Linux Audio

Check our new training course

Loading...
v5.9
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * devfreq_cooling: Thermal cooling device implementation for devices using
  4 *                  devfreq
  5 *
  6 * Copyright (C) 2014-2015 ARM Limited
  7 *
 
 
 
 
 
 
 
 
 
  8 * TODO:
  9 *    - If OPPs are added or removed after devfreq cooling has
 10 *      registered, the devfreq cooling won't react to it.
 11 */
 12
 13#include <linux/devfreq.h>
 14#include <linux/devfreq_cooling.h>
 15#include <linux/export.h>
 16#include <linux/idr.h>
 17#include <linux/slab.h>
 18#include <linux/pm_opp.h>
 19#include <linux/pm_qos.h>
 20#include <linux/thermal.h>
 21
 22#include <trace/events/thermal.h>
 23
 24#define HZ_PER_KHZ		1000
 25#define SCALE_ERROR_MITIGATION	100
 26
 27static DEFINE_IDA(devfreq_ida);
 28
 29/**
 30 * struct devfreq_cooling_device - Devfreq cooling device
 31 * @id:		unique integer value corresponding to each
 32 *		devfreq_cooling_device registered.
 33 * @cdev:	Pointer to associated thermal cooling device.
 34 * @devfreq:	Pointer to associated devfreq device.
 35 * @cooling_state:	Current cooling state.
 36 * @power_table:	Pointer to table with maximum power draw for each
 37 *			cooling state. State is the index into the table, and
 38 *			the power is in mW.
 39 * @freq_table:	Pointer to a table with the frequencies sorted in descending
 40 *		order.  You can index the table by cooling device state
 41 * @freq_table_size:	Size of the @freq_table and @power_table
 42 * @power_ops:	Pointer to devfreq_cooling_power, used to generate the
 43 *		@power_table.
 44 * @res_util:	Resource utilization scaling factor for the power.
 45 *		It is multiplied by 100 to minimize the error. It is used
 46 *		for estimation of the power budget instead of using
 47 *		'utilization' (which is	'busy_time / 'total_time').
 48 *		The 'res_util' range is from 100 to (power_table[state] * 100)
 49 *		for the corresponding 'state'.
 50 * @capped_state:	index to cooling state with in dynamic power budget
 51 * @req_max_freq:	PM QoS request for limiting the maximum frequency
 52 *			of the devfreq device.
 53 */
 54struct devfreq_cooling_device {
 55	int id;
 56	struct thermal_cooling_device *cdev;
 57	struct devfreq *devfreq;
 58	unsigned long cooling_state;
 59	u32 *power_table;
 60	u32 *freq_table;
 61	size_t freq_table_size;
 62	struct devfreq_cooling_power *power_ops;
 63	u32 res_util;
 64	int capped_state;
 65	struct dev_pm_qos_request req_max_freq;
 66};
 67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 68static int devfreq_cooling_get_max_state(struct thermal_cooling_device *cdev,
 69					 unsigned long *state)
 70{
 71	struct devfreq_cooling_device *dfc = cdev->devdata;
 72
 73	*state = dfc->freq_table_size - 1;
 74
 75	return 0;
 76}
 77
 78static int devfreq_cooling_get_cur_state(struct thermal_cooling_device *cdev,
 79					 unsigned long *state)
 80{
 81	struct devfreq_cooling_device *dfc = cdev->devdata;
 82
 83	*state = dfc->cooling_state;
 84
 85	return 0;
 86}
 87
 88static int devfreq_cooling_set_cur_state(struct thermal_cooling_device *cdev,
 89					 unsigned long state)
 90{
 91	struct devfreq_cooling_device *dfc = cdev->devdata;
 92	struct devfreq *df = dfc->devfreq;
 93	struct device *dev = df->dev.parent;
 94	unsigned long freq;
 95
 96	if (state == dfc->cooling_state)
 97		return 0;
 98
 99	dev_dbg(dev, "Setting cooling state %lu\n", state);
100
101	if (state >= dfc->freq_table_size)
102		return -EINVAL;
103
104	freq = dfc->freq_table[state];
105
106	dev_pm_qos_update_request(&dfc->req_max_freq,
107				  DIV_ROUND_UP(freq, HZ_PER_KHZ));
108
109	dfc->cooling_state = state;
110
111	return 0;
112}
113
114/**
115 * freq_get_state() - get the cooling state corresponding to a frequency
116 * @dfc:	Pointer to devfreq cooling device
117 * @freq:	frequency in Hz
118 *
119 * Return: the cooling state associated with the @freq, or
120 * THERMAL_CSTATE_INVALID if it wasn't found.
121 */
122static unsigned long
123freq_get_state(struct devfreq_cooling_device *dfc, unsigned long freq)
124{
125	int i;
126
127	for (i = 0; i < dfc->freq_table_size; i++) {
128		if (dfc->freq_table[i] == freq)
129			return i;
130	}
131
132	return THERMAL_CSTATE_INVALID;
133}
134
135static unsigned long get_voltage(struct devfreq *df, unsigned long freq)
136{
137	struct device *dev = df->dev.parent;
138	unsigned long voltage;
139	struct dev_pm_opp *opp;
140
141	opp = dev_pm_opp_find_freq_exact(dev, freq, true);
142	if (PTR_ERR(opp) == -ERANGE)
143		opp = dev_pm_opp_find_freq_exact(dev, freq, false);
144
145	if (IS_ERR(opp)) {
146		dev_err_ratelimited(dev, "Failed to find OPP for frequency %lu: %ld\n",
147				    freq, PTR_ERR(opp));
148		return 0;
149	}
150
151	voltage = dev_pm_opp_get_voltage(opp) / 1000; /* mV */
152	dev_pm_opp_put(opp);
153
154	if (voltage == 0) {
155		dev_err_ratelimited(dev,
156				    "Failed to get voltage for frequency %lu\n",
157				    freq);
158	}
159
160	return voltage;
161}
162
163/**
164 * get_static_power() - calculate the static power
165 * @dfc:	Pointer to devfreq cooling device
166 * @freq:	Frequency in Hz
167 *
168 * Calculate the static power in milliwatts using the supplied
169 * get_static_power().  The current voltage is calculated using the
170 * OPP library.  If no get_static_power() was supplied, assume the
171 * static power is negligible.
172 */
173static unsigned long
174get_static_power(struct devfreq_cooling_device *dfc, unsigned long freq)
175{
176	struct devfreq *df = dfc->devfreq;
 
