
6924 if (len < sizeof(u32))
6925 return -EINVAL;
6926
6927 len = sizeof(u32);
6928
6929 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
6930 val++;
6931 }
6932
6933 if (put_user(len, optlen))
6934 return -EFAULT;
6935 if (copy_to_user(optval, &val, len))
6936 return -EFAULT;
6937
6938 return 0;
6939}
6940
6941/*
6942 * 8.1.23 SCTP_AUTO_ASCONF
6943 * See the corresponding setsockopt entry as description
6944 */
6945static int sctp_getsockopt_auto_asconf(struct sock *sk, int len,
6946 char __user *optval, int __user *optlen)
6947{
6948 int val = 0;
6949
6950 if (len < sizeof(int))
6951 return -EINVAL;
6952
6953 len = sizeof(int);
6954 if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk))
6955 val = 1;
6956 if (put_user(len, optlen))
6957 return -EFAULT;
6958 if (copy_to_user(optval, &val, len))
6959 return -EFAULT;
6960 return 0;
6961}
6962
6963/*
6964 * 8.2.6. Get the Current Identifiers of Associations
6965 * (SCTP_GET_ASSOC_ID_LIST)
6966 *
6967 * This option gets the current list of SCTP association identifiers of
6968 * the SCTP associations handled by a one-to-many style socket.
6969 */
6970static int sctp_getsockopt_assoc_ids(struct sock *sk, int len,
6971 char __user *optval, int __user *optlen)
6972{
6973 struct sctp_sock *sp = sctp_sk(sk);
6974 struct sctp_association *asoc;
6975 struct sctp_assoc_ids *ids;
6976 u32 num = 0;
6977
6978 if (sctp_style(sk, TCP))
6979 return -EOPNOTSUPP;
6980
6981 if (len < sizeof(struct sctp_assoc_ids))
6982 return -EINVAL;
6983
6984 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
6985 num++;
6986 }
6987
6988 if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num)
6989 return -EINVAL;
6990
6991 len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num;
6992
6993 ids = kmalloc(len, GFP_USER | __GFP_NOWARN);
6994 if (unlikely(!ids))
6995 return -ENOMEM;
6996
6997 ids->gaids_number_of_ids = num;
6998 num = 0;
6999 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
7000 ids->gaids_assoc_id[num++] = asoc->assoc_id;
7001 }
7002
7003 if (put_user(len, optlen) || copy_to_user(optval, ids, len)) {
7004 kfree(ids);
7005 return -EFAULT;
7006 }
7007
7008 kfree(ids);
7009 return 0;
7010}
7011
7012/*
7013 * SCTP_PEER_ADDR_THLDS
7014 *
7015 * This option allows us to fetch the partially failed threshold for one or all
7016 * transports in an association. See Section 6.1 of:
7017 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
7018 */
7019static int sctp_getsockopt_paddr_thresholds(struct sock *sk,
7020 char __user *optval, int len,
7021 int __user *optlen, bool v2)
7022{
7023 struct sctp_paddrthlds_v2 val;
7024 struct sctp_transport *trans;
7025 struct sctp_association *asoc;
7026 int min;
7027
7028 min = v2 ? sizeof(val) : sizeof(struct sctp_paddrthlds);
7029 if (len < min)
7030 return -EINVAL;
7031 len = min;
7032 if (copy_from_user(&val, optval, len))
7033 return -EFAULT;
7034
7035 if (!sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
7036 trans = sctp_addr_id2transport(sk, &val.spt_address,
7037 val.spt_assoc_id);
7038 if (!trans)
7039 return -ENOENT;
7040
7041 val.spt_pathmaxrxt = trans->pathmaxrxt;
7042 val.spt_pathpfthld = trans->pf_retrans;
7043 val.spt_pathcpthld = trans->ps_retrans;
7044
7045 goto out;
7046 }
7047
7048 asoc = sctp_id2assoc(sk, val.spt_assoc_id);
7049 if (!asoc && val.spt_assoc_id != SCTP_FUTURE_ASSOC &&
7050 sctp_style(sk, UDP))
7051 return -EINVAL;
7052
7053 if (asoc) {
7054 val.spt_pathpfthld = asoc->pf_retrans;
7055 val.spt_pathmaxrxt = asoc->pathmaxrxt;
7056 val.spt_pathcpthld = asoc->ps_retrans;
7057 } else {
7058 struct sctp_sock *sp = sctp_sk(sk);
7059
7060 val.spt_pathpfthld = sp->pf_retrans;
7061 val.spt_pathmaxrxt = sp->pathmaxrxt;
7062 val.spt_pathcpthld = sp->ps_retrans;
7063 }
7064
7065out:
7066 if (put_user(len, optlen) || copy_to_user(optval, &val, len))
7067 return -EFAULT;
7068
7069 return 0;
7070}
7071
7072/*
7073 * SCTP_GET_ASSOC_STATS
7074 *
7075 * This option retrieves local per endpoint statistics. It is modeled
7076 * after OpenSolaris' implementation
7077 */
7078static int sctp_getsockopt_assoc_stats(struct sock *sk, int len,
7079 char __user *optval,
7080 int __user *optlen)
7081{
7082 struct sctp_assoc_stats sas;
7083 struct sctp_association *asoc = NULL;
7084
7085 /* User must provide at least the assoc id */
7086 if (len < sizeof(sctp_assoc_t))
7087 return -EINVAL;
7088
7089 /* Allow the struct to grow and fill in as much as possible */
7090 len = min_t(size_t, len, sizeof(sas));
7091
7092 if (copy_from_user(&sas, optval, len))
7093 return -EFAULT;
7094
7095 asoc = sctp_id2assoc(sk, sas.sas_assoc_id);
7096 if (!asoc)
7097 return -EINVAL;
7098
7099 sas.sas_rtxchunks = asoc->stats.rtxchunks;
7100 sas.sas_gapcnt = asoc->stats.gapcnt;
7101 sas.sas_outofseqtsns = asoc->stats.outofseqtsns;
7102 sas.sas_osacks = asoc->stats.osacks;
7103 sas.sas_isacks = asoc->stats.isacks;
7104 sas.sas_octrlchunks = asoc->stats.octrlchunks;
7105 sas.sas_ictrlchunks = asoc->stats.ictrlchunks;
7106 sas.sas_oodchunks = asoc->stats.oodchunks;
7107 sas.sas_iodchunks = asoc->stats.iodchunks;
7108 sas.sas_ouodchunks = asoc->stats.ouodchunks;
7109 sas.sas_iuodchunks = asoc->stats.iuodchunks;
7110 sas.sas_idupchunks = asoc->stats.idupchunks;
7111 sas.sas_opackets = asoc->stats.opackets;
7112 sas.sas_ipackets = asoc->stats.ipackets;
7113
7114 /* New high max rto observed, will return 0 if not a single
7115 * RTO update took place. obs_rto_ipaddr will be bogus
7116 * in such a case
7117 */
7118 sas.sas_maxrto = asoc->stats.max_obs_rto;
7119 memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr,
7120 sizeof(struct sockaddr_storage));
7121
7122 /* Mark beginning of a new observation period */
7123 asoc->stats.max_obs_rto = asoc->rto_min;
7124
7125 if (put_user(len, optlen))
7126 return -EFAULT;
7127
7128 pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id);
7129
7130 if (copy_to_user(optval, &sas, len))
7131 return -EFAULT;
7132
7133 return 0;
7134}
7135
7136static int sctp_getsockopt_recvrcvinfo(struct sock *sk, int len,
7137 char __user *optval,
7138 int __user *optlen)
7139{
7140 int val = 0;
7141
7142 if (len < sizeof(int))
7143 return -EINVAL;
7144
7145 len = sizeof(int);
7146 if (sctp_sk(sk)->recvrcvinfo)
7147 val = 1;
7148 if (put_user(len, optlen))
7149 return -EFAULT;
7150 if (copy_to_user(optval, &val, len))
7151 return -EFAULT;
7152
7153 return 0;
7154}
7155
7156static int sctp_getsockopt_recvnxtinfo(struct sock *sk, int len,
7157 char __user *optval,
7158 int __user *optlen)
7159{
7160 int val = 0;
7161
7162 if (len < sizeof(int))
7163 return -EINVAL;
7164
7165 len = sizeof(int);
7166 if (sctp_sk(sk)->recvnxtinfo)
7167 val = 1;
7168 if (put_user(len, optlen))
7169 return -EFAULT;
7170 if (copy_to_user(optval, &val, len))
7171 return -EFAULT;
7172
7173 return 0;
7174}
7175
7176static int sctp_getsockopt_pr_supported(struct sock *sk, int len,
7177 char __user *optval,
7178 int __user *optlen)
7179{
7180 struct sctp_assoc_value params;
7181 struct sctp_association *asoc;
7182 int retval = -EFAULT;
7183
7184 if (len < sizeof(params)) {
7185 retval = -EINVAL;
7186 goto out;
7187 }
7188
7189 len = sizeof(params);
7190 if (copy_from_user(¶ms, optval, len))
7191 goto out;
7192
7193 asoc = sctp_id2assoc(sk, params.assoc_id);
7194 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7195 sctp_style(sk, UDP)) {
7196 retval = -EINVAL;
7197 goto out;
7198 }
7199
7200 params.assoc_value = asoc ? asoc->peer.prsctp_capable
7201 : sctp_sk(sk)->ep->prsctp_enable;
7202
7203 if (put_user(len, optlen))
7204 goto out;
7205
7206 if (copy_to_user(optval, ¶ms, len))
7207 goto out;
7208
7209 retval = 0;
7210
7211out:
7212 return retval;
7213}
7214
7215static int sctp_getsockopt_default_prinfo(struct sock *sk, int len,
7216 char __user *optval,
7217 int __user *optlen)
7218{
7219 struct sctp_default_prinfo info;
7220 struct sctp_association *asoc;
7221 int retval = -EFAULT;
7222
7223 if (len < sizeof(info)) {
7224 retval = -EINVAL;
7225 goto out;
7226 }
7227
7228 len = sizeof(info);
7229 if (copy_from_user(&info, optval, len))
7230 goto out;
7231
7232 asoc = sctp_id2assoc(sk, info.pr_assoc_id);
7233 if (!asoc && info.pr_assoc_id != SCTP_FUTURE_ASSOC &&
7234 sctp_style(sk, UDP)) {
7235 retval = -EINVAL;
7236 goto out;
7237 }
7238
7239 if (asoc) {
7240 info.pr_policy = SCTP_PR_POLICY(asoc->default_flags);
7241 info.pr_value = asoc->default_timetolive;
7242 } else {
7243 struct sctp_sock *sp = sctp_sk(sk);
7244
7245 info.pr_policy = SCTP_PR_POLICY(sp->default_flags);
7246 info.pr_value = sp->default_timetolive;
7247 }
7248
7249 if (put_user(len, optlen))
7250 goto out;
7251
7252 if (copy_to_user(optval, &info, len))
7253 goto out;
7254
7255 retval = 0;
7256
7257out:
7258 return retval;
7259}
7260
7261static int sctp_getsockopt_pr_assocstatus(struct sock *sk, int len,
7262 char __user *optval,
7263 int __user *optlen)
7264{
7265 struct sctp_prstatus params;
7266 struct sctp_association *asoc;
7267 int policy;
7268 int retval = -EINVAL;
7269
7270 if (len < sizeof(params))
7271 goto out;
7272
7273 len = sizeof(params);
7274 if (copy_from_user(¶ms, optval, len)) {
7275 retval = -EFAULT;
7276 goto out;
7277 }
7278
7279 policy = params.sprstat_policy;
7280 if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) ||
7281 ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK)))
7282 goto out;
7283
7284 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id);
7285 if (!asoc)
7286 goto out;
7287
7288 if (policy == SCTP_PR_SCTP_ALL) {
7289 params.sprstat_abandoned_unsent = 0;
7290 params.sprstat_abandoned_sent = 0;
7291 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) {
7292 params.sprstat_abandoned_unsent +=
7293 asoc->abandoned_unsent[policy];
7294 params.sprstat_abandoned_sent +=
7295 asoc->abandoned_sent[policy];
7296 }
7297 } else {
7298 params.sprstat_abandoned_unsent =
7299 asoc->abandoned_unsent[__SCTP_PR_INDEX(policy)];
7300 params.sprstat_abandoned_sent =
7301 asoc->abandoned_sent[__SCTP_PR_INDEX(policy)];
7302 }
7303
7304 if (put_user(len, optlen)) {
7305 retval = -EFAULT;
7306 goto out;
7307 }
7308
7309 if (copy_to_user(optval, ¶ms, len)) {
7310 retval = -EFAULT;
7311 goto out;
7312 }
7313
7314 retval = 0;
7315
7316out:
7317 return retval;
7318}
7319
7320static int sctp_getsockopt_pr_streamstatus(struct sock *sk, int len,
7321 char __user *optval,
7322 int __user *optlen)
7323{
7324 struct sctp_stream_out_ext *streamoute;
7325 struct sctp_association *asoc;
7326 struct sctp_prstatus params;
7327 int retval = -EINVAL;
7328 int policy;
7329
7330 if (len < sizeof(params))
7331 goto out;
7332
7333 len = sizeof(params);
7334 if (copy_from_user(¶ms, optval, len)) {
7335 retval = -EFAULT;
7336 goto out;
7337 }
7338
7339 policy = params.sprstat_policy;
7340 if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) ||
7341 ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK)))
7342 goto out;
7343
7344 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id);
7345 if (!asoc || params.sprstat_sid >= asoc->stream.outcnt)
7346 goto out;
7347
7348 streamoute = SCTP_SO(&asoc->stream, params.sprstat_sid)->ext;
7349 if (!streamoute) {
7350 /* Not allocated yet, means all stats are 0 */
7351 params.sprstat_abandoned_unsent = 0;
7352 params.sprstat_abandoned_sent = 0;
7353 retval = 0;
7354 goto out;
7355 }
7356
7357 if (policy == SCTP_PR_SCTP_ALL) {
7358 params.sprstat_abandoned_unsent = 0;
7359 params.sprstat_abandoned_sent = 0;
7360 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) {
7361 params.sprstat_abandoned_unsent +=
7362 streamoute->abandoned_unsent[policy];
7363 params.sprstat_abandoned_sent +=
7364 streamoute->abandoned_sent[policy];
7365 }
7366 } else {
7367 params.sprstat_abandoned_unsent =
7368 streamoute->abandoned_unsent[__SCTP_PR_INDEX(policy)];
7369 params.sprstat_abandoned_sent =
7370 streamoute->abandoned_sent[__SCTP_PR_INDEX(policy)];
7371 }
7372
7373 if (put_user(len, optlen) || copy_to_user(optval, ¶ms, len)) {
7374 retval = -EFAULT;
7375 goto out;
7376 }
7377
7378 retval = 0;
7379
7380out:
7381 return retval;
7382}
7383
7384static int sctp_getsockopt_reconfig_supported(struct sock *sk, int len,
7385 char __user *optval,
7386 int __user *optlen)
7387{
7388 struct sctp_assoc_value params;
7389 struct sctp_association *asoc;
7390 int retval = -EFAULT;
7391
7392 if (len < sizeof(params)) {
7393 retval = -EINVAL;
7394 goto out;
7395 }
7396
7397 len = sizeof(params);
7398 if (copy_from_user(¶ms, optval, len))
7399 goto out;
7400
7401 asoc = sctp_id2assoc(sk, params.assoc_id);
7402 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7403 sctp_style(sk, UDP)) {
7404 retval = -EINVAL;
7405 goto out;
7406 }
7407
7408 params.assoc_value = asoc ? asoc->peer.reconf_capable
7409 : sctp_sk(sk)->ep->reconf_enable;
7410
7411 if (put_user(len, optlen))
7412 goto out;
7413
7414 if (copy_to_user(optval, ¶ms, len))
7415 goto out;
7416
7417 retval = 0;
7418
7419out:
7420 return retval;
7421}
7422
7423static int sctp_getsockopt_enable_strreset(struct sock *sk, int len,
7424 char __user *optval,
7425 int __user *optlen)
7426{
7427 struct sctp_assoc_value params;
7428 struct sctp_association *asoc;
7429 int retval = -EFAULT;
7430
7431 if (len < sizeof(params)) {
7432 retval = -EINVAL;
7433 goto out;
7434 }
7435
7436 len = sizeof(params);
7437 if (copy_from_user(¶ms, optval, len))
7438 goto out;
7439
7440 asoc = sctp_id2assoc(sk, params.assoc_id);
7441 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7442 sctp_style(sk, UDP)) {
7443 retval = -EINVAL;
7444 goto out;
7445 }
7446
7447 params.assoc_value = asoc ? asoc->strreset_enable
7448 : sctp_sk(sk)->ep->strreset_enable;
7449
7450 if (put_user(len, optlen))
7451 goto out;
7452
7453 if (copy_to_user(optval, ¶ms, len))
7454 goto out;
7455
7456 retval = 0;
7457
7458out:
7459 return retval;
7460}
7461
7462static int sctp_getsockopt_scheduler(struct sock *sk, int len,
7463 char __user *optval,
7464 int __user *optlen)
7465{
7466 struct sctp_assoc_value params;
7467 struct sctp_association *asoc;
7468 int retval = -EFAULT;
7469
7470 if (len < sizeof(params)) {
7471 retval = -EINVAL;
7472 goto out;
7473 }
7474
7475 len = sizeof(params);
7476 if (copy_from_user(¶ms, optval, len))
7477 goto out;
7478
7479 asoc = sctp_id2assoc(sk, params.assoc_id);
7480 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7481 sctp_style(sk, UDP)) {
7482 retval = -EINVAL;
7483 goto out;
7484 }
7485
7486 params.assoc_value = asoc ? sctp_sched_get_sched(asoc)
7487 : sctp_sk(sk)->default_ss;
7488
7489 if (put_user(len, optlen))
7490 goto out;
7491
7492 if (copy_to_user(optval, ¶ms, len))
7493 goto out;
7494
7495 retval = 0;
7496
7497out:
7498 return retval;
7499}
7500
7501static int sctp_getsockopt_scheduler_value(struct sock *sk, int len,
7502 char __user *optval,
7503 int __user *optlen)
7504{
7505 struct sctp_stream_value params;
7506 struct sctp_association *asoc;
7507 int retval = -EFAULT;
7508
7509 if (len < sizeof(params)) {
7510 retval = -EINVAL;
7511 goto out;
7512 }
7513
7514 len = sizeof(params);
7515 if (copy_from_user(¶ms, optval, len))
7516 goto out;
7517
7518 asoc = sctp_id2assoc(sk, params.assoc_id);
7519 if (!asoc) {
7520 retval = -EINVAL;
7521 goto out;
7522 }
7523
7524 retval = sctp_sched_get_value(asoc, params.stream_id,
7525 ¶ms.stream_value);
7526 if (retval)
7527 goto out;
7528
7529 if (put_user(len, optlen)) {
7530 retval = -EFAULT;
7531 goto out;
7532 }
7533
7534 if (copy_to_user(optval, ¶ms, len)) {
7535 retval = -EFAULT;
7536 goto out;
7537 }
7538
7539out:
7540 return retval;
7541}
7542
7543static int sctp_getsockopt_interleaving_supported(struct sock *sk, int len,
7544 char __user *optval,
7545 int __user *optlen)
7546{
7547 struct sctp_assoc_value params;
7548 struct sctp_association *asoc;
7549 int retval = -EFAULT;
7550
7551 if (len < sizeof(params)) {
7552 retval = -EINVAL;
7553 goto out;
7554 }
7555
7556 len = sizeof(params);
7557 if (copy_from_user(¶ms, optval, len))
7558 goto out;
7559
7560 asoc = sctp_id2assoc(sk, params.assoc_id);
7561 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7562 sctp_style(sk, UDP)) {
7563 retval = -EINVAL;
7564 goto out;
7565 }
7566
7567 params.assoc_value = asoc ? asoc->peer.intl_capable
7568 : sctp_sk(sk)->ep->intl_enable;
7569
7570 if (put_user(len, optlen))
7571 goto out;
7572
7573 if (copy_to_user(optval, ¶ms, len))
7574 goto out;
7575
7576 retval = 0;
7577
7578out:
7579 return retval;
7580}
7581
7582static int sctp_getsockopt_reuse_port(struct sock *sk, int len,
7583 char __user *optval,
7584 int __user *optlen)
7585{
7586 int val;
7587
7588 if (len < sizeof(int))
7589 return -EINVAL;
7590
7591 len = sizeof(int);
7592 val = sctp_sk(sk)->reuse;
7593 if (put_user(len, optlen))
7594 return -EFAULT;
7595
7596 if (copy_to_user(optval, &val, len))
7597 return -EFAULT;
7598
7599 return 0;
7600}
7601
7602static int sctp_getsockopt_event(struct sock *sk, int len, char __user *optval,
7603 int __user *optlen)
7604{
7605 struct sctp_association *asoc;
7606 struct sctp_event param;
7607 __u16 subscribe;
7608
7609 if (len < sizeof(param))
7610 return -EINVAL;
7611
7612 len = sizeof(param);
7613 if (copy_from_user(¶m, optval, len))
7614 return -EFAULT;
7615
7616 if (param.se_type < SCTP_SN_TYPE_BASE ||
7617 param.se_type > SCTP_SN_TYPE_MAX)
7618 return -EINVAL;
7619
7620 asoc = sctp_id2assoc(sk, param.se_assoc_id);
7621 if (!asoc && param.se_assoc_id != SCTP_FUTURE_ASSOC &&
7622 sctp_style(sk, UDP))
7623 return -EINVAL;
7624
7625 subscribe = asoc ? asoc->subscribe : sctp_sk(sk)->subscribe;
7626 param.se_on = sctp_ulpevent_type_enabled(subscribe, param.se_type);
7627
7628 if (put_user(len, optlen))
7629 return -EFAULT;
7630
7631 if (copy_to_user(optval, ¶m, len))
7632 return -EFAULT;
7633
7634 return 0;
7635}
7636
7637static int sctp_getsockopt_asconf_supported(struct sock *sk, int len,
7638 char __user *optval,
7639 int __user *optlen)
7640{
7641 struct sctp_assoc_value params;
7642 struct sctp_association *asoc;
7643 int retval = -EFAULT;
7644
7645 if (len < sizeof(params)) {
7646 retval = -EINVAL;
7647 goto out;
7648 }
7649
7650 len = sizeof(params);
7651 if (copy_from_user(¶ms, optval, len))
7652 goto out;
7653
7654 asoc = sctp_id2assoc(sk, params.assoc_id);
7655 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7656 sctp_style(sk, UDP)) {
7657 retval = -EINVAL;
7658 goto out;
7659 }
7660
7661 params.assoc_value = asoc ? asoc->peer.asconf_capable
7662 : sctp_sk(sk)->ep->asconf_enable;
7663
7664 if (put_user(len, optlen))
7665 goto out;
7666
7667 if (copy_to_user(optval, ¶ms, len))
7668 goto out;
7669
7670 retval = 0;
7671
7672out:
7673 return retval;
7674}
7675
7676static int sctp_getsockopt_auth_supported(struct sock *sk, int len,
7677 char __user *optval,
7678 int __user *optlen)
7679{
7680 struct sctp_assoc_value params;
7681 struct sctp_association *asoc;
7682 int retval = -EFAULT;
7683
7684 if (len < sizeof(params)) {
7685 retval = -EINVAL;
7686 goto out;
7687 }
7688
7689 len = sizeof(params);
7690 if (copy_from_user(¶ms, optval, len))
7691 goto out;
7692
7693 asoc = sctp_id2assoc(sk, params.assoc_id);
7694 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7695 sctp_style(sk, UDP)) {
7696 retval = -EINVAL;
7697 goto out;
7698 }
7699
7700 params.assoc_value = asoc ? asoc->peer.auth_capable
7701 : sctp_sk(sk)->ep->auth_enable;
7702
7703 if (put_user(len, optlen))
7704 goto out;
7705
7706 if (copy_to_user(optval, ¶ms, len))
7707 goto out;
7708
7709 retval = 0;
7710
7711out:
7712 return retval;
7713}
7714
7715static int sctp_getsockopt_ecn_supported(struct sock *sk, int len,
7716 char __user *optval,
7717 int __user *optlen)
7718{
7719 struct sctp_assoc_value params;
7720 struct sctp_association *asoc;
7721 int retval = -EFAULT;
7722
7723 if (len < sizeof(params)) {
7724 retval = -EINVAL;
7725 goto out;
7726 }
7727
7728 len = sizeof(params);
7729 if (copy_from_user(¶ms, optval, len))
7730 goto out;
7731
7732 asoc = sctp_id2assoc(sk, params.assoc_id);
7733 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7734 sctp_style(sk, UDP)) {
7735 retval = -EINVAL;
7736 goto out;
7737 }
7738
7739 params.assoc_value = asoc ? asoc->peer.ecn_capable
7740 : sctp_sk(sk)->ep->ecn_enable;
7741
7742 if (put_user(len, optlen))
7743 goto out;
7744
7745 if (copy_to_user(optval, ¶ms, len))
7746 goto out;
7747
7748 retval = 0;
7749
7750out:
7751 return retval;
7752}
7753
7754static int sctp_getsockopt_pf_expose(struct sock *sk, int len,
7755 char __user *optval,
7756 int __user *optlen)
7757{
7758 struct sctp_assoc_value params;
7759 struct sctp_association *asoc;
7760 int retval = -EFAULT;
7761
7762 if (len < sizeof(params)) {
7763 retval = -EINVAL;
7764 goto out;
7765 }
7766
7767 len = sizeof(params);
7768 if (copy_from_user(¶ms, optval, len))
7769 goto out;
7770
7771 asoc = sctp_id2assoc(sk, params.assoc_id);
7772 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7773 sctp_style(sk, UDP)) {
7774 retval = -EINVAL;
7775 goto out;
7776 }
7777
7778 params.assoc_value = asoc ? asoc->pf_expose
7779 : sctp_sk(sk)->pf_expose;
7780
7781 if (put_user(len, optlen))
7782 goto out;
7783
7784 if (copy_to_user(optval, ¶ms, len))
7785 goto out;
7786
7787 retval = 0;
7788
7789out:
7790 return retval;
7791}
7792
7793static int sctp_getsockopt(struct sock *sk, int level, int optname,
7794 char __user *optval, int __user *optlen)
7795{
7796 int retval = 0;
7797 int len;
7798
7799 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
7800
7801 /* I can hardly begin to describe how wrong this is. This is
7802 * so broken as to be worse than useless. The API draft
7803 * REALLY is NOT helpful here... I am not convinced that the
7804 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP
7805 * are at all well-founded.
7806 */
7807 if (level != SOL_SCTP) {
7808 struct sctp_af *af = sctp_sk(sk)->pf->af;
7809
7810 retval = af->getsockopt(sk, level, optname, optval, optlen);
7811 return retval;
7812 }
7813
7814 if (get_user(len, optlen))
7815 return -EFAULT;
7816
7817 if (len < 0)
7818 return -EINVAL;
7819
7820 lock_sock(sk);
7821
7822 switch (optname) {
7823 case SCTP_STATUS:
7824 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen);
7825 break;
7826 case SCTP_DISABLE_FRAGMENTS:
7827 retval = sctp_getsockopt_disable_fragments(sk, len, optval,
7828 optlen);
7829 break;
7830 case SCTP_EVENTS:
7831 retval = sctp_getsockopt_events(sk, len, optval, optlen);
7832 break;
7833 case SCTP_AUTOCLOSE:
7834 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen);
7835 break;
7836 case SCTP_SOCKOPT_PEELOFF:
7837 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen);
7838 break;
7839 case SCTP_SOCKOPT_PEELOFF_FLAGS:
7840 retval = sctp_getsockopt_peeloff_flags(sk, len, optval, optlen);
7841 break;
7842 case SCTP_PEER_ADDR_PARAMS:
7843 retval = sctp_getsockopt_peer_addr_params(sk, len, optval,
7844 optlen);
7845 break;
7846 case SCTP_DELAYED_SACK:
7847 retval = sctp_getsockopt_delayed_ack(sk, len, optval,
7848 optlen);
7849 break;
7850 case SCTP_INITMSG:
7851 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen);
7852 break;
7853 case SCTP_GET_PEER_ADDRS:
7854 retval = sctp_getsockopt_peer_addrs(sk, len, optval,
7855 optlen);
7856 break;
7857 case SCTP_GET_LOCAL_ADDRS:
7858 retval = sctp_getsockopt_local_addrs(sk, len, optval,
7859 optlen);
7860 break;
7861 case SCTP_SOCKOPT_CONNECTX3:
7862 retval = sctp_getsockopt_connectx3(sk, len, optval, optlen);
7863 break;
7864 case SCTP_DEFAULT_SEND_PARAM:
7865 retval = sctp_getsockopt_default_send_param(sk, len,
7866 optval, optlen);
7867 break;
7868 case SCTP_DEFAULT_SNDINFO:
7869 retval = sctp_getsockopt_default_sndinfo(sk, len,
7870 optval, optlen);
7871 break;
7872 case SCTP_PRIMARY_ADDR:
7873 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen);
7874 break;
7875 case SCTP_NODELAY:
7876 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen);
7877 break;
7878 case SCTP_RTOINFO:
7879 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen);
7880 break;
7881 case SCTP_ASSOCINFO:
7882 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen);
7883 break;
7884 case SCTP_I_WANT_MAPPED_V4_ADDR:
7885 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen);
7886 break;
7887 case SCTP_MAXSEG:
7888 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen);
7889 break;
7890 case SCTP_GET_PEER_ADDR_INFO:
7891 retval = sctp_getsockopt_peer_addr_info(sk, len, optval,
7892 optlen);
7893 break;
7894 case SCTP_ADAPTATION_LAYER:
7895 retval = sctp_getsockopt_adaptation_layer(sk, len, optval,
7896 optlen);
7897 break;
7898 case SCTP_CONTEXT:
7899 retval = sctp_getsockopt_context(sk, len, optval, optlen);
7900 break;
7901 case SCTP_FRAGMENT_INTERLEAVE:
7902 retval = sctp_getsockopt_fragment_interleave(sk, len, optval,
7903 optlen);
7904 break;
7905 case SCTP_PARTIAL_DELIVERY_POINT:
7906 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval,
7907 optlen);
7908 break;
7909 case SCTP_MAX_BURST:
7910 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen);
7911 break;
7912 case SCTP_AUTH_KEY:
7913 case SCTP_AUTH_CHUNK:
7914 case SCTP_AUTH_DELETE_KEY:
7915 case SCTP_AUTH_DEACTIVATE_KEY:
7916 retval = -EOPNOTSUPP;
7917 break;
7918 case SCTP_HMAC_IDENT:
7919 retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen);
7920 break;
7921 case SCTP_AUTH_ACTIVE_KEY:
7922 retval = sctp_getsockopt_active_key(sk, len, optval, optlen);
7923 break;
7924 case SCTP_PEER_AUTH_CHUNKS:
7925 retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval,
7926 optlen);
7927 break;
7928 case SCTP_LOCAL_AUTH_CHUNKS:
7929 retval = sctp_getsockopt_local_auth_chunks(sk, len, optval,
7930 optlen);
7931 break;
7932 case SCTP_GET_ASSOC_NUMBER:
7933 retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen);
7934 break;
7935 case SCTP_GET_ASSOC_ID_LIST:
7936 retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen);
7937 break;
7938 case SCTP_AUTO_ASCONF:
7939 retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen);
7940 break;
7941 case SCTP_PEER_ADDR_THLDS:
7942 retval = sctp_getsockopt_paddr_thresholds(sk, optval, len,
7943 optlen, false);
7944 break;
7945 case SCTP_PEER_ADDR_THLDS_V2:
7946 retval = sctp_getsockopt_paddr_thresholds(sk, optval, len,
7947 optlen, true);
7948 break;
7949 case SCTP_GET_ASSOC_STATS:
7950 retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen);
7951 break;
7952 case SCTP_RECVRCVINFO:
7953 retval = sctp_getsockopt_recvrcvinfo(sk, len, optval, optlen);
7954 break;
7955 case SCTP_RECVNXTINFO:
7956 retval = sctp_getsockopt_recvnxtinfo(sk, len, optval, optlen);
7957 break;
7958 case SCTP_PR_SUPPORTED:
7959 retval = sctp_getsockopt_pr_supported(sk, len, optval, optlen);
7960 break;
7961 case SCTP_DEFAULT_PRINFO:
7962 retval = sctp_getsockopt_default_prinfo(sk, len, optval,
7963 optlen);
7964 break;
7965 case SCTP_PR_ASSOC_STATUS:
7966 retval = sctp_getsockopt_pr_assocstatus(sk, len, optval,
7967 optlen);
7968 break;
7969 case SCTP_PR_STREAM_STATUS:
7970 retval = sctp_getsockopt_pr_streamstatus(sk, len, optval,
7971 optlen);
7972 break;
7973 case SCTP_RECONFIG_SUPPORTED:
7974 retval = sctp_getsockopt_reconfig_supported(sk, len, optval,
7975 optlen);
7976 break;
7977 case SCTP_ENABLE_STREAM_RESET:
7978 retval = sctp_getsockopt_enable_strreset(sk, len, optval,
7979 optlen);
7980 break;
7981 case SCTP_STREAM_SCHEDULER:
7982 retval = sctp_getsockopt_scheduler(sk, len, optval,
7983 optlen);
7984 break;
7985 case SCTP_STREAM_SCHEDULER_VALUE:
7986 retval = sctp_getsockopt_scheduler_value(sk, len, optval,
7987 optlen);
7988 break;
7989 case SCTP_INTERLEAVING_SUPPORTED:
7990 retval = sctp_getsockopt_interleaving_supported(sk, len, optval,
7991 optlen);
7992 break;
7993 case SCTP_REUSE_PORT:
7994 retval = sctp_getsockopt_reuse_port(sk, len, optval, optlen);
7995 break;
7996 case SCTP_EVENT:
7997 retval = sctp_getsockopt_event(sk, len, optval, optlen);
7998 break;
7999 case SCTP_ASCONF_SUPPORTED:
8000 retval = sctp_getsockopt_asconf_supported(sk, len, optval,
8001 optlen);
8002 break;
8003 case SCTP_AUTH_SUPPORTED:
8004 retval = sctp_getsockopt_auth_supported(sk, len, optval,
8005 optlen);
8006 break;
8007 case SCTP_ECN_SUPPORTED:
8008 retval = sctp_getsockopt_ecn_supported(sk, len, optval, optlen);
8009 break;
8010 case SCTP_EXPOSE_POTENTIALLY_FAILED_STATE:
8011 retval = sctp_getsockopt_pf_expose(sk, len, optval, optlen);
8012 break;
8013 default:
8014 retval = -ENOPROTOOPT;
8015 break;
8016 }
8017
8018 release_sock(sk);
8019 return retval;
8020}
8021
8022static int sctp_hash(struct sock *sk)
8023{
8024 /* STUB */
8025 return 0;
8026}
8027
8028static void sctp_unhash(struct sock *sk)
8029{
8030 /* STUB */
8031}
8032
8033/* Check if port is acceptable. Possibly find first available port.
8034 *
8035 * The port hash table (contained in the 'global' SCTP protocol storage
8036 * returned by struct sctp_protocol *sctp_get_protocol()). The hash
8037 * table is an array of 4096 lists (sctp_bind_hashbucket). Each
8038 * list (the list number is the port number hashed out, so as you
8039 * would expect from a hash function, all the ports in a given list have
8040 * such a number that hashes out to the same list number; you were
8041 * expecting that, right?); so each list has a set of ports, with a
8042 * link to the socket (struct sock) that uses it, the port number and
8043 * a fastreuse flag (FIXME: NPI ipg).
8044 */
8045static struct sctp_bind_bucket *sctp_bucket_create(
8046 struct sctp_bind_hashbucket *head, struct net *, unsigned short snum);
8047
8048static int sctp_get_port_local(struct sock *sk, union sctp_addr *addr)
8049{
8050 struct sctp_sock *sp = sctp_sk(sk);
8051 bool reuse = (sk->sk_reuse || sp->reuse);
8052 struct sctp_bind_hashbucket *head; /* hash list */
8053 struct net *net = sock_net(sk);
8054 kuid_t uid = sock_i_uid(sk);
8055 struct sctp_bind_bucket *pp;
8056 unsigned short snum;
8057 int ret;
8058
8059 snum = ntohs(addr->v4.sin_port);
8060
8061 pr_debug("%s: begins, snum:%d\n", __func__, snum);
8062
8063 if (snum == 0) {
8064 /* Search for an available port. */
8065 int low, high, remaining, index;
8066 unsigned int rover;
8067
8068 inet_get_local_port_range(net, &low, &high);
8069 remaining = (high - low) + 1;
8070 rover = prandom_u32() % remaining + low;
8071
8072 do {
8073 rover++;
8074 if ((rover < low) || (rover > high))
8075 rover = low;
8076 if (inet_is_local_reserved_port(net, rover))
8077 continue;
8078 index = sctp_phashfn(net, rover);
8079 head = &sctp_port_hashtable[index];
8080 spin_lock_bh(&head->lock);
8081 sctp_for_each_hentry(pp, &head->chain)
8082 if ((pp->port == rover) &&
8083 net_eq(net, pp->net))
8084 goto next;
8085 break;
8086 next:
8087 spin_unlock_bh(&head->lock);
8088 cond_resched();
8089 } while (--remaining > 0);
8090
8091 /* Exhausted local port range during search? */
8092 ret = 1;
8093 if (remaining <= 0)
8094 return ret;
8095
8096 /* OK, here is the one we will use. HEAD (the port
8097 * hash table list entry) is non-NULL and we hold it's
8098 * mutex.
8099 */
8100 snum = rover;
8101 } else {
8102 /* We are given an specific port number; we verify
8103 * that it is not being used. If it is used, we will
8104 * exahust the search in the hash list corresponding
8105 * to the port number (snum) - we detect that with the
8106 * port iterator, pp being NULL.
8107 */
8108 head = &sctp_port_hashtable[sctp_phashfn(net, snum)];
8109 spin_lock_bh(&head->lock);
8110 sctp_for_each_hentry(pp, &head->chain) {
8111 if ((pp->port == snum) && net_eq(pp->net, net))
8112 goto pp_found;
8113 }
8114 }
8115 pp = NULL;
8116 goto pp_not_found;
8117pp_found:
8118 if (!hlist_empty(&pp->owner)) {
8119 /* We had a port hash table hit - there is an
8120 * available port (pp != NULL) and it is being
8121 * used by other socket (pp->owner not empty); that other
8122 * socket is going to be sk2.
8123 */
8124 struct sock *sk2;
8125
8126 pr_debug("%s: found a possible match\n", __func__);
8127
8128 if ((pp->fastreuse && reuse &&
8129 sk->sk_state != SCTP_SS_LISTENING) ||
8130 (pp->fastreuseport && sk->sk_reuseport &&
8131 uid_eq(pp->fastuid, uid)))
8132 goto success;
8133
8134 /* Run through the list of sockets bound to the port
8135 * (pp->port) [via the pointers bind_next and
8136 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one,
8137 * we get the endpoint they describe and run through
8138 * the endpoint's list of IP (v4 or v6) addresses,
8139 * comparing each of the addresses with the address of
8140 * the socket sk. If we find a match, then that means
8141 * that this port/socket (sk) combination are already
8142 * in an endpoint.
8143 */
8144 sk_for_each_bound(sk2, &pp->owner) {
8145 struct sctp_sock *sp2 = sctp_sk(sk2);
8146 struct sctp_endpoint *ep2 = sp2->ep;
8147
8148 if (sk == sk2 ||
8149 (reuse && (sk2->sk_reuse || sp2->reuse) &&
8150 sk2->sk_state != SCTP_SS_LISTENING) ||
8151 (sk->sk_reuseport && sk2->sk_reuseport &&
8152 uid_eq(uid, sock_i_uid(sk2))))
8153 continue;
8154
8155 if (sctp_bind_addr_conflict(&ep2->base.bind_addr,
8156 addr, sp2, sp)) {
8157 ret = 1;
8158 goto fail_unlock;
8159 }
8160 }
8161
8162 pr_debug("%s: found a match\n", __func__);
8163 }
8164pp_not_found:
8165 /* If there was a hash table miss, create a new port. */
8166 ret = 1;
8167 if (!pp && !(pp = sctp_bucket_create(head, net, snum)))
8168 goto fail_unlock;
8169
8170 /* In either case (hit or miss), make sure fastreuse is 1 only
8171 * if sk->sk_reuse is too (that is, if the caller requested
8172 * SO_REUSEADDR on this socket -sk-).
8173 */
8174 if (hlist_empty(&pp->owner)) {
8175 if (reuse && sk->sk_state != SCTP_SS_LISTENING)
8176 pp->fastreuse = 1;
8177 else
8178 pp->fastreuse = 0;
8179
8180 if (sk->sk_reuseport) {
8181 pp->fastreuseport = 1;
8182 pp->fastuid = uid;
8183 } else {
8184 pp->fastreuseport = 0;
8185 }
8186 } else {
8187 if (pp->fastreuse &&
8188 (!reuse || sk->sk_state == SCTP_SS_LISTENING))
8189 pp->fastreuse = 0;
8190
8191 if (pp->fastreuseport &&
8192 (!sk->sk_reuseport || !uid_eq(pp->fastuid, uid)))
8193 pp->fastreuseport = 0;
8194 }
8195
8196 /* We are set, so fill up all the data in the hash table
8197 * entry, tie the socket list information with the rest of the
8198 * sockets FIXME: Blurry, NPI (ipg).
8199 */
8200success:
8201 if (!sp->bind_hash) {
8202 inet_sk(sk)->inet_num = snum;
8203 sk_add_bind_node(sk, &pp->owner);
8204 sp->bind_hash = pp;
8205 }
8206 ret = 0;
8207
8208fail_unlock:
8209 spin_unlock_bh(&head->lock);
8210 return ret;
8211}
8212
8213/* Assign a 'snum' port to the socket. If snum == 0, an ephemeral
8214 * port is requested.
8215 */
8216static int sctp_get_port(struct sock *sk, unsigned short snum)
8217{
8218 union sctp_addr addr;
8219 struct sctp_af *af = sctp_sk(sk)->pf->af;
8220
8221 /* Set up a dummy address struct from the sk. */
8222 af->from_sk(&addr, sk);
8223 addr.v4.sin_port = htons(snum);
8224
8225 /* Note: sk->sk_num gets filled in if ephemeral port request. */
8226 return sctp_get_port_local(sk, &addr);
8227}
8228
8229/*
8230 * Move a socket to LISTENING state.
