Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
   4 * All Rights Reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
   5 */
   6#include <linux/iversion.h>
   7
   8#include "xfs.h"
   9#include "xfs_fs.h"
  10#include "xfs_shared.h"
  11#include "xfs_format.h"
  12#include "xfs_log_format.h"
  13#include "xfs_trans_resv.h"
  14#include "xfs_sb.h"
  15#include "xfs_mount.h"
  16#include "xfs_defer.h"
  17#include "xfs_inode.h"
 
 
  18#include "xfs_dir2.h"
 
  19#include "xfs_attr.h"
  20#include "xfs_trans_space.h"
  21#include "xfs_trans.h"
  22#include "xfs_buf_item.h"
  23#include "xfs_inode_item.h"
  24#include "xfs_ialloc.h"
  25#include "xfs_bmap.h"
  26#include "xfs_bmap_util.h"
  27#include "xfs_errortag.h"
  28#include "xfs_error.h"
  29#include "xfs_quota.h"
  30#include "xfs_filestream.h"
 
  31#include "xfs_trace.h"
  32#include "xfs_icache.h"
  33#include "xfs_symlink.h"
  34#include "xfs_trans_priv.h"
  35#include "xfs_log.h"
  36#include "xfs_bmap_btree.h"
  37#include "xfs_reflink.h"
  38
  39kmem_zone_t *xfs_inode_zone;
  40
  41/*
  42 * Used in xfs_itruncate_extents().  This is the maximum number of extents
  43 * freed from a file in a single transaction.
  44 */
  45#define	XFS_ITRUNC_MAX_EXTENTS	2
  46
 
  47STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *);
  48STATIC int xfs_iunlink_remove(struct xfs_trans *, struct xfs_inode *);
  49
  50/*
  51 * helper function to extract extent size hint from inode
  52 */
  53xfs_extlen_t
  54xfs_get_extsz_hint(
  55	struct xfs_inode	*ip)
  56{
  57	/*
  58	 * No point in aligning allocations if we need to COW to actually
  59	 * write to them.
  60	 */
  61	if (xfs_is_always_cow_inode(ip))
  62		return 0;
  63	if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize)
  64		return ip->i_d.di_extsize;
  65	if (XFS_IS_REALTIME_INODE(ip))
  66		return ip->i_mount->m_sb.sb_rextsize;
  67	return 0;
  68}
  69
  70/*
  71 * Helper function to extract CoW extent size hint from inode.
  72 * Between the extent size hint and the CoW extent size hint, we
  73 * return the greater of the two.  If the value is zero (automatic),
  74 * use the default size.
  75 */
  76xfs_extlen_t
  77xfs_get_cowextsz_hint(
  78	struct xfs_inode	*ip)
  79{
  80	xfs_extlen_t		a, b;
  81
  82	a = 0;
  83	if (ip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE)
  84		a = ip->i_d.di_cowextsize;
  85	b = xfs_get_extsz_hint(ip);
  86
  87	a = max(a, b);
  88	if (a == 0)
  89		return XFS_DEFAULT_COWEXTSZ_HINT;
  90	return a;
  91}
  92
  93/*
  94 * These two are wrapper routines around the xfs_ilock() routine used to
  95 * centralize some grungy code.  They are used in places that wish to lock the
  96 * inode solely for reading the extents.  The reason these places can't just
  97 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
  98 * bringing in of the extents from disk for a file in b-tree format.  If the
  99 * inode is in b-tree format, then we need to lock the inode exclusively until
 100 * the extents are read in.  Locking it exclusively all the time would limit
 101 * our parallelism unnecessarily, though.  What we do instead is check to see
 102 * if the extents have been read in yet, and only lock the inode exclusively
 103 * if they have not.
 104 *
 105 * The functions return a value which should be given to the corresponding
 106 * xfs_iunlock() call.
 107 */
 108uint
 109xfs_ilock_data_map_shared(
 110	struct xfs_inode	*ip)
 111{
 112	uint			lock_mode = XFS_ILOCK_SHARED;
 113
 114	if (ip->i_df.if_format == XFS_DINODE_FMT_BTREE &&
 115	    (ip->i_df.if_flags & XFS_IFEXTENTS) == 0)
 116		lock_mode = XFS_ILOCK_EXCL;
 117	xfs_ilock(ip, lock_mode);
 118	return lock_mode;
 119}
 120
 121uint
 122xfs_ilock_attr_map_shared(
 123	struct xfs_inode	*ip)
 124{
 125	uint			lock_mode = XFS_ILOCK_SHARED;
 126
 127	if (ip->i_afp &&
 128	    ip->i_afp->if_format == XFS_DINODE_FMT_BTREE &&
 129	    (ip->i_afp->if_flags & XFS_IFEXTENTS) == 0)
 130		lock_mode = XFS_ILOCK_EXCL;
 131	xfs_ilock(ip, lock_mode);
 132	return lock_mode;
 133}
 134
 135/*
 136 * In addition to i_rwsem in the VFS inode, the xfs inode contains 2
 137 * multi-reader locks: i_mmap_lock and the i_lock.  This routine allows
 138 * various combinations of the locks to be obtained.
 139 *
 140 * The 3 locks should always be ordered so that the IO lock is obtained first,
 141 * the mmap lock second and the ilock last in order to prevent deadlock.
 142 *
 143 * Basic locking order:
 144 *
 145 * i_rwsem -> i_mmap_lock -> page_lock -> i_ilock
 146 *
 147 * mmap_lock locking order:
 148 *
 149 * i_rwsem -> page lock -> mmap_lock
 150 * mmap_lock -> i_mmap_lock -> page_lock
 151 *
 152 * The difference in mmap_lock locking order mean that we cannot hold the
 153 * i_mmap_lock over syscall based read(2)/write(2) based IO. These IO paths can
 154 * fault in pages during copy in/out (for buffered IO) or require the mmap_lock
 155 * in get_user_pages() to map the user pages into the kernel address space for
 156 * direct IO. Similarly the i_rwsem cannot be taken inside a page fault because
 157 * page faults already hold the mmap_lock.
 158 *
 159 * Hence to serialise fully against both syscall and mmap based IO, we need to
 160 * take both the i_rwsem and the i_mmap_lock. These locks should *only* be both
 161 * taken in places where we need to invalidate the page cache in a race
 162 * free manner (e.g. truncate, hole punch and other extent manipulation
 163 * functions).
 164 */
 165void
 166xfs_ilock(
 167	xfs_inode_t		*ip,
 168	uint			lock_flags)
 169{
 170	trace_xfs_ilock(ip, lock_flags, _RET_IP_);
 171
 172	/*
 173	 * You can't set both SHARED and EXCL for the same lock,
 174	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
 175	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
 176	 */
 177	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
 178	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
 179	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
 180	       (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
 181	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
 182	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
 183	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
 184
 185	if (lock_flags & XFS_IOLOCK_EXCL) {
 186		down_write_nested(&VFS_I(ip)->i_rwsem,
 187				  XFS_IOLOCK_DEP(lock_flags));
 188	} else if (lock_flags & XFS_IOLOCK_SHARED) {
 189		down_read_nested(&VFS_I(ip)->i_rwsem,
 190				 XFS_IOLOCK_DEP(lock_flags));
 191	}
 192
 193	if (lock_flags & XFS_MMAPLOCK_EXCL)
 194		mrupdate_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
 195	else if (lock_flags & XFS_MMAPLOCK_SHARED)
 196		mraccess_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
 197
 198	if (lock_flags & XFS_ILOCK_EXCL)
 199		mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
 200	else if (lock_flags & XFS_ILOCK_SHARED)
 201		mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
 202}
 203
 204/*
 205 * This is just like xfs_ilock(), except that the caller
 206 * is guaranteed not to sleep.  It returns 1 if it gets
 207 * the requested locks and 0 otherwise.  If the IO lock is
 208 * obtained but the inode lock cannot be, then the IO lock
 209 * is dropped before returning.
 210 *
 211 * ip -- the inode being locked
 212 * lock_flags -- this parameter indicates the inode's locks to be
 213 *       to be locked.  See the comment for xfs_ilock() for a list
 214 *	 of valid values.
 215 */
 216int
 217xfs_ilock_nowait(
 218	xfs_inode_t		*ip,
 219	uint			lock_flags)
 220{
 221	trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
 222
 223	/*
 224	 * You can't set both SHARED and EXCL for the same lock,
 225	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
 226	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
 227	 */
 228	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
 229	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
 230	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
 231	       (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
 232	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
 233	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
 234	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
 235
 236	if (lock_flags & XFS_IOLOCK_EXCL) {
 237		if (!down_write_trylock(&VFS_I(ip)->i_rwsem))
 238			goto out;
 239	} else if (lock_flags & XFS_IOLOCK_SHARED) {
 240		if (!down_read_trylock(&VFS_I(ip)->i_rwsem))
 241			goto out;
 242	}
 243
 244	if (lock_flags & XFS_MMAPLOCK_EXCL) {
 245		if (!mrtryupdate(&ip->i_mmaplock))
 246			goto out_undo_iolock;
 247	} else if (lock_flags & XFS_MMAPLOCK_SHARED) {
 248		if (!mrtryaccess(&ip->i_mmaplock))
 249			goto out_undo_iolock;
 250	}
 251
 252	if (lock_flags & XFS_ILOCK_EXCL) {
 253		if (!mrtryupdate(&ip->i_lock))
 254			goto out_undo_mmaplock;
 255	} else if (lock_flags & XFS_ILOCK_SHARED) {
 256		if (!mrtryaccess(&ip->i_lock))
 257			goto out_undo_mmaplock;
 258	}
 259	return 1;
 260
 261out_undo_mmaplock:
 262	if (lock_flags & XFS_MMAPLOCK_EXCL)
 263		mrunlock_excl(&ip->i_mmaplock);
 264	else if (lock_flags & XFS_MMAPLOCK_SHARED)
 265		mrunlock_shared(&ip->i_mmaplock);
 266out_undo_iolock:
 267	if (lock_flags & XFS_IOLOCK_EXCL)
 268		up_write(&VFS_I(ip)->i_rwsem);
 269	else if (lock_flags & XFS_IOLOCK_SHARED)
 270		up_read(&VFS_I(ip)->i_rwsem);
 271out:
 272	return 0;
 273}
 274
 275/*
 276 * xfs_iunlock() is used to drop the inode locks acquired with
 277 * xfs_ilock() and xfs_ilock_nowait().  The caller must pass
 278 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
 279 * that we know which locks to drop.
 280 *
 281 * ip -- the inode being unlocked
 282 * lock_flags -- this parameter indicates the inode's locks to be
 283 *       to be unlocked.  See the comment for xfs_ilock() for a list
 284 *	 of valid values for this parameter.
 285 *
 286 */
 287void
 288xfs_iunlock(
 289	xfs_inode_t		*ip,
 290	uint			lock_flags)
 291{
 292	/*
 293	 * You can't set both SHARED and EXCL for the same lock,
 294	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
 295	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
 296	 */
 297	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
 298	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
 299	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
 300	       (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
 301	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
 302	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
 303	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
 304	ASSERT(lock_flags != 0);
 305
 306	if (lock_flags & XFS_IOLOCK_EXCL)
 307		up_write(&VFS_I(ip)->i_rwsem);
 308	else if (lock_flags & XFS_IOLOCK_SHARED)
 309		up_read(&VFS_I(ip)->i_rwsem);
 310
 311	if (lock_flags & XFS_MMAPLOCK_EXCL)
 312		mrunlock_excl(&ip->i_mmaplock);
 313	else if (lock_flags & XFS_MMAPLOCK_SHARED)
 314		mrunlock_shared(&ip->i_mmaplock);
 315
 316	if (lock_flags & XFS_ILOCK_EXCL)
 317		mrunlock_excl(&ip->i_lock);
 318	else if (lock_flags & XFS_ILOCK_SHARED)
 319		mrunlock_shared(&ip->i_lock);
 320
 321	trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
 322}
 323
 324/*
 325 * give up write locks.  the i/o lock cannot be held nested
 326 * if it is being demoted.
 327 */
 328void
 329xfs_ilock_demote(
 330	xfs_inode_t		*ip,
 331	uint			lock_flags)
 332{
 333	ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL));
 334	ASSERT((lock_flags &
 335		~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
 336
 337	if (lock_flags & XFS_ILOCK_EXCL)
 338		mrdemote(&ip->i_lock);
 339	if (lock_flags & XFS_MMAPLOCK_EXCL)
 340		mrdemote(&ip->i_mmaplock);
 341	if (lock_flags & XFS_IOLOCK_EXCL)
 342		downgrade_write(&VFS_I(ip)->i_rwsem);
 343
 344	trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
 345}
 346
 347#if defined(DEBUG) || defined(XFS_WARN)
 348int
 349xfs_isilocked(
 350	xfs_inode_t		*ip,
 351	uint			lock_flags)
 352{
 353	if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
 354		if (!(lock_flags & XFS_ILOCK_SHARED))
 355			return !!ip->i_lock.mr_writer;
 356		return rwsem_is_locked(&ip->i_lock.mr_lock);
 357	}
 358
 359	if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) {
 360		if (!(lock_flags & XFS_MMAPLOCK_SHARED))
 361			return !!ip->i_mmaplock.mr_writer;
 362		return rwsem_is_locked(&ip->i_mmaplock.mr_lock);
 363	}
 364
 365	if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) {
 366		if (!(lock_flags & XFS_IOLOCK_SHARED))
 367			return !debug_locks ||
 368				lockdep_is_held_type(&VFS_I(ip)->i_rwsem, 0);
 369		return rwsem_is_locked(&VFS_I(ip)->i_rwsem);
 370	}
 371
 372	ASSERT(0);
 373	return 0;
 374}
 375#endif
 376
 
 
 
 
 
 
 
 
 377/*
 378 * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when
 379 * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined
 380 * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build
 381 * errors and warnings.
 382 */
 383#if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP)
 384static bool
 385xfs_lockdep_subclass_ok(
 386	int subclass)
 387{
 388	return subclass < MAX_LOCKDEP_SUBCLASSES;
 389}
 390#else
 391#define xfs_lockdep_subclass_ok(subclass)	(true)
 392#endif
 393
 394/*
 395 * Bump the subclass so xfs_lock_inodes() acquires each lock with a different
 396 * value. This can be called for any type of inode lock combination, including
 397 * parent locking. Care must be taken to ensure we don't overrun the subclass
 398 * storage fields in the class mask we build.
 399 */
 400static inline int
 401xfs_lock_inumorder(int lock_mode, int subclass)
 402{
 403	int	class = 0;
 404
 405	ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP |
 406			      XFS_ILOCK_RTSUM)));
 407	ASSERT(xfs_lockdep_subclass_ok(subclass));
 408
 409	if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
 410		ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS);
 
 
 411		class += subclass << XFS_IOLOCK_SHIFT;
 
 
 412	}
 413
 414	if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) {
 415		ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS);
 416		class += subclass << XFS_MMAPLOCK_SHIFT;
 417	}
 418
 419	if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) {
 420		ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS);
 421		class += subclass << XFS_ILOCK_SHIFT;
 422	}
 423
 424	return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class;
 425}
 426
 427/*
 428 * The following routine will lock n inodes in exclusive mode.  We assume the
 429 * caller calls us with the inodes in i_ino order.
 430 *
 431 * We need to detect deadlock where an inode that we lock is in the AIL and we
 432 * start waiting for another inode that is locked by a thread in a long running
 433 * transaction (such as truncate). This can result in deadlock since the long
 434 * running trans might need to wait for the inode we just locked in order to
 435 * push the tail and free space in the log.
 436 *
 437 * xfs_lock_inodes() can only be used to lock one type of lock at a time -
 438 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
 439 * lock more than one at a time, lockdep will report false positives saying we
 440 * have violated locking orders.
 441 */
 442static void
 443xfs_lock_inodes(
 444	struct xfs_inode	**ips,
 445	int			inodes,
 446	uint			lock_mode)
 447{
 448	int			attempts = 0, i, j, try_lock;
 449	struct xfs_log_item	*lp;
 450
 451	/*
 452	 * Currently supports between 2 and 5 inodes with exclusive locking.  We
 453	 * support an arbitrary depth of locking here, but absolute limits on
 454	 * inodes depend on the type of locking and the limits placed by
 455	 * lockdep annotations in xfs_lock_inumorder.  These are all checked by
 456	 * the asserts.
 457	 */
 458	ASSERT(ips && inodes >= 2 && inodes <= 5);
 459	ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL |
 460			    XFS_ILOCK_EXCL));
 461	ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED |
 462			      XFS_ILOCK_SHARED)));
 
 
 463	ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) ||
 464		inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1);
 465	ASSERT(!(lock_mode & XFS_ILOCK_EXCL) ||
 466		inodes <= XFS_ILOCK_MAX_SUBCLASS + 1);
 467
 468	if (lock_mode & XFS_IOLOCK_EXCL) {
 469		ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL)));
 470	} else if (lock_mode & XFS_MMAPLOCK_EXCL)
 471		ASSERT(!(lock_mode & XFS_ILOCK_EXCL));
 472
 473	try_lock = 0;
 474	i = 0;
 475again:
 476	for (; i < inodes; i++) {
 477		ASSERT(ips[i]);
 478
 479		if (i && (ips[i] == ips[i - 1]))	/* Already locked */
 480			continue;
 481
 482		/*
 483		 * If try_lock is not set yet, make sure all locked inodes are
 484		 * not in the AIL.  If any are, set try_lock to be used later.
 485		 */
 486		if (!try_lock) {
 487			for (j = (i - 1); j >= 0 && !try_lock; j--) {
 488				lp = &ips[j]->i_itemp->ili_item;
 489				if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags))
 490					try_lock++;
 491			}
 492		}
 493
 494		/*
 495		 * If any of the previous locks we have locked is in the AIL,
 496		 * we must TRY to get the second and subsequent locks. If
 497		 * we can't get any, we must release all we have
 498		 * and try again.
 499		 */
 500		if (!try_lock) {
 501			xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
 502			continue;
 503		}
 504
 505		/* try_lock means we have an inode locked that is in the AIL. */
 506		ASSERT(i != 0);
 507		if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i)))
 508			continue;
 509
 510		/*
 511		 * Unlock all previous guys and try again.  xfs_iunlock will try
 512		 * to push the tail if the inode is in the AIL.
 513		 */
 514		attempts++;
 515		for (j = i - 1; j >= 0; j--) {
 516			/*
 517			 * Check to see if we've already unlocked this one.  Not
 518			 * the first one going back, and the inode ptr is the
 519			 * same.
 520			 */
 521			if (j != (i - 1) && ips[j] == ips[j + 1])
 522				continue;
 523
 524			xfs_iunlock(ips[j], lock_mode);
 525		}
 526
 527		if ((attempts % 5) == 0) {
 528			delay(1); /* Don't just spin the CPU */
 
 
 
 529		}
 530		i = 0;
 531		try_lock = 0;
 532		goto again;
 533	}
 
 
 
 
 
 
 
 
 
 
 534}
 535
 536/*
 537 * xfs_lock_two_inodes() can only be used to lock one type of lock at a time -
 538 * the mmaplock or the ilock, but not more than one type at a time. If we lock
 539 * more than one at a time, lockdep will report false positives saying we have
 540 * violated locking orders.  The iolock must be double-locked separately since
 541 * we use i_rwsem for that.  We now support taking one lock EXCL and the other
 542 * SHARED.
 543 */
 544void
 545xfs_lock_two_inodes(
 546	struct xfs_inode	*ip0,
 547	uint			ip0_mode,
 548	struct xfs_inode	*ip1,
 549	uint			ip1_mode)
 550{
 551	struct xfs_inode	*temp;
 552	uint			mode_temp;
 553	int			attempts = 0;
 554	struct xfs_log_item	*lp;
 555
 556	ASSERT(hweight32(ip0_mode) == 1);
 557	ASSERT(hweight32(ip1_mode) == 1);
 558	ASSERT(!(ip0_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
 559	ASSERT(!(ip1_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
 560	ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
 561	       !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
 562	ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
 563	       !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
 564	ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
 565	       !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
 566	ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
 567	       !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
 568
 569	ASSERT(ip0->i_ino != ip1->i_ino);
 570
 571	if (ip0->i_ino > ip1->i_ino) {
 572		temp = ip0;
 573		ip0 = ip1;
 574		ip1 = temp;
 575		mode_temp = ip0_mode;
 576		ip0_mode = ip1_mode;
 577		ip1_mode = mode_temp;
 578	}
 579
 580 again:
 581	xfs_ilock(ip0, xfs_lock_inumorder(ip0_mode, 0));
 582
 583	/*
 584	 * If the first lock we have locked is in the AIL, we must TRY to get
 585	 * the second lock. If we can't get it, we must release the first one
 586	 * and try again.
 587	 */
 588	lp = &ip0->i_itemp->ili_item;
 589	if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) {
 590		if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(ip1_mode, 1))) {
 591			xfs_iunlock(ip0, ip0_mode);
 592			if ((++attempts % 5) == 0)
 593				delay(1); /* Don't just spin the CPU */
 594			goto again;
 595		}
 596	} else {
 597		xfs_ilock(ip1, xfs_lock_inumorder(ip1_mode, 1));
 598	}
 599}
 600
 
 601void
 602__xfs_iflock(
 603	struct xfs_inode	*ip)
 604{
 605	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT);
 606	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT);
 607
 608	do {
 609		prepare_to_wait_exclusive(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
 610		if (xfs_isiflocked(ip))
 611			io_schedule();
 612	} while (!xfs_iflock_nowait(ip));
 613
 614	finish_wait(wq, &wait.wq_entry);
 615}
 616
 617STATIC uint
 618_xfs_dic2xflags(
 619	uint16_t		di_flags,
 620	uint64_t		di_flags2,
 621	bool			has_attr)
 622{
 623	uint			flags = 0;
 624
 625	if (di_flags & XFS_DIFLAG_ANY) {
 626		if (di_flags & XFS_DIFLAG_REALTIME)
 627			flags |= FS_XFLAG_REALTIME;
 628		if (di_flags & XFS_DIFLAG_PREALLOC)
 629			flags |= FS_XFLAG_PREALLOC;
 630		if (di_flags & XFS_DIFLAG_IMMUTABLE)
 631			flags |= FS_XFLAG_IMMUTABLE;
 632		if (di_flags & XFS_DIFLAG_APPEND)
 633			flags |= FS_XFLAG_APPEND;
 634		if (di_flags & XFS_DIFLAG_SYNC)
 635			flags |= FS_XFLAG_SYNC;
 636		if (di_flags & XFS_DIFLAG_NOATIME)
 637			flags |= FS_XFLAG_NOATIME;
 638		if (di_flags & XFS_DIFLAG_NODUMP)
 639			flags |= FS_XFLAG_NODUMP;
 640		if (di_flags & XFS_DIFLAG_RTINHERIT)
 641			flags |= FS_XFLAG_RTINHERIT;
 642		if (di_flags & XFS_DIFLAG_PROJINHERIT)
 643			flags |= FS_XFLAG_PROJINHERIT;
 644		if (di_flags & XFS_DIFLAG_NOSYMLINKS)
 645			flags |= FS_XFLAG_NOSYMLINKS;
 646		if (di_flags & XFS_DIFLAG_EXTSIZE)
 647			flags |= FS_XFLAG_EXTSIZE;
 648		if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
 649			flags |= FS_XFLAG_EXTSZINHERIT;
 650		if (di_flags & XFS_DIFLAG_NODEFRAG)
 651			flags |= FS_XFLAG_NODEFRAG;
 652		if (di_flags & XFS_DIFLAG_FILESTREAM)
 653			flags |= FS_XFLAG_FILESTREAM;
 654	}
 655
 656	if (di_flags2 & XFS_DIFLAG2_ANY) {
 657		if (di_flags2 & XFS_DIFLAG2_DAX)
 658			flags |= FS_XFLAG_DAX;
 659		if (di_flags2 & XFS_DIFLAG2_COWEXTSIZE)
 660			flags |= FS_XFLAG_COWEXTSIZE;
 661	}
 662
 663	if (has_attr)
 664		flags |= FS_XFLAG_HASATTR;
 665
 666	return flags;
 667}
 668
 669uint
 670xfs_ip2xflags(
 671	struct xfs_inode	*ip)
 672{
 673	struct xfs_icdinode	*dic = &ip->i_d;
 674
 675	return _xfs_dic2xflags(dic->di_flags, dic->di_flags2, XFS_IFORK_Q(ip));
 676}
 677
 
 
 
 
 
 
 
 
 678/*
 679 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
 680 * is allowed, otherwise it has to be an exact match. If a CI match is found,
 681 * ci_name->name will point to a the actual name (caller must free) or
 682 * will be set to NULL if an exact match is found.
 683 */
 684int
 685xfs_lookup(
 686	xfs_inode_t		*dp,
 687	struct xfs_name		*name,
 688	xfs_inode_t		**ipp,
 689	struct xfs_name		*ci_name)
 690{
 691	xfs_ino_t		inum;
 692	int			error;
 693
 694	trace_xfs_lookup(dp, name);
 695
 696	if (XFS_FORCED_SHUTDOWN(dp->i_mount))
 697		return -EIO;
 698
 
 699	error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
 700	if (error)
 701		goto out_unlock;
 702
 703	error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
 704	if (error)
 705		goto out_free_name;
 706
 
 707	return 0;
 708
 709out_free_name:
 710	if (ci_name)
 711		kmem_free(ci_name->name);
 712out_unlock:
 
 713	*ipp = NULL;
 714	return error;
 715}
 716
 717/*
 718 * Allocate an inode on disk and return a copy of its in-core version.
 719 * The in-core inode is locked exclusively.  Set mode, nlink, and rdev
 720 * appropriately within the inode.  The uid and gid for the inode are
 721 * set according to the contents of the given cred structure.
 722 *
 723 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
 724 * has a free inode available, call xfs_iget() to obtain the in-core
 725 * version of the allocated inode.  Finally, fill in the inode and
 726 * log its initial contents.  In this case, ialloc_context would be
 727 * set to NULL.
 728 *
 729 * If xfs_dialloc() does not have an available inode, it will replenish
 730 * its supply by doing an allocation. Since we can only do one
 731 * allocation within a transaction without deadlocks, we must commit
 732 * the current transaction before returning the inode itself.
 733 * In this case, therefore, we will set ialloc_context and return.
 734 * The caller should then commit the current transaction, start a new
 735 * transaction, and call xfs_ialloc() again to actually get the inode.
 736 *
 737 * To ensure that some other process does not grab the inode that
 738 * was allocated during the first call to xfs_ialloc(), this routine
 739 * also returns the [locked] bp pointing to the head of the freelist
 740 * as ialloc_context.  The caller should hold this buffer across
 741 * the commit and pass it back into this routine on the second call.
 742 *
 743 * If we are allocating quota inodes, we do not have a parent inode
 744 * to attach to or associate with (i.e. pip == NULL) because they
 745 * are not linked into the directory structure - they are attached
 746 * directly to the superblock - and so have no parent.
 747 */
 748static int
 749xfs_ialloc(
 750	xfs_trans_t	*tp,
 751	xfs_inode_t	*pip,
 752	umode_t		mode,
 753	xfs_nlink_t	nlink,
 754	dev_t		rdev,
 755	prid_t		prid,
 
 756	xfs_buf_t	**ialloc_context,
 757	xfs_inode_t	**ipp)
 758{
 759	struct xfs_mount *mp = tp->t_mountp;
 760	xfs_ino_t	ino;
 761	xfs_inode_t	*ip;
 762	uint		flags;
 763	int		error;
 764	struct timespec64 tv;
 765	struct inode	*inode;
 766
 767	/*
 768	 * Call the space management code to pick
 769	 * the on-disk inode to be allocated.
 770	 */
 771	error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode,
 772			    ialloc_context, &ino);
 773	if (error)
 774		return error;
 775	if (*ialloc_context || ino == NULLFSINO) {
 776		*ipp = NULL;
 777		return 0;
 778	}
 779	ASSERT(*ialloc_context == NULL);
 780
 781	/*
 782	 * Protect against obviously corrupt allocation btree records. Later
 783	 * xfs_iget checks will catch re-allocation of other active in-memory
 784	 * and on-disk inodes. If we don't catch reallocating the parent inode
 785	 * here we will deadlock in xfs_iget() so we have to do these checks
 786	 * first.
 787	 */
 788	if ((pip && ino == pip->i_ino) || !xfs_verify_dir_ino(mp, ino)) {
 789		xfs_alert(mp, "Allocated a known in-use inode 0x%llx!", ino);
 790		return -EFSCORRUPTED;
 791	}
 792
 793	/*
 794	 * Get the in-core inode with the lock held exclusively.
 795	 * This is because we're setting fields here we need
 796	 * to prevent others from looking at until we're done.
 797	 */
 798	error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE,
 799			 XFS_ILOCK_EXCL, &ip);
 800	if (error)
 801		return error;
 802	ASSERT(ip != NULL);
 803	inode = VFS_I(ip);
 
 
 
 
 
 
 
 
 
 804	inode->i_mode = mode;
 805	set_nlink(inode, nlink);
 806	inode->i_uid = current_fsuid();
 807	inode->i_rdev = rdev;
 808	ip->i_d.di_projid = prid;
 809
 810	if (pip && XFS_INHERIT_GID(pip)) {
 811		inode->i_gid = VFS_I(pip)->i_gid;
 812		if ((VFS_I(pip)->i_mode & S_ISGID) && S_ISDIR(mode))
 813			inode->i_mode |= S_ISGID;
 814	} else {
 815		inode->i_gid = current_fsgid();
 816	}
 817
 818	/*
 819	 * If the group ID of the new file does not match the effective group
 820	 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
 821	 * (and only if the irix_sgid_inherit compatibility variable is set).
 822	 */
 823	if (irix_sgid_inherit &&
 824	    (inode->i_mode & S_ISGID) && !in_group_p(inode->i_gid))
 
 825		inode->i_mode &= ~S_ISGID;
 826
 827	ip->i_d.di_size = 0;
 828	ip->i_df.if_nextents = 0;
 829	ASSERT(ip->i_d.di_nblocks == 0);
 830
 831	tv = current_time(inode);
 832	inode->i_mtime = tv;
 833	inode->i_atime = tv;
 834	inode->i_ctime = tv;
 835
 836	ip->i_d.di_extsize = 0;
 837	ip->i_d.di_dmevmask = 0;
 838	ip->i_d.di_dmstate = 0;
 839	ip->i_d.di_flags = 0;
 840
 841	if (xfs_sb_version_has_v3inode(&mp->m_sb)) {
 842		inode_set_iversion(inode, 1);
 843		ip->i_d.di_flags2 = 0;
 844		ip->i_d.di_cowextsize = 0;
 845		ip->i_d.di_crtime = tv;
 846	}
 847
 
 848	flags = XFS_ILOG_CORE;
 849	switch (mode & S_IFMT) {
 850	case S_IFIFO:
 851	case S_IFCHR:
 852	case S_IFBLK:
 853	case S_IFSOCK:
 854		ip->i_df.if_format = XFS_DINODE_FMT_DEV;
 
 855		ip->i_df.if_flags = 0;
 856		flags |= XFS_ILOG_DEV;
 857		break;
 858	case S_IFREG:
 859	case S_IFDIR:
 860		if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
 
 861			uint		di_flags = 0;
 862
 863			if (S_ISDIR(mode)) {
 864				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
 865					di_flags |= XFS_DIFLAG_RTINHERIT;
 866				if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
 867					di_flags |= XFS_DIFLAG_EXTSZINHERIT;
 868					ip->i_d.di_extsize = pip->i_d.di_extsize;
 869				}
 870				if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
 871					di_flags |= XFS_DIFLAG_PROJINHERIT;
 872			} else if (S_ISREG(mode)) {
 873				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
 874					di_flags |= XFS_DIFLAG_REALTIME;
 875				if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
 876					di_flags |= XFS_DIFLAG_EXTSIZE;
 877					ip->i_d.di_extsize = pip->i_d.di_extsize;
 878				}
 879			}
 880			if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
 881			    xfs_inherit_noatime)
 882				di_flags |= XFS_DIFLAG_NOATIME;
 883			if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
 884			    xfs_inherit_nodump)
 885				di_flags |= XFS_DIFLAG_NODUMP;
 886			if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
 887			    xfs_inherit_sync)
 888				di_flags |= XFS_DIFLAG_SYNC;
 889			if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
 890			    xfs_inherit_nosymlinks)
 891				di_flags |= XFS_DIFLAG_NOSYMLINKS;
 892			if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
 893			    xfs_inherit_nodefrag)
 894				di_flags |= XFS_DIFLAG_NODEFRAG;
 895			if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
 896				di_flags |= XFS_DIFLAG_FILESTREAM;
 