177	unsigned long voltage;
 
178
179	if (!dfc->power_ops->get_static_power)
180		return 0;
181
182	voltage = get_voltage(df, freq);
183
184	if (voltage == 0)
 
 
 
 
 
 
 
 
 
 
 
185		return 0;
 
186
187	return dfc->power_ops->get_static_power(df, voltage);
188}
189
190/**
191 * get_dynamic_power - calculate the dynamic power
192 * @dfc:	Pointer to devfreq cooling device
193 * @freq:	Frequency in Hz
194 * @voltage:	Voltage in millivolts
195 *
196 * Calculate the dynamic power in milliwatts consumed by the device at
197 * frequency @freq and voltage @voltage.  If the get_dynamic_power()
198 * was supplied as part of the devfreq_cooling_power struct, then that
199 * function is used.  Otherwise, a simple power model (Pdyn = Coeff *
200 * Voltage^2 * Frequency) is used.
201 */
202static unsigned long
203get_dynamic_power(struct devfreq_cooling_device *dfc, unsigned long freq,
204		  unsigned long voltage)
205{
206	u64 power;
207	u32 freq_mhz;
208	struct devfreq_cooling_power *dfc_power = dfc->power_ops;
209
210	if (dfc_power->get_dynamic_power)
211		return dfc_power->get_dynamic_power(dfc->devfreq, freq,
212						    voltage);
213
214	freq_mhz = freq / 1000000;
215	power = (u64)dfc_power->dyn_power_coeff * freq_mhz * voltage * voltage;
216	do_div(power, 1000000000);
217
218	return power;
219}
220
221
222static inline unsigned long get_total_power(struct devfreq_cooling_device *dfc,
223					    unsigned long freq,
224					    unsigned long voltage)
225{
226	return get_static_power(dfc, freq) + get_dynamic_power(dfc, freq,
227							       voltage);
228}
229
230
231static int devfreq_cooling_get_requested_power(struct thermal_cooling_device *cdev,
232					       struct thermal_zone_device *tz,
233					       u32 *power)
234{
235	struct devfreq_cooling_device *dfc = cdev->devdata;
236	struct devfreq *df = dfc->devfreq;
237	struct devfreq_dev_status *status = &df->last_status;
238	unsigned long state;
239	unsigned long freq = status->current_frequency;
240	unsigned long voltage;
241	u32 dyn_power = 0;
242	u32 static_power = 0;
243	int res;
244
 
