Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
   4 * All Rights Reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
   5 */
   6#include "xfs.h"
   7#include "xfs_fs.h"
   8#include "xfs_shared.h"
   9#include "xfs_format.h"
  10#include "xfs_log_format.h"
  11#include "xfs_trans_resv.h"
  12#include "xfs_sb.h"
  13#include "xfs_mount.h"
  14#include "xfs_inode.h"
 
  15#include "xfs_trans.h"
  16#include "xfs_trans_priv.h"
  17#include "xfs_inode_item.h"
  18#include "xfs_quota.h"
  19#include "xfs_trace.h"
  20#include "xfs_icache.h"
  21#include "xfs_bmap_util.h"
  22#include "xfs_dquot_item.h"
  23#include "xfs_dquot.h"
  24#include "xfs_reflink.h"
  25#include "xfs_ialloc.h"
  26
  27#include <linux/iversion.h>
 
 
 
 
  28
  29/*
  30 * Allocate and initialise an xfs_inode.
  31 */
  32struct xfs_inode *
  33xfs_inode_alloc(
  34	struct xfs_mount	*mp,
  35	xfs_ino_t		ino)
  36{
  37	struct xfs_inode	*ip;
  38
  39	/*
  40	 * XXX: If this didn't occur in transactions, we could drop GFP_NOFAIL
  41	 * and return NULL here on ENOMEM.
 
  42	 */
  43	ip = kmem_cache_alloc(xfs_inode_zone, GFP_KERNEL | __GFP_NOFAIL);
  44
 
  45	if (inode_init_always(mp->m_super, VFS_I(ip))) {
  46		kmem_cache_free(xfs_inode_zone, ip);
  47		return NULL;
  48	}
  49
  50	/* VFS doesn't initialise i_mode! */
  51	VFS_I(ip)->i_mode = 0;
  52
  53	XFS_STATS_INC(mp, vn_active);
  54	ASSERT(atomic_read(&ip->i_pincount) == 0);
 
  55	ASSERT(!xfs_isiflocked(ip));
  56	ASSERT(ip->i_ino == 0);
  57
 
 
  58	/* initialise the xfs inode */
  59	ip->i_ino = ino;
  60	ip->i_mount = mp;
  61	memset(&ip->i_imap, 0, sizeof(struct xfs_imap));
  62	ip->i_afp = NULL;
  63	ip->i_cowfp = NULL;
  64	memset(&ip->i_df, 0, sizeof(ip->i_df));
  65	ip->i_flags = 0;
  66	ip->i_delayed_blks = 0;
  67	memset(&ip->i_d, 0, sizeof(ip->i_d));
  68	ip->i_sick = 0;
  69	ip->i_checked = 0;
  70	INIT_WORK(&ip->i_ioend_work, xfs_end_io);
  71	INIT_LIST_HEAD(&ip->i_ioend_list);
  72	spin_lock_init(&ip->i_ioend_lock);
  73
  74	return ip;
  75}
  76
  77STATIC void
  78xfs_inode_free_callback(
  79	struct rcu_head		*head)
  80{
  81	struct inode		*inode = container_of(head, struct inode, i_rcu);
  82	struct xfs_inode	*ip = XFS_I(inode);
  83
 
 
 
 
 
 
 
  84	switch (VFS_I(ip)->i_mode & S_IFMT) {
  85	case S_IFREG:
  86	case S_IFDIR:
  87	case S_IFLNK:
  88		xfs_idestroy_fork(&ip->i_df);
  89		break;
  90	}
  91
  92	if (ip->i_afp) {
  93		xfs_idestroy_fork(ip->i_afp);
  94		kmem_cache_free(xfs_ifork_zone, ip->i_afp);
  95	}
  96	if (ip->i_cowfp) {
  97		xfs_idestroy_fork(ip->i_cowfp);
  98		kmem_cache_free(xfs_ifork_zone, ip->i_cowfp);
  99	}
 100	if (ip->i_itemp) {
 101		ASSERT(!test_bit(XFS_LI_IN_AIL,
 102				 &ip->i_itemp->ili_item.li_flags));
 103		xfs_inode_item_destroy(ip);
 104		ip->i_itemp = NULL;
 105	}
 106
 107	kmem_cache_free(xfs_inode_zone, ip);
 108}
 109
 110static void
 111__xfs_inode_free(
 112	struct xfs_inode	*ip)
 113{
 114	/* asserts to verify all state is correct here */
 115	ASSERT(atomic_read(&ip->i_pincount) == 0);
 116	ASSERT(!ip->i_itemp || list_empty(&ip->i_itemp->ili_item.li_bio_list));
 117	XFS_STATS_DEC(ip->i_mount, vn_active);
 118
 119	call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback);
 120}
 121
 122void
 123xfs_inode_free(
 124	struct xfs_inode	*ip)
 125{
 126	ASSERT(!xfs_isiflocked(ip));
 127
 128	/*
 129	 * Because we use RCU freeing we need to ensure the inode always
 130	 * appears to be reclaimed with an invalid inode number when in the
 131	 * free state. The ip->i_flags_lock provides the barrier against lookup
 132	 * races.
 133	 */
 134	spin_lock(&ip->i_flags_lock);
 135	ip->i_flags = XFS_IRECLAIM;
 136	ip->i_ino = 0;
 137	spin_unlock(&ip->i_flags_lock);
 138
 139	__xfs_inode_free(ip);
 140}
 141
 142/*
 143 * Queue background inode reclaim work if there are reclaimable inodes and there
 144 * isn't reclaim work already scheduled or in progress.
 145 */
 146static void
 147xfs_reclaim_work_queue(
 148	struct xfs_mount        *mp)
 149{
 150
 151	rcu_read_lock();
 152	if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
 153		queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work,
 154			msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10));
 155	}
 156	rcu_read_unlock();
 157}
 158
 159static void
 160xfs_perag_set_reclaim_tag(
 161	struct xfs_perag	*pag)
 162{
 163	struct xfs_mount	*mp = pag->pag_mount;
 164
 165	lockdep_assert_held(&pag->pag_ici_lock);
 166	if (pag->pag_ici_reclaimable++)
 167		return;
 168
 169	/* propagate the reclaim tag up into the perag radix tree */
 170	spin_lock(&mp->m_perag_lock);
 171	radix_tree_tag_set(&mp->m_perag_tree, pag->pag_agno,
 172			   XFS_ICI_RECLAIM_TAG);
 173	spin_unlock(&mp->m_perag_lock);
 174
 175	/* schedule periodic background inode reclaim */
 176	xfs_reclaim_work_queue(mp);
 177
 178	trace_xfs_perag_set_reclaim(mp, pag->pag_agno, -1, _RET_IP_);
 179}
 180
 181static void
 182xfs_perag_clear_reclaim_tag(
 183	struct xfs_perag	*pag)
 184{
 185	struct xfs_mount	*mp = pag->pag_mount;
 186
 187	lockdep_assert_held(&pag->pag_ici_lock);
 188	if (--pag->pag_ici_reclaimable)
 189		return;
 190
 191	/* clear the reclaim tag from the perag radix tree */
 192	spin_lock(&mp->m_perag_lock);
 193	radix_tree_tag_clear(&mp->m_perag_tree, pag->pag_agno,
 194			     XFS_ICI_RECLAIM_TAG);
 195	spin_unlock(&mp->m_perag_lock);
 196	trace_xfs_perag_clear_reclaim(mp, pag->pag_agno, -1, _RET_IP_);
 197}
 198
 199
 200/*
 201 * We set the inode flag atomically with the radix tree tag.
 202 * Once we get tag lookups on the radix tree, this inode flag
 203 * can go away.
 204 */
 205void
 206xfs_inode_set_reclaim_tag(
 207	struct xfs_inode	*ip)
 208{
 209	struct xfs_mount	*mp = ip->i_mount;
 210	struct xfs_perag	*pag;
 211
 212	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
 213	spin_lock(&pag->pag_ici_lock);
 214	spin_lock(&ip->i_flags_lock);
 215
 216	radix_tree_tag_set(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, ip->i_ino),
 217			   XFS_ICI_RECLAIM_TAG);
 218	xfs_perag_set_reclaim_tag(pag);
 219	__xfs_iflags_set(ip, XFS_IRECLAIMABLE);
 220
 221	spin_unlock(&ip->i_flags_lock);
 222	spin_unlock(&pag->pag_ici_lock);
 223	xfs_perag_put(pag);
 224}
 225
 226STATIC void
 227xfs_inode_clear_reclaim_tag(
 228	struct xfs_perag	*pag,
 229	xfs_ino_t		ino)
 230{
 231	radix_tree_tag_clear(&pag->pag_ici_root,
 232			     XFS_INO_TO_AGINO(pag->pag_mount, ino),
 233			     XFS_ICI_RECLAIM_TAG);
 234	xfs_perag_clear_reclaim_tag(pag);
 235}
 236
 237static void
 238xfs_inew_wait(
 239	struct xfs_inode	*ip)
 240{
 241	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_INEW_BIT);
 242	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_INEW_BIT);
 243
 244	do {
 245		prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
 246		if (!xfs_iflags_test(ip, XFS_INEW))
 247			break;
 248		schedule();
 249	} while (true);
 250	finish_wait(wq, &wait.wq_entry);
 251}
 252
 253/*
 254 * When we recycle a reclaimable inode, we need to re-initialise the VFS inode
 255 * part of the structure. This is made more complex by the fact we store
 256 * information about the on-disk values in the VFS inode and so we can't just
 257 * overwrite the values unconditionally. Hence we save the parameters we
 258 * need to retain across reinitialisation, and rewrite them into the VFS inode
 259 * after reinitialisation even if it fails.
 260 */
 261static int
 262xfs_reinit_inode(
 263	struct xfs_mount	*mp,
 264	struct inode		*inode)
 265{
 266	int		error;
 267	uint32_t	nlink = inode->i_nlink;
 268	uint32_t	generation = inode->i_generation;
 269	uint64_t	version = inode_peek_iversion(inode);
 270	umode_t		mode = inode->i_mode;
 271	dev_t		dev = inode->i_rdev;
 272	kuid_t		uid = inode->i_uid;
 273	kgid_t		gid = inode->i_gid;
 274
 275	error = inode_init_always(mp->m_super, inode);
 276
 277	set_nlink(inode, nlink);
 278	inode->i_generation = generation;
 279	inode_set_iversion_queried(inode, version);
 280	inode->i_mode = mode;
 281	inode->i_rdev = dev;
 282	inode->i_uid = uid;
 283	inode->i_gid = gid;
 284	return error;
 285}
 286
 287/*
 288 * If we are allocating a new inode, then check what was returned is
 289 * actually a free, empty inode. If we are not allocating an inode,
 290 * then check we didn't find a free inode.
 291 *
 292 * Returns:
 293 *	0		if the inode free state matches the lookup context
 294 *	-ENOENT		if the inode is free and we are not allocating
 295 *	-EFSCORRUPTED	if there is any state mismatch at all
 296 */
 297static int
 298xfs_iget_check_free_state(
 299	struct xfs_inode	*ip,
 300	int			flags)
 301{
 302	if (flags & XFS_IGET_CREATE) {
 303		/* should be a free inode */
 304		if (VFS_I(ip)->i_mode != 0) {
 305			xfs_warn(ip->i_mount,
 306"Corruption detected! Free inode 0x%llx not marked free! (mode 0x%x)",
 307				ip->i_ino, VFS_I(ip)->i_mode);
 308			return -EFSCORRUPTED;
 309		}
 310
 311		if (ip->i_d.di_nblocks != 0) {
 312			xfs_warn(ip->i_mount,
 313"Corruption detected! Free inode 0x%llx has blocks allocated!",
 314				ip->i_ino);
 315			return -EFSCORRUPTED;
 316		}
 317		return 0;
 318	}
 319
 320	/* should be an allocated inode */
 321	if (VFS_I(ip)->i_mode == 0)
 322		return -ENOENT;
 323
 324	return 0;
 325}
 326
 327/*
 328 * Check the validity of the inode we just found it the cache
 329 */
 330static int
 331xfs_iget_cache_hit(
 332	struct xfs_perag	*pag,
 333	struct xfs_inode	*ip,
 334	xfs_ino_t		ino,
 335	int			flags,
 336	int			lock_flags) __releases(RCU)
 337{
 338	struct inode		*inode = VFS_I(ip);
 339	struct xfs_mount	*mp = ip->i_mount;
 340	int			error;
 341
 342	/*
 343	 * check for re-use of an inode within an RCU grace period due to the
 344	 * radix tree nodes not being updated yet. We monitor for this by
 345	 * setting the inode number to zero before freeing the inode structure.
 346	 * If the inode has been reallocated and set up, then the inode number
 347	 * will not match, so check for that, too.
 348	 */
 349	spin_lock(&ip->i_flags_lock);
 350	if (ip->i_ino != ino) {
 351		trace_xfs_iget_skip(ip);
 352		XFS_STATS_INC(mp, xs_ig_frecycle);
 353		error = -EAGAIN;
 354		goto out_error;
 355	}
 356
 357
 358	/*
 359	 * If we are racing with another cache hit that is currently
 360	 * instantiating this inode or currently recycling it out of
 361	 * reclaimabe state, wait for the initialisation to complete
 362	 * before continuing.
 363	 *
 364	 * XXX(hch): eventually we should do something equivalent to
 365	 *	     wait_on_inode to wait for these flags to be cleared
 366	 *	     instead of polling for it.
 367	 */
 368	if (ip->i_flags & (XFS_INEW|XFS_IRECLAIM)) {
 369		trace_xfs_iget_skip(ip);
 370		XFS_STATS_INC(mp, xs_ig_frecycle);
 371		error = -EAGAIN;
 372		goto out_error;
 373	}
 374
 375	/*
 376	 * Check the inode free state is valid. This also detects lookup
 377	 * racing with unlinks.
 378	 */
 379	error = xfs_iget_check_free_state(ip, flags);
 380	if (error)
 381		goto out_error;
 