8231 */
8232static int sctp_listen_start(struct sock *sk, int backlog)
8233{
8234 struct sctp_sock *sp = sctp_sk(sk);
8235 struct sctp_endpoint *ep = sp->ep;
8236 struct crypto_shash *tfm = NULL;
8237 char alg[32];
8238
8239 /* Allocate HMAC for generating cookie. */
8240 if (!sp->hmac && sp->sctp_hmac_alg) {
8241 sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg);
8242 tfm = crypto_alloc_shash(alg, 0, 0);
8243 if (IS_ERR(tfm)) {
8244 net_info_ratelimited("failed to load transform for %s: %ld\n",
8245 sp->sctp_hmac_alg, PTR_ERR(tfm));
8246 return -ENOSYS;
8247 }
8248 sctp_sk(sk)->hmac = tfm;
8249 }
8250
8251 /*
8252 * If a bind() or sctp_bindx() is not called prior to a listen()
8253 * call that allows new associations to be accepted, the system
8254 * picks an ephemeral port and will choose an address set equivalent
8255 * to binding with a wildcard address.
8256 *
8257 * This is not currently spelled out in the SCTP sockets
8258 * extensions draft, but follows the practice as seen in TCP
8259 * sockets.
8260 *
8261 */
8262 inet_sk_set_state(sk, SCTP_SS_LISTENING);
8263 if (!ep->base.bind_addr.port) {
8264 if (sctp_autobind(sk))
8265 return -EAGAIN;
8266 } else {
8267 if (sctp_get_port(sk, inet_sk(sk)->inet_num)) {
8268 inet_sk_set_state(sk, SCTP_SS_CLOSED);
8269 return -EADDRINUSE;
8270 }
8271 }
8272
8273 WRITE_ONCE(sk->sk_max_ack_backlog, backlog);
8274 return sctp_hash_endpoint(ep);
8275}
8276
8277/*
8278 * 4.1.3 / 5.1.3 listen()
8279 *
8280 * By default, new associations are not accepted for UDP style sockets.
8281 * An application uses listen() to mark a socket as being able to
8282 * accept new associations.
8283 *
8284 * On TCP style sockets, applications use listen() to ready the SCTP
8285 * endpoint for accepting inbound associations.
8286 *
8287 * On both types of endpoints a backlog of '0' disables listening.
8288 *
8289 * Move a socket to LISTENING state.
8290 */
8291int sctp_inet_listen(struct socket *sock, int backlog)
8292{
8293 struct sock *sk = sock->sk;
8294 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
8295 int err = -EINVAL;
8296
8297 if (unlikely(backlog < 0))
8298 return err;
8299
8300 lock_sock(sk);
8301
8302 /* Peeled-off sockets are not allowed to listen(). */
8303 if (sctp_style(sk, UDP_HIGH_BANDWIDTH))
8304 goto out;
8305
8306 if (sock->state != SS_UNCONNECTED)
8307 goto out;
8308
8309 if (!sctp_sstate(sk, LISTENING) && !sctp_sstate(sk, CLOSED))
8310 goto out;
8311
8312 /* If backlog is zero, disable listening. */
8313 if (!backlog) {
8314 if (sctp_sstate(sk, CLOSED))
8315 goto out;
8316
8317 err = 0;
8318 sctp_unhash_endpoint(ep);
8319 sk->sk_state = SCTP_SS_CLOSED;
8320 if (sk->sk_reuse || sctp_sk(sk)->reuse)
8321 sctp_sk(sk)->bind_hash->fastreuse = 1;
8322 goto out;
8323 }
8324
8325 /* If we are already listening, just update the backlog */
8326 if (sctp_sstate(sk, LISTENING))
8327 WRITE_ONCE(sk->sk_max_ack_backlog, backlog);
8328 else {
8329 err = sctp_listen_start(sk, backlog);
8330 if (err)
8331 goto out;
8332 }
8333
8334 err = 0;
8335out:
8336 release_sock(sk);
8337 return err;
8338}
8339
8340/*
8341 * This function is done by modeling the current datagram_poll() and the
8342 * tcp_poll(). Note that, based on these implementations, we don't
8343 * lock the socket in this function, even though it seems that,
8344 * ideally, locking or some other mechanisms can be used to ensure
8345 * the integrity of the counters (sndbuf and wmem_alloc) used
8346 * in this place. We assume that we don't need locks either until proven
8347 * otherwise.
8348 *
8349 * Another thing to note is that we include the Async I/O support
8350 * here, again, by modeling the current TCP/UDP code. We don't have
8351 * a good way to test with it yet.
8352 */
8353__poll_t sctp_poll(struct file *file, struct socket *sock, poll_table *wait)
8354{
8355 struct sock *sk = sock->sk;
8356 struct sctp_sock *sp = sctp_sk(sk);
8357 __poll_t mask;
8358
8359 poll_wait(file, sk_sleep(sk), wait);
8360
8361 sock_rps_record_flow(sk);
8362
8363 /* A TCP-style listening socket becomes readable when the accept queue
8364 * is not empty.
8365 */
8366 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
8367 return (!list_empty(&sp->ep->asocs)) ?
8368 (EPOLLIN | EPOLLRDNORM) : 0;
8369
8370 mask = 0;
8371
8372 /* Is there any exceptional events? */
8373 if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue))
8374 mask |= EPOLLERR |
8375 (sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? EPOLLPRI : 0);
8376 if (sk->sk_shutdown & RCV_SHUTDOWN)
8377 mask |= EPOLLRDHUP | EPOLLIN | EPOLLRDNORM;
8378 if (sk->sk_shutdown == SHUTDOWN_MASK)
8379 mask |= EPOLLHUP;
8380
8381 /* Is it readable? Reconsider this code with TCP-style support. */
8382 if (!skb_queue_empty_lockless(&sk->sk_receive_queue))
8383 mask |= EPOLLIN | EPOLLRDNORM;
8384
8385 /* The association is either gone or not ready. */
8386 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED))
8387 return mask;
8388
8389 /* Is it writable? */
8390 if (sctp_writeable(sk)) {
8391 mask |= EPOLLOUT | EPOLLWRNORM;
8392 } else {
8393 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
8394 /*
8395 * Since the socket is not locked, the buffer
8396 * might be made available after the writeable check and
8397 * before the bit is set. This could cause a lost I/O
8398 * signal. tcp_poll() has a race breaker for this race
8399 * condition. Based on their implementation, we put
8400 * in the following code to cover it as well.
8401 */
8402 if (sctp_writeable(sk))
8403 mask |= EPOLLOUT | EPOLLWRNORM;
8404 }
8405 return mask;
8406}
8407
8408/********************************************************************
8409 * 2nd Level Abstractions
8410 ********************************************************************/
8411
8412static struct sctp_bind_bucket *sctp_bucket_create(
8413 struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum)
8414{
8415 struct sctp_bind_bucket *pp;
8416
8417 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC);
8418 if (pp) {
8419 SCTP_DBG_OBJCNT_INC(bind_bucket);
8420 pp->port = snum;
8421 pp->fastreuse = 0;
8422 INIT_HLIST_HEAD(&pp->owner);
8423 pp->net = net;
8424 hlist_add_head(&pp->node, &head->chain);
8425 }
8426 return pp;
8427}
8428
8429/* Caller must hold hashbucket lock for this tb with local BH disabled */
8430static void sctp_bucket_destroy(struct sctp_bind_bucket *pp)
8431{
8432 if (pp && hlist_empty(&pp->owner)) {
8433 __hlist_del(&pp->node);
8434 kmem_cache_free(sctp_bucket_cachep, pp);
8435 SCTP_DBG_OBJCNT_DEC(bind_bucket);
8436 }
8437}
8438
8439/* Release this socket's reference to a local port. */
8440static inline void __sctp_put_port(struct sock *sk)
8441{
8442 struct sctp_bind_hashbucket *head =
8443 &sctp_port_hashtable[sctp_phashfn(sock_net(sk),
8444 inet_sk(sk)->inet_num)];
8445 struct sctp_bind_bucket *pp;
8446
8447 spin_lock(&head->lock);
8448 pp = sctp_sk(sk)->bind_hash;
8449 __sk_del_bind_node(sk);
8450 sctp_sk(sk)->bind_hash = NULL;
8451 inet_sk(sk)->inet_num = 0;
8452 sctp_bucket_destroy(pp);
8453 spin_unlock(&head->lock);
8454}
8455
8456void sctp_put_port(struct sock *sk)
8457{
8458 local_bh_disable();
8459 __sctp_put_port(sk);
8460 local_bh_enable();
8461}
8462
8463/*
8464 * The system picks an ephemeral port and choose an address set equivalent
8465 * to binding with a wildcard address.
8466 * One of those addresses will be the primary address for the association.
8467 * This automatically enables the multihoming capability of SCTP.
8468 */
8469static int sctp_autobind(struct sock *sk)
8470{
8471 union sctp_addr autoaddr;
8472 struct sctp_af *af;
8473 __be16 port;
8474
8475 /* Initialize a local sockaddr structure to INADDR_ANY. */
8476 af = sctp_sk(sk)->pf->af;
8477
8478 port = htons(inet_sk(sk)->inet_num);
8479 af->inaddr_any(&autoaddr, port);
8480
8481 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len);
8482}
8483
8484/* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation.
8485 *
8486 * From RFC 2292
8487 * 4.2 The cmsghdr Structure *
8488 *
8489 * When ancillary data is sent or received, any number of ancillary data
8490 * objects can be specified by the msg_control and msg_controllen members of
8491 * the msghdr structure, because each object is preceded by
8492 * a cmsghdr structure defining the object's length (the cmsg_len member).
8493 * Historically Berkeley-derived implementations have passed only one object
8494 * at a time, but this API allows multiple objects to be
8495 * passed in a single call to sendmsg() or recvmsg(). The following example
8496 * shows two ancillary data objects in a control buffer.
8497 *
8498 * |<--------------------------- msg_controllen -------------------------->|
8499 * | |
8500 *
8501 * |<----- ancillary data object ----->|<----- ancillary data object ----->|
8502 *
8503 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->|
8504 * | | |
8505 *
8506 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| |
8507 *
8508 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| |
8509 * | | | | |
8510 *
8511 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
8512 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX|
8513 *
8514 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX|
8515 *
8516 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
8517 * ^
8518 * |
8519 *
8520 * msg_control
8521 * points here
8522 */
8523static int sctp_msghdr_parse(const struct msghdr *msg, struct sctp_cmsgs *cmsgs)
8524{
8525 struct msghdr *my_msg = (struct msghdr *)msg;
8526 struct cmsghdr *cmsg;
8527
8528 for_each_cmsghdr(cmsg, my_msg) {
8529 if (!CMSG_OK(my_msg, cmsg))
8530 return -EINVAL;
8531
8532 /* Should we parse this header or ignore? */
8533 if (cmsg->cmsg_level != IPPROTO_SCTP)
8534 continue;
8535
8536 /* Strictly check lengths following example in SCM code. */
8537 switch (cmsg->cmsg_type) {
8538 case SCTP_INIT:
8539 /* SCTP Socket API Extension
8540 * 5.3.1 SCTP Initiation Structure (SCTP_INIT)
8541 *
8542 * This cmsghdr structure provides information for
8543 * initializing new SCTP associations with sendmsg().
8544 * The SCTP_INITMSG socket option uses this same data
8545 * structure. This structure is not used for
8546 * recvmsg().
8547 *
8548 * cmsg_level cmsg_type cmsg_data[]
8549 * ------------ ------------ ----------------------
8550 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg
8551 */
8552 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_initmsg)))
8553 return -EINVAL;
8554
8555 cmsgs->init = CMSG_DATA(cmsg);
8556 break;
8557
8558 case SCTP_SNDRCV:
8559 /* SCTP Socket API Extension
8560 * 5.3.2 SCTP Header Information Structure(SCTP_SNDRCV)
8561 *
8562 * This cmsghdr structure specifies SCTP options for
8563 * sendmsg() and describes SCTP header information
8564 * about a received message through recvmsg().
8565 *
8566 * cmsg_level cmsg_type cmsg_data[]
8567 * ------------ ------------ ----------------------
8568 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo
8569 */
8570 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndrcvinfo)))
8571 return -EINVAL;
8572
8573 cmsgs->srinfo = CMSG_DATA(cmsg);
8574
8575 if (cmsgs->srinfo->sinfo_flags &
8576 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
8577 SCTP_SACK_IMMEDIATELY | SCTP_SENDALL |
8578 SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF))
8579 return -EINVAL;
8580 break;
8581
8582 case SCTP_SNDINFO:
8583 /* SCTP Socket API Extension
8584 * 5.3.4 SCTP Send Information Structure (SCTP_SNDINFO)
8585 *
8586 * This cmsghdr structure specifies SCTP options for
8587 * sendmsg(). This structure and SCTP_RCVINFO replaces
8588 * SCTP_SNDRCV which has been deprecated.
8589 *
8590 * cmsg_level cmsg_type cmsg_data[]
8591 * ------------ ------------ ---------------------
8592 * IPPROTO_SCTP SCTP_SNDINFO struct sctp_sndinfo
8593 */
8594 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndinfo)))
8595 return -EINVAL;
8596
8597 cmsgs->sinfo = CMSG_DATA(cmsg);
8598
8599 if (cmsgs->sinfo->snd_flags &
8600 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
8601 SCTP_SACK_IMMEDIATELY | SCTP_SENDALL |
8602 SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF))
8603 return -EINVAL;
8604 break;
8605 case SCTP_PRINFO:
8606 /* SCTP Socket API Extension
8607 * 5.3.7 SCTP PR-SCTP Information Structure (SCTP_PRINFO)
8608 *
8609 * This cmsghdr structure specifies SCTP options for sendmsg().
8610 *
8611 * cmsg_level cmsg_type cmsg_data[]
8612 * ------------ ------------ ---------------------
8613 * IPPROTO_SCTP SCTP_PRINFO struct sctp_prinfo
8614 */
8615 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_prinfo)))
8616 return -EINVAL;
8617
8618 cmsgs->prinfo = CMSG_DATA(cmsg);
8619 if (cmsgs->prinfo->pr_policy & ~SCTP_PR_SCTP_MASK)
8620 return -EINVAL;
8621
8622 if (cmsgs->prinfo->pr_policy == SCTP_PR_SCTP_NONE)
8623 cmsgs->prinfo->pr_value = 0;
8624 break;
8625 case SCTP_AUTHINFO:
8626 /* SCTP Socket API Extension
8627 * 5.3.8 SCTP AUTH Information Structure (SCTP_AUTHINFO)
8628 *
8629 * This cmsghdr structure specifies SCTP options for sendmsg().
8630 *
8631 * cmsg_level cmsg_type cmsg_data[]
8632 * ------------ ------------ ---------------------
8633 * IPPROTO_SCTP SCTP_AUTHINFO struct sctp_authinfo
8634 */
8635 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_authinfo)))
8636 return -EINVAL;
8637
8638 cmsgs->authinfo = CMSG_DATA(cmsg);
8639 break;
8640 case SCTP_DSTADDRV4:
8641 case SCTP_DSTADDRV6:
8642 /* SCTP Socket API Extension
8643 * 5.3.9/10 SCTP Destination IPv4/6 Address Structure (SCTP_DSTADDRV4/6)
8644 *
8645 * This cmsghdr structure specifies SCTP options for sendmsg().
8646 *
8647 * cmsg_level cmsg_type cmsg_data[]
8648 * ------------ ------------ ---------------------
8649 * IPPROTO_SCTP SCTP_DSTADDRV4 struct in_addr
8650 * ------------ ------------ ---------------------
8651 * IPPROTO_SCTP SCTP_DSTADDRV6 struct in6_addr
8652 */
8653 cmsgs->addrs_msg = my_msg;
8654 break;
8655 default:
8656 return -EINVAL;
8657 }
8658 }
8659
8660 return 0;
8661}
8662
8663/*
8664 * Wait for a packet..
8665 * Note: This function is the same function as in core/datagram.c
8666 * with a few modifications to make lksctp work.
8667 */
8668static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p)
8669{
8670 int error;
8671 DEFINE_WAIT(wait);
8672
8673 prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
8674
8675 /* Socket errors? */
8676 error = sock_error(sk);
8677 if (error)
8678 goto out;
8679
8680 if (!skb_queue_empty(&sk->sk_receive_queue))
8681 goto ready;
8682
8683 /* Socket shut down? */
8684 if (sk->sk_shutdown & RCV_SHUTDOWN)
8685 goto out;
8686
8687 /* Sequenced packets can come disconnected. If so we report the
8688 * problem.
8689 */
8690 error = -ENOTCONN;
8691
8692 /* Is there a good reason to think that we may receive some data? */
8693 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING))
8694 goto out;
8695
8696 /* Handle signals. */
8697 if (signal_pending(current))
8698 goto interrupted;
8699
8700 /* Let another process have a go. Since we are going to sleep
8701 * anyway. Note: This may cause odd behaviors if the message
8702 * does not fit in the user's buffer, but this seems to be the
8703 * only way to honor MSG_DONTWAIT realistically.
8704 */
8705 release_sock(sk);
8706 *timeo_p = schedule_timeout(*timeo_p);
8707 lock_sock(sk);
8708
8709ready:
8710 finish_wait(sk_sleep(sk), &wait);
8711 return 0;
8712
8713interrupted:
8714 error = sock_intr_errno(*timeo_p);
8715
8716out:
8717 finish_wait(sk_sleep(sk), &wait);
8718 *err = error;
8719 return error;
8720}
8721
8722/* Receive a datagram.
8723 * Note: This is pretty much the same routine as in core/datagram.c
8724 * with a few changes to make lksctp work.
8725 */
8726struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags,
8727 int noblock, int *err)
8728{
8729 int error;
8730 struct sk_buff *skb;
8731 long timeo;
8732
8733 timeo = sock_rcvtimeo(sk, noblock);
8734
8735 pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo,
8736 MAX_SCHEDULE_TIMEOUT);
8737
8738 do {
8739 /* Again only user level code calls this function,
8740 * so nothing interrupt level
8741 * will suddenly eat the receive_queue.
8742 *
8743 * Look at current nfs client by the way...
8744 * However, this function was correct in any case. 8)
8745 */
8746 if (flags & MSG_PEEK) {
8747 skb = skb_peek(&sk->sk_receive_queue);
8748 if (skb)
8749 refcount_inc(&skb->users);
8750 } else {
8751 skb = __skb_dequeue(&sk->sk_receive_queue);
8752 }
8753
8754 if (skb)
8755 return skb;
8756
8757 /* Caller is allowed not to check sk->sk_err before calling. */
8758 error = sock_error(sk);
8759 if (error)
8760 goto no_packet;
8761
8762 if (sk->sk_shutdown & RCV_SHUTDOWN)
8763 break;
8764
8765 if (sk_can_busy_loop(sk)) {
8766 sk_busy_loop(sk, noblock);
8767
8768 if (!skb_queue_empty_lockless(&sk->sk_receive_queue))
8769 continue;
8770 }
8771
8772 /* User doesn't want to wait. */
8773 error = -EAGAIN;
8774 if (!timeo)
8775 goto no_packet;
8776 } while (sctp_wait_for_packet(sk, err, &timeo) == 0);
8777
8778 return NULL;
8779
8780no_packet:
8781 *err = error;
8782 return NULL;
8783}
8784
8785/* If sndbuf has changed, wake up per association sndbuf waiters. */
8786static void __sctp_write_space(struct sctp_association *asoc)
8787{
8788 struct sock *sk = asoc->base.sk;
8789
8790 if (sctp_wspace(asoc) <= 0)
8791 return;
8792
8793 if (waitqueue_active(&asoc->wait))
8794 wake_up_interruptible(&asoc->wait);
8795
8796 if (sctp_writeable(sk)) {
8797 struct socket_wq *wq;
8798
8799 rcu_read_lock();
8800 wq = rcu_dereference(sk->sk_wq);
8801 if (wq) {
8802 if (waitqueue_active(&wq->wait))
8803 wake_up_interruptible(&wq->wait);
8804
8805 /* Note that we try to include the Async I/O support
8806 * here by modeling from the current TCP/UDP code.
8807 * We have not tested with it yet.
8808 */
8809 if (!(sk->sk_shutdown & SEND_SHUTDOWN))
8810 sock_wake_async(wq, SOCK_WAKE_SPACE, POLL_OUT);
8811 }
8812 rcu_read_unlock();
8813 }
8814}
8815
8816static void sctp_wake_up_waiters(struct sock *sk,
8817 struct sctp_association *asoc)
8818{
8819 struct sctp_association *tmp = asoc;
8820
8821 /* We do accounting for the sndbuf space per association,
8822 * so we only need to wake our own association.
8823 */
8824 if (asoc->ep->sndbuf_policy)
8825 return __sctp_write_space(asoc);
8826
8827 /* If association goes down and is just flushing its
8828 * outq, then just normally notify others.
8829 */
8830 if (asoc->base.dead)
8831 return sctp_write_space(sk);
8832
8833 /* Accounting for the sndbuf space is per socket, so we
8834 * need to wake up others, try to be fair and in case of
8835 * other associations, let them have a go first instead
8836 * of just doing a sctp_write_space() call.
8837 *
8838 * Note that we reach sctp_wake_up_waiters() only when
8839 * associations free up queued chunks, thus we are under
8840 * lock and the list of associations on a socket is
8841 * guaranteed not to change.
8842 */
8843 for (tmp = list_next_entry(tmp, asocs); 1;
8844 tmp = list_next_entry(tmp, asocs)) {
8845 /* Manually skip the head element. */
8846 if (&tmp->asocs == &((sctp_sk(sk))->ep->asocs))
8847 continue;
8848 /* Wake up association. */
8849 __sctp_write_space(tmp);
8850 /* We've reached the end. */
8851 if (tmp == asoc)
8852 break;
8853 }
8854}
8855
8856/* Do accounting for the sndbuf space.
8857 * Decrement the used sndbuf space of the corresponding association by the
8858 * data size which was just transmitted(freed).
8859 */
8860static void sctp_wfree(struct sk_buff *skb)
8861{
8862 struct sctp_chunk *chunk = skb_shinfo(skb)->destructor_arg;
8863 struct sctp_association *asoc = chunk->asoc;
8864 struct sock *sk = asoc->base.sk;
8865
8866 sk_mem_uncharge(sk, skb->truesize);
8867 sk->sk_wmem_queued -= skb->truesize + sizeof(struct sctp_chunk);
8868 asoc->sndbuf_used -= skb->truesize + sizeof(struct sctp_chunk);
8869 WARN_ON(refcount_sub_and_test(sizeof(struct sctp_chunk),
8870 &sk->sk_wmem_alloc));
8871
8872 if (chunk->shkey) {
8873 struct sctp_shared_key *shkey = chunk->shkey;
8874
8875 /* refcnt == 2 and !list_empty mean after this release, it's
8876 * not being used anywhere, and it's time to notify userland
8877 * that this shkey can be freed if it's been deactivated.
8878 */
8879 if (shkey->deactivated && !list_empty(&shkey->key_list) &&
8880 refcount_read(&shkey->refcnt) == 2) {
8881 struct sctp_ulpevent *ev;
8882
8883 ev = sctp_ulpevent_make_authkey(asoc, shkey->key_id,
8884 SCTP_AUTH_FREE_KEY,
8885 GFP_KERNEL);
8886 if (ev)
8887 asoc->stream.si->enqueue_event(&asoc->ulpq, ev);
8888 }
8889 sctp_auth_shkey_release(chunk->shkey);
8890 }
8891
8892 sock_wfree(skb);
8893 sctp_wake_up_waiters(sk, asoc);
8894
8895 sctp_association_put(asoc);
8896}
8897
8898/* Do accounting for the receive space on the socket.
8899 * Accounting for the association is done in ulpevent.c
8900 * We set this as a destructor for the cloned data skbs so that
8901 * accounting is done at the correct time.
8902 */
8903void sctp_sock_rfree(struct sk_buff *skb)
8904{
8905 struct sock *sk = skb->sk;
8906 struct sctp_ulpevent *event = sctp_skb2event(skb);
8907
8908 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc);
8909
8910 /*
8911 * Mimic the behavior of sock_rfree
8912 */
8913 sk_mem_uncharge(sk, event->rmem_len);
8914}
8915
8916
8917/* Helper function to wait for space in the sndbuf. */
8918static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
8919 size_t msg_len)
8920{
8921 struct sock *sk = asoc->base.sk;
8922 long current_timeo = *timeo_p;
8923 DEFINE_WAIT(wait);
8924 int err = 0;
8925
8926 pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc,
8927 *timeo_p, msg_len);
8928
8929 /* Increment the association's refcnt. */
8930 sctp_association_hold(asoc);
8931
8932 /* Wait on the association specific sndbuf space. */
8933 for (;;) {
8934 prepare_to_wait_exclusive(&asoc->wait, &wait,
8935 TASK_INTERRUPTIBLE);
8936 if (asoc->base.dead)
8937 goto do_dead;
8938 if (!*timeo_p)
8939 goto do_nonblock;
8940 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING)
8941 goto do_error;
8942 if (signal_pending(current))
8943 goto do_interrupted;
8944 if (sk_under_memory_pressure(sk))
8945 sk_mem_reclaim(sk);
8946 if ((int)msg_len <= sctp_wspace(asoc) &&
8947 sk_wmem_schedule(sk, msg_len))
8948 break;
8949
8950 /* Let another process have a go. Since we are going
8951 * to sleep anyway.
8952 */
8953 release_sock(sk);
8954 current_timeo = schedule_timeout(current_timeo);
8955 lock_sock(sk);
8956 if (sk != asoc->base.sk)
8957 goto do_error;
8958
8959 *timeo_p = current_timeo;
8960 }
8961
8962out:
8963 finish_wait(&asoc->wait, &wait);
8964
8965 /* Release the association's refcnt. */
8966 sctp_association_put(asoc);
8967
8968 return err;
8969
8970do_dead:
8971 err = -ESRCH;
8972 goto out;
8973
8974do_error:
8975 err = -EPIPE;
8976 goto out;
8977
8978do_interrupted:
8979 err = sock_intr_errno(*timeo_p);
8980 goto out;
8981
8982do_nonblock:
8983 err = -EAGAIN;
8984 goto out;
8985}
8986
8987void sctp_data_ready(struct sock *sk)
8988{
8989 struct socket_wq *wq;
8990
8991 rcu_read_lock();
8992 wq = rcu_dereference(sk->sk_wq);
8993 if (skwq_has_sleeper(wq))
8994 wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN |
8995 EPOLLRDNORM | EPOLLRDBAND);
8996 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
8997 rcu_read_unlock();
8998}
8999
9000/* If socket sndbuf has changed, wake up all per association waiters. */
9001void sctp_write_space(struct sock *sk)
9002{
9003 struct sctp_association *asoc;
9004
9005 /* Wake up the tasks in each wait queue. */
9006 list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) {
9007 __sctp_write_space(asoc);
9008 }
9009}
9010
9011/* Is there any sndbuf space available on the socket?
9012 *
9013 * Note that sk_wmem_alloc is the sum of the send buffers on all of the
9014 * associations on the same socket. For a UDP-style socket with
9015 * multiple associations, it is possible for it to be "unwriteable"
9016 * prematurely. I assume that this is acceptable because
9017 * a premature "unwriteable" is better than an accidental "writeable" which
9018 * would cause an unwanted block under certain circumstances. For the 1-1
9019 * UDP-style sockets or TCP-style sockets, this code should work.
9020 * - Daisy
9021 */
9022static bool sctp_writeable(struct sock *sk)
9023{
9024 return sk->sk_sndbuf > sk->sk_wmem_queued;
9025}
9026
9027/* Wait for an association to go into ESTABLISHED state. If timeout is 0,
9028 * returns immediately with EINPROGRESS.
9029 */
9030static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p)
9031{
9032 struct sock *sk = asoc->base.sk;
9033 int err = 0;
9034 long current_timeo = *timeo_p;
9035 DEFINE_WAIT(wait);
9036
9037 pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p);
9038
9039 /* Increment the association's refcnt. */
9040 sctp_association_hold(asoc);
9041
9042 for (;;) {
9043 prepare_to_wait_exclusive(&asoc->wait, &wait,
9044 TASK_INTERRUPTIBLE);
9045 if (!*timeo_p)
9046 goto do_nonblock;
9047 if (sk->sk_shutdown & RCV_SHUTDOWN)
9048 break;
9049 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
9050 asoc->base.dead)
9051 goto do_error;
9052 if (signal_pending(current))
9053 goto do_interrupted;
9054
9055 if (sctp_state(asoc, ESTABLISHED))
9056 break;
9057
9058 /* Let another process have a go. Since we are going
9059 * to sleep anyway.
9060 */
9061 release_sock(sk);
9062 current_timeo = schedule_timeout(current_timeo);
9063 lock_sock(sk);
9064
9065 *timeo_p = current_timeo;
9066 }
9067
9068out:
9069 finish_wait(&asoc->wait, &wait);
9070
9071 /* Release the association's refcnt. */
9072 sctp_association_put(asoc);
9073
9074 return err;
9075
9076do_error:
9077 if (asoc->init_err_counter + 1 > asoc->max_init_attempts)
9078 err = -ETIMEDOUT;
9079 else
9080 err = -ECONNREFUSED;
9081 goto out;
9082
9083do_interrupted:
9084 err = sock_intr_errno(*timeo_p);
9085 goto out;
9086
9087do_nonblock:
9088 err = -EINPROGRESS;
9089 goto out;
9090}
9091
9092static int sctp_wait_for_accept(struct sock *sk, long timeo)
9093{
9094 struct sctp_endpoint *ep;
9095 int err = 0;
9096 DEFINE_WAIT(wait);
9097
9098 ep = sctp_sk(sk)->ep;
9099
9100
9101 for (;;) {
9102 prepare_to_wait_exclusive(sk_sleep(sk), &wait,
9103 TASK_INTERRUPTIBLE);
9104
9105 if (list_empty(&ep->asocs)) {
9106 release_sock(sk);
9107 timeo = schedule_timeout(timeo);
9108 lock_sock(sk);
9109 }
9110
9111 err = -EINVAL;
9112 if (!sctp_sstate(sk, LISTENING))
9113 break;
9114
9115 err = 0;
9116 if (!list_empty(&ep->asocs))
9117 break;
9118
9119 err = sock_intr_errno(timeo);
9120 if (signal_pending(current))
9121 break;
9122
9123 err = -EAGAIN;
9124 if (!timeo)
9125 break;
9126 }
9127
9128 finish_wait(sk_sleep(sk), &wait);
9129
9130 return err;
9131}
9132
9133static void sctp_wait_for_close(struct sock *sk, long timeout)
9134{
9135 DEFINE_WAIT(wait);
9136
9137 do {
9138 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
9139 if (list_empty(&sctp_sk(sk)->ep->asocs))
9140 break;
9141 release_sock(sk);
9142 timeout = schedule_timeout(timeout);
9143 lock_sock(sk);
9144 } while (!signal_pending(current) && timeout);
9145
9146 finish_wait(sk_sleep(sk), &wait);
9147}
9148
9149static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk)
9150{
9151 struct sk_buff *frag;
9152
9153 if (!skb->data_len)
9154 goto done;
9155
9156 /* Don't forget the fragments. */
9157 skb_walk_frags(skb, frag)
9158 sctp_skb_set_owner_r_frag(frag, sk);
9159
9160done:
9161 sctp_skb_set_owner_r(skb, sk);
9162}
9163
9164void sctp_copy_sock(struct sock *newsk, struct sock *sk,
9165 struct sctp_association *asoc)
9166{
9167 struct inet_sock *inet = inet_sk(sk);
9168 struct inet_sock *newinet;
9169 struct sctp_sock *sp = sctp_sk(sk);
9170 struct sctp_endpoint *ep = sp->ep;
9171
9172 newsk->sk_type = sk->sk_type;
9173 newsk->sk_bound_dev_if = sk->sk_bound_dev_if;
9174 newsk->sk_flags = sk->sk_flags;
9175 newsk->sk_tsflags = sk->sk_tsflags;
9176 newsk->sk_no_check_tx = sk->sk_no_check_tx;
9177 newsk->sk_no_check_rx = sk->sk_no_check_rx;
9178 newsk->sk_reuse = sk->sk_reuse;
9179 sctp_sk(newsk)->reuse = sp->reuse;
9180
9181 newsk->sk_shutdown = sk->sk_shutdown;
9182 newsk->sk_destruct = sctp_destruct_sock;
9183 newsk->sk_family = sk->sk_family;
9184 newsk->sk_protocol = IPPROTO_SCTP;
9185 newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv;
9186 newsk->sk_sndbuf = sk->sk_sndbuf;
9187 newsk->sk_rcvbuf = sk->sk_rcvbuf;
9188 newsk->sk_lingertime = sk->sk_lingertime;
9189 newsk->sk_rcvtimeo = sk->sk_rcvtimeo;
9190 newsk->sk_sndtimeo = sk->sk_sndtimeo;
9191 newsk->sk_rxhash = sk->sk_rxhash;
9192
9193 newinet = inet_sk(newsk);
9194
9195 /* Initialize sk's sport, dport, rcv_saddr and daddr for
9196 * getsockname() and getpeername()
9197 */
9198 newinet->inet_sport = inet->inet_sport;
9199 newinet->inet_saddr = inet->inet_saddr;
9200 newinet->inet_rcv_saddr = inet->inet_rcv_saddr;
9201 newinet->inet_dport = htons(asoc->peer.port);
9202 newinet->pmtudisc = inet->pmtudisc;
9203 newinet->inet_id = prandom_u32();
9204
9205 newinet->uc_ttl = inet->uc_ttl;
9206 newinet->mc_loop = 1;
9207 newinet->mc_ttl = 1;
9208 newinet->mc_index = 0;
9209 newinet->mc_list = NULL;
9210
9211 if (newsk->sk_flags & SK_FLAGS_TIMESTAMP)
9212 net_enable_timestamp();
9213
9214 /* Set newsk security attributes from orginal sk and connection
9215 * security attribute from ep.
9216 */
9217 security_sctp_sk_clone(ep, sk, newsk);
9218}
9219
9220static inline void sctp_copy_descendant(struct sock *sk_to,
9221 const struct sock *sk_from)
9222{
9223 size_t ancestor_size = sizeof(struct inet_sock);
9224
9225 ancestor_size += sk_from->sk_prot->obj_size;
9226 ancestor_size -= offsetof(struct sctp_sock, pd_lobby);
9227 __inet_sk_copy_descendant(sk_to, sk_from, ancestor_size);
9228}
9229
9230/* Populate the fields of the newsk from the oldsk and migrate the assoc
9231 * and its messages to the newsk.
9232 */
9233static int sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
9234 struct sctp_association *assoc,
9235 enum sctp_socket_type type)
9236{
9237 struct sctp_sock *oldsp = sctp_sk(oldsk);
9238 struct sctp_sock *newsp = sctp_sk(newsk);
9239 struct sctp_bind_bucket *pp; /* hash list port iterator */
9240 struct sctp_endpoint *newep = newsp->ep;
9241 struct sk_buff *skb, *tmp;
9242 struct sctp_ulpevent *event;
9243 struct sctp_bind_hashbucket *head;
9244 int err;
9245
9246 /* Migrate socket buffer sizes and all the socket level options to the
9247 * new socket.
9248 */
9249 newsk->sk_sndbuf = oldsk->sk_sndbuf;
9250 newsk->sk_rcvbuf = oldsk->sk_rcvbuf;
9251 /* Brute force copy old sctp opt. */
9252 sctp_copy_descendant(newsk, oldsk);
9253
9254 /* Restore the ep value that was overwritten with the above structure
9255 * copy.
9256 */
9257 newsp->ep = newep;
9258 newsp->hmac = NULL;
9259
9260 /* Hook this new socket in to the bind_hash list. */
9261 head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk),
9262 inet_sk(oldsk)->inet_num)];
9263 spin_lock_bh(&head->lock);
9264 pp = sctp_sk(oldsk)->bind_hash;
9265 sk_add_bind_node(newsk, &pp->owner);
9266 sctp_sk(newsk)->bind_hash = pp;
9267 inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num;
9268 spin_unlock_bh(&head->lock);
9269
9270 /* Copy the bind_addr list from the original endpoint to the new
9271 * endpoint so that we can handle restarts properly
9272 */
9273 err = sctp_bind_addr_dup(&newsp->ep->base.bind_addr,
9274 &oldsp->ep->base.bind_addr, GFP_KERNEL);
9275 if (err)
9276 return err;
9277
9278 /* New ep's auth_hmacs should be set if old ep's is set, in case
9279 * that net->sctp.auth_enable has been changed to 0 by users and
9280 * new ep's auth_hmacs couldn't be set in sctp_endpoint_init().
9281 */
9282 if (oldsp->ep->auth_hmacs) {
9283 err = sctp_auth_init_hmacs(newsp->ep, GFP_KERNEL);
9284 if (err)
9285 return err;
9286 }
9287
9288 /* Move any messages in the old socket's receive queue that are for the
9289 * peeled off association to the new socket's receive queue.
9290 */
9291 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) {
9292 event = sctp_skb2event(skb);
9293 if (event->asoc == assoc) {
9294 __skb_unlink(skb, &oldsk->sk_receive_queue);
9295 __skb_queue_tail(&newsk->sk_receive_queue, skb);
9296 sctp_skb_set_owner_r_frag(skb, newsk);
9297 }
9298 }
9299
9300 /* Clean up any messages pending delivery due to partial
9301 * delivery. Three cases:
9302 * 1) No partial deliver; no work.
9303 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby.
9304 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue.
9305 */
9306 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode);
9307
9308 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) {
9309 struct sk_buff_head *queue;
9310
9311 /* Decide which queue to move pd_lobby skbs to. */
9312 if (assoc->ulpq.pd_mode) {
9313 queue = &newsp->pd_lobby;
9314 } else
9315 queue = &newsk->sk_receive_queue;
9316
9317 /* Walk through the pd_lobby, looking for skbs that
9318 * need moved to the new socket.
9319 */
9320 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) {
9321 event = sctp_skb2event(skb);
9322 if (event->asoc == assoc) {
9323 __skb_unlink(skb, &oldsp->pd_lobby);
9324 __skb_queue_tail(queue, skb);
9325 sctp_skb_set_owner_r_frag(skb, newsk);
9326 }
9327 }
9328
9329 /* Clear up any skbs waiting for the partial
9330 * delivery to finish.
9331 */
9332 if (assoc->ulpq.pd_mode)
9333 sctp_clear_pd(oldsk, NULL);
9334
9335 }
9336
9337 sctp_for_each_rx_skb(assoc, newsk, sctp_skb_set_owner_r_frag);
9338
9339 /* Set the type of socket to indicate that it is peeled off from the
9340 * original UDP-style socket or created with the accept() call on a
9341 * TCP-style socket..
9342 */
9343 newsp->type = type;
9344
9345 /* Mark the new socket "in-use" by the user so that any packets
9346 * that may arrive on the association after we've moved it are
9347 * queued to the backlog. This prevents a potential race between
9348 * backlog processing on the old socket and new-packet processing
9349 * on the new socket.
9350 *
9351 * The caller has just allocated newsk so we can guarantee that other
9352 * paths won't try to lock it and then oldsk.
9353 */
9354 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING);
9355 sctp_for_each_tx_datachunk(assoc, true, sctp_clear_owner_w);
9356 sctp_assoc_migrate(assoc, newsk);
9357 sctp_for_each_tx_datachunk(assoc, false, sctp_set_owner_w);
9358
9359 /* If the association on the newsk is already closed before accept()
9360 * is called, set RCV_SHUTDOWN flag.
9361 */
9362 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) {
9363 inet_sk_set_state(newsk, SCTP_SS_CLOSED);
9364 newsk->sk_shutdown |= RCV_SHUTDOWN;
9365 } else {
9366 inet_sk_set_state(newsk, SCTP_SS_ESTABLISHED);
9367 }
9368
9369 release_sock(newsk);
9370
9371 return 0;
9372}
9373
9374
9375/* This proto struct describes the ULP interface for SCTP. */
9376struct proto sctp_prot = {
9377 .name = "SCTP",
9378 .owner = THIS_MODULE,
9379 .close = sctp_close,
9380 .disconnect = sctp_disconnect,
9381 .accept = sctp_accept,
9382 .ioctl = sctp_ioctl,
9383 .init = sctp_init_sock,
9384 .destroy = sctp_destroy_sock,
9385 .shutdown = sctp_shutdown,
9386 .setsockopt = sctp_setsockopt,
9387 .getsockopt = sctp_getsockopt,
9388 .sendmsg = sctp_sendmsg,
9389 .recvmsg = sctp_recvmsg,
9390 .bind = sctp_bind,
9391 .bind_add = sctp_bind_add,
9392 .backlog_rcv = sctp_backlog_rcv,
9393 .hash = sctp_hash,
9394 .unhash = sctp_unhash,
9395 .no_autobind = true,
9396 .obj_size = sizeof(struct sctp_sock),
9397 .useroffset = offsetof(struct sctp_sock, subscribe),
9398 .usersize = offsetof(struct sctp_sock, initmsg) -
9399 offsetof(struct sctp_sock, subscribe) +
9400 sizeof_field(struct sctp_sock, initmsg),
9401 .sysctl_mem = sysctl_sctp_mem,
9402 .sysctl_rmem = sysctl_sctp_rmem,
9403 .sysctl_wmem = sysctl_sctp_wmem,
9404 .memory_pressure = &sctp_memory_pressure,
9405 .enter_memory_pressure = sctp_enter_memory_pressure,
9406 .memory_allocated = &sctp_memory_allocated,
9407 .sockets_allocated = &sctp_sockets_allocated,
9408};
9409
9410#if IS_ENABLED(CONFIG_IPV6)
9411
9412#include <net/transp_v6.h>
9413static void sctp_v6_destroy_sock(struct sock *sk)
9414{
9415 sctp_destroy_sock(sk);
9416 inet6_destroy_sock(sk);
9417}
9418
9419struct proto sctpv6_prot = {
9420 .name = "SCTPv6",
9421 .owner = THIS_MODULE,
9422 .close = sctp_close,
9423 .disconnect = sctp_disconnect,
9424 .accept = sctp_accept,
9425 .ioctl = sctp_ioctl,
9426 .init = sctp_init_sock,
9427 .destroy = sctp_v6_destroy_sock,
9428 .shutdown = sctp_shutdown,
9429 .setsockopt = sctp_setsockopt,
9430 .getsockopt = sctp_getsockopt,
9431 .sendmsg = sctp_sendmsg,
9432 .recvmsg = sctp_recvmsg,
9433 .bind = sctp_bind,
9434 .bind_add = sctp_bind_add,
9435 .backlog_rcv = sctp_backlog_rcv,
9436 .hash = sctp_hash,
9437 .unhash = sctp_unhash,
9438 .no_autobind = true,
9439 .obj_size = sizeof(struct sctp6_sock),
9440 .useroffset = offsetof(struct sctp6_sock, sctp.subscribe),
9441 .usersize = offsetof(struct sctp6_sock, sctp.initmsg) -
9442 offsetof(struct sctp6_sock, sctp.subscribe) +
9443 sizeof_field(struct sctp6_sock, sctp.initmsg),
9444 .sysctl_mem = sysctl_sctp_mem,
9445 .sysctl_rmem = sysctl_sctp_rmem,
9446 .sysctl_wmem = sysctl_sctp_wmem,
9447 .memory_pressure = &sctp_memory_pressure,
9448 .enter_memory_pressure = sctp_enter_memory_pressure,
9449 .memory_allocated = &sctp_memory_allocated,
9450 .sockets_allocated = &sctp_sockets_allocated,
9451};
9452#endif /* IS_ENABLED(CONFIG_IPV6) */
1/* SCTP kernel implementation
2 * (C) Copyright IBM Corp. 2001, 2004
3 * Copyright (c) 1999-2000 Cisco, Inc.