 
 897
 898			ip->i_d.di_flags |= di_flags;
 899		}
 900		if (pip && (pip->i_d.di_flags2 & XFS_DIFLAG2_ANY)) {
 901			if (pip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) {
 902				ip->i_d.di_flags2 |= XFS_DIFLAG2_COWEXTSIZE;
 903				ip->i_d.di_cowextsize = pip->i_d.di_cowextsize;
 904			}
 905			if (pip->i_d.di_flags2 & XFS_DIFLAG2_DAX)
 906				ip->i_d.di_flags2 |= XFS_DIFLAG2_DAX;
 907		}
 908		/* FALLTHROUGH */
 909	case S_IFLNK:
 910		ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS;
 911		ip->i_df.if_flags = XFS_IFEXTENTS;
 912		ip->i_df.if_bytes = 0;
 913		ip->i_df.if_u1.if_root = NULL;
 914		break;
 915	default:
 916		ASSERT(0);
 917	}
 
 
 
 
 
 918
 919	/*
 920	 * Log the new values stuffed into the inode.
 921	 */
 922	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
 923	xfs_trans_log_inode(tp, ip, flags);
 924
 925	/* now that we have an i_mode we can setup the inode structure */
 926	xfs_setup_inode(ip);
 927
 928	*ipp = ip;
 929	return 0;
 930}
 931
 932/*
 933 * Allocates a new inode from disk and return a pointer to the
 934 * incore copy. This routine will internally commit the current
 935 * transaction and allocate a new one if the Space Manager needed
 936 * to do an allocation to replenish the inode free-list.
 937 *
 938 * This routine is designed to be called from xfs_create and
 939 * xfs_create_dir.
 940 *
 941 */
 942int
 943xfs_dir_ialloc(
 944	xfs_trans_t	**tpp,		/* input: current transaction;
 945					   output: may be a new transaction. */
 946	xfs_inode_t	*dp,		/* directory within whose allocate
 947					   the inode. */
 948	umode_t		mode,
 949	xfs_nlink_t	nlink,
 950	dev_t		rdev,
 951	prid_t		prid,		/* project id */
 952	xfs_inode_t	**ipp)		/* pointer to inode; it will be
 
 953					   locked. */
 
 
 954{
 955	xfs_trans_t	*tp;
 956	xfs_inode_t	*ip;
 957	xfs_buf_t	*ialloc_context = NULL;
 958	int		code;
 959	void		*dqinfo;
 960	uint		tflags;
 961
 962	tp = *tpp;
 963	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
 964
 965	/*
 966	 * xfs_ialloc will return a pointer to an incore inode if
 967	 * the Space Manager has an available inode on the free
 968	 * list. Otherwise, it will do an allocation and replenish
 969	 * the freelist.  Since we can only do one allocation per
 970	 * transaction without deadlocks, we will need to commit the
 971	 * current transaction and start a new one.  We will then
 972	 * need to call xfs_ialloc again to get the inode.
 973	 *
 974	 * If xfs_ialloc did an allocation to replenish the freelist,
 975	 * it returns the bp containing the head of the freelist as
 976	 * ialloc_context. We will hold a lock on it across the
 977	 * transaction commit so that no other process can steal
 978	 * the inode(s) that we've just allocated.
 979	 */
 980	code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, &ialloc_context,
 981			&ip);
 982
 983	/*
 984	 * Return an error if we were unable to allocate a new inode.
 985	 * This should only happen if we run out of space on disk or
 986	 * encounter a disk error.
 987	 */
 988	if (code) {
 989		*ipp = NULL;
 990		return code;
 991	}
 992	if (!ialloc_context && !ip) {
 993		*ipp = NULL;
 994		return -ENOSPC;
 995	}
 996
 997	/*
 998	 * If the AGI buffer is non-NULL, then we were unable to get an
 999	 * inode in one operation.  We need to commit the current
1000	 * transaction and call xfs_ialloc() again.  It is guaranteed
1001	 * to succeed the second time.
1002	 */
1003	if (ialloc_context) {
1004		/*
1005		 * Normally, xfs_trans_commit releases all the locks.
1006		 * We call bhold to hang on to the ialloc_context across
1007		 * the commit.  Holding this buffer prevents any other
1008		 * processes from doing any allocations in this
1009		 * allocation group.
1010		 */
1011		xfs_trans_bhold(tp, ialloc_context);
1012
1013		/*
1014		 * We want the quota changes to be associated with the next
1015		 * transaction, NOT this one. So, detach the dqinfo from this
1016		 * and attach it to the next transaction.
1017		 */
1018		dqinfo = NULL;
1019		tflags = 0;
1020		if (tp->t_dqinfo) {
1021			dqinfo = (void *)tp->t_dqinfo;
1022			tp->t_dqinfo = NULL;
1023			tflags = tp->t_flags & XFS_TRANS_DQ_DIRTY;
1024			tp->t_flags &= ~(XFS_TRANS_DQ_DIRTY);
1025		}
1026
1027		code = xfs_trans_roll(&tp);
 
 
1028
1029		/*
1030		 * Re-attach the quota info that we detached from prev trx.
1031		 */
1032		if (dqinfo) {
1033			tp->t_dqinfo = dqinfo;
1034			tp->t_flags |= tflags;
1035		}
1036
1037		if (code) {
1038			xfs_buf_relse(ialloc_context);
1039			*tpp = tp;
1040			*ipp = NULL;
1041			return code;
1042		}
1043		xfs_trans_bjoin(tp, ialloc_context);
1044
1045		/*
1046		 * Call ialloc again. Since we've locked out all
1047		 * other allocations in this allocation group,
1048		 * this call should always succeed.
1049		 */
1050		code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid,
1051				  &ialloc_context, &ip);
1052
1053		/*
1054		 * If we get an error at this point, return to the caller
1055		 * so that the current transaction can be aborted.
1056		 */
1057		if (code) {
1058			*tpp = tp;
1059			*ipp = NULL;
1060			return code;
1061		}
1062		ASSERT(!ialloc_context && ip);
1063
 
 
 
1064	}
1065
1066	*ipp = ip;
1067	*tpp = tp;
1068
1069	return 0;
1070}
1071
1072/*
1073 * Decrement the link count on an inode & log the change.  If this causes the
1074 * link count to go to zero, move the inode to AGI unlinked list so that it can
1075 * be freed when the last active reference goes away via xfs_inactive().
1076 */
1077static int			/* error */
1078xfs_droplink(
1079	xfs_trans_t *tp,
1080	xfs_inode_t *ip)
1081{
1082	xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1083
1084	drop_nlink(VFS_I(ip));
1085	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1086
1087	if (VFS_I(ip)->i_nlink)
1088		return 0;
1089
1090	return xfs_iunlink(tp, ip);
1091}
1092
1093/*
1094 * Increment the link count on an inode & log the change.
1095 */
1096static void
1097xfs_bumplink(
1098	xfs_trans_t *tp,
1099	xfs_inode_t *ip)
1100{
1101	xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1102
 
1103	inc_nlink(VFS_I(ip));
1104	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
 
1105}
1106
1107int
1108xfs_create(
1109	xfs_inode_t		*dp,
1110	struct xfs_name		*name,
1111	umode_t			mode,
1112	dev_t			rdev,
1113	xfs_inode_t		**ipp)
1114{
1115	int			is_dir = S_ISDIR(mode);
1116	struct xfs_mount	*mp = dp->i_mount;
1117	struct xfs_inode	*ip = NULL;
1118	struct xfs_trans	*tp = NULL;
1119	int			error;
 
 
1120	bool                    unlock_dp_on_error = false;
1121	prid_t			prid;
1122	struct xfs_dquot	*udqp = NULL;
1123	struct xfs_dquot	*gdqp = NULL;
1124	struct xfs_dquot	*pdqp = NULL;
1125	struct xfs_trans_res	*tres;
1126	uint			resblks;
1127
1128	trace_xfs_create(dp, name);
1129
1130	if (XFS_FORCED_SHUTDOWN(mp))
1131		return -EIO;
1132
1133	prid = xfs_get_initial_prid(dp);
1134
1135	/*
1136	 * Make sure that we have allocated dquot(s) on disk.
1137	 */
1138	error = xfs_qm_vop_dqalloc(dp, current_fsuid(), current_fsgid(), prid,
 
1139					XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1140					&udqp, &gdqp, &pdqp);
1141	if (error)
1142		return error;
1143
1144	if (is_dir) {
 
1145		resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
1146		tres = &M_RES(mp)->tr_mkdir;
 
1147	} else {
1148		resblks = XFS_CREATE_SPACE_RES(mp, name->len);
1149		tres = &M_RES(mp)->tr_create;
 
1150	}
1151
1152	/*
1153	 * Initially assume that the file does not exist and
1154	 * reserve the resources for that case.  If that is not
1155	 * the case we'll drop the one we have and get a more
1156	 * appropriate transaction later.
1157	 */
1158	error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
1159	if (error == -ENOSPC) {
1160		/* flush outstanding delalloc blocks and retry */
1161		xfs_flush_inodes(mp);
1162		error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
 
 
 
 
 
1163	}
1164	if (error)
1165		goto out_release_inode;
 
1166
1167	xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT);
 
1168	unlock_dp_on_error = true;
1169
 
 
1170	/*
1171	 * Reserve disk quota and the inode.
1172	 */
1173	error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1174						pdqp, resblks, 1, 0);
1175	if (error)
1176		goto out_trans_cancel;
1177
 
 
 
 
 
 
1178	/*
1179	 * A newly created regular or special file just has one directory
1180	 * entry pointing to them, but a directory also the "." entry
1181	 * pointing to itself.
1182	 */
1183	error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev, prid, &ip);
 
1184	if (error)
1185		goto out_trans_cancel;
1186
1187	/*
1188	 * Now we join the directory inode to the transaction.  We do not do it
1189	 * earlier because xfs_dir_ialloc might commit the previous transaction
1190	 * (and release all the locks).  An error from here on will result in
1191	 * the transaction cancel unlocking dp so don't do it explicitly in the
1192	 * error path.
1193	 */
1194	xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
1195	unlock_dp_on_error = false;
1196
1197	error = xfs_dir_createname(tp, dp, name, ip->i_ino,
1198					resblks - XFS_IALLOC_SPACE_RES(mp));
 
1199	if (error) {
1200		ASSERT(error != -ENOSPC);
1201		goto out_trans_cancel;
1202	}
1203	xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1204	xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
1205
1206	if (is_dir) {
1207		error = xfs_dir_init(tp, ip, dp);
1208		if (error)
1209			goto out_trans_cancel;
1210
1211		xfs_bumplink(tp, dp);
 
 
1212	}
1213
1214	/*
1215	 * If this is a synchronous mount, make sure that the
1216	 * create transaction goes to disk before returning to
1217	 * the user.
1218	 */
1219	if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1220		xfs_trans_set_sync(tp);
1221
1222	/*
1223	 * Attach the dquot(s) to the inodes and modify them incore.
1224	 * These ids of the inode couldn't have changed since the new
1225	 * inode has been locked ever since it was created.
1226	 */
1227	xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1228
 
 
 
 
1229	error = xfs_trans_commit(tp);
1230	if (error)
1231		goto out_release_inode;
1232
1233	xfs_qm_dqrele(udqp);
1234	xfs_qm_dqrele(gdqp);
1235	xfs_qm_dqrele(pdqp);
1236
1237	*ipp = ip;
1238	return 0;
1239
 
 
1240 out_trans_cancel:
1241	xfs_trans_cancel(tp);
1242 out_release_inode:
1243	/*
1244	 * Wait until after the current transaction is aborted to finish the
1245	 * setup of the inode and release the inode.  This prevents recursive
1246	 * transactions and deadlocks from xfs_inactive.
1247	 */
1248	if (ip) {
1249		xfs_finish_inode_setup(ip);
1250		xfs_irele(ip);
1251	}
1252
1253	xfs_qm_dqrele(udqp);
1254	xfs_qm_dqrele(gdqp);
1255	xfs_qm_dqrele(pdqp);
1256
1257	if (unlock_dp_on_error)
1258		xfs_iunlock(dp, XFS_ILOCK_EXCL);
1259	return error;
1260}
1261
1262int
1263xfs_create_tmpfile(
1264	struct xfs_inode	*dp,
 
1265	umode_t			mode,
1266	struct xfs_inode	**ipp)
1267{
1268	struct xfs_mount	*mp = dp->i_mount;
1269	struct xfs_inode	*ip = NULL;
1270	struct xfs_trans	*tp = NULL;
1271	int			error;
1272	prid_t                  prid;
1273	struct xfs_dquot	*udqp = NULL;
1274	struct xfs_dquot	*gdqp = NULL;
1275	struct xfs_dquot	*pdqp = NULL;
1276	struct xfs_trans_res	*tres;
1277	uint			resblks;
1278
1279	if (XFS_FORCED_SHUTDOWN(mp))
1280		return -EIO;
1281
1282	prid = xfs_get_initial_prid(dp);
1283
1284	/*
1285	 * Make sure that we have allocated dquot(s) on disk.
1286	 */
1287	error = xfs_qm_vop_dqalloc(dp, current_fsuid(), current_fsgid(), prid,
 
1288				XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1289				&udqp, &gdqp, &pdqp);
1290	if (error)
1291		return error;
1292
1293	resblks = XFS_IALLOC_SPACE_RES(mp);
1294	tres = &M_RES(mp)->tr_create_tmpfile;
1295
1296	error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
 
 
 
 
 
 
1297	if (error)
1298		goto out_release_inode;
1299
1300	error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1301						pdqp, resblks, 1, 0);
1302	if (error)
1303		goto out_trans_cancel;
1304
1305	error = xfs_dir_ialloc(&tp, dp, mode, 0, 0, prid, &ip);
 
1306	if (error)
1307		goto out_trans_cancel;
1308
1309	if (mp->m_flags & XFS_MOUNT_WSYNC)
1310		xfs_trans_set_sync(tp);
1311
1312	/*
1313	 * Attach the dquot(s) to the inodes and modify them incore.
1314	 * These ids of the inode couldn't have changed since the new
1315	 * inode has been locked ever since it was created.
1316	 */
1317	xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1318
1319	error = xfs_iunlink(tp, ip);
1320	if (error)
1321		goto out_trans_cancel;
1322
1323	error = xfs_trans_commit(tp);
1324	if (error)
1325		goto out_release_inode;
1326
1327	xfs_qm_dqrele(udqp);
1328	xfs_qm_dqrele(gdqp);
1329	xfs_qm_dqrele(pdqp);
1330
1331	*ipp = ip;
1332	return 0;
1333
1334 out_trans_cancel:
1335	xfs_trans_cancel(tp);
1336 out_release_inode:
1337	/*
1338	 * Wait until after the current transaction is aborted to finish the
1339	 * setup of the inode and release the inode.  This prevents recursive
1340	 * transactions and deadlocks from xfs_inactive.
1341	 */
1342	if (ip) {
1343		xfs_finish_inode_setup(ip);
1344		xfs_irele(ip);
1345	}
1346
1347	xfs_qm_dqrele(udqp);
1348	xfs_qm_dqrele(gdqp);
1349	xfs_qm_dqrele(pdqp);
1350
1351	return error;
1352}
1353
1354int
1355xfs_link(
1356	xfs_inode_t		*tdp,
1357	xfs_inode_t		*sip,
1358	struct xfs_name		*target_name)
1359{
1360	xfs_mount_t		*mp = tdp->i_mount;
1361	xfs_trans_t		*tp;
1362	int			error;
 
 
1363	int			resblks;
1364
1365	trace_xfs_link(tdp, target_name);
1366
1367	ASSERT(!S_ISDIR(VFS_I(sip)->i_mode));
1368
1369	if (XFS_FORCED_SHUTDOWN(mp))
1370		return -EIO;
1371
1372	error = xfs_qm_dqattach(sip);
1373	if (error)
1374		goto std_return;
1375
1376	error = xfs_qm_dqattach(tdp);
1377	if (error)
1378		goto std_return;
1379
 
1380	resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
1381	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, resblks, 0, 0, &tp);
1382	if (error == -ENOSPC) {
1383		resblks = 0;
1384		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, 0, 0, 0, &tp);
1385	}
1386	if (error)
1387		goto std_return;
1388
1389	xfs_lock_two_inodes(sip, XFS_ILOCK_EXCL, tdp, XFS_ILOCK_EXCL);
 
1390
1391	xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL);
1392	xfs_trans_ijoin(tp, tdp, XFS_ILOCK_EXCL);
1393
1394	/*
1395	 * If we are using project inheritance, we only allow hard link
1396	 * creation in our tree when the project IDs are the same; else
1397	 * the tree quota mechanism could be circumvented.
1398	 */
1399	if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
1400		     tdp->i_d.di_projid != sip->i_d.di_projid)) {
1401		error = -EXDEV;
1402		goto error_return;
1403	}
1404
1405	if (!resblks) {
1406		error = xfs_dir_canenter(tp, tdp, target_name);
1407		if (error)
1408			goto error_return;
1409	}
1410
 
 
1411	/*
1412	 * Handle initial link state of O_TMPFILE inode
1413	 */
1414	if (VFS_I(sip)->i_nlink == 0) {
1415		error = xfs_iunlink_remove(tp, sip);
1416		if (error)
1417			goto error_return;
1418	}
1419
1420	error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
1421				   resblks);
1422	if (error)
1423		goto error_return;
1424	xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1425	xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
1426
1427	xfs_bumplink(tp, sip);
 
 
1428
1429	/*
1430	 * If this is a synchronous mount, make sure that the
1431	 * link transaction goes to disk before returning to
1432	 * the user.
1433	 */
1434	if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1435		xfs_trans_set_sync(tp);
1436
 
 
 
 
 
 
1437	return xfs_trans_commit(tp);
1438
1439 error_return:
1440	xfs_trans_cancel(tp);
1441 std_return:
1442	return error;
1443}
1444
1445/* Clear the reflink flag and the cowblocks tag if possible. */
1446static void
1447xfs_itruncate_clear_reflink_flags(
1448	struct xfs_inode	*ip)
1449{
1450	struct xfs_ifork	*dfork;
1451	struct xfs_ifork	*cfork;
1452
1453	if (!xfs_is_reflink_inode(ip))
1454		return;
1455	dfork = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
1456	cfork = XFS_IFORK_PTR(ip, XFS_COW_FORK);
1457	if (dfork->if_bytes == 0 && cfork->if_bytes == 0)
1458		ip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK;
1459	if (cfork->if_bytes == 0)
1460		xfs_inode_clear_cowblocks_tag(ip);
1461}
1462
1463/*
1464 * Free up the underlying blocks past new_size.  The new size must be smaller
1465 * than the current size.  This routine can be used both for the attribute and
1466 * data fork, and does not modify the inode size, which is left to the caller.
1467 *
1468 * The transaction passed to this routine must have made a permanent log
1469 * reservation of at least XFS_ITRUNCATE_LOG_RES.  This routine may commit the
1470 * given transaction and start new ones, so make sure everything involved in
1471 * the transaction is tidy before calling here.  Some transaction will be
1472 * returned to the caller to be committed.  The incoming transaction must
1473 * already include the inode, and both inode locks must be held exclusively.
1474 * The inode must also be "held" within the transaction.  On return the inode
1475 * will be "held" within the returned transaction.  This routine does NOT
1476 * require any disk space to be reserved for it within the transaction.
1477 *
1478 * If we get an error, we must return with the inode locked and linked into the
1479 * current transaction. This keeps things simple for the higher level code,
1480 * because it always knows that the inode is locked and held in the transaction
1481 * that returns to it whether errors occur or not.  We don't mark the inode
1482 * dirty on error so that transactions can be easily aborted if possible.
1483 */
1484int
1485xfs_itruncate_extents_flags(
1486	struct xfs_trans	**tpp,
1487	struct xfs_inode	*ip,
1488	int			whichfork,
1489	xfs_fsize_t		new_size,
1490	int			flags)
1491{
1492	struct xfs_mount	*mp = ip->i_mount;
1493	struct xfs_trans	*tp = *tpp;
 
 
1494	xfs_fileoff_t		first_unmap_block;
 
1495	xfs_filblks_t		unmap_len;
1496	int			error = 0;
 
1497
1498	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1499	ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
1500	       xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1501	ASSERT(new_size <= XFS_ISIZE(ip));
1502	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1503	ASSERT(ip->i_itemp != NULL);
1504	ASSERT(ip->i_itemp->ili_lock_flags == 0);
1505	ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1506
1507	trace_xfs_itruncate_extents_start(ip, new_size);
1508
1509	flags |= xfs_bmapi_aflag(whichfork);
1510
1511	/*
1512	 * Since it is possible for space to become allocated beyond
1513	 * the end of the file (in a crash where the space is allocated
1514	 * but the inode size is not yet updated), simply remove any
1515	 * blocks which show up between the new EOF and the maximum
1516	 * possible file size.
1517	 *
1518	 * We have to free all the blocks to the bmbt maximum offset, even if
1519	 * the page cache can't scale that far.
1520	 */
1521	first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1522	if (first_unmap_block >= XFS_MAX_FILEOFF) {
1523		WARN_ON_ONCE(first_unmap_block > XFS_MAX_FILEOFF);
1524		return 0;
1525	}
1526
1527	unmap_len = XFS_MAX_FILEOFF - first_unmap_block + 1;
1528	while (unmap_len > 0) {
1529		ASSERT(tp->t_firstblock == NULLFSBLOCK);
1530		error = __xfs_bunmapi(tp, ip, first_unmap_block, &unmap_len,
1531				flags, XFS_ITRUNC_MAX_EXTENTS);
 
 
 
 
 
1532		if (error)
1533			goto out;
1534
1535		/*
1536		 * Duplicate the transaction that has the permanent
1537		 * reservation and commit the old transaction.
1538		 */
1539		error = xfs_defer_finish(&tp);
1540		if (error)
1541			goto out;
1542
1543		error = xfs_trans_roll_inode(&tp, ip);
1544		if (error)
1545			goto out;
1546	}
1547
1548	if (whichfork == XFS_DATA_FORK) {
1549		/* Remove all pending CoW reservations. */
1550		error = xfs_reflink_cancel_cow_blocks(ip, &tp,
1551				first_unmap_block, XFS_MAX_FILEOFF, true);
1552		if (error)
1553			goto out;
1554
1555		xfs_itruncate_clear_reflink_flags(ip);
1556	}
1557
1558	/*
1559	 * Always re-log the inode so that our permanent transaction can keep
1560	 * on rolling it forward in the log.
1561	 */
1562	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1563
1564	trace_xfs_itruncate_extents_end(ip, new_size);
1565
1566out:
1567	*tpp = tp;
1568	return error;
 
 
 
 
 
 
 
 
1569}
1570
1571int
1572xfs_release(
1573	xfs_inode_t	*ip)
1574{
1575	xfs_mount_t	*mp = ip->i_mount;
1576	int		error;
1577
1578	if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0))
1579		return 0;
1580
1581	/* If this is a read-only mount, don't do this (would generate I/O) */
1582	if (mp->m_flags & XFS_MOUNT_RDONLY)
1583		return 0;
1584
1585	if (!XFS_FORCED_SHUTDOWN(mp)) {
1586		int truncated;
1587
1588		/*
1589		 * If we previously truncated this file and removed old data
1590		 * in the process, we want to initiate "early" writeout on
1591		 * the last close.  This is an attempt to combat the notorious
1592		 * NULL files problem which is particularly noticeable from a
1593		 * truncate down, buffered (re-)write (delalloc), followed by
1594		 * a crash.  What we are effectively doing here is
1595		 * significantly reducing the time window where we'd otherwise
1596		 * be exposed to that problem.
1597		 */
1598		truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
1599		if (truncated) {
1600			xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
1601			if (ip->i_delayed_blks > 0) {
1602				error = filemap_flush(VFS_I(ip)->i_mapping);
1603				if (error)
1604					return error;
1605			}
1606		}
1607	}
1608
1609	if (VFS_I(ip)->i_nlink == 0)
1610		return 0;
1611
1612	if (xfs_can_free_eofblocks(ip, false)) {
1613
1614		/*
1615		 * Check if the inode is being opened, written and closed
1616		 * frequently and we have delayed allocation blocks outstanding
1617		 * (e.g. streaming writes from the NFS server), truncating the
1618		 * blocks past EOF will cause fragmentation to occur.
1619		 *
1620		 * In this case don't do the truncation, but we have to be
1621		 * careful how we detect this case. Blocks beyond EOF show up as
1622		 * i_delayed_blks even when the inode is clean, so we need to
1623		 * truncate them away first before checking for a dirty release.
1624		 * Hence on the first dirty close we will still remove the
1625		 * speculative allocation, but after that we will leave it in
1626		 * place.
1627		 */
1628		if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
1629			return 0;
1630		/*
1631		 * If we can't get the iolock just skip truncating the blocks
1632		 * past EOF because we could deadlock with the mmap_lock
1633		 * otherwise. We'll get another chance to drop them once the
1634		 * last reference to the inode is dropped, so we'll never leak
1635		 * blocks permanently.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1636		 */
1637		if (xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1638			error = xfs_free_eofblocks(ip);
1639			xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1640			if (error)
1641				return error;
1642		}
1643
1644		/* delalloc blocks after truncation means it really is dirty */
1645		if (ip->i_delayed_blks)
1646			xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
1647	}
1648	return 0;
1649}
1650
1651/*
1652 * xfs_inactive_truncate
1653 *
1654 * Called to perform a truncate when an inode becomes unlinked.
1655 */
1656STATIC int
1657xfs_inactive_truncate(
1658	struct xfs_inode *ip)
1659{
1660	struct xfs_mount	*mp = ip->i_mount;
1661	struct xfs_trans	*tp;
1662	int			error;
1663
1664	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
 
1665	if (error) {
1666		ASSERT(XFS_FORCED_SHUTDOWN(mp));
 
1667		return error;
1668	}
 
1669	xfs_ilock(ip, XFS_ILOCK_EXCL);
1670	xfs_trans_ijoin(tp, ip, 0);
1671
1672	/*
1673	 * Log the inode size first to prevent stale data exposure in the event
1674	 * of a system crash before the truncate completes. See the related
1675	 * comment in xfs_vn_setattr_size() for details.
1676	 */
1677	ip->i_d.di_size = 0;
1678	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1679
1680	error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1681	if (error)
1682		goto error_trans_cancel;
1683
1684	ASSERT(ip->i_df.if_nextents == 0);
1685
1686	error = xfs_trans_commit(tp);
1687	if (error)
1688		goto error_unlock;
1689
1690	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1691	return 0;
1692
1693error_trans_cancel:
1694	xfs_trans_cancel(tp);
1695error_unlock:
1696	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1697	return error;
1698}
1699
1700/*
1701 * xfs_inactive_ifree()
1702 *
1703 * Perform the inode free when an inode is unlinked.
1704 */
1705STATIC int
1706xfs_inactive_ifree(
1707	struct xfs_inode *ip)
1708{
 
 
1709	struct xfs_mount	*mp = ip->i_mount;
1710	struct xfs_trans	*tp;
1711	int			error;
1712
 
 
1713	/*
1714	 * We try to use a per-AG reservation for any block needed by the finobt
1715	 * tree, but as the finobt feature predates the per-AG reservation
1716	 * support a degraded file system might not have enough space for the
1717	 * reservation at mount time.  In that case try to dip into the reserved
1718	 * pool and pray.
 
 
 
 
1719	 *
1720	 * Send a warning if the reservation does happen to fail, as the inode
1721	 * now remains allocated and sits on the unlinked list until the fs is
1722	 * repaired.
1723	 */
1724	if (unlikely(mp->m_finobt_nores)) {
1725		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree,
1726				XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE,
1727				&tp);
1728	} else {
1729		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp);
1730	}
1731	if (error) {
1732		if (error == -ENOSPC) {
1733			xfs_warn_ratelimited(mp,
1734			"Failed to remove inode(s) from unlinked list. "
1735			"Please free space, unmount and run xfs_repair.");
1736		} else {
1737			ASSERT(XFS_FORCED_SHUTDOWN(mp));
1738		}
 
1739		return error;
1740	}
1741
1742	/*
1743	 * We do not hold the inode locked across the entire rolling transaction
1744	 * here. We only need to hold it for the first transaction that
1745	 * xfs_ifree() builds, which may mark the inode XFS_ISTALE if the
1746	 * underlying cluster buffer is freed. Relogging an XFS_ISTALE inode
1747	 * here breaks the relationship between cluster buffer invalidation and
1748	 * stale inode invalidation on cluster buffer item journal commit
1749	 * completion, and can result in leaving dirty stale inodes hanging
1750	 * around in memory.
1751	 *
1752	 * We have no need for serialising this inode operation against other
1753	 * operations - we freed the inode and hence reallocation is required
1754	 * and that will serialise on reallocating the space the deferops need
1755	 * to free. Hence we can unlock the inode on the first commit of
1756	 * the transaction rather than roll it right through the deferops. This
1757	 * avoids relogging the XFS_ISTALE inode.
1758	 *
1759	 * We check that xfs_ifree() hasn't grown an internal transaction roll
1760	 * by asserting that the inode is still locked when it returns.
1761	 */
1762	xfs_ilock(ip, XFS_ILOCK_EXCL);
1763	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1764
1765	error = xfs_ifree(tp, ip);
1766	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1767	if (error) {
1768		/*
1769		 * If we fail to free the inode, shut down.  The cancel
1770		 * might do that, we need to make sure.  Otherwise the
1771		 * inode might be lost for a long time or forever.
1772		 */
1773		if (!XFS_FORCED_SHUTDOWN(mp)) {
1774			xfs_notice(mp, "%s: xfs_ifree returned error %d",
1775				__func__, error);
1776			xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1777		}
1778		xfs_trans_cancel(tp);
 
1779		return error;
1780	}
1781
1782	/*
1783	 * Credit the quota account(s). The inode is gone.
1784	 */
1785	xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1786
1787	/*
1788	 * Just ignore errors at this point.  There is nothing we can do except
1789	 * to try to keep going. Make sure it's not a silent error.
1790	 */
 
 
 
 
 
 
1791	error = xfs_trans_commit(tp);
1792	if (error)
1793		xfs_notice(mp, "%s: xfs_trans_commit returned error %d",
1794			__func__, error);
1795
 
1796	return 0;
1797}
1798
1799/*
1800 * xfs_inactive
1801 *
1802 * This is called when the vnode reference count for the vnode
1803 * goes to zero.  If the file has been unlinked, then it must
1804 * now be truncated.  Also, we clear all of the read-ahead state
1805 * kept for the inode here since the file is now closed.
1806 */
1807void
1808xfs_inactive(
1809	xfs_inode_t	*ip)
1810{
1811	struct xfs_mount	*mp;
1812	int			error;
1813	int			truncate = 0;
1814
1815	/*
1816	 * If the inode is already free, then there can be nothing
1817	 * to clean up here.
1818	 */
1819	if (VFS_I(ip)->i_mode == 0) {
 
1820		ASSERT(ip->i_df.if_broot_bytes == 0);
1821		return;
1822	}
1823
1824	mp = ip->i_mount;
1825	ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY));
1826
1827	/* If this is a read-only mount, don't do this (would generate I/O) */
1828	if (mp->m_flags & XFS_MOUNT_RDONLY)
1829		return;
1830
1831	/* Try to clean out the cow blocks if there are any. */
1832	if (xfs_inode_has_cow_data(ip))
1833		xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, true);
1834
1835	if (VFS_I(ip)->i_nlink != 0) {
1836		/*
1837		 * force is true because we are evicting an inode from the
1838		 * cache. Post-eof blocks must be freed, lest we end up with
1839		 * broken free space accounting.
1840		 *
1841		 * Note: don't bother with iolock here since lockdep complains
1842		 * about acquiring it in reclaim context. We have the only
1843		 * reference to the inode at this point anyways.
1844		 */
1845		if (xfs_can_free_eofblocks(ip, true))
1846			xfs_free_eofblocks(ip);
1847
1848		return;
1849	}
1850
1851	if (S_ISREG(VFS_I(ip)->i_mode) &&
1852	    (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 ||
1853	     ip->i_df.if_nextents > 0 || ip->i_delayed_blks > 0))
1854		truncate = 1;
1855
1856	error = xfs_qm_dqattach(ip);
1857	if (error)
1858		return;
1859
1860	if (S_ISLNK(VFS_I(ip)->i_mode))
1861		error = xfs_inactive_symlink(ip);
1862	else if (truncate)
1863		error = xfs_inactive_truncate(ip);
1864	if (error)
1865		return;
1866
1867	/*
1868	 * If there are attributes associated with the file then blow them away
1869	 * now.  The code calls a routine that recursively deconstructs the
1870	 * attribute fork. If also blows away the in-core attribute fork.
1871	 */
1872	if (XFS_IFORK_Q(ip)) {
1873		error = xfs_attr_inactive(ip);
1874		if (error)
1875			return;
1876	}
1877
1878	ASSERT(!ip->i_afp);
 