 382
 383	/*
 384	 * If IRECLAIMABLE is set, we've torn down the VFS inode already.
 385	 * Need to carefully get it back into useable state.
 386	 */
 387	if (ip->i_flags & XFS_IRECLAIMABLE) {
 388		trace_xfs_iget_reclaim(ip);
 389
 390		if (flags & XFS_IGET_INCORE) {
 391			error = -EAGAIN;
 392			goto out_error;
 393		}
 394
 395		/*
 396		 * We need to set XFS_IRECLAIM to prevent xfs_reclaim_inode
 397		 * from stomping over us while we recycle the inode.  We can't
 398		 * clear the radix tree reclaimable tag yet as it requires
 399		 * pag_ici_lock to be held exclusive.
 400		 */
 401		ip->i_flags |= XFS_IRECLAIM;
 402
 403		spin_unlock(&ip->i_flags_lock);
 404		rcu_read_unlock();
 405
 406		ASSERT(!rwsem_is_locked(&inode->i_rwsem));
 407		error = xfs_reinit_inode(mp, inode);
 408		if (error) {
 409			bool wake;
 410			/*
 411			 * Re-initializing the inode failed, and we are in deep
 412			 * trouble.  Try to re-add it to the reclaim list.
 413			 */
 414			rcu_read_lock();
 415			spin_lock(&ip->i_flags_lock);
 416			wake = !!__xfs_iflags_test(ip, XFS_INEW);
 417			ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM);
 418			if (wake)
 419				wake_up_bit(&ip->i_flags, __XFS_INEW_BIT);
 420			ASSERT(ip->i_flags & XFS_IRECLAIMABLE);
 421			trace_xfs_iget_reclaim_fail(ip);
 422			goto out_error;
 423		}
 424
 425		spin_lock(&pag->pag_ici_lock);
 426		spin_lock(&ip->i_flags_lock);
 427
 428		/*
 429		 * Clear the per-lifetime state in the inode as we are now
 430		 * effectively a new inode and need to return to the initial
 431		 * state before reuse occurs.
 432		 */
 433		ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS;
 434		ip->i_flags |= XFS_INEW;
 435		xfs_inode_clear_reclaim_tag(pag, ip->i_ino);
 436		inode->i_state = I_NEW;
 437		ip->i_sick = 0;
 438		ip->i_checked = 0;
 
 439
 440		spin_unlock(&ip->i_flags_lock);
 441		spin_unlock(&pag->pag_ici_lock);
 442	} else {
 443		/* If the VFS inode is being torn down, pause and try again. */
 444		if (!igrab(inode)) {
 445			trace_xfs_iget_skip(ip);
 446			error = -EAGAIN;
 447			goto out_error;
 448		}
 449
 450		/* We've got a live one. */
 451		spin_unlock(&ip->i_flags_lock);
 452		rcu_read_unlock();
 453		trace_xfs_iget_hit(ip);
 454	}
 455
 456	if (lock_flags != 0)
 457		xfs_ilock(ip, lock_flags);
 458
 459	if (!(flags & XFS_IGET_INCORE))
 460		xfs_iflags_clear(ip, XFS_ISTALE);
 461	XFS_STATS_INC(mp, xs_ig_found);
 462
 463	return 0;
 464
 465out_error:
 466	spin_unlock(&ip->i_flags_lock);
 467	rcu_read_unlock();
 468	return error;
 469}
 470
 471
 472static int
 473xfs_iget_cache_miss(
 474	struct xfs_mount	*mp,
 475	struct xfs_perag	*pag,
 476	xfs_trans_t		*tp,
 477	xfs_ino_t		ino,
 478	struct xfs_inode	**ipp,
 479	int			flags,
 480	int			lock_flags)
 481{
 482	struct xfs_inode	*ip;
 483	int			error;
 484	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ino);
 485	int			iflags;
 486
 487	ip = xfs_inode_alloc(mp, ino);
 488	if (!ip)
 489		return -ENOMEM;
 490
 491	error = xfs_imap(mp, tp, ip->i_ino, &ip->i_imap, flags);
 492	if (error)
 493		goto out_destroy;
 494
 495	/*
 496	 * For version 5 superblocks, if we are initialising a new inode and we
 497	 * are not utilising the XFS_MOUNT_IKEEP inode cluster mode, we can
 498	 * simply build the new inode core with a random generation number.
 499	 *
 500	 * For version 4 (and older) superblocks, log recovery is dependent on
 501	 * the di_flushiter field being initialised from the current on-disk
 502	 * value and hence we must also read the inode off disk even when
 503	 * initializing new inodes.
 504	 */
 505	if (xfs_sb_version_has_v3inode(&mp->m_sb) &&
 506	    (flags & XFS_IGET_CREATE) && !(mp->m_flags & XFS_MOUNT_IKEEP)) {
 507		VFS_I(ip)->i_generation = prandom_u32();
 508	} else {
 509		struct xfs_dinode	*dip;
 510		struct xfs_buf		*bp;
 511
 512		error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &bp, 0);
 513		if (error)
 514			goto out_destroy;
 515
 516		error = xfs_inode_from_disk(ip, dip);
 517		if (!error)
 518			xfs_buf_set_ref(bp, XFS_INO_REF);
 519		xfs_trans_brelse(tp, bp);
 520
 521		if (error)
 522			goto out_destroy;
 523	}
 524
 525	trace_xfs_iget_miss(ip);
 526
 527	/*
 528	 * Check the inode free state is valid. This also detects lookup
 529	 * racing with unlinks.
 530	 */
 531	error = xfs_iget_check_free_state(ip, flags);
 532	if (error)
 533		goto out_destroy;
 
 534
 535	/*
 536	 * Preload the radix tree so we can insert safely under the
 537	 * write spinlock. Note that we cannot sleep inside the preload
 538	 * region. Since we can be called from transaction context, don't
 539	 * recurse into the file system.
 540	 */
 541	if (radix_tree_preload(GFP_NOFS)) {
 542		error = -EAGAIN;
 543		goto out_destroy;
 544	}
 545
 546	/*
 547	 * Because the inode hasn't been added to the radix-tree yet it can't
 548	 * be found by another thread, so we can do the non-sleeping lock here.
 549	 */
 550	if (lock_flags) {
 551		if (!xfs_ilock_nowait(ip, lock_flags))
 552			BUG();
 553	}
 554
 555	/*
 556	 * These values must be set before inserting the inode into the radix
 557	 * tree as the moment it is inserted a concurrent lookup (allowed by the
 558	 * RCU locking mechanism) can find it and that lookup must see that this
 559	 * is an inode currently under construction (i.e. that XFS_INEW is set).
 560	 * The ip->i_flags_lock that protects the XFS_INEW flag forms the
 561	 * memory barrier that ensures this detection works correctly at lookup
 562	 * time.
 563	 */
 564	iflags = XFS_INEW;
 565	if (flags & XFS_IGET_DONTCACHE)
 566		d_mark_dontcache(VFS_I(ip));
 567	ip->i_udquot = NULL;
 568	ip->i_gdquot = NULL;
 569	ip->i_pdquot = NULL;
 570	xfs_iflags_set(ip, iflags);
 571
 572	/* insert the new inode */
 573	spin_lock(&pag->pag_ici_lock);
 574	error = radix_tree_insert(&pag->pag_ici_root, agino, ip);
 575	if (unlikely(error)) {
 576		WARN_ON(error != -EEXIST);
 577		XFS_STATS_INC(mp, xs_ig_dup);
 578		error = -EAGAIN;
 579		goto out_preload_end;
 580	}
 581	spin_unlock(&pag->pag_ici_lock);
 582	radix_tree_preload_end();
 583
 584	*ipp = ip;
 585	return 0;
 586
 587out_preload_end:
 588	spin_unlock(&pag->pag_ici_lock);
 589	radix_tree_preload_end();
 590	if (lock_flags)
 591		xfs_iunlock(ip, lock_flags);
 592out_destroy:
 593	__destroy_inode(VFS_I(ip));
 594	xfs_inode_free(ip);
 595	return error;
 596}
 597
 598/*
 599 * Look up an inode by number in the given file system.  The inode is looked up
 600 * in the cache held in each AG.  If the inode is found in the cache, initialise
 601 * the vfs inode if necessary.
 
 602 *
 603 * If it is not in core, read it in from the file system's device, add it to the
 604 * cache and initialise the vfs inode.
 605 *
 606 * The inode is locked according to the value of the lock_flags parameter.
 607 * Inode lookup is only done during metadata operations and not as part of the
 608 * data IO path. Hence we only allow locking of the XFS_ILOCK during lookup.
 
 
 
 
 
 
 
 
 
 609 */
 610int
 611xfs_iget(
 612	struct xfs_mount	*mp,
 613	struct xfs_trans	*tp,
 614	xfs_ino_t		ino,
 615	uint			flags,
 616	uint			lock_flags,
 617	struct xfs_inode	**ipp)
 618{
 619	struct xfs_inode	*ip;
 620	struct xfs_perag	*pag;
 621	xfs_agino_t		agino;
 622	int			error;
 623
 
 
 
 
 
 
 
 624	ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0);
 625
 626	/* reject inode numbers outside existing AGs */
 627	if (!ino || XFS_INO_TO_AGNO(mp, ino) >= mp->m_sb.sb_agcount)
 628		return -EINVAL;
 629
 630	XFS_STATS_INC(mp, xs_ig_attempts);
 631
 632	/* get the perag structure and ensure that it's inode capable */
 633	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino));
 634	agino = XFS_INO_TO_AGINO(mp, ino);
 635
 636again:
 637	error = 0;
 638	rcu_read_lock();
 639	ip = radix_tree_lookup(&pag->pag_ici_root, agino);
 640
 641	if (ip) {
 642		error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags);
 643		if (error)
 644			goto out_error_or_again;
 645	} else {
 646		rcu_read_unlock();
 647		if (flags & XFS_IGET_INCORE) {
 648			error = -ENODATA;
 649			goto out_error_or_again;
 650		}
 651		XFS_STATS_INC(mp, xs_ig_missed);
 652
 653		error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip,
 654							flags, lock_flags);
 655		if (error)
 656			goto out_error_or_again;
 657	}
 658	xfs_perag_put(pag);
 659
 660	*ipp = ip;
 661
 662	/*
 663	 * If we have a real type for an on-disk inode, we can setup the inode
 664	 * now.	 If it's a new inode being created, xfs_ialloc will handle it.
 665	 */
 666	if (xfs_iflags_test(ip, XFS_INEW) && VFS_I(ip)->i_mode != 0)
 667		xfs_setup_existing_inode(ip);
 668	return 0;
 669
 670out_error_or_again:
 671	if (!(flags & XFS_IGET_INCORE) && error == -EAGAIN) {
 672		delay(1);
 673		goto again;
 674	}
 675	xfs_perag_put(pag);
 676	return error;
 677}
 678
 679/*
 680 * "Is this a cached inode that's also allocated?"
 681 *
 682 * Look up an inode by number in the given file system.  If the inode is
 683 * in cache and isn't in purgatory, return 1 if the inode is allocated
 684 * and 0 if it is not.  For all other cases (not in cache, being torn
 685 * down, etc.), return a negative error code.
 686 *
 687 * The caller has to prevent inode allocation and freeing activity,
 688 * presumably by locking the AGI buffer.   This is to ensure that an
 689 * inode cannot transition from allocated to freed until the caller is
 690 * ready to allow that.  If the inode is in an intermediate state (new,
 691 * reclaimable, or being reclaimed), -EAGAIN will be returned; if the
 692 * inode is not in the cache, -ENOENT will be returned.  The caller must
 693 * deal with these scenarios appropriately.
 694 *
 695 * This is a specialized use case for the online scrubber; if you're
 696 * reading this, you probably want xfs_iget.
 697 */
 698int
 699xfs_icache_inode_is_allocated(
 700	struct xfs_mount	*mp,
 701	struct xfs_trans	*tp,
 702	xfs_ino_t		ino,
 703	bool			*inuse)
 704{
 705	struct xfs_inode	*ip;
 706	int			error;
 707
 708	error = xfs_iget(mp, tp, ino, XFS_IGET_INCORE, 0, &ip);
 709	if (error)
 710		return error;
 711
 712	*inuse = !!(VFS_I(ip)->i_mode);
 713	xfs_irele(ip);
 714	return 0;
 715}
 716
 717/*
 718 * The inode lookup is done in batches to keep the amount of lock traffic and
 719 * radix tree lookups to a minimum. The batch size is a trade off between
 720 * lookup reduction and stack usage. This is in the reclaim path, so we can't
 721 * be too greedy.
 722 */
 723#define XFS_LOOKUP_BATCH	32
 724
 725/*
 726 * Decide if the given @ip is eligible to be a part of the inode walk, and
 727 * grab it if so.  Returns true if it's ready to go or false if we should just
 728 * ignore it.
 729 */
 730STATIC bool
 731xfs_inode_walk_ag_grab(
 732	struct xfs_inode	*ip,
 733	int			flags)
 734{
 735	struct inode		*inode = VFS_I(ip);
 736	bool			newinos = !!(flags & XFS_INODE_WALK_INEW_WAIT);
 737
 738	ASSERT(rcu_read_lock_held());
 739
 740	/* Check for stale RCU freed inode */
 
 
 
 
 
 
 
 
 741	spin_lock(&ip->i_flags_lock);
 742	if (!ip->i_ino)
 743		goto out_unlock_noent;
 744
 745	/* avoid new or reclaimable inodes. Leave for reclaim code to flush */
 746	if ((!newinos && __xfs_iflags_test(ip, XFS_INEW)) ||
 747	    __xfs_iflags_test(ip, XFS_IRECLAIMABLE | XFS_IRECLAIM))
 748		goto out_unlock_noent;
 749	spin_unlock(&ip->i_flags_lock);
 750
 751	/* nothing to sync during shutdown */
 752	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
 753		return false;
 754
 755	/* If we can't grab the inode, it must on it's way to reclaim. */
 756	if (!igrab(inode))
 757		return false;
 758
 759	/* inode is valid */
 760	return true;
 761
 762out_unlock_noent:
 763	spin_unlock(&ip->i_flags_lock);
 764	return false;
 765}
 766
 767/*
 768 * For a given per-AG structure @pag, grab, @execute, and rele all incore
 769 * inodes with the given radix tree @tag.
 770 */
 771STATIC int
 772xfs_inode_walk_ag(
 
 773	struct xfs_perag	*pag,
 774	int			iter_flags,
 775	int			(*execute)(struct xfs_inode *ip, void *args),
 