4 * Copyright (c) 1999-2001 Motorola, Inc.
5 * Copyright (c) 2001-2003 Intel Corp.
6 * Copyright (c) 2001-2002 Nokia, Inc.
7 * Copyright (c) 2001 La Monte H.P. Yarroll
8 *
9 * This file is part of the SCTP kernel implementation
10 *
11 * These functions interface with the sockets layer to implement the
12 * SCTP Extensions for the Sockets API.
13 *
14 * Note that the descriptions from the specification are USER level
15 * functions--this file is the functions which populate the struct proto
16 * for SCTP which is the BOTTOM of the sockets interface.
17 *
18 * This SCTP implementation is free software;
19 * you can redistribute it and/or modify it under the terms of
20 * the GNU General Public License as published by
21 * the Free Software Foundation; either version 2, or (at your option)
22 * any later version.
23 *
24 * This SCTP implementation is distributed in the hope that it
25 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
26 * ************************
27 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
28 * See the GNU General Public License for more details.
29 *
30 * You should have received a copy of the GNU General Public License
31 * along with GNU CC; see the file COPYING. If not, see
32 * <http://www.gnu.org/licenses/>.
33 *
34 * Please send any bug reports or fixes you make to the
35 * email address(es):
36 * lksctp developers <linux-sctp@vger.kernel.org>
37 *
38 * Written or modified by:
39 * La Monte H.P. Yarroll <piggy@acm.org>
40 * Narasimha Budihal <narsi@refcode.org>
41 * Karl Knutson <karl@athena.chicago.il.us>
42 * Jon Grimm <jgrimm@us.ibm.com>
43 * Xingang Guo <xingang.guo@intel.com>
44 * Daisy Chang <daisyc@us.ibm.com>
45 * Sridhar Samudrala <samudrala@us.ibm.com>
46 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com>
47 * Ardelle Fan <ardelle.fan@intel.com>
48 * Ryan Layer <rmlayer@us.ibm.com>
49 * Anup Pemmaiah <pemmaiah@cc.usu.edu>
50 * Kevin Gao <kevin.gao@intel.com>
51 */
52
53#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
54
55#include <crypto/hash.h>
56#include <linux/types.h>
57#include <linux/kernel.h>
58#include <linux/wait.h>
59#include <linux/time.h>
60#include <linux/ip.h>
61#include <linux/capability.h>
62#include <linux/fcntl.h>
63#include <linux/poll.h>
64#include <linux/init.h>
65#include <linux/slab.h>
66#include <linux/file.h>
67#include <linux/compat.h>
68
69#include <net/ip.h>
70#include <net/icmp.h>
71#include <net/route.h>
72#include <net/ipv6.h>
73#include <net/inet_common.h>
74#include <net/busy_poll.h>
75
76#include <linux/socket.h> /* for sa_family_t */
77#include <linux/export.h>
78#include <net/sock.h>
79#include <net/sctp/sctp.h>
80#include <net/sctp/sm.h>
81
82/* Forward declarations for internal helper functions. */
83static int sctp_writeable(struct sock *sk);
84static void sctp_wfree(struct sk_buff *skb);
85static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p,
86 size_t msg_len);
87static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p);
88static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p);
89static int sctp_wait_for_accept(struct sock *sk, long timeo);
90static void sctp_wait_for_close(struct sock *sk, long timeo);
91static void sctp_destruct_sock(struct sock *sk);
92static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
93 union sctp_addr *addr, int len);
94static int sctp_bindx_add(struct sock *, struct sockaddr *, int);
95static int sctp_bindx_rem(struct sock *, struct sockaddr *, int);
96static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int);
97static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int);
98static int sctp_send_asconf(struct sctp_association *asoc,
99 struct sctp_chunk *chunk);
100static int sctp_do_bind(struct sock *, union sctp_addr *, int);
101static int sctp_autobind(struct sock *sk);
102static void sctp_sock_migrate(struct sock *, struct sock *,
103 struct sctp_association *, sctp_socket_type_t);
104
105static int sctp_memory_pressure;
106static atomic_long_t sctp_memory_allocated;
107struct percpu_counter sctp_sockets_allocated;
108
109static void sctp_enter_memory_pressure(struct sock *sk)
110{
111 sctp_memory_pressure = 1;
112}
113
114
115/* Get the sndbuf space available at the time on the association. */
116static inline int sctp_wspace(struct sctp_association *asoc)
117{
118 int amt;
119
120 if (asoc->ep->sndbuf_policy)
121 amt = asoc->sndbuf_used;
122 else
123 amt = sk_wmem_alloc_get(asoc->base.sk);
124
125 if (amt >= asoc->base.sk->sk_sndbuf) {
126 if (asoc->base.sk->sk_userlocks & SOCK_SNDBUF_LOCK)
127 amt = 0;
128 else {
129 amt = sk_stream_wspace(asoc->base.sk);
130 if (amt < 0)
131 amt = 0;
132 }
133 } else {
134 amt = asoc->base.sk->sk_sndbuf - amt;
135 }
136 return amt;
137}
138
139/* Increment the used sndbuf space count of the corresponding association by
140 * the size of the outgoing data chunk.
141 * Also, set the skb destructor for sndbuf accounting later.
142 *
143 * Since it is always 1-1 between chunk and skb, and also a new skb is always
144 * allocated for chunk bundling in sctp_packet_transmit(), we can use the
145 * destructor in the data chunk skb for the purpose of the sndbuf space
146 * tracking.
147 */
148static inline void sctp_set_owner_w(struct sctp_chunk *chunk)
149{
150 struct sctp_association *asoc = chunk->asoc;
151 struct sock *sk = asoc->base.sk;
152
153 /* The sndbuf space is tracked per association. */
154 sctp_association_hold(asoc);
155
156 skb_set_owner_w(chunk->skb, sk);
157
158 chunk->skb->destructor = sctp_wfree;
159 /* Save the chunk pointer in skb for sctp_wfree to use later. */
160 skb_shinfo(chunk->skb)->destructor_arg = chunk;
161
162 asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) +
163 sizeof(struct sk_buff) +
164 sizeof(struct sctp_chunk);
165
166 atomic_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
167 sk->sk_wmem_queued += chunk->skb->truesize;
168 sk_mem_charge(sk, chunk->skb->truesize);
169}
170
171/* Verify that this is a valid address. */
172static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr,
173 int len)
174{
175 struct sctp_af *af;
176
177 /* Verify basic sockaddr. */
178 af = sctp_sockaddr_af(sctp_sk(sk), addr, len);
179 if (!af)
180 return -EINVAL;
181
182 /* Is this a valid SCTP address? */
183 if (!af->addr_valid(addr, sctp_sk(sk), NULL))
184 return -EINVAL;
185
186 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr)))
187 return -EINVAL;
188
189 return 0;
190}
191
192/* Look up the association by its id. If this is not a UDP-style
193 * socket, the ID field is always ignored.
194 */
195struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id)
196{
197 struct sctp_association *asoc = NULL;
198
199 /* If this is not a UDP-style socket, assoc id should be ignored. */
200 if (!sctp_style(sk, UDP)) {
201 /* Return NULL if the socket state is not ESTABLISHED. It
202 * could be a TCP-style listening socket or a socket which
203 * hasn't yet called connect() to establish an association.
204 */
205 if (!sctp_sstate(sk, ESTABLISHED))
206 return NULL;
207
208 /* Get the first and the only association from the list. */
209 if (!list_empty(&sctp_sk(sk)->ep->asocs))
210 asoc = list_entry(sctp_sk(sk)->ep->asocs.next,
211 struct sctp_association, asocs);
212 return asoc;
213 }
214
215 /* Otherwise this is a UDP-style socket. */
216 if (!id || (id == (sctp_assoc_t)-1))
217 return NULL;
218
219 spin_lock_bh(&sctp_assocs_id_lock);
220 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id);
221 spin_unlock_bh(&sctp_assocs_id_lock);
222
223 if (!asoc || (asoc->base.sk != sk) || asoc->base.dead)
224 return NULL;
225
226 return asoc;
227}
228
229/* Look up the transport from an address and an assoc id. If both address and
230 * id are specified, the associations matching the address and the id should be
231 * the same.
232 */
233static struct sctp_transport *sctp_addr_id2transport(struct sock *sk,
234 struct sockaddr_storage *addr,
235 sctp_assoc_t id)
236{
237 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL;
238 struct sctp_transport *transport;
239 union sctp_addr *laddr = (union sctp_addr *)addr;
240
241 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep,
242 laddr,
243 &transport);
244
245 if (!addr_asoc)
246 return NULL;
247
248 id_asoc = sctp_id2assoc(sk, id);
249 if (id_asoc && (id_asoc != addr_asoc))
250 return NULL;
251
252 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk),
253 (union sctp_addr *)addr);
254
255 return transport;
256}
257
258/* API 3.1.2 bind() - UDP Style Syntax
259 * The syntax of bind() is,
260 *
261 * ret = bind(int sd, struct sockaddr *addr, int addrlen);
262 *
263 * sd - the socket descriptor returned by socket().
264 * addr - the address structure (struct sockaddr_in or struct
265 * sockaddr_in6 [RFC 2553]),
266 * addr_len - the size of the address structure.
267 */
268static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len)
269{
270 int retval = 0;
271
272 lock_sock(sk);
273
274 pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk,
275 addr, addr_len);
276
277 /* Disallow binding twice. */
278 if (!sctp_sk(sk)->ep->base.bind_addr.port)
279 retval = sctp_do_bind(sk, (union sctp_addr *)addr,
280 addr_len);
281 else
282 retval = -EINVAL;
283
284 release_sock(sk);
285
286 return retval;
287}
288
289static long sctp_get_port_local(struct sock *, union sctp_addr *);
290
291/* Verify this is a valid sockaddr. */
292static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
293 union sctp_addr *addr, int len)
294{
295 struct sctp_af *af;
296
297 /* Check minimum size. */
298 if (len < sizeof (struct sockaddr))
299 return NULL;
300
301 /* V4 mapped address are really of AF_INET family */
302 if (addr->sa.sa_family == AF_INET6 &&
303 ipv6_addr_v4mapped(&addr->v6.sin6_addr)) {
304 if (!opt->pf->af_supported(AF_INET, opt))
305 return NULL;
306 } else {
307 /* Does this PF support this AF? */
308 if (!opt->pf->af_supported(addr->sa.sa_family, opt))
309 return NULL;
310 }
311
312 /* If we get this far, af is valid. */
313 af = sctp_get_af_specific(addr->sa.sa_family);
314
315 if (len < af->sockaddr_len)
316 return NULL;
317
318 return af;
319}
320
321/* Bind a local address either to an endpoint or to an association. */
322static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len)
323{
324 struct net *net = sock_net(sk);
325 struct sctp_sock *sp = sctp_sk(sk);
326 struct sctp_endpoint *ep = sp->ep;
327 struct sctp_bind_addr *bp = &ep->base.bind_addr;
328 struct sctp_af *af;
329 unsigned short snum;
330 int ret = 0;
331
332 /* Common sockaddr verification. */
333 af = sctp_sockaddr_af(sp, addr, len);
334 if (!af) {
335 pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n",
336 __func__, sk, addr, len);
337 return -EINVAL;
338 }
339
340 snum = ntohs(addr->v4.sin_port);
341
342 pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n",
343 __func__, sk, &addr->sa, bp->port, snum, len);
344
345 /* PF specific bind() address verification. */
346 if (!sp->pf->bind_verify(sp, addr))
347 return -EADDRNOTAVAIL;
348
349 /* We must either be unbound, or bind to the same port.
350 * It's OK to allow 0 ports if we are already bound.
351 * We'll just inhert an already bound port in this case
352 */
353 if (bp->port) {
354 if (!snum)
355 snum = bp->port;
356 else if (snum != bp->port) {
357 pr_debug("%s: new port %d doesn't match existing port "
358 "%d\n", __func__, snum, bp->port);
359 return -EINVAL;
360 }
361 }
362
363 if (snum && snum < PROT_SOCK &&
364 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE))
365 return -EACCES;
366
367 /* See if the address matches any of the addresses we may have
368 * already bound before checking against other endpoints.
369 */
370 if (sctp_bind_addr_match(bp, addr, sp))
371 return -EINVAL;
372
373 /* Make sure we are allowed to bind here.
374 * The function sctp_get_port_local() does duplicate address
375 * detection.
376 */
377 addr->v4.sin_port = htons(snum);
378 if ((ret = sctp_get_port_local(sk, addr))) {
379 return -EADDRINUSE;
380 }
381
382 /* Refresh ephemeral port. */
383 if (!bp->port)
384 bp->port = inet_sk(sk)->inet_num;
385
386 /* Add the address to the bind address list.
387 * Use GFP_ATOMIC since BHs will be disabled.
388 */
389 ret = sctp_add_bind_addr(bp, addr, af->sockaddr_len,
390 SCTP_ADDR_SRC, GFP_ATOMIC);
391
392 /* Copy back into socket for getsockname() use. */
393 if (!ret) {
394 inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num);
395 sp->pf->to_sk_saddr(addr, sk);
396 }
397
398 return ret;
399}
400
401 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks
402 *
403 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged
404 * at any one time. If a sender, after sending an ASCONF chunk, decides
405 * it needs to transfer another ASCONF Chunk, it MUST wait until the
406 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a
407 * subsequent ASCONF. Note this restriction binds each side, so at any
408 * time two ASCONF may be in-transit on any given association (one sent
409 * from each endpoint).
410 */
411static int sctp_send_asconf(struct sctp_association *asoc,
412 struct sctp_chunk *chunk)
413{
414 struct net *net = sock_net(asoc->base.sk);
415 int retval = 0;
416
417 /* If there is an outstanding ASCONF chunk, queue it for later
418 * transmission.
419 */
420 if (asoc->addip_last_asconf) {
421 list_add_tail(&chunk->list, &asoc->addip_chunk_list);
422 goto out;
423 }
424
425 /* Hold the chunk until an ASCONF_ACK is received. */
426 sctp_chunk_hold(chunk);
427 retval = sctp_primitive_ASCONF(net, asoc, chunk);
428 if (retval)
429 sctp_chunk_free(chunk);
430 else
431 asoc->addip_last_asconf = chunk;
432
433out:
434 return retval;
435}
436
437/* Add a list of addresses as bind addresses to local endpoint or
438 * association.
439 *
440 * Basically run through each address specified in the addrs/addrcnt
441 * array/length pair, determine if it is IPv6 or IPv4 and call
442 * sctp_do_bind() on it.
443 *
444 * If any of them fails, then the operation will be reversed and the
445 * ones that were added will be removed.
446 *
447 * Only sctp_setsockopt_bindx() is supposed to call this function.
448 */
449static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt)
450{
451 int cnt;
452 int retval = 0;
453 void *addr_buf;
454 struct sockaddr *sa_addr;
455 struct sctp_af *af;
456
457 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk,
458 addrs, addrcnt);
459
460 addr_buf = addrs;
461 for (cnt = 0; cnt < addrcnt; cnt++) {
462 /* The list may contain either IPv4 or IPv6 address;
463 * determine the address length for walking thru the list.
464 */
465 sa_addr = addr_buf;
466 af = sctp_get_af_specific(sa_addr->sa_family);
467 if (!af) {
468 retval = -EINVAL;
469 goto err_bindx_add;
470 }
471
472 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr,
473 af->sockaddr_len);
474
475 addr_buf += af->sockaddr_len;
476
477err_bindx_add:
478 if (retval < 0) {
479 /* Failed. Cleanup the ones that have been added */
480 if (cnt > 0)
481 sctp_bindx_rem(sk, addrs, cnt);
482 return retval;
483 }
484 }
485
486 return retval;
487}
488
489/* Send an ASCONF chunk with Add IP address parameters to all the peers of the
490 * associations that are part of the endpoint indicating that a list of local
491 * addresses are added to the endpoint.
492 *
493 * If any of the addresses is already in the bind address list of the
494 * association, we do not send the chunk for that association. But it will not
495 * affect other associations.
496 *
497 * Only sctp_setsockopt_bindx() is supposed to call this function.
498 */
499static int sctp_send_asconf_add_ip(struct sock *sk,
500 struct sockaddr *addrs,
501 int addrcnt)
502{
503 struct net *net = sock_net(sk);
504 struct sctp_sock *sp;
505 struct sctp_endpoint *ep;
506 struct sctp_association *asoc;
507 struct sctp_bind_addr *bp;
508 struct sctp_chunk *chunk;
509 struct sctp_sockaddr_entry *laddr;
510 union sctp_addr *addr;
511 union sctp_addr saveaddr;
512 void *addr_buf;
513 struct sctp_af *af;
514 struct list_head *p;
515 int i;
516 int retval = 0;
517
518 if (!net->sctp.addip_enable)
519 return retval;
520
521 sp = sctp_sk(sk);
522 ep = sp->ep;
523
524 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
525 __func__, sk, addrs, addrcnt);
526
527 list_for_each_entry(asoc, &ep->asocs, asocs) {
528 if (!asoc->peer.asconf_capable)
529 continue;
530
531 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP)
532 continue;
533
534 if (!sctp_state(asoc, ESTABLISHED))
535 continue;
536
537 /* Check if any address in the packed array of addresses is
538 * in the bind address list of the association. If so,
539 * do not send the asconf chunk to its peer, but continue with
540 * other associations.
541 */
542 addr_buf = addrs;
543 for (i = 0; i < addrcnt; i++) {
544 addr = addr_buf;
545 af = sctp_get_af_specific(addr->v4.sin_family);
546 if (!af) {
547 retval = -EINVAL;
548 goto out;
549 }
550
551 if (sctp_assoc_lookup_laddr(asoc, addr))
552 break;
553
554 addr_buf += af->sockaddr_len;
555 }
556 if (i < addrcnt)
557 continue;
558
559 /* Use the first valid address in bind addr list of
560 * association as Address Parameter of ASCONF CHUNK.
561 */
562 bp = &asoc->base.bind_addr;
563 p = bp->address_list.next;
564 laddr = list_entry(p, struct sctp_sockaddr_entry, list);
565 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs,
566 addrcnt, SCTP_PARAM_ADD_IP);
567 if (!chunk) {
568 retval = -ENOMEM;
569 goto out;
570 }
571
572 /* Add the new addresses to the bind address list with
573 * use_as_src set to 0.
574 */
575 addr_buf = addrs;
576 for (i = 0; i < addrcnt; i++) {
577 addr = addr_buf;
578 af = sctp_get_af_specific(addr->v4.sin_family);
579 memcpy(&saveaddr, addr, af->sockaddr_len);
580 retval = sctp_add_bind_addr(bp, &saveaddr,
581 sizeof(saveaddr),
582 SCTP_ADDR_NEW, GFP_ATOMIC);
583 addr_buf += af->sockaddr_len;
584 }
585 if (asoc->src_out_of_asoc_ok) {
586 struct sctp_transport *trans;
587
588 list_for_each_entry(trans,
589 &asoc->peer.transport_addr_list, transports) {
590 /* Clear the source and route cache */
591 dst_release(trans->dst);
592 trans->cwnd = min(4*asoc->pathmtu, max_t(__u32,
593 2*asoc->pathmtu, 4380));
594 trans->ssthresh = asoc->peer.i.a_rwnd;
595 trans->rto = asoc->rto_initial;
596 sctp_max_rto(asoc, trans);
597 trans->rtt = trans->srtt = trans->rttvar = 0;
598 sctp_transport_route(trans, NULL,
599 sctp_sk(asoc->base.sk));
600 }
601 }
602 retval = sctp_send_asconf(asoc, chunk);
603 }
604
605out:
606 return retval;
607}
608
609/* Remove a list of addresses from bind addresses list. Do not remove the
610 * last address.
611 *
612 * Basically run through each address specified in the addrs/addrcnt
613 * array/length pair, determine if it is IPv6 or IPv4 and call
614 * sctp_del_bind() on it.
615 *
616 * If any of them fails, then the operation will be reversed and the
617 * ones that were removed will be added back.
618 *
619 * At least one address has to be left; if only one address is
620 * available, the operation will return -EBUSY.
621 *
622 * Only sctp_setsockopt_bindx() is supposed to call this function.
623 */
624static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt)
625{
626 struct sctp_sock *sp = sctp_sk(sk);
627 struct sctp_endpoint *ep = sp->ep;
628 int cnt;
629 struct sctp_bind_addr *bp = &ep->base.bind_addr;
630 int retval = 0;
631 void *addr_buf;
632 union sctp_addr *sa_addr;
633 struct sctp_af *af;
634
635 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
636 __func__, sk, addrs, addrcnt);
637
638 addr_buf = addrs;
639 for (cnt = 0; cnt < addrcnt; cnt++) {
640 /* If the bind address list is empty or if there is only one
641 * bind address, there is nothing more to be removed (we need
642 * at least one address here).
643 */
644 if (list_empty(&bp->address_list) ||
645 (sctp_list_single_entry(&bp->address_list))) {
646 retval = -EBUSY;
647 goto err_bindx_rem;
648 }
649
650 sa_addr = addr_buf;
651 af = sctp_get_af_specific(sa_addr->sa.sa_family);
652 if (!af) {
653 retval = -EINVAL;
654 goto err_bindx_rem;
655 }
656
657 if (!af->addr_valid(sa_addr, sp, NULL)) {
658 retval = -EADDRNOTAVAIL;
659 goto err_bindx_rem;
660 }
661
662 if (sa_addr->v4.sin_port &&
663 sa_addr->v4.sin_port != htons(bp->port)) {
664 retval = -EINVAL;
665 goto err_bindx_rem;
666 }
667
668 if (!sa_addr->v4.sin_port)
669 sa_addr->v4.sin_port = htons(bp->port);
670
671 /* FIXME - There is probably a need to check if sk->sk_saddr and
672 * sk->sk_rcv_addr are currently set to one of the addresses to
673 * be removed. This is something which needs to be looked into
674 * when we are fixing the outstanding issues with multi-homing
675 * socket routing and failover schemes. Refer to comments in
676 * sctp_do_bind(). -daisy
677 */
678 retval = sctp_del_bind_addr(bp, sa_addr);
679
680 addr_buf += af->sockaddr_len;
681err_bindx_rem:
682 if (retval < 0) {
683 /* Failed. Add the ones that has been removed back */
684 if (cnt > 0)
685 sctp_bindx_add(sk, addrs, cnt);
686 return retval;
687 }
688 }
689
690 return retval;
691}
692
693/* Send an ASCONF chunk with Delete IP address parameters to all the peers of
694 * the associations that are part of the endpoint indicating that a list of
695 * local addresses are removed from the endpoint.
696 *
697 * If any of the addresses is already in the bind address list of the
698 * association, we do not send the chunk for that association. But it will not
699 * affect other associations.
700 *
701 * Only sctp_setsockopt_bindx() is supposed to call this function.
702 */
703static int sctp_send_asconf_del_ip(struct sock *sk,
704 struct sockaddr *addrs,
705 int addrcnt)
706{
707 struct net *net = sock_net(sk);
708 struct sctp_sock *sp;
709 struct sctp_endpoint *ep;
710 struct sctp_association *asoc;
711 struct sctp_transport *transport;
712 struct sctp_bind_addr *bp;
713 struct sctp_chunk *chunk;
714 union sctp_addr *laddr;
715 void *addr_buf;
716 struct sctp_af *af;
717 struct sctp_sockaddr_entry *saddr;
718 int i;
719 int retval = 0;
720 int stored = 0;
721
722 chunk = NULL;
723 if (!net->sctp.addip_enable)
724 return retval;
725
726 sp = sctp_sk(sk);
727 ep = sp->ep;
728
729 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
730 __func__, sk, addrs, addrcnt);
731
732 list_for_each_entry(asoc, &ep->asocs, asocs) {
733
734 if (!asoc->peer.asconf_capable)
735 continue;
736
737 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP)
738 continue;
739
740 if (!sctp_state(asoc, ESTABLISHED))
741 continue;
742
743 /* Check if any address in the packed array of addresses is
744 * not present in the bind address list of the association.
745 * If so, do not send the asconf chunk to its peer, but
746 * continue with other associations.
747 */
748 addr_buf = addrs;
749 for (i = 0; i < addrcnt; i++) {
750 laddr = addr_buf;
751 af = sctp_get_af_specific(laddr->v4.sin_family);
752 if (!af) {
753 retval = -EINVAL;
754 goto out;
755 }
756
757 if (!sctp_assoc_lookup_laddr(asoc, laddr))
758 break;
759
760 addr_buf += af->sockaddr_len;
761 }
762 if (i < addrcnt)
763 continue;
764
765 /* Find one address in the association's bind address list
766 * that is not in the packed array of addresses. This is to
767 * make sure that we do not delete all the addresses in the
768 * association.
769 */
770 bp = &asoc->base.bind_addr;
771 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs,
772 addrcnt, sp);
773 if ((laddr == NULL) && (addrcnt == 1)) {
774 if (asoc->asconf_addr_del_pending)
775 continue;
776 asoc->asconf_addr_del_pending =
777 kzalloc(sizeof(union sctp_addr), GFP_ATOMIC);
778 if (asoc->asconf_addr_del_pending == NULL) {
779 retval = -ENOMEM;
780 goto out;
781 }
782 asoc->asconf_addr_del_pending->sa.sa_family =
783 addrs->sa_family;
784 asoc->asconf_addr_del_pending->v4.sin_port =
785 htons(bp->port);
786 if (addrs->sa_family == AF_INET) {
787 struct sockaddr_in *sin;
788
789 sin = (struct sockaddr_in *)addrs;
790 asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr;
791 } else if (addrs->sa_family == AF_INET6) {
792 struct sockaddr_in6 *sin6;
793
794 sin6 = (struct sockaddr_in6 *)addrs;
795 asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr;
796 }
797
798 pr_debug("%s: keep the last address asoc:%p %pISc at %p\n",
799 __func__, asoc, &asoc->asconf_addr_del_pending->sa,
800 asoc->asconf_addr_del_pending);
801
802 asoc->src_out_of_asoc_ok = 1;
803 stored = 1;
804 goto skip_mkasconf;
805 }
806
807 if (laddr == NULL)
808 return -EINVAL;
809
810 /* We do not need RCU protection throughout this loop
811 * because this is done under a socket lock from the
812 * setsockopt call.
813 */
814 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt,
815 SCTP_PARAM_DEL_IP);
816 if (!chunk) {
817 retval = -ENOMEM;
818 goto out;
819 }
820
821skip_mkasconf:
822 /* Reset use_as_src flag for the addresses in the bind address
823 * list that are to be deleted.
824 */
825 addr_buf = addrs;
826 for (i = 0; i < addrcnt; i++) {
827 laddr = addr_buf;
828 af = sctp_get_af_specific(laddr->v4.sin_family);
829 list_for_each_entry(saddr, &bp->address_list, list) {
830 if (sctp_cmp_addr_exact(&saddr->a, laddr))
831 saddr->state = SCTP_ADDR_DEL;
832 }
833 addr_buf += af->sockaddr_len;
834 }
835
836 /* Update the route and saddr entries for all the transports
837 * as some of the addresses in the bind address list are
838 * about to be deleted and cannot be used as source addresses.
839 */
840 list_for_each_entry(transport, &asoc->peer.transport_addr_list,
841 transports) {
842 dst_release(transport->dst);
843 sctp_transport_route(transport, NULL,
844 sctp_sk(asoc->base.sk));
845 }
846
847 if (stored)
848 /* We don't need to transmit ASCONF */
849 continue;
850 retval = sctp_send_asconf(asoc, chunk);
851 }
852out:
853 return retval;
854}
855
856/* set addr events to assocs in the endpoint. ep and addr_wq must be locked */
857int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw)
858{
859 struct sock *sk = sctp_opt2sk(sp);
860 union sctp_addr *addr;
861 struct sctp_af *af;
862
863 /* It is safe to write port space in caller. */
864 addr = &addrw->a;
865 addr->v4.sin_port = htons(sp->ep->base.bind_addr.port);
866 af = sctp_get_af_specific(addr->sa.sa_family);
867 if (!af)
868 return -EINVAL;
869 if (sctp_verify_addr(sk, addr, af->sockaddr_len))
870 return -EINVAL;
871
872 if (addrw->state == SCTP_ADDR_NEW)
873 return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1);
874 else
875 return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1);
876}
877
878/* Helper for tunneling sctp_bindx() requests through sctp_setsockopt()
879 *
880 * API 8.1
881 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt,
882 * int flags);
883 *
884 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
885 * If the sd is an IPv6 socket, the addresses passed can either be IPv4
886 * or IPv6 addresses.
887 *
888 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
889 * Section 3.1.2 for this usage.
890 *
891 * addrs is a pointer to an array of one or more socket addresses. Each
892 * address is contained in its appropriate structure (i.e. struct
893 * sockaddr_in or struct sockaddr_in6) the family of the address type
894 * must be used to distinguish the address length (note that this
895 * representation is termed a "packed array" of addresses). The caller
896 * specifies the number of addresses in the array with addrcnt.
897 *
898 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
899 * -1, and sets errno to the appropriate error code.
900 *
901 * For SCTP, the port given in each socket address must be the same, or
902 * sctp_bindx() will fail, setting errno to EINVAL.
903 *
904 * The flags parameter is formed from the bitwise OR of zero or more of
905 * the following currently defined flags:
906 *
907 * SCTP_BINDX_ADD_ADDR
908 *
909 * SCTP_BINDX_REM_ADDR
910 *
911 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
912 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given
913 * addresses from the association. The two flags are mutually exclusive;
914 * if both are given, sctp_bindx() will fail with EINVAL. A caller may
915 * not remove all addresses from an association; sctp_bindx() will
916 * reject such an attempt with EINVAL.
917 *
918 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
919 * additional addresses with an endpoint after calling bind(). Or use
920 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
921 * socket is associated with so that no new association accepted will be
922 * associated with those addresses. If the endpoint supports dynamic
923 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a
924 * endpoint to send the appropriate message to the peer to change the
925 * peers address lists.
926 *
927 * Adding and removing addresses from a connected association is
928 * optional functionality. Implementations that do not support this
929 * functionality should return EOPNOTSUPP.
930 *
931 * Basically do nothing but copying the addresses from user to kernel
932 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk.
933 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt()
934 * from userspace.
935 *
936 * We don't use copy_from_user() for optimization: we first do the
937 * sanity checks (buffer size -fast- and access check-healthy
938 * pointer); if all of those succeed, then we can alloc the memory
939 * (expensive operation) needed to copy the data to kernel. Then we do
940 * the copying without checking the user space area
941 * (__copy_from_user()).
942 *
943 * On exit there is no need to do sockfd_put(), sys_setsockopt() does
944 * it.
945 *
946 * sk The sk of the socket
947 * addrs The pointer to the addresses in user land
948 * addrssize Size of the addrs buffer
949 * op Operation to perform (add or remove, see the flags of
950 * sctp_bindx)
951 *
952 * Returns 0 if ok, <0 errno code on error.
953 */
954static int sctp_setsockopt_bindx(struct sock *sk,
955 struct sockaddr __user *addrs,
956 int addrs_size, int op)
957{
958 struct sockaddr *kaddrs;
959 int err;
960 int addrcnt = 0;
961 int walk_size = 0;
962 struct sockaddr *sa_addr;
963 void *addr_buf;
964 struct sctp_af *af;
965
966 pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n",
967 __func__, sk, addrs, addrs_size, op);
968
969 if (unlikely(addrs_size <= 0))
970 return -EINVAL;
971
972 /* Check the user passed a healthy pointer. */
973 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
974 return -EFAULT;
975
976 /* Alloc space for the address array in kernel memory. */
977 kaddrs = kmalloc(addrs_size, GFP_USER | __GFP_NOWARN);
978 if (unlikely(!kaddrs))
979 return -ENOMEM;
980
981 if (__copy_from_user(kaddrs, addrs, addrs_size)) {
982 kfree(kaddrs);
983 return -EFAULT;
984 }
985
986 /* Walk through the addrs buffer and count the number of addresses. */
987 addr_buf = kaddrs;
988 while (walk_size < addrs_size) {
989 if (walk_size + sizeof(sa_family_t) > addrs_size) {
990 kfree(kaddrs);
991 return -EINVAL;
992 }
993
994 sa_addr = addr_buf;
995 af = sctp_get_af_specific(sa_addr->sa_family);
996
997 /* If the address family is not supported or if this address
998 * causes the address buffer to overflow return EINVAL.
999 */
1000 if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1001 kfree(kaddrs);
1002 return -EINVAL;
1003 }
1004 addrcnt++;
1005 addr_buf += af->sockaddr_len;
1006 walk_size += af->sockaddr_len;
1007 }
1008
1009 /* Do the work. */
1010 switch (op) {
1011 case SCTP_BINDX_ADD_ADDR:
1012 err = sctp_bindx_add(sk, kaddrs, addrcnt);
1013 if (err)
1014 goto out;
1015 err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt);
1016 break;
1017
1018 case SCTP_BINDX_REM_ADDR:
1019 err = sctp_bindx_rem(sk, kaddrs, addrcnt);
1020 if (err)
1021 goto out;
1022 err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt);
1023 break;
1024
1025 default:
1026 err = -EINVAL;
1027 break;
1028 }
1029
1030out:
1031 kfree(kaddrs);
1032
1033 return err;
1034}
1035
1036/* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size)
1037 *
1038 * Common routine for handling connect() and sctp_connectx().
1039 * Connect will come in with just a single address.
1040 */
1041static int __sctp_connect(struct sock *sk,
1042 struct sockaddr *kaddrs,
1043 int addrs_size,
1044 sctp_assoc_t *assoc_id)
1045{
1046 struct net *net = sock_net(sk);
1047 struct sctp_sock *sp;
1048 struct sctp_endpoint *ep;
1049 struct sctp_association *asoc = NULL;
1050 struct sctp_association *asoc2;
1051 struct sctp_transport *transport;
1052 union sctp_addr to;
1053 sctp_scope_t scope;
1054 long timeo;
1055 int err = 0;
1056 int addrcnt = 0;
1057 int walk_size = 0;
1058 union sctp_addr *sa_addr = NULL;
1059 void *addr_buf;
1060 unsigned short port;
1061 unsigned int f_flags = 0;
1062
1063 sp = sctp_sk(sk);
1064 ep = sp->ep;
1065
1066 /* connect() cannot be done on a socket that is already in ESTABLISHED
1067 * state - UDP-style peeled off socket or a TCP-style socket that
1068 * is already connected.
1069 * It cannot be done even on a TCP-style listening socket.
1070 */
1071 if (sctp_sstate(sk, ESTABLISHED) ||
1072 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) {
1073 err = -EISCONN;
1074 goto out_free;
1075 }
1076
1077 /* Walk through the addrs buffer and count the number of addresses. */
1078 addr_buf = kaddrs;
1079 while (walk_size < addrs_size) {
1080 struct sctp_af *af;
1081
1082 if (walk_size + sizeof(sa_family_t) > addrs_size) {
1083 err = -EINVAL;
1084 goto out_free;
1085 }
1086
1087 sa_addr = addr_buf;
1088 af = sctp_get_af_specific(sa_addr->sa.sa_family);
1089
1090 /* If the address family is not supported or if this address
1091 * causes the address buffer to overflow return EINVAL.
1092 */
1093 if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1094 err = -EINVAL;
1095 goto out_free;
1096 }
1097
1098 port = ntohs(sa_addr->v4.sin_port);
1099
1100 /* Save current address so we can work with it */
1101 memcpy(&to, sa_addr, af->sockaddr_len);
1102
1103 err = sctp_verify_addr(sk, &to, af->sockaddr_len);
1104 if (err)
1105 goto out_free;
1106
1107 /* Make sure the destination port is correctly set
1108 * in all addresses.
1109 */
1110 if (asoc && asoc->peer.port && asoc->peer.port != port) {
1111 err = -EINVAL;
1112 goto out_free;
1113 }
1114
1115 /* Check if there already is a matching association on the
1116 * endpoint (other than the one created here).
1117 */
1118 asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1119 if (asoc2 && asoc2 != asoc) {
1120 if (asoc2->state >= SCTP_STATE_ESTABLISHED)
1121 err = -EISCONN;
1122 else
1123 err = -EALREADY;
1124 goto out_free;
1125 }
1126
1127 /* If we could not find a matching association on the endpoint,
1128 * make sure that there is no peeled-off association matching
1129 * the peer address even on another socket.
1130 */
1131 if (sctp_endpoint_is_peeled_off(ep, &to)) {
1132 err = -EADDRNOTAVAIL;
1133 goto out_free;
1134 }
1135
1136 if (!asoc) {
1137 /* If a bind() or sctp_bindx() is not called prior to
1138 * an sctp_connectx() call, the system picks an
1139 * ephemeral port and will choose an address set
1140 * equivalent to binding with a wildcard address.
1141 */
1142 if (!ep->base.bind_addr.port) {
1143 if (sctp_autobind(sk)) {
1144 err = -EAGAIN;
1145 goto out_free;
1146 }
1147 } else {
1148 /*
1149 * If an unprivileged user inherits a 1-many
1150 * style socket with open associations on a
1151 * privileged port, it MAY be permitted to
1152 * accept new associations, but it SHOULD NOT
1153 * be permitted to open new associations.
1154 */
1155 if (ep->base.bind_addr.port < PROT_SOCK &&
1156 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) {
1157 err = -EACCES;
1158 goto out_free;
1159 }
1160 }
1161
1162 scope = sctp_scope(&to);
1163 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1164 if (!asoc) {
1165 err = -ENOMEM;
1166 goto out_free;
1167 }
1168
1169 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope,
1170 GFP_KERNEL);
1171 if (err < 0) {
1172 goto out_free;
1173 }
1174
1175 }
1176
1177 /* Prime the peer's transport structures. */
1178 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL,
1179 SCTP_UNKNOWN);
1180 if (!transport) {
1181 err = -ENOMEM;
1182 goto out_free;
1183 }
1184
1185 addrcnt++;
1186 addr_buf += af->sockaddr_len;
1187 walk_size += af->sockaddr_len;
1188 }
1189
1190 /* In case the user of sctp_connectx() wants an association
1191 * id back, assign one now.
1192 */
1193 if (assoc_id) {
1194 err = sctp_assoc_set_id(asoc, GFP_KERNEL);
1195 if (err < 0)
1196 goto out_free;
1197 }
1198
1199 err = sctp_primitive_ASSOCIATE(net, asoc, NULL);
1200 if (err < 0) {
1201 goto out_free;
1202 }
1203
1204 /* Initialize sk's dport and daddr for getpeername() */
1205 inet_sk(sk)->inet_dport = htons(asoc->peer.port);
1206 sp->pf->to_sk_daddr(sa_addr, sk);
1207 sk->sk_err = 0;
1208
1209 /* in-kernel sockets don't generally have a file allocated to them
1210 * if all they do is call sock_create_kern().
1211 */
1212 if (sk->sk_socket->file)
1213 f_flags = sk->sk_socket->file->f_flags;
1214
1215 timeo = sock_sndtimeo(sk, f_flags & O_NONBLOCK);
1216
1217 err = sctp_wait_for_connect(asoc, &timeo);
1218 if ((err == 0 || err == -EINPROGRESS) && assoc_id)
1219 *assoc_id = asoc->assoc_id;
1220
1221 /* Don't free association on exit. */
1222 asoc = NULL;
1223
1224out_free:
1225 pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n",
1226 __func__, asoc, kaddrs, err);
1227
1228 if (asoc) {
1229 /* sctp_primitive_ASSOCIATE may have added this association
1230 * To the hash table, try to unhash it, just in case, its a noop
1231 * if it wasn't hashed so we're safe
1232 */
1233 sctp_association_free(asoc);
1234 }
1235 return err;
1236}
1237
1238/* Helper for tunneling sctp_connectx() requests through sctp_setsockopt()
1239 *
1240 * API 8.9
1241 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt,
1242 * sctp_assoc_t *asoc);
1243 *
1244 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
1245 * If the sd is an IPv6 socket, the addresses passed can either be IPv4
1246 * or IPv6 addresses.
1247 *
1248 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
1249 * Section 3.1.2 for this usage.
1250 *
1251 * addrs is a pointer to an array of one or more socket addresses. Each
1252 * address is contained in its appropriate structure (i.e. struct
1253 * sockaddr_in or struct sockaddr_in6) the family of the address type
1254 * must be used to distengish the address length (note that this
1255 * representation is termed a "packed array" of addresses). The caller
1256 * specifies the number of addresses in the array with addrcnt.