1879	ASSERT(ip->i_d.di_forkoff == 0);
1880
1881	/*
1882	 * Free the inode.
1883	 */
1884	error = xfs_inactive_ifree(ip);
1885	if (error)
1886		return;
1887
1888	/*
1889	 * Release the dquots held by inode, if any.
1890	 */
1891	xfs_qm_dqdetach(ip);
1892}
1893
1894/*
1895 * In-Core Unlinked List Lookups
1896 * =============================
1897 *
1898 * Every inode is supposed to be reachable from some other piece of metadata
1899 * with the exception of the root directory.  Inodes with a connection to a
1900 * file descriptor but not linked from anywhere in the on-disk directory tree
1901 * are collectively known as unlinked inodes, though the filesystem itself
1902 * maintains links to these inodes so that on-disk metadata are consistent.
1903 *
1904 * XFS implements a per-AG on-disk hash table of unlinked inodes.  The AGI
1905 * header contains a number of buckets that point to an inode, and each inode
1906 * record has a pointer to the next inode in the hash chain.  This
1907 * singly-linked list causes scaling problems in the iunlink remove function
1908 * because we must walk that list to find the inode that points to the inode
1909 * being removed from the unlinked hash bucket list.
1910 *
1911 * What if we modelled the unlinked list as a collection of records capturing
1912 * "X.next_unlinked = Y" relations?  If we indexed those records on Y, we'd
1913 * have a fast way to look up unlinked list predecessors, which avoids the
1914 * slow list walk.  That's exactly what we do here (in-core) with a per-AG
1915 * rhashtable.
1916 *
1917 * Because this is a backref cache, we ignore operational failures since the
1918 * iunlink code can fall back to the slow bucket walk.  The only errors that
1919 * should bubble out are for obviously incorrect situations.
1920 *
1921 * All users of the backref cache MUST hold the AGI buffer lock to serialize
1922 * access or have otherwise provided for concurrency control.
1923 */
1924
1925/* Capture a "X.next_unlinked = Y" relationship. */
1926struct xfs_iunlink {
1927	struct rhash_head	iu_rhash_head;
1928	xfs_agino_t		iu_agino;		/* X */
1929	xfs_agino_t		iu_next_unlinked;	/* Y */
1930};
1931
1932/* Unlinked list predecessor lookup hashtable construction */
1933static int
1934xfs_iunlink_obj_cmpfn(
1935	struct rhashtable_compare_arg	*arg,
1936	const void			*obj)
1937{
1938	const xfs_agino_t		*key = arg->key;
1939	const struct xfs_iunlink	*iu = obj;
1940
1941	if (iu->iu_next_unlinked != *key)
1942		return 1;
1943	return 0;
1944}
1945
1946static const struct rhashtable_params xfs_iunlink_hash_params = {
1947	.min_size		= XFS_AGI_UNLINKED_BUCKETS,
1948	.key_len		= sizeof(xfs_agino_t),
1949	.key_offset		= offsetof(struct xfs_iunlink,
1950					   iu_next_unlinked),
1951	.head_offset		= offsetof(struct xfs_iunlink, iu_rhash_head),
1952	.automatic_shrinking	= true,
1953	.obj_cmpfn		= xfs_iunlink_obj_cmpfn,
1954};
1955
1956/*
1957 * Return X, where X.next_unlinked == @agino.  Returns NULLAGINO if no such
1958 * relation is found.
1959 */
1960static xfs_agino_t
1961xfs_iunlink_lookup_backref(
1962	struct xfs_perag	*pag,
1963	xfs_agino_t		agino)
1964{
1965	struct xfs_iunlink	*iu;
1966
1967	iu = rhashtable_lookup_fast(&pag->pagi_unlinked_hash, &agino,
1968			xfs_iunlink_hash_params);
1969	return iu ? iu->iu_agino : NULLAGINO;
1970}
1971
1972/*
1973 * Take ownership of an iunlink cache entry and insert it into the hash table.
1974 * If successful, the entry will be owned by the cache; if not, it is freed.
1975 * Either way, the caller does not own @iu after this call.
1976 */
1977static int
1978xfs_iunlink_insert_backref(
1979	struct xfs_perag	*pag,
1980	struct xfs_iunlink	*iu)
1981{
1982	int			error;
1983
1984	error = rhashtable_insert_fast(&pag->pagi_unlinked_hash,
1985			&iu->iu_rhash_head, xfs_iunlink_hash_params);
1986	/*
1987	 * Fail loudly if there already was an entry because that's a sign of
1988	 * corruption of in-memory data.  Also fail loudly if we see an error
1989	 * code we didn't anticipate from the rhashtable code.  Currently we
1990	 * only anticipate ENOMEM.
1991	 */
1992	if (error) {
1993		WARN(error != -ENOMEM, "iunlink cache insert error %d", error);
1994		kmem_free(iu);
1995	}
1996	/*
1997	 * Absorb any runtime errors that aren't a result of corruption because
1998	 * this is a cache and we can always fall back to bucket list scanning.
1999	 */
2000	if (error != 0 && error != -EEXIST)
2001		error = 0;
2002	return error;
2003}
2004
2005/* Remember that @prev_agino.next_unlinked = @this_agino. */
2006static int
2007xfs_iunlink_add_backref(
2008	struct xfs_perag	*pag,
2009	xfs_agino_t		prev_agino,
2010	xfs_agino_t		this_agino)
2011{
2012	struct xfs_iunlink	*iu;
2013
2014	if (XFS_TEST_ERROR(false, pag->pag_mount, XFS_ERRTAG_IUNLINK_FALLBACK))
2015		return 0;
2016
2017	iu = kmem_zalloc(sizeof(*iu), KM_NOFS);
2018	iu->iu_agino = prev_agino;
2019	iu->iu_next_unlinked = this_agino;
2020
2021	return xfs_iunlink_insert_backref(pag, iu);
2022}
2023
2024/*
2025 * Replace X.next_unlinked = @agino with X.next_unlinked = @next_unlinked.
2026 * If @next_unlinked is NULLAGINO, we drop the backref and exit.  If there
2027 * wasn't any such entry then we don't bother.
2028 */
2029static int
2030xfs_iunlink_change_backref(
2031	struct xfs_perag	*pag,
2032	xfs_agino_t		agino,
2033	xfs_agino_t		next_unlinked)
2034{
2035	struct xfs_iunlink	*iu;
2036	int			error;
2037
2038	/* Look up the old entry; if there wasn't one then exit. */
2039	iu = rhashtable_lookup_fast(&pag->pagi_unlinked_hash, &agino,
2040			xfs_iunlink_hash_params);
2041	if (!iu)
2042		return 0;
2043
2044	/*
2045	 * Remove the entry.  This shouldn't ever return an error, but if we
2046	 * couldn't remove the old entry we don't want to add it again to the
2047	 * hash table, and if the entry disappeared on us then someone's
2048	 * violated the locking rules and we need to fail loudly.  Either way
2049	 * we cannot remove the inode because internal state is or would have
2050	 * been corrupt.
2051	 */
2052	error = rhashtable_remove_fast(&pag->pagi_unlinked_hash,
2053			&iu->iu_rhash_head, xfs_iunlink_hash_params);
2054	if (error)
2055		return error;
2056
2057	/* If there is no new next entry just free our item and return. */
2058	if (next_unlinked == NULLAGINO) {
2059		kmem_free(iu);
2060		return 0;
2061	}
2062
2063	/* Update the entry and re-add it to the hash table. */
2064	iu->iu_next_unlinked = next_unlinked;
2065	return xfs_iunlink_insert_backref(pag, iu);
2066}
2067
2068/* Set up the in-core predecessor structures. */
2069int
2070xfs_iunlink_init(
2071	struct xfs_perag	*pag)
2072{
2073	return rhashtable_init(&pag->pagi_unlinked_hash,
2074			&xfs_iunlink_hash_params);
2075}
2076
2077/* Free the in-core predecessor structures. */
2078static void
2079xfs_iunlink_free_item(
2080	void			*ptr,
2081	void			*arg)
2082{
2083	struct xfs_iunlink	*iu = ptr;
2084	bool			*freed_anything = arg;
2085
2086	*freed_anything = true;
2087	kmem_free(iu);
2088}
2089
2090void
2091xfs_iunlink_destroy(
2092	struct xfs_perag	*pag)
2093{
2094	bool			freed_anything = false;
2095
2096	rhashtable_free_and_destroy(&pag->pagi_unlinked_hash,
2097			xfs_iunlink_free_item, &freed_anything);
2098
2099	ASSERT(freed_anything == false || XFS_FORCED_SHUTDOWN(pag->pag_mount));
2100}
2101
2102/*
2103 * Point the AGI unlinked bucket at an inode and log the results.  The caller
2104 * is responsible for validating the old value.
2105 */
2106STATIC int
2107xfs_iunlink_update_bucket(
2108	struct xfs_trans	*tp,
2109	xfs_agnumber_t		agno,
2110	struct xfs_buf		*agibp,
2111	unsigned int		bucket_index,
2112	xfs_agino_t		new_agino)
2113{
2114	struct xfs_agi		*agi = agibp->b_addr;
2115	xfs_agino_t		old_value;
2116	int			offset;
2117
2118	ASSERT(xfs_verify_agino_or_null(tp->t_mountp, agno, new_agino));
2119
2120	old_value = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2121	trace_xfs_iunlink_update_bucket(tp->t_mountp, agno, bucket_index,
2122			old_value, new_agino);
2123
2124	/*
2125	 * We should never find the head of the list already set to the value
2126	 * passed in because either we're adding or removing ourselves from the
2127	 * head of the list.
2128	 */
2129	if (old_value == new_agino) {
2130		xfs_buf_mark_corrupt(agibp);
2131		return -EFSCORRUPTED;
2132	}
2133
2134	agi->agi_unlinked[bucket_index] = cpu_to_be32(new_agino);
2135	offset = offsetof(struct xfs_agi, agi_unlinked) +
2136			(sizeof(xfs_agino_t) * bucket_index);
2137	xfs_trans_log_buf(tp, agibp, offset, offset + sizeof(xfs_agino_t) - 1);
2138	return 0;
2139}
2140
2141/* Set an on-disk inode's next_unlinked pointer. */
2142STATIC void
2143xfs_iunlink_update_dinode(
2144	struct xfs_trans	*tp,
2145	xfs_agnumber_t		agno,
2146	xfs_agino_t		agino,
2147	struct xfs_buf		*ibp,
2148	struct xfs_dinode	*dip,
2149	struct xfs_imap		*imap,
2150	xfs_agino_t		next_agino)
2151{
2152	struct xfs_mount	*mp = tp->t_mountp;
2153	int			offset;
2154
2155	ASSERT(xfs_verify_agino_or_null(mp, agno, next_agino));
2156
2157	trace_xfs_iunlink_update_dinode(mp, agno, agino,
2158			be32_to_cpu(dip->di_next_unlinked), next_agino);
2159
2160	dip->di_next_unlinked = cpu_to_be32(next_agino);
2161	offset = imap->im_boffset +
2162			offsetof(struct xfs_dinode, di_next_unlinked);
2163
2164	/* need to recalc the inode CRC if appropriate */
2165	xfs_dinode_calc_crc(mp, dip);
2166	xfs_trans_inode_buf(tp, ibp);
2167	xfs_trans_log_buf(tp, ibp, offset, offset + sizeof(xfs_agino_t) - 1);
2168}
2169
2170/* Set an in-core inode's unlinked pointer and return the old value. */
2171STATIC int
2172xfs_iunlink_update_inode(
2173	struct xfs_trans	*tp,
2174	struct xfs_inode	*ip,
2175	xfs_agnumber_t		agno,
2176	xfs_agino_t		next_agino,
2177	xfs_agino_t		*old_next_agino)
2178{
2179	struct xfs_mount	*mp = tp->t_mountp;
2180	struct xfs_dinode	*dip;
2181	struct xfs_buf		*ibp;
2182	xfs_agino_t		old_value;
2183	int			error;
2184
2185	ASSERT(xfs_verify_agino_or_null(mp, agno, next_agino));
2186
2187	error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp, 0);
2188	if (error)
2189		return error;
2190
2191	/* Make sure the old pointer isn't garbage. */
2192	old_value = be32_to_cpu(dip->di_next_unlinked);
2193	if (!xfs_verify_agino_or_null(mp, agno, old_value)) {
2194		xfs_inode_verifier_error(ip, -EFSCORRUPTED, __func__, dip,
2195				sizeof(*dip), __this_address);
2196		error = -EFSCORRUPTED;
2197		goto out;
2198	}
2199
2200	/*
2201	 * Since we're updating a linked list, we should never find that the
2202	 * current pointer is the same as the new value, unless we're
2203	 * terminating the list.
2204	 */
2205	*old_next_agino = old_value;
2206	if (old_value == next_agino) {
2207		if (next_agino != NULLAGINO) {
2208			xfs_inode_verifier_error(ip, -EFSCORRUPTED, __func__,
2209					dip, sizeof(*dip), __this_address);
2210			error = -EFSCORRUPTED;
2211		}
2212		goto out;
2213	}
2214
2215	/* Ok, update the new pointer. */
2216	xfs_iunlink_update_dinode(tp, agno, XFS_INO_TO_AGINO(mp, ip->i_ino),
2217			ibp, dip, &ip->i_imap, next_agino);
2218	return 0;
2219out:
2220	xfs_trans_brelse(tp, ibp);
2221	return error;
2222}
2223
2224/*
2225 * This is called when the inode's link count has gone to 0 or we are creating
2226 * a tmpfile via O_TMPFILE.  The inode @ip must have nlink == 0.
2227 *
2228 * We place the on-disk inode on a list in the AGI.  It will be pulled from this
2229 * list when the inode is freed.
2230 */
2231STATIC int
2232xfs_iunlink(
2233	struct xfs_trans	*tp,
2234	struct xfs_inode	*ip)
2235{
2236	struct xfs_mount	*mp = tp->t_mountp;
2237	struct xfs_agi		*agi;
2238	struct xfs_buf		*agibp;
2239	xfs_agino_t		next_agino;
2240	xfs_agnumber_t		agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
2241	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2242	short			bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2243	int			error;
 
2244
2245	ASSERT(VFS_I(ip)->i_nlink == 0);
2246	ASSERT(VFS_I(ip)->i_mode != 0);
2247	trace_xfs_iunlink(ip);
2248
2249	/* Get the agi buffer first.  It ensures lock ordering on the list. */
2250	error = xfs_read_agi(mp, tp, agno, &agibp);
 
 
 
2251	if (error)
2252		return error;
2253	agi = agibp->b_addr;
2254
2255	/*
2256	 * Get the index into the agi hash table for the list this inode will
2257	 * go on.  Make sure the pointer isn't garbage and that this inode
2258	 * isn't already on the list.
2259	 */
2260	next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2261	if (next_agino == agino ||
2262	    !xfs_verify_agino_or_null(mp, agno, next_agino)) {
2263		xfs_buf_mark_corrupt(agibp);
2264		return -EFSCORRUPTED;
2265	}
2266
2267	if (next_agino != NULLAGINO) {
2268		xfs_agino_t		old_agino;
2269
2270		/*
2271		 * There is already another inode in the bucket, so point this
2272		 * inode to the current head of the list.
2273		 */
2274		error = xfs_iunlink_update_inode(tp, ip, agno, next_agino,
2275				&old_agino);
2276		if (error)
2277			return error;
2278		ASSERT(old_agino == NULLAGINO);
2279
2280		/*
2281		 * agino has been unlinked, add a backref from the next inode
2282		 * back to agino.
2283		 */
2284		error = xfs_iunlink_add_backref(agibp->b_pag, agino, next_agino);
2285		if (error)
2286			return error;
2287	}
2288
2289	/* Point the head of the list to point to this inode. */
2290	return xfs_iunlink_update_bucket(tp, agno, agibp, bucket_index, agino);
2291}
2292
2293/* Return the imap, dinode pointer, and buffer for an inode. */
2294STATIC int
2295xfs_iunlink_map_ino(
2296	struct xfs_trans	*tp,
2297	xfs_agnumber_t		agno,
2298	xfs_agino_t		agino,
2299	struct xfs_imap		*imap,
2300	struct xfs_dinode	**dipp,
2301	struct xfs_buf		**bpp)
2302{
2303	struct xfs_mount	*mp = tp->t_mountp;
2304	int			error;
2305
2306	imap->im_blkno = 0;
2307	error = xfs_imap(mp, tp, XFS_AGINO_TO_INO(mp, agno, agino), imap, 0);
2308	if (error) {
2309		xfs_warn(mp, "%s: xfs_imap returned error %d.",
2310				__func__, error);
2311		return error;
2312	}
2313
2314	error = xfs_imap_to_bp(mp, tp, imap, dipp, bpp, 0);
2315	if (error) {
2316		xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.",
2317				__func__, error);
2318		return error;
2319	}
2320
2321	return 0;
2322}
2323
2324/*
2325 * Walk the unlinked chain from @head_agino until we find the inode that
2326 * points to @target_agino.  Return the inode number, map, dinode pointer,
2327 * and inode cluster buffer of that inode as @agino, @imap, @dipp, and @bpp.
2328 *
2329 * @tp, @pag, @head_agino, and @target_agino are input parameters.
2330 * @agino, @imap, @dipp, and @bpp are all output parameters.
2331 *
2332 * Do not call this function if @target_agino is the head of the list.
2333 */
2334STATIC int
2335xfs_iunlink_map_prev(
2336	struct xfs_trans	*tp,
2337	xfs_agnumber_t		agno,
2338	xfs_agino_t		head_agino,
2339	xfs_agino_t		target_agino,
2340	xfs_agino_t		*agino,
2341	struct xfs_imap		*imap,
2342	struct xfs_dinode	**dipp,
2343	struct xfs_buf		**bpp,
2344	struct xfs_perag	*pag)
2345{
2346	struct xfs_mount	*mp = tp->t_mountp;
2347	xfs_agino_t		next_agino;
2348	int			error;
2349
2350	ASSERT(head_agino != target_agino);
2351	*bpp = NULL;
2352
2353	/* See if our backref cache can find it faster. */
2354	*agino = xfs_iunlink_lookup_backref(pag, target_agino);
2355	if (*agino != NULLAGINO) {
2356		error = xfs_iunlink_map_ino(tp, agno, *agino, imap, dipp, bpp);
2357		if (error)
2358			return error;
2359
2360		if (be32_to_cpu((*dipp)->di_next_unlinked) == target_agino)
2361			return 0;
2362
 
2363		/*
2364		 * If we get here the cache contents were corrupt, so drop the
2365		 * buffer and fall back to walking the bucket list.
 
 
2366		 */
2367		xfs_trans_brelse(tp, *bpp);
2368		*bpp = NULL;
2369		WARN_ON_ONCE(1);
2370	}
2371
2372	trace_xfs_iunlink_map_prev_fallback(mp, agno);
2373
2374	/* Otherwise, walk the entire bucket until we find it. */
2375	next_agino = head_agino;
2376	while (next_agino != target_agino) {
2377		xfs_agino_t	unlinked_agino;
2378
2379		if (*bpp)
2380			xfs_trans_brelse(tp, *bpp);
2381
2382		*agino = next_agino;
2383		error = xfs_iunlink_map_ino(tp, agno, next_agino, imap, dipp,
2384				bpp);
2385		if (error)
2386			return error;
2387
2388		unlinked_agino = be32_to_cpu((*dipp)->di_next_unlinked);
2389		/*
2390		 * Make sure this pointer is valid and isn't an obvious
2391		 * infinite loop.
2392		 */
2393		if (!xfs_verify_agino(mp, agno, unlinked_agino) ||
2394		    next_agino == unlinked_agino) {
2395			XFS_CORRUPTION_ERROR(__func__,
2396					XFS_ERRLEVEL_LOW, mp,
2397					*dipp, sizeof(**dipp));
2398			error = -EFSCORRUPTED;
2399			return error;
2400		}
2401		next_agino = unlinked_agino;
2402	}
2403
 
 
 
 
 
 
 
 
 
 
2404	return 0;
2405}
2406
2407/*
2408 * Pull the on-disk inode from the AGI unlinked list.
2409 */
2410STATIC int
2411xfs_iunlink_remove(
2412	struct xfs_trans	*tp,
2413	struct xfs_inode	*ip)
2414{
2415	struct xfs_mount	*mp = tp->t_mountp;
2416	struct xfs_agi		*agi;
2417	struct xfs_buf		*agibp;
2418	struct xfs_buf		*last_ibp;
2419	struct xfs_dinode	*last_dip = NULL;
2420	xfs_agnumber_t		agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
2421	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2422	xfs_agino_t		next_agino;
2423	xfs_agino_t		head_agino;
2424	short			bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2425	int			error;
2426
2427	trace_xfs_iunlink_remove(ip);
2428
2429	/* Get the agi buffer first.  It ensures lock ordering on the list. */
2430	error = xfs_read_agi(mp, tp, agno, &agibp);
2431	if (error)
2432		return error;
2433	agi = agibp->b_addr;
2434
2435	/*
2436	 * Get the index into the agi hash table for the list this inode will
2437	 * go on.  Make sure the head pointer isn't garbage.
2438	 */
2439	head_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2440	if (!xfs_verify_agino(mp, agno, head_agino)) {
2441		XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
2442				agi, sizeof(*agi));
2443		return -EFSCORRUPTED;
2444	}
2445
2446	/*
2447	 * Set our inode's next_unlinked pointer to NULL and then return
2448	 * the old pointer value so that we can update whatever was previous
2449	 * to us in the list to point to whatever was next in the list.
2450	 */
2451	error = xfs_iunlink_update_inode(tp, ip, agno, NULLAGINO, &next_agino);
2452	if (error)
2453		return error;
2454
 
 
2455	/*
2456	 * If there was a backref pointing from the next inode back to this
2457	 * one, remove it because we've removed this inode from the list.
2458	 *
2459	 * Later, if this inode was in the middle of the list we'll update
2460	 * this inode's backref to point from the next inode.
2461	 */
2462	if (next_agino != NULLAGINO) {
2463		error = xfs_iunlink_change_backref(agibp->b_pag, next_agino,
2464				NULLAGINO);
2465		if (error)
2466			return error;
2467	}
2468
2469	if (head_agino != agino) {
2470		struct xfs_imap	imap;
2471		xfs_agino_t	prev_agino;
2472
2473		/* We need to search the list for the inode being freed. */
2474		error = xfs_iunlink_map_prev(tp, agno, head_agino, agino,
2475				&prev_agino, &imap, &last_dip, &last_ibp,
2476				agibp->b_pag);
2477		if (error)
 
 
 
2478			return error;
2479
2480		/* Point the previous inode on the list to the next inode. */
2481		xfs_iunlink_update_dinode(tp, agno, prev_agino, last_ibp,
2482				last_dip, &imap, next_agino);
2483
 
 
 
 
 
 
 
 
 
 
 
 
 
2484		/*
2485		 * Now we deal with the backref for this inode.  If this inode
2486		 * pointed at a real inode, change the backref that pointed to
2487		 * us to point to our old next.  If this inode was the end of
2488		 * the list, delete the backref that pointed to us.  Note that
2489		 * change_backref takes care of deleting the backref if
2490		 * next_agino is NULLAGINO.
2491		 */
2492		return xfs_iunlink_change_backref(agibp->b_pag, agino,
2493				next_agino);
2494	}
2495
2496	/* Point the head of the list to the next unlinked inode. */
2497	return xfs_iunlink_update_bucket(tp, agno, agibp, bucket_index,
2498			next_agino);
2499}
2500
2501/*
2502 * Look up the inode number specified and if it is not already marked XFS_ISTALE
2503 * mark it stale. We should only find clean inodes in this lookup that aren't
2504 * already stale.
2505 */
2506static void
2507xfs_ifree_mark_inode_stale(
2508	struct xfs_buf		*bp,
2509	struct xfs_inode	*free_ip,
2510	xfs_ino_t		inum)
2511{
2512	struct xfs_mount	*mp = bp->b_mount;
2513	struct xfs_perag	*pag = bp->b_pag;
2514	struct xfs_inode_log_item *iip;
2515	struct xfs_inode	*ip;
2516
2517retry:
2518	rcu_read_lock();
2519	ip = radix_tree_lookup(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, inum));
 
 
2520
2521	/* Inode not in memory, nothing to do */
2522	if (!ip) {
2523		rcu_read_unlock();
2524		return;
2525	}
 
 
 
2526
2527	/*
2528	 * because this is an RCU protected lookup, we could find a recently
2529	 * freed or even reallocated inode during the lookup. We need to check
2530	 * under the i_flags_lock for a valid inode here. Skip it if it is not
2531	 * valid, the wrong inode or stale.
2532	 */
2533	spin_lock(&ip->i_flags_lock);
2534	if (ip->i_ino != inum || __xfs_iflags_test(ip, XFS_ISTALE)) {
2535		spin_unlock(&ip->i_flags_lock);
2536		rcu_read_unlock();
2537		return;
2538	}
2539
2540	/*
2541	 * Don't try to lock/unlock the current inode, but we _cannot_ skip the
2542	 * other inodes that we did not find in the list attached to the buffer
2543	 * and are not already marked stale. If we can't lock it, back off and
2544	 * retry.
2545	 */
2546	if (ip != free_ip) {
2547		if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2548			spin_unlock(&ip->i_flags_lock);
2549			rcu_read_unlock();
2550			delay(1);
2551			goto retry;
2552		}
2553	}
2554	ip->i_flags |= XFS_ISTALE;
2555	spin_unlock(&ip->i_flags_lock);
2556	rcu_read_unlock();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2557
2558	/*
2559	 * If we can't get the flush lock, the inode is already attached.  All
2560	 * we needed to do here is mark the inode stale so buffer IO completion
2561	 * will remove it from the AIL.
2562	 */
2563	iip = ip->i_itemp;
2564	if (!xfs_iflock_nowait(ip)) {
2565		ASSERT(!list_empty(&iip->ili_item.li_bio_list));
2566		ASSERT(iip->ili_last_fields);
2567		goto out_iunlock;
2568	}
2569
2570	/*
2571	 * Inodes not attached to the buffer can be released immediately.
2572	 * Everything else has to go through xfs_iflush_abort() on journal
2573	 * commit as the flock synchronises removal of the inode from the
2574	 * cluster buffer against inode reclaim.
2575	 */
2576	if (!iip || list_empty(&iip->ili_item.li_bio_list)) {
2577		xfs_ifunlock(ip);
2578		goto out_iunlock;
2579	}
2580
2581	/* we have a dirty inode in memory that has not yet been flushed. */
2582	spin_lock(&iip->ili_lock);
2583	iip->ili_last_fields = iip->ili_fields;
2584	iip->ili_fields = 0;
2585	iip->ili_fsync_fields = 0;
2586	spin_unlock(&iip->ili_lock);
2587	ASSERT(iip->ili_last_fields);
2588
2589out_iunlock:
2590	if (ip != free_ip)
2591		xfs_iunlock(ip, XFS_ILOCK_EXCL);
2592}
2593
2594/*
2595 * A big issue when freeing the inode cluster is that we _cannot_ skip any
2596 * inodes that are in memory - they all must be marked stale and attached to
2597 * the cluster buffer.
2598 */
2599STATIC int
2600xfs_ifree_cluster(
2601	struct xfs_inode	*free_ip,
2602	struct xfs_trans	*tp,
2603	struct xfs_icluster	*xic)
2604{
2605	struct xfs_mount	*mp = free_ip->i_mount;
2606	struct xfs_ino_geometry	*igeo = M_IGEO(mp);
2607	struct xfs_buf		*bp;
2608	xfs_daddr_t		blkno;
2609	xfs_ino_t		inum = xic->first_ino;
2610	int			nbufs;
2611	int			i, j;
2612	int			ioffset;
2613	int			error;
 
 
 
 
 
 
2614
2615	nbufs = igeo->ialloc_blks / igeo->blocks_per_cluster;
 
 
 
 
2616
2617	for (j = 0; j < nbufs; j++, inum += igeo->inodes_per_cluster) {
2618		/*
2619		 * The allocation bitmap tells us which inodes of the chunk were
2620		 * physically allocated. Skip the cluster if an inode falls into
2621		 * a sparse region.
2622		 */
2623		ioffset = inum - xic->first_ino;
2624		if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) {
2625			ASSERT(ioffset % igeo->inodes_per_cluster == 0);
2626			continue;
2627		}
2628
2629		blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2630					 XFS_INO_TO_AGBNO(mp, inum));
2631
2632		/*
2633		 * We obtain and lock the backing buffer first in the process
2634		 * here, as we have to ensure that any dirty inode that we
2635		 * can't get the flush lock on is attached to the buffer.
2636		 * If we scan the in-memory inodes first, then buffer IO can
2637		 * complete before we get a lock on it, and hence we may fail
2638		 * to mark all the active inodes on the buffer stale.
2639		 */
2640		error = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2641				mp->m_bsize * igeo->blocks_per_cluster,
2642				XBF_UNMAPPED, &bp);
2643		if (error)
2644			return error;
 
2645
2646		/*
2647		 * This buffer may not have been correctly initialised as we
2648		 * didn't read it from disk. That's not important because we are
2649		 * only using to mark the buffer as stale in the log, and to
2650		 * attach stale cached inodes on it. That means it will never be
2651		 * dispatched for IO. If it is, we want to know about it, and we
2652		 * want it to fail. We can acheive this by adding a write
2653		 * verifier to the buffer.
2654		 */
2655		bp->b_ops = &xfs_inode_buf_ops;
2656
2657		/*
2658		 * Now we need to set all the cached clean inodes as XFS_ISTALE,
2659		 * too. This requires lookups, and will skip inodes that we've
2660		 * already marked XFS_ISTALE.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2661		 */
2662		for (i = 0; i < igeo->inodes_per_cluster; i++)
2663			xfs_ifree_mark_inode_stale(bp, free_ip, inum + i);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2664
2665		xfs_trans_stale_inode_buf(tp, bp);
2666		xfs_trans_binval(tp, bp);
2667	}
 
 
2668	return 0;
2669}
2670
2671/*
2672 * This is called to return an inode to the inode free list.
2673 * The inode should already be truncated to 0 length and have
2674 * no pages associated with it.  This routine also assumes that
2675 * the inode is already a part of the transaction.
2676 *
2677 * The on-disk copy of the inode will have been added to the list
2678 * of unlinked inodes in the AGI. We need to remove the inode from
2679 * that list atomically with respect to freeing it here.
2680 */
2681int
2682xfs_ifree(
2683	struct xfs_trans	*tp,
2684	struct xfs_inode	*ip)
 
2685{
2686	int			error;
2687	struct xfs_icluster	xic = { 0 };
2688	struct xfs_inode_log_item *iip = ip->i_itemp;
2689
2690	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2691	ASSERT(VFS_I(ip)->i_nlink == 0);
2692	ASSERT(ip->i_df.if_nextents == 0);
 