 776	void			*args,
 777	int			tag)
 778{
 779	struct xfs_mount	*mp = pag->pag_mount;
 780	uint32_t		first_index;
 781	int			last_error = 0;
 782	int			skipped;
 783	bool			done;
 784	int			nr_found;
 785
 786restart:
 787	done = false;
 788	skipped = 0;
 789	first_index = 0;
 790	nr_found = 0;
 791	do {
 792		struct xfs_inode *batch[XFS_LOOKUP_BATCH];
 793		int		error = 0;
 794		int		i;
 795
 796		rcu_read_lock();
 797
 798		if (tag == XFS_ICI_NO_TAG)
 799			nr_found = radix_tree_gang_lookup(&pag->pag_ici_root,
 800					(void **)batch, first_index,
 801					XFS_LOOKUP_BATCH);
 802		else
 803			nr_found = radix_tree_gang_lookup_tag(
 804					&pag->pag_ici_root,
 805					(void **) batch, first_index,
 806					XFS_LOOKUP_BATCH, tag);
 807
 808		if (!nr_found) {
 809			rcu_read_unlock();
 810			break;
 811		}
 812
 813		/*
 814		 * Grab the inodes before we drop the lock. if we found
 815		 * nothing, nr == 0 and the loop will be skipped.
 816		 */
 817		for (i = 0; i < nr_found; i++) {
 818			struct xfs_inode *ip = batch[i];
 819
 820			if (done || !xfs_inode_walk_ag_grab(ip, iter_flags))
 821				batch[i] = NULL;
 822
 823			/*
 824			 * Update the index for the next lookup. Catch
 825			 * overflows into the next AG range which can occur if
 826			 * we have inodes in the last block of the AG and we
 827			 * are currently pointing to the last inode.
 828			 *
 829			 * Because we may see inodes that are from the wrong AG
 830			 * due to RCU freeing and reallocation, only update the
 831			 * index if it lies in this AG. It was a race that lead
 832			 * us to see this inode, so another lookup from the
 833			 * same index will not find it again.
 834			 */
 835			if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno)
 836				continue;
 837			first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
 838			if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
 839				done = true;
 840		}
 841
 842		/* unlock now we've grabbed the inodes. */
 843		rcu_read_unlock();
 844
 845		for (i = 0; i < nr_found; i++) {
 846			if (!batch[i])
 847				continue;
 848			if ((iter_flags & XFS_INODE_WALK_INEW_WAIT) &&
 849			    xfs_iflags_test(batch[i], XFS_INEW))
 850				xfs_inew_wait(batch[i]);
 851			error = execute(batch[i], args);
 852			xfs_irele(batch[i]);
 853			if (error == -EAGAIN) {
 854				skipped++;
 855				continue;
 856			}
 857			if (error && last_error != -EFSCORRUPTED)
 858				last_error = error;
 859		}
 860
 861		/* bail out if the filesystem is corrupted.  */
 862		if (error == -EFSCORRUPTED)
 863			break;
 864
 865		cond_resched();
 866
 867	} while (nr_found && !done);
 868
 869	if (skipped) {
 870		delay(1);
 871		goto restart;
 872	}
 873	return last_error;
 874}
 875
 876/* Fetch the next (possibly tagged) per-AG structure. */
 877static inline struct xfs_perag *
 878xfs_inode_walk_get_perag(
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 879	struct xfs_mount	*mp,
 880	xfs_agnumber_t		agno,
 881	int			tag)
 
 
 882{
 883	if (tag == XFS_ICI_NO_TAG)
 884		return xfs_perag_get(mp, agno);
 885	return xfs_perag_get_tag(mp, agno, tag);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 886}
 887
 888/*
 889 * Call the @execute function on all incore inodes matching the radix tree
 890 * @tag.
 891 */
 892int
 893xfs_inode_walk(
 894	struct xfs_mount	*mp,
 895	int			iter_flags,
 896	int			(*execute)(struct xfs_inode *ip, void *args),
 
 897	void			*args,
 898	int			tag)
 899{
 900	struct xfs_perag	*pag;
 901	int			error = 0;
 902	int			last_error = 0;
 903	xfs_agnumber_t		ag;
 904
 905	ag = 0;
 906	while ((pag = xfs_inode_walk_get_perag(mp, ag, tag))) {
 907		ag = pag->pag_agno + 1;
 908		error = xfs_inode_walk_ag(pag, iter_flags, execute, args, tag);
 909		xfs_perag_put(pag);
 910		if (error) {
 911			last_error = error;
 912			if (error == -EFSCORRUPTED)
 913				break;
 914		}
 915	}
 916	return last_error;
 917}
 918
 919/*
 920 * Background scanning to trim post-EOF preallocated space. This is queued
 921 * based on the 'speculative_prealloc_lifetime' tunable (5m by default).
 
 
 
 922 */
 923void
 924xfs_queue_eofblocks(
 925	struct xfs_mount *mp)
 926{
 
 927	rcu_read_lock();
 928	if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_EOFBLOCKS_TAG))
 929		queue_delayed_work(mp->m_eofblocks_workqueue,
 930				   &mp->m_eofblocks_work,
 931				   msecs_to_jiffies(xfs_eofb_secs * 1000));
 932	rcu_read_unlock();
 933}
 934
 
 
 
 
 
 
 
 935void
 936xfs_eofblocks_worker(
 937	struct work_struct *work)
 938{
 939	struct xfs_mount *mp = container_of(to_delayed_work(work),
 940				struct xfs_mount, m_eofblocks_work);
 941
 942	if (!sb_start_write_trylock(mp->m_super))
 943		return;
 944	xfs_icache_free_eofblocks(mp, NULL);
 945	sb_end_write(mp->m_super);
 946
 947	xfs_queue_eofblocks(mp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 948}
 949
 950/*
 951 * Background scanning to trim preallocated CoW space. This is queued
 952 * based on the 'speculative_cow_prealloc_lifetime' tunable (5m by default).
 953 * (We'll just piggyback on the post-EOF prealloc space workqueue.)
 954 */
 955void
 956xfs_queue_cowblocks(
 957	struct xfs_mount *mp)
 958{
 959	rcu_read_lock();
 960	if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_COWBLOCKS_TAG))
 961		queue_delayed_work(mp->m_eofblocks_workqueue,
 962				   &mp->m_cowblocks_work,
 963				   msecs_to_jiffies(xfs_cowb_secs * 1000));
 964	rcu_read_unlock();
 
 
 
 
 
 965}
 966
 967void
 968xfs_cowblocks_worker(
 969	struct work_struct *work)
 
 970{
 971	struct xfs_mount *mp = container_of(to_delayed_work(work),
 972				struct xfs_mount, m_cowblocks_work);
 973
 974	if (!sb_start_write_trylock(mp->m_super))
 975		return;
 976	xfs_icache_free_cowblocks(mp, NULL);
 977	sb_end_write(mp->m_super);
 
 
 
 
 
 978
 979	xfs_queue_cowblocks(mp);
 
 
 
 
 
 
 
 
 980}
 981
 982/*
 983 * Grab the inode for reclaim exclusively.
 984 *
 985 * We have found this inode via a lookup under RCU, so the inode may have
 986 * already been freed, or it may be in the process of being recycled by
 987 * xfs_iget(). In both cases, the inode will have XFS_IRECLAIM set. If the inode
 988 * has been fully recycled by the time we get the i_flags_lock, XFS_IRECLAIMABLE
 989 * will not be set. Hence we need to check for both these flag conditions to
 990 * avoid inodes that are no longer reclaim candidates.
 991 *
 992 * Note: checking for other state flags here, under the i_flags_lock or not, is
 993 * racy and should be avoided. Those races should be resolved only after we have
 994 * ensured that we are able to reclaim this inode and the world can see that we
 995 * are going to reclaim it.
 996 *
 997 * Return true if we grabbed it, false otherwise.
 998 */
 999static bool
1000xfs_reclaim_inode_grab(
1001	struct xfs_inode	*ip)
 
1002{
1003	ASSERT(rcu_read_lock_held());
1004
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1005	spin_lock(&ip->i_flags_lock);
1006	if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) ||
1007	    __xfs_iflags_test(ip, XFS_IRECLAIM)) {
1008		/* not a reclaim candidate. */
1009		spin_unlock(&ip->i_flags_lock);
1010		return false;
1011	}
1012	__xfs_iflags_set(ip, XFS_IRECLAIM);
1013	spin_unlock(&ip->i_flags_lock);
1014	return true;
1015}
1016
1017/*
1018 * Inode reclaim is non-blocking, so the default action if progress cannot be
1019 * made is to "requeue" the inode for reclaim by unlocking it and clearing the
1020 * XFS_IRECLAIM flag.  If we are in a shutdown state, we don't care about
1021 * blocking anymore and hence we can wait for the inode to be able to reclaim
1022 * it.
 
 
 
 
 
 
 
 
1023 *
1024 * We do no IO here - if callers require inodes to be cleaned they must push the
1025 * AIL first to trigger writeback of dirty inodes.  This enables writeback to be
1026 * done in the background in a non-blocking manner, and enables memory reclaim
1027 * to make progress without blocking.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1028 */
1029static void
1030xfs_reclaim_inode(
1031	struct xfs_inode	*ip,
1032	struct xfs_perag	*pag)
 
1033{
1034	xfs_ino_t		ino = ip->i_ino; /* for radix_tree_delete */
 
1035
1036	if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL))
1037		goto out;
1038	if (!xfs_iflock_nowait(ip))
1039		goto out_iunlock;
 
 
 
 
1040
1041	if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
1042		xfs_iunpin_wait(ip);
1043		/* xfs_iflush_abort() drops the flush lock */
1044		xfs_iflush_abort(ip);
1045		goto reclaim;
1046	}
1047	if (xfs_ipincount(ip))
1048		goto out_ifunlock;
1049	if (!xfs_inode_clean(ip))
1050		goto out_ifunlock;
1051
1052	xfs_ifunlock(ip);
1053reclaim:
1054	ASSERT(!xfs_isiflocked(ip));
 
1055
1056	/*
1057	 * Because we use RCU freeing we need to ensure the inode always appears
1058	 * to be reclaimed with an invalid inode number when in the free state.
1059	 * We do this as early as possible under the ILOCK so that
1060	 * xfs_iflush_cluster() and xfs_ifree_cluster() can be guaranteed to
1061	 * detect races with us here. By doing this, we guarantee that once
1062	 * xfs_iflush_cluster() or xfs_ifree_cluster() has locked XFS_ILOCK that
1063	 * it will see either a valid inode that will serialise correctly, or it
1064	 * will see an invalid inode that it can skip.
1065	 */
1066	spin_lock(&ip->i_flags_lock);
1067	ip->i_flags = XFS_IRECLAIM;
1068	ip->i_ino = 0;
1069	spin_unlock(&ip->i_flags_lock);
1070
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1071	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1072
1073	XFS_STATS_INC(ip->i_mount, xs_ig_reclaims);
1074	/*
1075	 * Remove the inode from the per-AG radix tree.
1076	 *
1077	 * Because radix_tree_delete won't complain even if the item was never
1078	 * added to the tree assert that it's been there before to catch
1079	 * problems with the inode life time early on.
1080	 */
1081	spin_lock(&pag->pag_ici_lock);
1082	if (!radix_tree_delete(&pag->pag_ici_root,
1083				XFS_INO_TO_AGINO(ip->i_mount, ino)))
1084		ASSERT(0);
1085	xfs_perag_clear_reclaim_tag(pag);
1086	spin_unlock(&pag->pag_ici_lock);
1087
1088	/*
1089	 * Here we do an (almost) spurious inode lock in order to coordinate
1090	 * with inode cache radix tree lookups.  This is because the lookup
1091	 * can reference the inodes in the cache without taking references.
1092	 *
1093	 * We make that OK here by ensuring that we wait until the inode is
1094	 * unlocked after the lookup before we go ahead and free it.
1095	 */
1096	xfs_ilock(ip, XFS_ILOCK_EXCL);
1097	xfs_qm_dqdetach(ip);
1098	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1099	ASSERT(xfs_inode_clean(ip));
1100
1101	__xfs_inode_free(ip);
1102	return;
1103
1104out_ifunlock:
1105	xfs_ifunlock(ip);
1106out_iunlock:
1107	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1108out:
1109	xfs_iflags_clear(ip, XFS_IRECLAIM);
 
 
 
 
 
 
 
 
 
1110}
1111
1112/*
1113 * Walk the AGs and reclaim the inodes in them. Even if the filesystem is
1114 * corrupted, we still want to try to reclaim all the inodes. If we don't,
1115 * then a shut down during filesystem unmount reclaim walk leak all the
1116 * unreclaimed inodes.
1117 *
1118 * Returns non-zero if any AGs or inodes were skipped in the reclaim pass
1119 * so that callers that want to block until all dirty inodes are written back
1120 * and reclaimed can sanely loop.
1121 */
1122static void
1123xfs_reclaim_inodes_ag(
1124	struct xfs_mount	*mp,
 
1125	int			*nr_to_scan)
1126{
1127	struct xfs_perag	*pag;
1128	xfs_agnumber_t		ag = 0;
 
 
 
 
1129
 
 
 
1130	while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1131		unsigned long	first_index = 0;
1132		int		done = 0;
1133		int		nr_found = 0;
1134
1135		ag = pag->pag_agno + 1;
1136
1137		first_index = READ_ONCE(pag->pag_ici_reclaim_cursor);
 
 
 
 
 
 
 
 
 
1138		do {
1139			struct xfs_inode *batch[XFS_LOOKUP_BATCH];
1140			int	i;
1141
1142			rcu_read_lock();
1143			nr_found = radix_tree_gang_lookup_tag(
1144					&pag->pag_ici_root,
1145					(void **)batch, first_index,
1146					XFS_LOOKUP_BATCH,
1147					XFS_ICI_RECLAIM_TAG);
1148			if (!nr_found) {
1149				done = 1;
1150				rcu_read_unlock();
1151				break;
1152			}
1153
1154			/*
1155			 * Grab the inodes before we drop the lock. if we found
1156			 * nothing, nr == 0 and the loop will be skipped.
1157			 */
1158			for (i = 0; i < nr_found; i++) {
1159				struct xfs_inode *ip = batch[i];
1160
1161				if (done || !xfs_reclaim_inode_grab(ip))
1162					batch[i] = NULL;
1163
1164				/*
1165				 * Update the index for the next lookup. Catch
1166				 * overflows into the next AG range which can
1167				 * occur if we have inodes in the last block of
1168				 * the AG and we are currently pointing to the
1169				 * last inode.
1170				 *
1171				 * Because we may see inodes that are from the
1172				 * wrong AG due to RCU freeing and
1173				 * reallocation, only update the index if it
1174				 * lies in this AG. It was a race that lead us
1175				 * to see this inode, so another lookup from
1176				 * the same index will not find it again.
1177				 */
1178				if (XFS_INO_TO_AGNO(mp, ip->i_ino) !=
1179								pag->pag_agno)
1180					continue;
1181				first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
1182				if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
1183					done = 1;
1184			}
1185
1186			/* unlock now we've grabbed the inodes. */
1187			rcu_read_unlock();
1188
1189			for (i = 0; i < nr_found; i++) {
1190				if (batch[i])
1191					xfs_reclaim_inode(batch[i], pag);
 
 
 
1192			}
1193
1194			*nr_to_scan -= XFS_LOOKUP_BATCH;
 
1195			cond_resched();
 
1196		} while (nr_found && !done && *nr_to_scan > 0);
1197
1198		if (done)
1199			first_index = 0;
1200		WRITE_ONCE(pag->pag_ici_reclaim_cursor, first_index);
 
 
1201		xfs_perag_put(pag);
1202	}
 
 
 
 
 
 
 
 
 
 
 
 
 
1203}
1204
1205void
1206xfs_reclaim_inodes(
1207	struct xfs_mount	*mp)
 
1208{
1209	int		nr_to_scan = INT_MAX;
1210
1211	while (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
1212		xfs_ail_push_all_sync(mp->m_ail);
1213		xfs_reclaim_inodes_ag(mp, &nr_to_scan);
1214	};
1215}
1216
1217/*
1218 * The shrinker infrastructure determines how many inodes we should scan for
1219 * reclaim. We want as many clean inodes ready to reclaim as possible, so we
1220 * push the AIL here. We also want to proactively free up memory if we can to
1221 * minimise the amount of work memory reclaim has to do so we kick the
1222 * background reclaim if it isn't already scheduled.
 