1257 *
1258 * On success, sctp_connectx() returns 0. It also sets the assoc_id to
1259 * the association id of the new association. On failure, sctp_connectx()
1260 * returns -1, and sets errno to the appropriate error code. The assoc_id
1261 * is not touched by the kernel.
1262 *
1263 * For SCTP, the port given in each socket address must be the same, or
1264 * sctp_connectx() will fail, setting errno to EINVAL.
1265 *
1266 * An application can use sctp_connectx to initiate an association with
1267 * an endpoint that is multi-homed. Much like sctp_bindx() this call
1268 * allows a caller to specify multiple addresses at which a peer can be
1269 * reached. The way the SCTP stack uses the list of addresses to set up
1270 * the association is implementation dependent. This function only
1271 * specifies that the stack will try to make use of all the addresses in
1272 * the list when needed.
1273 *
1274 * Note that the list of addresses passed in is only used for setting up
1275 * the association. It does not necessarily equal the set of addresses
1276 * the peer uses for the resulting association. If the caller wants to
1277 * find out the set of peer addresses, it must use sctp_getpaddrs() to
1278 * retrieve them after the association has been set up.
1279 *
1280 * Basically do nothing but copying the addresses from user to kernel
1281 * land and invoking either sctp_connectx(). This is used for tunneling
1282 * the sctp_connectx() request through sctp_setsockopt() from userspace.
1283 *
1284 * We don't use copy_from_user() for optimization: we first do the
1285 * sanity checks (buffer size -fast- and access check-healthy
1286 * pointer); if all of those succeed, then we can alloc the memory
1287 * (expensive operation) needed to copy the data to kernel. Then we do
1288 * the copying without checking the user space area
1289 * (__copy_from_user()).
1290 *
1291 * On exit there is no need to do sockfd_put(), sys_setsockopt() does
1292 * it.
1293 *
1294 * sk The sk of the socket
1295 * addrs The pointer to the addresses in user land
1296 * addrssize Size of the addrs buffer
1297 *
1298 * Returns >=0 if ok, <0 errno code on error.
1299 */
1300static int __sctp_setsockopt_connectx(struct sock *sk,
1301 struct sockaddr __user *addrs,
1302 int addrs_size,
1303 sctp_assoc_t *assoc_id)
1304{
1305 struct sockaddr *kaddrs;
1306 gfp_t gfp = GFP_KERNEL;
1307 int err = 0;
1308
1309 pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n",
1310 __func__, sk, addrs, addrs_size);
1311
1312 if (unlikely(addrs_size <= 0))
1313 return -EINVAL;
1314
1315 /* Check the user passed a healthy pointer. */
1316 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
1317 return -EFAULT;
1318
1319 /* Alloc space for the address array in kernel memory. */
1320 if (sk->sk_socket->file)
1321 gfp = GFP_USER | __GFP_NOWARN;
1322 kaddrs = kmalloc(addrs_size, gfp);
1323 if (unlikely(!kaddrs))
1324 return -ENOMEM;
1325
1326 if (__copy_from_user(kaddrs, addrs, addrs_size)) {
1327 err = -EFAULT;
1328 } else {
1329 err = __sctp_connect(sk, kaddrs, addrs_size, assoc_id);
1330 }
1331
1332 kfree(kaddrs);
1333
1334 return err;
1335}
1336
1337/*
1338 * This is an older interface. It's kept for backward compatibility
1339 * to the option that doesn't provide association id.
1340 */
1341static int sctp_setsockopt_connectx_old(struct sock *sk,
1342 struct sockaddr __user *addrs,
1343 int addrs_size)
1344{
1345 return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL);
1346}
1347
1348/*
1349 * New interface for the API. The since the API is done with a socket
1350 * option, to make it simple we feed back the association id is as a return
1351 * indication to the call. Error is always negative and association id is
1352 * always positive.
1353 */
1354static int sctp_setsockopt_connectx(struct sock *sk,
1355 struct sockaddr __user *addrs,
1356 int addrs_size)
1357{
1358 sctp_assoc_t assoc_id = 0;
1359 int err = 0;
1360
1361 err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id);
1362
1363 if (err)
1364 return err;
1365 else
1366 return assoc_id;
1367}
1368
1369/*
1370 * New (hopefully final) interface for the API.
1371 * We use the sctp_getaddrs_old structure so that use-space library
1372 * can avoid any unnecessary allocations. The only different part
1373 * is that we store the actual length of the address buffer into the
1374 * addrs_num structure member. That way we can re-use the existing
1375 * code.
1376 */
1377#ifdef CONFIG_COMPAT
1378struct compat_sctp_getaddrs_old {
1379 sctp_assoc_t assoc_id;
1380 s32 addr_num;
1381 compat_uptr_t addrs; /* struct sockaddr * */
1382};
1383#endif
1384
1385static int sctp_getsockopt_connectx3(struct sock *sk, int len,
1386 char __user *optval,
1387 int __user *optlen)
1388{
1389 struct sctp_getaddrs_old param;
1390 sctp_assoc_t assoc_id = 0;
1391 int err = 0;
1392
1393#ifdef CONFIG_COMPAT
1394 if (in_compat_syscall()) {
1395 struct compat_sctp_getaddrs_old param32;
1396
1397 if (len < sizeof(param32))
1398 return -EINVAL;
1399 if (copy_from_user(¶m32, optval, sizeof(param32)))
1400 return -EFAULT;
1401
1402 param.assoc_id = param32.assoc_id;
1403 param.addr_num = param32.addr_num;
1404 param.addrs = compat_ptr(param32.addrs);
1405 } else
1406#endif
1407 {
1408 if (len < sizeof(param))
1409 return -EINVAL;
1410 if (copy_from_user(¶m, optval, sizeof(param)))
1411 return -EFAULT;
1412 }
1413
1414 err = __sctp_setsockopt_connectx(sk, (struct sockaddr __user *)
1415 param.addrs, param.addr_num,
1416 &assoc_id);
1417 if (err == 0 || err == -EINPROGRESS) {
1418 if (copy_to_user(optval, &assoc_id, sizeof(assoc_id)))
1419 return -EFAULT;
1420 if (put_user(sizeof(assoc_id), optlen))
1421 return -EFAULT;
1422 }
1423
1424 return err;
1425}
1426
1427/* API 3.1.4 close() - UDP Style Syntax
1428 * Applications use close() to perform graceful shutdown (as described in
1429 * Section 10.1 of [SCTP]) on ALL the associations currently represented
1430 * by a UDP-style socket.
1431 *
1432 * The syntax is
1433 *
1434 * ret = close(int sd);
1435 *
1436 * sd - the socket descriptor of the associations to be closed.
1437 *
1438 * To gracefully shutdown a specific association represented by the
1439 * UDP-style socket, an application should use the sendmsg() call,
1440 * passing no user data, but including the appropriate flag in the
1441 * ancillary data (see Section xxxx).
1442 *
1443 * If sd in the close() call is a branched-off socket representing only
1444 * one association, the shutdown is performed on that association only.
1445 *
1446 * 4.1.6 close() - TCP Style Syntax
1447 *
1448 * Applications use close() to gracefully close down an association.
1449 *
1450 * The syntax is:
1451 *
1452 * int close(int sd);
1453 *
1454 * sd - the socket descriptor of the association to be closed.
1455 *
1456 * After an application calls close() on a socket descriptor, no further
1457 * socket operations will succeed on that descriptor.
1458 *
1459 * API 7.1.4 SO_LINGER
1460 *
1461 * An application using the TCP-style socket can use this option to
1462 * perform the SCTP ABORT primitive. The linger option structure is:
1463 *
1464 * struct linger {
1465 * int l_onoff; // option on/off
1466 * int l_linger; // linger time
1467 * };
1468 *
1469 * To enable the option, set l_onoff to 1. If the l_linger value is set
1470 * to 0, calling close() is the same as the ABORT primitive. If the
1471 * value is set to a negative value, the setsockopt() call will return
1472 * an error. If the value is set to a positive value linger_time, the
1473 * close() can be blocked for at most linger_time ms. If the graceful
1474 * shutdown phase does not finish during this period, close() will
1475 * return but the graceful shutdown phase continues in the system.
1476 */
1477static void sctp_close(struct sock *sk, long timeout)
1478{
1479 struct net *net = sock_net(sk);
1480 struct sctp_endpoint *ep;
1481 struct sctp_association *asoc;
1482 struct list_head *pos, *temp;
1483 unsigned int data_was_unread;
1484
1485 pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout);
1486
1487 lock_sock(sk);
1488 sk->sk_shutdown = SHUTDOWN_MASK;
1489 sk->sk_state = SCTP_SS_CLOSING;
1490
1491 ep = sctp_sk(sk)->ep;
1492
1493 /* Clean up any skbs sitting on the receive queue. */
1494 data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue);
1495 data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby);
1496
1497 /* Walk all associations on an endpoint. */
1498 list_for_each_safe(pos, temp, &ep->asocs) {
1499 asoc = list_entry(pos, struct sctp_association, asocs);
1500
1501 if (sctp_style(sk, TCP)) {
1502 /* A closed association can still be in the list if
1503 * it belongs to a TCP-style listening socket that is
1504 * not yet accepted. If so, free it. If not, send an
1505 * ABORT or SHUTDOWN based on the linger options.
1506 */
1507 if (sctp_state(asoc, CLOSED)) {
1508 sctp_association_free(asoc);
1509 continue;
1510 }
1511 }
1512
1513 if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) ||
1514 !skb_queue_empty(&asoc->ulpq.reasm) ||
1515 (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) {
1516 struct sctp_chunk *chunk;
1517
1518 chunk = sctp_make_abort_user(asoc, NULL, 0);
1519 sctp_primitive_ABORT(net, asoc, chunk);
1520 } else
1521 sctp_primitive_SHUTDOWN(net, asoc, NULL);
1522 }
1523
1524 /* On a TCP-style socket, block for at most linger_time if set. */
1525 if (sctp_style(sk, TCP) && timeout)
1526 sctp_wait_for_close(sk, timeout);
1527
1528 /* This will run the backlog queue. */
1529 release_sock(sk);
1530
1531 /* Supposedly, no process has access to the socket, but
1532 * the net layers still may.
1533 * Also, sctp_destroy_sock() needs to be called with addr_wq_lock
1534 * held and that should be grabbed before socket lock.
1535 */
1536 spin_lock_bh(&net->sctp.addr_wq_lock);
1537 bh_lock_sock(sk);
1538
1539 /* Hold the sock, since sk_common_release() will put sock_put()
1540 * and we have just a little more cleanup.
1541 */
1542 sock_hold(sk);
1543 sk_common_release(sk);
1544
1545 bh_unlock_sock(sk);
1546 spin_unlock_bh(&net->sctp.addr_wq_lock);
1547
1548 sock_put(sk);
1549
1550 SCTP_DBG_OBJCNT_DEC(sock);
1551}
1552
1553/* Handle EPIPE error. */
1554static int sctp_error(struct sock *sk, int flags, int err)
1555{
1556 if (err == -EPIPE)
1557 err = sock_error(sk) ? : -EPIPE;
1558 if (err == -EPIPE && !(flags & MSG_NOSIGNAL))
1559 send_sig(SIGPIPE, current, 0);
1560 return err;
1561}
1562
1563/* API 3.1.3 sendmsg() - UDP Style Syntax
1564 *
1565 * An application uses sendmsg() and recvmsg() calls to transmit data to
1566 * and receive data from its peer.
1567 *
1568 * ssize_t sendmsg(int socket, const struct msghdr *message,
1569 * int flags);
1570 *
1571 * socket - the socket descriptor of the endpoint.
1572 * message - pointer to the msghdr structure which contains a single
1573 * user message and possibly some ancillary data.
1574 *
1575 * See Section 5 for complete description of the data
1576 * structures.
1577 *
1578 * flags - flags sent or received with the user message, see Section
1579 * 5 for complete description of the flags.
1580 *
1581 * Note: This function could use a rewrite especially when explicit
1582 * connect support comes in.
1583 */
1584/* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */
1585
1586static int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *);
1587
1588static int sctp_sendmsg(struct sock *sk, struct msghdr *msg, size_t msg_len)
1589{
1590 struct net *net = sock_net(sk);
1591 struct sctp_sock *sp;
1592 struct sctp_endpoint *ep;
1593 struct sctp_association *new_asoc = NULL, *asoc = NULL;
1594 struct sctp_transport *transport, *chunk_tp;
1595 struct sctp_chunk *chunk;
1596 union sctp_addr to;
1597 struct sockaddr *msg_name = NULL;
1598 struct sctp_sndrcvinfo default_sinfo;
1599 struct sctp_sndrcvinfo *sinfo;
1600 struct sctp_initmsg *sinit;
1601 sctp_assoc_t associd = 0;
1602 sctp_cmsgs_t cmsgs = { NULL };
1603 sctp_scope_t scope;
1604 bool fill_sinfo_ttl = false, wait_connect = false;
1605 struct sctp_datamsg *datamsg;
1606 int msg_flags = msg->msg_flags;
1607 __u16 sinfo_flags = 0;
1608 long timeo;
1609 int err;
1610
1611 err = 0;
1612 sp = sctp_sk(sk);
1613 ep = sp->ep;
1614
1615 pr_debug("%s: sk:%p, msg:%p, msg_len:%zu ep:%p\n", __func__, sk,
1616 msg, msg_len, ep);
1617
1618 /* We cannot send a message over a TCP-style listening socket. */
1619 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) {
1620 err = -EPIPE;
1621 goto out_nounlock;
1622 }
1623
1624 /* Parse out the SCTP CMSGs. */
1625 err = sctp_msghdr_parse(msg, &cmsgs);
1626 if (err) {
1627 pr_debug("%s: msghdr parse err:%x\n", __func__, err);
1628 goto out_nounlock;
1629 }
1630
1631 /* Fetch the destination address for this packet. This
1632 * address only selects the association--it is not necessarily
1633 * the address we will send to.
1634 * For a peeled-off socket, msg_name is ignored.
1635 */
1636 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) {
1637 int msg_namelen = msg->msg_namelen;
1638
1639 err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name,
1640 msg_namelen);
1641 if (err)
1642 return err;
1643
1644 if (msg_namelen > sizeof(to))
1645 msg_namelen = sizeof(to);
1646 memcpy(&to, msg->msg_name, msg_namelen);
1647 msg_name = msg->msg_name;
1648 }
1649
1650 sinit = cmsgs.init;
1651 if (cmsgs.sinfo != NULL) {
1652 memset(&default_sinfo, 0, sizeof(default_sinfo));
1653 default_sinfo.sinfo_stream = cmsgs.sinfo->snd_sid;
1654 default_sinfo.sinfo_flags = cmsgs.sinfo->snd_flags;
1655 default_sinfo.sinfo_ppid = cmsgs.sinfo->snd_ppid;
1656 default_sinfo.sinfo_context = cmsgs.sinfo->snd_context;
1657 default_sinfo.sinfo_assoc_id = cmsgs.sinfo->snd_assoc_id;
1658
1659 sinfo = &default_sinfo;
1660 fill_sinfo_ttl = true;
1661 } else {
1662 sinfo = cmsgs.srinfo;
1663 }
1664 /* Did the user specify SNDINFO/SNDRCVINFO? */
1665 if (sinfo) {
1666 sinfo_flags = sinfo->sinfo_flags;
1667 associd = sinfo->sinfo_assoc_id;
1668 }
1669
1670 pr_debug("%s: msg_len:%zu, sinfo_flags:0x%x\n", __func__,
1671 msg_len, sinfo_flags);
1672
1673 /* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */
1674 if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) {
1675 err = -EINVAL;
1676 goto out_nounlock;
1677 }
1678
1679 /* If SCTP_EOF is set, no data can be sent. Disallow sending zero
1680 * length messages when SCTP_EOF|SCTP_ABORT is not set.
1681 * If SCTP_ABORT is set, the message length could be non zero with
1682 * the msg_iov set to the user abort reason.
1683 */
1684 if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) ||
1685 (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) {
1686 err = -EINVAL;
1687 goto out_nounlock;
1688 }
1689
1690 /* If SCTP_ADDR_OVER is set, there must be an address
1691 * specified in msg_name.
1692 */
1693 if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) {
1694 err = -EINVAL;
1695 goto out_nounlock;
1696 }
1697
1698 transport = NULL;
1699
1700 pr_debug("%s: about to look up association\n", __func__);
1701
1702 lock_sock(sk);
1703
1704 /* If a msg_name has been specified, assume this is to be used. */
1705 if (msg_name) {
1706 /* Look for a matching association on the endpoint. */
1707 asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1708 if (!asoc) {
1709 /* If we could not find a matching association on the
1710 * endpoint, make sure that it is not a TCP-style
1711 * socket that already has an association or there is
1712 * no peeled-off association on another socket.
1713 */
1714 if ((sctp_style(sk, TCP) &&
1715 sctp_sstate(sk, ESTABLISHED)) ||
1716 sctp_endpoint_is_peeled_off(ep, &to)) {
1717 err = -EADDRNOTAVAIL;
1718 goto out_unlock;
1719 }
1720 }
1721 } else {
1722 asoc = sctp_id2assoc(sk, associd);
1723 if (!asoc) {
1724 err = -EPIPE;
1725 goto out_unlock;
1726 }
1727 }
1728
1729 if (asoc) {
1730 pr_debug("%s: just looked up association:%p\n", __func__, asoc);
1731
1732 /* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED
1733 * socket that has an association in CLOSED state. This can
1734 * happen when an accepted socket has an association that is
1735 * already CLOSED.
1736 */
1737 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) {
1738 err = -EPIPE;
1739 goto out_unlock;
1740 }
1741
1742 if (sinfo_flags & SCTP_EOF) {
1743 pr_debug("%s: shutting down association:%p\n",
1744 __func__, asoc);
1745
1746 sctp_primitive_SHUTDOWN(net, asoc, NULL);
1747 err = 0;
1748 goto out_unlock;
1749 }
1750 if (sinfo_flags & SCTP_ABORT) {
1751
1752 chunk = sctp_make_abort_user(asoc, msg, msg_len);
1753 if (!chunk) {
1754 err = -ENOMEM;
1755 goto out_unlock;
1756 }
1757
1758 pr_debug("%s: aborting association:%p\n",
1759 __func__, asoc);
1760
1761 sctp_primitive_ABORT(net, asoc, chunk);
1762 err = 0;
1763 goto out_unlock;
1764 }
1765 }
1766
1767 /* Do we need to create the association? */
1768 if (!asoc) {
1769 pr_debug("%s: there is no association yet\n", __func__);
1770
1771 if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) {
1772 err = -EINVAL;
1773 goto out_unlock;
1774 }
1775
1776 /* Check for invalid stream against the stream counts,
1777 * either the default or the user specified stream counts.
1778 */
1779 if (sinfo) {
1780 if (!sinit || !sinit->sinit_num_ostreams) {
1781 /* Check against the defaults. */
1782 if (sinfo->sinfo_stream >=
1783 sp->initmsg.sinit_num_ostreams) {
1784 err = -EINVAL;
1785 goto out_unlock;
1786 }
1787 } else {
1788 /* Check against the requested. */
1789 if (sinfo->sinfo_stream >=
1790 sinit->sinit_num_ostreams) {
1791 err = -EINVAL;
1792 goto out_unlock;
1793 }
1794 }
1795 }
1796
1797 /*
1798 * API 3.1.2 bind() - UDP Style Syntax
1799 * If a bind() or sctp_bindx() is not called prior to a
1800 * sendmsg() call that initiates a new association, the
1801 * system picks an ephemeral port and will choose an address
1802 * set equivalent to binding with a wildcard address.
1803 */
1804 if (!ep->base.bind_addr.port) {
1805 if (sctp_autobind(sk)) {
1806 err = -EAGAIN;
1807 goto out_unlock;
1808 }
1809 } else {
1810 /*
1811 * If an unprivileged user inherits a one-to-many
1812 * style socket with open associations on a privileged
1813 * port, it MAY be permitted to accept new associations,
1814 * but it SHOULD NOT be permitted to open new
1815 * associations.
1816 */
1817 if (ep->base.bind_addr.port < PROT_SOCK &&
1818 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE)) {
1819 err = -EACCES;
1820 goto out_unlock;
1821 }
1822 }
1823
1824 scope = sctp_scope(&to);
1825 new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1826 if (!new_asoc) {
1827 err = -ENOMEM;
1828 goto out_unlock;
1829 }
1830 asoc = new_asoc;
1831 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL);
1832 if (err < 0) {
1833 err = -ENOMEM;
1834 goto out_free;
1835 }
1836
1837 /* If the SCTP_INIT ancillary data is specified, set all
1838 * the association init values accordingly.
1839 */
1840 if (sinit) {
1841 if (sinit->sinit_num_ostreams) {
1842 asoc->c.sinit_num_ostreams =
1843 sinit->sinit_num_ostreams;
1844 }
1845 if (sinit->sinit_max_instreams) {
1846 asoc->c.sinit_max_instreams =
1847 sinit->sinit_max_instreams;
1848 }
1849 if (sinit->sinit_max_attempts) {
1850 asoc->max_init_attempts
1851 = sinit->sinit_max_attempts;
1852 }
1853 if (sinit->sinit_max_init_timeo) {
1854 asoc->max_init_timeo =
1855 msecs_to_jiffies(sinit->sinit_max_init_timeo);
1856 }
1857 }
1858
1859 /* Prime the peer's transport structures. */
1860 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN);
1861 if (!transport) {
1862 err = -ENOMEM;
1863 goto out_free;
1864 }
1865 }
1866
1867 /* ASSERT: we have a valid association at this point. */
1868 pr_debug("%s: we have a valid association\n", __func__);
1869
1870 if (!sinfo) {
1871 /* If the user didn't specify SNDINFO/SNDRCVINFO, make up
1872 * one with some defaults.
1873 */
1874 memset(&default_sinfo, 0, sizeof(default_sinfo));
1875 default_sinfo.sinfo_stream = asoc->default_stream;
1876 default_sinfo.sinfo_flags = asoc->default_flags;
1877 default_sinfo.sinfo_ppid = asoc->default_ppid;
1878 default_sinfo.sinfo_context = asoc->default_context;
1879 default_sinfo.sinfo_timetolive = asoc->default_timetolive;
1880 default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc);
1881
1882 sinfo = &default_sinfo;
1883 } else if (fill_sinfo_ttl) {
1884 /* In case SNDINFO was specified, we still need to fill
1885 * it with a default ttl from the assoc here.
1886 */
1887 sinfo->sinfo_timetolive = asoc->default_timetolive;
1888 }
1889
1890 /* API 7.1.7, the sndbuf size per association bounds the
1891 * maximum size of data that can be sent in a single send call.
1892 */
1893 if (msg_len > sk->sk_sndbuf) {
1894 err = -EMSGSIZE;
1895 goto out_free;
1896 }
1897
1898 if (asoc->pmtu_pending)
1899 sctp_assoc_pending_pmtu(sk, asoc);
1900
1901 /* If fragmentation is disabled and the message length exceeds the
1902 * association fragmentation point, return EMSGSIZE. The I-D
1903 * does not specify what this error is, but this looks like
1904 * a great fit.
1905 */
1906 if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) {
1907 err = -EMSGSIZE;
1908 goto out_free;
1909 }
1910
1911 /* Check for invalid stream. */
1912 if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) {
1913 err = -EINVAL;
1914 goto out_free;
1915 }
1916
1917 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1918 if (!sctp_wspace(asoc)) {
1919 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len);
1920 if (err)
1921 goto out_free;
1922 }
1923
1924 /* If an address is passed with the sendto/sendmsg call, it is used
1925 * to override the primary destination address in the TCP model, or
1926 * when SCTP_ADDR_OVER flag is set in the UDP model.
1927 */
1928 if ((sctp_style(sk, TCP) && msg_name) ||
1929 (sinfo_flags & SCTP_ADDR_OVER)) {
1930 chunk_tp = sctp_assoc_lookup_paddr(asoc, &to);
1931 if (!chunk_tp) {
1932 err = -EINVAL;
1933 goto out_free;
1934 }
1935 } else
1936 chunk_tp = NULL;
1937
1938 /* Auto-connect, if we aren't connected already. */
1939 if (sctp_state(asoc, CLOSED)) {
1940 err = sctp_primitive_ASSOCIATE(net, asoc, NULL);
1941 if (err < 0)
1942 goto out_free;
1943
1944 wait_connect = true;
1945 pr_debug("%s: we associated primitively\n", __func__);
1946 }
1947
1948 /* Break the message into multiple chunks of maximum size. */
1949 datamsg = sctp_datamsg_from_user(asoc, sinfo, &msg->msg_iter);
1950 if (IS_ERR(datamsg)) {
1951 err = PTR_ERR(datamsg);
1952 goto out_free;
1953 }
1954
1955 /* Now send the (possibly) fragmented message. */
1956 list_for_each_entry(chunk, &datamsg->chunks, frag_list) {
1957 /* Do accounting for the write space. */
1958 sctp_set_owner_w(chunk);
1959
1960 chunk->transport = chunk_tp;
1961 }
1962
1963 /* Send it to the lower layers. Note: all chunks
1964 * must either fail or succeed. The lower layer
1965 * works that way today. Keep it that way or this
1966 * breaks.
1967 */
1968 err = sctp_primitive_SEND(net, asoc, datamsg);
1969 sctp_datamsg_put(datamsg);
1970 /* Did the lower layer accept the chunk? */
1971 if (err)
1972 goto out_free;
1973
1974 pr_debug("%s: we sent primitively\n", __func__);
1975
1976 err = msg_len;
1977
1978 if (unlikely(wait_connect)) {
1979 timeo = sock_sndtimeo(sk, msg_flags & MSG_DONTWAIT);
1980 sctp_wait_for_connect(asoc, &timeo);
1981 }
1982
1983 /* If we are already past ASSOCIATE, the lower
1984 * layers are responsible for association cleanup.
1985 */
1986 goto out_unlock;
1987
1988out_free:
1989 if (new_asoc)
1990 sctp_association_free(asoc);
1991out_unlock:
1992 release_sock(sk);
1993
1994out_nounlock:
1995 return sctp_error(sk, msg_flags, err);
1996
1997#if 0
1998do_sock_err:
1999 if (msg_len)
2000 err = msg_len;
2001 else
2002 err = sock_error(sk);
2003 goto out;
2004
2005do_interrupted:
2006 if (msg_len)
2007 err = msg_len;
2008 goto out;
2009#endif /* 0 */
2010}
2011
2012/* This is an extended version of skb_pull() that removes the data from the
2013 * start of a skb even when data is spread across the list of skb's in the
2014 * frag_list. len specifies the total amount of data that needs to be removed.
2015 * when 'len' bytes could be removed from the skb, it returns 0.
2016 * If 'len' exceeds the total skb length, it returns the no. of bytes that
2017 * could not be removed.
2018 */
2019static int sctp_skb_pull(struct sk_buff *skb, int len)
2020{
2021 struct sk_buff *list;
2022 int skb_len = skb_headlen(skb);
2023 int rlen;
2024
2025 if (len <= skb_len) {
2026 __skb_pull(skb, len);
2027 return 0;
2028 }
2029 len -= skb_len;
2030 __skb_pull(skb, skb_len);
2031
2032 skb_walk_frags(skb, list) {
2033 rlen = sctp_skb_pull(list, len);
2034 skb->len -= (len-rlen);
2035 skb->data_len -= (len-rlen);
2036
2037 if (!rlen)
2038 return 0;
2039
2040 len = rlen;
2041 }
2042
2043 return len;
2044}
2045
2046/* API 3.1.3 recvmsg() - UDP Style Syntax
2047 *
2048 * ssize_t recvmsg(int socket, struct msghdr *message,
2049 * int flags);
2050 *
2051 * socket - the socket descriptor of the endpoint.
2052 * message - pointer to the msghdr structure which contains a single
2053 * user message and possibly some ancillary data.
2054 *
2055 * See Section 5 for complete description of the data
2056 * structures.
2057 *
2058 * flags - flags sent or received with the user message, see Section
2059 * 5 for complete description of the flags.
2060 */
2061static int sctp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
2062 int noblock, int flags, int *addr_len)
2063{
2064 struct sctp_ulpevent *event = NULL;
2065 struct sctp_sock *sp = sctp_sk(sk);
2066 struct sk_buff *skb;
2067 int copied;
2068 int err = 0;
2069 int skb_len;
2070
2071 pr_debug("%s: sk:%p, msghdr:%p, len:%zd, noblock:%d, flags:0x%x, "
2072 "addr_len:%p)\n", __func__, sk, msg, len, noblock, flags,
2073 addr_len);
2074
2075 lock_sock(sk);
2076
2077 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED)) {
2078 err = -ENOTCONN;
2079 goto out;
2080 }
2081
2082 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err);
2083 if (!skb)
2084 goto out;
2085
2086 /* Get the total length of the skb including any skb's in the
2087 * frag_list.
2088 */
2089 skb_len = skb->len;
2090
2091 copied = skb_len;
2092 if (copied > len)
2093 copied = len;
2094
2095 err = skb_copy_datagram_msg(skb, 0, msg, copied);
2096
2097 event = sctp_skb2event(skb);
2098
2099 if (err)
2100 goto out_free;
2101
2102 sock_recv_ts_and_drops(msg, sk, skb);
2103 if (sctp_ulpevent_is_notification(event)) {
2104 msg->msg_flags |= MSG_NOTIFICATION;
2105 sp->pf->event_msgname(event, msg->msg_name, addr_len);
2106 } else {
2107 sp->pf->skb_msgname(skb, msg->msg_name, addr_len);
2108 }
2109
2110 /* Check if we allow SCTP_NXTINFO. */
2111 if (sp->recvnxtinfo)
2112 sctp_ulpevent_read_nxtinfo(event, msg, sk);
2113 /* Check if we allow SCTP_RCVINFO. */
2114 if (sp->recvrcvinfo)
2115 sctp_ulpevent_read_rcvinfo(event, msg);
2116 /* Check if we allow SCTP_SNDRCVINFO. */
2117 if (sp->subscribe.sctp_data_io_event)
2118 sctp_ulpevent_read_sndrcvinfo(event, msg);
2119
2120 err = copied;
2121
2122 /* If skb's length exceeds the user's buffer, update the skb and
2123 * push it back to the receive_queue so that the next call to
2124 * recvmsg() will return the remaining data. Don't set MSG_EOR.
2125 */
2126 if (skb_len > copied) {
2127 msg->msg_flags &= ~MSG_EOR;
2128 if (flags & MSG_PEEK)
2129 goto out_free;
2130 sctp_skb_pull(skb, copied);
2131 skb_queue_head(&sk->sk_receive_queue, skb);
2132
2133 /* When only partial message is copied to the user, increase
2134 * rwnd by that amount. If all the data in the skb is read,
2135 * rwnd is updated when the event is freed.
2136 */
2137 if (!sctp_ulpevent_is_notification(event))
2138 sctp_assoc_rwnd_increase(event->asoc, copied);
2139 goto out;
2140 } else if ((event->msg_flags & MSG_NOTIFICATION) ||
2141 (event->msg_flags & MSG_EOR))
2142 msg->msg_flags |= MSG_EOR;
2143 else
2144 msg->msg_flags &= ~MSG_EOR;
2145
2146out_free:
2147 if (flags & MSG_PEEK) {
2148 /* Release the skb reference acquired after peeking the skb in
2149 * sctp_skb_recv_datagram().
2150 */
2151 kfree_skb(skb);
2152 } else {
2153 /* Free the event which includes releasing the reference to
2154 * the owner of the skb, freeing the skb and updating the
2155 * rwnd.
2156 */
2157 sctp_ulpevent_free(event);
2158 }
2159out:
2160 release_sock(sk);
2161 return err;
2162}
2163
2164/* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
2165 *
2166 * This option is a on/off flag. If enabled no SCTP message
2167 * fragmentation will be performed. Instead if a message being sent
2168 * exceeds the current PMTU size, the message will NOT be sent and
2169 * instead a error will be indicated to the user.
2170 */
2171static int sctp_setsockopt_disable_fragments(struct sock *sk,
2172 char __user *optval,
2173 unsigned int optlen)
2174{
2175 int val;
2176
2177 if (optlen < sizeof(int))
2178 return -EINVAL;
2179
2180 if (get_user(val, (int __user *)optval))
2181 return -EFAULT;
2182
2183 sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1;
2184
2185 return 0;
2186}
2187
2188static int sctp_setsockopt_events(struct sock *sk, char __user *optval,
2189 unsigned int optlen)
2190{
2191 struct sctp_association *asoc;
2192 struct sctp_ulpevent *event;
2193
2194 if (optlen > sizeof(struct sctp_event_subscribe))
2195 return -EINVAL;
2196 if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen))
2197 return -EFAULT;
2198
2199 /* At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT,
2200 * if there is no data to be sent or retransmit, the stack will
2201 * immediately send up this notification.
2202 */
2203 if (sctp_ulpevent_type_enabled(SCTP_SENDER_DRY_EVENT,
2204 &sctp_sk(sk)->subscribe)) {
2205 asoc = sctp_id2assoc(sk, 0);
2206
2207 if (asoc && sctp_outq_is_empty(&asoc->outqueue)) {
2208 event = sctp_ulpevent_make_sender_dry_event(asoc,
2209 GFP_ATOMIC);
2210 if (!event)
2211 return -ENOMEM;
2212
2213 sctp_ulpq_tail_event(&asoc->ulpq, event);
2214 }
2215 }
2216
2217 return 0;
2218}
2219
2220/* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
2221 *
2222 * This socket option is applicable to the UDP-style socket only. When
2223 * set it will cause associations that are idle for more than the
2224 * specified number of seconds to automatically close. An association
2225 * being idle is defined an association that has NOT sent or received
2226 * user data. The special value of '0' indicates that no automatic
2227 * close of any associations should be performed. The option expects an
2228 * integer defining the number of seconds of idle time before an
2229 * association is closed.
2230 */
2231static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval,
2232 unsigned int optlen)
2233{
2234 struct sctp_sock *sp = sctp_sk(sk);
2235 struct net *net = sock_net(sk);
2236
2237 /* Applicable to UDP-style socket only */
2238 if (sctp_style(sk, TCP))
2239 return -EOPNOTSUPP;
2240 if (optlen != sizeof(int))
2241 return -EINVAL;
2242 if (copy_from_user(&sp->autoclose, optval, optlen))
2243 return -EFAULT;
2244
2245 if (sp->autoclose > net->sctp.max_autoclose)
2246 sp->autoclose = net->sctp.max_autoclose;
2247
2248 return 0;
2249}
2250
2251/* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
2252 *
2253 * Applications can enable or disable heartbeats for any peer address of
2254 * an association, modify an address's heartbeat interval, force a
2255 * heartbeat to be sent immediately, and adjust the address's maximum
2256 * number of retransmissions sent before an address is considered
2257 * unreachable. The following structure is used to access and modify an
2258 * address's parameters:
2259 *
2260 * struct sctp_paddrparams {
2261 * sctp_assoc_t spp_assoc_id;
2262 * struct sockaddr_storage spp_address;
2263 * uint32_t spp_hbinterval;
2264 * uint16_t spp_pathmaxrxt;
2265 * uint32_t spp_pathmtu;
2266 * uint32_t spp_sackdelay;
2267 * uint32_t spp_flags;
2268 * };
2269 *
2270 * spp_assoc_id - (one-to-many style socket) This is filled in the
2271 * application, and identifies the association for
2272 * this query.
2273 * spp_address - This specifies which address is of interest.
2274 * spp_hbinterval - This contains the value of the heartbeat interval,
2275 * in milliseconds. If a value of zero
2276 * is present in this field then no changes are to
2277 * be made to this parameter.
2278 * spp_pathmaxrxt - This contains the maximum number of
2279 * retransmissions before this address shall be
2280 * considered unreachable. If a value of zero
2281 * is present in this field then no changes are to
2282 * be made to this parameter.
2283 * spp_pathmtu - When Path MTU discovery is disabled the value
2284 * specified here will be the "fixed" path mtu.
2285 * Note that if the spp_address field is empty
2286 * then all associations on this address will
2287 * have this fixed path mtu set upon them.
2288 *
2289 * spp_sackdelay - When delayed sack is enabled, this value specifies
2290 * the number of milliseconds that sacks will be delayed
2291 * for. This value will apply to all addresses of an
2292 * association if the spp_address field is empty. Note
2293 * also, that if delayed sack is enabled and this
2294 * value is set to 0, no change is made to the last
2295 * recorded delayed sack timer value.
2296 *
2297 * spp_flags - These flags are used to control various features
2298 * on an association. The flag field may contain
2299 * zero or more of the following options.
2300 *
2301 * SPP_HB_ENABLE - Enable heartbeats on the
2302 * specified address. Note that if the address
2303 * field is empty all addresses for the association
2304 * have heartbeats enabled upon them.
2305 *
2306 * SPP_HB_DISABLE - Disable heartbeats on the
2307 * speicifed address. Note that if the address
2308 * field is empty all addresses for the association
2309 * will have their heartbeats disabled. Note also
2310 * that SPP_HB_ENABLE and SPP_HB_DISABLE are
2311 * mutually exclusive, only one of these two should
2312 * be specified. Enabling both fields will have
2313 * undetermined results.
2314 *
2315 * SPP_HB_DEMAND - Request a user initiated heartbeat
2316 * to be made immediately.
2317 *
2318 * SPP_HB_TIME_IS_ZERO - Specify's that the time for
2319 * heartbeat delayis to be set to the value of 0
2320 * milliseconds.
2321 *
2322 * SPP_PMTUD_ENABLE - This field will enable PMTU
2323 * discovery upon the specified address. Note that
2324 * if the address feild is empty then all addresses
2325 * on the association are effected.
2326 *
2327 * SPP_PMTUD_DISABLE - This field will disable PMTU
2328 * discovery upon the specified address. Note that
2329 * if the address feild is empty then all addresses
2330 * on the association are effected. Not also that
2331 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
2332 * exclusive. Enabling both will have undetermined
2333 * results.
2334 *
2335 * SPP_SACKDELAY_ENABLE - Setting this flag turns
2336 * on delayed sack. The time specified in spp_sackdelay
2337 * is used to specify the sack delay for this address. Note
2338 * that if spp_address is empty then all addresses will
2339 * enable delayed sack and take on the sack delay
2340 * value specified in spp_sackdelay.
2341 * SPP_SACKDELAY_DISABLE - Setting this flag turns
2342 * off delayed sack. If the spp_address field is blank then
2343 * delayed sack is disabled for the entire association. Note
2344 * also that this field is mutually exclusive to
2345 * SPP_SACKDELAY_ENABLE, setting both will have undefined
2346 * results.
2347 */
2348static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params,
2349 struct sctp_transport *trans,
2350 struct sctp_association *asoc,
2351 struct sctp_sock *sp,
2352 int hb_change,
2353 int pmtud_change,
2354 int sackdelay_change)
2355{
2356 int error;
2357
2358 if (params->spp_flags & SPP_HB_DEMAND && trans) {
2359 struct net *net = sock_net(trans->asoc->base.sk);
2360
2361 error = sctp_primitive_REQUESTHEARTBEAT(net, trans->asoc, trans);
2362 if (error)
2363 return error;
2364 }
2365
2366 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of
2367 * this field is ignored. Note also that a value of zero indicates
2368 * the current setting should be left unchanged.
2369 */
2370 if (params->spp_flags & SPP_HB_ENABLE) {
2371
2372 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is
2373 * set. This lets us use 0 value when this flag
2374 * is set.
2375 */
2376 if (params->spp_flags & SPP_HB_TIME_IS_ZERO)
2377 params->spp_hbinterval = 0;
2378
2379 if (params->spp_hbinterval ||
2380 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) {
2381 if (trans) {
2382 trans->hbinterval =
2383 msecs_to_jiffies(params->spp_hbinterval);
2384 } else if (asoc) {
2385 asoc->hbinterval =
2386 msecs_to_jiffies(params->spp_hbinterval);
2387 } else {
2388 sp->hbinterval = params->spp_hbinterval;
2389 }
2390 }
2391 }
2392
2393 if (hb_change) {
2394 if (trans) {
2395 trans->param_flags =
2396 (trans->param_flags & ~SPP_HB) | hb_change;
2397 } else if (asoc) {
2398 asoc->param_flags =
2399 (asoc->param_flags & ~SPP_HB) | hb_change;
2400 } else {
2401 sp->param_flags =
2402 (sp->param_flags & ~SPP_HB) | hb_change;
2403 }
2404 }
2405
2406 /* When Path MTU discovery is disabled the value specified here will
2407 * be the "fixed" path mtu (i.e. the value of the spp_flags field must
2408 * include the flag SPP_PMTUD_DISABLE for this field to have any
2409 * effect).
2410 */
2411 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) {
2412 if (trans) {
2413 trans->pathmtu = params->spp_pathmtu;
2414 sctp_assoc_sync_pmtu(sctp_opt2sk(sp), asoc);
2415 } else if (asoc) {
2416 asoc->pathmtu = params->spp_pathmtu;
2417 sctp_frag_point(asoc, params->spp_pathmtu);
2418 } else {
2419 sp->pathmtu = params->spp_pathmtu;
2420 }
2421 }
2422
2423 if (pmtud_change) {
2424 if (trans) {
2425 int update = (trans->param_flags & SPP_PMTUD_DISABLE) &&
2426 (params->spp_flags & SPP_PMTUD_ENABLE);
2427 trans->param_flags =
2428 (trans->param_flags & ~SPP_PMTUD) | pmtud_change;
2429 if (update) {
2430 sctp_transport_pmtu(trans, sctp_opt2sk(sp));
2431 sctp_assoc_sync_pmtu(sctp_opt2sk(sp), asoc);
2432 }
2433 } else if (asoc) {
2434 asoc->param_flags =
2435 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change;
2436 } else {
2437 sp->param_flags =
2438 (sp->param_flags & ~SPP_PMTUD) | pmtud_change;
2439 }
2440 }
2441
2442 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the
2443 * value of this field is ignored. Note also that a value of zero
2444 * indicates the current setting should be left unchanged.