2693	ASSERT(ip->i_d.di_size == 0 || !S_ISREG(VFS_I(ip)->i_mode));
2694	ASSERT(ip->i_d.di_nblocks == 0);
2695
2696	/*
2697	 * Pull the on-disk inode from the AGI unlinked list.
2698	 */
2699	error = xfs_iunlink_remove(tp, ip);
2700	if (error)
2701		return error;
2702
2703	error = xfs_difree(tp, ip->i_ino, &xic);
2704	if (error)
2705		return error;
2706
2707	/*
2708	 * Free any local-format data sitting around before we reset the
2709	 * data fork to extents format.  Note that the attr fork data has
2710	 * already been freed by xfs_attr_inactive.
2711	 */
2712	if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL) {
2713		kmem_free(ip->i_df.if_u1.if_data);
2714		ip->i_df.if_u1.if_data = NULL;
2715		ip->i_df.if_bytes = 0;
2716	}
2717
2718	VFS_I(ip)->i_mode = 0;		/* mark incore inode as free */
2719	ip->i_d.di_flags = 0;
2720	ip->i_d.di_flags2 = 0;
2721	ip->i_d.di_dmevmask = 0;
2722	ip->i_d.di_forkoff = 0;		/* mark the attr fork not in use */
2723	ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS;
2724
2725	/* Don't attempt to replay owner changes for a deleted inode */
2726	spin_lock(&iip->ili_lock);
2727	iip->ili_fields &= ~(XFS_ILOG_AOWNER | XFS_ILOG_DOWNER);
2728	spin_unlock(&iip->ili_lock);
2729
2730	/*
2731	 * Bump the generation count so no one will be confused
2732	 * by reincarnations of this inode.
2733	 */
2734	VFS_I(ip)->i_generation++;
2735	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2736
2737	if (xic.deleted)
2738		error = xfs_ifree_cluster(ip, tp, &xic);
2739
2740	return error;
2741}
2742
2743/*
2744 * This is called to unpin an inode.  The caller must have the inode locked
2745 * in at least shared mode so that the buffer cannot be subsequently pinned
2746 * once someone is waiting for it to be unpinned.
2747 */
2748static void
2749xfs_iunpin(
2750	struct xfs_inode	*ip)
2751{
2752	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2753
2754	trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2755
2756	/* Give the log a push to start the unpinning I/O */
2757	xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0, NULL);
2758
2759}
2760
2761static void
2762__xfs_iunpin_wait(
2763	struct xfs_inode	*ip)
2764{
2765	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2766	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2767
2768	xfs_iunpin(ip);
2769
2770	do {
2771		prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2772		if (xfs_ipincount(ip))
2773			io_schedule();
2774	} while (xfs_ipincount(ip));
2775	finish_wait(wq, &wait.wq_entry);
2776}
2777
2778void
2779xfs_iunpin_wait(
2780	struct xfs_inode	*ip)
2781{
2782	if (xfs_ipincount(ip))
2783		__xfs_iunpin_wait(ip);
2784}
2785
2786/*
2787 * Removing an inode from the namespace involves removing the directory entry
2788 * and dropping the link count on the inode. Removing the directory entry can
2789 * result in locking an AGF (directory blocks were freed) and removing a link
2790 * count can result in placing the inode on an unlinked list which results in
2791 * locking an AGI.
2792 *
2793 * The big problem here is that we have an ordering constraint on AGF and AGI
2794 * locking - inode allocation locks the AGI, then can allocate a new extent for
2795 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2796 * removes the inode from the unlinked list, requiring that we lock the AGI
2797 * first, and then freeing the inode can result in an inode chunk being freed
2798 * and hence freeing disk space requiring that we lock an AGF.
2799 *
2800 * Hence the ordering that is imposed by other parts of the code is AGI before
2801 * AGF. This means we cannot remove the directory entry before we drop the inode
2802 * reference count and put it on the unlinked list as this results in a lock
2803 * order of AGF then AGI, and this can deadlock against inode allocation and
2804 * freeing. Therefore we must drop the link counts before we remove the
2805 * directory entry.
2806 *
2807 * This is still safe from a transactional point of view - it is not until we
2808 * get to xfs_defer_finish() that we have the possibility of multiple
2809 * transactions in this operation. Hence as long as we remove the directory
2810 * entry and drop the link count in the first transaction of the remove
2811 * operation, there are no transactional constraints on the ordering here.
2812 */
2813int
2814xfs_remove(
2815	xfs_inode_t             *dp,
2816	struct xfs_name		*name,
2817	xfs_inode_t		*ip)
2818{
2819	xfs_mount_t		*mp = dp->i_mount;
2820	xfs_trans_t             *tp = NULL;
2821	int			is_dir = S_ISDIR(VFS_I(ip)->i_mode);
2822	int                     error = 0;
 
 
2823	uint			resblks;
2824
2825	trace_xfs_remove(dp, name);
2826
2827	if (XFS_FORCED_SHUTDOWN(mp))
2828		return -EIO;
2829
2830	error = xfs_qm_dqattach(dp);
2831	if (error)
2832		goto std_return;
2833
2834	error = xfs_qm_dqattach(ip);
2835	if (error)
2836		goto std_return;
2837
 
 
 
 
 
2838	/*
2839	 * We try to get the real space reservation first,
2840	 * allowing for directory btree deletion(s) implying
2841	 * possible bmap insert(s).  If we can't get the space
2842	 * reservation then we use 0 instead, and avoid the bmap
2843	 * btree insert(s) in the directory code by, if the bmap
2844	 * insert tries to happen, instead trimming the LAST
2845	 * block from the directory.
2846	 */
2847	resblks = XFS_REMOVE_SPACE_RES(mp);
2848	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, resblks, 0, 0, &tp);
2849	if (error == -ENOSPC) {
2850		resblks = 0;
2851		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, 0, 0, 0,
2852				&tp);
2853	}
2854	if (error) {
2855		ASSERT(error != -ENOSPC);
2856		goto std_return;
2857	}
2858
2859	xfs_lock_two_inodes(dp, XFS_ILOCK_EXCL, ip, XFS_ILOCK_EXCL);
 
2860
2861	xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
2862	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
2863
2864	/*
2865	 * If we're removing a directory perform some additional validation.
2866	 */
2867	if (is_dir) {
2868		ASSERT(VFS_I(ip)->i_nlink >= 2);
2869		if (VFS_I(ip)->i_nlink != 2) {
2870			error = -ENOTEMPTY;
2871			goto out_trans_cancel;
2872		}
2873		if (!xfs_dir_isempty(ip)) {
2874			error = -ENOTEMPTY;
2875			goto out_trans_cancel;
2876		}
2877
2878		/* Drop the link from ip's "..".  */
2879		error = xfs_droplink(tp, dp);
2880		if (error)
2881			goto out_trans_cancel;
2882
2883		/* Drop the "." link from ip to self.  */
2884		error = xfs_droplink(tp, ip);
2885		if (error)
2886			goto out_trans_cancel;
2887	} else {
2888		/*
2889		 * When removing a non-directory we need to log the parent
2890		 * inode here.  For a directory this is done implicitly
2891		 * by the xfs_droplink call for the ".." entry.
2892		 */
2893		xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
2894	}
2895	xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2896
2897	/* Drop the link from dp to ip. */
2898	error = xfs_droplink(tp, ip);
2899	if (error)
2900		goto out_trans_cancel;
2901
2902	error = xfs_dir_removename(tp, dp, name, ip->i_ino, resblks);
 
 
2903	if (error) {
2904		ASSERT(error != -ENOENT);
2905		goto out_trans_cancel;
2906	}
2907
2908	/*
2909	 * If this is a synchronous mount, make sure that the
2910	 * remove transaction goes to disk before returning to
2911	 * the user.
2912	 */
2913	if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2914		xfs_trans_set_sync(tp);
2915
 
 
 
 
2916	error = xfs_trans_commit(tp);
2917	if (error)
2918		goto std_return;
2919
2920	if (is_dir && xfs_inode_is_filestream(ip))
2921		xfs_filestream_deassociate(ip);
2922
2923	return 0;
2924
 
 
2925 out_trans_cancel:
2926	xfs_trans_cancel(tp);
2927 std_return:
2928	return error;
2929}
2930
2931/*
2932 * Enter all inodes for a rename transaction into a sorted array.
2933 */
2934#define __XFS_SORT_INODES	5
2935STATIC void
2936xfs_sort_for_rename(
2937	struct xfs_inode	*dp1,	/* in: old (source) directory inode */
2938	struct xfs_inode	*dp2,	/* in: new (target) directory inode */
2939	struct xfs_inode	*ip1,	/* in: inode of old entry */
2940	struct xfs_inode	*ip2,	/* in: inode of new entry */
2941	struct xfs_inode	*wip,	/* in: whiteout inode */
2942	struct xfs_inode	**i_tab,/* out: sorted array of inodes */
2943	int			*num_inodes)  /* in/out: inodes in array */
2944{
2945	int			i, j;
2946
2947	ASSERT(*num_inodes == __XFS_SORT_INODES);
2948	memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *));
2949
2950	/*
2951	 * i_tab contains a list of pointers to inodes.  We initialize
2952	 * the table here & we'll sort it.  We will then use it to
2953	 * order the acquisition of the inode locks.
2954	 *
2955	 * Note that the table may contain duplicates.  e.g., dp1 == dp2.
2956	 */
2957	i = 0;
2958	i_tab[i++] = dp1;
2959	i_tab[i++] = dp2;
2960	i_tab[i++] = ip1;
2961	if (ip2)
2962		i_tab[i++] = ip2;
2963	if (wip)
2964		i_tab[i++] = wip;
2965	*num_inodes = i;
2966
2967	/*
2968	 * Sort the elements via bubble sort.  (Remember, there are at
2969	 * most 5 elements to sort, so this is adequate.)
2970	 */
2971	for (i = 0; i < *num_inodes; i++) {
2972		for (j = 1; j < *num_inodes; j++) {
2973			if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
2974				struct xfs_inode *temp = i_tab[j];
2975				i_tab[j] = i_tab[j-1];
2976				i_tab[j-1] = temp;
2977			}
2978		}
2979	}
2980}
2981
2982static int
2983xfs_finish_rename(
2984	struct xfs_trans	*tp)
 
2985{
 
 
2986	/*
2987	 * If this is a synchronous mount, make sure that the rename transaction
2988	 * goes to disk before returning to the user.
2989	 */
2990	if (tp->t_mountp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2991		xfs_trans_set_sync(tp);
2992
 
 
 
 
 
 
 
2993	return xfs_trans_commit(tp);
2994}
2995
2996/*
2997 * xfs_cross_rename()
2998 *
2999 * responsible for handling RENAME_EXCHANGE flag in renameat2() sytemcall
3000 */
3001STATIC int
3002xfs_cross_rename(
3003	struct xfs_trans	*tp,
3004	struct xfs_inode	*dp1,
3005	struct xfs_name		*name1,
3006	struct xfs_inode	*ip1,
3007	struct xfs_inode	*dp2,
3008	struct xfs_name		*name2,
3009	struct xfs_inode	*ip2,
 
 
3010	int			spaceres)
3011{
3012	int		error = 0;
3013	int		ip1_flags = 0;
3014	int		ip2_flags = 0;
3015	int		dp2_flags = 0;
3016
3017	/* Swap inode number for dirent in first parent */
3018	error = xfs_dir_replace(tp, dp1, name1, ip2->i_ino, spaceres);
 
 
3019	if (error)
3020		goto out_trans_abort;
3021
3022	/* Swap inode number for dirent in second parent */
3023	error = xfs_dir_replace(tp, dp2, name2, ip1->i_ino, spaceres);
 
 
3024	if (error)
3025		goto out_trans_abort;
3026
3027	/*
3028	 * If we're renaming one or more directories across different parents,
3029	 * update the respective ".." entries (and link counts) to match the new
3030	 * parents.
3031	 */
3032	if (dp1 != dp2) {
3033		dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
3034
3035		if (S_ISDIR(VFS_I(ip2)->i_mode)) {
3036			error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot,
3037						dp1->i_ino, spaceres);
 
3038			if (error)
3039				goto out_trans_abort;
3040
3041			/* transfer ip2 ".." reference to dp1 */
3042			if (!S_ISDIR(VFS_I(ip1)->i_mode)) {
3043				error = xfs_droplink(tp, dp2);
3044				if (error)
3045					goto out_trans_abort;
3046				xfs_bumplink(tp, dp1);
 
 
3047			}
3048
3049			/*
3050			 * Although ip1 isn't changed here, userspace needs
3051			 * to be warned about the change, so that applications
3052			 * relying on it (like backup ones), will properly
3053			 * notify the change
3054			 */
3055			ip1_flags |= XFS_ICHGTIME_CHG;
3056			ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
3057		}
3058
3059		if (S_ISDIR(VFS_I(ip1)->i_mode)) {
3060			error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot,
3061						dp2->i_ino, spaceres);
 
3062			if (error)
3063				goto out_trans_abort;
3064
3065			/* transfer ip1 ".." reference to dp2 */
3066			if (!S_ISDIR(VFS_I(ip2)->i_mode)) {
3067				error = xfs_droplink(tp, dp1);
3068				if (error)
3069					goto out_trans_abort;
3070				xfs_bumplink(tp, dp2);
 
 
3071			}
3072
3073			/*
3074			 * Although ip2 isn't changed here, userspace needs
3075			 * to be warned about the change, so that applications
3076			 * relying on it (like backup ones), will properly
3077			 * notify the change
3078			 */
3079			ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
3080			ip2_flags |= XFS_ICHGTIME_CHG;
3081		}
3082	}
3083
3084	if (ip1_flags) {
3085		xfs_trans_ichgtime(tp, ip1, ip1_flags);
3086		xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE);
3087	}
3088	if (ip2_flags) {
3089		xfs_trans_ichgtime(tp, ip2, ip2_flags);
3090		xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE);
3091	}
3092	if (dp2_flags) {
3093		xfs_trans_ichgtime(tp, dp2, dp2_flags);
3094		xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE);
3095	}
3096	xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3097	xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE);
3098	return xfs_finish_rename(tp);
3099
3100out_trans_abort:
 
3101	xfs_trans_cancel(tp);
3102	return error;
3103}
3104
3105/*
3106 * xfs_rename_alloc_whiteout()
3107 *
3108 * Return a referenced, unlinked, unlocked inode that can be used as a
3109 * whiteout in a rename transaction. We use a tmpfile inode here so that if we
3110 * crash between allocating the inode and linking it into the rename transaction
3111 * recovery will free the inode and we won't leak it.
3112 */
3113static int
3114xfs_rename_alloc_whiteout(
3115	struct xfs_inode	*dp,
3116	struct xfs_inode	**wip)
3117{
3118	struct xfs_inode	*tmpfile;
3119	int			error;
3120
3121	error = xfs_create_tmpfile(dp, S_IFCHR | WHITEOUT_MODE, &tmpfile);
3122	if (error)
3123		return error;
3124
3125	/*
3126	 * Prepare the tmpfile inode as if it were created through the VFS.
3127	 * Complete the inode setup and flag it as linkable.  nlink is already
3128	 * zero, so we can skip the drop_nlink.
 
3129	 */
3130	xfs_setup_iops(tmpfile);
3131	xfs_finish_inode_setup(tmpfile);
3132	VFS_I(tmpfile)->i_state |= I_LINKABLE;
3133
3134	*wip = tmpfile;
3135	return 0;
3136}
3137
3138/*
3139 * xfs_rename
3140 */
3141int
3142xfs_rename(
3143	struct xfs_inode	*src_dp,
3144	struct xfs_name		*src_name,
3145	struct xfs_inode	*src_ip,
3146	struct xfs_inode	*target_dp,
3147	struct xfs_name		*target_name,
3148	struct xfs_inode	*target_ip,
3149	unsigned int		flags)
3150{
3151	struct xfs_mount	*mp = src_dp->i_mount;
3152	struct xfs_trans	*tp;
 
 
3153	struct xfs_inode	*wip = NULL;		/* whiteout inode */
3154	struct xfs_inode	*inodes[__XFS_SORT_INODES];
3155	struct xfs_buf		*agibp;
3156	int			num_inodes = __XFS_SORT_INODES;
3157	bool			new_parent = (src_dp != target_dp);
3158	bool			src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode);
3159	int			spaceres;
3160	int			error;
3161
3162	trace_xfs_rename(src_dp, target_dp, src_name, target_name);
3163
3164	if ((flags & RENAME_EXCHANGE) && !target_ip)
3165		return -EINVAL;
3166
3167	/*
3168	 * If we are doing a whiteout operation, allocate the whiteout inode
3169	 * we will be placing at the target and ensure the type is set
3170	 * appropriately.
3171	 */
3172	if (flags & RENAME_WHITEOUT) {
3173		ASSERT(!(flags & (RENAME_NOREPLACE | RENAME_EXCHANGE)));
3174		error = xfs_rename_alloc_whiteout(target_dp, &wip);
3175		if (error)
3176			return error;
3177
3178		/* setup target dirent info as whiteout */
3179		src_name->type = XFS_DIR3_FT_CHRDEV;
3180	}
3181
3182	xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip,
3183				inodes, &num_inodes);
3184
 
3185	spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
3186	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp);
3187	if (error == -ENOSPC) {
3188		spaceres = 0;
3189		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0,
3190				&tp);
3191	}
3192	if (error)
3193		goto out_release_wip;
3194
3195	/*
3196	 * Attach the dquots to the inodes
3197	 */
3198	error = xfs_qm_vop_rename_dqattach(inodes);
3199	if (error)
3200		goto out_trans_cancel;
3201
3202	/*
3203	 * Lock all the participating inodes. Depending upon whether
3204	 * the target_name exists in the target directory, and
3205	 * whether the target directory is the same as the source
3206	 * directory, we can lock from 2 to 4 inodes.
3207	 */
 
 
 
 
 
 
3208	xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
3209
3210	/*
3211	 * Join all the inodes to the transaction. From this point on,
3212	 * we can rely on either trans_commit or trans_cancel to unlock
3213	 * them.
3214	 */
3215	xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL);
3216	if (new_parent)
3217		xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL);
3218	xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
3219	if (target_ip)
3220		xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
3221	if (wip)
3222		xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL);
3223
3224	/*
3225	 * If we are using project inheritance, we only allow renames
3226	 * into our tree when the project IDs are the same; else the
3227	 * tree quota mechanism would be circumvented.
3228	 */
3229	if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
3230		     target_dp->i_d.di_projid != src_ip->i_d.di_projid)) {
3231		error = -EXDEV;
3232		goto out_trans_cancel;
3233	}
3234
 
 
3235	/* RENAME_EXCHANGE is unique from here on. */
3236	if (flags & RENAME_EXCHANGE)
3237		return xfs_cross_rename(tp, src_dp, src_name, src_ip,
3238					target_dp, target_name, target_ip,
3239					spaceres);
3240
3241	/*
3242	 * Check for expected errors before we dirty the transaction
3243	 * so we can return an error without a transaction abort.
3244	 */
3245	if (target_ip == NULL) {
3246		/*
3247		 * If there's no space reservation, check the entry will
3248		 * fit before actually inserting it.
3249		 */
3250		if (!spaceres) {
3251			error = xfs_dir_canenter(tp, target_dp, target_name);
3252			if (error)
3253				goto out_trans_cancel;
3254		}
3255	} else {
3256		/*
3257		 * If target exists and it's a directory, check that whether
3258		 * it can be destroyed.
3259		 */
3260		if (S_ISDIR(VFS_I(target_ip)->i_mode) &&
3261		    (!xfs_dir_isempty(target_ip) ||
3262		     (VFS_I(target_ip)->i_nlink > 2))) {
3263			error = -EEXIST;
3264			goto out_trans_cancel;
3265		}
3266	}
3267
3268	/*
3269	 * Directory entry creation below may acquire the AGF. Remove
3270	 * the whiteout from the unlinked list first to preserve correct
3271	 * AGI/AGF locking order. This dirties the transaction so failures
3272	 * after this point will abort and log recovery will clean up the
3273	 * mess.
3274	 *
3275	 * For whiteouts, we need to bump the link count on the whiteout
3276	 * inode. After this point, we have a real link, clear the tmpfile
3277	 * state flag from the inode so it doesn't accidentally get misused
3278	 * in future.
3279	 */
3280	if (wip) {
3281		ASSERT(VFS_I(wip)->i_nlink == 0);
3282		error = xfs_iunlink_remove(tp, wip);
3283		if (error)
3284			goto out_trans_cancel;
3285
3286		xfs_bumplink(tp, wip);
3287		VFS_I(wip)->i_state &= ~I_LINKABLE;
3288	}
3289
3290	/*
3291	 * Set up the target.
3292	 */
3293	if (target_ip == NULL) {
3294		/*
3295		 * If target does not exist and the rename crosses
3296		 * directories, adjust the target directory link count
3297		 * to account for the ".." reference from the new entry.
3298		 */
3299		error = xfs_dir_createname(tp, target_dp, target_name,
3300					   src_ip->i_ino, spaceres);
 
3301		if (error)
3302			goto out_trans_cancel;
3303
3304		xfs_trans_ichgtime(tp, target_dp,
3305					XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3306
3307		if (new_parent && src_is_directory) {
3308			xfs_bumplink(tp, target_dp);
 
 
3309		}
3310	} else { /* target_ip != NULL */
3311		/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3312		 * Link the source inode under the target name.
3313		 * If the source inode is a directory and we are moving
3314		 * it across directories, its ".." entry will be
3315		 * inconsistent until we replace that down below.
3316		 *
3317		 * In case there is already an entry with the same
3318		 * name at the destination directory, remove it first.
3319		 */
3320
3321		/*
3322		 * Check whether the replace operation will need to allocate
3323		 * blocks.  This happens when the shortform directory lacks
3324		 * space and we have to convert it to a block format directory.
3325		 * When more blocks are necessary, we must lock the AGI first
3326		 * to preserve locking order (AGI -> AGF).
3327		 */
3328		if (xfs_dir2_sf_replace_needblock(target_dp, src_ip->i_ino)) {
3329			error = xfs_read_agi(mp, tp,
3330					XFS_INO_TO_AGNO(mp, target_ip->i_ino),
3331					&agibp);
3332			if (error)
3333				goto out_trans_cancel;
3334		}
3335
3336		error = xfs_dir_replace(tp, target_dp, target_name,
3337					src_ip->i_ino, spaceres);
 
3338		if (error)
3339			goto out_trans_cancel;
3340
3341		xfs_trans_ichgtime(tp, target_dp,
3342					XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3343
3344		/*
3345		 * Decrement the link count on the target since the target
3346		 * dir no longer points to it.
3347		 */
3348		error = xfs_droplink(tp, target_ip);
3349		if (error)
3350			goto out_trans_cancel;
3351
3352		if (src_is_directory) {
3353			/*
3354			 * Drop the link from the old "." entry.
3355			 */
3356			error = xfs_droplink(tp, target_ip);
3357			if (error)
3358				goto out_trans_cancel;
3359		}
3360	} /* target_ip != NULL */
3361
3362	/*
3363	 * Remove the source.
3364	 */
3365	if (new_parent && src_is_directory) {
3366		/*
3367		 * Rewrite the ".." entry to point to the new
3368		 * directory.
3369		 */
3370		error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
3371					target_dp->i_ino, spaceres);
 
3372		ASSERT(error != -EEXIST);
3373		if (error)
3374			goto out_trans_cancel;
3375	}
3376
3377	/*
3378	 * We always want to hit the ctime on the source inode.
3379	 *
3380	 * This isn't strictly required by the standards since the source
3381	 * inode isn't really being changed, but old unix file systems did
3382	 * it and some incremental backup programs won't work without it.
3383	 */
3384	xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
3385	xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
3386
3387	/*
3388	 * Adjust the link count on src_dp.  This is necessary when
3389	 * renaming a directory, either within one parent when
3390	 * the target existed, or across two parent directories.
3391	 */
3392	if (src_is_directory && (new_parent || target_ip != NULL)) {
3393
3394		/*
3395		 * Decrement link count on src_directory since the
3396		 * entry that's moved no longer points to it.
3397		 */
3398		error = xfs_droplink(tp, src_dp);
3399		if (error)
3400			goto out_trans_cancel;
3401	}
3402
3403	/*
3404	 * For whiteouts, we only need to update the source dirent with the
3405	 * inode number of the whiteout inode rather than removing it
3406	 * altogether.
3407	 */
3408	if (wip) {
3409		error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino,
3410					spaceres);
3411	} else
3412		error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
3413					   spaceres);
3414	if (error)
3415		goto out_trans_cancel;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3416
3417	xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3418	xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
3419	if (new_parent)
3420		xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
3421
3422	error = xfs_finish_rename(tp);
3423	if (wip)
3424		xfs_irele(wip);
3425	return error;
3426
 
 
3427out_trans_cancel:
3428	xfs_trans_cancel(tp);
3429out_release_wip:
3430	if (wip)
3431		xfs_irele(wip);
3432	return error;
3433}
3434
3435static int
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3436xfs_iflush(
3437	struct xfs_inode	*ip,
3438	struct xfs_buf		*bp)
3439{
3440	struct xfs_inode_log_item *iip = ip->i_itemp;
3441	struct xfs_dinode	*dip;
3442	struct xfs_mount	*mp = ip->i_mount;
 
 
3443	int			error;
3444
 
 
3445	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3446	ASSERT(xfs_isiflocked(ip));
3447	ASSERT(ip->i_df.if_format != XFS_DINODE_FMT_BTREE ||
3448	       ip->i_df.if_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3449	ASSERT(iip->ili_item.li_buf == bp);
3450
3451	dip = xfs_buf_offset(bp, ip->i_imap.im_boffset);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3452
3453	/*
3454	 * We don't flush the inode if any of the following checks fail, but we
3455	 * do still update the log item and attach to the backing buffer as if
3456	 * the flush happened. This is a formality to facilitate predictable
3457	 * error handling as the caller will shutdown and fail the buffer.
3458	 */
 
 
 
 
 
 
 
 
 
 
 
3459	error = -EFSCORRUPTED;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3460	if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
3461			       mp, XFS_ERRTAG_IFLUSH_1)) {
3462		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3463			"%s: Bad inode %Lu magic number 0x%x, ptr "PTR_FMT,
3464			__func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
3465		goto flush_out;
3466	}
3467	if (S_ISREG(VFS_I(ip)->i_mode)) {
3468		if (XFS_TEST_ERROR(
3469		    ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS &&
3470		    ip->i_df.if_format != XFS_DINODE_FMT_BTREE,
3471		    mp, XFS_ERRTAG_IFLUSH_3)) {
3472			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3473				"%s: Bad regular inode %Lu, ptr "PTR_FMT,
3474				__func__, ip->i_ino, ip);
3475			goto flush_out;
3476		}
3477	} else if (S_ISDIR(VFS_I(ip)->i_mode)) {
3478		if (XFS_TEST_ERROR(
3479		    ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS &&
3480		    ip->i_df.if_format != XFS_DINODE_FMT_BTREE &&
3481		    ip->i_df.if_format != XFS_DINODE_FMT_LOCAL,
3482		    mp, XFS_ERRTAG_IFLUSH_4)) {
3483			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3484				"%s: Bad directory inode %Lu, ptr "PTR_FMT,
3485				__func__, ip->i_ino, ip);
3486			goto flush_out;
3487		}
3488	}
3489	if (XFS_TEST_ERROR(ip->i_df.if_nextents + xfs_ifork_nextents(ip->i_afp) >
3490				ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) {
 
3491		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3492			"%s: detected corrupt incore inode %Lu, "
3493			"total extents = %d, nblocks = %Ld, ptr "PTR_FMT,
3494			__func__, ip->i_ino,
3495			ip->i_df.if_nextents + xfs_ifork_nextents(ip->i_afp),
3496			ip->i_d.di_nblocks, ip);
3497		goto flush_out;
3498	}
3499	if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3500				mp, XFS_ERRTAG_IFLUSH_6)) {
3501		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3502			"%s: bad inode %Lu, forkoff 0x%x, ptr "PTR_FMT,
3503			__func__, ip->i_ino, ip->i_d.di_forkoff, ip);
3504		goto flush_out;
3505	}
3506
3507	/*
3508	 * Inode item log recovery for v2 inodes are dependent on the
3509	 * di_flushiter count for correct sequencing. We bump the flush
3510	 * iteration count so we can detect flushes which postdate a log record
3511	 * during recovery. This is redundant as we now log every change and
3512	 * hence this can't happen but we need to still do it to ensure
3513	 * backwards compatibility with old kernels that predate logging all
3514	 * inode changes.
3515	 */
3516	if (!xfs_sb_version_has_v3inode(&mp->m_sb))
3517		ip->i_d.di_flushiter++;
3518
3519	/*
3520	 * If there are inline format data / attr forks attached to this inode,
3521	 * make sure they are not corrupt.
3522	 */
3523	if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL &&
3524	    xfs_ifork_verify_local_data(ip))
3525		goto flush_out;
3526	if (ip->i_afp && ip->i_afp->if_format == XFS_DINODE_FMT_LOCAL &&
3527	    xfs_ifork_verify_local_attr(ip))
3528		goto flush_out;
3529
3530	/*
3531	 * Copy the dirty parts of the inode into the on-disk inode.  We always
3532	 * copy out the core of the inode, because if the inode is dirty at all
3533	 * the core must be.
3534	 */
3535	xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn);
3536
3537	/* Wrap, we never let the log put out DI_MAX_FLUSH */
3538	if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3539		ip->i_d.di_flushiter = 0;
3540
3541	xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
3542	if (XFS_IFORK_Q(ip))
3543		xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
 
3544
3545	/*
3546	 * We've recorded everything logged in the inode, so we'd like to clear
3547	 * the ili_fields bits so we don't log and flush things unnecessarily.
3548	 * However, we can't stop logging all this information until the data
3549	 * we've copied into the disk buffer is written to disk.  If we did we
3550	 * might overwrite the copy of the inode in the log with all the data
3551	 * after re-logging only part of it, and in the face of a crash we
3552	 * wouldn't have all the data we need to recover.
3553	 *
3554	 * What we do is move the bits to the ili_last_fields field.  When
3555	 * logging the inode, these bits are moved back to the ili_fields field.
3556	 * In the xfs_iflush_done() routine we clear ili_last_fields, since we
3557	 * know that the information those bits represent is permanently on
3558	 * disk.  As long as the flush completes before the inode is logged
3559	 * again, then both ili_fields and ili_last_fields will be cleared.
 
 
 
 
 
 
 
 
 
3560	 */
3561	error = 0;
3562flush_out:
3563	spin_lock(&iip->ili_lock);
3564	iip->ili_last_fields = iip->ili_fields;
3565	iip->ili_fields = 0;
3566	iip->ili_fsync_fields = 0;
3567	spin_unlock(&iip->ili_lock);
3568
3569	/*
3570	 * Store the current LSN of the inode so that we can tell whether the
3571	 * item has moved in the AIL from xfs_iflush_done().
3572	 */
3573	xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3574				&iip->ili_item.li_lsn);
3575
3576	/* generate the checksum. */
3577	xfs_dinode_calc_crc(mp, dip);
3578	return error;
3579}
3580
3581/*
3582 * Non-blocking flush of dirty inode metadata into the backing buffer.
3583 *
3584 * The caller must have a reference to the inode and hold the cluster buffer
3585 * locked. The function will walk across all the inodes on the cluster buffer it
3586 * can find and lock without blocking, and flush them to the cluster buffer.
3587 *
3588 * On successful flushing of at least one inode, the caller must write out the
3589 * buffer and release it. If no inodes are flushed, -EAGAIN will be returned and
3590 * the caller needs to release the buffer. On failure, the filesystem will be
3591 * shut down, the buffer will have been unlocked and released, and EFSCORRUPTED
3592 * will be returned.
3593 */
3594int
3595xfs_iflush_cluster(
3596	struct xfs_buf		*bp)
3597{
3598	struct xfs_mount	*mp = bp->b_mount;
3599	struct xfs_log_item	*lip, *n;
3600	struct xfs_inode	*ip;
3601	struct xfs_inode_log_item *iip;
3602	int			clcount = 0;
3603	int			error = 0;
3604
3605	/*
3606	 * We must use the safe variant here as on shutdown xfs_iflush_abort()
3607	 * can remove itself from the list.
 