 
1223 */
1224long
1225xfs_reclaim_inodes_nr(
1226	struct xfs_mount	*mp,
1227	int			nr_to_scan)
1228{
1229	/* kick background reclaimer and push the AIL */
1230	xfs_reclaim_work_queue(mp);
1231	xfs_ail_push_all(mp->m_ail);
1232
1233	xfs_reclaim_inodes_ag(mp, &nr_to_scan);
1234	return 0;
1235}
1236
1237/*
1238 * Return the number of reclaimable inodes in the filesystem for
1239 * the shrinker to determine how much to reclaim.
1240 */
1241int
1242xfs_reclaim_inodes_count(
1243	struct xfs_mount	*mp)
1244{
1245	struct xfs_perag	*pag;
1246	xfs_agnumber_t		ag = 0;
1247	int			reclaimable = 0;
1248
1249	while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1250		ag = pag->pag_agno + 1;
1251		reclaimable += pag->pag_ici_reclaimable;
1252		xfs_perag_put(pag);
1253	}
1254	return reclaimable;
1255}
1256
1257STATIC bool
1258xfs_inode_match_id(
1259	struct xfs_inode	*ip,
1260	struct xfs_eofblocks	*eofb)
1261{
1262	if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) &&
1263	    !uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid))
1264		return false;
1265
1266	if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) &&
1267	    !gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid))
1268		return false;
1269
1270	if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) &&
1271	    ip->i_d.di_projid != eofb->eof_prid)
1272		return false;
1273
1274	return true;
1275}
1276
1277/*
1278 * A union-based inode filtering algorithm. Process the inode if any of the
1279 * criteria match. This is for global/internal scans only.
1280 */
1281STATIC bool
1282xfs_inode_match_id_union(
1283	struct xfs_inode	*ip,
1284	struct xfs_eofblocks	*eofb)
1285{
1286	if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) &&
1287	    uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid))
1288		return true;
1289
1290	if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) &&
1291	    gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid))
1292		return true;
1293
1294	if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) &&
1295	    ip->i_d.di_projid == eofb->eof_prid)
1296		return true;
1297
1298	return false;
1299}
1300
1301/*
1302 * Is this inode @ip eligible for eof/cow block reclamation, given some
1303 * filtering parameters @eofb?  The inode is eligible if @eofb is null or
1304 * if the predicate functions match.
1305 */
1306static bool
1307xfs_inode_matches_eofb(
1308	struct xfs_inode	*ip,
1309	struct xfs_eofblocks	*eofb)
1310{
1311	bool			match;
1312
1313	if (!eofb)
1314		return true;
1315
1316	if (eofb->eof_flags & XFS_EOF_FLAGS_UNION)
1317		match = xfs_inode_match_id_union(ip, eofb);
1318	else
1319		match = xfs_inode_match_id(ip, eofb);
1320	if (!match)
1321		return false;
1322
1323	/* skip the inode if the file size is too small */
1324	if ((eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE) &&
1325	    XFS_ISIZE(ip) < eofb->eof_min_file_size)
1326		return false;
1327
1328	return true;
1329}
1330
1331/*
1332 * This is a fast pass over the inode cache to try to get reclaim moving on as
1333 * many inodes as possible in a short period of time. It kicks itself every few
1334 * seconds, as well as being kicked by the inode cache shrinker when memory
1335 * goes low.
1336 */
1337void
1338xfs_reclaim_worker(
1339	struct work_struct *work)
1340{
1341	struct xfs_mount *mp = container_of(to_delayed_work(work),
1342					struct xfs_mount, m_reclaim_work);
1343	int		nr_to_scan = INT_MAX;
1344
1345	xfs_reclaim_inodes_ag(mp, &nr_to_scan);
1346	xfs_reclaim_work_queue(mp);
1347}
1348
1349STATIC int
1350xfs_inode_free_eofblocks(
1351	struct xfs_inode	*ip,
 
1352	void			*args)
1353{
1354	struct xfs_eofblocks	*eofb = args;
1355	bool			wait;
1356	int			ret;
 
1357
1358	wait = eofb && (eofb->eof_flags & XFS_EOF_FLAGS_SYNC);
1359
1360	if (!xfs_can_free_eofblocks(ip, false)) {
1361		/* inode could be preallocated or append-only */
1362		trace_xfs_inode_free_eofblocks_invalid(ip);
1363		xfs_inode_clear_eofblocks_tag(ip);
1364		return 0;
1365	}
1366
1367	/*
1368	 * If the mapping is dirty the operation can block and wait for some
1369	 * time. Unless we are waiting, skip it.
1370	 */
1371	if (!wait && mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY))
 
1372		return 0;
1373
1374	if (!xfs_inode_matches_eofb(ip, eofb))
1375		return 0;
 
 
 
 
 
 
 
 
 
 
1376
1377	/*
1378	 * If the caller is waiting, return -EAGAIN to keep the background
1379	 * scanner moving and revisit the inode in a subsequent pass.
1380	 */
1381	if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1382		if (wait)
1383			return -EAGAIN;
1384		return 0;
1385	}
1386
1387	ret = xfs_free_eofblocks(ip);
1388	xfs_iunlock(ip, XFS_IOLOCK_EXCL);
 
 
 
1389
1390	return ret;
1391}
1392
1393int
1394xfs_icache_free_eofblocks(
1395	struct xfs_mount	*mp,
1396	struct xfs_eofblocks	*eofb)
1397{
1398	return xfs_inode_walk(mp, 0, xfs_inode_free_eofblocks, eofb,
1399			XFS_ICI_EOFBLOCKS_TAG);
 
 
 
 
 
1400}
1401
1402/*
1403 * Run eofblocks scans on the quotas applicable to the inode. For inodes with
1404 * multiple quotas, we don't know exactly which quota caused an allocation
1405 * failure. We make a best effort by including each quota under low free space
1406 * conditions (less than 1% free space) in the scan.
1407 */
1408static int
1409__xfs_inode_free_quota_eofblocks(
1410	struct xfs_inode	*ip,
1411	int			(*execute)(struct xfs_mount *mp,
1412					   struct xfs_eofblocks	*eofb))
1413{
1414	int scan = 0;
1415	struct xfs_eofblocks eofb = {0};
1416	struct xfs_dquot *dq;
1417
 
 
1418	/*
1419	 * Run a sync scan to increase effectiveness and use the union filter to
 
 
1420	 * cover all applicable quotas in a single scan.
1421	 */
 
1422	eofb.eof_flags = XFS_EOF_FLAGS_UNION|XFS_EOF_FLAGS_SYNC;
1423
1424	if (XFS_IS_UQUOTA_ENFORCED(ip->i_mount)) {
1425		dq = xfs_inode_dquot(ip, XFS_DQTYPE_USER);
1426		if (dq && xfs_dquot_lowsp(dq)) {
1427			eofb.eof_uid = VFS_I(ip)->i_uid;
1428			eofb.eof_flags |= XFS_EOF_FLAGS_UID;
1429			scan = 1;
1430		}
1431	}
1432
1433	if (XFS_IS_GQUOTA_ENFORCED(ip->i_mount)) {
1434		dq = xfs_inode_dquot(ip, XFS_DQTYPE_GROUP);
1435		if (dq && xfs_dquot_lowsp(dq)) {
1436			eofb.eof_gid = VFS_I(ip)->i_gid;
1437			eofb.eof_flags |= XFS_EOF_FLAGS_GID;
1438			scan = 1;
1439		}
1440	}
1441
1442	if (scan)
1443		execute(ip->i_mount, &eofb);
1444
1445	return scan;
1446}
1447
1448int
1449xfs_inode_free_quota_eofblocks(
1450	struct xfs_inode *ip)
1451{
1452	return __xfs_inode_free_quota_eofblocks(ip, xfs_icache_free_eofblocks);
1453}
1454
1455static inline unsigned long
1456xfs_iflag_for_tag(
1457	int		tag)
1458{
1459	switch (tag) {
1460	case XFS_ICI_EOFBLOCKS_TAG:
1461		return XFS_IEOFBLOCKS;
1462	case XFS_ICI_COWBLOCKS_TAG:
1463		return XFS_ICOWBLOCKS;
1464	default:
1465		ASSERT(0);
1466		return 0;
1467	}
1468}
1469
1470static void
1471__xfs_inode_set_blocks_tag(
1472	xfs_inode_t	*ip,
1473	void		(*execute)(struct xfs_mount *mp),
1474	void		(*set_tp)(struct xfs_mount *mp, xfs_agnumber_t agno,
1475				  int error, unsigned long caller_ip),
1476	int		tag)
1477{
1478	struct xfs_mount *mp = ip->i_mount;
1479	struct xfs_perag *pag;
1480	int tagged;
1481
1482	/*
1483	 * Don't bother locking the AG and looking up in the radix trees
1484	 * if we already know that we have the tag set.
1485	 */
1486	if (ip->i_flags & xfs_iflag_for_tag(tag))
1487		return;
1488	spin_lock(&ip->i_flags_lock);
1489	ip->i_flags |= xfs_iflag_for_tag(tag);
1490	spin_unlock(&ip->i_flags_lock);
1491
1492	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1493	spin_lock(&pag->pag_ici_lock);
 
1494
1495	tagged = radix_tree_tagged(&pag->pag_ici_root, tag);
 
1496	radix_tree_tag_set(&pag->pag_ici_root,
1497			   XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), tag);
 
1498	if (!tagged) {
1499		/* propagate the eofblocks tag up into the perag radix tree */
1500		spin_lock(&ip->i_mount->m_perag_lock);
1501		radix_tree_tag_set(&ip->i_mount->m_perag_tree,
1502				   XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
1503				   tag);
1504		spin_unlock(&ip->i_mount->m_perag_lock);
1505
1506		/* kick off background trimming */
1507		execute(ip->i_mount);
1508
1509		set_tp(ip->i_mount, pag->pag_agno, -1, _RET_IP_);
 
1510	}
1511
1512	spin_unlock(&pag->pag_ici_lock);
1513	xfs_perag_put(pag);
1514}
1515
1516void
1517xfs_inode_set_eofblocks_tag(
1518	xfs_inode_t	*ip)
1519{
1520	trace_xfs_inode_set_eofblocks_tag(ip);
1521	return __xfs_inode_set_blocks_tag(ip, xfs_queue_eofblocks,
1522			trace_xfs_perag_set_eofblocks,
1523			XFS_ICI_EOFBLOCKS_TAG);
1524}
1525
1526static void
1527__xfs_inode_clear_blocks_tag(
1528	xfs_inode_t	*ip,
1529	void		(*clear_tp)(struct xfs_mount *mp, xfs_agnumber_t agno,
1530				    int error, unsigned long caller_ip),
1531	int		tag)
1532{
1533	struct xfs_mount *mp = ip->i_mount;
1534	struct xfs_perag *pag;
1535
1536	spin_lock(&ip->i_flags_lock);
1537	ip->i_flags &= ~xfs_iflag_for_tag(tag);
1538	spin_unlock(&ip->i_flags_lock);
1539
1540	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1541	spin_lock(&pag->pag_ici_lock);
 
1542
1543	radix_tree_tag_clear(&pag->pag_ici_root,
1544			     XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), tag);
1545	if (!radix_tree_tagged(&pag->pag_ici_root, tag)) {
 
1546		/* clear the eofblocks tag from the perag radix tree */
1547		spin_lock(&ip->i_mount->m_perag_lock);
1548		radix_tree_tag_clear(&ip->i_mount->m_perag_tree,
1549				     XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
1550				     tag);
1551		spin_unlock(&ip->i_mount->m_perag_lock);
1552		clear_tp(ip->i_mount, pag->pag_agno, -1, _RET_IP_);
 