2445 */
2446 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) {
2447 if (trans) {
2448 trans->sackdelay =
2449 msecs_to_jiffies(params->spp_sackdelay);
2450 } else if (asoc) {
2451 asoc->sackdelay =
2452 msecs_to_jiffies(params->spp_sackdelay);
2453 } else {
2454 sp->sackdelay = params->spp_sackdelay;
2455 }
2456 }
2457
2458 if (sackdelay_change) {
2459 if (trans) {
2460 trans->param_flags =
2461 (trans->param_flags & ~SPP_SACKDELAY) |
2462 sackdelay_change;
2463 } else if (asoc) {
2464 asoc->param_flags =
2465 (asoc->param_flags & ~SPP_SACKDELAY) |
2466 sackdelay_change;
2467 } else {
2468 sp->param_flags =
2469 (sp->param_flags & ~SPP_SACKDELAY) |
2470 sackdelay_change;
2471 }
2472 }
2473
2474 /* Note that a value of zero indicates the current setting should be
2475 left unchanged.
2476 */
2477 if (params->spp_pathmaxrxt) {
2478 if (trans) {
2479 trans->pathmaxrxt = params->spp_pathmaxrxt;
2480 } else if (asoc) {
2481 asoc->pathmaxrxt = params->spp_pathmaxrxt;
2482 } else {
2483 sp->pathmaxrxt = params->spp_pathmaxrxt;
2484 }
2485 }
2486
2487 return 0;
2488}
2489
2490static int sctp_setsockopt_peer_addr_params(struct sock *sk,
2491 char __user *optval,
2492 unsigned int optlen)
2493{
2494 struct sctp_paddrparams params;
2495 struct sctp_transport *trans = NULL;
2496 struct sctp_association *asoc = NULL;
2497 struct sctp_sock *sp = sctp_sk(sk);
2498 int error;
2499 int hb_change, pmtud_change, sackdelay_change;
2500
2501 if (optlen != sizeof(struct sctp_paddrparams))
2502 return -EINVAL;
2503
2504 if (copy_from_user(¶ms, optval, optlen))
2505 return -EFAULT;
2506
2507 /* Validate flags and value parameters. */
2508 hb_change = params.spp_flags & SPP_HB;
2509 pmtud_change = params.spp_flags & SPP_PMTUD;
2510 sackdelay_change = params.spp_flags & SPP_SACKDELAY;
2511
2512 if (hb_change == SPP_HB ||
2513 pmtud_change == SPP_PMTUD ||
2514 sackdelay_change == SPP_SACKDELAY ||
2515 params.spp_sackdelay > 500 ||
2516 (params.spp_pathmtu &&
2517 params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT))
2518 return -EINVAL;
2519
2520 /* If an address other than INADDR_ANY is specified, and
2521 * no transport is found, then the request is invalid.
2522 */
2523 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spp_address)) {
2524 trans = sctp_addr_id2transport(sk, ¶ms.spp_address,
2525 params.spp_assoc_id);
2526 if (!trans)
2527 return -EINVAL;
2528 }
2529
2530 /* Get association, if assoc_id != 0 and the socket is a one
2531 * to many style socket, and an association was not found, then
2532 * the id was invalid.
2533 */
2534 asoc = sctp_id2assoc(sk, params.spp_assoc_id);
2535 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP))
2536 return -EINVAL;
2537
2538 /* Heartbeat demand can only be sent on a transport or
2539 * association, but not a socket.
2540 */
2541 if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc)
2542 return -EINVAL;
2543
2544 /* Process parameters. */
2545 error = sctp_apply_peer_addr_params(¶ms, trans, asoc, sp,
2546 hb_change, pmtud_change,
2547 sackdelay_change);
2548
2549 if (error)
2550 return error;
2551
2552 /* If changes are for association, also apply parameters to each
2553 * transport.
2554 */
2555 if (!trans && asoc) {
2556 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2557 transports) {
2558 sctp_apply_peer_addr_params(¶ms, trans, asoc, sp,
2559 hb_change, pmtud_change,
2560 sackdelay_change);
2561 }
2562 }
2563
2564 return 0;
2565}
2566
2567static inline __u32 sctp_spp_sackdelay_enable(__u32 param_flags)
2568{
2569 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_ENABLE;
2570}
2571
2572static inline __u32 sctp_spp_sackdelay_disable(__u32 param_flags)
2573{
2574 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_DISABLE;
2575}
2576
2577/*
2578 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK)
2579 *
2580 * This option will effect the way delayed acks are performed. This
2581 * option allows you to get or set the delayed ack time, in
2582 * milliseconds. It also allows changing the delayed ack frequency.
2583 * Changing the frequency to 1 disables the delayed sack algorithm. If
2584 * the assoc_id is 0, then this sets or gets the endpoints default
2585 * values. If the assoc_id field is non-zero, then the set or get
2586 * effects the specified association for the one to many model (the
2587 * assoc_id field is ignored by the one to one model). Note that if
2588 * sack_delay or sack_freq are 0 when setting this option, then the
2589 * current values will remain unchanged.
2590 *
2591 * struct sctp_sack_info {
2592 * sctp_assoc_t sack_assoc_id;
2593 * uint32_t sack_delay;
2594 * uint32_t sack_freq;
2595 * };
2596 *
2597 * sack_assoc_id - This parameter, indicates which association the user
2598 * is performing an action upon. Note that if this field's value is
2599 * zero then the endpoints default value is changed (effecting future
2600 * associations only).
2601 *
2602 * sack_delay - This parameter contains the number of milliseconds that
2603 * the user is requesting the delayed ACK timer be set to. Note that
2604 * this value is defined in the standard to be between 200 and 500
2605 * milliseconds.
2606 *
2607 * sack_freq - This parameter contains the number of packets that must
2608 * be received before a sack is sent without waiting for the delay
2609 * timer to expire. The default value for this is 2, setting this
2610 * value to 1 will disable the delayed sack algorithm.
2611 */
2612
2613static int sctp_setsockopt_delayed_ack(struct sock *sk,
2614 char __user *optval, unsigned int optlen)
2615{
2616 struct sctp_sack_info params;
2617 struct sctp_transport *trans = NULL;
2618 struct sctp_association *asoc = NULL;
2619 struct sctp_sock *sp = sctp_sk(sk);
2620
2621 if (optlen == sizeof(struct sctp_sack_info)) {
2622 if (copy_from_user(¶ms, optval, optlen))
2623 return -EFAULT;
2624
2625 if (params.sack_delay == 0 && params.sack_freq == 0)
2626 return 0;
2627 } else if (optlen == sizeof(struct sctp_assoc_value)) {
2628 pr_warn_ratelimited(DEPRECATED
2629 "%s (pid %d) "
2630 "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
2631 "Use struct sctp_sack_info instead\n",
2632 current->comm, task_pid_nr(current));
2633 if (copy_from_user(¶ms, optval, optlen))
2634 return -EFAULT;
2635
2636 if (params.sack_delay == 0)
2637 params.sack_freq = 1;
2638 else
2639 params.sack_freq = 0;
2640 } else
2641 return -EINVAL;
2642
2643 /* Validate value parameter. */
2644 if (params.sack_delay > 500)
2645 return -EINVAL;
2646
2647 /* Get association, if sack_assoc_id != 0 and the socket is a one
2648 * to many style socket, and an association was not found, then
2649 * the id was invalid.
2650 */
2651 asoc = sctp_id2assoc(sk, params.sack_assoc_id);
2652 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
2653 return -EINVAL;
2654
2655 if (params.sack_delay) {
2656 if (asoc) {
2657 asoc->sackdelay =
2658 msecs_to_jiffies(params.sack_delay);
2659 asoc->param_flags =
2660 sctp_spp_sackdelay_enable(asoc->param_flags);
2661 } else {
2662 sp->sackdelay = params.sack_delay;
2663 sp->param_flags =
2664 sctp_spp_sackdelay_enable(sp->param_flags);
2665 }
2666 }
2667
2668 if (params.sack_freq == 1) {
2669 if (asoc) {
2670 asoc->param_flags =
2671 sctp_spp_sackdelay_disable(asoc->param_flags);
2672 } else {
2673 sp->param_flags =
2674 sctp_spp_sackdelay_disable(sp->param_flags);
2675 }
2676 } else if (params.sack_freq > 1) {
2677 if (asoc) {
2678 asoc->sackfreq = params.sack_freq;
2679 asoc->param_flags =
2680 sctp_spp_sackdelay_enable(asoc->param_flags);
2681 } else {
2682 sp->sackfreq = params.sack_freq;
2683 sp->param_flags =
2684 sctp_spp_sackdelay_enable(sp->param_flags);
2685 }
2686 }
2687
2688 /* If change is for association, also apply to each transport. */
2689 if (asoc) {
2690 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2691 transports) {
2692 if (params.sack_delay) {
2693 trans->sackdelay =
2694 msecs_to_jiffies(params.sack_delay);
2695 trans->param_flags =
2696 sctp_spp_sackdelay_enable(trans->param_flags);
2697 }
2698 if (params.sack_freq == 1) {
2699 trans->param_flags =
2700 sctp_spp_sackdelay_disable(trans->param_flags);
2701 } else if (params.sack_freq > 1) {
2702 trans->sackfreq = params.sack_freq;
2703 trans->param_flags =
2704 sctp_spp_sackdelay_enable(trans->param_flags);
2705 }
2706 }
2707 }
2708
2709 return 0;
2710}
2711
2712/* 7.1.3 Initialization Parameters (SCTP_INITMSG)
2713 *
2714 * Applications can specify protocol parameters for the default association
2715 * initialization. The option name argument to setsockopt() and getsockopt()
2716 * is SCTP_INITMSG.
2717 *
2718 * Setting initialization parameters is effective only on an unconnected
2719 * socket (for UDP-style sockets only future associations are effected
2720 * by the change). With TCP-style sockets, this option is inherited by
2721 * sockets derived from a listener socket.
2722 */
2723static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen)
2724{
2725 struct sctp_initmsg sinit;
2726 struct sctp_sock *sp = sctp_sk(sk);
2727
2728 if (optlen != sizeof(struct sctp_initmsg))
2729 return -EINVAL;
2730 if (copy_from_user(&sinit, optval, optlen))
2731 return -EFAULT;
2732
2733 if (sinit.sinit_num_ostreams)
2734 sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams;
2735 if (sinit.sinit_max_instreams)
2736 sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams;
2737 if (sinit.sinit_max_attempts)
2738 sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts;
2739 if (sinit.sinit_max_init_timeo)
2740 sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo;
2741
2742 return 0;
2743}
2744
2745/*
2746 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
2747 *
2748 * Applications that wish to use the sendto() system call may wish to
2749 * specify a default set of parameters that would normally be supplied
2750 * through the inclusion of ancillary data. This socket option allows
2751 * such an application to set the default sctp_sndrcvinfo structure.
2752 * The application that wishes to use this socket option simply passes
2753 * in to this call the sctp_sndrcvinfo structure defined in Section
2754 * 5.2.2) The input parameters accepted by this call include
2755 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
2756 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in
2757 * to this call if the caller is using the UDP model.
2758 */
2759static int sctp_setsockopt_default_send_param(struct sock *sk,
2760 char __user *optval,
2761 unsigned int optlen)
2762{
2763 struct sctp_sock *sp = sctp_sk(sk);
2764 struct sctp_association *asoc;
2765 struct sctp_sndrcvinfo info;
2766
2767 if (optlen != sizeof(info))
2768 return -EINVAL;
2769 if (copy_from_user(&info, optval, optlen))
2770 return -EFAULT;
2771 if (info.sinfo_flags &
2772 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
2773 SCTP_ABORT | SCTP_EOF))
2774 return -EINVAL;
2775
2776 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
2777 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
2778 return -EINVAL;
2779 if (asoc) {
2780 asoc->default_stream = info.sinfo_stream;
2781 asoc->default_flags = info.sinfo_flags;
2782 asoc->default_ppid = info.sinfo_ppid;
2783 asoc->default_context = info.sinfo_context;
2784 asoc->default_timetolive = info.sinfo_timetolive;
2785 } else {
2786 sp->default_stream = info.sinfo_stream;
2787 sp->default_flags = info.sinfo_flags;
2788 sp->default_ppid = info.sinfo_ppid;
2789 sp->default_context = info.sinfo_context;
2790 sp->default_timetolive = info.sinfo_timetolive;
2791 }
2792
2793 return 0;
2794}
2795
2796/* RFC6458, Section 8.1.31. Set/get Default Send Parameters
2797 * (SCTP_DEFAULT_SNDINFO)
2798 */
2799static int sctp_setsockopt_default_sndinfo(struct sock *sk,
2800 char __user *optval,
2801 unsigned int optlen)
2802{
2803 struct sctp_sock *sp = sctp_sk(sk);
2804 struct sctp_association *asoc;
2805 struct sctp_sndinfo info;
2806
2807 if (optlen != sizeof(info))
2808 return -EINVAL;
2809 if (copy_from_user(&info, optval, optlen))
2810 return -EFAULT;
2811 if (info.snd_flags &
2812 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
2813 SCTP_ABORT | SCTP_EOF))
2814 return -EINVAL;
2815
2816 asoc = sctp_id2assoc(sk, info.snd_assoc_id);
2817 if (!asoc && info.snd_assoc_id && sctp_style(sk, UDP))
2818 return -EINVAL;
2819 if (asoc) {
2820 asoc->default_stream = info.snd_sid;
2821 asoc->default_flags = info.snd_flags;
2822 asoc->default_ppid = info.snd_ppid;
2823 asoc->default_context = info.snd_context;
2824 } else {
2825 sp->default_stream = info.snd_sid;
2826 sp->default_flags = info.snd_flags;
2827 sp->default_ppid = info.snd_ppid;
2828 sp->default_context = info.snd_context;
2829 }
2830
2831 return 0;
2832}
2833
2834/* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
2835 *
2836 * Requests that the local SCTP stack use the enclosed peer address as
2837 * the association primary. The enclosed address must be one of the
2838 * association peer's addresses.
2839 */
2840static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval,
2841 unsigned int optlen)
2842{
2843 struct sctp_prim prim;
2844 struct sctp_transport *trans;
2845
2846 if (optlen != sizeof(struct sctp_prim))
2847 return -EINVAL;
2848
2849 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim)))
2850 return -EFAULT;
2851
2852 trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id);
2853 if (!trans)
2854 return -EINVAL;
2855
2856 sctp_assoc_set_primary(trans->asoc, trans);
2857
2858 return 0;
2859}
2860
2861/*
2862 * 7.1.5 SCTP_NODELAY
2863 *
2864 * Turn on/off any Nagle-like algorithm. This means that packets are
2865 * generally sent as soon as possible and no unnecessary delays are
2866 * introduced, at the cost of more packets in the network. Expects an
2867 * integer boolean flag.
2868 */
2869static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval,
2870 unsigned int optlen)
2871{
2872 int val;
2873
2874 if (optlen < sizeof(int))
2875 return -EINVAL;
2876 if (get_user(val, (int __user *)optval))
2877 return -EFAULT;
2878
2879 sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1;
2880 return 0;
2881}
2882
2883/*
2884 *
2885 * 7.1.1 SCTP_RTOINFO
2886 *
2887 * The protocol parameters used to initialize and bound retransmission
2888 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
2889 * and modify these parameters.
2890 * All parameters are time values, in milliseconds. A value of 0, when
2891 * modifying the parameters, indicates that the current value should not
2892 * be changed.
2893 *
2894 */
2895static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen)
2896{
2897 struct sctp_rtoinfo rtoinfo;
2898 struct sctp_association *asoc;
2899 unsigned long rto_min, rto_max;
2900 struct sctp_sock *sp = sctp_sk(sk);
2901
2902 if (optlen != sizeof (struct sctp_rtoinfo))
2903 return -EINVAL;
2904
2905 if (copy_from_user(&rtoinfo, optval, optlen))
2906 return -EFAULT;
2907
2908 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
2909
2910 /* Set the values to the specific association */
2911 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
2912 return -EINVAL;
2913
2914 rto_max = rtoinfo.srto_max;
2915 rto_min = rtoinfo.srto_min;
2916
2917 if (rto_max)
2918 rto_max = asoc ? msecs_to_jiffies(rto_max) : rto_max;
2919 else
2920 rto_max = asoc ? asoc->rto_max : sp->rtoinfo.srto_max;
2921
2922 if (rto_min)
2923 rto_min = asoc ? msecs_to_jiffies(rto_min) : rto_min;
2924 else
2925 rto_min = asoc ? asoc->rto_min : sp->rtoinfo.srto_min;
2926
2927 if (rto_min > rto_max)
2928 return -EINVAL;
2929
2930 if (asoc) {
2931 if (rtoinfo.srto_initial != 0)
2932 asoc->rto_initial =
2933 msecs_to_jiffies(rtoinfo.srto_initial);
2934 asoc->rto_max = rto_max;
2935 asoc->rto_min = rto_min;
2936 } else {
2937 /* If there is no association or the association-id = 0
2938 * set the values to the endpoint.
2939 */
2940 if (rtoinfo.srto_initial != 0)
2941 sp->rtoinfo.srto_initial = rtoinfo.srto_initial;
2942 sp->rtoinfo.srto_max = rto_max;
2943 sp->rtoinfo.srto_min = rto_min;
2944 }
2945
2946 return 0;
2947}
2948
2949/*
2950 *
2951 * 7.1.2 SCTP_ASSOCINFO
2952 *
2953 * This option is used to tune the maximum retransmission attempts
2954 * of the association.
2955 * Returns an error if the new association retransmission value is
2956 * greater than the sum of the retransmission value of the peer.
2957 * See [SCTP] for more information.
2958 *
2959 */
2960static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen)
2961{
2962
2963 struct sctp_assocparams assocparams;
2964 struct sctp_association *asoc;
2965
2966 if (optlen != sizeof(struct sctp_assocparams))
2967 return -EINVAL;
2968 if (copy_from_user(&assocparams, optval, optlen))
2969 return -EFAULT;
2970
2971 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
2972
2973 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
2974 return -EINVAL;
2975
2976 /* Set the values to the specific association */
2977 if (asoc) {
2978 if (assocparams.sasoc_asocmaxrxt != 0) {
2979 __u32 path_sum = 0;
2980 int paths = 0;
2981 struct sctp_transport *peer_addr;
2982
2983 list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list,
2984 transports) {
2985 path_sum += peer_addr->pathmaxrxt;
2986 paths++;
2987 }
2988
2989 /* Only validate asocmaxrxt if we have more than
2990 * one path/transport. We do this because path
2991 * retransmissions are only counted when we have more
2992 * then one path.
2993 */
2994 if (paths > 1 &&
2995 assocparams.sasoc_asocmaxrxt > path_sum)
2996 return -EINVAL;
2997
2998 asoc->max_retrans = assocparams.sasoc_asocmaxrxt;
2999 }
3000
3001 if (assocparams.sasoc_cookie_life != 0)
3002 asoc->cookie_life = ms_to_ktime(assocparams.sasoc_cookie_life);
3003 } else {
3004 /* Set the values to the endpoint */
3005 struct sctp_sock *sp = sctp_sk(sk);
3006
3007 if (assocparams.sasoc_asocmaxrxt != 0)
3008 sp->assocparams.sasoc_asocmaxrxt =
3009 assocparams.sasoc_asocmaxrxt;
3010 if (assocparams.sasoc_cookie_life != 0)
3011 sp->assocparams.sasoc_cookie_life =
3012 assocparams.sasoc_cookie_life;
3013 }
3014 return 0;
3015}
3016
3017/*
3018 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
3019 *
3020 * This socket option is a boolean flag which turns on or off mapped V4
3021 * addresses. If this option is turned on and the socket is type
3022 * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
3023 * If this option is turned off, then no mapping will be done of V4
3024 * addresses and a user will receive both PF_INET6 and PF_INET type
3025 * addresses on the socket.
3026 */
3027static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen)
3028{
3029 int val;
3030 struct sctp_sock *sp = sctp_sk(sk);
3031
3032 if (optlen < sizeof(int))
3033 return -EINVAL;
3034 if (get_user(val, (int __user *)optval))
3035 return -EFAULT;
3036 if (val)
3037 sp->v4mapped = 1;
3038 else
3039 sp->v4mapped = 0;
3040
3041 return 0;
3042}
3043
3044/*
3045 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
3046 * This option will get or set the maximum size to put in any outgoing
3047 * SCTP DATA chunk. If a message is larger than this size it will be
3048 * fragmented by SCTP into the specified size. Note that the underlying
3049 * SCTP implementation may fragment into smaller sized chunks when the
3050 * PMTU of the underlying association is smaller than the value set by
3051 * the user. The default value for this option is '0' which indicates
3052 * the user is NOT limiting fragmentation and only the PMTU will effect
3053 * SCTP's choice of DATA chunk size. Note also that values set larger
3054 * than the maximum size of an IP datagram will effectively let SCTP
3055 * control fragmentation (i.e. the same as setting this option to 0).
3056 *
3057 * The following structure is used to access and modify this parameter:
3058 *
3059 * struct sctp_assoc_value {
3060 * sctp_assoc_t assoc_id;
3061 * uint32_t assoc_value;
3062 * };
3063 *
3064 * assoc_id: This parameter is ignored for one-to-one style sockets.
3065 * For one-to-many style sockets this parameter indicates which
3066 * association the user is performing an action upon. Note that if
3067 * this field's value is zero then the endpoints default value is
3068 * changed (effecting future associations only).
3069 * assoc_value: This parameter specifies the maximum size in bytes.
3070 */
3071static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen)
3072{
3073 struct sctp_assoc_value params;
3074 struct sctp_association *asoc;
3075 struct sctp_sock *sp = sctp_sk(sk);
3076 int val;
3077
3078 if (optlen == sizeof(int)) {
3079 pr_warn_ratelimited(DEPRECATED
3080 "%s (pid %d) "
3081 "Use of int in maxseg socket option.\n"
3082 "Use struct sctp_assoc_value instead\n",
3083 current->comm, task_pid_nr(current));
3084 if (copy_from_user(&val, optval, optlen))
3085 return -EFAULT;
3086 params.assoc_id = 0;
3087 } else if (optlen == sizeof(struct sctp_assoc_value)) {
3088 if (copy_from_user(¶ms, optval, optlen))
3089 return -EFAULT;
3090 val = params.assoc_value;
3091 } else
3092 return -EINVAL;
3093
3094 if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN)))
3095 return -EINVAL;
3096
3097 asoc = sctp_id2assoc(sk, params.assoc_id);
3098 if (!asoc && params.assoc_id && sctp_style(sk, UDP))
3099 return -EINVAL;
3100
3101 if (asoc) {
3102 if (val == 0) {
3103 val = asoc->pathmtu;
3104 val -= sp->pf->af->net_header_len;
3105 val -= sizeof(struct sctphdr) +
3106 sizeof(struct sctp_data_chunk);
3107 }
3108 asoc->user_frag = val;
3109 asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu);
3110 } else {
3111 sp->user_frag = val;
3112 }
3113
3114 return 0;
3115}
3116
3117
3118/*
3119 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)
3120 *
3121 * Requests that the peer mark the enclosed address as the association
3122 * primary. The enclosed address must be one of the association's
3123 * locally bound addresses. The following structure is used to make a
3124 * set primary request:
3125 */
3126static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval,
3127 unsigned int optlen)
3128{
3129 struct net *net = sock_net(sk);
3130 struct sctp_sock *sp;
3131 struct sctp_association *asoc = NULL;
3132 struct sctp_setpeerprim prim;
3133 struct sctp_chunk *chunk;
3134 struct sctp_af *af;
3135 int err;
3136
3137 sp = sctp_sk(sk);
3138
3139 if (!net->sctp.addip_enable)
3140 return -EPERM;
3141
3142 if (optlen != sizeof(struct sctp_setpeerprim))
3143 return -EINVAL;
3144
3145 if (copy_from_user(&prim, optval, optlen))
3146 return -EFAULT;
3147
3148 asoc = sctp_id2assoc(sk, prim.sspp_assoc_id);
3149 if (!asoc)
3150 return -EINVAL;
3151
3152 if (!asoc->peer.asconf_capable)
3153 return -EPERM;
3154
3155 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY)
3156 return -EPERM;
3157
3158 if (!sctp_state(asoc, ESTABLISHED))
3159 return -ENOTCONN;
3160
3161 af = sctp_get_af_specific(prim.sspp_addr.ss_family);
3162 if (!af)
3163 return -EINVAL;
3164
3165 if (!af->addr_valid((union sctp_addr *)&prim.sspp_addr, sp, NULL))
3166 return -EADDRNOTAVAIL;
3167
3168 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr))
3169 return -EADDRNOTAVAIL;
3170
3171 /* Create an ASCONF chunk with SET_PRIMARY parameter */
3172 chunk = sctp_make_asconf_set_prim(asoc,
3173 (union sctp_addr *)&prim.sspp_addr);
3174 if (!chunk)
3175 return -ENOMEM;
3176
3177 err = sctp_send_asconf(asoc, chunk);
3178
3179 pr_debug("%s: we set peer primary addr primitively\n", __func__);
3180
3181 return err;
3182}
3183
3184static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval,
3185 unsigned int optlen)
3186{
3187 struct sctp_setadaptation adaptation;
3188
3189 if (optlen != sizeof(struct sctp_setadaptation))
3190 return -EINVAL;
3191 if (copy_from_user(&adaptation, optval, optlen))
3192 return -EFAULT;
3193
3194 sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind;
3195
3196 return 0;
3197}
3198
3199/*
3200 * 7.1.29. Set or Get the default context (SCTP_CONTEXT)
3201 *
3202 * The context field in the sctp_sndrcvinfo structure is normally only
3203 * used when a failed message is retrieved holding the value that was
3204 * sent down on the actual send call. This option allows the setting of
3205 * a default context on an association basis that will be received on
3206 * reading messages from the peer. This is especially helpful in the
3207 * one-2-many model for an application to keep some reference to an
3208 * internal state machine that is processing messages on the
3209 * association. Note that the setting of this value only effects
3210 * received messages from the peer and does not effect the value that is
3211 * saved with outbound messages.
3212 */
3213static int sctp_setsockopt_context(struct sock *sk, char __user *optval,
3214 unsigned int optlen)
3215{
3216 struct sctp_assoc_value params;
3217 struct sctp_sock *sp;
3218 struct sctp_association *asoc;
3219
3220 if (optlen != sizeof(struct sctp_assoc_value))
3221 return -EINVAL;
3222 if (copy_from_user(¶ms, optval, optlen))
3223 return -EFAULT;
3224
3225 sp = sctp_sk(sk);
3226
3227 if (params.assoc_id != 0) {
3228 asoc = sctp_id2assoc(sk, params.assoc_id);
3229 if (!asoc)
3230 return -EINVAL;
3231 asoc->default_rcv_context = params.assoc_value;
3232 } else {
3233 sp->default_rcv_context = params.assoc_value;
3234 }
3235
3236 return 0;
3237}
3238
3239/*
3240 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
3241 *
3242 * This options will at a minimum specify if the implementation is doing
3243 * fragmented interleave. Fragmented interleave, for a one to many
3244 * socket, is when subsequent calls to receive a message may return
3245 * parts of messages from different associations. Some implementations
3246 * may allow you to turn this value on or off. If so, when turned off,
3247 * no fragment interleave will occur (which will cause a head of line
3248 * blocking amongst multiple associations sharing the same one to many
3249 * socket). When this option is turned on, then each receive call may
3250 * come from a different association (thus the user must receive data
3251 * with the extended calls (e.g. sctp_recvmsg) to keep track of which
3252 * association each receive belongs to.
3253 *
3254 * This option takes a boolean value. A non-zero value indicates that
3255 * fragmented interleave is on. A value of zero indicates that
3256 * fragmented interleave is off.
3257 *
3258 * Note that it is important that an implementation that allows this
3259 * option to be turned on, have it off by default. Otherwise an unaware
3260 * application using the one to many model may become confused and act
3261 * incorrectly.
3262 */
3263static int sctp_setsockopt_fragment_interleave(struct sock *sk,
3264 char __user *optval,
3265 unsigned int optlen)
3266{
3267 int val;
3268
3269 if (optlen != sizeof(int))
3270 return -EINVAL;
3271 if (get_user(val, (int __user *)optval))
3272 return -EFAULT;
3273
3274 sctp_sk(sk)->frag_interleave = (val == 0) ? 0 : 1;
3275
3276 return 0;
3277}
3278
3279/*
3280 * 8.1.21. Set or Get the SCTP Partial Delivery Point
3281 * (SCTP_PARTIAL_DELIVERY_POINT)
3282 *
3283 * This option will set or get the SCTP partial delivery point. This
3284 * point is the size of a message where the partial delivery API will be
3285 * invoked to help free up rwnd space for the peer. Setting this to a
3286 * lower value will cause partial deliveries to happen more often. The
3287 * calls argument is an integer that sets or gets the partial delivery
3288 * point. Note also that the call will fail if the user attempts to set
3289 * this value larger than the socket receive buffer size.
3290 *
3291 * Note that any single message having a length smaller than or equal to
3292 * the SCTP partial delivery point will be delivered in one single read
3293 * call as long as the user provided buffer is large enough to hold the
3294 * message.
3295 */
3296static int sctp_setsockopt_partial_delivery_point(struct sock *sk,
3297 char __user *optval,
3298 unsigned int optlen)
3299{
3300 u32 val;
3301
3302 if (optlen != sizeof(u32))
3303 return -EINVAL;
3304 if (get_user(val, (int __user *)optval))
3305 return -EFAULT;
3306
3307 /* Note: We double the receive buffer from what the user sets
3308 * it to be, also initial rwnd is based on rcvbuf/2.
3309 */
3310 if (val > (sk->sk_rcvbuf >> 1))
3311 return -EINVAL;
3312
3313 sctp_sk(sk)->pd_point = val;
3314
3315 return 0; /* is this the right error code? */
3316}
3317
3318/*
3319 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST)
3320 *
3321 * This option will allow a user to change the maximum burst of packets
3322 * that can be emitted by this association. Note that the default value
3323 * is 4, and some implementations may restrict this setting so that it
3324 * can only be lowered.
3325 *
3326 * NOTE: This text doesn't seem right. Do this on a socket basis with
3327 * future associations inheriting the socket value.
3328 */
3329static int sctp_setsockopt_maxburst(struct sock *sk,
3330 char __user *optval,
3331 unsigned int optlen)
3332{
3333 struct sctp_assoc_value params;
3334 struct sctp_sock *sp;
3335 struct sctp_association *asoc;
3336 int val;
3337 int assoc_id = 0;
3338
3339 if (optlen == sizeof(int)) {
3340 pr_warn_ratelimited(DEPRECATED
3341 "%s (pid %d) "
3342 "Use of int in max_burst socket option deprecated.\n"
3343 "Use struct sctp_assoc_value instead\n",
3344 current->comm, task_pid_nr(current));
3345 if (copy_from_user(&val, optval, optlen))
3346 return -EFAULT;
3347 } else if (optlen == sizeof(struct sctp_assoc_value)) {
3348 if (copy_from_user(¶ms, optval, optlen))
3349 return -EFAULT;
3350 val = params.assoc_value;
3351 assoc_id = params.assoc_id;
3352 } else
3353 return -EINVAL;
3354
3355 sp = sctp_sk(sk);
3356
3357 if (assoc_id != 0) {
3358 asoc = sctp_id2assoc(sk, assoc_id);
3359 if (!asoc)
3360 return -EINVAL;
3361 asoc->max_burst = val;
3362 } else
3363 sp->max_burst = val;
3364
3365 return 0;
3366}
3367
3368/*
3369 * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK)
3370 *
3371 * This set option adds a chunk type that the user is requesting to be
3372 * received only in an authenticated way. Changes to the list of chunks
3373 * will only effect future associations on the socket.
3374 */
3375static int sctp_setsockopt_auth_chunk(struct sock *sk,
3376 char __user *optval,
3377 unsigned int optlen)
3378{
3379 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3380 struct sctp_authchunk val;
3381
3382 if (!ep->auth_enable)
3383 return -EACCES;
3384
3385 if (optlen != sizeof(struct sctp_authchunk))
3386 return -EINVAL;
3387 if (copy_from_user(&val, optval, optlen))
3388 return -EFAULT;
3389
3390 switch (val.sauth_chunk) {
3391 case SCTP_CID_INIT:
3392 case SCTP_CID_INIT_ACK:
3393 case SCTP_CID_SHUTDOWN_COMPLETE:
3394 case SCTP_CID_AUTH:
3395 return -EINVAL;
3396 }
3397
3398 /* add this chunk id to the endpoint */
3399 return sctp_auth_ep_add_chunkid(ep, val.sauth_chunk);
3400}
3401
3402/*
3403 * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT)
3404 *
3405 * This option gets or sets the list of HMAC algorithms that the local
3406 * endpoint requires the peer to use.
3407 */
3408static int sctp_setsockopt_hmac_ident(struct sock *sk,
3409 char __user *optval,
3410 unsigned int optlen)
3411{
3412 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3413 struct sctp_hmacalgo *hmacs;
3414 u32 idents;
3415 int err;
3416
3417 if (!ep->auth_enable)
3418 return -EACCES;
3419
3420 if (optlen < sizeof(struct sctp_hmacalgo))
3421 return -EINVAL;
3422
3423 hmacs = memdup_user(optval, optlen);
3424 if (IS_ERR(hmacs))
3425 return PTR_ERR(hmacs);
3426
3427 idents = hmacs->shmac_num_idents;
3428 if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS ||
3429 (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) {
3430 err = -EINVAL;
3431 goto out;
3432 }
3433
3434 err = sctp_auth_ep_set_hmacs(ep, hmacs);
3435out:
3436 kfree(hmacs);
3437 return err;
3438}
3439
3440/*
3441 * 7.1.20. Set a shared key (SCTP_AUTH_KEY)
3442 *
3443 * This option will set a shared secret key which is used to build an
3444 * association shared key.
3445 */
3446static int sctp_setsockopt_auth_key(struct sock *sk,
3447 char __user *optval,
3448 unsigned int optlen)
3449{
3450 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3451 struct sctp_authkey *authkey;
3452 struct sctp_association *asoc;
3453 int ret;
3454
3455 if (!ep->auth_enable)
3456 return -EACCES;
3457
3458 if (optlen <= sizeof(struct sctp_authkey))
3459 return -EINVAL;
3460
3461 authkey = memdup_user(optval, optlen);
3462 if (IS_ERR(authkey))
3463 return PTR_ERR(authkey);
3464
3465 if (authkey->sca_keylength > optlen - sizeof(struct sctp_authkey)) {
3466 ret = -EINVAL;
3467 goto out;
3468 }
3469
3470 asoc = sctp_id2assoc(sk, authkey->sca_assoc_id);
3471 if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) {
3472 ret = -EINVAL;
3473 goto out;
3474 }
3475
3476 ret = sctp_auth_set_key(ep, asoc, authkey);
3477out:
3478 kzfree(authkey);
3479 return ret;
3480}
3481
3482/*
3483 * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY)
3484 *
3485 * This option will get or set the active shared key to be used to build
3486 * the association shared key.
3487 */
3488static int sctp_setsockopt_active_key(struct sock *sk,
3489 char __user *optval,
3490 unsigned int optlen)
3491{
3492 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3493 struct sctp_authkeyid val;
3494 struct sctp_association *asoc;
3495
3496 if (!ep->auth_enable)
3497 return -EACCES;
3498
3499 if (optlen != sizeof(struct sctp_authkeyid))
3500 return -EINVAL;
3501 if (copy_from_user(&val, optval, optlen))
3502 return -EFAULT;
3503
3504 asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3505 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3506 return -EINVAL;
3507
3508 return sctp_auth_set_active_key(ep, asoc, val.scact_keynumber);
3509}
3510
3511/*
3512 * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY)
3513 *
3514 * This set option will delete a shared secret key from use.
3515 */
3516static int sctp_setsockopt_del_key(struct sock *sk,
3517 char __user *optval,
3518 unsigned int optlen)
3519{
3520 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3521 struct sctp_authkeyid val;
3522 struct sctp_association *asoc;
3523
3524 if (!ep->auth_enable)
3525 return -EACCES;
3526
3527 if (optlen != sizeof(struct sctp_authkeyid))
3528 return -EINVAL;
3529 if (copy_from_user(&val, optval, optlen))
3530 return -EFAULT;
3531
3532 asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3533 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3534 return -EINVAL;
3535
3536 return sctp_auth_del_key_id(ep, asoc, val.scact_keynumber);
3537
3538}
3539
3540/*
3541 * 8.1.23 SCTP_AUTO_ASCONF
3542 *
3543 * This option will enable or disable the use of the automatic generation of
3544 * ASCONF chunks to add and delete addresses to an existing association. Note
3545 * that this option has two caveats namely: a) it only affects sockets that
3546 * are bound to all addresses available to the SCTP stack, and b) the system
3547 * administrator may have an overriding control that turns the ASCONF feature
3548 * off no matter what setting the socket option may have.
3549 * This option expects an integer boolean flag, where a non-zero value turns on
3550 * the option, and a zero value turns off the option.
3551 * Note. In this implementation, socket operation overrides default parameter
3552 * being set by sysctl as well as FreeBSD implementation
3553 */
3554static int sctp_setsockopt_auto_asconf(struct sock *sk, char __user *optval,
3555 unsigned int optlen)
3556{
3557 int val;
3558 struct sctp_sock *sp = sctp_sk(sk);
3559
3560 if (optlen < sizeof(int))
3561 return -EINVAL;
3562 if (get_user(val, (int __user *)optval))
3563 return -EFAULT;
3564 if (!sctp_is_ep_boundall(sk) && val)
3565 return -EINVAL;
3566 if ((val && sp->do_auto_asconf) || (!val && !sp->do_auto_asconf))
3567 return 0;
3568
3569 spin_lock_bh(&sock_net(sk)->sctp.addr_wq_lock);
3570 if (val == 0 && sp->do_auto_asconf) {
3571 list_del(&sp->auto_asconf_list);
3572 sp->do_auto_asconf = 0;
3573 } else if (val && !sp->do_auto_asconf) {
3574 list_add_tail(&sp->auto_asconf_list,
3575 &sock_net(sk)->sctp.auto_asconf_splist);
3576 sp->do_auto_asconf = 1;
3577 }
3578 spin_unlock_bh(&sock_net(sk)->sctp.addr_wq_lock);
3579 return 0;
3580}
3581
3582/*
3583 * SCTP_PEER_ADDR_THLDS
3584 *
3585 * This option allows us to alter the partially failed threshold for one or all
3586 * transports in an association. See Section 6.1 of:
3587 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
3588 */
3589static int sctp_setsockopt_paddr_thresholds(struct sock *sk,
3590 char __user *optval,
3591 unsigned int optlen)
3592{
3593 struct sctp_paddrthlds val;
3594 struct sctp_transport *trans;
3595 struct sctp_association *asoc;
3596
3597 if (optlen < sizeof(struct sctp_paddrthlds))
3598 return -EINVAL;
3599 if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval,
3600 sizeof(struct sctp_paddrthlds)))
3601 return -EFAULT;
3602
3603
3604 if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
3605 asoc = sctp_id2assoc(sk, val.spt_assoc_id);
3606 if (!asoc)
3607 return -ENOENT;
3608 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
3609 transports) {
3610 if (val.spt_pathmaxrxt)
3611 trans->pathmaxrxt = val.spt_pathmaxrxt;
3612 trans->pf_retrans = val.spt_pathpfthld;
3613 }
3614
3615 if (val.spt_pathmaxrxt)
3616 asoc->pathmaxrxt = val.spt_pathmaxrxt;
3617 asoc->pf_retrans = val.spt_pathpfthld;
3618 } else {
3619 trans = sctp_addr_id2transport(sk, &val.spt_address,
3620 val.spt_assoc_id);
3621 if (!trans)
3622 return -ENOENT;
3623
3624 if (val.spt_pathmaxrxt)
3625 trans->pathmaxrxt = val.spt_pathmaxrxt;
3626 trans->pf_retrans = val.spt_pathpfthld;
3627 }
3628
3629 return 0;
3630}
3631
3632static int sctp_setsockopt_recvrcvinfo(struct sock *sk,
3633 char __user *optval,
3634 unsigned int optlen)
3635{
3636 int val;
3637
3638 if (optlen < sizeof(int))
3639 return -EINVAL;
3640 if (get_user(val, (int __user *) optval))
3641 return -EFAULT;
3642
3643 sctp_sk(sk)->recvrcvinfo = (val == 0) ? 0 : 1;
3644
3645 return 0;
3646}
3647
3648static int sctp_setsockopt_recvnxtinfo(struct sock *sk,
3649 char __user *optval,
3650 unsigned int optlen)
3651{
3652 int val;
3653
3654 if (optlen < sizeof(int))
3655 return -EINVAL;
3656 if (get_user(val, (int __user *) optval))
3657 return -EFAULT;
3658
3659 sctp_sk(sk)->recvnxtinfo = (val == 0) ? 0 : 1;
3660
3661 return 0;
3662}
3663
3664/* API 6.2 setsockopt(), getsockopt()
3665 *
3666 * Applications use setsockopt() and getsockopt() to set or retrieve
3667 * socket options. Socket options are used to change the default
3668 * behavior of sockets calls. They are described in Section 7.
3669 *
3670 * The syntax is:
3671 *
3672 * ret = getsockopt(int sd, int level, int optname, void __user *optval,
3673 * int __user *optlen);
3674 * ret = setsockopt(int sd, int level, int optname, const void __user *optval,
3675 * int optlen);
3676 *
3677 * sd - the socket descript.
3678 * level - set to IPPROTO_SCTP for all SCTP options.
3679 * optname - the option name.
3680 * optval - the buffer to store the value of the option.
3681 * optlen - the size of the buffer.
3682 */
3683static int sctp_setsockopt(struct sock *sk, int level, int optname,
3684 char __user *optval, unsigned int optlen)
3685{
3686 int retval = 0;
3687
3688 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
3689
3690 /* I can hardly begin to describe how wrong this is. This is
3691 * so broken as to be worse than useless. The API draft
3692 * REALLY is NOT helpful here... I am not convinced that the
3693 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP
3694 * are at all well-founded.