 
3608	 */
3609	list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) {
3610		iip = (struct xfs_inode_log_item *)lip;
3611		ip = iip->ili_inode;
3612
3613		/*
3614		 * Quick and dirty check to avoid locks if possible.
3615		 */
3616		if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLOCK))
3617			continue;
3618		if (xfs_ipincount(ip))
3619			continue;
3620
3621		/*
3622		 * The inode is still attached to the buffer, which means it is
3623		 * dirty but reclaim might try to grab it. Check carefully for
3624		 * that, and grab the ilock while still holding the i_flags_lock
3625		 * to guarantee reclaim will not be able to reclaim this inode
3626		 * once we drop the i_flags_lock.
3627		 */
3628		spin_lock(&ip->i_flags_lock);
3629		ASSERT(!__xfs_iflags_test(ip, XFS_ISTALE));
3630		if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLOCK)) {
3631			spin_unlock(&ip->i_flags_lock);
3632			continue;
3633		}
3634
3635		/*
3636		 * ILOCK will pin the inode against reclaim and prevent
3637		 * concurrent transactions modifying the inode while we are
3638		 * flushing the inode.
3639		 */
3640		if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) {
3641			spin_unlock(&ip->i_flags_lock);
3642			continue;
3643		}
3644		spin_unlock(&ip->i_flags_lock);
3645
3646		/*
3647		 * Skip inodes that are already flush locked as they have
3648		 * already been written to the buffer.
3649		 */
3650		if (!xfs_iflock_nowait(ip)) {
3651			xfs_iunlock(ip, XFS_ILOCK_SHARED);
3652			continue;
3653		}
3654
3655		/*
3656		 * Abort flushing this inode if we are shut down because the
3657		 * inode may not currently be in the AIL. This can occur when
3658		 * log I/O failure unpins the inode without inserting into the
3659		 * AIL, leaving a dirty/unpinned inode attached to the buffer
3660		 * that otherwise looks like it should be flushed.
3661		 */
3662		if (XFS_FORCED_SHUTDOWN(mp)) {
3663			xfs_iunpin_wait(ip);
3664			/* xfs_iflush_abort() drops the flush lock */
3665			xfs_iflush_abort(ip);
3666			xfs_iunlock(ip, XFS_ILOCK_SHARED);
3667			error = -EIO;
3668			continue;
3669		}
3670
3671		/* don't block waiting on a log force to unpin dirty inodes */
3672		if (xfs_ipincount(ip)) {
3673			xfs_ifunlock(ip);
3674			xfs_iunlock(ip, XFS_ILOCK_SHARED);
3675			continue;
3676		}
3677
3678		if (!xfs_inode_clean(ip))
3679			error = xfs_iflush(ip, bp);
3680		else
3681			xfs_ifunlock(ip);
3682		xfs_iunlock(ip, XFS_ILOCK_SHARED);
3683		if (error)
3684			break;
3685		clcount++;
3686	}
3687
3688	if (error) {
3689		bp->b_flags |= XBF_ASYNC;
3690		xfs_buf_ioend_fail(bp);
3691		xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3692		return error;
3693	}
3694
3695	if (!clcount)
3696		return -EAGAIN;
3697
3698	XFS_STATS_INC(mp, xs_icluster_flushcnt);
3699	XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount);
3700	return 0;
3701
3702}
3703
3704/* Release an inode. */
3705void
3706xfs_irele(
3707	struct xfs_inode	*ip)
3708{
3709	trace_xfs_irele(ip, _RET_IP_);
3710	iput(VFS_I(ip));
3711}
3712
3713/*
3714 * Ensure all commited transactions touching the inode are written to the log.
3715 */
3716int
3717xfs_log_force_inode(
3718	struct xfs_inode	*ip)
3719{
3720	xfs_lsn_t		lsn = 0;
3721
3722	xfs_ilock(ip, XFS_ILOCK_SHARED);
3723	if (xfs_ipincount(ip))
3724		lsn = ip->i_itemp->ili_last_lsn;
3725	xfs_iunlock(ip, XFS_ILOCK_SHARED);
3726
3727	if (!lsn)
3728		return 0;
3729	return xfs_log_force_lsn(ip->i_mount, lsn, XFS_LOG_SYNC, NULL);
3730}
3731
3732/*
3733 * Grab the exclusive iolock for a data copy from src to dest, making sure to
3734 * abide vfs locking order (lowest pointer value goes first) and breaking the
3735 * layout leases before proceeding.  The loop is needed because we cannot call
3736 * the blocking break_layout() with the iolocks held, and therefore have to
3737 * back out both locks.
3738 */
3739static int
3740xfs_iolock_two_inodes_and_break_layout(
3741	struct inode		*src,
3742	struct inode		*dest)
3743{
3744	int			error;
3745
3746	if (src > dest)
3747		swap(src, dest);
3748
3749retry:
3750	/* Wait to break both inodes' layouts before we start locking. */
3751	error = break_layout(src, true);
3752	if (error)
3753		return error;
3754	if (src != dest) {
3755		error = break_layout(dest, true);
3756		if (error)
3757			return error;
3758	}
3759
3760	/* Lock one inode and make sure nobody got in and leased it. */
3761	inode_lock(src);
3762	error = break_layout(src, false);
3763	if (error) {
3764		inode_unlock(src);
3765		if (error == -EWOULDBLOCK)
3766			goto retry;
3767		return error;
3768	}
3769
3770	if (src == dest)
3771		return 0;
3772
3773	/* Lock the other inode and make sure nobody got in and leased it. */
3774	inode_lock_nested(dest, I_MUTEX_NONDIR2);
3775	error = break_layout(dest, false);
3776	if (error) {
3777		inode_unlock(src);
3778		inode_unlock(dest);
3779		if (error == -EWOULDBLOCK)
3780			goto retry;
3781		return error;
3782	}
3783
3784	return 0;
3785}
3786
3787/*
3788 * Lock two inodes so that userspace cannot initiate I/O via file syscalls or
3789 * mmap activity.
3790 */
3791int
3792xfs_ilock2_io_mmap(
3793	struct xfs_inode	*ip1,
3794	struct xfs_inode	*ip2)
3795{
3796	int			ret;
3797
3798	ret = xfs_iolock_two_inodes_and_break_layout(VFS_I(ip1), VFS_I(ip2));
3799	if (ret)
3800		return ret;
3801	if (ip1 == ip2)
3802		xfs_ilock(ip1, XFS_MMAPLOCK_EXCL);
3803	else
3804		xfs_lock_two_inodes(ip1, XFS_MMAPLOCK_EXCL,
3805				    ip2, XFS_MMAPLOCK_EXCL);
3806	return 0;
3807}
3808
3809/* Unlock both inodes to allow IO and mmap activity. */
3810void
3811xfs_iunlock2_io_mmap(
3812	struct xfs_inode	*ip1,
3813	struct xfs_inode	*ip2)
3814{
3815	bool			same_inode = (ip1 == ip2);
3816
3817	xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL);
3818	if (!same_inode)
3819		xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL);
3820	inode_unlock(VFS_I(ip2));
3821	if (!same_inode)
3822		inode_unlock(VFS_I(ip1));
3823}
v4.6
 
   1/*
   2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
   3 * All Rights Reserved.
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it would be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write the Free Software Foundation,
  16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  17 */
  18#include <linux/log2.h>
  19
  20#include "xfs.h"
  21#include "xfs_fs.h"
  22#include "xfs_shared.h"
  23#include "xfs_format.h"
  24#include "xfs_log_format.h"
  25#include "xfs_trans_resv.h"
  26#include "xfs_sb.h"
  27#include "xfs_mount.h"
 
  28#include "xfs_inode.h"
  29#include "xfs_da_format.h"
  30#include "xfs_da_btree.h"
  31#include "xfs_dir2.h"
  32#include "xfs_attr_sf.h"
  33#include "xfs_attr.h"
  34#include "xfs_trans_space.h"
  35#include "xfs_trans.h"
  36#include "xfs_buf_item.h"
  37#include "xfs_inode_item.h"
  38#include "xfs_ialloc.h"
  39#include "xfs_bmap.h"
  40#include "xfs_bmap_util.h"
 
  41#include "xfs_error.h"
  42#include "xfs_quota.h"
  43#include "xfs_filestream.h"
  44#include "xfs_cksum.h"
  45#include "xfs_trace.h"
  46#include "xfs_icache.h"
  47#include "xfs_symlink.h"
  48#include "xfs_trans_priv.h"
  49#include "xfs_log.h"
  50#include "xfs_bmap_btree.h"
 
  51
  52kmem_zone_t *xfs_inode_zone;
  53
  54/*
  55 * Used in xfs_itruncate_extents().  This is the maximum number of extents
  56 * freed from a file in a single transaction.
  57 */
  58#define	XFS_ITRUNC_MAX_EXTENTS	2
  59
  60STATIC int xfs_iflush_int(struct xfs_inode *, struct xfs_buf *);
  61STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *);
  62STATIC int xfs_iunlink_remove(struct xfs_trans *, struct xfs_inode *);
  63
  64/*
  65 * helper function to extract extent size hint from inode
  66 */
  67xfs_extlen_t
  68xfs_get_extsz_hint(
  69	struct xfs_inode	*ip)
  70{
 
 
 
 
 
 
  71	if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize)
  72		return ip->i_d.di_extsize;
  73	if (XFS_IS_REALTIME_INODE(ip))
  74		return ip->i_mount->m_sb.sb_rextsize;
  75	return 0;
  76}
  77
  78/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  79 * These two are wrapper routines around the xfs_ilock() routine used to
  80 * centralize some grungy code.  They are used in places that wish to lock the
  81 * inode solely for reading the extents.  The reason these places can't just
  82 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
  83 * bringing in of the extents from disk for a file in b-tree format.  If the
  84 * inode is in b-tree format, then we need to lock the inode exclusively until
  85 * the extents are read in.  Locking it exclusively all the time would limit
  86 * our parallelism unnecessarily, though.  What we do instead is check to see
  87 * if the extents have been read in yet, and only lock the inode exclusively
  88 * if they have not.
  89 *
  90 * The functions return a value which should be given to the corresponding
  91 * xfs_iunlock() call.
  92 */
  93uint
  94xfs_ilock_data_map_shared(
  95	struct xfs_inode	*ip)
  96{
  97	uint			lock_mode = XFS_ILOCK_SHARED;
  98
  99	if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE &&
 100	    (ip->i_df.if_flags & XFS_IFEXTENTS) == 0)
 101		lock_mode = XFS_ILOCK_EXCL;
 102	xfs_ilock(ip, lock_mode);
 103	return lock_mode;
 104}
 105
 106uint
 107xfs_ilock_attr_map_shared(
 108	struct xfs_inode	*ip)
 109{
 110	uint			lock_mode = XFS_ILOCK_SHARED;
 111
 112	if (ip->i_d.di_aformat == XFS_DINODE_FMT_BTREE &&
 
 113	    (ip->i_afp->if_flags & XFS_IFEXTENTS) == 0)
 114		lock_mode = XFS_ILOCK_EXCL;
 115	xfs_ilock(ip, lock_mode);
 116	return lock_mode;
 117}
 118
 119/*
 120 * The xfs inode contains 3 multi-reader locks: the i_iolock the i_mmap_lock and
 121 * the i_lock.  This routine allows various combinations of the locks to be
 122 * obtained.
 123 *
 124 * The 3 locks should always be ordered so that the IO lock is obtained first,
 125 * the mmap lock second and the ilock last in order to prevent deadlock.
 126 *
 127 * Basic locking order:
 128 *
 129 * i_iolock -> i_mmap_lock -> page_lock -> i_ilock
 130 *
 131 * mmap_sem locking order:
 132 *
 133 * i_iolock -> page lock -> mmap_sem
 134 * mmap_sem -> i_mmap_lock -> page_lock
 135 *
 136 * The difference in mmap_sem locking order mean that we cannot hold the
 137 * i_mmap_lock over syscall based read(2)/write(2) based IO. These IO paths can
 138 * fault in pages during copy in/out (for buffered IO) or require the mmap_sem
 139 * in get_user_pages() to map the user pages into the kernel address space for
 140 * direct IO. Similarly the i_iolock cannot be taken inside a page fault because
 141 * page faults already hold the mmap_sem.
 142 *
 143 * Hence to serialise fully against both syscall and mmap based IO, we need to
 144 * take both the i_iolock and the i_mmap_lock. These locks should *only* be both
 145 * taken in places where we need to invalidate the page cache in a race
 146 * free manner (e.g. truncate, hole punch and other extent manipulation
 147 * functions).
 148 */
 149void
 150xfs_ilock(
 151	xfs_inode_t		*ip,
 152	uint			lock_flags)
 153{
 154	trace_xfs_ilock(ip, lock_flags, _RET_IP_);
 155
 156	/*
 157	 * You can't set both SHARED and EXCL for the same lock,
 158	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
 159	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
 160	 */
 161	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
 162	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
 163	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
 164	       (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
 165	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
 166	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
 167	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
 168
 169	if (lock_flags & XFS_IOLOCK_EXCL)
 170		mrupdate_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
 171	else if (lock_flags & XFS_IOLOCK_SHARED)
 172		mraccess_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
 
 
 
 173
 174	if (lock_flags & XFS_MMAPLOCK_EXCL)
 175		mrupdate_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
 176	else if (lock_flags & XFS_MMAPLOCK_SHARED)
 177		mraccess_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
 178
 179	if (lock_flags & XFS_ILOCK_EXCL)
 180		mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
 181	else if (lock_flags & XFS_ILOCK_SHARED)
 182		mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
 183}
 184
 185/*
 186 * This is just like xfs_ilock(), except that the caller
 187 * is guaranteed not to sleep.  It returns 1 if it gets
 188 * the requested locks and 0 otherwise.  If the IO lock is
 189 * obtained but the inode lock cannot be, then the IO lock
 190 * is dropped before returning.
 191 *
 192 * ip -- the inode being locked
 193 * lock_flags -- this parameter indicates the inode's locks to be
 194 *       to be locked.  See the comment for xfs_ilock() for a list
 195 *	 of valid values.
 196 */
 197int
 198xfs_ilock_nowait(
 199	xfs_inode_t		*ip,
 200	uint			lock_flags)
 201{
 202	trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
 203
 204	/*
 205	 * You can't set both SHARED and EXCL for the same lock,
 206	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
 207	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
 208	 */
 209	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
 210	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
 211	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
 212	       (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
 213	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
 214	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
 215	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
 216
 217	if (lock_flags & XFS_IOLOCK_EXCL) {
 218		if (!mrtryupdate(&ip->i_iolock))
 219			goto out;
 220	} else if (lock_flags & XFS_IOLOCK_SHARED) {
 221		if (!mrtryaccess(&ip->i_iolock))
 222			goto out;
 223	}
 224
 225	if (lock_flags & XFS_MMAPLOCK_EXCL) {
 226		if (!mrtryupdate(&ip->i_mmaplock))
 227			goto out_undo_iolock;
 228	} else if (lock_flags & XFS_MMAPLOCK_SHARED) {
 229		if (!mrtryaccess(&ip->i_mmaplock))
 230			goto out_undo_iolock;
 231	}
 232
 233	if (lock_flags & XFS_ILOCK_EXCL) {
 234		if (!mrtryupdate(&ip->i_lock))
 235			goto out_undo_mmaplock;
 236	} else if (lock_flags & XFS_ILOCK_SHARED) {
 237		if (!mrtryaccess(&ip->i_lock))
 238			goto out_undo_mmaplock;
 239	}
 240	return 1;
 241
 242out_undo_mmaplock:
 243	if (lock_flags & XFS_MMAPLOCK_EXCL)
 244		mrunlock_excl(&ip->i_mmaplock);
 245	else if (lock_flags & XFS_MMAPLOCK_SHARED)
 246		mrunlock_shared(&ip->i_mmaplock);
 247out_undo_iolock:
 248	if (lock_flags & XFS_IOLOCK_EXCL)
 249		mrunlock_excl(&ip->i_iolock);
 250	else if (lock_flags & XFS_IOLOCK_SHARED)
 251		mrunlock_shared(&ip->i_iolock);
 252out:
 253	return 0;
 254}
 255
 256/*
 257 * xfs_iunlock() is used to drop the inode locks acquired with
 258 * xfs_ilock() and xfs_ilock_nowait().  The caller must pass
 259 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
 260 * that we know which locks to drop.
 261 *
 262 * ip -- the inode being unlocked
 263 * lock_flags -- this parameter indicates the inode's locks to be
 264 *       to be unlocked.  See the comment for xfs_ilock() for a list
 265 *	 of valid values for this parameter.
 266 *
 267 */
 268void
 269xfs_iunlock(
 270	xfs_inode_t		*ip,
 271	uint			lock_flags)
 272{
 273	/*
 274	 * You can't set both SHARED and EXCL for the same lock,
 275	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
 276	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
 277	 */
 278	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
 279	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
 280	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
 281	       (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
 282	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
 283	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
 284	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
 285	ASSERT(lock_flags != 0);
 286
 287	if (lock_flags & XFS_IOLOCK_EXCL)
 288		mrunlock_excl(&ip->i_iolock);
 289	else if (lock_flags & XFS_IOLOCK_SHARED)
 290		mrunlock_shared(&ip->i_iolock);
 291
 292	if (lock_flags & XFS_MMAPLOCK_EXCL)
 293		mrunlock_excl(&ip->i_mmaplock);
 294	else if (lock_flags & XFS_MMAPLOCK_SHARED)
 295		mrunlock_shared(&ip->i_mmaplock);
 296
 297	if (lock_flags & XFS_ILOCK_EXCL)
 298		mrunlock_excl(&ip->i_lock);
 299	else if (lock_flags & XFS_ILOCK_SHARED)
 300		mrunlock_shared(&ip->i_lock);
 301
 302	trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
 303}
 304
 305/*
 306 * give up write locks.  the i/o lock cannot be held nested
 307 * if it is being demoted.
 308 */
 309void
 310xfs_ilock_demote(
 311	xfs_inode_t		*ip,
 312	uint			lock_flags)
 313{
 314	ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL));
 315	ASSERT((lock_flags &
 316		~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
 317
 318	if (lock_flags & XFS_ILOCK_EXCL)
 319		mrdemote(&ip->i_lock);
 320	if (lock_flags & XFS_MMAPLOCK_EXCL)
 321		mrdemote(&ip->i_mmaplock);
 322	if (lock_flags & XFS_IOLOCK_EXCL)
 323		mrdemote(&ip->i_iolock);
 324
 325	trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
 326}
 327
 328#if defined(DEBUG) || defined(XFS_WARN)
 329int
 330xfs_isilocked(
 331	xfs_inode_t		*ip,
 332	uint			lock_flags)
 333{
 334	if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
 335		if (!(lock_flags & XFS_ILOCK_SHARED))
 336			return !!ip->i_lock.mr_writer;
 337		return rwsem_is_locked(&ip->i_lock.mr_lock);
 338	}
 339
 340	if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) {
 341		if (!(lock_flags & XFS_MMAPLOCK_SHARED))
 342			return !!ip->i_mmaplock.mr_writer;
 343		return rwsem_is_locked(&ip->i_mmaplock.mr_lock);
 344	}
 345
 346	if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) {
 347		if (!(lock_flags & XFS_IOLOCK_SHARED))
 348			return !!ip->i_iolock.mr_writer;
 349		return rwsem_is_locked(&ip->i_iolock.mr_lock);
 
 350	}
 351
 352	ASSERT(0);
 353	return 0;
 354}
 355#endif
 356
 357#ifdef DEBUG
 358int xfs_locked_n;
 359int xfs_small_retries;
 360int xfs_middle_retries;
 361int xfs_lots_retries;
 362int xfs_lock_delays;
 363#endif
 364
 365/*
 366 * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when
 367 * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined
 368 * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build
 369 * errors and warnings.
 370 */
 371#if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP)
 372static bool
 373xfs_lockdep_subclass_ok(
 374	int subclass)
 375{
 376	return subclass < MAX_LOCKDEP_SUBCLASSES;
 377}
 378#else
 379#define xfs_lockdep_subclass_ok(subclass)	(true)
 380#endif
 381
 382/*
 383 * Bump the subclass so xfs_lock_inodes() acquires each lock with a different
 384 * value. This can be called for any type of inode lock combination, including
 385 * parent locking. Care must be taken to ensure we don't overrun the subclass
 386 * storage fields in the class mask we build.
 387 */
 388static inline int
 389xfs_lock_inumorder(int lock_mode, int subclass)
 390{
 391	int	class = 0;
 392
 393	ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP |
 394			      XFS_ILOCK_RTSUM)));
 395	ASSERT(xfs_lockdep_subclass_ok(subclass));
 396
 397	if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
 398		ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS);
 399		ASSERT(xfs_lockdep_subclass_ok(subclass +
 400						XFS_IOLOCK_PARENT_VAL));
 401		class += subclass << XFS_IOLOCK_SHIFT;
 402		if (lock_mode & XFS_IOLOCK_PARENT)
 403			class += XFS_IOLOCK_PARENT_VAL << XFS_IOLOCK_SHIFT;
 404	}
 405
 406	if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) {
 407		ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS);
 408		class += subclass << XFS_MMAPLOCK_SHIFT;
 409	}
 410
 411	if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) {
 412		ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS);
 413		class += subclass << XFS_ILOCK_SHIFT;
 414	}
 415
 416	return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class;
 417}
 418
 419/*
 420 * The following routine will lock n inodes in exclusive mode.  We assume the
 421 * caller calls us with the inodes in i_ino order.
 422 *
 423 * We need to detect deadlock where an inode that we lock is in the AIL and we
 424 * start waiting for another inode that is locked by a thread in a long running
 425 * transaction (such as truncate). This can result in deadlock since the long
 426 * running trans might need to wait for the inode we just locked in order to
 427 * push the tail and free space in the log.
 428 *
 429 * xfs_lock_inodes() can only be used to lock one type of lock at a time -
 430 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
 431 * lock more than one at a time, lockdep will report false positives saying we
 432 * have violated locking orders.
 433 */
 434void
 435xfs_lock_inodes(
 436	xfs_inode_t	**ips,
 437	int		inodes,
 438	uint		lock_mode)
 439{
 440	int		attempts = 0, i, j, try_lock;
 441	xfs_log_item_t	*lp;
 442
 443	/*
 444	 * Currently supports between 2 and 5 inodes with exclusive locking.  We
 445	 * support an arbitrary depth of locking here, but absolute limits on
 446	 * inodes depend on the the type of locking and the limits placed by
 447	 * lockdep annotations in xfs_lock_inumorder.  These are all checked by
 448	 * the asserts.
 449	 */
 450	ASSERT(ips && inodes >= 2 && inodes <= 5);
 451	ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL |
 452			    XFS_ILOCK_EXCL));
 453	ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED |
 454			      XFS_ILOCK_SHARED)));
 455	ASSERT(!(lock_mode & XFS_IOLOCK_EXCL) ||
 456		inodes <= XFS_IOLOCK_MAX_SUBCLASS + 1);
 457	ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) ||
 458		inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1);
 459	ASSERT(!(lock_mode & XFS_ILOCK_EXCL) ||
 460		inodes <= XFS_ILOCK_MAX_SUBCLASS + 1);
 461
 462	if (lock_mode & XFS_IOLOCK_EXCL) {
 463		ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL)));
 464	} else if (lock_mode & XFS_MMAPLOCK_EXCL)
 465		ASSERT(!(lock_mode & XFS_ILOCK_EXCL));
 466
 467	try_lock = 0;
 468	i = 0;
 469again:
 470	for (; i < inodes; i++) {
 471		ASSERT(ips[i]);
 472
 473		if (i && (ips[i] == ips[i - 1]))	/* Already locked */
 474			continue;
 475
 476		/*
 477		 * If try_lock is not set yet, make sure all locked inodes are
 478		 * not in the AIL.  If any are, set try_lock to be used later.
 479		 */
 480		if (!try_lock) {
 481			for (j = (i - 1); j >= 0 && !try_lock; j--) {
 482				lp = (xfs_log_item_t *)ips[j]->i_itemp;
 483				if (lp && (lp->li_flags & XFS_LI_IN_AIL))
 484					try_lock++;
 485			}
 486		}
 487
 488		/*
 489		 * If any of the previous locks we have locked is in the AIL,
 490		 * we must TRY to get the second and subsequent locks. If
 491		 * we can't get any, we must release all we have
 492		 * and try again.
 493		 */
 494		if (!try_lock) {
 495			xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
 496			continue;
 497		}
 498
 499		/* try_lock means we have an inode locked that is in the AIL. */
 500		ASSERT(i != 0);
 501		if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i)))
 502			continue;
 503
 504		/*
 505		 * Unlock all previous guys and try again.  xfs_iunlock will try
 506		 * to push the tail if the inode is in the AIL.
 507		 */
 508		attempts++;
 509		for (j = i - 1; j >= 0; j--) {
 510			/*
 511			 * Check to see if we've already unlocked this one.  Not
 512			 * the first one going back, and the inode ptr is the
 513			 * same.
 514			 */
 515			if (j != (i - 1) && ips[j] == ips[j + 1])
 516				continue;
 517
 518			xfs_iunlock(ips[j], lock_mode);
 519		}
 520
 521		if ((attempts % 5) == 0) {
 522			delay(1); /* Don't just spin the CPU */
 523#ifdef DEBUG
 524			xfs_lock_delays++;
 525#endif
 526		}
 527		i = 0;
 528		try_lock = 0;
 529		goto again;
 530	}
 531
 532#ifdef DEBUG
 533	if (attempts) {
 534		if (attempts < 5) xfs_small_retries++;
 535		else if (attempts < 100) xfs_middle_retries++;
 536		else xfs_lots_retries++;
 537	} else {
 538		xfs_locked_n++;
 539	}
 540#endif
 541}
 542
 543/*
 544 * xfs_lock_two_inodes() can only be used to lock one type of lock at a time -
 545 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
 546 * lock more than one at a time, lockdep will report false positives saying we
 547 * have violated locking orders.
 
 
 548 */
 549void
 550xfs_lock_two_inodes(
 551	xfs_inode_t		*ip0,
 552	xfs_inode_t		*ip1,
 553	uint			lock_mode)
 
 554{
 555	xfs_inode_t		*temp;
 
 556	int			attempts = 0;
 557	xfs_log_item_t		*lp;
 558
 559	if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
 560		ASSERT(!(lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)));
 561		ASSERT(!(lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
 562	} else if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL))
 563		ASSERT(!(lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
 
 
 
 
 
 
 
 564
 565	ASSERT(ip0->i_ino != ip1->i_ino);
 566
 567	if (ip0->i_ino > ip1->i_ino) {
 568		temp = ip0;
 569		ip0 = ip1;
 570		ip1 = temp;
 
 
 
 571	}
 572
 573 again:
 574	xfs_ilock(ip0, xfs_lock_inumorder(lock_mode, 0));
 575
 576	/*
 577	 * If the first lock we have locked is in the AIL, we must TRY to get
 578	 * the second lock. If we can't get it, we must release the first one
 579	 * and try again.
 580	 */
 581	lp = (xfs_log_item_t *)ip0->i_itemp;
 582	if (lp && (lp->li_flags & XFS_LI_IN_AIL)) {
 583		if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(lock_mode, 1))) {
 584			xfs_iunlock(ip0, lock_mode);
 585			if ((++attempts % 5) == 0)
 586				delay(1); /* Don't just spin the CPU */
 587			goto again;
 588		}
 589	} else {
 590		xfs_ilock(ip1, xfs_lock_inumorder(lock_mode, 1));
 591	}
 592}
 593
 594
 595void
 596__xfs_iflock(
 597	struct xfs_inode	*ip)
 598{
 599	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT);
 600	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT);
 601
 602	do {
 603		prepare_to_wait_exclusive(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
 604		if (xfs_isiflocked(ip))
 605			io_schedule();
 606	} while (!xfs_iflock_nowait(ip));
 607
 608	finish_wait(wq, &wait.wait);
 609}
 610
 611STATIC uint
 612_xfs_dic2xflags(
 613	__uint16_t		di_flags,
 614	uint64_t		di_flags2,
 615	bool			has_attr)
 616{
 617	uint			flags = 0;
 618
 619	if (di_flags & XFS_DIFLAG_ANY) {
 620		if (di_flags & XFS_DIFLAG_REALTIME)
 621			flags |= FS_XFLAG_REALTIME;
 622		if (di_flags & XFS_DIFLAG_PREALLOC)
 623			flags |= FS_XFLAG_PREALLOC;
 624		if (di_flags & XFS_DIFLAG_IMMUTABLE)
 625			flags |= FS_XFLAG_IMMUTABLE;
 626		if (di_flags & XFS_DIFLAG_APPEND)
 627			flags |= FS_XFLAG_APPEND;
 628		if (di_flags & XFS_DIFLAG_SYNC)
 629			flags |= FS_XFLAG_SYNC;
 630		if (di_flags & XFS_DIFLAG_NOATIME)
 631			flags |= FS_XFLAG_NOATIME;
 632		if (di_flags & XFS_DIFLAG_NODUMP)
 633			flags |= FS_XFLAG_NODUMP;
 634		if (di_flags & XFS_DIFLAG_RTINHERIT)
 635			flags |= FS_XFLAG_RTINHERIT;
 636		if (di_flags & XFS_DIFLAG_PROJINHERIT)
 637			flags |= FS_XFLAG_PROJINHERIT;
 638		if (di_flags & XFS_DIFLAG_NOSYMLINKS)
 639			flags |= FS_XFLAG_NOSYMLINKS;
 640		if (di_flags & XFS_DIFLAG_EXTSIZE)
 641			flags |= FS_XFLAG_EXTSIZE;
 642		if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
 643			flags |= FS_XFLAG_EXTSZINHERIT;
 644		if (di_flags & XFS_DIFLAG_NODEFRAG)
 645			flags |= FS_XFLAG_NODEFRAG;
 646		if (di_flags & XFS_DIFLAG_FILESTREAM)
 647			flags |= FS_XFLAG_FILESTREAM;
 648	}
 649
 650	if (di_flags2 & XFS_DIFLAG2_ANY) {
 651		if (di_flags2 & XFS_DIFLAG2_DAX)
 652			flags |= FS_XFLAG_DAX;
 
 
 653	}
 654
 655	if (has_attr)
 656		flags |= FS_XFLAG_HASATTR;
 657
 658	return flags;
 659}
 660
 661uint
 662xfs_ip2xflags(
 663	struct xfs_inode	*ip)
 664{
 665	struct xfs_icdinode	*dic = &ip->i_d;
 666
 667	return _xfs_dic2xflags(dic->di_flags, dic->di_flags2, XFS_IFORK_Q(ip));
 668}
 669
 670uint
 671xfs_dic2xflags(
 672	struct xfs_dinode	*dip)
 673{
 674	return _xfs_dic2xflags(be16_to_cpu(dip->di_flags),
 675				be64_to_cpu(dip->di_flags2), XFS_DFORK_Q(dip));
 676}
 677
 678/*
 679 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
 680 * is allowed, otherwise it has to be an exact match. If a CI match is found,
 681 * ci_name->name will point to a the actual name (caller must free) or
 682 * will be set to NULL if an exact match is found.
 683 */
 684int
 685xfs_lookup(
 686	xfs_inode_t		*dp,
 687	struct xfs_name		*name,
 688	xfs_inode_t		**ipp,
 689	struct xfs_name		*ci_name)
 690{
 691	xfs_ino_t		inum;
 692	int			error;
 693
 694	trace_xfs_lookup(dp, name);
 695
 696	if (XFS_FORCED_SHUTDOWN(dp->i_mount))
 697		return -EIO;
 698
 699	xfs_ilock(dp, XFS_IOLOCK_SHARED);
 700	error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
 701	if (error)
 702		goto out_unlock;
 703
 704	error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
 705	if (error)
 706		goto out_free_name;
 707
 708	xfs_iunlock(dp, XFS_IOLOCK_SHARED);
 709	return 0;
 710
 711out_free_name:
 712	if (ci_name)
 713		kmem_free(ci_name->name);
 714out_unlock:
 715	xfs_iunlock(dp, XFS_IOLOCK_SHARED);
 716	*ipp = NULL;
 717	return error;
 718}
 719
 720/*
 721 * Allocate an inode on disk and return a copy of its in-core version.
 722 * The in-core inode is locked exclusively.  Set mode, nlink, and rdev
 723 * appropriately within the inode.  The uid and gid for the inode are
 724 * set according to the contents of the given cred structure.
 725 *
 726 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
 727 * has a free inode available, call xfs_iget() to obtain the in-core
 728 * version of the allocated inode.  Finally, fill in the inode and
 729 * log its initial contents.  In this case, ialloc_context would be
 730 * set to NULL.
 731 *
 732 * If xfs_dialloc() does not have an available inode, it will replenish
 733 * its supply by doing an allocation. Since we can only do one
 734 * allocation within a transaction without deadlocks, we must commit
 735 * the current transaction before returning the inode itself.
 736 * In this case, therefore, we will set ialloc_context and return.
 737 * The caller should then commit the current transaction, start a new
 738 * transaction, and call xfs_ialloc() again to actually get the inode.
 739 *
 740 * To ensure that some other process does not grab the inode that
 741 * was allocated during the first call to xfs_ialloc(), this routine
 742 * also returns the [locked] bp pointing to the head of the freelist
 743 * as ialloc_context.  The caller should hold this buffer across
 744 * the commit and pass it back into this routine on the second call.
 745 *
 746 * If we are allocating quota inodes, we do not have a parent inode
 747 * to attach to or associate with (i.e. pip == NULL) because they
 748 * are not linked into the directory structure - they are attached
 749 * directly to the superblock - and so have no parent.
 750 */
 751int
 752xfs_ialloc(
 753	xfs_trans_t	*tp,
 754	xfs_inode_t	*pip,
 755	umode_t		mode,
 756	xfs_nlink_t	nlink,
 757	xfs_dev_t	rdev,
 758	prid_t		prid,
 759	int		okalloc,
 760	xfs_buf_t	**ialloc_context,
 761	xfs_inode_t	**ipp)
 762{
 763	struct xfs_mount *mp = tp->t_mountp;
 764	xfs_ino_t	ino;
 765	xfs_inode_t	*ip;
 766	uint		flags;
 767	int		error;
 768	struct timespec	tv;
 769	struct inode	*inode;
 770
 771	/*
 772	 * Call the space management code to pick
 773	 * the on-disk inode to be allocated.
 774	 */
 775	error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
 776			    ialloc_context, &ino);
 777	if (error)
 778		return error;
 779	if (*ialloc_context || ino == NULLFSINO) {
 780		*ipp = NULL;
 781		return 0;
 782	}
 783	ASSERT(*ialloc_context == NULL);
 784
 785	/*
 