1553	}
1554
1555	spin_unlock(&pag->pag_ici_lock);
1556	xfs_perag_put(pag);
1557}
1558
1559void
1560xfs_inode_clear_eofblocks_tag(
1561	xfs_inode_t	*ip)
1562{
1563	trace_xfs_inode_clear_eofblocks_tag(ip);
1564	return __xfs_inode_clear_blocks_tag(ip,
1565			trace_xfs_perag_clear_eofblocks, XFS_ICI_EOFBLOCKS_TAG);
1566}
1567
1568/*
1569 * Set ourselves up to free CoW blocks from this file.  If it's already clean
1570 * then we can bail out quickly, but otherwise we must back off if the file
1571 * is undergoing some kind of write.
1572 */
1573static bool
1574xfs_prep_free_cowblocks(
1575	struct xfs_inode	*ip)
1576{
1577	/*
1578	 * Just clear the tag if we have an empty cow fork or none at all. It's
1579	 * possible the inode was fully unshared since it was originally tagged.
1580	 */
1581	if (!xfs_inode_has_cow_data(ip)) {
1582		trace_xfs_inode_free_cowblocks_invalid(ip);
1583		xfs_inode_clear_cowblocks_tag(ip);
1584		return false;
1585	}
1586
1587	/*
1588	 * If the mapping is dirty or under writeback we cannot touch the
1589	 * CoW fork.  Leave it alone if we're in the midst of a directio.
1590	 */
1591	if ((VFS_I(ip)->i_state & I_DIRTY_PAGES) ||
1592	    mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY) ||
1593	    mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_WRITEBACK) ||
1594	    atomic_read(&VFS_I(ip)->i_dio_count))
1595		return false;
1596
1597	return true;
1598}
1599
1600/*
1601 * Automatic CoW Reservation Freeing
1602 *
1603 * These functions automatically garbage collect leftover CoW reservations
1604 * that were made on behalf of a cowextsize hint when we start to run out
1605 * of quota or when the reservations sit around for too long.  If the file
1606 * has dirty pages or is undergoing writeback, its CoW reservations will
1607 * be retained.
1608 *
1609 * The actual garbage collection piggybacks off the same code that runs
1610 * the speculative EOF preallocation garbage collector.
1611 */
1612STATIC int
1613xfs_inode_free_cowblocks(
1614	struct xfs_inode	*ip,
1615	void			*args)
1616{
1617	struct xfs_eofblocks	*eofb = args;
1618	int			ret = 0;
1619
1620	if (!xfs_prep_free_cowblocks(ip))
1621		return 0;
1622
1623	if (!xfs_inode_matches_eofb(ip, eofb))
1624		return 0;
1625
1626	/* Free the CoW blocks */
1627	xfs_ilock(ip, XFS_IOLOCK_EXCL);
1628	xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
1629
1630	/*
1631	 * Check again, nobody else should be able to dirty blocks or change
1632	 * the reflink iflag now that we have the first two locks held.
1633	 */
1634	if (xfs_prep_free_cowblocks(ip))
1635		ret = xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, false);
1636
1637	xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
1638	xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1639
1640	return ret;
1641}
1642
1643int
1644xfs_icache_free_cowblocks(
1645	struct xfs_mount	*mp,
1646	struct xfs_eofblocks	*eofb)
1647{
1648	return xfs_inode_walk(mp, 0, xfs_inode_free_cowblocks, eofb,
1649			XFS_ICI_COWBLOCKS_TAG);
1650}
1651
1652int
1653xfs_inode_free_quota_cowblocks(
1654	struct xfs_inode *ip)
1655{
1656	return __xfs_inode_free_quota_eofblocks(ip, xfs_icache_free_cowblocks);
1657}
1658
1659void
1660xfs_inode_set_cowblocks_tag(
1661	xfs_inode_t	*ip)
1662{
1663	trace_xfs_inode_set_cowblocks_tag(ip);
1664	return __xfs_inode_set_blocks_tag(ip, xfs_queue_cowblocks,
1665			trace_xfs_perag_set_cowblocks,
1666			XFS_ICI_COWBLOCKS_TAG);
1667}
1668
1669void
1670xfs_inode_clear_cowblocks_tag(
1671	xfs_inode_t	*ip)
1672{
1673	trace_xfs_inode_clear_cowblocks_tag(ip);
1674	return __xfs_inode_clear_blocks_tag(ip,
1675			trace_xfs_perag_clear_cowblocks, XFS_ICI_COWBLOCKS_TAG);
1676}
1677
1678/* Disable post-EOF and CoW block auto-reclamation. */
1679void
1680xfs_stop_block_reaping(
1681	struct xfs_mount	*mp)
1682{
1683	cancel_delayed_work_sync(&mp->m_eofblocks_work);
1684	cancel_delayed_work_sync(&mp->m_cowblocks_work);
1685}
1686
1687/* Enable post-EOF and CoW block auto-reclamation. */
1688void
1689xfs_start_block_reaping(
1690	struct xfs_mount	*mp)
1691{
1692	xfs_queue_eofblocks(mp);
1693	xfs_queue_cowblocks(mp);
1694}
v4.6
 
   1/*
   2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
   3 * All Rights Reserved.
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it would be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write the Free Software Foundation,
  16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  17 */
  18#include "xfs.h"
  19#include "xfs_fs.h"
 
  20#include "xfs_format.h"
  21#include "xfs_log_format.h"
  22#include "xfs_trans_resv.h"
  23#include "xfs_sb.h"
  24#include "xfs_mount.h"
  25#include "xfs_inode.h"
  26#include "xfs_error.h"
  27#include "xfs_trans.h"
  28#include "xfs_trans_priv.h"
  29#include "xfs_inode_item.h"
  30#include "xfs_quota.h"
  31#include "xfs_trace.h"
  32#include "xfs_icache.h"
  33#include "xfs_bmap_util.h"
  34#include "xfs_dquot_item.h"
  35#include "xfs_dquot.h"
 
 
  36
  37#include <linux/kthread.h>
  38#include <linux/freezer.h>
  39
  40STATIC void __xfs_inode_clear_reclaim_tag(struct xfs_mount *mp,
  41				struct xfs_perag *pag, struct xfs_inode *ip);
  42
  43/*
  44 * Allocate and initialise an xfs_inode.
  45 */
  46struct xfs_inode *
  47xfs_inode_alloc(
  48	struct xfs_mount	*mp,
  49	xfs_ino_t		ino)
  50{
  51	struct xfs_inode	*ip;
  52
  53	/*
  54	 * if this didn't occur in transactions, we could use
  55	 * KM_MAYFAIL and return NULL here on ENOMEM. Set the
  56	 * code up to do this anyway.
  57	 */
  58	ip = kmem_zone_alloc(xfs_inode_zone, KM_SLEEP);
  59	if (!ip)
  60		return NULL;
  61	if (inode_init_always(mp->m_super, VFS_I(ip))) {
  62		kmem_zone_free(xfs_inode_zone, ip);
  63		return NULL;
  64	}
  65
  66	/* VFS doesn't initialise i_mode! */
  67	VFS_I(ip)->i_mode = 0;
  68
  69	XFS_STATS_INC(mp, vn_active);
  70	ASSERT(atomic_read(&ip->i_pincount) == 0);
  71	ASSERT(!spin_is_locked(&ip->i_flags_lock));
  72	ASSERT(!xfs_isiflocked(ip));
  73	ASSERT(ip->i_ino == 0);
  74
  75	mrlock_init(&ip->i_iolock, MRLOCK_BARRIER, "xfsio", ip->i_ino);
  76
  77	/* initialise the xfs inode */
  78	ip->i_ino = ino;
  79	ip->i_mount = mp;
  80	memset(&ip->i_imap, 0, sizeof(struct xfs_imap));
  81	ip->i_afp = NULL;
  82	memset(&ip->i_df, 0, sizeof(xfs_ifork_t));
 
  83	ip->i_flags = 0;
  84	ip->i_delayed_blks = 0;
  85	memset(&ip->i_d, 0, sizeof(ip->i_d));
 
 
 
 
 
  86
  87	return ip;
  88}
  89
  90STATIC void
  91xfs_inode_free_callback(
  92	struct rcu_head		*head)
  93{
  94	struct inode		*inode = container_of(head, struct inode, i_rcu);
  95	struct xfs_inode	*ip = XFS_I(inode);
  96
  97	kmem_zone_free(xfs_inode_zone, ip);
  98}
  99
 100void
 101xfs_inode_free(
 102	struct xfs_inode	*ip)
 103{
 104	switch (VFS_I(ip)->i_mode & S_IFMT) {
 105	case S_IFREG:
 106	case S_IFDIR:
 107	case S_IFLNK:
 108		xfs_idestroy_fork(ip, XFS_DATA_FORK);
 109		break;
 110	}
 111
 112	if (ip->i_afp)
 113		xfs_idestroy_fork(ip, XFS_ATTR_FORK);
 114
 
 
 
 
 
 115	if (ip->i_itemp) {
 116		ASSERT(!(ip->i_itemp->ili_item.li_flags & XFS_LI_IN_AIL));
 
 117		xfs_inode_item_destroy(ip);
 118		ip->i_itemp = NULL;
 119	}
 120
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 121	/*
 122	 * Because we use RCU freeing we need to ensure the inode always
 123	 * appears to be reclaimed with an invalid inode number when in the
 124	 * free state. The ip->i_flags_lock provides the barrier against lookup
 125	 * races.
 126	 */
 127	spin_lock(&ip->i_flags_lock);
 128	ip->i_flags = XFS_IRECLAIM;
 129	ip->i_ino = 0;
 130	spin_unlock(&ip->i_flags_lock);
 131
 132	/* asserts to verify all state is correct here */
 133	ASSERT(atomic_read(&ip->i_pincount) == 0);
 134	ASSERT(!xfs_isiflocked(ip));
 135	XFS_STATS_DEC(ip->i_mount, vn_active);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 136
 137	call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback);
 
 
 
 
 
 
 138}
 139
 140/*
 141 * When we recycle a reclaimable inode, we need to re-initialise the VFS inode
 142 * part of the structure. This is made more complex by the fact we store
 143 * information about the on-disk values in the VFS inode and so we can't just
 144 * overwrite the values unconditionally. Hence we save the parameters we
 145 * need to retain across reinitialisation, and rewrite them into the VFS inode
 146 * after reinitialisation even if it fails.
 147 */
 148static int
 149xfs_reinit_inode(
 150	struct xfs_mount	*mp,
 151	struct inode		*inode)
 152{
 153	int		error;
 154	uint32_t	nlink = inode->i_nlink;
 155	uint32_t	generation = inode->i_generation;
 156	uint64_t	version = inode->i_version;
 157	umode_t		mode = inode->i_mode;
 
 
 
 158
 159	error = inode_init_always(mp->m_super, inode);
 160
 161	set_nlink(inode, nlink);
 162	inode->i_generation = generation;
 163	inode->i_version = version;
 164	inode->i_mode = mode;
 
 
 
 165	return error;
 166}
 167
 168/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 169 * Check the validity of the inode we just found it the cache
 170 */
 171static int
 172xfs_iget_cache_hit(
 173	struct xfs_perag	*pag,
 174	struct xfs_inode	*ip,
 175	xfs_ino_t		ino,
 176	int			flags,
 177	int			lock_flags) __releases(RCU)
 178{
 179	struct inode		*inode = VFS_I(ip);
 180	struct xfs_mount	*mp = ip->i_mount;
 181	int			error;
 182
 183	/*
 184	 * check for re-use of an inode within an RCU grace period due to the
 185	 * radix tree nodes not being updated yet. We monitor for this by
 186	 * setting the inode number to zero before freeing the inode structure.
 187	 * If the inode has been reallocated and set up, then the inode number
 188	 * will not match, so check for that, too.
 189	 */
 190	spin_lock(&ip->i_flags_lock);
 191	if (ip->i_ino != ino) {
 192		trace_xfs_iget_skip(ip);
 193		XFS_STATS_INC(mp, xs_ig_frecycle);
 194		error = -EAGAIN;
 195		goto out_error;
 196	}
 197
 198
 199	/*
 200	 * If we are racing with another cache hit that is currently
 201	 * instantiating this inode or currently recycling it out of
 202	 * reclaimabe state, wait for the initialisation to complete
 203	 * before continuing.
 204	 *
 205	 * XXX(hch): eventually we should do something equivalent to
 206	 *	     wait_on_inode to wait for these flags to be cleared
 207	 *	     instead of polling for it.
 208	 */
 209	if (ip->i_flags & (XFS_INEW|XFS_IRECLAIM)) {
 210		trace_xfs_iget_skip(ip);
 211		XFS_STATS_INC(mp, xs_ig_frecycle);
 212		error = -EAGAIN;
 213		goto out_error;
 214	}
 215
 216	/*
 217	 * If lookup is racing with unlink return an error immediately.
 
 218	 */
 219	if (VFS_I(ip)->i_mode == 0 && !(flags & XFS_IGET_CREATE)) {
 220		error = -ENOENT;
 221		goto out_error;
 222	}
 223
 224	/*
 225	 * If IRECLAIMABLE is set, we've torn down the VFS inode already.
 226	 * Need to carefully get it back into useable state.
 227	 */
 228	if (ip->i_flags & XFS_IRECLAIMABLE) {
 229		trace_xfs_iget_reclaim(ip);
 230
 
 
 
 
 
 231		/*
 232		 * We need to set XFS_IRECLAIM to prevent xfs_reclaim_inode
 233		 * from stomping over us while we recycle the inode.  We can't
 234		 * clear the radix tree reclaimable tag yet as it requires
 235		 * pag_ici_lock to be held exclusive.
 236		 */
 237		ip->i_flags |= XFS_IRECLAIM;
 238
 239		spin_unlock(&ip->i_flags_lock);
 240		rcu_read_unlock();
 241
 
 242		error = xfs_reinit_inode(mp, inode);
 243		if (error) {
 
 244			/*
 245			 * Re-initializing the inode failed, and we are in deep
 246			 * trouble.  Try to re-add it to the reclaim list.
 247			 */
 248			rcu_read_lock();
 249			spin_lock(&ip->i_flags_lock);
 250
 251			ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM);
 
 
 252			ASSERT(ip->i_flags & XFS_IRECLAIMABLE);
 253			trace_xfs_iget_reclaim_fail(ip);
 254			goto out_error;
 255		}
 256
 257		spin_lock(&pag->pag_ici_lock);
 258		spin_lock(&ip->i_flags_lock);
 259
 260		/*
 261		 * Clear the per-lifetime state in the inode as we are now
 262		 * effectively a new inode and need to return to the initial
 263		 * state before reuse occurs.
 264		 */
 265		ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS;
 266		ip->i_flags |= XFS_INEW;
 267		__xfs_inode_clear_reclaim_tag(mp, pag, ip);
 268		inode->i_state = I_NEW;
 269
 270		ASSERT(!rwsem_is_locked(&ip->i_iolock.mr_lock));
 271		mrlock_init(&ip->i_iolock, MRLOCK_BARRIER, "xfsio", ip->i_ino);
 272
 273		spin_unlock(&ip->i_flags_lock);
 274		spin_unlock(&pag->pag_ici_lock);
 275	} else {
 276		/* If the VFS inode is being torn down, pause and try again. */
 277		if (!igrab(inode)) {
 278			trace_xfs_iget_skip(ip);
 279			error = -EAGAIN;
 280			goto out_error;
 281		}
 282
 283		/* We've got a live one. */
 284		spin_unlock(&ip->i_flags_lock);
 285		rcu_read_unlock();
 286		trace_xfs_iget_hit(ip);
 287	}
 288
 289	if (lock_flags != 0)
 290		xfs_ilock(ip, lock_flags);
 291
 292	xfs_iflags_clear(ip, XFS_ISTALE | XFS_IDONTCACHE);
 