3695 */
3696 if (level != SOL_SCTP) {
3697 struct sctp_af *af = sctp_sk(sk)->pf->af;
3698 retval = af->setsockopt(sk, level, optname, optval, optlen);
3699 goto out_nounlock;
3700 }
3701
3702 lock_sock(sk);
3703
3704 switch (optname) {
3705 case SCTP_SOCKOPT_BINDX_ADD:
3706 /* 'optlen' is the size of the addresses buffer. */
3707 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3708 optlen, SCTP_BINDX_ADD_ADDR);
3709 break;
3710
3711 case SCTP_SOCKOPT_BINDX_REM:
3712 /* 'optlen' is the size of the addresses buffer. */
3713 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3714 optlen, SCTP_BINDX_REM_ADDR);
3715 break;
3716
3717 case SCTP_SOCKOPT_CONNECTX_OLD:
3718 /* 'optlen' is the size of the addresses buffer. */
3719 retval = sctp_setsockopt_connectx_old(sk,
3720 (struct sockaddr __user *)optval,
3721 optlen);
3722 break;
3723
3724 case SCTP_SOCKOPT_CONNECTX:
3725 /* 'optlen' is the size of the addresses buffer. */
3726 retval = sctp_setsockopt_connectx(sk,
3727 (struct sockaddr __user *)optval,
3728 optlen);
3729 break;
3730
3731 case SCTP_DISABLE_FRAGMENTS:
3732 retval = sctp_setsockopt_disable_fragments(sk, optval, optlen);
3733 break;
3734
3735 case SCTP_EVENTS:
3736 retval = sctp_setsockopt_events(sk, optval, optlen);
3737 break;
3738
3739 case SCTP_AUTOCLOSE:
3740 retval = sctp_setsockopt_autoclose(sk, optval, optlen);
3741 break;
3742
3743 case SCTP_PEER_ADDR_PARAMS:
3744 retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen);
3745 break;
3746
3747 case SCTP_DELAYED_SACK:
3748 retval = sctp_setsockopt_delayed_ack(sk, optval, optlen);
3749 break;
3750 case SCTP_PARTIAL_DELIVERY_POINT:
3751 retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen);
3752 break;
3753
3754 case SCTP_INITMSG:
3755 retval = sctp_setsockopt_initmsg(sk, optval, optlen);
3756 break;
3757 case SCTP_DEFAULT_SEND_PARAM:
3758 retval = sctp_setsockopt_default_send_param(sk, optval,
3759 optlen);
3760 break;
3761 case SCTP_DEFAULT_SNDINFO:
3762 retval = sctp_setsockopt_default_sndinfo(sk, optval, optlen);
3763 break;
3764 case SCTP_PRIMARY_ADDR:
3765 retval = sctp_setsockopt_primary_addr(sk, optval, optlen);
3766 break;
3767 case SCTP_SET_PEER_PRIMARY_ADDR:
3768 retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen);
3769 break;
3770 case SCTP_NODELAY:
3771 retval = sctp_setsockopt_nodelay(sk, optval, optlen);
3772 break;
3773 case SCTP_RTOINFO:
3774 retval = sctp_setsockopt_rtoinfo(sk, optval, optlen);
3775 break;
3776 case SCTP_ASSOCINFO:
3777 retval = sctp_setsockopt_associnfo(sk, optval, optlen);
3778 break;
3779 case SCTP_I_WANT_MAPPED_V4_ADDR:
3780 retval = sctp_setsockopt_mappedv4(sk, optval, optlen);
3781 break;
3782 case SCTP_MAXSEG:
3783 retval = sctp_setsockopt_maxseg(sk, optval, optlen);
3784 break;
3785 case SCTP_ADAPTATION_LAYER:
3786 retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen);
3787 break;
3788 case SCTP_CONTEXT:
3789 retval = sctp_setsockopt_context(sk, optval, optlen);
3790 break;
3791 case SCTP_FRAGMENT_INTERLEAVE:
3792 retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen);
3793 break;
3794 case SCTP_MAX_BURST:
3795 retval = sctp_setsockopt_maxburst(sk, optval, optlen);
3796 break;
3797 case SCTP_AUTH_CHUNK:
3798 retval = sctp_setsockopt_auth_chunk(sk, optval, optlen);
3799 break;
3800 case SCTP_HMAC_IDENT:
3801 retval = sctp_setsockopt_hmac_ident(sk, optval, optlen);
3802 break;
3803 case SCTP_AUTH_KEY:
3804 retval = sctp_setsockopt_auth_key(sk, optval, optlen);
3805 break;
3806 case SCTP_AUTH_ACTIVE_KEY:
3807 retval = sctp_setsockopt_active_key(sk, optval, optlen);
3808 break;
3809 case SCTP_AUTH_DELETE_KEY:
3810 retval = sctp_setsockopt_del_key(sk, optval, optlen);
3811 break;
3812 case SCTP_AUTO_ASCONF:
3813 retval = sctp_setsockopt_auto_asconf(sk, optval, optlen);
3814 break;
3815 case SCTP_PEER_ADDR_THLDS:
3816 retval = sctp_setsockopt_paddr_thresholds(sk, optval, optlen);
3817 break;
3818 case SCTP_RECVRCVINFO:
3819 retval = sctp_setsockopt_recvrcvinfo(sk, optval, optlen);
3820 break;
3821 case SCTP_RECVNXTINFO:
3822 retval = sctp_setsockopt_recvnxtinfo(sk, optval, optlen);
3823 break;
3824 default:
3825 retval = -ENOPROTOOPT;
3826 break;
3827 }
3828
3829 release_sock(sk);
3830
3831out_nounlock:
3832 return retval;
3833}
3834
3835/* API 3.1.6 connect() - UDP Style Syntax
3836 *
3837 * An application may use the connect() call in the UDP model to initiate an
3838 * association without sending data.
3839 *
3840 * The syntax is:
3841 *
3842 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len);
3843 *
3844 * sd: the socket descriptor to have a new association added to.
3845 *
3846 * nam: the address structure (either struct sockaddr_in or struct
3847 * sockaddr_in6 defined in RFC2553 [7]).
3848 *
3849 * len: the size of the address.
3850 */
3851static int sctp_connect(struct sock *sk, struct sockaddr *addr,
3852 int addr_len)
3853{
3854 int err = 0;
3855 struct sctp_af *af;
3856
3857 lock_sock(sk);
3858
3859 pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk,
3860 addr, addr_len);
3861
3862 /* Validate addr_len before calling common connect/connectx routine. */
3863 af = sctp_get_af_specific(addr->sa_family);
3864 if (!af || addr_len < af->sockaddr_len) {
3865 err = -EINVAL;
3866 } else {
3867 /* Pass correct addr len to common routine (so it knows there
3868 * is only one address being passed.
3869 */
3870 err = __sctp_connect(sk, addr, af->sockaddr_len, NULL);
3871 }
3872
3873 release_sock(sk);
3874 return err;
3875}
3876
3877/* FIXME: Write comments. */
3878static int sctp_disconnect(struct sock *sk, int flags)
3879{
3880 return -EOPNOTSUPP; /* STUB */
3881}
3882
3883/* 4.1.4 accept() - TCP Style Syntax
3884 *
3885 * Applications use accept() call to remove an established SCTP
3886 * association from the accept queue of the endpoint. A new socket
3887 * descriptor will be returned from accept() to represent the newly
3888 * formed association.
3889 */
3890static struct sock *sctp_accept(struct sock *sk, int flags, int *err)
3891{
3892 struct sctp_sock *sp;
3893 struct sctp_endpoint *ep;
3894 struct sock *newsk = NULL;
3895 struct sctp_association *asoc;
3896 long timeo;
3897 int error = 0;
3898
3899 lock_sock(sk);
3900
3901 sp = sctp_sk(sk);
3902 ep = sp->ep;
3903
3904 if (!sctp_style(sk, TCP)) {
3905 error = -EOPNOTSUPP;
3906 goto out;
3907 }
3908
3909 if (!sctp_sstate(sk, LISTENING)) {
3910 error = -EINVAL;
3911 goto out;
3912 }
3913
3914 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
3915
3916 error = sctp_wait_for_accept(sk, timeo);
3917 if (error)
3918 goto out;
3919
3920 /* We treat the list of associations on the endpoint as the accept
3921 * queue and pick the first association on the list.
3922 */
3923 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs);
3924
3925 newsk = sp->pf->create_accept_sk(sk, asoc);
3926 if (!newsk) {
3927 error = -ENOMEM;
3928 goto out;
3929 }
3930
3931 /* Populate the fields of the newsk from the oldsk and migrate the
3932 * asoc to the newsk.
3933 */
3934 sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP);
3935
3936out:
3937 release_sock(sk);
3938 *err = error;
3939 return newsk;
3940}
3941
3942/* The SCTP ioctl handler. */
3943static int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg)
3944{
3945 int rc = -ENOTCONN;
3946
3947 lock_sock(sk);
3948
3949 /*
3950 * SEQPACKET-style sockets in LISTENING state are valid, for
3951 * SCTP, so only discard TCP-style sockets in LISTENING state.
3952 */
3953 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
3954 goto out;
3955
3956 switch (cmd) {
3957 case SIOCINQ: {
3958 struct sk_buff *skb;
3959 unsigned int amount = 0;
3960
3961 skb = skb_peek(&sk->sk_receive_queue);
3962 if (skb != NULL) {
3963 /*
3964 * We will only return the amount of this packet since
3965 * that is all that will be read.
3966 */
3967 amount = skb->len;
3968 }
3969 rc = put_user(amount, (int __user *)arg);
3970 break;
3971 }
3972 default:
3973 rc = -ENOIOCTLCMD;
3974 break;
3975 }
3976out:
3977 release_sock(sk);
3978 return rc;
3979}
3980
3981/* This is the function which gets called during socket creation to
3982 * initialized the SCTP-specific portion of the sock.
3983 * The sock structure should already be zero-filled memory.
3984 */
3985static int sctp_init_sock(struct sock *sk)
3986{
3987 struct net *net = sock_net(sk);
3988 struct sctp_sock *sp;
3989
3990 pr_debug("%s: sk:%p\n", __func__, sk);
3991
3992 sp = sctp_sk(sk);
3993
3994 /* Initialize the SCTP per socket area. */
3995 switch (sk->sk_type) {
3996 case SOCK_SEQPACKET:
3997 sp->type = SCTP_SOCKET_UDP;
3998 break;
3999 case SOCK_STREAM:
4000 sp->type = SCTP_SOCKET_TCP;
4001 break;
4002 default:
4003 return -ESOCKTNOSUPPORT;
4004 }
4005
4006 /* Initialize default send parameters. These parameters can be
4007 * modified with the SCTP_DEFAULT_SEND_PARAM socket option.
4008 */
4009 sp->default_stream = 0;
4010 sp->default_ppid = 0;
4011 sp->default_flags = 0;
4012 sp->default_context = 0;
4013 sp->default_timetolive = 0;
4014
4015 sp->default_rcv_context = 0;
4016 sp->max_burst = net->sctp.max_burst;
4017
4018 sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg;
4019
4020 /* Initialize default setup parameters. These parameters
4021 * can be modified with the SCTP_INITMSG socket option or
4022 * overridden by the SCTP_INIT CMSG.
4023 */
4024 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams;
4025 sp->initmsg.sinit_max_instreams = sctp_max_instreams;
4026 sp->initmsg.sinit_max_attempts = net->sctp.max_retrans_init;
4027 sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max;
4028
4029 /* Initialize default RTO related parameters. These parameters can
4030 * be modified for with the SCTP_RTOINFO socket option.
4031 */
4032 sp->rtoinfo.srto_initial = net->sctp.rto_initial;
4033 sp->rtoinfo.srto_max = net->sctp.rto_max;
4034 sp->rtoinfo.srto_min = net->sctp.rto_min;
4035
4036 /* Initialize default association related parameters. These parameters
4037 * can be modified with the SCTP_ASSOCINFO socket option.
4038 */
4039 sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association;
4040 sp->assocparams.sasoc_number_peer_destinations = 0;
4041 sp->assocparams.sasoc_peer_rwnd = 0;
4042 sp->assocparams.sasoc_local_rwnd = 0;
4043 sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life;
4044
4045 /* Initialize default event subscriptions. By default, all the
4046 * options are off.
4047 */
4048 memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe));
4049
4050 /* Default Peer Address Parameters. These defaults can
4051 * be modified via SCTP_PEER_ADDR_PARAMS
4052 */
4053 sp->hbinterval = net->sctp.hb_interval;
4054 sp->pathmaxrxt = net->sctp.max_retrans_path;
4055 sp->pathmtu = 0; /* allow default discovery */
4056 sp->sackdelay = net->sctp.sack_timeout;
4057 sp->sackfreq = 2;
4058 sp->param_flags = SPP_HB_ENABLE |
4059 SPP_PMTUD_ENABLE |
4060 SPP_SACKDELAY_ENABLE;
4061
4062 /* If enabled no SCTP message fragmentation will be performed.
4063 * Configure through SCTP_DISABLE_FRAGMENTS socket option.
4064 */
4065 sp->disable_fragments = 0;
4066
4067 /* Enable Nagle algorithm by default. */
4068 sp->nodelay = 0;
4069
4070 sp->recvrcvinfo = 0;
4071 sp->recvnxtinfo = 0;
4072
4073 /* Enable by default. */
4074 sp->v4mapped = 1;
4075
4076 /* Auto-close idle associations after the configured
4077 * number of seconds. A value of 0 disables this
4078 * feature. Configure through the SCTP_AUTOCLOSE socket option,
4079 * for UDP-style sockets only.
4080 */
4081 sp->autoclose = 0;
4082
4083 /* User specified fragmentation limit. */
4084 sp->user_frag = 0;
4085
4086 sp->adaptation_ind = 0;
4087
4088 sp->pf = sctp_get_pf_specific(sk->sk_family);
4089
4090 /* Control variables for partial data delivery. */
4091 atomic_set(&sp->pd_mode, 0);
4092 skb_queue_head_init(&sp->pd_lobby);
4093 sp->frag_interleave = 0;
4094
4095 /* Create a per socket endpoint structure. Even if we
4096 * change the data structure relationships, this may still
4097 * be useful for storing pre-connect address information.
4098 */
4099 sp->ep = sctp_endpoint_new(sk, GFP_KERNEL);
4100 if (!sp->ep)
4101 return -ENOMEM;
4102
4103 sp->hmac = NULL;
4104
4105 sk->sk_destruct = sctp_destruct_sock;
4106
4107 SCTP_DBG_OBJCNT_INC(sock);
4108
4109 local_bh_disable();
4110 percpu_counter_inc(&sctp_sockets_allocated);
4111 sock_prot_inuse_add(net, sk->sk_prot, 1);
4112
4113 /* Nothing can fail after this block, otherwise
4114 * sctp_destroy_sock() will be called without addr_wq_lock held
4115 */
4116 if (net->sctp.default_auto_asconf) {
4117 spin_lock(&sock_net(sk)->sctp.addr_wq_lock);
4118 list_add_tail(&sp->auto_asconf_list,
4119 &net->sctp.auto_asconf_splist);
4120 sp->do_auto_asconf = 1;
4121 spin_unlock(&sock_net(sk)->sctp.addr_wq_lock);
4122 } else {
4123 sp->do_auto_asconf = 0;
4124 }
4125
4126 local_bh_enable();
4127
4128 return 0;
4129}
4130
4131/* Cleanup any SCTP per socket resources. Must be called with
4132 * sock_net(sk)->sctp.addr_wq_lock held if sp->do_auto_asconf is true
4133 */
4134static void sctp_destroy_sock(struct sock *sk)
4135{
4136 struct sctp_sock *sp;
4137
4138 pr_debug("%s: sk:%p\n", __func__, sk);
4139
4140 /* Release our hold on the endpoint. */
4141 sp = sctp_sk(sk);
4142 /* This could happen during socket init, thus we bail out
4143 * early, since the rest of the below is not setup either.
4144 */
4145 if (sp->ep == NULL)
4146 return;
4147
4148 if (sp->do_auto_asconf) {
4149 sp->do_auto_asconf = 0;
4150 list_del(&sp->auto_asconf_list);
4151 }
4152 sctp_endpoint_free(sp->ep);
4153 local_bh_disable();
4154 percpu_counter_dec(&sctp_sockets_allocated);
4155 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
4156 local_bh_enable();
4157}
4158
4159/* Triggered when there are no references on the socket anymore */
4160static void sctp_destruct_sock(struct sock *sk)
4161{
4162 struct sctp_sock *sp = sctp_sk(sk);
4163
4164 /* Free up the HMAC transform. */
4165 crypto_free_shash(sp->hmac);
4166
4167 inet_sock_destruct(sk);
4168}
4169
4170/* API 4.1.7 shutdown() - TCP Style Syntax
4171 * int shutdown(int socket, int how);
4172 *
4173 * sd - the socket descriptor of the association to be closed.
4174 * how - Specifies the type of shutdown. The values are
4175 * as follows:
4176 * SHUT_RD
4177 * Disables further receive operations. No SCTP
4178 * protocol action is taken.
4179 * SHUT_WR
4180 * Disables further send operations, and initiates
4181 * the SCTP shutdown sequence.
4182 * SHUT_RDWR
4183 * Disables further send and receive operations
4184 * and initiates the SCTP shutdown sequence.
4185 */
4186static void sctp_shutdown(struct sock *sk, int how)
4187{
4188 struct net *net = sock_net(sk);
4189 struct sctp_endpoint *ep;
4190 struct sctp_association *asoc;
4191
4192 if (!sctp_style(sk, TCP))
4193 return;
4194
4195 if (how & SEND_SHUTDOWN) {
4196 ep = sctp_sk(sk)->ep;
4197 if (!list_empty(&ep->asocs)) {
4198 asoc = list_entry(ep->asocs.next,
4199 struct sctp_association, asocs);
4200 sctp_primitive_SHUTDOWN(net, asoc, NULL);
4201 }
4202 }
4203}
4204
4205/* 7.2.1 Association Status (SCTP_STATUS)
4206
4207 * Applications can retrieve current status information about an
4208 * association, including association state, peer receiver window size,
4209 * number of unacked data chunks, and number of data chunks pending
4210 * receipt. This information is read-only.
4211 */
4212static int sctp_getsockopt_sctp_status(struct sock *sk, int len,
4213 char __user *optval,
4214 int __user *optlen)
4215{
4216 struct sctp_status status;
4217 struct sctp_association *asoc = NULL;
4218 struct sctp_transport *transport;
4219 sctp_assoc_t associd;
4220 int retval = 0;
4221
4222 if (len < sizeof(status)) {
4223 retval = -EINVAL;
4224 goto out;
4225 }
4226
4227 len = sizeof(status);
4228 if (copy_from_user(&status, optval, len)) {
4229 retval = -EFAULT;
4230 goto out;
4231 }
4232
4233 associd = status.sstat_assoc_id;
4234 asoc = sctp_id2assoc(sk, associd);
4235 if (!asoc) {
4236 retval = -EINVAL;
4237 goto out;
4238 }
4239
4240 transport = asoc->peer.primary_path;
4241
4242 status.sstat_assoc_id = sctp_assoc2id(asoc);
4243 status.sstat_state = sctp_assoc_to_state(asoc);
4244 status.sstat_rwnd = asoc->peer.rwnd;
4245 status.sstat_unackdata = asoc->unack_data;
4246
4247 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
4248 status.sstat_instrms = asoc->c.sinit_max_instreams;
4249 status.sstat_outstrms = asoc->c.sinit_num_ostreams;
4250 status.sstat_fragmentation_point = asoc->frag_point;
4251 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
4252 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr,
4253 transport->af_specific->sockaddr_len);
4254 /* Map ipv4 address into v4-mapped-on-v6 address. */
4255 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk),
4256 (union sctp_addr *)&status.sstat_primary.spinfo_address);
4257 status.sstat_primary.spinfo_state = transport->state;
4258 status.sstat_primary.spinfo_cwnd = transport->cwnd;
4259 status.sstat_primary.spinfo_srtt = transport->srtt;
4260 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto);
4261 status.sstat_primary.spinfo_mtu = transport->pathmtu;
4262
4263 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN)
4264 status.sstat_primary.spinfo_state = SCTP_ACTIVE;
4265
4266 if (put_user(len, optlen)) {
4267 retval = -EFAULT;
4268 goto out;
4269 }
4270
4271 pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n",
4272 __func__, len, status.sstat_state, status.sstat_rwnd,
4273 status.sstat_assoc_id);
4274
4275 if (copy_to_user(optval, &status, len)) {
4276 retval = -EFAULT;
4277 goto out;
4278 }
4279
4280out:
4281 return retval;
4282}
4283
4284
4285/* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO)
4286 *
4287 * Applications can retrieve information about a specific peer address
4288 * of an association, including its reachability state, congestion
4289 * window, and retransmission timer values. This information is
4290 * read-only.
4291 */
4292static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len,
4293 char __user *optval,
4294 int __user *optlen)
4295{
4296 struct sctp_paddrinfo pinfo;
4297 struct sctp_transport *transport;
4298 int retval = 0;
4299
4300 if (len < sizeof(pinfo)) {
4301 retval = -EINVAL;
4302 goto out;
4303 }
4304
4305 len = sizeof(pinfo);
4306 if (copy_from_user(&pinfo, optval, len)) {
4307 retval = -EFAULT;
4308 goto out;
4309 }
4310
4311 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address,
4312 pinfo.spinfo_assoc_id);
4313 if (!transport)
4314 return -EINVAL;
4315
4316 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
4317 pinfo.spinfo_state = transport->state;
4318 pinfo.spinfo_cwnd = transport->cwnd;
4319 pinfo.spinfo_srtt = transport->srtt;
4320 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto);
4321 pinfo.spinfo_mtu = transport->pathmtu;
4322
4323 if (pinfo.spinfo_state == SCTP_UNKNOWN)
4324 pinfo.spinfo_state = SCTP_ACTIVE;
4325
4326 if (put_user(len, optlen)) {
4327 retval = -EFAULT;
4328 goto out;
4329 }
4330
4331 if (copy_to_user(optval, &pinfo, len)) {
4332 retval = -EFAULT;
4333 goto out;
4334 }
4335
4336out:
4337 return retval;
4338}
4339
4340/* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
4341 *
4342 * This option is a on/off flag. If enabled no SCTP message
4343 * fragmentation will be performed. Instead if a message being sent
4344 * exceeds the current PMTU size, the message will NOT be sent and
4345 * instead a error will be indicated to the user.
4346 */
4347static int sctp_getsockopt_disable_fragments(struct sock *sk, int len,
4348 char __user *optval, int __user *optlen)
4349{
4350 int val;
4351
4352 if (len < sizeof(int))
4353 return -EINVAL;
4354
4355 len = sizeof(int);
4356 val = (sctp_sk(sk)->disable_fragments == 1);
4357 if (put_user(len, optlen))
4358 return -EFAULT;
4359 if (copy_to_user(optval, &val, len))
4360 return -EFAULT;
4361 return 0;
4362}
4363
4364/* 7.1.15 Set notification and ancillary events (SCTP_EVENTS)
4365 *
4366 * This socket option is used to specify various notifications and
4367 * ancillary data the user wishes to receive.
4368 */
4369static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval,
4370 int __user *optlen)
4371{
4372 if (len <= 0)
4373 return -EINVAL;
4374 if (len > sizeof(struct sctp_event_subscribe))
4375 len = sizeof(struct sctp_event_subscribe);
4376 if (put_user(len, optlen))
4377 return -EFAULT;
4378 if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len))
4379 return -EFAULT;
4380 return 0;
4381}
4382
4383/* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
4384 *
4385 * This socket option is applicable to the UDP-style socket only. When
4386 * set it will cause associations that are idle for more than the
4387 * specified number of seconds to automatically close. An association
4388 * being idle is defined an association that has NOT sent or received
4389 * user data. The special value of '0' indicates that no automatic
4390 * close of any associations should be performed. The option expects an
4391 * integer defining the number of seconds of idle time before an
4392 * association is closed.
4393 */
4394static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen)
4395{
4396 /* Applicable to UDP-style socket only */
4397 if (sctp_style(sk, TCP))
4398 return -EOPNOTSUPP;
4399 if (len < sizeof(int))
4400 return -EINVAL;
4401 len = sizeof(int);
4402 if (put_user(len, optlen))
4403 return -EFAULT;
4404 if (copy_to_user(optval, &sctp_sk(sk)->autoclose, sizeof(int)))
4405 return -EFAULT;
4406 return 0;
4407}
4408
4409/* Helper routine to branch off an association to a new socket. */
4410int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp)
4411{
4412 struct sctp_association *asoc = sctp_id2assoc(sk, id);
4413 struct sctp_sock *sp = sctp_sk(sk);
4414 struct socket *sock;
4415 int err = 0;
4416
4417 if (!asoc)
4418 return -EINVAL;
4419
4420 /* An association cannot be branched off from an already peeled-off
4421 * socket, nor is this supported for tcp style sockets.
4422 */
4423 if (!sctp_style(sk, UDP))
4424 return -EINVAL;
4425
4426 /* Create a new socket. */
4427 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock);
4428 if (err < 0)
4429 return err;
4430
4431 sctp_copy_sock(sock->sk, sk, asoc);
4432
4433 /* Make peeled-off sockets more like 1-1 accepted sockets.
4434 * Set the daddr and initialize id to something more random
4435 */
4436 sp->pf->to_sk_daddr(&asoc->peer.primary_addr, sk);
4437
4438 /* Populate the fields of the newsk from the oldsk and migrate the
4439 * asoc to the newsk.
4440 */
4441 sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH);
4442
4443 *sockp = sock;
4444
4445 return err;
4446}
4447EXPORT_SYMBOL(sctp_do_peeloff);
4448
4449static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen)
4450{
4451 sctp_peeloff_arg_t peeloff;
4452 struct socket *newsock;
4453 struct file *newfile;
4454 int retval = 0;
4455
4456 if (len < sizeof(sctp_peeloff_arg_t))
4457 return -EINVAL;
4458 len = sizeof(sctp_peeloff_arg_t);
4459 if (copy_from_user(&peeloff, optval, len))
4460 return -EFAULT;
4461
4462 retval = sctp_do_peeloff(sk, peeloff.associd, &newsock);
4463 if (retval < 0)
4464 goto out;
4465
4466 /* Map the socket to an unused fd that can be returned to the user. */
4467 retval = get_unused_fd_flags(0);
4468 if (retval < 0) {
4469 sock_release(newsock);
4470 goto out;
4471 }
4472
4473 newfile = sock_alloc_file(newsock, 0, NULL);
4474 if (IS_ERR(newfile)) {
4475 put_unused_fd(retval);
4476 sock_release(newsock);
4477 return PTR_ERR(newfile);
4478 }
4479
4480 pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk,
4481 retval);
4482
4483 /* Return the fd mapped to the new socket. */
4484 if (put_user(len, optlen)) {
4485 fput(newfile);
4486 put_unused_fd(retval);
4487 return -EFAULT;
4488 }
4489 peeloff.sd = retval;
4490 if (copy_to_user(optval, &peeloff, len)) {
4491 fput(newfile);
4492 put_unused_fd(retval);
4493 return -EFAULT;
4494 }
4495 fd_install(retval, newfile);
4496out:
4497 return retval;
4498}
4499
4500/* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
4501 *
4502 * Applications can enable or disable heartbeats for any peer address of
4503 * an association, modify an address's heartbeat interval, force a
4504 * heartbeat to be sent immediately, and adjust the address's maximum
4505 * number of retransmissions sent before an address is considered
4506 * unreachable. The following structure is used to access and modify an
4507 * address's parameters:
4508 *
4509 * struct sctp_paddrparams {
4510 * sctp_assoc_t spp_assoc_id;
4511 * struct sockaddr_storage spp_address;
4512 * uint32_t spp_hbinterval;
4513 * uint16_t spp_pathmaxrxt;
4514 * uint32_t spp_pathmtu;
4515 * uint32_t spp_sackdelay;
4516 * uint32_t spp_flags;
4517 * };
4518 *
4519 * spp_assoc_id - (one-to-many style socket) This is filled in the
4520 * application, and identifies the association for
4521 * this query.
4522 * spp_address - This specifies which address is of interest.
4523 * spp_hbinterval - This contains the value of the heartbeat interval,
4524 * in milliseconds. If a value of zero
4525 * is present in this field then no changes are to
4526 * be made to this parameter.
4527 * spp_pathmaxrxt - This contains the maximum number of
4528 * retransmissions before this address shall be
4529 * considered unreachable. If a value of zero
4530 * is present in this field then no changes are to
4531 * be made to this parameter.
4532 * spp_pathmtu - When Path MTU discovery is disabled the value
4533 * specified here will be the "fixed" path mtu.
4534 * Note that if the spp_address field is empty
4535 * then all associations on this address will
4536 * have this fixed path mtu set upon them.
4537 *
4538 * spp_sackdelay - When delayed sack is enabled, this value specifies
4539 * the number of milliseconds that sacks will be delayed
4540 * for. This value will apply to all addresses of an
4541 * association if the spp_address field is empty. Note
4542 * also, that if delayed sack is enabled and this
4543 * value is set to 0, no change is made to the last
4544 * recorded delayed sack timer value.
4545 *
4546 * spp_flags - These flags are used to control various features
4547 * on an association. The flag field may contain
4548 * zero or more of the following options.
4549 *
4550 * SPP_HB_ENABLE - Enable heartbeats on the
4551 * specified address. Note that if the address
4552 * field is empty all addresses for the association
4553 * have heartbeats enabled upon them.
4554 *
4555 * SPP_HB_DISABLE - Disable heartbeats on the
4556 * speicifed address. Note that if the address
4557 * field is empty all addresses for the association
4558 * will have their heartbeats disabled. Note also
4559 * that SPP_HB_ENABLE and SPP_HB_DISABLE are
4560 * mutually exclusive, only one of these two should
4561 * be specified. Enabling both fields will have
4562 * undetermined results.
4563 *
4564 * SPP_HB_DEMAND - Request a user initiated heartbeat
4565 * to be made immediately.
4566 *
4567 * SPP_PMTUD_ENABLE - This field will enable PMTU
4568 * discovery upon the specified address. Note that
4569 * if the address feild is empty then all addresses
4570 * on the association are effected.
4571 *
4572 * SPP_PMTUD_DISABLE - This field will disable PMTU
4573 * discovery upon the specified address. Note that
4574 * if the address feild is empty then all addresses
4575 * on the association are effected. Not also that
4576 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
4577 * exclusive. Enabling both will have undetermined
4578 * results.
4579 *
4580 * SPP_SACKDELAY_ENABLE - Setting this flag turns
4581 * on delayed sack. The time specified in spp_sackdelay
4582 * is used to specify the sack delay for this address. Note
4583 * that if spp_address is empty then all addresses will
4584 * enable delayed sack and take on the sack delay
4585 * value specified in spp_sackdelay.
4586 * SPP_SACKDELAY_DISABLE - Setting this flag turns
4587 * off delayed sack. If the spp_address field is blank then
4588 * delayed sack is disabled for the entire association. Note
4589 * also that this field is mutually exclusive to
4590 * SPP_SACKDELAY_ENABLE, setting both will have undefined
4591 * results.
4592 */
4593static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len,
4594 char __user *optval, int __user *optlen)
4595{
4596 struct sctp_paddrparams params;
4597 struct sctp_transport *trans = NULL;
4598 struct sctp_association *asoc = NULL;
4599 struct sctp_sock *sp = sctp_sk(sk);
4600
4601 if (len < sizeof(struct sctp_paddrparams))
4602 return -EINVAL;
4603 len = sizeof(struct sctp_paddrparams);
4604 if (copy_from_user(¶ms, optval, len))
4605 return -EFAULT;
4606
4607 /* If an address other than INADDR_ANY is specified, and
4608 * no transport is found, then the request is invalid.
4609 */
4610 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spp_address)) {
4611 trans = sctp_addr_id2transport(sk, ¶ms.spp_address,
4612 params.spp_assoc_id);
4613 if (!trans) {
4614 pr_debug("%s: failed no transport\n", __func__);
4615 return -EINVAL;
4616 }
4617 }
4618
4619 /* Get association, if assoc_id != 0 and the socket is a one
4620 * to many style socket, and an association was not found, then
4621 * the id was invalid.
4622 */
4623 asoc = sctp_id2assoc(sk, params.spp_assoc_id);
4624 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) {
4625 pr_debug("%s: failed no association\n", __func__);
4626 return -EINVAL;
4627 }
4628
4629 if (trans) {
4630 /* Fetch transport values. */
4631 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval);
4632 params.spp_pathmtu = trans->pathmtu;
4633 params.spp_pathmaxrxt = trans->pathmaxrxt;
4634 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay);
4635
4636 /*draft-11 doesn't say what to return in spp_flags*/
4637 params.spp_flags = trans->param_flags;
4638 } else if (asoc) {
4639 /* Fetch association values. */
4640 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval);
4641 params.spp_pathmtu = asoc->pathmtu;
4642 params.spp_pathmaxrxt = asoc->pathmaxrxt;
4643 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay);
4644
4645 /*draft-11 doesn't say what to return in spp_flags*/
4646 params.spp_flags = asoc->param_flags;
4647 } else {
4648 /* Fetch socket values. */
4649 params.spp_hbinterval = sp->hbinterval;
4650 params.spp_pathmtu = sp->pathmtu;
4651 params.spp_sackdelay = sp->sackdelay;
4652 params.spp_pathmaxrxt = sp->pathmaxrxt;
4653
4654 /*draft-11 doesn't say what to return in spp_flags*/
4655 params.spp_flags = sp->param_flags;
4656 }
4657
4658 if (copy_to_user(optval, ¶ms, len))
4659 return -EFAULT;
4660
4661 if (put_user(len, optlen))
4662 return -EFAULT;
4663
4664 return 0;
4665}
4666
4667/*
4668 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK)
4669 *
4670 * This option will effect the way delayed acks are performed. This
4671 * option allows you to get or set the delayed ack time, in
4672 * milliseconds. It also allows changing the delayed ack frequency.
4673 * Changing the frequency to 1 disables the delayed sack algorithm. If
4674 * the assoc_id is 0, then this sets or gets the endpoints default
4675 * values. If the assoc_id field is non-zero, then the set or get
4676 * effects the specified association for the one to many model (the
4677 * assoc_id field is ignored by the one to one model). Note that if
4678 * sack_delay or sack_freq are 0 when setting this option, then the
4679 * current values will remain unchanged.
4680 *
4681 * struct sctp_sack_info {
4682 * sctp_assoc_t sack_assoc_id;
4683 * uint32_t sack_delay;
4684 * uint32_t sack_freq;
4685 * };
4686 *
4687 * sack_assoc_id - This parameter, indicates which association the user
4688 * is performing an action upon. Note that if this field's value is
4689 * zero then the endpoints default value is changed (effecting future
4690 * associations only).
4691 *
4692 * sack_delay - This parameter contains the number of milliseconds that
4693 * the user is requesting the delayed ACK timer be set to. Note that
4694 * this value is defined in the standard to be between 200 and 500
4695 * milliseconds.
4696 *
4697 * sack_freq - This parameter contains the number of packets that must
4698 * be received before a sack is sent without waiting for the delay
4699 * timer to expire. The default value for this is 2, setting this
4700 * value to 1 will disable the delayed sack algorithm.
4701 */
4702static int sctp_getsockopt_delayed_ack(struct sock *sk, int len,
4703 char __user *optval,
4704 int __user *optlen)
4705{
4706 struct sctp_sack_info params;
4707 struct sctp_association *asoc = NULL;
4708 struct sctp_sock *sp = sctp_sk(sk);
4709
4710 if (len >= sizeof(struct sctp_sack_info)) {
4711 len = sizeof(struct sctp_sack_info);
4712
4713 if (copy_from_user(¶ms, optval, len))
4714 return -EFAULT;
4715 } else if (len == sizeof(struct sctp_assoc_value)) {
4716 pr_warn_ratelimited(DEPRECATED
4717 "%s (pid %d) "
4718 "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
4719 "Use struct sctp_sack_info instead\n",
4720 current->comm, task_pid_nr(current));
4721 if (copy_from_user(¶ms, optval, len))
4722 return -EFAULT;
4723 } else
4724 return -EINVAL;
4725
4726 /* Get association, if sack_assoc_id != 0 and the socket is a one
4727 * to many style socket, and an association was not found, then
4728 * the id was invalid.
4729 */
4730 asoc = sctp_id2assoc(sk, params.sack_assoc_id);
4731 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
4732 return -EINVAL;
4733
4734 if (asoc) {
4735 /* Fetch association values. */
4736 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) {
4737 params.sack_delay = jiffies_to_msecs(
4738 asoc->sackdelay);
4739 params.sack_freq = asoc->sackfreq;
4740
4741 } else {
4742 params.sack_delay = 0;
4743 params.sack_freq = 1;
4744 }
4745 } else {
4746 /* Fetch socket values. */
4747 if (sp->param_flags & SPP_SACKDELAY_ENABLE) {
4748 params.sack_delay = sp->sackdelay;
4749 params.sack_freq = sp->sackfreq;
4750 } else {
4751 params.sack_delay = 0;
4752 params.sack_freq = 1;
4753 }
4754 }
4755
4756 if (copy_to_user(optval, ¶ms, len))
4757 return -EFAULT;
4758
4759 if (put_user(len, optlen))
4760 return -EFAULT;
4761
4762 return 0;
4763}
4764
4765/* 7.1.3 Initialization Parameters (SCTP_INITMSG)
4766 *
4767 * Applications can specify protocol parameters for the default association
4768 * initialization. The option name argument to setsockopt() and getsockopt()
4769 * is SCTP_INITMSG.
4770 *
4771 * Setting initialization parameters is effective only on an unconnected
4772 * socket (for UDP-style sockets only future associations are effected
4773 * by the change). With TCP-style sockets, this option is inherited by
4774 * sockets derived from a listener socket.
4775 */
4776static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen)
4777{
4778 if (len < sizeof(struct sctp_initmsg))
4779 return -EINVAL;
4780 len = sizeof(struct sctp_initmsg);
4781 if (put_user(len, optlen))
4782 return -EFAULT;
4783 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len))
4784 return -EFAULT;
4785 return 0;
4786}
4787
4788
4789static int sctp_getsockopt_peer_addrs(struct sock *sk, int len,
4790 char __user *optval, int __user *optlen)
4791{
4792 struct sctp_association *asoc;
4793 int cnt = 0;
4794 struct sctp_getaddrs getaddrs;
4795 struct sctp_transport *from;
4796 void __user *to;
4797 union sctp_addr temp;
4798 struct sctp_sock *sp = sctp_sk(sk);
4799 int addrlen;
4800 size_t space_left;
4801 int bytes_copied;
4802
4803 if (len < sizeof(struct sctp_getaddrs))
4804 return -EINVAL;
4805
4806 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
4807 return -EFAULT;
4808
4809 /* For UDP-style sockets, id specifies the association to query. */
4810 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4811 if (!asoc)
4812 return -EINVAL;
4813
4814 to = optval + offsetof(struct sctp_getaddrs, addrs);
4815 space_left = len - offsetof(struct sctp_getaddrs, addrs);
4816
4817 list_for_each_entry(from, &asoc->peer.transport_addr_list,
4818 transports) {
4819 memcpy(&temp, &from->ipaddr, sizeof(temp));
4820 addrlen = sctp_get_pf_specific(sk->sk_family)
4821 ->addr_to_user(sp, &temp);
4822 if (space_left < addrlen)
4823 return -ENOMEM;
4824 if (copy_to_user(to, &temp, addrlen))
4825 return -EFAULT;
4826 to += addrlen;
4827 cnt++;
4828 space_left -= addrlen;
4829 }
4830
4831 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
4832 return -EFAULT;
4833 bytes_copied = ((char __user *)to) - optval;
4834 if (put_user(bytes_copied, optlen))
4835 return -EFAULT;
4836
4837 return 0;
4838}
4839
4840static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to,
4841 size_t space_left, int *bytes_copied)
4842{
4843 struct sctp_sockaddr_entry *addr;
4844 union sctp_addr temp;
4845 int cnt = 0;
4846 int addrlen;
4847 struct net *net = sock_net(sk);
4848
4849 rcu_read_lock();
4850 list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) {
4851 if (!addr->valid)
4852 continue;
4853
4854 if ((PF_INET == sk->sk_family) &&
4855 (AF_INET6 == addr->a.sa.sa_family))
4856 continue;
4857 if ((PF_INET6 == sk->sk_family) &&
4858 inet_v6_ipv6only(sk) &&
4859 (AF_INET == addr->a.sa.sa_family))
4860 continue;
4861 memcpy(&temp, &addr->a, sizeof(temp));
4862 if (!temp.v4.sin_port)
4863 temp.v4.sin_port = htons(port);
4864
4865 addrlen = sctp_get_pf_specific(sk->sk_family)
4866 ->addr_to_user(sctp_sk(sk), &temp);
4867
4868 if (space_left < addrlen) {
4869 cnt = -ENOMEM;
4870 break;
4871 }
4872 memcpy(to, &temp, addrlen);
4873
4874 to += addrlen;
4875 cnt++;
4876 space_left -= addrlen;
4877 *bytes_copied += addrlen;
4878 }
4879 rcu_read_unlock();
4880
4881 return cnt;
4882}
4883
4884
4885static int sctp_getsockopt_local_addrs(struct sock *sk, int len,
4886 char __user *optval, int __user *optlen)
4887{
4888 struct sctp_bind_addr *bp;
4889 struct sctp_association *asoc;
4890 int cnt = 0;
4891 struct sctp_getaddrs getaddrs;
4892 struct sctp_sockaddr_entry *addr;
4893 void __user *to;
4894 union sctp_addr temp;
4895 struct sctp_sock *sp = sctp_sk(sk);
4896 int addrlen;
4897 int err = 0;
4898 size_t space_left;
4899 int bytes_copied = 0;
4900 void *addrs;
4901 void *buf;
4902
4903 if (len < sizeof(struct sctp_getaddrs))
4904 return -EINVAL;
4905
4906 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
4907 return -EFAULT;
4908
4909 /*
4910 * For UDP-style sockets, id specifies the association to query.
4911 * If the id field is set to the value '0' then the locally bound
4912 * addresses are returned without regard to any particular
4913 * association.