 
 
 
 
 
 
 
 
 
 
 
 786	 * Get the in-core inode with the lock held exclusively.
 787	 * This is because we're setting fields here we need
 788	 * to prevent others from looking at until we're done.
 789	 */
 790	error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE,
 791			 XFS_ILOCK_EXCL, &ip);
 792	if (error)
 793		return error;
 794	ASSERT(ip != NULL);
 795	inode = VFS_I(ip);
 796
 797	/*
 798	 * We always convert v1 inodes to v2 now - we only support filesystems
 799	 * with >= v2 inode capability, so there is no reason for ever leaving
 800	 * an inode in v1 format.
 801	 */
 802	if (ip->i_d.di_version == 1)
 803		ip->i_d.di_version = 2;
 804
 805	inode->i_mode = mode;
 806	set_nlink(inode, nlink);
 807	ip->i_d.di_uid = xfs_kuid_to_uid(current_fsuid());
 808	ip->i_d.di_gid = xfs_kgid_to_gid(current_fsgid());
 809	xfs_set_projid(ip, prid);
 810
 811	if (pip && XFS_INHERIT_GID(pip)) {
 812		ip->i_d.di_gid = pip->i_d.di_gid;
 813		if ((VFS_I(pip)->i_mode & S_ISGID) && S_ISDIR(mode))
 814			inode->i_mode |= S_ISGID;
 
 
 815	}
 816
 817	/*
 818	 * If the group ID of the new file does not match the effective group
 819	 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
 820	 * (and only if the irix_sgid_inherit compatibility variable is set).
 821	 */
 822	if ((irix_sgid_inherit) &&
 823	    (inode->i_mode & S_ISGID) &&
 824	    (!in_group_p(xfs_gid_to_kgid(ip->i_d.di_gid))))
 825		inode->i_mode &= ~S_ISGID;
 826
 827	ip->i_d.di_size = 0;
 828	ip->i_d.di_nextents = 0;
 829	ASSERT(ip->i_d.di_nblocks == 0);
 830
 831	tv = current_fs_time(mp->m_super);
 832	inode->i_mtime = tv;
 833	inode->i_atime = tv;
 834	inode->i_ctime = tv;
 835
 836	ip->i_d.di_extsize = 0;
 837	ip->i_d.di_dmevmask = 0;
 838	ip->i_d.di_dmstate = 0;
 839	ip->i_d.di_flags = 0;
 840
 841	if (ip->i_d.di_version == 3) {
 842		inode->i_version = 1;
 843		ip->i_d.di_flags2 = 0;
 844		ip->i_d.di_crtime.t_sec = (__int32_t)tv.tv_sec;
 845		ip->i_d.di_crtime.t_nsec = (__int32_t)tv.tv_nsec;
 846	}
 847
 848
 849	flags = XFS_ILOG_CORE;
 850	switch (mode & S_IFMT) {
 851	case S_IFIFO:
 852	case S_IFCHR:
 853	case S_IFBLK:
 854	case S_IFSOCK:
 855		ip->i_d.di_format = XFS_DINODE_FMT_DEV;
 856		ip->i_df.if_u2.if_rdev = rdev;
 857		ip->i_df.if_flags = 0;
 858		flags |= XFS_ILOG_DEV;
 859		break;
 860	case S_IFREG:
 861	case S_IFDIR:
 862		if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
 863			uint64_t	di_flags2 = 0;
 864			uint		di_flags = 0;
 865
 866			if (S_ISDIR(mode)) {
 867				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
 868					di_flags |= XFS_DIFLAG_RTINHERIT;
 869				if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
 870					di_flags |= XFS_DIFLAG_EXTSZINHERIT;
 871					ip->i_d.di_extsize = pip->i_d.di_extsize;
 872				}
 873				if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
 874					di_flags |= XFS_DIFLAG_PROJINHERIT;
 875			} else if (S_ISREG(mode)) {
 876				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
 877					di_flags |= XFS_DIFLAG_REALTIME;
 878				if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
 879					di_flags |= XFS_DIFLAG_EXTSIZE;
 880					ip->i_d.di_extsize = pip->i_d.di_extsize;
 881				}
 882			}
 883			if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
 884			    xfs_inherit_noatime)
 885				di_flags |= XFS_DIFLAG_NOATIME;
 886			if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
 887			    xfs_inherit_nodump)
 888				di_flags |= XFS_DIFLAG_NODUMP;
 889			if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
 890			    xfs_inherit_sync)
 891				di_flags |= XFS_DIFLAG_SYNC;
 892			if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
 893			    xfs_inherit_nosymlinks)
 894				di_flags |= XFS_DIFLAG_NOSYMLINKS;
 895			if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
 896			    xfs_inherit_nodefrag)
 897				di_flags |= XFS_DIFLAG_NODEFRAG;
 898			if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
 899				di_flags |= XFS_DIFLAG_FILESTREAM;
 900			if (pip->i_d.di_flags2 & XFS_DIFLAG2_DAX)
 901				di_flags2 |= XFS_DIFLAG2_DAX;
 902
 903			ip->i_d.di_flags |= di_flags;
 904			ip->i_d.di_flags2 |= di_flags2;
 
 
 
 
 
 
 
 905		}
 906		/* FALLTHROUGH */
 907	case S_IFLNK:
 908		ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
 909		ip->i_df.if_flags = XFS_IFEXTENTS;
 910		ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
 911		ip->i_df.if_u1.if_extents = NULL;
 912		break;
 913	default:
 914		ASSERT(0);
 915	}
 916	/*
 917	 * Attribute fork settings for new inode.
 918	 */
 919	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
 920	ip->i_d.di_anextents = 0;
 921
 922	/*
 923	 * Log the new values stuffed into the inode.
 924	 */
 925	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
 926	xfs_trans_log_inode(tp, ip, flags);
 927
 928	/* now that we have an i_mode we can setup the inode structure */
 929	xfs_setup_inode(ip);
 930
 931	*ipp = ip;
 932	return 0;
 933}
 934
 935/*
 936 * Allocates a new inode from disk and return a pointer to the
 937 * incore copy. This routine will internally commit the current
 938 * transaction and allocate a new one if the Space Manager needed
 939 * to do an allocation to replenish the inode free-list.
 940 *
 941 * This routine is designed to be called from xfs_create and
 942 * xfs_create_dir.
 943 *
 944 */
 945int
 946xfs_dir_ialloc(
 947	xfs_trans_t	**tpp,		/* input: current transaction;
 948					   output: may be a new transaction. */
 949	xfs_inode_t	*dp,		/* directory within whose allocate
 950					   the inode. */
 951	umode_t		mode,
 952	xfs_nlink_t	nlink,
 953	xfs_dev_t	rdev,
 954	prid_t		prid,		/* project id */
 955	int		okalloc,	/* ok to allocate new space */
 956	xfs_inode_t	**ipp,		/* pointer to inode; it will be
 957					   locked. */
 958	int		*committed)
 959
 960{
 961	xfs_trans_t	*tp;
 962	xfs_inode_t	*ip;
 963	xfs_buf_t	*ialloc_context = NULL;
 964	int		code;
 965	void		*dqinfo;
 966	uint		tflags;
 967
 968	tp = *tpp;
 969	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
 970
 971	/*
 972	 * xfs_ialloc will return a pointer to an incore inode if
 973	 * the Space Manager has an available inode on the free
 974	 * list. Otherwise, it will do an allocation and replenish
 975	 * the freelist.  Since we can only do one allocation per
 976	 * transaction without deadlocks, we will need to commit the
 977	 * current transaction and start a new one.  We will then
 978	 * need to call xfs_ialloc again to get the inode.
 979	 *
 980	 * If xfs_ialloc did an allocation to replenish the freelist,
 981	 * it returns the bp containing the head of the freelist as
 982	 * ialloc_context. We will hold a lock on it across the
 983	 * transaction commit so that no other process can steal
 984	 * the inode(s) that we've just allocated.
 985	 */
 986	code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, okalloc,
 987			  &ialloc_context, &ip);
 988
 989	/*
 990	 * Return an error if we were unable to allocate a new inode.
 991	 * This should only happen if we run out of space on disk or
 992	 * encounter a disk error.
 993	 */
 994	if (code) {
 995		*ipp = NULL;
 996		return code;
 997	}
 998	if (!ialloc_context && !ip) {
 999		*ipp = NULL;
1000		return -ENOSPC;
1001	}
1002
1003	/*
1004	 * If the AGI buffer is non-NULL, then we were unable to get an
1005	 * inode in one operation.  We need to commit the current
1006	 * transaction and call xfs_ialloc() again.  It is guaranteed
1007	 * to succeed the second time.
1008	 */
1009	if (ialloc_context) {
1010		/*
1011		 * Normally, xfs_trans_commit releases all the locks.
1012		 * We call bhold to hang on to the ialloc_context across
1013		 * the commit.  Holding this buffer prevents any other
1014		 * processes from doing any allocations in this
1015		 * allocation group.
1016		 */
1017		xfs_trans_bhold(tp, ialloc_context);
1018
1019		/*
1020		 * We want the quota changes to be associated with the next
1021		 * transaction, NOT this one. So, detach the dqinfo from this
1022		 * and attach it to the next transaction.
1023		 */
1024		dqinfo = NULL;
1025		tflags = 0;
1026		if (tp->t_dqinfo) {
1027			dqinfo = (void *)tp->t_dqinfo;
1028			tp->t_dqinfo = NULL;
1029			tflags = tp->t_flags & XFS_TRANS_DQ_DIRTY;
1030			tp->t_flags &= ~(XFS_TRANS_DQ_DIRTY);
1031		}
1032
1033		code = xfs_trans_roll(&tp, 0);
1034		if (committed != NULL)
1035			*committed = 1;
1036
1037		/*
1038		 * Re-attach the quota info that we detached from prev trx.
1039		 */
1040		if (dqinfo) {
1041			tp->t_dqinfo = dqinfo;
1042			tp->t_flags |= tflags;
1043		}
1044
1045		if (code) {
1046			xfs_buf_relse(ialloc_context);
1047			*tpp = tp;
1048			*ipp = NULL;
1049			return code;
1050		}
1051		xfs_trans_bjoin(tp, ialloc_context);
1052
1053		/*
1054		 * Call ialloc again. Since we've locked out all
1055		 * other allocations in this allocation group,
1056		 * this call should always succeed.
1057		 */
1058		code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid,
1059				  okalloc, &ialloc_context, &ip);
1060
1061		/*
1062		 * If we get an error at this point, return to the caller
1063		 * so that the current transaction can be aborted.
1064		 */
1065		if (code) {
1066			*tpp = tp;
1067			*ipp = NULL;
1068			return code;
1069		}
1070		ASSERT(!ialloc_context && ip);
1071
1072	} else {
1073		if (committed != NULL)
1074			*committed = 0;
1075	}
1076
1077	*ipp = ip;
1078	*tpp = tp;
1079
1080	return 0;
1081}
1082
1083/*
1084 * Decrement the link count on an inode & log the change.  If this causes the
1085 * link count to go to zero, move the inode to AGI unlinked list so that it can
1086 * be freed when the last active reference goes away via xfs_inactive().
1087 */
1088int				/* error */
1089xfs_droplink(
1090	xfs_trans_t *tp,
1091	xfs_inode_t *ip)
1092{
1093	xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1094
1095	drop_nlink(VFS_I(ip));
1096	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1097
1098	if (VFS_I(ip)->i_nlink)
1099		return 0;
1100
1101	return xfs_iunlink(tp, ip);
1102}
1103
1104/*
1105 * Increment the link count on an inode & log the change.
1106 */
1107int
1108xfs_bumplink(
1109	xfs_trans_t *tp,
1110	xfs_inode_t *ip)
1111{
1112	xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1113
1114	ASSERT(ip->i_d.di_version > 1);
1115	inc_nlink(VFS_I(ip));
1116	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1117	return 0;
1118}
1119
1120int
1121xfs_create(
1122	xfs_inode_t		*dp,
1123	struct xfs_name		*name,
1124	umode_t			mode,
1125	xfs_dev_t		rdev,
1126	xfs_inode_t		**ipp)
1127{
1128	int			is_dir = S_ISDIR(mode);
1129	struct xfs_mount	*mp = dp->i_mount;
1130	struct xfs_inode	*ip = NULL;
1131	struct xfs_trans	*tp = NULL;
1132	int			error;
1133	xfs_bmap_free_t		free_list;
1134	xfs_fsblock_t		first_block;
1135	bool                    unlock_dp_on_error = false;
1136	prid_t			prid;
1137	struct xfs_dquot	*udqp = NULL;
1138	struct xfs_dquot	*gdqp = NULL;
1139	struct xfs_dquot	*pdqp = NULL;
1140	struct xfs_trans_res	*tres;
1141	uint			resblks;
1142
1143	trace_xfs_create(dp, name);
1144
1145	if (XFS_FORCED_SHUTDOWN(mp))
1146		return -EIO;
1147
1148	prid = xfs_get_initial_prid(dp);
1149
1150	/*
1151	 * Make sure that we have allocated dquot(s) on disk.
1152	 */
1153	error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1154					xfs_kgid_to_gid(current_fsgid()), prid,
1155					XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1156					&udqp, &gdqp, &pdqp);
1157	if (error)
1158		return error;
1159
1160	if (is_dir) {
1161		rdev = 0;
1162		resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
1163		tres = &M_RES(mp)->tr_mkdir;
1164		tp = xfs_trans_alloc(mp, XFS_TRANS_MKDIR);
1165	} else {
1166		resblks = XFS_CREATE_SPACE_RES(mp, name->len);
1167		tres = &M_RES(mp)->tr_create;
1168		tp = xfs_trans_alloc(mp, XFS_TRANS_CREATE);
1169	}
1170
1171	/*
1172	 * Initially assume that the file does not exist and
1173	 * reserve the resources for that case.  If that is not
1174	 * the case we'll drop the one we have and get a more
1175	 * appropriate transaction later.
1176	 */
1177	error = xfs_trans_reserve(tp, tres, resblks, 0);
1178	if (error == -ENOSPC) {
1179		/* flush outstanding delalloc blocks and retry */
1180		xfs_flush_inodes(mp);
1181		error = xfs_trans_reserve(tp, tres, resblks, 0);
1182	}
1183	if (error == -ENOSPC) {
1184		/* No space at all so try a "no-allocation" reservation */
1185		resblks = 0;
1186		error = xfs_trans_reserve(tp, tres, 0, 0);
1187	}
1188	if (error)
1189		goto out_trans_cancel;
1190
1191
1192	xfs_ilock(dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL |
1193		      XFS_IOLOCK_PARENT | XFS_ILOCK_PARENT);
1194	unlock_dp_on_error = true;
1195
1196	xfs_bmap_init(&free_list, &first_block);
1197
1198	/*
1199	 * Reserve disk quota and the inode.
1200	 */
1201	error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1202						pdqp, resblks, 1, 0);
1203	if (error)
1204		goto out_trans_cancel;
1205
1206	if (!resblks) {
1207		error = xfs_dir_canenter(tp, dp, name);
1208		if (error)
1209			goto out_trans_cancel;
1210	}
1211
1212	/*
1213	 * A newly created regular or special file just has one directory
1214	 * entry pointing to them, but a directory also the "." entry
1215	 * pointing to itself.
1216	 */
1217	error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev,
1218			       prid, resblks > 0, &ip, NULL);
1219	if (error)
1220		goto out_trans_cancel;
1221
1222	/*
1223	 * Now we join the directory inode to the transaction.  We do not do it
1224	 * earlier because xfs_dir_ialloc might commit the previous transaction
1225	 * (and release all the locks).  An error from here on will result in
1226	 * the transaction cancel unlocking dp so don't do it explicitly in the
1227	 * error path.
1228	 */
1229	xfs_trans_ijoin(tp, dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
1230	unlock_dp_on_error = false;
1231
1232	error = xfs_dir_createname(tp, dp, name, ip->i_ino,
1233					&first_block, &free_list, resblks ?
1234					resblks - XFS_IALLOC_SPACE_RES(mp) : 0);
1235	if (error) {
1236		ASSERT(error != -ENOSPC);
1237		goto out_trans_cancel;
1238	}
1239	xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1240	xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
1241
1242	if (is_dir) {
1243		error = xfs_dir_init(tp, ip, dp);
1244		if (error)
1245			goto out_bmap_cancel;
1246
1247		error = xfs_bumplink(tp, dp);
1248		if (error)
1249			goto out_bmap_cancel;
1250	}
1251
1252	/*
1253	 * If this is a synchronous mount, make sure that the
1254	 * create transaction goes to disk before returning to
1255	 * the user.
1256	 */
1257	if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1258		xfs_trans_set_sync(tp);
1259
1260	/*
1261	 * Attach the dquot(s) to the inodes and modify them incore.
1262	 * These ids of the inode couldn't have changed since the new
1263	 * inode has been locked ever since it was created.
1264	 */
1265	xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1266
1267	error = xfs_bmap_finish(&tp, &free_list, NULL);
1268	if (error)
1269		goto out_bmap_cancel;
1270
1271	error = xfs_trans_commit(tp);
1272	if (error)
1273		goto out_release_inode;
1274
1275	xfs_qm_dqrele(udqp);
1276	xfs_qm_dqrele(gdqp);
1277	xfs_qm_dqrele(pdqp);
1278
1279	*ipp = ip;
1280	return 0;
1281
1282 out_bmap_cancel:
1283	xfs_bmap_cancel(&free_list);
1284 out_trans_cancel:
1285	xfs_trans_cancel(tp);
1286 out_release_inode:
1287	/*
1288	 * Wait until after the current transaction is aborted to finish the
1289	 * setup of the inode and release the inode.  This prevents recursive
1290	 * transactions and deadlocks from xfs_inactive.
1291	 */
1292	if (ip) {
1293		xfs_finish_inode_setup(ip);
1294		IRELE(ip);
1295	}
1296
1297	xfs_qm_dqrele(udqp);
1298	xfs_qm_dqrele(gdqp);
1299	xfs_qm_dqrele(pdqp);
1300
1301	if (unlock_dp_on_error)
1302		xfs_iunlock(dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
1303	return error;
1304}
1305
1306int
1307xfs_create_tmpfile(
1308	struct xfs_inode	*dp,
1309	struct dentry		*dentry,
1310	umode_t			mode,
1311	struct xfs_inode	**ipp)
1312{
1313	struct xfs_mount	*mp = dp->i_mount;
1314	struct xfs_inode	*ip = NULL;
1315	struct xfs_trans	*tp = NULL;
1316	int			error;
1317	prid_t                  prid;
1318	struct xfs_dquot	*udqp = NULL;
1319	struct xfs_dquot	*gdqp = NULL;
1320	struct xfs_dquot	*pdqp = NULL;
1321	struct xfs_trans_res	*tres;
1322	uint			resblks;
1323
1324	if (XFS_FORCED_SHUTDOWN(mp))
1325		return -EIO;
1326
1327	prid = xfs_get_initial_prid(dp);
1328
1329	/*
1330	 * Make sure that we have allocated dquot(s) on disk.
1331	 */
1332	error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1333				xfs_kgid_to_gid(current_fsgid()), prid,
1334				XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1335				&udqp, &gdqp, &pdqp);
1336	if (error)
1337		return error;
1338
1339	resblks = XFS_IALLOC_SPACE_RES(mp);
1340	tp = xfs_trans_alloc(mp, XFS_TRANS_CREATE_TMPFILE);
1341
1342	tres = &M_RES(mp)->tr_create_tmpfile;
1343	error = xfs_trans_reserve(tp, tres, resblks, 0);
1344	if (error == -ENOSPC) {
1345		/* No space at all so try a "no-allocation" reservation */
1346		resblks = 0;
1347		error = xfs_trans_reserve(tp, tres, 0, 0);
1348	}
1349	if (error)
1350		goto out_trans_cancel;
1351
1352	error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1353						pdqp, resblks, 1, 0);
1354	if (error)
1355		goto out_trans_cancel;
1356
1357	error = xfs_dir_ialloc(&tp, dp, mode, 1, 0,
1358				prid, resblks > 0, &ip, NULL);
1359	if (error)
1360		goto out_trans_cancel;
1361
1362	if (mp->m_flags & XFS_MOUNT_WSYNC)
1363		xfs_trans_set_sync(tp);
1364
1365	/*
1366	 * Attach the dquot(s) to the inodes and modify them incore.
1367	 * These ids of the inode couldn't have changed since the new
1368	 * inode has been locked ever since it was created.
1369	 */
1370	xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1371
1372	error = xfs_iunlink(tp, ip);
1373	if (error)
1374		goto out_trans_cancel;
1375
1376	error = xfs_trans_commit(tp);
1377	if (error)
1378		goto out_release_inode;
1379
1380	xfs_qm_dqrele(udqp);
1381	xfs_qm_dqrele(gdqp);
1382	xfs_qm_dqrele(pdqp);
1383
1384	*ipp = ip;
1385	return 0;
1386
1387 out_trans_cancel:
1388	xfs_trans_cancel(tp);
1389 out_release_inode:
1390	/*
1391	 * Wait until after the current transaction is aborted to finish the
1392	 * setup of the inode and release the inode.  This prevents recursive
1393	 * transactions and deadlocks from xfs_inactive.
1394	 */
1395	if (ip) {
1396		xfs_finish_inode_setup(ip);
1397		IRELE(ip);
1398	}
1399
1400	xfs_qm_dqrele(udqp);
1401	xfs_qm_dqrele(gdqp);
1402	xfs_qm_dqrele(pdqp);
1403
1404	return error;
1405}
1406
1407int
1408xfs_link(
1409	xfs_inode_t		*tdp,
1410	xfs_inode_t		*sip,
1411	struct xfs_name		*target_name)
1412{
1413	xfs_mount_t		*mp = tdp->i_mount;
1414	xfs_trans_t		*tp;
1415	int			error;
1416	xfs_bmap_free_t         free_list;
1417	xfs_fsblock_t           first_block;
1418	int			resblks;
1419
1420	trace_xfs_link(tdp, target_name);
1421
1422	ASSERT(!S_ISDIR(VFS_I(sip)->i_mode));
1423
1424	if (XFS_FORCED_SHUTDOWN(mp))
1425		return -EIO;
1426
1427	error = xfs_qm_dqattach(sip, 0);
1428	if (error)
1429		goto std_return;
1430
1431	error = xfs_qm_dqattach(tdp, 0);
1432	if (error)
1433		goto std_return;
1434
1435	tp = xfs_trans_alloc(mp, XFS_TRANS_LINK);
1436	resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
1437	error = xfs_trans_reserve(tp, &M_RES(mp)->tr_link, resblks, 0);
1438	if (error == -ENOSPC) {
1439		resblks = 0;
1440		error = xfs_trans_reserve(tp, &M_RES(mp)->tr_link, 0, 0);
1441	}
1442	if (error)
1443		goto error_return;
1444
1445	xfs_ilock(tdp, XFS_IOLOCK_EXCL | XFS_IOLOCK_PARENT);
1446	xfs_lock_two_inodes(sip, tdp, XFS_ILOCK_EXCL);
1447
1448	xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL);
1449	xfs_trans_ijoin(tp, tdp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
1450
1451	/*
1452	 * If we are using project inheritance, we only allow hard link
1453	 * creation in our tree when the project IDs are the same; else
1454	 * the tree quota mechanism could be circumvented.
1455	 */
1456	if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
1457		     (xfs_get_projid(tdp) != xfs_get_projid(sip)))) {
1458		error = -EXDEV;
1459		goto error_return;
1460	}
1461
1462	if (!resblks) {
1463		error = xfs_dir_canenter(tp, tdp, target_name);
1464		if (error)
1465			goto error_return;
1466	}
1467
1468	xfs_bmap_init(&free_list, &first_block);
1469
1470	/*
1471	 * Handle initial link state of O_TMPFILE inode
1472	 */
1473	if (VFS_I(sip)->i_nlink == 0) {
1474		error = xfs_iunlink_remove(tp, sip);
1475		if (error)
1476			goto error_return;
1477	}
1478
1479	error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
1480					&first_block, &free_list, resblks);
1481	if (error)
1482		goto error_return;
1483	xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1484	xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
1485
1486	error = xfs_bumplink(tp, sip);
1487	if (error)
1488		goto error_return;
1489
1490	/*
1491	 * If this is a synchronous mount, make sure that the
1492	 * link transaction goes to disk before returning to
1493	 * the user.
1494	 */
1495	if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1496		xfs_trans_set_sync(tp);
1497
1498	error = xfs_bmap_finish(&tp, &free_list, NULL);
1499	if (error) {
1500		xfs_bmap_cancel(&free_list);
1501		goto error_return;
1502	}
1503
1504	return xfs_trans_commit(tp);
1505
1506 error_return:
1507	xfs_trans_cancel(tp);
1508 std_return:
1509	return error;
1510}
1511
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1512/*
1513 * Free up the underlying blocks past new_size.  The new size must be smaller
1514 * than the current size.  This routine can be used both for the attribute and
1515 * data fork, and does not modify the inode size, which is left to the caller.
1516 *
1517 * The transaction passed to this routine must have made a permanent log
1518 * reservation of at least XFS_ITRUNCATE_LOG_RES.  This routine may commit the
1519 * given transaction and start new ones, so make sure everything involved in
1520 * the transaction is tidy before calling here.  Some transaction will be
1521 * returned to the caller to be committed.  The incoming transaction must
1522 * already include the inode, and both inode locks must be held exclusively.
1523 * The inode must also be "held" within the transaction.  On return the inode
1524 * will be "held" within the returned transaction.  This routine does NOT
1525 * require any disk space to be reserved for it within the transaction.
1526 *
1527 * If we get an error, we must return with the inode locked and linked into the
1528 * current transaction. This keeps things simple for the higher level code,
1529 * because it always knows that the inode is locked and held in the transaction
1530 * that returns to it whether errors occur or not.  We don't mark the inode
1531 * dirty on error so that transactions can be easily aborted if possible.
1532 */
1533int
1534xfs_itruncate_extents(
1535	struct xfs_trans	**tpp,
1536	struct xfs_inode	*ip,
1537	int			whichfork,
1538	xfs_fsize_t		new_size)
 
1539{
1540	struct xfs_mount	*mp = ip->i_mount;
1541	struct xfs_trans	*tp = *tpp;
1542	xfs_bmap_free_t		free_list;
1543	xfs_fsblock_t		first_block;
1544	xfs_fileoff_t		first_unmap_block;
1545	xfs_fileoff_t		last_block;
1546	xfs_filblks_t		unmap_len;
1547	int			error = 0;
1548	int			done = 0;
1549
1550	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1551	ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
1552	       xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1553	ASSERT(new_size <= XFS_ISIZE(ip));
1554	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1555	ASSERT(ip->i_itemp != NULL);
1556	ASSERT(ip->i_itemp->ili_lock_flags == 0);
1557	ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1558
1559	trace_xfs_itruncate_extents_start(ip, new_size);
1560
 
 
1561	/*
1562	 * Since it is possible for space to become allocated beyond
1563	 * the end of the file (in a crash where the space is allocated
1564	 * but the inode size is not yet updated), simply remove any
1565	 * blocks which show up between the new EOF and the maximum
1566	 * possible file size.  If the first block to be removed is
1567	 * beyond the maximum file size (ie it is the same as last_block),
1568	 * then there is nothing to do.
 