 293	XFS_STATS_INC(mp, xs_ig_found);
 294
 295	return 0;
 296
 297out_error:
 298	spin_unlock(&ip->i_flags_lock);
 299	rcu_read_unlock();
 300	return error;
 301}
 302
 303
 304static int
 305xfs_iget_cache_miss(
 306	struct xfs_mount	*mp,
 307	struct xfs_perag	*pag,
 308	xfs_trans_t		*tp,
 309	xfs_ino_t		ino,
 310	struct xfs_inode	**ipp,
 311	int			flags,
 312	int			lock_flags)
 313{
 314	struct xfs_inode	*ip;
 315	int			error;
 316	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ino);
 317	int			iflags;
 318
 319	ip = xfs_inode_alloc(mp, ino);
 320	if (!ip)
 321		return -ENOMEM;
 322
 323	error = xfs_iread(mp, tp, ip, flags);
 324	if (error)
 325		goto out_destroy;
 326
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 327	trace_xfs_iget_miss(ip);
 328
 329	if ((VFS_I(ip)->i_mode == 0) && !(flags & XFS_IGET_CREATE)) {
 330		error = -ENOENT;
 
 
 
 
 331		goto out_destroy;
 332	}
 333
 334	/*
 335	 * Preload the radix tree so we can insert safely under the
 336	 * write spinlock. Note that we cannot sleep inside the preload
 337	 * region. Since we can be called from transaction context, don't
 338	 * recurse into the file system.
 339	 */
 340	if (radix_tree_preload(GFP_NOFS)) {
 341		error = -EAGAIN;
 342		goto out_destroy;
 343	}
 344
 345	/*
 346	 * Because the inode hasn't been added to the radix-tree yet it can't
 347	 * be found by another thread, so we can do the non-sleeping lock here.
 348	 */
 349	if (lock_flags) {
 350		if (!xfs_ilock_nowait(ip, lock_flags))
 351			BUG();
 352	}
 353
 354	/*
 355	 * These values must be set before inserting the inode into the radix
 356	 * tree as the moment it is inserted a concurrent lookup (allowed by the
 357	 * RCU locking mechanism) can find it and that lookup must see that this
 358	 * is an inode currently under construction (i.e. that XFS_INEW is set).
 359	 * The ip->i_flags_lock that protects the XFS_INEW flag forms the
 360	 * memory barrier that ensures this detection works correctly at lookup
 361	 * time.
 362	 */
 363	iflags = XFS_INEW;
 364	if (flags & XFS_IGET_DONTCACHE)
 365		iflags |= XFS_IDONTCACHE;
 366	ip->i_udquot = NULL;
 367	ip->i_gdquot = NULL;
 368	ip->i_pdquot = NULL;
 369	xfs_iflags_set(ip, iflags);
 370
 371	/* insert the new inode */
 372	spin_lock(&pag->pag_ici_lock);
 373	error = radix_tree_insert(&pag->pag_ici_root, agino, ip);
 374	if (unlikely(error)) {
 375		WARN_ON(error != -EEXIST);
 376		XFS_STATS_INC(mp, xs_ig_dup);
 377		error = -EAGAIN;
 378		goto out_preload_end;
 379	}
 380	spin_unlock(&pag->pag_ici_lock);
 381	radix_tree_preload_end();
 382
 383	*ipp = ip;
 384	return 0;
 385
 386out_preload_end:
 387	spin_unlock(&pag->pag_ici_lock);
 388	radix_tree_preload_end();
 389	if (lock_flags)
 390		xfs_iunlock(ip, lock_flags);
 391out_destroy:
 392	__destroy_inode(VFS_I(ip));
 393	xfs_inode_free(ip);
 394	return error;
 395}
 396
 397/*
 398 * Look up an inode by number in the given file system.
 399 * The inode is looked up in the cache held in each AG.
 400 * If the inode is found in the cache, initialise the vfs inode
 401 * if necessary.
 402 *
 403 * If it is not in core, read it in from the file system's device,
 404 * add it to the cache and initialise the vfs inode.
 405 *
 406 * The inode is locked according to the value of the lock_flags parameter.
 407 * This flag parameter indicates how and if the inode's IO lock and inode lock
 408 * should be taken.
 409 *
 410 * mp -- the mount point structure for the current file system.  It points
 411 *       to the inode hash table.
 412 * tp -- a pointer to the current transaction if there is one.  This is
 413 *       simply passed through to the xfs_iread() call.
 414 * ino -- the number of the inode desired.  This is the unique identifier
 415 *        within the file system for the inode being requested.
 416 * lock_flags -- flags indicating how to lock the inode.  See the comment
 417 *		 for xfs_ilock() for a list of valid values.
 418 */
 419int
 420xfs_iget(
 421	xfs_mount_t	*mp,
 422	xfs_trans_t	*tp,
 423	xfs_ino_t	ino,
 424	uint		flags,
 425	uint		lock_flags,
 426	xfs_inode_t	**ipp)
 427{
 428	xfs_inode_t	*ip;
 429	int		error;
 430	xfs_perag_t	*pag;
 431	xfs_agino_t	agino;
 432
 433	/*
 434	 * xfs_reclaim_inode() uses the ILOCK to ensure an inode
 435	 * doesn't get freed while it's being referenced during a
 436	 * radix tree traversal here.  It assumes this function
 437	 * aqcuires only the ILOCK (and therefore it has no need to
 438	 * involve the IOLOCK in this synchronization).
 439	 */
 440	ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0);
 441
 442	/* reject inode numbers outside existing AGs */
 443	if (!ino || XFS_INO_TO_AGNO(mp, ino) >= mp->m_sb.sb_agcount)
 444		return -EINVAL;
 445
 446	XFS_STATS_INC(mp, xs_ig_attempts);
 447
 448	/* get the perag structure and ensure that it's inode capable */
 449	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino));
 450	agino = XFS_INO_TO_AGINO(mp, ino);
 451
 452again:
 453	error = 0;
 454	rcu_read_lock();
 455	ip = radix_tree_lookup(&pag->pag_ici_root, agino);
 456
 457	if (ip) {
 458		error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags);
 459		if (error)
 460			goto out_error_or_again;
 461	} else {
 462		rcu_read_unlock();
 
 
 
 
 463		XFS_STATS_INC(mp, xs_ig_missed);
 464
 465		error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip,
 466							flags, lock_flags);
 467		if (error)
 468			goto out_error_or_again;
 469	}
 470	xfs_perag_put(pag);
 471
 472	*ipp = ip;
 473
 474	/*
 475	 * If we have a real type for an on-disk inode, we can setup the inode
 476	 * now.	 If it's a new inode being created, xfs_ialloc will handle it.
 477	 */
 478	if (xfs_iflags_test(ip, XFS_INEW) && VFS_I(ip)->i_mode != 0)
 479		xfs_setup_existing_inode(ip);
 480	return 0;
 481
 482out_error_or_again:
 483	if (error == -EAGAIN) {
 484		delay(1);
 485		goto again;
 486	}
 487	xfs_perag_put(pag);
 488	return error;
 489}
 490
 491/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 492 * The inode lookup is done in batches to keep the amount of lock traffic and
 493 * radix tree lookups to a minimum. The batch size is a trade off between
 494 * lookup reduction and stack usage. This is in the reclaim path, so we can't
 495 * be too greedy.
 496 */
 497#define XFS_LOOKUP_BATCH	32
 498
 499STATIC int
 500xfs_inode_ag_walk_grab(
 501	struct xfs_inode	*ip)
 
 
 
 
 
 
 502{
 503	struct inode		*inode = VFS_I(ip);
 
 504
 505	ASSERT(rcu_read_lock_held());
 506
 507	/*
 508	 * check for stale RCU freed inode
 509	 *
 510	 * If the inode has been reallocated, it doesn't matter if it's not in
 511	 * the AG we are walking - we are walking for writeback, so if it
 512	 * passes all the "valid inode" checks and is dirty, then we'll write
 513	 * it back anyway.  If it has been reallocated and still being
 514	 * initialised, the XFS_INEW check below will catch it.
 515	 */
 516	spin_lock(&ip->i_flags_lock);
 517	if (!ip->i_ino)
 518		goto out_unlock_noent;
 519
 520	/* avoid new or reclaimable inodes. Leave for reclaim code to flush */
 521	if (__xfs_iflags_test(ip, XFS_INEW | XFS_IRECLAIMABLE | XFS_IRECLAIM))
 
 522		goto out_unlock_noent;
 523	spin_unlock(&ip->i_flags_lock);
 524
 525	/* nothing to sync during shutdown */
 526	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
 527		return -EFSCORRUPTED;
 528
 529	/* If we can't grab the inode, it must on it's way to reclaim. */
 530	if (!igrab(inode))
 531		return -ENOENT;
 532
 533	/* inode is valid */
 534	return 0;
 535
 536out_unlock_noent:
 537	spin_unlock(&ip->i_flags_lock);
 538	return -ENOENT;
 539}
 540
 
 
 
 
 541STATIC int
 542xfs_inode_ag_walk(
 543	struct xfs_mount	*mp,
 544	struct xfs_perag	*pag,
 545	int			(*execute)(struct xfs_inode *ip, int flags,
 546					   void *args),
 547	int			flags,
 548	void			*args,
 549	int			tag)
 550{
 
 551	uint32_t		first_index;
 552	int			last_error = 0;
 553	int			skipped;
 554	int			done;
 555	int			nr_found;
 556
 557restart:
 558	done = 0;
 559	skipped = 0;
 560	first_index = 0;
 561	nr_found = 0;
 562	do {
 563		struct xfs_inode *batch[XFS_LOOKUP_BATCH];
 564		int		error = 0;
 565		int		i;
 566
 567		rcu_read_lock();
 568
 569		if (tag == -1)
 570			nr_found = radix_tree_gang_lookup(&pag->pag_ici_root,
 571					(void **)batch, first_index,
 572					XFS_LOOKUP_BATCH);
 573		else
 574			nr_found = radix_tree_gang_lookup_tag(
 575					&pag->pag_ici_root,
 576					(void **) batch, first_index,
 577					XFS_LOOKUP_BATCH, tag);
 578
 579		if (!nr_found) {
 580			rcu_read_unlock();
 581			break;
 582		}
 583
 584		/*
 585		 * Grab the inodes before we drop the lock. if we found
 586		 * nothing, nr == 0 and the loop will be skipped.
 587		 */
 588		for (i = 0; i < nr_found; i++) {
 589			struct xfs_inode *ip = batch[i];
 590
 591			if (done || xfs_inode_ag_walk_grab(ip))
 592				batch[i] = NULL;
 593
 594			/*
 595			 * Update the index for the next lookup. Catch
 596			 * overflows into the next AG range which can occur if
 597			 * we have inodes in the last block of the AG and we
 598			 * are currently pointing to the last inode.
 599			 *
 600			 * Because we may see inodes that are from the wrong AG
 601			 * due to RCU freeing and reallocation, only update the
 602			 * index if it lies in this AG. It was a race that lead
 603			 * us to see this inode, so another lookup from the
 604			 * same index will not find it again.
 605			 */
 606			if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno)
 607				continue;
 608			first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
 609			if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
 610				done = 1;
 611		}
 612
 613		/* unlock now we've grabbed the inodes. */
 614		rcu_read_unlock();
 615
 616		for (i = 0; i < nr_found; i++) {
 617			if (!batch[i])
 618				continue;
 619			error = execute(batch[i], flags, args);
 620			IRELE(batch[i]);
 
 
 
 621			if (error == -EAGAIN) {
 622				skipped++;
 623				continue;
 624			}
 625			if (error && last_error != -EFSCORRUPTED)
 626				last_error = error;
 627		}
 628
 629		/* bail out if the filesystem is corrupted.  */
 630		if (error == -EFSCORRUPTED)
 631			break;
 632
 633		cond_resched();
 634
 635	} while (nr_found && !done);
 636
 637	if (skipped) {
 638		delay(1);
 639		goto restart;
 640	}
 641	return last_error;
 642}
 643
 644/*
 645 * Background scanning to trim post-EOF preallocated space. This is queued
 646 * based on the 'speculative_prealloc_lifetime' tunable (5m by default).
 647 */
 648STATIC void
 649xfs_queue_eofblocks(
 650	struct xfs_mount *mp)
 651{
 652	rcu_read_lock();
 653	if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_EOFBLOCKS_TAG))
 654		queue_delayed_work(mp->m_eofblocks_workqueue,
 655				   &mp->m_eofblocks_work,
 656				   msecs_to_jiffies(xfs_eofb_secs * 1000));
 657	rcu_read_unlock();
 658}
 659
 660void
 661xfs_eofblocks_worker(
 662	struct work_struct *work)
 663{
 664	struct xfs_mount *mp = container_of(to_delayed_work(work),
 665				struct xfs_mount, m_eofblocks_work);
 666	xfs_icache_free_eofblocks(mp, NULL);
 667	xfs_queue_eofblocks(mp);
 668}
 669
 670int
 671xfs_inode_ag_iterator(
 672	struct xfs_mount	*mp,
 673	int			(*execute)(struct xfs_inode *ip, int flags,
 674					   void *args),
 675	int			flags,
 676	void			*args)
 677{
 678	struct xfs_perag	*pag;
 679	int			error = 0;
 680	int			last_error = 0;
 681	xfs_agnumber_t		ag;
 682
 683	ag = 0;
 684	while ((pag = xfs_perag_get(mp, ag))) {
 685		ag = pag->pag_agno + 1;
 686		error = xfs_inode_ag_walk(mp, pag, execute, flags, args, -1);
 687		xfs_perag_put(pag);
 688		if (error) {
 689			last_error = error;
 690			if (error == -EFSCORRUPTED)
 691				break;
 692		}
 693	}
 694	return last_error;
 695}
 696
 