4914 */
4915 if (0 == getaddrs.assoc_id) {
4916 bp = &sctp_sk(sk)->ep->base.bind_addr;
4917 } else {
4918 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4919 if (!asoc)
4920 return -EINVAL;
4921 bp = &asoc->base.bind_addr;
4922 }
4923
4924 to = optval + offsetof(struct sctp_getaddrs, addrs);
4925 space_left = len - offsetof(struct sctp_getaddrs, addrs);
4926
4927 addrs = kmalloc(space_left, GFP_USER | __GFP_NOWARN);
4928 if (!addrs)
4929 return -ENOMEM;
4930
4931 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
4932 * addresses from the global local address list.
4933 */
4934 if (sctp_list_single_entry(&bp->address_list)) {
4935 addr = list_entry(bp->address_list.next,
4936 struct sctp_sockaddr_entry, list);
4937 if (sctp_is_any(sk, &addr->a)) {
4938 cnt = sctp_copy_laddrs(sk, bp->port, addrs,
4939 space_left, &bytes_copied);
4940 if (cnt < 0) {
4941 err = cnt;
4942 goto out;
4943 }
4944 goto copy_getaddrs;
4945 }
4946 }
4947
4948 buf = addrs;
4949 /* Protection on the bound address list is not needed since
4950 * in the socket option context we hold a socket lock and
4951 * thus the bound address list can't change.
4952 */
4953 list_for_each_entry(addr, &bp->address_list, list) {
4954 memcpy(&temp, &addr->a, sizeof(temp));
4955 addrlen = sctp_get_pf_specific(sk->sk_family)
4956 ->addr_to_user(sp, &temp);
4957 if (space_left < addrlen) {
4958 err = -ENOMEM; /*fixme: right error?*/
4959 goto out;
4960 }
4961 memcpy(buf, &temp, addrlen);
4962 buf += addrlen;
4963 bytes_copied += addrlen;
4964 cnt++;
4965 space_left -= addrlen;
4966 }
4967
4968copy_getaddrs:
4969 if (copy_to_user(to, addrs, bytes_copied)) {
4970 err = -EFAULT;
4971 goto out;
4972 }
4973 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) {
4974 err = -EFAULT;
4975 goto out;
4976 }
4977 if (put_user(bytes_copied, optlen))
4978 err = -EFAULT;
4979out:
4980 kfree(addrs);
4981 return err;
4982}
4983
4984/* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
4985 *
4986 * Requests that the local SCTP stack use the enclosed peer address as
4987 * the association primary. The enclosed address must be one of the
4988 * association peer's addresses.
4989 */
4990static int sctp_getsockopt_primary_addr(struct sock *sk, int len,
4991 char __user *optval, int __user *optlen)
4992{
4993 struct sctp_prim prim;
4994 struct sctp_association *asoc;
4995 struct sctp_sock *sp = sctp_sk(sk);
4996
4997 if (len < sizeof(struct sctp_prim))
4998 return -EINVAL;
4999
5000 len = sizeof(struct sctp_prim);
5001
5002 if (copy_from_user(&prim, optval, len))
5003 return -EFAULT;
5004
5005 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id);
5006 if (!asoc)
5007 return -EINVAL;
5008
5009 if (!asoc->peer.primary_path)
5010 return -ENOTCONN;
5011
5012 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr,
5013 asoc->peer.primary_path->af_specific->sockaddr_len);
5014
5015 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sp,
5016 (union sctp_addr *)&prim.ssp_addr);
5017
5018 if (put_user(len, optlen))
5019 return -EFAULT;
5020 if (copy_to_user(optval, &prim, len))
5021 return -EFAULT;
5022
5023 return 0;
5024}
5025
5026/*
5027 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER)
5028 *
5029 * Requests that the local endpoint set the specified Adaptation Layer
5030 * Indication parameter for all future INIT and INIT-ACK exchanges.
5031 */
5032static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len,
5033 char __user *optval, int __user *optlen)
5034{
5035 struct sctp_setadaptation adaptation;
5036
5037 if (len < sizeof(struct sctp_setadaptation))
5038 return -EINVAL;
5039
5040 len = sizeof(struct sctp_setadaptation);
5041
5042 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind;
5043
5044 if (put_user(len, optlen))
5045 return -EFAULT;
5046 if (copy_to_user(optval, &adaptation, len))
5047 return -EFAULT;
5048
5049 return 0;
5050}
5051
5052/*
5053 *
5054 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
5055 *
5056 * Applications that wish to use the sendto() system call may wish to
5057 * specify a default set of parameters that would normally be supplied
5058 * through the inclusion of ancillary data. This socket option allows
5059 * such an application to set the default sctp_sndrcvinfo structure.
5060
5061
5062 * The application that wishes to use this socket option simply passes
5063 * in to this call the sctp_sndrcvinfo structure defined in Section
5064 * 5.2.2) The input parameters accepted by this call include
5065 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
5066 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in
5067 * to this call if the caller is using the UDP model.
5068 *
5069 * For getsockopt, it get the default sctp_sndrcvinfo structure.
5070 */
5071static int sctp_getsockopt_default_send_param(struct sock *sk,
5072 int len, char __user *optval,
5073 int __user *optlen)
5074{
5075 struct sctp_sock *sp = sctp_sk(sk);
5076 struct sctp_association *asoc;
5077 struct sctp_sndrcvinfo info;
5078
5079 if (len < sizeof(info))
5080 return -EINVAL;
5081
5082 len = sizeof(info);
5083
5084 if (copy_from_user(&info, optval, len))
5085 return -EFAULT;
5086
5087 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
5088 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
5089 return -EINVAL;
5090 if (asoc) {
5091 info.sinfo_stream = asoc->default_stream;
5092 info.sinfo_flags = asoc->default_flags;
5093 info.sinfo_ppid = asoc->default_ppid;
5094 info.sinfo_context = asoc->default_context;
5095 info.sinfo_timetolive = asoc->default_timetolive;
5096 } else {
5097 info.sinfo_stream = sp->default_stream;
5098 info.sinfo_flags = sp->default_flags;
5099 info.sinfo_ppid = sp->default_ppid;
5100 info.sinfo_context = sp->default_context;
5101 info.sinfo_timetolive = sp->default_timetolive;
5102 }
5103
5104 if (put_user(len, optlen))
5105 return -EFAULT;
5106 if (copy_to_user(optval, &info, len))
5107 return -EFAULT;
5108
5109 return 0;
5110}
5111
5112/* RFC6458, Section 8.1.31. Set/get Default Send Parameters
5113 * (SCTP_DEFAULT_SNDINFO)
5114 */
5115static int sctp_getsockopt_default_sndinfo(struct sock *sk, int len,
5116 char __user *optval,
5117 int __user *optlen)
5118{
5119 struct sctp_sock *sp = sctp_sk(sk);
5120 struct sctp_association *asoc;
5121 struct sctp_sndinfo info;
5122
5123 if (len < sizeof(info))
5124 return -EINVAL;
5125
5126 len = sizeof(info);
5127
5128 if (copy_from_user(&info, optval, len))
5129 return -EFAULT;
5130
5131 asoc = sctp_id2assoc(sk, info.snd_assoc_id);
5132 if (!asoc && info.snd_assoc_id && sctp_style(sk, UDP))
5133 return -EINVAL;
5134 if (asoc) {
5135 info.snd_sid = asoc->default_stream;
5136 info.snd_flags = asoc->default_flags;
5137 info.snd_ppid = asoc->default_ppid;
5138 info.snd_context = asoc->default_context;
5139 } else {
5140 info.snd_sid = sp->default_stream;
5141 info.snd_flags = sp->default_flags;
5142 info.snd_ppid = sp->default_ppid;
5143 info.snd_context = sp->default_context;
5144 }
5145
5146 if (put_user(len, optlen))
5147 return -EFAULT;
5148 if (copy_to_user(optval, &info, len))
5149 return -EFAULT;
5150
5151 return 0;
5152}
5153
5154/*
5155 *
5156 * 7.1.5 SCTP_NODELAY
5157 *
5158 * Turn on/off any Nagle-like algorithm. This means that packets are
5159 * generally sent as soon as possible and no unnecessary delays are
5160 * introduced, at the cost of more packets in the network. Expects an
5161 * integer boolean flag.
5162 */
5163
5164static int sctp_getsockopt_nodelay(struct sock *sk, int len,
5165 char __user *optval, int __user *optlen)
5166{
5167 int val;
5168
5169 if (len < sizeof(int))
5170 return -EINVAL;
5171
5172 len = sizeof(int);
5173 val = (sctp_sk(sk)->nodelay == 1);
5174 if (put_user(len, optlen))
5175 return -EFAULT;
5176 if (copy_to_user(optval, &val, len))
5177 return -EFAULT;
5178 return 0;
5179}
5180
5181/*
5182 *
5183 * 7.1.1 SCTP_RTOINFO
5184 *
5185 * The protocol parameters used to initialize and bound retransmission
5186 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
5187 * and modify these parameters.
5188 * All parameters are time values, in milliseconds. A value of 0, when
5189 * modifying the parameters, indicates that the current value should not
5190 * be changed.
5191 *
5192 */
5193static int sctp_getsockopt_rtoinfo(struct sock *sk, int len,
5194 char __user *optval,
5195 int __user *optlen) {
5196 struct sctp_rtoinfo rtoinfo;
5197 struct sctp_association *asoc;
5198
5199 if (len < sizeof (struct sctp_rtoinfo))
5200 return -EINVAL;
5201
5202 len = sizeof(struct sctp_rtoinfo);
5203
5204 if (copy_from_user(&rtoinfo, optval, len))
5205 return -EFAULT;
5206
5207 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
5208
5209 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
5210 return -EINVAL;
5211
5212 /* Values corresponding to the specific association. */
5213 if (asoc) {
5214 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial);
5215 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max);
5216 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min);
5217 } else {
5218 /* Values corresponding to the endpoint. */
5219 struct sctp_sock *sp = sctp_sk(sk);
5220
5221 rtoinfo.srto_initial = sp->rtoinfo.srto_initial;
5222 rtoinfo.srto_max = sp->rtoinfo.srto_max;
5223 rtoinfo.srto_min = sp->rtoinfo.srto_min;
5224 }
5225
5226 if (put_user(len, optlen))
5227 return -EFAULT;
5228
5229 if (copy_to_user(optval, &rtoinfo, len))
5230 return -EFAULT;
5231
5232 return 0;
5233}
5234
5235/*
5236 *
5237 * 7.1.2 SCTP_ASSOCINFO
5238 *
5239 * This option is used to tune the maximum retransmission attempts
5240 * of the association.
5241 * Returns an error if the new association retransmission value is
5242 * greater than the sum of the retransmission value of the peer.
5243 * See [SCTP] for more information.
5244 *
5245 */
5246static int sctp_getsockopt_associnfo(struct sock *sk, int len,
5247 char __user *optval,
5248 int __user *optlen)
5249{
5250
5251 struct sctp_assocparams assocparams;
5252 struct sctp_association *asoc;
5253 struct list_head *pos;
5254 int cnt = 0;
5255
5256 if (len < sizeof (struct sctp_assocparams))
5257 return -EINVAL;
5258
5259 len = sizeof(struct sctp_assocparams);
5260
5261 if (copy_from_user(&assocparams, optval, len))
5262 return -EFAULT;
5263
5264 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
5265
5266 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
5267 return -EINVAL;
5268
5269 /* Values correspoinding to the specific association */
5270 if (asoc) {
5271 assocparams.sasoc_asocmaxrxt = asoc->max_retrans;
5272 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd;
5273 assocparams.sasoc_local_rwnd = asoc->a_rwnd;
5274 assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life);
5275
5276 list_for_each(pos, &asoc->peer.transport_addr_list) {
5277 cnt++;
5278 }
5279
5280 assocparams.sasoc_number_peer_destinations = cnt;
5281 } else {
5282 /* Values corresponding to the endpoint */
5283 struct sctp_sock *sp = sctp_sk(sk);
5284
5285 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt;
5286 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd;
5287 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd;
5288 assocparams.sasoc_cookie_life =
5289 sp->assocparams.sasoc_cookie_life;
5290 assocparams.sasoc_number_peer_destinations =
5291 sp->assocparams.
5292 sasoc_number_peer_destinations;
5293 }
5294
5295 if (put_user(len, optlen))
5296 return -EFAULT;
5297
5298 if (copy_to_user(optval, &assocparams, len))
5299 return -EFAULT;
5300
5301 return 0;
5302}
5303
5304/*
5305 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
5306 *
5307 * This socket option is a boolean flag which turns on or off mapped V4
5308 * addresses. If this option is turned on and the socket is type
5309 * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
5310 * If this option is turned off, then no mapping will be done of V4
5311 * addresses and a user will receive both PF_INET6 and PF_INET type
5312 * addresses on the socket.
5313 */
5314static int sctp_getsockopt_mappedv4(struct sock *sk, int len,
5315 char __user *optval, int __user *optlen)
5316{
5317 int val;
5318 struct sctp_sock *sp = sctp_sk(sk);
5319
5320 if (len < sizeof(int))
5321 return -EINVAL;
5322
5323 len = sizeof(int);
5324 val = sp->v4mapped;
5325 if (put_user(len, optlen))
5326 return -EFAULT;
5327 if (copy_to_user(optval, &val, len))
5328 return -EFAULT;
5329
5330 return 0;
5331}
5332
5333/*
5334 * 7.1.29. Set or Get the default context (SCTP_CONTEXT)
5335 * (chapter and verse is quoted at sctp_setsockopt_context())
5336 */
5337static int sctp_getsockopt_context(struct sock *sk, int len,
5338 char __user *optval, int __user *optlen)
5339{
5340 struct sctp_assoc_value params;
5341 struct sctp_sock *sp;
5342 struct sctp_association *asoc;
5343
5344 if (len < sizeof(struct sctp_assoc_value))
5345 return -EINVAL;
5346
5347 len = sizeof(struct sctp_assoc_value);
5348
5349 if (copy_from_user(¶ms, optval, len))
5350 return -EFAULT;
5351
5352 sp = sctp_sk(sk);
5353
5354 if (params.assoc_id != 0) {
5355 asoc = sctp_id2assoc(sk, params.assoc_id);
5356 if (!asoc)
5357 return -EINVAL;
5358 params.assoc_value = asoc->default_rcv_context;
5359 } else {
5360 params.assoc_value = sp->default_rcv_context;
5361 }
5362
5363 if (put_user(len, optlen))
5364 return -EFAULT;
5365 if (copy_to_user(optval, ¶ms, len))
5366 return -EFAULT;
5367
5368 return 0;
5369}
5370
5371/*
5372 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
5373 * This option will get or set the maximum size to put in any outgoing
5374 * SCTP DATA chunk. If a message is larger than this size it will be
5375 * fragmented by SCTP into the specified size. Note that the underlying
5376 * SCTP implementation may fragment into smaller sized chunks when the
5377 * PMTU of the underlying association is smaller than the value set by
5378 * the user. The default value for this option is '0' which indicates
5379 * the user is NOT limiting fragmentation and only the PMTU will effect
5380 * SCTP's choice of DATA chunk size. Note also that values set larger
5381 * than the maximum size of an IP datagram will effectively let SCTP
5382 * control fragmentation (i.e. the same as setting this option to 0).
5383 *
5384 * The following structure is used to access and modify this parameter:
5385 *
5386 * struct sctp_assoc_value {
5387 * sctp_assoc_t assoc_id;
5388 * uint32_t assoc_value;
5389 * };
5390 *
5391 * assoc_id: This parameter is ignored for one-to-one style sockets.
5392 * For one-to-many style sockets this parameter indicates which
5393 * association the user is performing an action upon. Note that if
5394 * this field's value is zero then the endpoints default value is
5395 * changed (effecting future associations only).
5396 * assoc_value: This parameter specifies the maximum size in bytes.
5397 */
5398static int sctp_getsockopt_maxseg(struct sock *sk, int len,
5399 char __user *optval, int __user *optlen)
5400{
5401 struct sctp_assoc_value params;
5402 struct sctp_association *asoc;
5403
5404 if (len == sizeof(int)) {
5405 pr_warn_ratelimited(DEPRECATED
5406 "%s (pid %d) "
5407 "Use of int in maxseg socket option.\n"
5408 "Use struct sctp_assoc_value instead\n",
5409 current->comm, task_pid_nr(current));
5410 params.assoc_id = 0;
5411 } else if (len >= sizeof(struct sctp_assoc_value)) {
5412 len = sizeof(struct sctp_assoc_value);
5413 if (copy_from_user(¶ms, optval, sizeof(params)))
5414 return -EFAULT;
5415 } else
5416 return -EINVAL;
5417
5418 asoc = sctp_id2assoc(sk, params.assoc_id);
5419 if (!asoc && params.assoc_id && sctp_style(sk, UDP))
5420 return -EINVAL;
5421
5422 if (asoc)
5423 params.assoc_value = asoc->frag_point;
5424 else
5425 params.assoc_value = sctp_sk(sk)->user_frag;
5426
5427 if (put_user(len, optlen))
5428 return -EFAULT;
5429 if (len == sizeof(int)) {
5430 if (copy_to_user(optval, ¶ms.assoc_value, len))
5431 return -EFAULT;
5432 } else {
5433 if (copy_to_user(optval, ¶ms, len))
5434 return -EFAULT;
5435 }
5436
5437 return 0;
5438}
5439
5440/*
5441 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
5442 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave())
5443 */
5444static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len,
5445 char __user *optval, int __user *optlen)
5446{
5447 int val;
5448
5449 if (len < sizeof(int))
5450 return -EINVAL;
5451
5452 len = sizeof(int);
5453
5454 val = sctp_sk(sk)->frag_interleave;
5455 if (put_user(len, optlen))
5456 return -EFAULT;
5457 if (copy_to_user(optval, &val, len))
5458 return -EFAULT;
5459
5460 return 0;
5461}
5462
5463/*
5464 * 7.1.25. Set or Get the sctp partial delivery point
5465 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point())
5466 */
5467static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len,
5468 char __user *optval,
5469 int __user *optlen)
5470{
5471 u32 val;
5472
5473 if (len < sizeof(u32))
5474 return -EINVAL;
5475
5476 len = sizeof(u32);
5477
5478 val = sctp_sk(sk)->pd_point;
5479 if (put_user(len, optlen))
5480 return -EFAULT;
5481 if (copy_to_user(optval, &val, len))
5482 return -EFAULT;
5483
5484 return 0;
5485}
5486
5487/*
5488 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST)
5489 * (chapter and verse is quoted at sctp_setsockopt_maxburst())
5490 */
5491static int sctp_getsockopt_maxburst(struct sock *sk, int len,
5492 char __user *optval,
5493 int __user *optlen)
5494{
5495 struct sctp_assoc_value params;
5496 struct sctp_sock *sp;
5497 struct sctp_association *asoc;
5498
5499 if (len == sizeof(int)) {
5500 pr_warn_ratelimited(DEPRECATED
5501 "%s (pid %d) "
5502 "Use of int in max_burst socket option.\n"
5503 "Use struct sctp_assoc_value instead\n",
5504 current->comm, task_pid_nr(current));
5505 params.assoc_id = 0;
5506 } else if (len >= sizeof(struct sctp_assoc_value)) {
5507 len = sizeof(struct sctp_assoc_value);
5508 if (copy_from_user(¶ms, optval, len))
5509 return -EFAULT;
5510 } else
5511 return -EINVAL;
5512
5513 sp = sctp_sk(sk);
5514
5515 if (params.assoc_id != 0) {
5516 asoc = sctp_id2assoc(sk, params.assoc_id);
5517 if (!asoc)
5518 return -EINVAL;
5519 params.assoc_value = asoc->max_burst;
5520 } else
5521 params.assoc_value = sp->max_burst;
5522
5523 if (len == sizeof(int)) {
5524 if (copy_to_user(optval, ¶ms.assoc_value, len))
5525 return -EFAULT;
5526 } else {
5527 if (copy_to_user(optval, ¶ms, len))
5528 return -EFAULT;
5529 }
5530
5531 return 0;
5532
5533}
5534
5535static int sctp_getsockopt_hmac_ident(struct sock *sk, int len,
5536 char __user *optval, int __user *optlen)
5537{
5538 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
5539 struct sctp_hmacalgo __user *p = (void __user *)optval;
5540 struct sctp_hmac_algo_param *hmacs;
5541 __u16 data_len = 0;
5542 u32 num_idents;
5543 int i;
5544
5545 if (!ep->auth_enable)
5546 return -EACCES;
5547
5548 hmacs = ep->auth_hmacs_list;
5549 data_len = ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t);
5550
5551 if (len < sizeof(struct sctp_hmacalgo) + data_len)
5552 return -EINVAL;
5553
5554 len = sizeof(struct sctp_hmacalgo) + data_len;
5555 num_idents = data_len / sizeof(u16);
5556
5557 if (put_user(len, optlen))
5558 return -EFAULT;
5559 if (put_user(num_idents, &p->shmac_num_idents))
5560 return -EFAULT;
5561 for (i = 0; i < num_idents; i++) {
5562 __u16 hmacid = ntohs(hmacs->hmac_ids[i]);
5563
5564 if (copy_to_user(&p->shmac_idents[i], &hmacid, sizeof(__u16)))
5565 return -EFAULT;
5566 }
5567 return 0;
5568}
5569
5570static int sctp_getsockopt_active_key(struct sock *sk, int len,
5571 char __user *optval, int __user *optlen)
5572{
5573 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
5574 struct sctp_authkeyid val;
5575 struct sctp_association *asoc;
5576
5577 if (!ep->auth_enable)
5578 return -EACCES;
5579
5580 if (len < sizeof(struct sctp_authkeyid))
5581 return -EINVAL;
5582 if (copy_from_user(&val, optval, sizeof(struct sctp_authkeyid)))
5583 return -EFAULT;
5584
5585 asoc = sctp_id2assoc(sk, val.scact_assoc_id);
5586 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
5587 return -EINVAL;
5588
5589 if (asoc)
5590 val.scact_keynumber = asoc->active_key_id;
5591 else
5592 val.scact_keynumber = ep->active_key_id;
5593
5594 len = sizeof(struct sctp_authkeyid);
5595 if (put_user(len, optlen))
5596 return -EFAULT;
5597 if (copy_to_user(optval, &val, len))
5598 return -EFAULT;
5599
5600 return 0;
5601}
5602
5603static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len,
5604 char __user *optval, int __user *optlen)
5605{
5606 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
5607 struct sctp_authchunks __user *p = (void __user *)optval;
5608 struct sctp_authchunks val;
5609 struct sctp_association *asoc;
5610 struct sctp_chunks_param *ch;
5611 u32 num_chunks = 0;
5612 char __user *to;
5613
5614 if (!ep->auth_enable)
5615 return -EACCES;
5616
5617 if (len < sizeof(struct sctp_authchunks))
5618 return -EINVAL;
5619
5620 if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks)))
5621 return -EFAULT;
5622
5623 to = p->gauth_chunks;
5624 asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
5625 if (!asoc)
5626 return -EINVAL;
5627
5628 ch = asoc->peer.peer_chunks;
5629 if (!ch)
5630 goto num;
5631
5632 /* See if the user provided enough room for all the data */
5633 num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t);
5634 if (len < num_chunks)
5635 return -EINVAL;
5636
5637 if (copy_to_user(to, ch->chunks, num_chunks))
5638 return -EFAULT;
5639num:
5640 len = sizeof(struct sctp_authchunks) + num_chunks;
5641 if (put_user(len, optlen))
5642 return -EFAULT;
5643 if (put_user(num_chunks, &p->gauth_number_of_chunks))
5644 return -EFAULT;
5645 return 0;
5646}
5647
5648static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len,
5649 char __user *optval, int __user *optlen)
5650{
5651 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
5652 struct sctp_authchunks __user *p = (void __user *)optval;
5653 struct sctp_authchunks val;
5654 struct sctp_association *asoc;
5655 struct sctp_chunks_param *ch;
5656 u32 num_chunks = 0;
5657 char __user *to;
5658
5659 if (!ep->auth_enable)
5660 return -EACCES;
5661
5662 if (len < sizeof(struct sctp_authchunks))
5663 return -EINVAL;
5664
5665 if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks)))
5666 return -EFAULT;
5667
5668 to = p->gauth_chunks;
5669 asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
5670 if (!asoc && val.gauth_assoc_id && sctp_style(sk, UDP))
5671 return -EINVAL;
5672
5673 if (asoc)
5674 ch = (struct sctp_chunks_param *)asoc->c.auth_chunks;
5675 else
5676 ch = ep->auth_chunk_list;
5677
5678 if (!ch)
5679 goto num;
5680
5681 num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t);
5682 if (len < sizeof(struct sctp_authchunks) + num_chunks)
5683 return -EINVAL;
5684
5685 if (copy_to_user(to, ch->chunks, num_chunks))
5686 return -EFAULT;
5687num:
5688 len = sizeof(struct sctp_authchunks) + num_chunks;
5689 if (put_user(len, optlen))
5690 return -EFAULT;
5691 if (put_user(num_chunks, &p->gauth_number_of_chunks))
5692 return -EFAULT;
5693
5694 return 0;
5695}
5696
5697/*
5698 * 8.2.5. Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER)
5699 * This option gets the current number of associations that are attached
5700 * to a one-to-many style socket. The option value is an uint32_t.
5701 */
5702static int sctp_getsockopt_assoc_number(struct sock *sk, int len,
5703 char __user *optval, int __user *optlen)
5704{
5705 struct sctp_sock *sp = sctp_sk(sk);
5706 struct sctp_association *asoc;
5707 u32 val = 0;
5708
5709 if (sctp_style(sk, TCP))
5710 return -EOPNOTSUPP;
5711
5712 if (len < sizeof(u32))
5713 return -EINVAL;
5714
5715 len = sizeof(u32);
5716
5717 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
5718 val++;
5719 }
5720
5721 if (put_user(len, optlen))
5722 return -EFAULT;
5723 if (copy_to_user(optval, &val, len))
5724 return -EFAULT;
5725
5726 return 0;
5727}
5728
5729/*
5730 * 8.1.23 SCTP_AUTO_ASCONF
5731 * See the corresponding setsockopt entry as description
5732 */
5733static int sctp_getsockopt_auto_asconf(struct sock *sk, int len,
5734 char __user *optval, int __user *optlen)
5735{
5736 int val = 0;
5737
5738 if (len < sizeof(int))
5739 return -EINVAL;
5740
5741 len = sizeof(int);
5742 if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk))
5743 val = 1;
5744 if (put_user(len, optlen))
5745 return -EFAULT;
5746 if (copy_to_user(optval, &val, len))
5747 return -EFAULT;
5748 return 0;
5749}
5750
5751/*
5752 * 8.2.6. Get the Current Identifiers of Associations
5753 * (SCTP_GET_ASSOC_ID_LIST)
5754 *
5755 * This option gets the current list of SCTP association identifiers of
5756 * the SCTP associations handled by a one-to-many style socket.
5757 */
5758static int sctp_getsockopt_assoc_ids(struct sock *sk, int len,
5759 char __user *optval, int __user *optlen)
5760{
5761 struct sctp_sock *sp = sctp_sk(sk);
5762 struct sctp_association *asoc;
5763 struct sctp_assoc_ids *ids;
5764 u32 num = 0;
5765
5766 if (sctp_style(sk, TCP))
5767 return -EOPNOTSUPP;
5768
5769 if (len < sizeof(struct sctp_assoc_ids))
5770 return -EINVAL;
5771
5772 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
5773 num++;
5774 }
5775
5776 if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num)
5777 return -EINVAL;
5778
5779 len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num;
5780
5781 ids = kmalloc(len, GFP_USER | __GFP_NOWARN);
5782 if (unlikely(!ids))
5783 return -ENOMEM;
5784
5785 ids->gaids_number_of_ids = num;
5786 num = 0;
5787 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
5788 ids->gaids_assoc_id[num++] = asoc->assoc_id;
5789 }
5790
5791 if (put_user(len, optlen) || copy_to_user(optval, ids, len)) {
5792 kfree(ids);
5793 return -EFAULT;
5794 }
5795
5796 kfree(ids);
5797 return 0;
5798}
5799
5800/*
5801 * SCTP_PEER_ADDR_THLDS
5802 *
5803 * This option allows us to fetch the partially failed threshold for one or all
5804 * transports in an association. See Section 6.1 of:
5805 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
5806 */
5807static int sctp_getsockopt_paddr_thresholds(struct sock *sk,
5808 char __user *optval,
5809 int len,
5810 int __user *optlen)
5811{
5812 struct sctp_paddrthlds val;
5813 struct sctp_transport *trans;
5814 struct sctp_association *asoc;
5815
5816 if (len < sizeof(struct sctp_paddrthlds))
5817 return -EINVAL;
5818 len = sizeof(struct sctp_paddrthlds);
5819 if (copy_from_user(&val, (struct sctp_paddrthlds __user *)optval, len))
5820 return -EFAULT;
5821
5822 if (sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
5823 asoc = sctp_id2assoc(sk, val.spt_assoc_id);
5824 if (!asoc)
5825 return -ENOENT;
5826
5827 val.spt_pathpfthld = asoc->pf_retrans;
5828 val.spt_pathmaxrxt = asoc->pathmaxrxt;
5829 } else {
5830 trans = sctp_addr_id2transport(sk, &val.spt_address,
5831 val.spt_assoc_id);
5832 if (!trans)
5833 return -ENOENT;
5834
5835 val.spt_pathmaxrxt = trans->pathmaxrxt;
5836 val.spt_pathpfthld = trans->pf_retrans;
5837 }
5838
5839 if (put_user(len, optlen) || copy_to_user(optval, &val, len))
5840 return -EFAULT;
5841
5842 return 0;
5843}
5844
5845/*
5846 * SCTP_GET_ASSOC_STATS
5847 *
5848 * This option retrieves local per endpoint statistics. It is modeled
5849 * after OpenSolaris' implementation
5850 */
5851static int sctp_getsockopt_assoc_stats(struct sock *sk, int len,
5852 char __user *optval,
5853 int __user *optlen)
5854{
5855 struct sctp_assoc_stats sas;
5856 struct sctp_association *asoc = NULL;
5857
5858 /* User must provide at least the assoc id */
5859 if (len < sizeof(sctp_assoc_t))
5860 return -EINVAL;
5861
5862 /* Allow the struct to grow and fill in as much as possible */
5863 len = min_t(size_t, len, sizeof(sas));
5864
5865 if (copy_from_user(&sas, optval, len))
5866 return -EFAULT;
5867
5868 asoc = sctp_id2assoc(sk, sas.sas_assoc_id);
5869 if (!asoc)
5870 return -EINVAL;
5871
5872 sas.sas_rtxchunks = asoc->stats.rtxchunks;
5873 sas.sas_gapcnt = asoc->stats.gapcnt;
5874 sas.sas_outofseqtsns = asoc->stats.outofseqtsns;
5875 sas.sas_osacks = asoc->stats.osacks;
5876 sas.sas_isacks = asoc->stats.isacks;
5877 sas.sas_octrlchunks = asoc->stats.octrlchunks;
5878 sas.sas_ictrlchunks = asoc->stats.ictrlchunks;
5879 sas.sas_oodchunks = asoc->stats.oodchunks;
5880 sas.sas_iodchunks = asoc->stats.iodchunks;
5881 sas.sas_ouodchunks = asoc->stats.ouodchunks;
5882 sas.sas_iuodchunks = asoc->stats.iuodchunks;
5883 sas.sas_idupchunks = asoc->stats.idupchunks;
5884 sas.sas_opackets = asoc->stats.opackets;
5885 sas.sas_ipackets = asoc->stats.ipackets;
5886
5887 /* New high max rto observed, will return 0 if not a single
5888 * RTO update took place. obs_rto_ipaddr will be bogus
5889 * in such a case
5890 */
5891 sas.sas_maxrto = asoc->stats.max_obs_rto;
5892 memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr,
5893 sizeof(struct sockaddr_storage));
5894
5895 /* Mark beginning of a new observation period */
5896 asoc->stats.max_obs_rto = asoc->rto_min;
5897
5898 if (put_user(len, optlen))
5899 return -EFAULT;
5900
5901 pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id);
5902
5903 if (copy_to_user(optval, &sas, len))
5904 return -EFAULT;
5905
5906 return 0;
5907}
5908
5909static int sctp_getsockopt_recvrcvinfo(struct sock *sk, int len,
5910 char __user *optval,
5911 int __user *optlen)
5912{
5913 int val = 0;
5914
5915 if (len < sizeof(int))
5916 return -EINVAL;
5917
5918 len = sizeof(int);
5919 if (sctp_sk(sk)->recvrcvinfo)
5920 val = 1;
5921 if (put_user(len, optlen))
5922 return -EFAULT;
5923 if (copy_to_user(optval, &val, len))
5924 return -EFAULT;
5925
5926 return 0;
5927}
5928
5929static int sctp_getsockopt_recvnxtinfo(struct sock *sk, int len,
5930 char __user *optval,
5931 int __user *optlen)
5932{
5933 int val = 0;
5934
5935 if (len < sizeof(int))
5936 return -EINVAL;
5937
5938 len = sizeof(int);
5939 if (sctp_sk(sk)->recvnxtinfo)
5940 val = 1;
5941 if (put_user(len, optlen))
5942 return -EFAULT;
5943 if (copy_to_user(optval, &val, len))
5944 return -EFAULT;
5945
5946 return 0;
5947}
5948
5949static int sctp_getsockopt(struct sock *sk, int level, int optname,
5950 char __user *optval, int __user *optlen)
5951{
5952 int retval = 0;
5953 int len;
5954
5955 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
5956
5957 /* I can hardly begin to describe how wrong this is. This is
5958 * so broken as to be worse than useless. The API draft
5959 * REALLY is NOT helpful here... I am not convinced that the
5960 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP
5961 * are at all well-founded.
5962 */
5963 if (level != SOL_SCTP) {
5964 struct sctp_af *af = sctp_sk(sk)->pf->af;
5965
5966 retval = af->getsockopt(sk, level, optname, optval, optlen);
5967 return retval;
5968 }
5969
5970 if (get_user(len, optlen))
5971 return -EFAULT;
5972
5973 lock_sock(sk);
5974
5975 switch (optname) {
5976 case SCTP_STATUS:
5977 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen);
5978 break;
5979 case SCTP_DISABLE_FRAGMENTS:
5980 retval = sctp_getsockopt_disable_fragments(sk, len, optval,
5981 optlen);
5982 break;
5983 case SCTP_EVENTS:
5984 retval = sctp_getsockopt_events(sk, len, optval, optlen);
5985 break;
5986 case SCTP_AUTOCLOSE:
5987 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen);
5988 break;
5989 case SCTP_SOCKOPT_PEELOFF:
5990 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen);
5991 break;
5992 case SCTP_PEER_ADDR_PARAMS:
5993 retval = sctp_getsockopt_peer_addr_params(sk, len, optval,
5994 optlen);
5995 break;
5996 case SCTP_DELAYED_SACK:
5997 retval = sctp_getsockopt_delayed_ack(sk, len, optval,
5998 optlen);
5999 break;
6000 case SCTP_INITMSG:
6001 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen);
6002 break;
6003 case SCTP_GET_PEER_ADDRS:
6004 retval = sctp_getsockopt_peer_addrs(sk, len, optval,
6005 optlen);
6006 break;
6007 case SCTP_GET_LOCAL_ADDRS:
6008 retval = sctp_getsockopt_local_addrs(sk, len, optval,
6009 optlen);
6010 break;
6011 case SCTP_SOCKOPT_CONNECTX3:
6012 retval = sctp_getsockopt_connectx3(sk, len, optval, optlen);
6013 break;
6014 case SCTP_DEFAULT_SEND_PARAM:
6015 retval = sctp_getsockopt_default_send_param(sk, len,
6016 optval, optlen);
6017 break;
6018 case SCTP_DEFAULT_SNDINFO:
6019 retval = sctp_getsockopt_default_sndinfo(sk, len,
6020 optval, optlen);
6021 break;
6022 case SCTP_PRIMARY_ADDR:
6023 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen);
6024 break;
6025 case SCTP_NODELAY:
6026 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen);
6027 break;
6028 case SCTP_RTOINFO:
6029 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen);
6030 break;
6031 case SCTP_ASSOCINFO:
6032 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen);
6033 break;
6034 case SCTP_I_WANT_MAPPED_V4_ADDR:
6035 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen);
6036 break;
6037 case SCTP_MAXSEG:
6038 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen);
6039 break;
6040 case SCTP_GET_PEER_ADDR_INFO:
6041 retval = sctp_getsockopt_peer_addr_info(sk, len, optval,
6042 optlen);
6043 break;
6044 case SCTP_ADAPTATION_LAYER:
6045 retval = sctp_getsockopt_adaptation_layer(sk, len, optval,
6046 optlen);
6047 break;
6048 case SCTP_CONTEXT:
6049 retval = sctp_getsockopt_context(sk, len, optval, optlen);
6050 break;
6051 case SCTP_FRAGMENT_INTERLEAVE:
6052 retval = sctp_getsockopt_fragment_interleave(sk, len, optval,
6053 optlen);
6054 break;
6055 case SCTP_PARTIAL_DELIVERY_POINT:
6056 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval,
6057 optlen);
6058 break;
6059 case SCTP_MAX_BURST:
6060 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen);
6061 break;
6062 case SCTP_AUTH_KEY:
6063 case SCTP_AUTH_CHUNK:
6064 case SCTP_AUTH_DELETE_KEY:
6065 retval = -EOPNOTSUPP;
6066 break;
6067 case SCTP_HMAC_IDENT:
6068 retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen);
6069 break;
6070 case SCTP_AUTH_ACTIVE_KEY:
6071 retval = sctp_getsockopt_active_key(sk, len, optval, optlen);
6072 break;
6073 case SCTP_PEER_AUTH_CHUNKS:
6074 retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval,
6075 optlen);
6076 break;
6077 case SCTP_LOCAL_AUTH_CHUNKS:
6078 retval = sctp_getsockopt_local_auth_chunks(sk, len, optval,
6079 optlen);
6080 break;
6081 case SCTP_GET_ASSOC_NUMBER:
6082 retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen);
6083 break;
6084 case SCTP_GET_ASSOC_ID_LIST:
6085 retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen);
6086 break;
6087 case SCTP_AUTO_ASCONF:
6088 retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen);
6089 break;
6090 case SCTP_PEER_ADDR_THLDS:
6091 retval = sctp_getsockopt_paddr_thresholds(sk, optval, len, optlen);
6092 break;
6093 case SCTP_GET_ASSOC_STATS:
6094 retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen);
6095 break;
6096 case SCTP_RECVRCVINFO:
6097 retval = sctp_getsockopt_recvrcvinfo(sk, len, optval, optlen);
6098 break;
6099 case SCTP_RECVNXTINFO:
6100 retval = sctp_getsockopt_recvnxtinfo(sk, len, optval, optlen);
6101 break;
6102 default:
6103 retval = -ENOPROTOOPT;
6104 break;
6105 }
6106
6107 release_sock(sk);
6108 return retval;
6109}
6110
6111static int sctp_hash(struct sock *sk)
6112{
6113 /* STUB */
6114 return 0;
6115}
6116
6117static void sctp_unhash(struct sock *sk)
6118{
6119 /* STUB */
6120}
6121
6122/* Check if port is acceptable. Possibly find first available port.
6123 *
6124 * The port hash table (contained in the 'global' SCTP protocol storage
6125 * returned by struct sctp_protocol *sctp_get_protocol()). The hash
6126 * table is an array of 4096 lists (sctp_bind_hashbucket). Each
6127 * list (the list number is the port number hashed out, so as you
6128 * would expect from a hash function, all the ports in a given list have
6129 * such a number that hashes out to the same list number; you were
6130 * expecting that, right?); so each list has a set of ports, with a
6131 * link to the socket (struct sock) that uses it, the port number and
6132 * a fastreuse flag (FIXME: NPI ipg).
6133 */
6134static struct sctp_bind_bucket *sctp_bucket_create(
6135 struct sctp_bind_hashbucket *head, struct net *, unsigned short snum);
6136
6137static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr)
6138{
6139 struct sctp_bind_hashbucket *head; /* hash list */
6140 struct sctp_bind_bucket *pp;
6141 unsigned short snum;
6142 int ret;
6143
6144 snum = ntohs(addr->v4.sin_port);
6145
6146 pr_debug("%s: begins, snum:%d\n", __func__, snum);
6147
6148 local_bh_disable();
6149
6150 if (snum == 0) {
6151 /* Search for an available port. */
6152 int low, high, remaining, index;
6153 unsigned int rover;
6154 struct net *net = sock_net(sk);
6155
6156 inet_get_local_port_range(net, &low, &high);
6157 remaining = (high - low) + 1;
6158 rover = prandom_u32() % remaining + low;
6159
6160 do {
6161 rover++;
6162 if ((rover < low) || (rover > high))
6163 rover = low;
6164 if (inet_is_local_reserved_port(net, rover))
6165 continue;
6166 index = sctp_phashfn(sock_net(sk), rover);
6167 head = &sctp_port_hashtable[index];
6168 spin_lock(&head->lock);
6169 sctp_for_each_hentry(pp, &head->chain)
6170 if ((pp->port == rover) &&
6171 net_eq(sock_net(sk), pp->net))
6172 goto next;
6173 break;
6174 next:
6175 spin_unlock(&head->lock);
6176 } while (--remaining > 0);
6177
6178 /* Exhausted local port range during search? */
6179 ret = 1;
6180 if (remaining <= 0)
6181 goto fail;
6182
6183 /* OK, here is the one we will use. HEAD (the port
6184 * hash table list entry) is non-NULL and we hold it's
6185 * mutex.
6186 */
6187 snum = rover;
6188 } else {
6189 /* We are given an specific port number; we verify
6190 * that it is not being used. If it is used, we will
6191 * exahust the search in the hash list corresponding
6192 * to the port number (snum) - we detect that with the
6193 * port iterator, pp being NULL.
6194 */
6195 head = &sctp_port_hashtable[sctp_phashfn(sock_net(sk), snum)];
6196 spin_lock(&head->lock);
6197 sctp_for_each_hentry(pp, &head->chain) {
6198 if ((pp->port == snum) && net_eq(pp->net, sock_net(sk)))
6199 goto pp_found;
6200 }
6201 }
6202 pp = NULL;
6203 goto pp_not_found;
6204pp_found:
6205 if (!hlist_empty(&pp->owner)) {
6206 /* We had a port hash table hit - there is an
6207 * available port (pp != NULL) and it is being
6208 * used by other socket (pp->owner not empty); that other
6209 * socket is going to be sk2.