1569	 */
1570	first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1571	last_block = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes);
1572	if (first_unmap_block == last_block)
1573		return 0;
 
1574
1575	ASSERT(first_unmap_block < last_block);
1576	unmap_len = last_block - first_unmap_block + 1;
1577	while (!done) {
1578		xfs_bmap_init(&free_list, &first_block);
1579		error = xfs_bunmapi(tp, ip,
1580				    first_unmap_block, unmap_len,
1581				    xfs_bmapi_aflag(whichfork),
1582				    XFS_ITRUNC_MAX_EXTENTS,
1583				    &first_block, &free_list,
1584				    &done);
1585		if (error)
1586			goto out_bmap_cancel;
1587
1588		/*
1589		 * Duplicate the transaction that has the permanent
1590		 * reservation and commit the old transaction.
1591		 */
1592		error = xfs_bmap_finish(&tp, &free_list, ip);
1593		if (error)
1594			goto out_bmap_cancel;
1595
1596		error = xfs_trans_roll(&tp, ip);
1597		if (error)
1598			goto out;
1599	}
1600
 
 
 
 
 
 
 
 
 
 
1601	/*
1602	 * Always re-log the inode so that our permanent transaction can keep
1603	 * on rolling it forward in the log.
1604	 */
1605	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1606
1607	trace_xfs_itruncate_extents_end(ip, new_size);
1608
1609out:
1610	*tpp = tp;
1611	return error;
1612out_bmap_cancel:
1613	/*
1614	 * If the bunmapi call encounters an error, return to the caller where
1615	 * the transaction can be properly aborted.  We just need to make sure
1616	 * we're not holding any resources that we were not when we came in.
1617	 */
1618	xfs_bmap_cancel(&free_list);
1619	goto out;
1620}
1621
1622int
1623xfs_release(
1624	xfs_inode_t	*ip)
1625{
1626	xfs_mount_t	*mp = ip->i_mount;
1627	int		error;
1628
1629	if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0))
1630		return 0;
1631
1632	/* If this is a read-only mount, don't do this (would generate I/O) */
1633	if (mp->m_flags & XFS_MOUNT_RDONLY)
1634		return 0;
1635
1636	if (!XFS_FORCED_SHUTDOWN(mp)) {
1637		int truncated;
1638
1639		/*
1640		 * If we previously truncated this file and removed old data
1641		 * in the process, we want to initiate "early" writeout on
1642		 * the last close.  This is an attempt to combat the notorious
1643		 * NULL files problem which is particularly noticeable from a
1644		 * truncate down, buffered (re-)write (delalloc), followed by
1645		 * a crash.  What we are effectively doing here is
1646		 * significantly reducing the time window where we'd otherwise
1647		 * be exposed to that problem.
1648		 */
1649		truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
1650		if (truncated) {
1651			xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
1652			if (ip->i_delayed_blks > 0) {
1653				error = filemap_flush(VFS_I(ip)->i_mapping);
1654				if (error)
1655					return error;
1656			}
1657		}
1658	}
1659
1660	if (VFS_I(ip)->i_nlink == 0)
1661		return 0;
1662
1663	if (xfs_can_free_eofblocks(ip, false)) {
1664
1665		/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1666		 * If we can't get the iolock just skip truncating the blocks
1667		 * past EOF because we could deadlock with the mmap_sem
1668		 * otherwise.  We'll get another chance to drop them once the
1669		 * last reference to the inode is dropped, so we'll never leak
1670		 * blocks permanently.
1671		 *
1672		 * Further, check if the inode is being opened, written and
1673		 * closed frequently and we have delayed allocation blocks
1674		 * outstanding (e.g. streaming writes from the NFS server),
1675		 * truncating the blocks past EOF will cause fragmentation to
1676		 * occur.
1677		 *
1678		 * In this case don't do the truncation, either, but we have to
1679		 * be careful how we detect this case. Blocks beyond EOF show
1680		 * up as i_delayed_blks even when the inode is clean, so we
1681		 * need to truncate them away first before checking for a dirty
1682		 * release. Hence on the first dirty close we will still remove
1683		 * the speculative allocation, but after that we will leave it
1684		 * in place.
1685		 */
1686		if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
1687			return 0;
1688
1689		error = xfs_free_eofblocks(mp, ip, true);
1690		if (error && error != -EAGAIN)
1691			return error;
1692
1693		/* delalloc blocks after truncation means it really is dirty */
1694		if (ip->i_delayed_blks)
1695			xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
1696	}
1697	return 0;
1698}
1699
1700/*
1701 * xfs_inactive_truncate
1702 *
1703 * Called to perform a truncate when an inode becomes unlinked.
1704 */
1705STATIC int
1706xfs_inactive_truncate(
1707	struct xfs_inode *ip)
1708{
1709	struct xfs_mount	*mp = ip->i_mount;
1710	struct xfs_trans	*tp;
1711	int			error;
1712
1713	tp = xfs_trans_alloc(mp, XFS_TRANS_INACTIVE);
1714	error = xfs_trans_reserve(tp, &M_RES(mp)->tr_itruncate, 0, 0);
1715	if (error) {
1716		ASSERT(XFS_FORCED_SHUTDOWN(mp));
1717		xfs_trans_cancel(tp);
1718		return error;
1719	}
1720
1721	xfs_ilock(ip, XFS_ILOCK_EXCL);
1722	xfs_trans_ijoin(tp, ip, 0);
1723
1724	/*
1725	 * Log the inode size first to prevent stale data exposure in the event
1726	 * of a system crash before the truncate completes. See the related
1727	 * comment in xfs_setattr_size() for details.
1728	 */
1729	ip->i_d.di_size = 0;
1730	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1731
1732	error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1733	if (error)
1734		goto error_trans_cancel;
1735
1736	ASSERT(ip->i_d.di_nextents == 0);
1737
1738	error = xfs_trans_commit(tp);
1739	if (error)
1740		goto error_unlock;
1741
1742	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1743	return 0;
1744
1745error_trans_cancel:
1746	xfs_trans_cancel(tp);
1747error_unlock:
1748	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1749	return error;
1750}
1751
1752/*
1753 * xfs_inactive_ifree()
1754 *
1755 * Perform the inode free when an inode is unlinked.
1756 */
1757STATIC int
1758xfs_inactive_ifree(
1759	struct xfs_inode *ip)
1760{
1761	xfs_bmap_free_t		free_list;
1762	xfs_fsblock_t		first_block;
1763	struct xfs_mount	*mp = ip->i_mount;
1764	struct xfs_trans	*tp;
1765	int			error;
1766
1767	tp = xfs_trans_alloc(mp, XFS_TRANS_INACTIVE);
1768
1769	/*
1770	 * The ifree transaction might need to allocate blocks for record
1771	 * insertion to the finobt. We don't want to fail here at ENOSPC, so
1772	 * allow ifree to dip into the reserved block pool if necessary.
1773	 *
1774	 * Freeing large sets of inodes generally means freeing inode chunks,
1775	 * directory and file data blocks, so this should be relatively safe.
1776	 * Only under severe circumstances should it be possible to free enough
1777	 * inodes to exhaust the reserve block pool via finobt expansion while
1778	 * at the same time not creating free space in the filesystem.
1779	 *
1780	 * Send a warning if the reservation does happen to fail, as the inode
1781	 * now remains allocated and sits on the unlinked list until the fs is
1782	 * repaired.
1783	 */
1784	tp->t_flags |= XFS_TRANS_RESERVE;
1785	error = xfs_trans_reserve(tp, &M_RES(mp)->tr_ifree,
1786				  XFS_IFREE_SPACE_RES(mp), 0);
 
 
 
 
1787	if (error) {
1788		if (error == -ENOSPC) {
1789			xfs_warn_ratelimited(mp,
1790			"Failed to remove inode(s) from unlinked list. "
1791			"Please free space, unmount and run xfs_repair.");
1792		} else {
1793			ASSERT(XFS_FORCED_SHUTDOWN(mp));
1794		}
1795		xfs_trans_cancel(tp);
1796		return error;
1797	}
1798
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1799	xfs_ilock(ip, XFS_ILOCK_EXCL);
1800	xfs_trans_ijoin(tp, ip, 0);
1801
1802	xfs_bmap_init(&free_list, &first_block);
1803	error = xfs_ifree(tp, ip, &free_list);
1804	if (error) {
1805		/*
1806		 * If we fail to free the inode, shut down.  The cancel
1807		 * might do that, we need to make sure.  Otherwise the
1808		 * inode might be lost for a long time or forever.
1809		 */
1810		if (!XFS_FORCED_SHUTDOWN(mp)) {
1811			xfs_notice(mp, "%s: xfs_ifree returned error %d",
1812				__func__, error);
1813			xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1814		}
1815		xfs_trans_cancel(tp);
1816		xfs_iunlock(ip, XFS_ILOCK_EXCL);
1817		return error;
1818	}
1819
1820	/*
1821	 * Credit the quota account(s). The inode is gone.
1822	 */
1823	xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1824
1825	/*
1826	 * Just ignore errors at this point.  There is nothing we can do except
1827	 * to try to keep going. Make sure it's not a silent error.
1828	 */
1829	error = xfs_bmap_finish(&tp, &free_list, NULL);
1830	if (error) {
1831		xfs_notice(mp, "%s: xfs_bmap_finish returned error %d",
1832			__func__, error);
1833		xfs_bmap_cancel(&free_list);
1834	}
1835	error = xfs_trans_commit(tp);
1836	if (error)
1837		xfs_notice(mp, "%s: xfs_trans_commit returned error %d",
1838			__func__, error);
1839
1840	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1841	return 0;
1842}
1843
1844/*
1845 * xfs_inactive
1846 *
1847 * This is called when the vnode reference count for the vnode
1848 * goes to zero.  If the file has been unlinked, then it must
1849 * now be truncated.  Also, we clear all of the read-ahead state
1850 * kept for the inode here since the file is now closed.
1851 */
1852void
1853xfs_inactive(
1854	xfs_inode_t	*ip)
1855{
1856	struct xfs_mount	*mp;
1857	int			error;
1858	int			truncate = 0;
1859
1860	/*
1861	 * If the inode is already free, then there can be nothing
1862	 * to clean up here.
1863	 */
1864	if (VFS_I(ip)->i_mode == 0) {
1865		ASSERT(ip->i_df.if_real_bytes == 0);
1866		ASSERT(ip->i_df.if_broot_bytes == 0);
1867		return;
1868	}
1869
1870	mp = ip->i_mount;
 
1871
1872	/* If this is a read-only mount, don't do this (would generate I/O) */
1873	if (mp->m_flags & XFS_MOUNT_RDONLY)
1874		return;
1875
 
 
 
 
1876	if (VFS_I(ip)->i_nlink != 0) {
1877		/*
1878		 * force is true because we are evicting an inode from the
1879		 * cache. Post-eof blocks must be freed, lest we end up with
1880		 * broken free space accounting.
 
 
 
 
1881		 */
1882		if (xfs_can_free_eofblocks(ip, true))
1883			xfs_free_eofblocks(mp, ip, false);
1884
1885		return;
1886	}
1887
1888	if (S_ISREG(VFS_I(ip)->i_mode) &&
1889	    (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 ||
1890	     ip->i_d.di_nextents > 0 || ip->i_delayed_blks > 0))
1891		truncate = 1;
1892
1893	error = xfs_qm_dqattach(ip, 0);
1894	if (error)
1895		return;
1896
1897	if (S_ISLNK(VFS_I(ip)->i_mode))
1898		error = xfs_inactive_symlink(ip);
1899	else if (truncate)
1900		error = xfs_inactive_truncate(ip);
1901	if (error)
1902		return;
1903
1904	/*
1905	 * If there are attributes associated with the file then blow them away
1906	 * now.  The code calls a routine that recursively deconstructs the
1907	 * attribute fork. If also blows away the in-core attribute fork.
1908	 */
1909	if (XFS_IFORK_Q(ip)) {
1910		error = xfs_attr_inactive(ip);
1911		if (error)
1912			return;
1913	}
1914
1915	ASSERT(!ip->i_afp);
1916	ASSERT(ip->i_d.di_anextents == 0);
1917	ASSERT(ip->i_d.di_forkoff == 0);
1918
1919	/*
1920	 * Free the inode.
1921	 */
1922	error = xfs_inactive_ifree(ip);
1923	if (error)
1924		return;
1925
1926	/*
1927	 * Release the dquots held by inode, if any.
1928	 */
1929	xfs_qm_dqdetach(ip);
1930}
1931
1932/*
1933 * This is called when the inode's link count goes to 0 or we are creating a
1934 * tmpfile via O_TMPFILE. In the case of a tmpfile, @ignore_linkcount will be
1935 * set to true as the link count is dropped to zero by the VFS after we've
1936 * created the file successfully, so we have to add it to the unlinked list
1937 * while the link count is non-zero.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1938 *
1939 * We place the on-disk inode on a list in the AGI.  It will be pulled from this
1940 * list when the inode is freed.
1941 */
1942STATIC int
1943xfs_iunlink(
1944	struct xfs_trans *tp,
1945	struct xfs_inode *ip)
1946{
1947	xfs_mount_t	*mp = tp->t_mountp;
1948	xfs_agi_t	*agi;
1949	xfs_dinode_t	*dip;
1950	xfs_buf_t	*agibp;
1951	xfs_buf_t	*ibp;
1952	xfs_agino_t	agino;
1953	short		bucket_index;
1954	int		offset;
1955	int		error;
1956
 
1957	ASSERT(VFS_I(ip)->i_mode != 0);
 
1958
1959	/*
1960	 * Get the agi buffer first.  It ensures lock ordering
1961	 * on the list.
1962	 */
1963	error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
1964	if (error)
1965		return error;
1966	agi = XFS_BUF_TO_AGI(agibp);
1967
1968	/*
1969	 * Get the index into the agi hash table for the
1970	 * list this inode will go on.
 
1971	 */
1972	agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1973	ASSERT(agino != 0);
1974	bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1975	ASSERT(agi->agi_unlinked[bucket_index]);
1976	ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1977
1978	if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) {
1979		/*
1980		 * There is already another inode in the bucket we need
1981		 * to add ourselves to.  Add us at the front of the list.
1982		 * Here we put the head pointer into our next pointer,
1983		 * and then we fall through to point the head at us.
1984		 */
1985		error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
1986				       0, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1987		if (error)
1988			return error;
1989
1990		ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO));
1991		dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
1992		offset = ip->i_imap.im_boffset +
1993			offsetof(xfs_dinode_t, di_next_unlinked);
1994
1995		/* need to recalc the inode CRC if appropriate */
1996		xfs_dinode_calc_crc(mp, dip);
1997
1998		xfs_trans_inode_buf(tp, ibp);
1999		xfs_trans_log_buf(tp, ibp, offset,
2000				  (offset + sizeof(xfs_agino_t) - 1));
2001		xfs_inobp_check(mp, ibp);
 
 
2002	}
2003
2004	/*
2005	 * Point the bucket head pointer at the inode being inserted.
2006	 */
2007	ASSERT(agino != 0);
2008	agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
2009	offset = offsetof(xfs_agi_t, agi_unlinked) +
2010		(sizeof(xfs_agino_t) * bucket_index);
2011	xfs_trans_buf_set_type(tp, agibp, XFS_BLFT_AGI_BUF);
2012	xfs_trans_log_buf(tp, agibp, offset,
2013			  (offset + sizeof(xfs_agino_t) - 1));
2014	return 0;
2015}
2016
2017/*
2018 * Pull the on-disk inode from the AGI unlinked list.
2019 */
2020STATIC int
2021xfs_iunlink_remove(
2022	xfs_trans_t	*tp,
2023	xfs_inode_t	*ip)
2024{
2025	xfs_ino_t	next_ino;
2026	xfs_mount_t	*mp;
2027	xfs_agi_t	*agi;
2028	xfs_dinode_t	*dip;
2029	xfs_buf_t	*agibp;
2030	xfs_buf_t	*ibp;
2031	xfs_agnumber_t	agno;
2032	xfs_agino_t	agino;
2033	xfs_agino_t	next_agino;
2034	xfs_buf_t	*last_ibp;
2035	xfs_dinode_t	*last_dip = NULL;
2036	short		bucket_index;
2037	int		offset, last_offset = 0;
2038	int		error;
 
 
 
 
 
2039
2040	mp = tp->t_mountp;
2041	agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
 
 
 
 
 
 
 
 
2042
2043	/*
2044	 * Get the agi buffer first.  It ensures lock ordering
2045	 * on the list.
 
2046	 */
2047	error = xfs_read_agi(mp, tp, agno, &agibp);
2048	if (error)
2049		return error;
2050
2051	agi = XFS_BUF_TO_AGI(agibp);
2052
2053	/*
2054	 * Get the index into the agi hash table for the
2055	 * list this inode will go on.
 
 
 
2056	 */
2057	agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2058	ASSERT(agino != 0);
2059	bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2060	ASSERT(agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO));
2061	ASSERT(agi->agi_unlinked[bucket_index]);
2062
2063	if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
2064		/*
2065		 * We're at the head of the list.  Get the inode's on-disk
2066		 * buffer to see if there is anyone after us on the list.
2067		 * Only modify our next pointer if it is not already NULLAGINO.
2068		 * This saves us the overhead of dealing with the buffer when
2069		 * there is no need to change it.
2070		 */
2071		error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2072				       0, 0);
2073		if (error) {
2074			xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.",
2075				__func__, error);
2076			return error;
2077		}
2078		next_agino = be32_to_cpu(dip->di_next_unlinked);
2079		ASSERT(next_agino != 0);
2080		if (next_agino != NULLAGINO) {
2081			dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
2082			offset = ip->i_imap.im_boffset +
2083				offsetof(xfs_dinode_t, di_next_unlinked);
2084
2085			/* need to recalc the inode CRC if appropriate */
2086			xfs_dinode_calc_crc(mp, dip);
2087
2088			xfs_trans_inode_buf(tp, ibp);
2089			xfs_trans_log_buf(tp, ibp, offset,
2090					  (offset + sizeof(xfs_agino_t) - 1));
2091			xfs_inobp_check(mp, ibp);
2092		} else {
2093			xfs_trans_brelse(tp, ibp);
2094		}
2095		/*
2096		 * Point the bucket head pointer at the next inode.
 
 
 
 
 
2097		 */
2098		ASSERT(next_agino != 0);
2099		ASSERT(next_agino != agino);
2100		agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
2101		offset = offsetof(xfs_agi_t, agi_unlinked) +
2102			(sizeof(xfs_agino_t) * bucket_index);
2103		xfs_trans_buf_set_type(tp, agibp, XFS_BLFT_AGI_BUF);
2104		xfs_trans_log_buf(tp, agibp, offset,
2105				  (offset + sizeof(xfs_agino_t) - 1));
2106	} else {
2107		/*
2108		 * We need to search the list for the inode being freed.
2109		 */
2110		next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2111		last_ibp = NULL;
2112		while (next_agino != agino) {
2113			struct xfs_imap	imap;
2114
2115			if (last_ibp)
2116				xfs_trans_brelse(tp, last_ibp);
2117
2118			imap.im_blkno = 0;
2119			next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
2120
2121			error = xfs_imap(mp, tp, next_ino, &imap, 0);
2122			if (error) {
2123				xfs_warn(mp,
2124	"%s: xfs_imap returned error %d.",
2125					 __func__, error);
2126				return error;
2127			}
2128
2129			error = xfs_imap_to_bp(mp, tp, &imap, &last_dip,
2130					       &last_ibp, 0, 0);
2131			if (error) {
2132				xfs_warn(mp,
2133	"%s: xfs_imap_to_bp returned error %d.",
2134					__func__, error);
2135				return error;
2136			}
2137
2138			last_offset = imap.im_boffset;
2139			next_agino = be32_to_cpu(last_dip->di_next_unlinked);
2140			ASSERT(next_agino != NULLAGINO);
2141			ASSERT(next_agino != 0);
2142		}
 
 
 
 
 
 
 
2143
2144		/*
2145		 * Now last_ibp points to the buffer previous to us on the
2146		 * unlinked list.  Pull us from the list.
2147		 */
2148		error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2149				       0, 0);
2150		if (error) {
2151			xfs_warn(mp, "%s: xfs_imap_to_bp(2) returned error %d.",
2152				__func__, error);
2153			return error;
 
 
2154		}
2155		next_agino = be32_to_cpu(dip->di_next_unlinked);
2156		ASSERT(next_agino != 0);
2157		ASSERT(next_agino != agino);
2158		if (next_agino != NULLAGINO) {
2159			dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
2160			offset = ip->i_imap.im_boffset +
2161				offsetof(xfs_dinode_t, di_next_unlinked);
2162
2163			/* need to recalc the inode CRC if appropriate */
2164			xfs_dinode_calc_crc(mp, dip);
2165
2166			xfs_trans_inode_buf(tp, ibp);
2167			xfs_trans_log_buf(tp, ibp, offset,
2168					  (offset + sizeof(xfs_agino_t) - 1));
2169			xfs_inobp_check(mp, ibp);
2170		} else {
2171			xfs_trans_brelse(tp, ibp);
2172		}
2173		/*
2174		 * Point the previous inode on the list to the next inode.
2175		 */
2176		last_dip->di_next_unlinked = cpu_to_be32(next_agino);
2177		ASSERT(next_agino != 0);
2178		offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
2179
2180		/* need to recalc the inode CRC if appropriate */
2181		xfs_dinode_calc_crc(mp, last_dip);
 
 
 
 
 
 
 
 
 
2182
2183		xfs_trans_inode_buf(tp, last_ibp);
2184		xfs_trans_log_buf(tp, last_ibp, offset,
2185				  (offset + sizeof(xfs_agino_t) - 1));
2186		xfs_inobp_check(mp, last_ibp);
 
 
 
 
 
2187	}
2188	return 0;
 
 
 
 
 
 
 
 
 
 
 
2189}
2190
2191/*
2192 * A big issue when freeing the inode cluster is that we _cannot_ skip any
2193 * inodes that are in memory - they all must be marked stale and attached to
2194 * the cluster buffer.
2195 */
2196STATIC int
2197xfs_ifree_cluster(
2198	xfs_inode_t		*free_ip,
2199	xfs_trans_t		*tp,
2200	struct xfs_icluster	*xic)
2201{
2202	xfs_mount_t		*mp = free_ip->i_mount;
2203	int			blks_per_cluster;
2204	int			inodes_per_cluster;
 
 
2205	int			nbufs;
2206	int			i, j;
2207	int			ioffset;
2208	xfs_daddr_t		blkno;
2209	xfs_buf_t		*bp;
2210	xfs_inode_t		*ip;
2211	xfs_inode_log_item_t	*iip;
2212	xfs_log_item_t		*lip;
2213	struct xfs_perag	*pag;
2214	xfs_ino_t		inum;
2215
2216	inum = xic->first_ino;
2217	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
2218	blks_per_cluster = xfs_icluster_size_fsb(mp);
2219	inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog;
2220	nbufs = mp->m_ialloc_blks / blks_per_cluster;
2221
2222	for (j = 0; j < nbufs; j++, inum += inodes_per_cluster) {
2223		/*
2224		 * The allocation bitmap tells us which inodes of the chunk were
2225		 * physically allocated. Skip the cluster if an inode falls into
2226		 * a sparse region.
2227		 */
2228		ioffset = inum - xic->first_ino;
2229		if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) {
2230			ASSERT(do_mod(ioffset, inodes_per_cluster) == 0);
2231			continue;
2232		}
2233
2234		blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2235					 XFS_INO_TO_AGBNO(mp, inum));
2236
2237		/*
2238		 * We obtain and lock the backing buffer first in the process
2239		 * here, as we have to ensure that any dirty inode that we
2240		 * can't get the flush lock on is attached to the buffer.
2241		 * If we scan the in-memory inodes first, then buffer IO can
2242		 * complete before we get a lock on it, and hence we may fail
2243		 * to mark all the active inodes on the buffer stale.
2244		 */
2245		bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2246					mp->m_bsize * blks_per_cluster,
2247					XBF_UNMAPPED);
2248
2249		if (!bp)
2250			return -ENOMEM;
2251
2252		/*
2253		 * This buffer may not have been correctly initialised as we
2254		 * didn't read it from disk. That's not important because we are
2255		 * only using to mark the buffer as stale in the log, and to
2256		 * attach stale cached inodes on it. That means it will never be
2257		 * dispatched for IO. If it is, we want to know about it, and we
2258		 * want it to fail. We can acheive this by adding a write
2259		 * verifier to the buffer.
2260		 */
2261		 bp->b_ops = &xfs_inode_buf_ops;
2262
2263		/*
2264		 * Walk the inodes already attached to the buffer and mark them
2265		 * stale. These will all have the flush locks held, so an
2266		 * in-memory inode walk can't lock them. By marking them all
2267		 * stale first, we will not attempt to lock them in the loop
2268		 * below as the XFS_ISTALE flag will be set.
2269		 */
2270		lip = bp->b_fspriv;
2271		while (lip) {
2272			if (lip->li_type == XFS_LI_INODE) {
2273				iip = (xfs_inode_log_item_t *)lip;
2274				ASSERT(iip->ili_logged == 1);
2275				lip->li_cb = xfs_istale_done;
2276				xfs_trans_ail_copy_lsn(mp->m_ail,
2277							&iip->ili_flush_lsn,
2278							&iip->ili_item.li_lsn);
2279				xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
2280			}
2281			lip = lip->li_bio_list;
2282		}
2283
2284
2285		/*
2286		 * For each inode in memory attempt to add it to the inode
2287		 * buffer and set it up for being staled on buffer IO
2288		 * completion.  This is safe as we've locked out tail pushing
2289		 * and flushing by locking the buffer.
2290		 *
2291		 * We have already marked every inode that was part of a
2292		 * transaction stale above, which means there is no point in
2293		 * even trying to lock them.
2294		 */
2295		for (i = 0; i < inodes_per_cluster; i++) {
2296retry:
2297			rcu_read_lock();
2298			ip = radix_tree_lookup(&pag->pag_ici_root,
2299					XFS_INO_TO_AGINO(mp, (inum + i)));
2300
2301			/* Inode not in memory, nothing to do */
2302			if (!ip) {
2303				rcu_read_unlock();
2304				continue;
2305			}
2306
2307			/*
2308			 * because this is an RCU protected lookup, we could
2309			 * find a recently freed or even reallocated inode
2310			 * during the lookup. We need to check under the
2311			 * i_flags_lock for a valid inode here. Skip it if it
2312			 * is not valid, the wrong inode or stale.
2313			 */
2314			spin_lock(&ip->i_flags_lock);
2315			if (ip->i_ino != inum + i ||
2316			    __xfs_iflags_test(ip, XFS_ISTALE)) {
2317				spin_unlock(&ip->i_flags_lock);
2318				rcu_read_unlock();
2319				continue;
2320			}
2321			spin_unlock(&ip->i_flags_lock);
2322
2323			/*
2324			 * Don't try to lock/unlock the current inode, but we
2325			 * _cannot_ skip the other inodes that we did not find
2326			 * in the list attached to the buffer and are not
2327			 * already marked stale. If we can't lock it, back off
2328			 * and retry.
2329			 */
2330			if (ip != free_ip &&
2331			    !xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2332				rcu_read_unlock();
2333				delay(1);
2334				goto retry;
2335			}
2336			rcu_read_unlock();
2337
2338			xfs_iflock(ip);
2339			xfs_iflags_set(ip, XFS_ISTALE);
2340
2341			/*
2342			 * we don't need to attach clean inodes or those only
2343			 * with unlogged changes (which we throw away, anyway).
2344			 */
2345			iip = ip->i_itemp;
2346			if (!iip || xfs_inode_clean(ip)) {
2347				ASSERT(ip != free_ip);
2348				xfs_ifunlock(ip);
2349				xfs_iunlock(ip, XFS_ILOCK_EXCL);
2350				continue;
2351			}
2352
2353			iip->ili_last_fields = iip->ili_fields;
2354			iip->ili_fields = 0;
2355			iip->ili_fsync_fields = 0;
2356			iip->ili_logged = 1;
2357			xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2358						&iip->ili_item.li_lsn);
2359
2360			xfs_buf_attach_iodone(bp, xfs_istale_done,
2361						  &iip->ili_item);
2362
2363			if (ip != free_ip)
2364				xfs_iunlock(ip, XFS_ILOCK_EXCL);
2365		}
2366
2367		xfs_trans_stale_inode_buf(tp, bp);
2368		xfs_trans_binval(tp, bp);
2369	}
2370
2371	xfs_perag_put(pag);
2372	return 0;
2373}
2374
2375/*
2376 * This is called to return an inode to the inode free list.
2377 * The inode should already be truncated to 0 length and have
2378 * no pages associated with it.  This routine also assumes that
2379 * the inode is already a part of the transaction.
2380 *
2381 * The on-disk copy of the inode will have been added to the list
2382 * of unlinked inodes in the AGI. We need to remove the inode from
2383 * that list atomically with respect to freeing it here.
2384 */
2385int
2386xfs_ifree(
2387	xfs_trans_t	*tp,
2388	xfs_inode_t	*ip,
2389	xfs_bmap_free_t	*flist)
2390{
2391	int			error;
2392	struct xfs_icluster	xic = { 0 };
 
2393
2394	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2395	ASSERT(VFS_I(ip)->i_nlink == 0);
2396	ASSERT(ip->i_d.di_nextents == 0);
2397	ASSERT(ip->i_d.di_anextents == 0);
2398	ASSERT(ip->i_d.di_size == 0 || !S_ISREG(VFS_I(ip)->i_mode));
2399	ASSERT(ip->i_d.di_nblocks == 0);
2400
2401	/*
2402	 * Pull the on-disk inode from the AGI unlinked list.
2403	 */
2404	error = xfs_iunlink_remove(tp, ip);
2405	if (error)
2406		return error;
2407
2408	error = xfs_difree(tp, ip->i_ino, flist, &xic);
2409	if (error)
2410		return error;
2411
 
 
 
 
 
 
 
 
 
 
 
2412	VFS_I(ip)->i_mode = 0;		/* mark incore inode as free */
2413	ip->i_d.di_flags = 0;
 
2414	ip->i_d.di_dmevmask = 0;
2415	ip->i_d.di_forkoff = 0;		/* mark the attr fork not in use */
2416	ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2417	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
 
 
 
 
 
2418	/*
2419	 * Bump the generation count so no one will be confused
2420	 * by reincarnations of this inode.
2421	 */
2422	VFS_I(ip)->i_generation++;
2423	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2424
2425	if (xic.deleted)
2426		error = xfs_ifree_cluster(ip, tp, &xic);
2427
2428	return error;
2429}
2430
2431/*
2432 * This is called to unpin an inode.  The caller must have the inode locked
2433 * in at least shared mode so that the buffer cannot be subsequently pinned
2434 * once someone is waiting for it to be unpinned.
2435 */
2436static void
2437xfs_iunpin(
2438	struct xfs_inode	*ip)
2439{
2440	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2441
2442	trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2443
2444	/* Give the log a push to start the unpinning I/O */
2445	xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0);
2446
2447}
2448
2449static void
2450__xfs_iunpin_wait(
2451	struct xfs_inode	*ip)
2452{
2453	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2454	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2455
2456	xfs_iunpin(ip);
2457
2458	do {
2459		prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2460		if (xfs_ipincount(ip))
2461			io_schedule();
2462	} while (xfs_ipincount(ip));
2463	finish_wait(wq, &wait.wait);
2464}
2465
2466void
2467xfs_iunpin_wait(
2468	struct xfs_inode	*ip)
2469{
2470	if (xfs_ipincount(ip))
2471		__xfs_iunpin_wait(ip);
2472}
2473
2474/*
2475 * Removing an inode from the namespace involves removing the directory entry
2476 * and dropping the link count on the inode. Removing the directory entry can
2477 * result in locking an AGF (directory blocks were freed) and removing a link
2478 * count can result in placing the inode on an unlinked list which results in
2479 * locking an AGI.
2480 *
2481 * The big problem here is that we have an ordering constraint on AGF and AGI
2482 * locking - inode allocation locks the AGI, then can allocate a new extent for
2483 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2484 * removes the inode from the unlinked list, requiring that we lock the AGI
2485 * first, and then freeing the inode can result in an inode chunk being freed
2486 * and hence freeing disk space requiring that we lock an AGF.
2487 *
2488 * Hence the ordering that is imposed by other parts of the code is AGI before
2489 * AGF. This means we cannot remove the directory entry before we drop the inode
2490 * reference count and put it on the unlinked list as this results in a lock
2491 * order of AGF then AGI, and this can deadlock against inode allocation and
2492 * freeing. Therefore we must drop the link counts before we remove the
2493 * directory entry.
2494 *
2495 * This is still safe from a transactional point of view - it is not until we
2496 * get to xfs_bmap_finish() that we have the possibility of multiple
2497 * transactions in this operation. Hence as long as we remove the directory
2498 * entry and drop the link count in the first transaction of the remove
2499 * operation, there are no transactional constraints on the ordering here.
2500 */
2501int
2502xfs_remove(
2503	xfs_inode_t             *dp,
2504	struct xfs_name		*name,
2505	xfs_inode_t		*ip)
2506{
2507	xfs_mount_t		*mp = dp->i_mount;
2508	xfs_trans_t             *tp = NULL;
2509	int			is_dir = S_ISDIR(VFS_I(ip)->i_mode);
2510	int                     error = 0;
2511	xfs_bmap_free_t         free_list;
2512	xfs_fsblock_t           first_block;
2513	uint			resblks;
2514
2515	trace_xfs_remove(dp, name);
2516
2517	if (XFS_FORCED_SHUTDOWN(mp))
2518		return -EIO;
2519
2520	error = xfs_qm_dqattach(dp, 0);
2521	if (error)
2522		goto std_return;
2523
2524	error = xfs_qm_dqattach(ip, 0);
2525	if (error)
2526		goto std_return;
2527
2528	if (is_dir)
2529		tp = xfs_trans_alloc(mp, XFS_TRANS_RMDIR);
2530	else
2531		tp = xfs_trans_alloc(mp, XFS_TRANS_REMOVE);
2532
2533	/*
2534	 * We try to get the real space reservation first,
2535	 * allowing for directory btree deletion(s) implying
2536	 * possible bmap insert(s).  If we can't get the space
2537	 * reservation then we use 0 instead, and avoid the bmap
2538	 * btree insert(s) in the directory code by, if the bmap
2539	 * insert tries to happen, instead trimming the LAST
2540	 * block from the directory.
2541	 */
2542	resblks = XFS_REMOVE_SPACE_RES(mp);
2543	error = xfs_trans_reserve(tp, &M_RES(mp)->tr_remove, resblks, 0);
2544	if (error == -ENOSPC) {
2545		resblks = 0;
2546		error = xfs_trans_reserve(tp, &M_RES(mp)->tr_remove, 0, 0);
 