 
 
 
 697int
 698xfs_inode_ag_iterator_tag(
 699	struct xfs_mount	*mp,
 700	int			(*execute)(struct xfs_inode *ip, int flags,
 701					   void *args),
 702	int			flags,
 703	void			*args,
 704	int			tag)
 705{
 706	struct xfs_perag	*pag;
 707	int			error = 0;
 708	int			last_error = 0;
 709	xfs_agnumber_t		ag;
 710
 711	ag = 0;
 712	while ((pag = xfs_perag_get_tag(mp, ag, tag))) {
 713		ag = pag->pag_agno + 1;
 714		error = xfs_inode_ag_walk(mp, pag, execute, flags, args, tag);
 715		xfs_perag_put(pag);
 716		if (error) {
 717			last_error = error;
 718			if (error == -EFSCORRUPTED)
 719				break;
 720		}
 721	}
 722	return last_error;
 723}
 724
 725/*
 726 * Queue a new inode reclaim pass if there are reclaimable inodes and there
 727 * isn't a reclaim pass already in progress. By default it runs every 5s based
 728 * on the xfs periodic sync default of 30s. Perhaps this should have it's own
 729 * tunable, but that can be done if this method proves to be ineffective or too
 730 * aggressive.
 731 */
 732static void
 733xfs_reclaim_work_queue(
 734	struct xfs_mount        *mp)
 735{
 736
 737	rcu_read_lock();
 738	if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
 739		queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work,
 740			msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10));
 741	}
 742	rcu_read_unlock();
 743}
 744
 745/*
 746 * This is a fast pass over the inode cache to try to get reclaim moving on as
 747 * many inodes as possible in a short period of time. It kicks itself every few
 748 * seconds, as well as being kicked by the inode cache shrinker when memory
 749 * goes low. It scans as quickly as possible avoiding locked inodes or those
 750 * already being flushed, and once done schedules a future pass.
 751 */
 752void
 753xfs_reclaim_worker(
 754	struct work_struct *work)
 755{
 756	struct xfs_mount *mp = container_of(to_delayed_work(work),
 757					struct xfs_mount, m_reclaim_work);
 758
 759	xfs_reclaim_inodes(mp, SYNC_TRYLOCK);
 760	xfs_reclaim_work_queue(mp);
 761}
 
 762
 763static void
 764__xfs_inode_set_reclaim_tag(
 765	struct xfs_perag	*pag,
 766	struct xfs_inode	*ip)
 767{
 768	radix_tree_tag_set(&pag->pag_ici_root,
 769			   XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino),
 770			   XFS_ICI_RECLAIM_TAG);
 771
 772	if (!pag->pag_ici_reclaimable) {
 773		/* propagate the reclaim tag up into the perag radix tree */
 774		spin_lock(&ip->i_mount->m_perag_lock);
 775		radix_tree_tag_set(&ip->i_mount->m_perag_tree,
 776				XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
 777				XFS_ICI_RECLAIM_TAG);
 778		spin_unlock(&ip->i_mount->m_perag_lock);
 779
 780		/* schedule periodic background inode reclaim */
 781		xfs_reclaim_work_queue(ip->i_mount);
 782
 783		trace_xfs_perag_set_reclaim(ip->i_mount, pag->pag_agno,
 784							-1, _RET_IP_);
 785	}
 786	pag->pag_ici_reclaimable++;
 787}
 788
 789/*
 790 * We set the inode flag atomically with the radix tree tag.
 791 * Once we get tag lookups on the radix tree, this inode flag
 792 * can go away.
 793 */
 794void
 795xfs_inode_set_reclaim_tag(
 796	xfs_inode_t	*ip)
 797{
 798	struct xfs_mount *mp = ip->i_mount;
 799	struct xfs_perag *pag;
 800
 801	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
 802	spin_lock(&pag->pag_ici_lock);
 803	spin_lock(&ip->i_flags_lock);
 804	__xfs_inode_set_reclaim_tag(pag, ip);
 805	__xfs_iflags_set(ip, XFS_IRECLAIMABLE);
 806	spin_unlock(&ip->i_flags_lock);
 807	spin_unlock(&pag->pag_ici_lock);
 808	xfs_perag_put(pag);
 809}
 810
 811STATIC void
 812__xfs_inode_clear_reclaim(
 813	xfs_perag_t	*pag,
 814	xfs_inode_t	*ip)
 815{
 816	pag->pag_ici_reclaimable--;
 817	if (!pag->pag_ici_reclaimable) {
 818		/* clear the reclaim tag from the perag radix tree */
 819		spin_lock(&ip->i_mount->m_perag_lock);
 820		radix_tree_tag_clear(&ip->i_mount->m_perag_tree,
 821				XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
 822				XFS_ICI_RECLAIM_TAG);
 823		spin_unlock(&ip->i_mount->m_perag_lock);
 824		trace_xfs_perag_clear_reclaim(ip->i_mount, pag->pag_agno,
 825							-1, _RET_IP_);
 826	}
 827}
 828
 829STATIC void
 830__xfs_inode_clear_reclaim_tag(
 831	xfs_mount_t	*mp,
 832	xfs_perag_t	*pag,
 833	xfs_inode_t	*ip)
 834{
 835	radix_tree_tag_clear(&pag->pag_ici_root,
 836			XFS_INO_TO_AGINO(mp, ip->i_ino), XFS_ICI_RECLAIM_TAG);
 837	__xfs_inode_clear_reclaim(pag, ip);
 838}
 839
 840/*
 841 * Grab the inode for reclaim exclusively.
 842 * Return 0 if we grabbed it, non-zero otherwise.
 
 
 
 
 
 
 
 
 
 
 
 
 
 843 */
 844STATIC int
 845xfs_reclaim_inode_grab(
 846	struct xfs_inode	*ip,
 847	int			flags)
 848{
 849	ASSERT(rcu_read_lock_held());
 850
 851	/* quick check for stale RCU freed inode */
 852	if (!ip->i_ino)
 853		return 1;
 854
 855	/*
 856	 * If we are asked for non-blocking operation, do unlocked checks to
 857	 * see if the inode already is being flushed or in reclaim to avoid
 858	 * lock traffic.
 859	 */
 860	if ((flags & SYNC_TRYLOCK) &&
 861	    __xfs_iflags_test(ip, XFS_IFLOCK | XFS_IRECLAIM))
 862		return 1;
 863
 864	/*
 865	 * The radix tree lock here protects a thread in xfs_iget from racing
 866	 * with us starting reclaim on the inode.  Once we have the
 867	 * XFS_IRECLAIM flag set it will not touch us.
 868	 *
 869	 * Due to RCU lookup, we may find inodes that have been freed and only
 870	 * have XFS_IRECLAIM set.  Indeed, we may see reallocated inodes that
 871	 * aren't candidates for reclaim at all, so we must check the
 872	 * XFS_IRECLAIMABLE is set first before proceeding to reclaim.
 873	 */
 874	spin_lock(&ip->i_flags_lock);
 875	if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) ||
 876	    __xfs_iflags_test(ip, XFS_IRECLAIM)) {
 877		/* not a reclaim candidate. */
 878		spin_unlock(&ip->i_flags_lock);
 879		return 1;
 880	}
 881	__xfs_iflags_set(ip, XFS_IRECLAIM);
 882	spin_unlock(&ip->i_flags_lock);
 883	return 0;
 884}
 885
 886/*
 887 * Inodes in different states need to be treated differently. The following
 888 * table lists the inode states and the reclaim actions necessary:
 889 *
 890 *	inode state	     iflush ret		required action
 891 *      ---------------      ----------         ---------------
 892 *	bad			-		reclaim
 893 *	shutdown		EIO		unpin and reclaim
 894 *	clean, unpinned		0		reclaim
 895 *	stale, unpinned		0		reclaim
 896 *	clean, pinned(*)	0		requeue
 897 *	stale, pinned		EAGAIN		requeue
 898 *	dirty, async		-		requeue
 899 *	dirty, sync		0		reclaim
 900 *
 901 * (*) dgc: I don't think the clean, pinned state is possible but it gets
 902 * handled anyway given the order of checks implemented.
 903 *
 904 * Also, because we get the flush lock first, we know that any inode that has
 905 * been flushed delwri has had the flush completed by the time we check that
 906 * the inode is clean.
 907 *
 908 * Note that because the inode is flushed delayed write by AIL pushing, the
 909 * flush lock may already be held here and waiting on it can result in very
 910 * long latencies.  Hence for sync reclaims, where we wait on the flush lock,
 911 * the caller should push the AIL first before trying to reclaim inodes to
 912 * minimise the amount of time spent waiting.  For background relaim, we only
 913 * bother to reclaim clean inodes anyway.
 914 *
 915 * Hence the order of actions after gaining the locks should be:
 916 *	bad		=> reclaim
 917 *	shutdown	=> unpin and reclaim
 918 *	pinned, async	=> requeue
 919 *	pinned, sync	=> unpin
 920 *	stale		=> reclaim
 921 *	clean		=> reclaim
 922 *	dirty, async	=> requeue
 923 *	dirty, sync	=> flush, wait and reclaim
 924 */
 925STATIC int
 926xfs_reclaim_inode(
 927	struct xfs_inode	*ip,
 928	struct xfs_perag	*pag,
 929	int			sync_mode)
 930{
 931	struct xfs_buf		*bp = NULL;
 932	int			error;
 933
 934restart:
 935	error = 0;
 936	xfs_ilock(ip, XFS_ILOCK_EXCL);
 937	if (!xfs_iflock_nowait(ip)) {
 938		if (!(sync_mode & SYNC_WAIT))
 939			goto out;
 940		xfs_iflock(ip);
 941	}
 942
 943	if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
 944		xfs_iunpin_wait(ip);
 945		xfs_iflush_abort(ip, false);
 
 946		goto reclaim;
 947	}
 948	if (xfs_ipincount(ip)) {
 949		if (!(sync_mode & SYNC_WAIT))
 950			goto out_ifunlock;
 951		xfs_iunpin_wait(ip);
 952	}
 953	if (xfs_iflags_test(ip, XFS_ISTALE))
 954		goto reclaim;
 955	if (xfs_inode_clean(ip))
 956		goto reclaim;
 957
 958	/*
 959	 * Never flush out dirty data during non-blocking reclaim, as it would
 960	 * just contend with AIL pushing trying to do the same job.
 
 
 
 
 
 
 961	 */
 962	if (!(sync_mode & SYNC_WAIT))
 963		goto out_ifunlock;
 
 
 964
 965	/*
 966	 * Now we have an inode that needs flushing.
 967	 *
 968	 * Note that xfs_iflush will never block on the inode buffer lock, as
 969	 * xfs_ifree_cluster() can lock the inode buffer before it locks the
 970	 * ip->i_lock, and we are doing the exact opposite here.  As a result,
 971	 * doing a blocking xfs_imap_to_bp() to get the cluster buffer would
 972	 * result in an ABBA deadlock with xfs_ifree_cluster().
 973	 *
 974	 * As xfs_ifree_cluser() must gather all inodes that are active in the
 975	 * cache to mark them stale, if we hit this case we don't actually want
 976	 * to do IO here - we want the inode marked stale so we can simply
 977	 * reclaim it.  Hence if we get an EAGAIN error here,  just unlock the
 978	 * inode, back off and try again.  Hopefully the next pass through will
 979	 * see the stale flag set on the inode.
 980	 */
 981	error = xfs_iflush(ip, &bp);
 982	if (error == -EAGAIN) {
 983		xfs_iunlock(ip, XFS_ILOCK_EXCL);
 984		/* backoff longer than in xfs_ifree_cluster */
 985		delay(2);
 986		goto restart;
 987	}
 988
 989	if (!error) {
 990		error = xfs_bwrite(bp);
 991		xfs_buf_relse(bp);
 992	}
 993
 994	xfs_iflock(ip);
 995reclaim:
 996	xfs_ifunlock(ip);
 997	xfs_iunlock(ip, XFS_ILOCK_EXCL);
 998
 999	XFS_STATS_INC(ip->i_mount, xs_ig_reclaims);
1000	/*
1001	 * Remove the inode from the per-AG radix tree.
1002	 *
1003	 * Because radix_tree_delete won't complain even if the item was never
1004	 * added to the tree assert that it's been there before to catch
1005	 * problems with the inode life time early on.
1006	 */
1007	spin_lock(&pag->pag_ici_lock);
1008	if (!radix_tree_delete(&pag->pag_ici_root,
1009				XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino)))
1010		ASSERT(0);
1011	__xfs_inode_clear_reclaim(pag, ip);
1012	spin_unlock(&pag->pag_ici_lock);
1013
1014	/*
1015	 * Here we do an (almost) spurious inode lock in order to coordinate
1016	 * with inode cache radix tree lookups.  This is because the lookup
1017	 * can reference the inodes in the cache without taking references.
1018	 *
1019	 * We make that OK here by ensuring that we wait until the inode is
1020	 * unlocked after the lookup before we go ahead and free it.
1021	 */
1022	xfs_ilock(ip, XFS_ILOCK_EXCL);
1023	xfs_qm_dqdetach(ip);
1024	xfs_iunlock(ip, XFS_ILOCK_EXCL);
 
1025
1026	xfs_inode_free(ip);
1027	return error;
1028
1029out_ifunlock:
1030	xfs_ifunlock(ip);
 
 
1031out:
1032	xfs_iflags_clear(ip, XFS_IRECLAIM);
1033	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1034	/*
1035	 * We could return -EAGAIN here to make reclaim rescan the inode tree in
1036	 * a short while. However, this just burns CPU time scanning the tree
1037	 * waiting for IO to complete and the reclaim work never goes back to
1038	 * the idle state. Instead, return 0 to let the next scheduled
1039	 * background reclaim attempt to reclaim the inode again.
1040	 */
1041	return 0;
1042}
1043
1044/*
1045 * Walk the AGs and reclaim the inodes in them. Even if the filesystem is
1046 * corrupted, we still want to try to reclaim all the inodes. If we don't,
1047 * then a shut down during filesystem unmount reclaim walk leak all the
1048 * unreclaimed inodes.
 