6210 */
6211 int reuse = sk->sk_reuse;
6212 struct sock *sk2;
6213
6214 pr_debug("%s: found a possible match\n", __func__);
6215
6216 if (pp->fastreuse && sk->sk_reuse &&
6217 sk->sk_state != SCTP_SS_LISTENING)
6218 goto success;
6219
6220 /* Run through the list of sockets bound to the port
6221 * (pp->port) [via the pointers bind_next and
6222 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one,
6223 * we get the endpoint they describe and run through
6224 * the endpoint's list of IP (v4 or v6) addresses,
6225 * comparing each of the addresses with the address of
6226 * the socket sk. If we find a match, then that means
6227 * that this port/socket (sk) combination are already
6228 * in an endpoint.
6229 */
6230 sk_for_each_bound(sk2, &pp->owner) {
6231 struct sctp_endpoint *ep2;
6232 ep2 = sctp_sk(sk2)->ep;
6233
6234 if (sk == sk2 ||
6235 (reuse && sk2->sk_reuse &&
6236 sk2->sk_state != SCTP_SS_LISTENING))
6237 continue;
6238
6239 if (sctp_bind_addr_conflict(&ep2->base.bind_addr, addr,
6240 sctp_sk(sk2), sctp_sk(sk))) {
6241 ret = (long)sk2;
6242 goto fail_unlock;
6243 }
6244 }
6245
6246 pr_debug("%s: found a match\n", __func__);
6247 }
6248pp_not_found:
6249 /* If there was a hash table miss, create a new port. */
6250 ret = 1;
6251 if (!pp && !(pp = sctp_bucket_create(head, sock_net(sk), snum)))
6252 goto fail_unlock;
6253
6254 /* In either case (hit or miss), make sure fastreuse is 1 only
6255 * if sk->sk_reuse is too (that is, if the caller requested
6256 * SO_REUSEADDR on this socket -sk-).
6257 */
6258 if (hlist_empty(&pp->owner)) {
6259 if (sk->sk_reuse && sk->sk_state != SCTP_SS_LISTENING)
6260 pp->fastreuse = 1;
6261 else
6262 pp->fastreuse = 0;
6263 } else if (pp->fastreuse &&
6264 (!sk->sk_reuse || sk->sk_state == SCTP_SS_LISTENING))
6265 pp->fastreuse = 0;
6266
6267 /* We are set, so fill up all the data in the hash table
6268 * entry, tie the socket list information with the rest of the
6269 * sockets FIXME: Blurry, NPI (ipg).
6270 */
6271success:
6272 if (!sctp_sk(sk)->bind_hash) {
6273 inet_sk(sk)->inet_num = snum;
6274 sk_add_bind_node(sk, &pp->owner);
6275 sctp_sk(sk)->bind_hash = pp;
6276 }
6277 ret = 0;
6278
6279fail_unlock:
6280 spin_unlock(&head->lock);
6281
6282fail:
6283 local_bh_enable();
6284 return ret;
6285}
6286
6287/* Assign a 'snum' port to the socket. If snum == 0, an ephemeral
6288 * port is requested.
6289 */
6290static int sctp_get_port(struct sock *sk, unsigned short snum)
6291{
6292 union sctp_addr addr;
6293 struct sctp_af *af = sctp_sk(sk)->pf->af;
6294
6295 /* Set up a dummy address struct from the sk. */
6296 af->from_sk(&addr, sk);
6297 addr.v4.sin_port = htons(snum);
6298
6299 /* Note: sk->sk_num gets filled in if ephemeral port request. */
6300 return !!sctp_get_port_local(sk, &addr);
6301}
6302
6303/*
6304 * Move a socket to LISTENING state.
6305 */
6306static int sctp_listen_start(struct sock *sk, int backlog)
6307{
6308 struct sctp_sock *sp = sctp_sk(sk);
6309 struct sctp_endpoint *ep = sp->ep;
6310 struct crypto_shash *tfm = NULL;
6311 char alg[32];
6312
6313 /* Allocate HMAC for generating cookie. */
6314 if (!sp->hmac && sp->sctp_hmac_alg) {
6315 sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg);
6316 tfm = crypto_alloc_shash(alg, 0, 0);
6317 if (IS_ERR(tfm)) {
6318 net_info_ratelimited("failed to load transform for %s: %ld\n",
6319 sp->sctp_hmac_alg, PTR_ERR(tfm));
6320 return -ENOSYS;
6321 }
6322 sctp_sk(sk)->hmac = tfm;
6323 }
6324
6325 /*
6326 * If a bind() or sctp_bindx() is not called prior to a listen()
6327 * call that allows new associations to be accepted, the system
6328 * picks an ephemeral port and will choose an address set equivalent
6329 * to binding with a wildcard address.
6330 *
6331 * This is not currently spelled out in the SCTP sockets
6332 * extensions draft, but follows the practice as seen in TCP
6333 * sockets.
6334 *
6335 */
6336 sk->sk_state = SCTP_SS_LISTENING;
6337 if (!ep->base.bind_addr.port) {
6338 if (sctp_autobind(sk))
6339 return -EAGAIN;
6340 } else {
6341 if (sctp_get_port(sk, inet_sk(sk)->inet_num)) {
6342 sk->sk_state = SCTP_SS_CLOSED;
6343 return -EADDRINUSE;
6344 }
6345 }
6346
6347 sk->sk_max_ack_backlog = backlog;
6348 sctp_hash_endpoint(ep);
6349 return 0;
6350}
6351
6352/*
6353 * 4.1.3 / 5.1.3 listen()
6354 *
6355 * By default, new associations are not accepted for UDP style sockets.
6356 * An application uses listen() to mark a socket as being able to
6357 * accept new associations.
6358 *
6359 * On TCP style sockets, applications use listen() to ready the SCTP
6360 * endpoint for accepting inbound associations.
6361 *
6362 * On both types of endpoints a backlog of '0' disables listening.
6363 *
6364 * Move a socket to LISTENING state.
6365 */
6366int sctp_inet_listen(struct socket *sock, int backlog)
6367{
6368 struct sock *sk = sock->sk;
6369 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6370 int err = -EINVAL;
6371
6372 if (unlikely(backlog < 0))
6373 return err;
6374
6375 lock_sock(sk);
6376
6377 /* Peeled-off sockets are not allowed to listen(). */
6378 if (sctp_style(sk, UDP_HIGH_BANDWIDTH))
6379 goto out;
6380
6381 if (sock->state != SS_UNCONNECTED)
6382 goto out;
6383
6384 /* If backlog is zero, disable listening. */
6385 if (!backlog) {
6386 if (sctp_sstate(sk, CLOSED))
6387 goto out;
6388
6389 err = 0;
6390 sctp_unhash_endpoint(ep);
6391 sk->sk_state = SCTP_SS_CLOSED;
6392 if (sk->sk_reuse)
6393 sctp_sk(sk)->bind_hash->fastreuse = 1;
6394 goto out;
6395 }
6396
6397 /* If we are already listening, just update the backlog */
6398 if (sctp_sstate(sk, LISTENING))
6399 sk->sk_max_ack_backlog = backlog;
6400 else {
6401 err = sctp_listen_start(sk, backlog);
6402 if (err)
6403 goto out;
6404 }
6405
6406 err = 0;
6407out:
6408 release_sock(sk);
6409 return err;
6410}
6411
6412/*
6413 * This function is done by modeling the current datagram_poll() and the
6414 * tcp_poll(). Note that, based on these implementations, we don't
6415 * lock the socket in this function, even though it seems that,
6416 * ideally, locking or some other mechanisms can be used to ensure
6417 * the integrity of the counters (sndbuf and wmem_alloc) used
6418 * in this place. We assume that we don't need locks either until proven
6419 * otherwise.
6420 *
6421 * Another thing to note is that we include the Async I/O support
6422 * here, again, by modeling the current TCP/UDP code. We don't have
6423 * a good way to test with it yet.
6424 */
6425unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait)
6426{
6427 struct sock *sk = sock->sk;
6428 struct sctp_sock *sp = sctp_sk(sk);
6429 unsigned int mask;
6430
6431 poll_wait(file, sk_sleep(sk), wait);
6432
6433 /* A TCP-style listening socket becomes readable when the accept queue
6434 * is not empty.
6435 */
6436 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
6437 return (!list_empty(&sp->ep->asocs)) ?
6438 (POLLIN | POLLRDNORM) : 0;
6439
6440 mask = 0;
6441
6442 /* Is there any exceptional events? */
6443 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
6444 mask |= POLLERR |
6445 (sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? POLLPRI : 0);
6446 if (sk->sk_shutdown & RCV_SHUTDOWN)
6447 mask |= POLLRDHUP | POLLIN | POLLRDNORM;
6448 if (sk->sk_shutdown == SHUTDOWN_MASK)
6449 mask |= POLLHUP;
6450
6451 /* Is it readable? Reconsider this code with TCP-style support. */
6452 if (!skb_queue_empty(&sk->sk_receive_queue))
6453 mask |= POLLIN | POLLRDNORM;
6454
6455 /* The association is either gone or not ready. */
6456 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED))
6457 return mask;
6458
6459 /* Is it writable? */
6460 if (sctp_writeable(sk)) {
6461 mask |= POLLOUT | POLLWRNORM;
6462 } else {
6463 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
6464 /*
6465 * Since the socket is not locked, the buffer
6466 * might be made available after the writeable check and
6467 * before the bit is set. This could cause a lost I/O
6468 * signal. tcp_poll() has a race breaker for this race
6469 * condition. Based on their implementation, we put
6470 * in the following code to cover it as well.
6471 */
6472 if (sctp_writeable(sk))
6473 mask |= POLLOUT | POLLWRNORM;
6474 }
6475 return mask;
6476}
6477
6478/********************************************************************
6479 * 2nd Level Abstractions
6480 ********************************************************************/
6481
6482static struct sctp_bind_bucket *sctp_bucket_create(
6483 struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum)
6484{
6485 struct sctp_bind_bucket *pp;
6486
6487 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC);
6488 if (pp) {
6489 SCTP_DBG_OBJCNT_INC(bind_bucket);
6490 pp->port = snum;
6491 pp->fastreuse = 0;
6492 INIT_HLIST_HEAD(&pp->owner);
6493 pp->net = net;
6494 hlist_add_head(&pp->node, &head->chain);
6495 }
6496 return pp;
6497}
6498
6499/* Caller must hold hashbucket lock for this tb with local BH disabled */
6500static void sctp_bucket_destroy(struct sctp_bind_bucket *pp)
6501{
6502 if (pp && hlist_empty(&pp->owner)) {
6503 __hlist_del(&pp->node);
6504 kmem_cache_free(sctp_bucket_cachep, pp);
6505 SCTP_DBG_OBJCNT_DEC(bind_bucket);
6506 }
6507}
6508
6509/* Release this socket's reference to a local port. */
6510static inline void __sctp_put_port(struct sock *sk)
6511{
6512 struct sctp_bind_hashbucket *head =
6513 &sctp_port_hashtable[sctp_phashfn(sock_net(sk),
6514 inet_sk(sk)->inet_num)];
6515 struct sctp_bind_bucket *pp;
6516
6517 spin_lock(&head->lock);
6518 pp = sctp_sk(sk)->bind_hash;
6519 __sk_del_bind_node(sk);
6520 sctp_sk(sk)->bind_hash = NULL;
6521 inet_sk(sk)->inet_num = 0;
6522 sctp_bucket_destroy(pp);
6523 spin_unlock(&head->lock);
6524}
6525
6526void sctp_put_port(struct sock *sk)
6527{
6528 local_bh_disable();
6529 __sctp_put_port(sk);
6530 local_bh_enable();
6531}
6532
6533/*
6534 * The system picks an ephemeral port and choose an address set equivalent
6535 * to binding with a wildcard address.
6536 * One of those addresses will be the primary address for the association.
6537 * This automatically enables the multihoming capability of SCTP.
6538 */
6539static int sctp_autobind(struct sock *sk)
6540{
6541 union sctp_addr autoaddr;
6542 struct sctp_af *af;
6543 __be16 port;
6544
6545 /* Initialize a local sockaddr structure to INADDR_ANY. */
6546 af = sctp_sk(sk)->pf->af;
6547
6548 port = htons(inet_sk(sk)->inet_num);
6549 af->inaddr_any(&autoaddr, port);
6550
6551 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len);
6552}
6553
6554/* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation.
6555 *
6556 * From RFC 2292
6557 * 4.2 The cmsghdr Structure *
6558 *
6559 * When ancillary data is sent or received, any number of ancillary data
6560 * objects can be specified by the msg_control and msg_controllen members of
6561 * the msghdr structure, because each object is preceded by
6562 * a cmsghdr structure defining the object's length (the cmsg_len member).
6563 * Historically Berkeley-derived implementations have passed only one object
6564 * at a time, but this API allows multiple objects to be
6565 * passed in a single call to sendmsg() or recvmsg(). The following example
6566 * shows two ancillary data objects in a control buffer.
6567 *
6568 * |<--------------------------- msg_controllen -------------------------->|
6569 * | |
6570 *
6571 * |<----- ancillary data object ----->|<----- ancillary data object ----->|
6572 *
6573 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->|
6574 * | | |
6575 *
6576 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| |
6577 *
6578 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| |
6579 * | | | | |
6580 *
6581 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
6582 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX|
6583 *
6584 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX|
6585 *
6586 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
6587 * ^
6588 * |
6589 *
6590 * msg_control
6591 * points here
6592 */
6593static int sctp_msghdr_parse(const struct msghdr *msg, sctp_cmsgs_t *cmsgs)
6594{
6595 struct cmsghdr *cmsg;
6596 struct msghdr *my_msg = (struct msghdr *)msg;
6597
6598 for_each_cmsghdr(cmsg, my_msg) {
6599 if (!CMSG_OK(my_msg, cmsg))
6600 return -EINVAL;
6601
6602 /* Should we parse this header or ignore? */
6603 if (cmsg->cmsg_level != IPPROTO_SCTP)
6604 continue;
6605
6606 /* Strictly check lengths following example in SCM code. */
6607 switch (cmsg->cmsg_type) {
6608 case SCTP_INIT:
6609 /* SCTP Socket API Extension
6610 * 5.3.1 SCTP Initiation Structure (SCTP_INIT)
6611 *
6612 * This cmsghdr structure provides information for
6613 * initializing new SCTP associations with sendmsg().
6614 * The SCTP_INITMSG socket option uses this same data
6615 * structure. This structure is not used for
6616 * recvmsg().
6617 *
6618 * cmsg_level cmsg_type cmsg_data[]
6619 * ------------ ------------ ----------------------
6620 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg
6621 */
6622 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_initmsg)))
6623 return -EINVAL;
6624
6625 cmsgs->init = CMSG_DATA(cmsg);
6626 break;
6627
6628 case SCTP_SNDRCV:
6629 /* SCTP Socket API Extension
6630 * 5.3.2 SCTP Header Information Structure(SCTP_SNDRCV)
6631 *
6632 * This cmsghdr structure specifies SCTP options for
6633 * sendmsg() and describes SCTP header information
6634 * about a received message through recvmsg().
6635 *
6636 * cmsg_level cmsg_type cmsg_data[]
6637 * ------------ ------------ ----------------------
6638 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo
6639 */
6640 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndrcvinfo)))
6641 return -EINVAL;
6642
6643 cmsgs->srinfo = CMSG_DATA(cmsg);
6644
6645 if (cmsgs->srinfo->sinfo_flags &
6646 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
6647 SCTP_SACK_IMMEDIATELY |
6648 SCTP_ABORT | SCTP_EOF))
6649 return -EINVAL;
6650 break;
6651
6652 case SCTP_SNDINFO:
6653 /* SCTP Socket API Extension
6654 * 5.3.4 SCTP Send Information Structure (SCTP_SNDINFO)
6655 *
6656 * This cmsghdr structure specifies SCTP options for
6657 * sendmsg(). This structure and SCTP_RCVINFO replaces
6658 * SCTP_SNDRCV which has been deprecated.
6659 *
6660 * cmsg_level cmsg_type cmsg_data[]
6661 * ------------ ------------ ---------------------
6662 * IPPROTO_SCTP SCTP_SNDINFO struct sctp_sndinfo
6663 */
6664 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndinfo)))
6665 return -EINVAL;
6666
6667 cmsgs->sinfo = CMSG_DATA(cmsg);
6668
6669 if (cmsgs->sinfo->snd_flags &
6670 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
6671 SCTP_SACK_IMMEDIATELY |
6672 SCTP_ABORT | SCTP_EOF))
6673 return -EINVAL;
6674 break;
6675 default:
6676 return -EINVAL;
6677 }
6678 }
6679
6680 return 0;
6681}
6682
6683/*
6684 * Wait for a packet..
6685 * Note: This function is the same function as in core/datagram.c
6686 * with a few modifications to make lksctp work.
6687 */
6688static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p)
6689{
6690 int error;
6691 DEFINE_WAIT(wait);
6692
6693 prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
6694
6695 /* Socket errors? */
6696 error = sock_error(sk);
6697 if (error)
6698 goto out;
6699
6700 if (!skb_queue_empty(&sk->sk_receive_queue))
6701 goto ready;
6702
6703 /* Socket shut down? */
6704 if (sk->sk_shutdown & RCV_SHUTDOWN)
6705 goto out;
6706
6707 /* Sequenced packets can come disconnected. If so we report the
6708 * problem.
6709 */
6710 error = -ENOTCONN;
6711
6712 /* Is there a good reason to think that we may receive some data? */
6713 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING))
6714 goto out;
6715
6716 /* Handle signals. */
6717 if (signal_pending(current))
6718 goto interrupted;
6719
6720 /* Let another process have a go. Since we are going to sleep
6721 * anyway. Note: This may cause odd behaviors if the message
6722 * does not fit in the user's buffer, but this seems to be the
6723 * only way to honor MSG_DONTWAIT realistically.
6724 */
6725 release_sock(sk);
6726 *timeo_p = schedule_timeout(*timeo_p);
6727 lock_sock(sk);
6728
6729ready:
6730 finish_wait(sk_sleep(sk), &wait);
6731 return 0;
6732
6733interrupted:
6734 error = sock_intr_errno(*timeo_p);
6735
6736out:
6737 finish_wait(sk_sleep(sk), &wait);
6738 *err = error;
6739 return error;
6740}
6741
6742/* Receive a datagram.
6743 * Note: This is pretty much the same routine as in core/datagram.c
6744 * with a few changes to make lksctp work.
6745 */
6746struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags,
6747 int noblock, int *err)
6748{
6749 int error;
6750 struct sk_buff *skb;
6751 long timeo;
6752
6753 timeo = sock_rcvtimeo(sk, noblock);
6754
6755 pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo,
6756 MAX_SCHEDULE_TIMEOUT);
6757
6758 do {
6759 /* Again only user level code calls this function,
6760 * so nothing interrupt level
6761 * will suddenly eat the receive_queue.
6762 *
6763 * Look at current nfs client by the way...
6764 * However, this function was correct in any case. 8)
6765 */
6766 if (flags & MSG_PEEK) {
6767 spin_lock_bh(&sk->sk_receive_queue.lock);
6768 skb = skb_peek(&sk->sk_receive_queue);
6769 if (skb)
6770 atomic_inc(&skb->users);
6771 spin_unlock_bh(&sk->sk_receive_queue.lock);
6772 } else {
6773 skb = skb_dequeue(&sk->sk_receive_queue);
6774 }
6775
6776 if (skb)
6777 return skb;
6778
6779 /* Caller is allowed not to check sk->sk_err before calling. */
6780 error = sock_error(sk);
6781 if (error)
6782 goto no_packet;
6783
6784 if (sk->sk_shutdown & RCV_SHUTDOWN)
6785 break;
6786
6787 if (sk_can_busy_loop(sk) &&
6788 sk_busy_loop(sk, noblock))
6789 continue;
6790
6791 /* User doesn't want to wait. */
6792 error = -EAGAIN;
6793 if (!timeo)
6794 goto no_packet;
6795 } while (sctp_wait_for_packet(sk, err, &timeo) == 0);
6796
6797 return NULL;
6798
6799no_packet:
6800 *err = error;
6801 return NULL;
6802}
6803
6804/* If sndbuf has changed, wake up per association sndbuf waiters. */
6805static void __sctp_write_space(struct sctp_association *asoc)
6806{
6807 struct sock *sk = asoc->base.sk;
6808
6809 if (sctp_wspace(asoc) <= 0)
6810 return;
6811
6812 if (waitqueue_active(&asoc->wait))
6813 wake_up_interruptible(&asoc->wait);
6814
6815 if (sctp_writeable(sk)) {
6816 struct socket_wq *wq;
6817
6818 rcu_read_lock();
6819 wq = rcu_dereference(sk->sk_wq);
6820 if (wq) {
6821 if (waitqueue_active(&wq->wait))
6822 wake_up_interruptible(&wq->wait);
6823
6824 /* Note that we try to include the Async I/O support
6825 * here by modeling from the current TCP/UDP code.
6826 * We have not tested with it yet.
6827 */
6828 if (!(sk->sk_shutdown & SEND_SHUTDOWN))
6829 sock_wake_async(wq, SOCK_WAKE_SPACE, POLL_OUT);
6830 }
6831 rcu_read_unlock();
6832 }
6833}
6834
6835static void sctp_wake_up_waiters(struct sock *sk,
6836 struct sctp_association *asoc)
6837{
6838 struct sctp_association *tmp = asoc;
6839
6840 /* We do accounting for the sndbuf space per association,
6841 * so we only need to wake our own association.
6842 */
6843 if (asoc->ep->sndbuf_policy)
6844 return __sctp_write_space(asoc);
6845
6846 /* If association goes down and is just flushing its
6847 * outq, then just normally notify others.
6848 */
6849 if (asoc->base.dead)
6850 return sctp_write_space(sk);
6851
6852 /* Accounting for the sndbuf space is per socket, so we
6853 * need to wake up others, try to be fair and in case of
6854 * other associations, let them have a go first instead
6855 * of just doing a sctp_write_space() call.
6856 *
6857 * Note that we reach sctp_wake_up_waiters() only when
6858 * associations free up queued chunks, thus we are under
6859 * lock and the list of associations on a socket is
6860 * guaranteed not to change.
6861 */
6862 for (tmp = list_next_entry(tmp, asocs); 1;
6863 tmp = list_next_entry(tmp, asocs)) {
6864 /* Manually skip the head element. */
6865 if (&tmp->asocs == &((sctp_sk(sk))->ep->asocs))
6866 continue;
6867 /* Wake up association. */
6868 __sctp_write_space(tmp);
6869 /* We've reached the end. */
6870 if (tmp == asoc)
6871 break;
6872 }
6873}
6874
6875/* Do accounting for the sndbuf space.
6876 * Decrement the used sndbuf space of the corresponding association by the
6877 * data size which was just transmitted(freed).
6878 */
6879static void sctp_wfree(struct sk_buff *skb)
6880{
6881 struct sctp_chunk *chunk = skb_shinfo(skb)->destructor_arg;
6882 struct sctp_association *asoc = chunk->asoc;
6883 struct sock *sk = asoc->base.sk;
6884
6885 asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) +
6886 sizeof(struct sk_buff) +
6887 sizeof(struct sctp_chunk);
6888
6889 atomic_sub(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
6890
6891 /*
6892 * This undoes what is done via sctp_set_owner_w and sk_mem_charge
6893 */
6894 sk->sk_wmem_queued -= skb->truesize;
6895 sk_mem_uncharge(sk, skb->truesize);
6896
6897 sock_wfree(skb);
6898 sctp_wake_up_waiters(sk, asoc);
6899
6900 sctp_association_put(asoc);
6901}
6902
6903/* Do accounting for the receive space on the socket.
6904 * Accounting for the association is done in ulpevent.c
6905 * We set this as a destructor for the cloned data skbs so that
6906 * accounting is done at the correct time.
6907 */
6908void sctp_sock_rfree(struct sk_buff *skb)
6909{
6910 struct sock *sk = skb->sk;
6911 struct sctp_ulpevent *event = sctp_skb2event(skb);
6912
6913 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc);
6914
6915 /*
6916 * Mimic the behavior of sock_rfree
6917 */
6918 sk_mem_uncharge(sk, event->rmem_len);
6919}
6920
6921
6922/* Helper function to wait for space in the sndbuf. */
6923static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
6924 size_t msg_len)
6925{
6926 struct sock *sk = asoc->base.sk;
6927 int err = 0;
6928 long current_timeo = *timeo_p;
6929 DEFINE_WAIT(wait);
6930
6931 pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc,
6932 *timeo_p, msg_len);
6933
6934 /* Increment the association's refcnt. */
6935 sctp_association_hold(asoc);
6936
6937 /* Wait on the association specific sndbuf space. */
6938 for (;;) {
6939 prepare_to_wait_exclusive(&asoc->wait, &wait,
6940 TASK_INTERRUPTIBLE);
6941 if (!*timeo_p)
6942 goto do_nonblock;
6943 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
6944 asoc->base.dead)
6945 goto do_error;
6946 if (signal_pending(current))
6947 goto do_interrupted;
6948 if (msg_len <= sctp_wspace(asoc))
6949 break;
6950
6951 /* Let another process have a go. Since we are going
6952 * to sleep anyway.
6953 */
6954 release_sock(sk);
6955 current_timeo = schedule_timeout(current_timeo);
6956 BUG_ON(sk != asoc->base.sk);
6957 lock_sock(sk);
6958
6959 *timeo_p = current_timeo;
6960 }
6961
6962out:
6963 finish_wait(&asoc->wait, &wait);
6964
6965 /* Release the association's refcnt. */
6966 sctp_association_put(asoc);
6967
6968 return err;
6969
6970do_error:
6971 err = -EPIPE;
6972 goto out;
6973
6974do_interrupted:
6975 err = sock_intr_errno(*timeo_p);
6976 goto out;
6977
6978do_nonblock:
6979 err = -EAGAIN;
6980 goto out;
6981}
6982
6983void sctp_data_ready(struct sock *sk)
6984{
6985 struct socket_wq *wq;
6986
6987 rcu_read_lock();
6988 wq = rcu_dereference(sk->sk_wq);
6989 if (skwq_has_sleeper(wq))
6990 wake_up_interruptible_sync_poll(&wq->wait, POLLIN |
6991 POLLRDNORM | POLLRDBAND);
6992 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
6993 rcu_read_unlock();
6994}
6995
6996/* If socket sndbuf has changed, wake up all per association waiters. */
6997void sctp_write_space(struct sock *sk)
6998{
6999 struct sctp_association *asoc;
7000
7001 /* Wake up the tasks in each wait queue. */
7002 list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) {
7003 __sctp_write_space(asoc);
7004 }
7005}
7006
7007/* Is there any sndbuf space available on the socket?
7008 *
7009 * Note that sk_wmem_alloc is the sum of the send buffers on all of the
7010 * associations on the same socket. For a UDP-style socket with
7011 * multiple associations, it is possible for it to be "unwriteable"
7012 * prematurely. I assume that this is acceptable because
7013 * a premature "unwriteable" is better than an accidental "writeable" which
7014 * would cause an unwanted block under certain circumstances. For the 1-1
7015 * UDP-style sockets or TCP-style sockets, this code should work.
7016 * - Daisy
7017 */
7018static int sctp_writeable(struct sock *sk)
7019{
7020 int amt = 0;
7021
7022 amt = sk->sk_sndbuf - sk_wmem_alloc_get(sk);
7023 if (amt < 0)
7024 amt = 0;
7025 return amt;
7026}
7027
7028/* Wait for an association to go into ESTABLISHED state. If timeout is 0,
7029 * returns immediately with EINPROGRESS.
7030 */
7031static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p)
7032{
7033 struct sock *sk = asoc->base.sk;
7034 int err = 0;
7035 long current_timeo = *timeo_p;
7036 DEFINE_WAIT(wait);
7037
7038 pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p);
7039
7040 /* Increment the association's refcnt. */
7041 sctp_association_hold(asoc);
7042
7043 for (;;) {
7044 prepare_to_wait_exclusive(&asoc->wait, &wait,
7045 TASK_INTERRUPTIBLE);
7046 if (!*timeo_p)
7047 goto do_nonblock;
7048 if (sk->sk_shutdown & RCV_SHUTDOWN)
7049 break;
7050 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
7051 asoc->base.dead)
7052 goto do_error;
7053 if (signal_pending(current))
7054 goto do_interrupted;
7055
7056 if (sctp_state(asoc, ESTABLISHED))
7057 break;
7058
7059 /* Let another process have a go. Since we are going
7060 * to sleep anyway.
7061 */
7062 release_sock(sk);
7063 current_timeo = schedule_timeout(current_timeo);
7064 lock_sock(sk);
7065
7066 *timeo_p = current_timeo;
7067 }
7068
7069out:
7070 finish_wait(&asoc->wait, &wait);
7071
7072 /* Release the association's refcnt. */
7073 sctp_association_put(asoc);
7074
7075 return err;
7076
7077do_error:
7078 if (asoc->init_err_counter + 1 > asoc->max_init_attempts)
7079 err = -ETIMEDOUT;
7080 else
7081 err = -ECONNREFUSED;
7082 goto out;
7083
7084do_interrupted:
7085 err = sock_intr_errno(*timeo_p);
7086 goto out;
7087
7088do_nonblock:
7089 err = -EINPROGRESS;
7090 goto out;
7091}
7092
7093static int sctp_wait_for_accept(struct sock *sk, long timeo)
7094{
7095 struct sctp_endpoint *ep;
7096 int err = 0;
7097 DEFINE_WAIT(wait);
7098
7099 ep = sctp_sk(sk)->ep;
7100
7101
7102 for (;;) {
7103 prepare_to_wait_exclusive(sk_sleep(sk), &wait,
7104 TASK_INTERRUPTIBLE);
7105
7106 if (list_empty(&ep->asocs)) {
7107 release_sock(sk);
7108 timeo = schedule_timeout(timeo);
7109 lock_sock(sk);
7110 }
7111
7112 err = -EINVAL;
7113 if (!sctp_sstate(sk, LISTENING))
7114 break;
7115
7116 err = 0;
7117 if (!list_empty(&ep->asocs))
7118 break;
7119
7120 err = sock_intr_errno(timeo);
7121 if (signal_pending(current))
7122 break;
7123
7124 err = -EAGAIN;
7125 if (!timeo)
7126 break;
7127 }
7128
7129 finish_wait(sk_sleep(sk), &wait);
7130
7131 return err;
7132}
7133
7134static void sctp_wait_for_close(struct sock *sk, long timeout)
7135{
7136 DEFINE_WAIT(wait);
7137
7138 do {
7139 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
7140 if (list_empty(&sctp_sk(sk)->ep->asocs))
7141 break;
7142 release_sock(sk);
7143 timeout = schedule_timeout(timeout);
7144 lock_sock(sk);
7145 } while (!signal_pending(current) && timeout);
7146
7147 finish_wait(sk_sleep(sk), &wait);
7148}
7149
7150static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk)
7151{
7152 struct sk_buff *frag;
7153
7154 if (!skb->data_len)
7155 goto done;
7156
7157 /* Don't forget the fragments. */
7158 skb_walk_frags(skb, frag)
7159 sctp_skb_set_owner_r_frag(frag, sk);
7160
7161done:
7162 sctp_skb_set_owner_r(skb, sk);
7163}
7164
7165void sctp_copy_sock(struct sock *newsk, struct sock *sk,
7166 struct sctp_association *asoc)
7167{
7168 struct inet_sock *inet = inet_sk(sk);
7169 struct inet_sock *newinet;
7170
7171 newsk->sk_type = sk->sk_type;
7172 newsk->sk_bound_dev_if = sk->sk_bound_dev_if;
7173 newsk->sk_flags = sk->sk_flags;
7174 newsk->sk_tsflags = sk->sk_tsflags;
7175 newsk->sk_no_check_tx = sk->sk_no_check_tx;
7176 newsk->sk_no_check_rx = sk->sk_no_check_rx;
7177 newsk->sk_reuse = sk->sk_reuse;
7178
7179 newsk->sk_shutdown = sk->sk_shutdown;
7180 newsk->sk_destruct = sctp_destruct_sock;
7181 newsk->sk_family = sk->sk_family;
7182 newsk->sk_protocol = IPPROTO_SCTP;
7183 newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv;
7184 newsk->sk_sndbuf = sk->sk_sndbuf;
7185 newsk->sk_rcvbuf = sk->sk_rcvbuf;
7186 newsk->sk_lingertime = sk->sk_lingertime;
7187 newsk->sk_rcvtimeo = sk->sk_rcvtimeo;
7188 newsk->sk_sndtimeo = sk->sk_sndtimeo;
7189
7190 newinet = inet_sk(newsk);
7191
7192 /* Initialize sk's sport, dport, rcv_saddr and daddr for
7193 * getsockname() and getpeername()
7194 */
7195 newinet->inet_sport = inet->inet_sport;
7196 newinet->inet_saddr = inet->inet_saddr;
7197 newinet->inet_rcv_saddr = inet->inet_rcv_saddr;
7198 newinet->inet_dport = htons(asoc->peer.port);
7199 newinet->pmtudisc = inet->pmtudisc;
7200 newinet->inet_id = asoc->next_tsn ^ jiffies;
7201
7202 newinet->uc_ttl = inet->uc_ttl;
7203 newinet->mc_loop = 1;
7204 newinet->mc_ttl = 1;
7205 newinet->mc_index = 0;
7206 newinet->mc_list = NULL;
7207
7208 if (newsk->sk_flags & SK_FLAGS_TIMESTAMP)
7209 net_enable_timestamp();
7210
7211 security_sk_clone(sk, newsk);
7212}
7213
7214static inline void sctp_copy_descendant(struct sock *sk_to,
7215 const struct sock *sk_from)
7216{
7217 int ancestor_size = sizeof(struct inet_sock) +
7218 sizeof(struct sctp_sock) -
7219 offsetof(struct sctp_sock, auto_asconf_list);
7220
7221 if (sk_from->sk_family == PF_INET6)
7222 ancestor_size += sizeof(struct ipv6_pinfo);
7223
7224 __inet_sk_copy_descendant(sk_to, sk_from, ancestor_size);
7225}
7226
7227/* Populate the fields of the newsk from the oldsk and migrate the assoc
7228 * and its messages to the newsk.
7229 */
7230static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
7231 struct sctp_association *assoc,
7232 sctp_socket_type_t type)
7233{
7234 struct sctp_sock *oldsp = sctp_sk(oldsk);
7235 struct sctp_sock *newsp = sctp_sk(newsk);
7236 struct sctp_bind_bucket *pp; /* hash list port iterator */
7237 struct sctp_endpoint *newep = newsp->ep;
7238 struct sk_buff *skb, *tmp;
7239 struct sctp_ulpevent *event;
7240 struct sctp_bind_hashbucket *head;
7241
7242 /* Migrate socket buffer sizes and all the socket level options to the
7243 * new socket.
7244 */
7245 newsk->sk_sndbuf = oldsk->sk_sndbuf;
7246 newsk->sk_rcvbuf = oldsk->sk_rcvbuf;
7247 /* Brute force copy old sctp opt. */
7248 sctp_copy_descendant(newsk, oldsk);
7249
7250 /* Restore the ep value that was overwritten with the above structure
7251 * copy.
7252 */
7253 newsp->ep = newep;
7254 newsp->hmac = NULL;
7255
7256 /* Hook this new socket in to the bind_hash list. */
7257 head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk),
7258 inet_sk(oldsk)->inet_num)];
7259 spin_lock_bh(&head->lock);
7260 pp = sctp_sk(oldsk)->bind_hash;
7261 sk_add_bind_node(newsk, &pp->owner);
7262 sctp_sk(newsk)->bind_hash = pp;
7263 inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num;
7264 spin_unlock_bh(&head->lock);
7265
7266 /* Copy the bind_addr list from the original endpoint to the new
7267 * endpoint so that we can handle restarts properly
7268 */
7269 sctp_bind_addr_dup(&newsp->ep->base.bind_addr,
7270 &oldsp->ep->base.bind_addr, GFP_KERNEL);
7271
7272 /* Move any messages in the old socket's receive queue that are for the
7273 * peeled off association to the new socket's receive queue.
7274 */
7275 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) {
7276 event = sctp_skb2event(skb);
7277 if (event->asoc == assoc) {
7278 __skb_unlink(skb, &oldsk->sk_receive_queue);
7279 __skb_queue_tail(&newsk->sk_receive_queue, skb);
7280 sctp_skb_set_owner_r_frag(skb, newsk);
7281 }
7282 }
7283
7284 /* Clean up any messages pending delivery due to partial
7285 * delivery. Three cases:
7286 * 1) No partial deliver; no work.
7287 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby.
7288 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue.
7289 */
7290 skb_queue_head_init(&newsp->pd_lobby);
7291 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode);
7292
7293 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) {
7294 struct sk_buff_head *queue;
7295
7296 /* Decide which queue to move pd_lobby skbs to. */
7297 if (assoc->ulpq.pd_mode) {
7298 queue = &newsp->pd_lobby;
7299 } else
7300 queue = &newsk->sk_receive_queue;
7301
7302 /* Walk through the pd_lobby, looking for skbs that
7303 * need moved to the new socket.
7304 */
7305 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) {
7306 event = sctp_skb2event(skb);
7307 if (event->asoc == assoc) {
7308 __skb_unlink(skb, &oldsp->pd_lobby);
7309 __skb_queue_tail(queue, skb);
7310 sctp_skb_set_owner_r_frag(skb, newsk);
7311 }
7312 }
7313
7314 /* Clear up any skbs waiting for the partial
7315 * delivery to finish.
7316 */
7317 if (assoc->ulpq.pd_mode)
7318 sctp_clear_pd(oldsk, NULL);
7319
7320 }
7321
7322 sctp_skb_for_each(skb, &assoc->ulpq.reasm, tmp)
7323 sctp_skb_set_owner_r_frag(skb, newsk);
7324
7325 sctp_skb_for_each(skb, &assoc->ulpq.lobby, tmp)
7326 sctp_skb_set_owner_r_frag(skb, newsk);
7327
7328 /* Set the type of socket to indicate that it is peeled off from the
7329 * original UDP-style socket or created with the accept() call on a
7330 * TCP-style socket..
7331 */
7332 newsp->type = type;
7333
7334 /* Mark the new socket "in-use" by the user so that any packets
7335 * that may arrive on the association after we've moved it are
7336 * queued to the backlog. This prevents a potential race between
7337 * backlog processing on the old socket and new-packet processing
7338 * on the new socket.
7339 *
7340 * The caller has just allocated newsk so we can guarantee that other
7341 * paths won't try to lock it and then oldsk.
7342 */
7343 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING);
7344 sctp_assoc_migrate(assoc, newsk);
7345
7346 /* If the association on the newsk is already closed before accept()
7347 * is called, set RCV_SHUTDOWN flag.
7348 */
7349 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP))
7350 newsk->sk_shutdown |= RCV_SHUTDOWN;
7351
7352 newsk->sk_state = SCTP_SS_ESTABLISHED;
7353 release_sock(newsk);
7354}
7355
7356
7357/* This proto struct describes the ULP interface for SCTP. */
7358struct proto sctp_prot = {
7359 .name = "SCTP",
7360 .owner = THIS_MODULE,
7361 .close = sctp_close,
7362 .connect = sctp_connect,
7363 .disconnect = sctp_disconnect,
7364 .accept = sctp_accept,
7365 .ioctl = sctp_ioctl,
7366 .init = sctp_init_sock,
7367 .destroy = sctp_destroy_sock,
7368 .shutdown = sctp_shutdown,
7369 .setsockopt = sctp_setsockopt,
7370 .getsockopt = sctp_getsockopt,
7371 .sendmsg = sctp_sendmsg,
7372 .recvmsg = sctp_recvmsg,
7373 .bind = sctp_bind,
7374 .backlog_rcv = sctp_backlog_rcv,
7375 .hash = sctp_hash,
7376 .unhash = sctp_unhash,
7377 .get_port = sctp_get_port,
7378 .obj_size = sizeof(struct sctp_sock),
7379 .sysctl_mem = sysctl_sctp_mem,
7380 .sysctl_rmem = sysctl_sctp_rmem,
7381 .sysctl_wmem = sysctl_sctp_wmem,
7382 .memory_pressure = &sctp_memory_pressure,
7383 .enter_memory_pressure = sctp_enter_memory_pressure,
7384 .memory_allocated = &sctp_memory_allocated,
7385 .sockets_allocated = &sctp_sockets_allocated,
7386};
7387
7388#if IS_ENABLED(CONFIG_IPV6)
7389
7390#include <net/transp_v6.h>
7391static void sctp_v6_destroy_sock(struct sock *sk)
7392{
7393 sctp_destroy_sock(sk);
7394 inet6_destroy_sock(sk);
7395}
7396
7397struct proto sctpv6_prot = {
7398 .name = "SCTPv6",
7399 .owner = THIS_MODULE,
7400 .close = sctp_close,
7401 .connect = sctp_connect,
7402 .disconnect = sctp_disconnect,
7403 .accept = sctp_accept,
7404 .ioctl = sctp_ioctl,
7405 .init = sctp_init_sock,
7406 .destroy = sctp_v6_destroy_sock,
7407 .shutdown = sctp_shutdown,
7408 .setsockopt = sctp_setsockopt,
7409 .getsockopt = sctp_getsockopt,
7410 .sendmsg = sctp_sendmsg,
7411 .recvmsg = sctp_recvmsg,
7412 .bind = sctp_bind,
7413 .backlog_rcv = sctp_backlog_rcv,
7414 .hash = sctp_hash,
7415 .unhash = sctp_unhash,
7416 .get_port = sctp_get_port,
7417 .obj_size = sizeof(struct sctp6_sock),
7418 .sysctl_mem = sysctl_sctp_mem,
7419 .sysctl_rmem = sysctl_sctp_rmem,
7420 .sysctl_wmem = sysctl_sctp_wmem,
7421 .memory_pressure = &sctp_memory_pressure,
7422 .enter_memory_pressure = sctp_enter_memory_pressure,
7423 .memory_allocated = &sctp_memory_allocated,
7424 .sockets_allocated = &sctp_sockets_allocated,
7425};
7426#endif /* IS_ENABLED(CONFIG_IPV6) */