2547	}
2548	if (error) {
2549		ASSERT(error != -ENOSPC);
2550		goto out_trans_cancel;
2551	}
2552
2553	xfs_ilock(dp, XFS_IOLOCK_EXCL | XFS_IOLOCK_PARENT);
2554	xfs_lock_two_inodes(dp, ip, XFS_ILOCK_EXCL);
2555
2556	xfs_trans_ijoin(tp, dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
2557	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
2558
2559	/*
2560	 * If we're removing a directory perform some additional validation.
2561	 */
2562	if (is_dir) {
2563		ASSERT(VFS_I(ip)->i_nlink >= 2);
2564		if (VFS_I(ip)->i_nlink != 2) {
2565			error = -ENOTEMPTY;
2566			goto out_trans_cancel;
2567		}
2568		if (!xfs_dir_isempty(ip)) {
2569			error = -ENOTEMPTY;
2570			goto out_trans_cancel;
2571		}
2572
2573		/* Drop the link from ip's "..".  */
2574		error = xfs_droplink(tp, dp);
2575		if (error)
2576			goto out_trans_cancel;
2577
2578		/* Drop the "." link from ip to self.  */
2579		error = xfs_droplink(tp, ip);
2580		if (error)
2581			goto out_trans_cancel;
2582	} else {
2583		/*
2584		 * When removing a non-directory we need to log the parent
2585		 * inode here.  For a directory this is done implicitly
2586		 * by the xfs_droplink call for the ".." entry.
2587		 */
2588		xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
2589	}
2590	xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2591
2592	/* Drop the link from dp to ip. */
2593	error = xfs_droplink(tp, ip);
2594	if (error)
2595		goto out_trans_cancel;
2596
2597	xfs_bmap_init(&free_list, &first_block);
2598	error = xfs_dir_removename(tp, dp, name, ip->i_ino,
2599					&first_block, &free_list, resblks);
2600	if (error) {
2601		ASSERT(error != -ENOENT);
2602		goto out_bmap_cancel;
2603	}
2604
2605	/*
2606	 * If this is a synchronous mount, make sure that the
2607	 * remove transaction goes to disk before returning to
2608	 * the user.
2609	 */
2610	if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2611		xfs_trans_set_sync(tp);
2612
2613	error = xfs_bmap_finish(&tp, &free_list, NULL);
2614	if (error)
2615		goto out_bmap_cancel;
2616
2617	error = xfs_trans_commit(tp);
2618	if (error)
2619		goto std_return;
2620
2621	if (is_dir && xfs_inode_is_filestream(ip))
2622		xfs_filestream_deassociate(ip);
2623
2624	return 0;
2625
2626 out_bmap_cancel:
2627	xfs_bmap_cancel(&free_list);
2628 out_trans_cancel:
2629	xfs_trans_cancel(tp);
2630 std_return:
2631	return error;
2632}
2633
2634/*
2635 * Enter all inodes for a rename transaction into a sorted array.
2636 */
2637#define __XFS_SORT_INODES	5
2638STATIC void
2639xfs_sort_for_rename(
2640	struct xfs_inode	*dp1,	/* in: old (source) directory inode */
2641	struct xfs_inode	*dp2,	/* in: new (target) directory inode */
2642	struct xfs_inode	*ip1,	/* in: inode of old entry */
2643	struct xfs_inode	*ip2,	/* in: inode of new entry */
2644	struct xfs_inode	*wip,	/* in: whiteout inode */
2645	struct xfs_inode	**i_tab,/* out: sorted array of inodes */
2646	int			*num_inodes)  /* in/out: inodes in array */
2647{
2648	int			i, j;
2649
2650	ASSERT(*num_inodes == __XFS_SORT_INODES);
2651	memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *));
2652
2653	/*
2654	 * i_tab contains a list of pointers to inodes.  We initialize
2655	 * the table here & we'll sort it.  We will then use it to
2656	 * order the acquisition of the inode locks.
2657	 *
2658	 * Note that the table may contain duplicates.  e.g., dp1 == dp2.
2659	 */
2660	i = 0;
2661	i_tab[i++] = dp1;
2662	i_tab[i++] = dp2;
2663	i_tab[i++] = ip1;
2664	if (ip2)
2665		i_tab[i++] = ip2;
2666	if (wip)
2667		i_tab[i++] = wip;
2668	*num_inodes = i;
2669
2670	/*
2671	 * Sort the elements via bubble sort.  (Remember, there are at
2672	 * most 5 elements to sort, so this is adequate.)
2673	 */
2674	for (i = 0; i < *num_inodes; i++) {
2675		for (j = 1; j < *num_inodes; j++) {
2676			if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
2677				struct xfs_inode *temp = i_tab[j];
2678				i_tab[j] = i_tab[j-1];
2679				i_tab[j-1] = temp;
2680			}
2681		}
2682	}
2683}
2684
2685static int
2686xfs_finish_rename(
2687	struct xfs_trans	*tp,
2688	struct xfs_bmap_free	*free_list)
2689{
2690	int			error;
2691
2692	/*
2693	 * If this is a synchronous mount, make sure that the rename transaction
2694	 * goes to disk before returning to the user.
2695	 */
2696	if (tp->t_mountp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2697		xfs_trans_set_sync(tp);
2698
2699	error = xfs_bmap_finish(&tp, free_list, NULL);
2700	if (error) {
2701		xfs_bmap_cancel(free_list);
2702		xfs_trans_cancel(tp);
2703		return error;
2704	}
2705
2706	return xfs_trans_commit(tp);
2707}
2708
2709/*
2710 * xfs_cross_rename()
2711 *
2712 * responsible for handling RENAME_EXCHANGE flag in renameat2() sytemcall
2713 */
2714STATIC int
2715xfs_cross_rename(
2716	struct xfs_trans	*tp,
2717	struct xfs_inode	*dp1,
2718	struct xfs_name		*name1,
2719	struct xfs_inode	*ip1,
2720	struct xfs_inode	*dp2,
2721	struct xfs_name		*name2,
2722	struct xfs_inode	*ip2,
2723	struct xfs_bmap_free	*free_list,
2724	xfs_fsblock_t		*first_block,
2725	int			spaceres)
2726{
2727	int		error = 0;
2728	int		ip1_flags = 0;
2729	int		ip2_flags = 0;
2730	int		dp2_flags = 0;
2731
2732	/* Swap inode number for dirent in first parent */
2733	error = xfs_dir_replace(tp, dp1, name1,
2734				ip2->i_ino,
2735				first_block, free_list, spaceres);
2736	if (error)
2737		goto out_trans_abort;
2738
2739	/* Swap inode number for dirent in second parent */
2740	error = xfs_dir_replace(tp, dp2, name2,
2741				ip1->i_ino,
2742				first_block, free_list, spaceres);
2743	if (error)
2744		goto out_trans_abort;
2745
2746	/*
2747	 * If we're renaming one or more directories across different parents,
2748	 * update the respective ".." entries (and link counts) to match the new
2749	 * parents.
2750	 */
2751	if (dp1 != dp2) {
2752		dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2753
2754		if (S_ISDIR(VFS_I(ip2)->i_mode)) {
2755			error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot,
2756						dp1->i_ino, first_block,
2757						free_list, spaceres);
2758			if (error)
2759				goto out_trans_abort;
2760
2761			/* transfer ip2 ".." reference to dp1 */
2762			if (!S_ISDIR(VFS_I(ip1)->i_mode)) {
2763				error = xfs_droplink(tp, dp2);
2764				if (error)
2765					goto out_trans_abort;
2766				error = xfs_bumplink(tp, dp1);
2767				if (error)
2768					goto out_trans_abort;
2769			}
2770
2771			/*
2772			 * Although ip1 isn't changed here, userspace needs
2773			 * to be warned about the change, so that applications
2774			 * relying on it (like backup ones), will properly
2775			 * notify the change
2776			 */
2777			ip1_flags |= XFS_ICHGTIME_CHG;
2778			ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2779		}
2780
2781		if (S_ISDIR(VFS_I(ip1)->i_mode)) {
2782			error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot,
2783						dp2->i_ino, first_block,
2784						free_list, spaceres);
2785			if (error)
2786				goto out_trans_abort;
2787
2788			/* transfer ip1 ".." reference to dp2 */
2789			if (!S_ISDIR(VFS_I(ip2)->i_mode)) {
2790				error = xfs_droplink(tp, dp1);
2791				if (error)
2792					goto out_trans_abort;
2793				error = xfs_bumplink(tp, dp2);
2794				if (error)
2795					goto out_trans_abort;
2796			}
2797
2798			/*
2799			 * Although ip2 isn't changed here, userspace needs
2800			 * to be warned about the change, so that applications
2801			 * relying on it (like backup ones), will properly
2802			 * notify the change
2803			 */
2804			ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2805			ip2_flags |= XFS_ICHGTIME_CHG;
2806		}
2807	}
2808
2809	if (ip1_flags) {
2810		xfs_trans_ichgtime(tp, ip1, ip1_flags);
2811		xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE);
2812	}
2813	if (ip2_flags) {
2814		xfs_trans_ichgtime(tp, ip2, ip2_flags);
2815		xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE);
2816	}
2817	if (dp2_flags) {
2818		xfs_trans_ichgtime(tp, dp2, dp2_flags);
2819		xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE);
2820	}
2821	xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2822	xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE);
2823	return xfs_finish_rename(tp, free_list);
2824
2825out_trans_abort:
2826	xfs_bmap_cancel(free_list);
2827	xfs_trans_cancel(tp);
2828	return error;
2829}
2830
2831/*
2832 * xfs_rename_alloc_whiteout()
2833 *
2834 * Return a referenced, unlinked, unlocked inode that that can be used as a
2835 * whiteout in a rename transaction. We use a tmpfile inode here so that if we
2836 * crash between allocating the inode and linking it into the rename transaction
2837 * recovery will free the inode and we won't leak it.
2838 */
2839static int
2840xfs_rename_alloc_whiteout(
2841	struct xfs_inode	*dp,
2842	struct xfs_inode	**wip)
2843{
2844	struct xfs_inode	*tmpfile;
2845	int			error;
2846
2847	error = xfs_create_tmpfile(dp, NULL, S_IFCHR | WHITEOUT_MODE, &tmpfile);
2848	if (error)
2849		return error;
2850
2851	/*
2852	 * Prepare the tmpfile inode as if it were created through the VFS.
2853	 * Otherwise, the link increment paths will complain about nlink 0->1.
2854	 * Drop the link count as done by d_tmpfile(), complete the inode setup
2855	 * and flag it as linkable.
2856	 */
2857	drop_nlink(VFS_I(tmpfile));
2858	xfs_finish_inode_setup(tmpfile);
2859	VFS_I(tmpfile)->i_state |= I_LINKABLE;
2860
2861	*wip = tmpfile;
2862	return 0;
2863}
2864
2865/*
2866 * xfs_rename
2867 */
2868int
2869xfs_rename(
2870	struct xfs_inode	*src_dp,
2871	struct xfs_name		*src_name,
2872	struct xfs_inode	*src_ip,
2873	struct xfs_inode	*target_dp,
2874	struct xfs_name		*target_name,
2875	struct xfs_inode	*target_ip,
2876	unsigned int		flags)
2877{
2878	struct xfs_mount	*mp = src_dp->i_mount;
2879	struct xfs_trans	*tp;
2880	struct xfs_bmap_free	free_list;
2881	xfs_fsblock_t		first_block;
2882	struct xfs_inode	*wip = NULL;		/* whiteout inode */
2883	struct xfs_inode	*inodes[__XFS_SORT_INODES];
 
2884	int			num_inodes = __XFS_SORT_INODES;
2885	bool			new_parent = (src_dp != target_dp);
2886	bool			src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode);
2887	int			spaceres;
2888	int			error;
2889
2890	trace_xfs_rename(src_dp, target_dp, src_name, target_name);
2891
2892	if ((flags & RENAME_EXCHANGE) && !target_ip)
2893		return -EINVAL;
2894
2895	/*
2896	 * If we are doing a whiteout operation, allocate the whiteout inode
2897	 * we will be placing at the target and ensure the type is set
2898	 * appropriately.
2899	 */
2900	if (flags & RENAME_WHITEOUT) {
2901		ASSERT(!(flags & (RENAME_NOREPLACE | RENAME_EXCHANGE)));
2902		error = xfs_rename_alloc_whiteout(target_dp, &wip);
2903		if (error)
2904			return error;
2905
2906		/* setup target dirent info as whiteout */
2907		src_name->type = XFS_DIR3_FT_CHRDEV;
2908	}
2909
2910	xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip,
2911				inodes, &num_inodes);
2912
2913	tp = xfs_trans_alloc(mp, XFS_TRANS_RENAME);
2914	spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
2915	error = xfs_trans_reserve(tp, &M_RES(mp)->tr_rename, spaceres, 0);
2916	if (error == -ENOSPC) {
2917		spaceres = 0;
2918		error = xfs_trans_reserve(tp, &M_RES(mp)->tr_rename, 0, 0);
 
2919	}
2920	if (error)
2921		goto out_trans_cancel;
2922
2923	/*
2924	 * Attach the dquots to the inodes
2925	 */
2926	error = xfs_qm_vop_rename_dqattach(inodes);
2927	if (error)
2928		goto out_trans_cancel;
2929
2930	/*
2931	 * Lock all the participating inodes. Depending upon whether
2932	 * the target_name exists in the target directory, and
2933	 * whether the target directory is the same as the source
2934	 * directory, we can lock from 2 to 4 inodes.
2935	 */
2936	if (!new_parent)
2937		xfs_ilock(src_dp, XFS_IOLOCK_EXCL | XFS_IOLOCK_PARENT);
2938	else
2939		xfs_lock_two_inodes(src_dp, target_dp,
2940				    XFS_IOLOCK_EXCL | XFS_IOLOCK_PARENT);
2941
2942	xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
2943
2944	/*
2945	 * Join all the inodes to the transaction. From this point on,
2946	 * we can rely on either trans_commit or trans_cancel to unlock
2947	 * them.
2948	 */
2949	xfs_trans_ijoin(tp, src_dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
2950	if (new_parent)
2951		xfs_trans_ijoin(tp, target_dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
2952	xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
2953	if (target_ip)
2954		xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
2955	if (wip)
2956		xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL);
2957
2958	/*
2959	 * If we are using project inheritance, we only allow renames
2960	 * into our tree when the project IDs are the same; else the
2961	 * tree quota mechanism would be circumvented.
2962	 */
2963	if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
2964		     (xfs_get_projid(target_dp) != xfs_get_projid(src_ip)))) {
2965		error = -EXDEV;
2966		goto out_trans_cancel;
2967	}
2968
2969	xfs_bmap_init(&free_list, &first_block);
2970
2971	/* RENAME_EXCHANGE is unique from here on. */
2972	if (flags & RENAME_EXCHANGE)
2973		return xfs_cross_rename(tp, src_dp, src_name, src_ip,
2974					target_dp, target_name, target_ip,
2975					&free_list, &first_block, spaceres);
2976
2977	/*
2978	 * Set up the target.
 
2979	 */
2980	if (target_ip == NULL) {
2981		/*
2982		 * If there's no space reservation, check the entry will
2983		 * fit before actually inserting it.
2984		 */
2985		if (!spaceres) {
2986			error = xfs_dir_canenter(tp, target_dp, target_name);
2987			if (error)
2988				goto out_trans_cancel;
2989		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2990		/*
2991		 * If target does not exist and the rename crosses
2992		 * directories, adjust the target directory link count
2993		 * to account for the ".." reference from the new entry.
2994		 */
2995		error = xfs_dir_createname(tp, target_dp, target_name,
2996						src_ip->i_ino, &first_block,
2997						&free_list, spaceres);
2998		if (error)
2999			goto out_bmap_cancel;
3000
3001		xfs_trans_ichgtime(tp, target_dp,
3002					XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3003
3004		if (new_parent && src_is_directory) {
3005			error = xfs_bumplink(tp, target_dp);
3006			if (error)
3007				goto out_bmap_cancel;
3008		}
3009	} else { /* target_ip != NULL */
3010		/*
3011		 * If target exists and it's a directory, check that both
3012		 * target and source are directories and that target can be
3013		 * destroyed, or that neither is a directory.
3014		 */
3015		if (S_ISDIR(VFS_I(target_ip)->i_mode)) {
3016			/*
3017			 * Make sure target dir is empty.
3018			 */
3019			if (!(xfs_dir_isempty(target_ip)) ||
3020			    (VFS_I(target_ip)->i_nlink > 2)) {
3021				error = -EEXIST;
3022				goto out_trans_cancel;
3023			}
3024		}
3025
3026		/*
3027		 * Link the source inode under the target name.
3028		 * If the source inode is a directory and we are moving
3029		 * it across directories, its ".." entry will be
3030		 * inconsistent until we replace that down below.
3031		 *
3032		 * In case there is already an entry with the same
3033		 * name at the destination directory, remove it first.
3034		 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3035		error = xfs_dir_replace(tp, target_dp, target_name,
3036					src_ip->i_ino,
3037					&first_block, &free_list, spaceres);
3038		if (error)
3039			goto out_bmap_cancel;
3040
3041		xfs_trans_ichgtime(tp, target_dp,
3042					XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3043
3044		/*
3045		 * Decrement the link count on the target since the target
3046		 * dir no longer points to it.
3047		 */
3048		error = xfs_droplink(tp, target_ip);
3049		if (error)
3050			goto out_bmap_cancel;
3051
3052		if (src_is_directory) {
3053			/*
3054			 * Drop the link from the old "." entry.
3055			 */
3056			error = xfs_droplink(tp, target_ip);
3057			if (error)
3058				goto out_bmap_cancel;
3059		}
3060	} /* target_ip != NULL */
3061
3062	/*
3063	 * Remove the source.
3064	 */
3065	if (new_parent && src_is_directory) {
3066		/*
3067		 * Rewrite the ".." entry to point to the new
3068		 * directory.
3069		 */
3070		error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
3071					target_dp->i_ino,
3072					&first_block, &free_list, spaceres);
3073		ASSERT(error != -EEXIST);
3074		if (error)
3075			goto out_bmap_cancel;
3076	}
3077
3078	/*
3079	 * We always want to hit the ctime on the source inode.
3080	 *
3081	 * This isn't strictly required by the standards since the source
3082	 * inode isn't really being changed, but old unix file systems did
3083	 * it and some incremental backup programs won't work without it.
3084	 */
3085	xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
3086	xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
3087
3088	/*
3089	 * Adjust the link count on src_dp.  This is necessary when
3090	 * renaming a directory, either within one parent when
3091	 * the target existed, or across two parent directories.
3092	 */
3093	if (src_is_directory && (new_parent || target_ip != NULL)) {
3094
3095		/*
3096		 * Decrement link count on src_directory since the
3097		 * entry that's moved no longer points to it.
3098		 */
3099		error = xfs_droplink(tp, src_dp);
3100		if (error)
3101			goto out_bmap_cancel;
3102	}
3103
3104	/*
3105	 * For whiteouts, we only need to update the source dirent with the
3106	 * inode number of the whiteout inode rather than removing it
3107	 * altogether.
3108	 */
3109	if (wip) {
3110		error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino,
3111					&first_block, &free_list, spaceres);
3112	} else
3113		error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
3114					   &first_block, &free_list, spaceres);
3115	if (error)
3116		goto out_bmap_cancel;
3117
3118	/*
3119	 * For whiteouts, we need to bump the link count on the whiteout inode.
3120	 * This means that failures all the way up to this point leave the inode
3121	 * on the unlinked list and so cleanup is a simple matter of dropping
3122	 * the remaining reference to it. If we fail here after bumping the link
3123	 * count, we're shutting down the filesystem so we'll never see the
3124	 * intermediate state on disk.
3125	 */
3126	if (wip) {
3127		ASSERT(VFS_I(wip)->i_nlink == 0);
3128		error = xfs_bumplink(tp, wip);
3129		if (error)
3130			goto out_bmap_cancel;
3131		error = xfs_iunlink_remove(tp, wip);
3132		if (error)
3133			goto out_bmap_cancel;
3134		xfs_trans_log_inode(tp, wip, XFS_ILOG_CORE);
3135
3136		/*
3137		 * Now we have a real link, clear the "I'm a tmpfile" state
3138		 * flag from the inode so it doesn't accidentally get misused in
3139		 * future.
3140		 */
3141		VFS_I(wip)->i_state &= ~I_LINKABLE;
3142	}
3143
3144	xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3145	xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
3146	if (new_parent)
3147		xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
3148
3149	error = xfs_finish_rename(tp, &free_list);
3150	if (wip)
3151		IRELE(wip);
3152	return error;
3153
3154out_bmap_cancel:
3155	xfs_bmap_cancel(&free_list);
3156out_trans_cancel:
3157	xfs_trans_cancel(tp);
 
3158	if (wip)
3159		IRELE(wip);
3160	return error;
3161}
3162
3163STATIC int
3164xfs_iflush_cluster(
3165	xfs_inode_t	*ip,
3166	xfs_buf_t	*bp)
3167{
3168	xfs_mount_t		*mp = ip->i_mount;
3169	struct xfs_perag	*pag;
3170	unsigned long		first_index, mask;
3171	unsigned long		inodes_per_cluster;
3172	int			ilist_size;
3173	xfs_inode_t		**ilist;
3174	xfs_inode_t		*iq;
3175	int			nr_found;
3176	int			clcount = 0;
3177	int			bufwasdelwri;
3178	int			i;
3179
3180	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
3181
3182	inodes_per_cluster = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
3183	ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
3184	ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS);
3185	if (!ilist)
3186		goto out_put;
3187
3188	mask = ~(((mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog)) - 1);
3189	first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
3190	rcu_read_lock();
3191	/* really need a gang lookup range call here */
3192	nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist,
3193					first_index, inodes_per_cluster);
3194	if (nr_found == 0)
3195		goto out_free;
3196
3197	for (i = 0; i < nr_found; i++) {
3198		iq = ilist[i];
3199		if (iq == ip)
3200			continue;
3201
3202		/*
3203		 * because this is an RCU protected lookup, we could find a
3204		 * recently freed or even reallocated inode during the lookup.
3205		 * We need to check under the i_flags_lock for a valid inode
3206		 * here. Skip it if it is not valid or the wrong inode.
3207		 */
3208		spin_lock(&ip->i_flags_lock);
3209		if (!ip->i_ino ||
3210		    (XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index) {
3211			spin_unlock(&ip->i_flags_lock);
3212			continue;
3213		}
3214		spin_unlock(&ip->i_flags_lock);
3215
3216		/*
3217		 * Do an un-protected check to see if the inode is dirty and
3218		 * is a candidate for flushing.  These checks will be repeated
3219		 * later after the appropriate locks are acquired.
3220		 */
3221		if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0)
3222			continue;
3223
3224		/*
3225		 * Try to get locks.  If any are unavailable or it is pinned,
3226		 * then this inode cannot be flushed and is skipped.
3227		 */
3228
3229		if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED))
3230			continue;
3231		if (!xfs_iflock_nowait(iq)) {
3232			xfs_iunlock(iq, XFS_ILOCK_SHARED);
3233			continue;
3234		}
3235		if (xfs_ipincount(iq)) {
3236			xfs_ifunlock(iq);
3237			xfs_iunlock(iq, XFS_ILOCK_SHARED);
3238			continue;
3239		}
3240
3241		/*
3242		 * arriving here means that this inode can be flushed.  First
3243		 * re-check that it's dirty before flushing.
3244		 */
3245		if (!xfs_inode_clean(iq)) {
3246			int	error;
3247			error = xfs_iflush_int(iq, bp);
3248			if (error) {
3249				xfs_iunlock(iq, XFS_ILOCK_SHARED);
3250				goto cluster_corrupt_out;
3251			}
3252			clcount++;
3253		} else {
3254			xfs_ifunlock(iq);
3255		}
3256		xfs_iunlock(iq, XFS_ILOCK_SHARED);
3257	}
3258
3259	if (clcount) {
3260		XFS_STATS_INC(mp, xs_icluster_flushcnt);
3261		XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount);
3262	}
3263
3264out_free:
3265	rcu_read_unlock();
3266	kmem_free(ilist);
3267out_put:
3268	xfs_perag_put(pag);
3269	return 0;
3270
3271
3272cluster_corrupt_out:
3273	/*
3274	 * Corruption detected in the clustering loop.  Invalidate the
3275	 * inode buffer and shut down the filesystem.
3276	 */
3277	rcu_read_unlock();
3278	/*
3279	 * Clean up the buffer.  If it was delwri, just release it --
3280	 * brelse can handle it with no problems.  If not, shut down the
3281	 * filesystem before releasing the buffer.
3282	 */
3283	bufwasdelwri = (bp->b_flags & _XBF_DELWRI_Q);
3284	if (bufwasdelwri)
3285		xfs_buf_relse(bp);
3286
3287	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3288
3289	if (!bufwasdelwri) {
3290		/*
3291		 * Just like incore_relse: if we have b_iodone functions,
3292		 * mark the buffer as an error and call them.  Otherwise
3293		 * mark it as stale and brelse.
3294		 */
3295		if (bp->b_iodone) {
3296			bp->b_flags &= ~XBF_DONE;
3297			xfs_buf_stale(bp);
3298			xfs_buf_ioerror(bp, -EIO);
3299			xfs_buf_ioend(bp);
3300		} else {
3301			xfs_buf_stale(bp);
3302			xfs_buf_relse(bp);
3303		}
3304	}
3305
3306	/*
3307	 * Unlocks the flush lock
3308	 */
3309	xfs_iflush_abort(iq, false);
3310	kmem_free(ilist);
3311	xfs_perag_put(pag);
3312	return -EFSCORRUPTED;
3313}
3314
3315/*
3316 * Flush dirty inode metadata into the backing buffer.
3317 *
3318 * The caller must have the inode lock and the inode flush lock held.  The
3319 * inode lock will still be held upon return to the caller, and the inode
3320 * flush lock will be released after the inode has reached the disk.
3321 *
3322 * The caller must write out the buffer returned in *bpp and release it.
3323 */
3324int
3325xfs_iflush(
3326	struct xfs_inode	*ip,
3327	struct xfs_buf		**bpp)
3328{
 
 
3329	struct xfs_mount	*mp = ip->i_mount;
3330	struct xfs_buf		*bp;
3331	struct xfs_dinode	*dip;
3332	int			error;
3333
3334	XFS_STATS_INC(mp, xs_iflush_count);
3335
3336	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3337	ASSERT(xfs_isiflocked(ip));
3338	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3339	       ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
 
3340
3341	*bpp = NULL;
3342
3343	xfs_iunpin_wait(ip);
3344
3345	/*
3346	 * For stale inodes we cannot rely on the backing buffer remaining
3347	 * stale in cache for the remaining life of the stale inode and so
3348	 * xfs_imap_to_bp() below may give us a buffer that no longer contains
3349	 * inodes below. We have to check this after ensuring the inode is
3350	 * unpinned so that it is safe to reclaim the stale inode after the
3351	 * flush call.
3352	 */
3353	if (xfs_iflags_test(ip, XFS_ISTALE)) {
3354		xfs_ifunlock(ip);
3355		return 0;
3356	}
3357
3358	/*
3359	 * This may have been unpinned because the filesystem is shutting
3360	 * down forcibly. If that's the case we must not write this inode
3361	 * to disk, because the log record didn't make it to disk.
3362	 *
3363	 * We also have to remove the log item from the AIL in this case,
3364	 * as we wait for an empty AIL as part of the unmount process.
3365	 */
3366	if (XFS_FORCED_SHUTDOWN(mp)) {
3367		error = -EIO;
3368		goto abort_out;
3369	}
3370
3371	/*
3372	 * Get the buffer containing the on-disk inode.
3373	 */
3374	error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK,
3375			       0);
3376	if (error || !bp) {
3377		xfs_ifunlock(ip);
3378		return error;
3379	}
3380
3381	/*
3382	 * First flush out the inode that xfs_iflush was called with.
3383	 */
3384	error = xfs_iflush_int(ip, bp);
3385	if (error)
3386		goto corrupt_out;
3387
3388	/*
3389	 * If the buffer is pinned then push on the log now so we won't
3390	 * get stuck waiting in the write for too long.
3391	 */
3392	if (xfs_buf_ispinned(bp))
3393		xfs_log_force(mp, 0);
3394
3395	/*
3396	 * inode clustering:
3397	 * see if other inodes can be gathered into this write
 
 
3398	 */
3399	error = xfs_iflush_cluster(ip, bp);
3400	if (error)
3401		goto cluster_corrupt_out;
3402
3403	*bpp = bp;
3404	return 0;
3405
3406corrupt_out:
3407	xfs_buf_relse(bp);
3408	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3409cluster_corrupt_out:
3410	error = -EFSCORRUPTED;
3411abort_out:
3412	/*
3413	 * Unlocks the flush lock
3414	 */
3415	xfs_iflush_abort(ip, false);
3416	return error;
3417}
3418
3419STATIC int
3420xfs_iflush_int(
3421	struct xfs_inode	*ip,
3422	struct xfs_buf		*bp)
3423{
3424	struct xfs_inode_log_item *iip = ip->i_itemp;
3425	struct xfs_dinode	*dip;
3426	struct xfs_mount	*mp = ip->i_mount;
3427
3428	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3429	ASSERT(xfs_isiflocked(ip));
3430	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3431	       ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3432	ASSERT(iip != NULL && iip->ili_fields != 0);
3433	ASSERT(ip->i_d.di_version > 1);
3434
3435	/* set *dip = inode's place in the buffer */
3436	dip = xfs_buf_offset(bp, ip->i_imap.im_boffset);
3437
3438	if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
3439			       mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
3440		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3441			"%s: Bad inode %Lu magic number 0x%x, ptr 0x%p",
3442			__func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
3443		goto corrupt_out;
3444	}
3445	if (S_ISREG(VFS_I(ip)->i_mode)) {
3446		if (XFS_TEST_ERROR(
3447		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3448		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3449		    mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
3450			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3451				"%s: Bad regular inode %Lu, ptr 0x%p",
3452				__func__, ip->i_ino, ip);
3453			goto corrupt_out;
3454		}
3455	} else if (S_ISDIR(VFS_I(ip)->i_mode)) {
3456		if (XFS_TEST_ERROR(
3457		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3458		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3459		    (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3460		    mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
3461			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3462				"%s: Bad directory inode %Lu, ptr 0x%p",
3463				__func__, ip->i_ino, ip);
3464			goto corrupt_out;
3465		}
3466	}
3467	if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3468				ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
3469				XFS_RANDOM_IFLUSH_5)) {
3470		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3471			"%s: detected corrupt incore inode %Lu, "
3472			"total extents = %d, nblocks = %Ld, ptr 0x%p",
3473			__func__, ip->i_ino,
3474			ip->i_d.di_nextents + ip->i_d.di_anextents,
3475			ip->i_d.di_nblocks, ip);
3476		goto corrupt_out;
3477	}
3478	if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3479				mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
3480		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3481			"%s: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3482			__func__, ip->i_ino, ip->i_d.di_forkoff, ip);
3483		goto corrupt_out;
3484	}
3485
3486	/*
3487	 * Inode item log recovery for v2 inodes are dependent on the
3488	 * di_flushiter count for correct sequencing. We bump the flush
3489	 * iteration count so we can detect flushes which postdate a log record
3490	 * during recovery. This is redundant as we now log every change and
3491	 * hence this can't happen but we need to still do it to ensure
3492	 * backwards compatibility with old kernels that predate logging all
3493	 * inode changes.
3494	 */
3495	if (ip->i_d.di_version < 3)
3496		ip->i_d.di_flushiter++;
3497
3498	/*
 
 
 
 
 
 
 
 
 
 
 
3499	 * Copy the dirty parts of the inode into the on-disk inode.  We always
3500	 * copy out the core of the inode, because if the inode is dirty at all
3501	 * the core must be.
3502	 */
3503	xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn);
3504
3505	/* Wrap, we never let the log put out DI_MAX_FLUSH */
3506	if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3507		ip->i_d.di_flushiter = 0;
3508
3509	xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
3510	if (XFS_IFORK_Q(ip))
3511		xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
3512	xfs_inobp_check(mp, bp);
3513
3514	/*
3515	 * We've recorded everything logged in the inode, so we'd like to clear
3516	 * the ili_fields bits so we don't log and flush things unnecessarily.
3517	 * However, we can't stop logging all this information until the data
3518	 * we've copied into the disk buffer is written to disk.  If we did we
3519	 * might overwrite the copy of the inode in the log with all the data
3520	 * after re-logging only part of it, and in the face of a crash we
3521	 * wouldn't have all the data we need to recover.
3522	 *
3523	 * What we do is move the bits to the ili_last_fields field.  When
3524	 * logging the inode, these bits are moved back to the ili_fields field.
3525	 * In the xfs_iflush_done() routine we clear ili_last_fields, since we
3526	 * know that the information those bits represent is permanently on
3527	 * disk.  As long as the flush completes before the inode is logged
3528	 * again, then both ili_fields and ili_last_fields will be cleared.
3529	 *
3530	 * We can play with the ili_fields bits here, because the inode lock
3531	 * must be held exclusively in order to set bits there and the flush
3532	 * lock protects the ili_last_fields bits.  Set ili_logged so the flush
3533	 * done routine can tell whether or not to look in the AIL.  Also, store
3534	 * the current LSN of the inode so that we can tell whether the item has
3535	 * moved in the AIL from xfs_iflush_done().  In order to read the lsn we
3536	 * need the AIL lock, because it is a 64 bit value that cannot be read
3537	 * atomically.
3538	 */
 
 
 
3539	iip->ili_last_fields = iip->ili_fields;
3540	iip->ili_fields = 0;
3541	iip->ili_fsync_fields = 0;
3542	iip->ili_logged = 1;
3543
 
 
 
 
3544	xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3545				&iip->ili_item.li_lsn);
3546
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3547	/*
3548	 * Attach the function xfs_iflush_done to the inode's
3549	 * buffer.  This will remove the inode from the AIL
3550	 * and unlock the inode's flush lock when the inode is
3551	 * completely written to disk.
3552	 */
3553	xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3554
3555	/* generate the checksum. */
3556	xfs_dinode_calc_crc(mp, dip);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3557
3558	ASSERT(bp->b_fspriv != NULL);
3559	ASSERT(bp->b_iodone != NULL);
 
 
 
 
 
 
3560	return 0;
 
 
 
 
 
 
 
 
 
3561
3562corrupt_out:
3563	return -EFSCORRUPTED;
 
 
 
 
3564}