 
 
 
1049 */
1050STATIC int
1051xfs_reclaim_inodes_ag(
1052	struct xfs_mount	*mp,
1053	int			flags,
1054	int			*nr_to_scan)
1055{
1056	struct xfs_perag	*pag;
1057	int			error = 0;
1058	int			last_error = 0;
1059	xfs_agnumber_t		ag;
1060	int			trylock = flags & SYNC_TRYLOCK;
1061	int			skipped;
1062
1063restart:
1064	ag = 0;
1065	skipped = 0;
1066	while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1067		unsigned long	first_index = 0;
1068		int		done = 0;
1069		int		nr_found = 0;
1070
1071		ag = pag->pag_agno + 1;
1072
1073		if (trylock) {
1074			if (!mutex_trylock(&pag->pag_ici_reclaim_lock)) {
1075				skipped++;
1076				xfs_perag_put(pag);
1077				continue;
1078			}
1079			first_index = pag->pag_ici_reclaim_cursor;
1080		} else
1081			mutex_lock(&pag->pag_ici_reclaim_lock);
1082
1083		do {
1084			struct xfs_inode *batch[XFS_LOOKUP_BATCH];
1085			int	i;
1086
1087			rcu_read_lock();
1088			nr_found = radix_tree_gang_lookup_tag(
1089					&pag->pag_ici_root,
1090					(void **)batch, first_index,
1091					XFS_LOOKUP_BATCH,
1092					XFS_ICI_RECLAIM_TAG);
1093			if (!nr_found) {
1094				done = 1;
1095				rcu_read_unlock();
1096				break;
1097			}
1098
1099			/*
1100			 * Grab the inodes before we drop the lock. if we found
1101			 * nothing, nr == 0 and the loop will be skipped.
1102			 */
1103			for (i = 0; i < nr_found; i++) {
1104				struct xfs_inode *ip = batch[i];
1105
1106				if (done || xfs_reclaim_inode_grab(ip, flags))
1107					batch[i] = NULL;
1108
1109				/*
1110				 * Update the index for the next lookup. Catch
1111				 * overflows into the next AG range which can
1112				 * occur if we have inodes in the last block of
1113				 * the AG and we are currently pointing to the
1114				 * last inode.
1115				 *
1116				 * Because we may see inodes that are from the
1117				 * wrong AG due to RCU freeing and
1118				 * reallocation, only update the index if it
1119				 * lies in this AG. It was a race that lead us
1120				 * to see this inode, so another lookup from
1121				 * the same index will not find it again.
1122				 */
1123				if (XFS_INO_TO_AGNO(mp, ip->i_ino) !=
1124								pag->pag_agno)
1125					continue;
1126				first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
1127				if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
1128					done = 1;
1129			}
1130
1131			/* unlock now we've grabbed the inodes. */
1132			rcu_read_unlock();
1133
1134			for (i = 0; i < nr_found; i++) {
1135				if (!batch[i])
1136					continue;
1137				error = xfs_reclaim_inode(batch[i], pag, flags);
1138				if (error && last_error != -EFSCORRUPTED)
1139					last_error = error;
1140			}
1141
1142			*nr_to_scan -= XFS_LOOKUP_BATCH;
1143
1144			cond_resched();
1145
1146		} while (nr_found && !done && *nr_to_scan > 0);
1147
1148		if (trylock && !done)
1149			pag->pag_ici_reclaim_cursor = first_index;
1150		else
1151			pag->pag_ici_reclaim_cursor = 0;
1152		mutex_unlock(&pag->pag_ici_reclaim_lock);
1153		xfs_perag_put(pag);
1154	}
1155
1156	/*
1157	 * if we skipped any AG, and we still have scan count remaining, do
1158	 * another pass this time using blocking reclaim semantics (i.e
1159	 * waiting on the reclaim locks and ignoring the reclaim cursors). This
1160	 * ensure that when we get more reclaimers than AGs we block rather
1161	 * than spin trying to execute reclaim.
1162	 */
1163	if (skipped && (flags & SYNC_WAIT) && *nr_to_scan > 0) {
1164		trylock = 0;
1165		goto restart;
1166	}
1167	return last_error;
1168}
1169
1170int
1171xfs_reclaim_inodes(
1172	xfs_mount_t	*mp,
1173	int		mode)
1174{
1175	int		nr_to_scan = INT_MAX;
1176
1177	return xfs_reclaim_inodes_ag(mp, mode, &nr_to_scan);
 
 
 
1178}
1179
1180/*
1181 * Scan a certain number of inodes for reclaim.
1182 *
1183 * When called we make sure that there is a background (fast) inode reclaim in
1184 * progress, while we will throttle the speed of reclaim via doing synchronous
1185 * reclaim of inodes. That means if we come across dirty inodes, we wait for
1186 * them to be cleaned, which we hope will not be very long due to the
1187 * background walker having already kicked the IO off on those dirty inodes.
1188 */
1189long
1190xfs_reclaim_inodes_nr(
1191	struct xfs_mount	*mp,
1192	int			nr_to_scan)
1193{
1194	/* kick background reclaimer and push the AIL */
1195	xfs_reclaim_work_queue(mp);
1196	xfs_ail_push_all(mp->m_ail);
1197
1198	return xfs_reclaim_inodes_ag(mp, SYNC_TRYLOCK | SYNC_WAIT, &nr_to_scan);
 
1199}
1200
1201/*
1202 * Return the number of reclaimable inodes in the filesystem for
1203 * the shrinker to determine how much to reclaim.
1204 */
1205int
1206xfs_reclaim_inodes_count(
1207	struct xfs_mount	*mp)
1208{
1209	struct xfs_perag	*pag;
1210	xfs_agnumber_t		ag = 0;
1211	int			reclaimable = 0;
1212
1213	while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1214		ag = pag->pag_agno + 1;
1215		reclaimable += pag->pag_ici_reclaimable;
1216		xfs_perag_put(pag);
1217	}
1218	return reclaimable;
1219}
1220
1221STATIC int
1222xfs_inode_match_id(
1223	struct xfs_inode	*ip,
1224	struct xfs_eofblocks	*eofb)
1225{
1226	if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) &&
1227	    !uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid))
1228		return 0;
1229
1230	if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) &&
1231	    !gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid))
1232		return 0;
1233
1234	if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) &&
1235	    xfs_get_projid(ip) != eofb->eof_prid)
1236		return 0;
1237
1238	return 1;
1239}
1240
1241/*
1242 * A union-based inode filtering algorithm. Process the inode if any of the
1243 * criteria match. This is for global/internal scans only.
1244 */
1245STATIC int
1246xfs_inode_match_id_union(
1247	struct xfs_inode	*ip,
1248	struct xfs_eofblocks	*eofb)
1249{
1250	if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) &&
1251	    uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid))
1252		return 1;
1253
1254	if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) &&
1255	    gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid))
1256		return 1;
1257
1258	if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) &&
1259	    xfs_get_projid(ip) == eofb->eof_prid)
1260		return 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1261
1262	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1263}
1264
1265STATIC int
1266xfs_inode_free_eofblocks(
1267	struct xfs_inode	*ip,
1268	int			flags,
1269	void			*args)
1270{
1271	int ret;
1272	struct xfs_eofblocks *eofb = args;
1273	bool need_iolock = true;
1274	int match;
1275
1276	ASSERT(!eofb || (eofb && eofb->eof_scan_owner != 0));
1277
1278	if (!xfs_can_free_eofblocks(ip, false)) {
1279		/* inode could be preallocated or append-only */
1280		trace_xfs_inode_free_eofblocks_invalid(ip);
1281		xfs_inode_clear_eofblocks_tag(ip);
1282		return 0;
1283	}
1284
1285	/*
1286	 * If the mapping is dirty the operation can block and wait for some
1287	 * time. Unless we are waiting, skip it.
1288	 */
1289	if (!(flags & SYNC_WAIT) &&
1290	    mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY))
1291		return 0;
1292
1293	if (eofb) {
1294		if (eofb->eof_flags & XFS_EOF_FLAGS_UNION)
1295			match = xfs_inode_match_id_union(ip, eofb);
1296		else
1297			match = xfs_inode_match_id(ip, eofb);
1298		if (!match)
1299			return 0;
1300
1301		/* skip the inode if the file size is too small */
1302		if (eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE &&
1303		    XFS_ISIZE(ip) < eofb->eof_min_file_size)
1304			return 0;
1305
1306		/*
1307		 * A scan owner implies we already hold the iolock. Skip it in
1308		 * xfs_free_eofblocks() to avoid deadlock. This also eliminates
1309		 * the possibility of EAGAIN being returned.
1310		 */
1311		if (eofb->eof_scan_owner == ip->i_ino)
1312			need_iolock = false;
 
1313	}
1314
1315	ret = xfs_free_eofblocks(ip->i_mount, ip, need_iolock);
1316
1317	/* don't revisit the inode if we're not waiting */
1318	if (ret == -EAGAIN && !(flags & SYNC_WAIT))
1319		ret = 0;
1320
1321	return ret;
1322}
1323
1324int
1325xfs_icache_free_eofblocks(
1326	struct xfs_mount	*mp,
1327	struct xfs_eofblocks	*eofb)
1328{
1329	int flags = SYNC_TRYLOCK;
1330
1331	if (eofb && (eofb->eof_flags & XFS_EOF_FLAGS_SYNC))
1332		flags = SYNC_WAIT;
1333
1334	return xfs_inode_ag_iterator_tag(mp, xfs_inode_free_eofblocks, flags,
1335					 eofb, XFS_ICI_EOFBLOCKS_TAG);
1336}
1337
1338/*
1339 * Run eofblocks scans on the quotas applicable to the inode. For inodes with
1340 * multiple quotas, we don't know exactly which quota caused an allocation
1341 * failure. We make a best effort by including each quota under low free space
1342 * conditions (less than 1% free space) in the scan.
1343 */
1344int
1345xfs_inode_free_quota_eofblocks(
1346	struct xfs_inode *ip)
 
 
1347{
1348	int scan = 0;
1349	struct xfs_eofblocks eofb = {0};
1350	struct xfs_dquot *dq;
1351
1352	ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1353
1354	/*
1355	 * Set the scan owner to avoid a potential livelock. Otherwise, the scan
1356	 * can repeatedly trylock on the inode we're currently processing. We
1357	 * run a sync scan to increase effectiveness and use the union filter to
1358	 * cover all applicable quotas in a single scan.
1359	 */
1360	eofb.eof_scan_owner = ip->i_ino;
1361	eofb.eof_flags = XFS_EOF_FLAGS_UNION|XFS_EOF_FLAGS_SYNC;
1362
1363	if (XFS_IS_UQUOTA_ENFORCED(ip->i_mount)) {
1364		dq = xfs_inode_dquot(ip, XFS_DQ_USER);
1365		if (dq && xfs_dquot_lowsp(dq)) {
1366			eofb.eof_uid = VFS_I(ip)->i_uid;
1367			eofb.eof_flags |= XFS_EOF_FLAGS_UID;
1368			scan = 1;
1369		}
1370	}
1371
1372	if (XFS_IS_GQUOTA_ENFORCED(ip->i_mount)) {
1373		dq = xfs_inode_dquot(ip, XFS_DQ_GROUP);
1374		if (dq && xfs_dquot_lowsp(dq)) {
1375			eofb.eof_gid = VFS_I(ip)->i_gid;
1376			eofb.eof_flags |= XFS_EOF_FLAGS_GID;
1377			scan = 1;
1378		}
1379	}
1380
1381	if (scan)
1382		xfs_icache_free_eofblocks(ip->i_mount, &eofb);
1383
1384	return scan;
1385}
1386
1387void
1388xfs_inode_set_eofblocks_tag(
1389	xfs_inode_t	*ip)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1390{
1391	struct xfs_mount *mp = ip->i_mount;
1392	struct xfs_perag *pag;
1393	int tagged;
1394
 
 
 
 
 
 
 
 
 
 
1395	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1396	spin_lock(&pag->pag_ici_lock);
1397	trace_xfs_inode_set_eofblocks_tag(ip);
1398
1399	tagged = radix_tree_tagged(&pag->pag_ici_root,
1400				   XFS_ICI_EOFBLOCKS_TAG);
1401	radix_tree_tag_set(&pag->pag_ici_root,
1402			   XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino),
1403			   XFS_ICI_EOFBLOCKS_TAG);
1404	if (!tagged) {
1405		/* propagate the eofblocks tag up into the perag radix tree */
1406		spin_lock(&ip->i_mount->m_perag_lock);
1407		radix_tree_tag_set(&ip->i_mount->m_perag_tree,
1408				   XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
1409				   XFS_ICI_EOFBLOCKS_TAG);
1410		spin_unlock(&ip->i_mount->m_perag_lock);
1411
1412		/* kick off background trimming */
1413		xfs_queue_eofblocks(ip->i_mount);
1414
1415		trace_xfs_perag_set_eofblocks(ip->i_mount, pag->pag_agno,
1416					      -1, _RET_IP_);
1417	}
1418
1419	spin_unlock(&pag->pag_ici_lock);
1420	xfs_perag_put(pag);
1421}
1422
1423void
1424xfs_inode_clear_eofblocks_tag(
1425	xfs_inode_t	*ip)
1426{
 
 
 
 
 
 
 
 
 
 
 
 
 
1427	struct xfs_mount *mp = ip->i_mount;
1428	struct xfs_perag *pag;
1429
 
 
 
 
1430	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1431	spin_lock(&pag->pag_ici_lock);
1432	trace_xfs_inode_clear_eofblocks_tag(ip);
1433
1434	radix_tree_tag_clear(&pag->pag_ici_root,
1435			     XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino),
1436			     XFS_ICI_EOFBLOCKS_TAG);
1437	if (!radix_tree_tagged(&pag->pag_ici_root, XFS_ICI_EOFBLOCKS_TAG)) {
1438		/* clear the eofblocks tag from the perag radix tree */
1439		spin_lock(&ip->i_mount->m_perag_lock);
1440		radix_tree_tag_clear(&ip->i_mount->m_perag_tree,
1441				     XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
1442				     XFS_ICI_EOFBLOCKS_TAG);
1443		spin_unlock(&ip->i_mount->m_perag_lock);
1444		trace_xfs_perag_clear_eofblocks(ip->i_mount, pag->pag_agno,
1445					       -1, _RET_IP_);
1446	}
1447
1448	spin_unlock(&pag->pag_ici_lock);
1449	xfs_perag_put(pag);
1450}
1451