245	state = freq_get_state(dfc, freq);
246	if (state == THERMAL_CSTATE_INVALID) {
247		res = -EAGAIN;
248		goto fail;
249	}
250
251	if (dfc->power_ops->get_real_power) {
252		voltage = get_voltage(df, freq);
253		if (voltage == 0) {
254			res = -EINVAL;
255			goto fail;
256		}
257
258		res = dfc->power_ops->get_real_power(df, power, freq, voltage);
259		if (!res) {
260			state = dfc->capped_state;
261			dfc->res_util = dfc->power_table[state];
262			dfc->res_util *= SCALE_ERROR_MITIGATION;
263
264			if (*power > 1)
265				dfc->res_util /= *power;
266		} else {
267			goto fail;
268		}
269	} else {
270		dyn_power = dfc->power_table[state];
271
272		/* Scale dynamic power for utilization */
273		dyn_power *= status->busy_time;
274		dyn_power /= status->total_time;
275		/* Get static power */
276		static_power = get_static_power(dfc, freq);
277
278		*power = dyn_power + static_power;
279	}
280
281	trace_thermal_power_devfreq_get_power(cdev, status, freq, dyn_power,
282					      static_power, *power);
 
 
283
284	return 0;
285fail:
286	/* It is safe to set max in this case */
287	dfc->res_util = SCALE_ERROR_MITIGATION;
288	return res;
289}
290
291static int devfreq_cooling_state2power(struct thermal_cooling_device *cdev,
292				       struct thermal_zone_device *tz,
293				       unsigned long state,
294				       u32 *power)
295{
296	struct devfreq_cooling_device *dfc = cdev->devdata;
297	unsigned long freq;
298	u32 static_power;
299
300	if (state >= dfc->freq_table_size)
301		return -EINVAL;
302
303	freq = dfc->freq_table[state];
304	static_power = get_static_power(dfc, freq);
305
306	*power = dfc->power_table[state] + static_power;
307	return 0;
308}
309
310static int devfreq_cooling_power2state(struct thermal_cooling_device *cdev,
311				       struct thermal_zone_device *tz,
312				       u32 power, unsigned long *state)
313{
314	struct devfreq_cooling_device *dfc = cdev->devdata;
315	struct devfreq *df = dfc->devfreq;
316	struct devfreq_dev_status *status = &df->last_status;
317	unsigned long freq = status->current_frequency;
318	unsigned long busy_time;
319	s32 dyn_power;
320	u32 static_power;
321	s32 est_power;
322	int i;
323
324	if (dfc->power_ops->get_real_power) {
325		/* Scale for resource utilization */
326		est_power = power * dfc->res_util;
327		est_power /= SCALE_ERROR_MITIGATION;
328	} else {
329		static_power = get_static_power(dfc, freq);
330
331		dyn_power = power - static_power;
332		dyn_power = dyn_power > 0 ? dyn_power : 0;
333
334		/* Scale dynamic power for utilization */
335		busy_time = status->busy_time ?: 1;
336		est_power = (dyn_power * status->total_time) / busy_time;
337	}
338
339	/*
340	 * Find the first cooling state that is within the power
341	 * budget for dynamic power.
342	 */
343	for (i = 0; i < dfc->freq_table_size - 1; i++)
344		if (est_power >= dfc->power_table[i])
345			break;
346
347	*state = i;
348	dfc->capped_state = i;
349	trace_thermal_power_devfreq_limit(cdev, freq, *state, power);
350	return 0;
351}
352
353static struct thermal_cooling_device_ops devfreq_cooling_ops = {
354	.get_max_state = devfreq_cooling_get_max_state,
355	.get_cur_state = devfreq_cooling_get_cur_state,
356	.set_cur_state = devfreq_cooling_set_cur_state,
357};
358
359/**
360 * devfreq_cooling_gen_tables() - Generate power and freq tables.
361 * @dfc: Pointer to devfreq cooling device.
362 *
363 * Generate power and frequency tables: the power table hold the
364 * device's maximum power usage at each cooling state (OPP).  The
365 * static and dynamic power using the appropriate voltage and
366 * frequency for the state, is acquired from the struct
367 * devfreq_cooling_power, and summed to make the maximum power draw.
368 *
369 * The frequency table holds the frequencies in descending order.
370 * That way its indexed by cooling device state.
371 *
372 * The tables are malloced, and pointers put in dfc.  They must be
373 * freed when unregistering the devfreq cooling device.
374 *
375 * Return: 0 on success, negative error code on failure.
376 */
377static int devfreq_cooling_gen_tables(struct devfreq_cooling_device *dfc)
378{
379	struct devfreq *df = dfc->devfreq;
380	struct device *dev = df->dev.parent;
381	int ret, num_opps;
382	unsigned long freq;
383	u32 *power_table = NULL;
384	u32 *freq_table;
385	int i;
386
387	num_opps = dev_pm_opp_get_opp_count(dev);
388
389	if (dfc->power_ops) {
390		power_table = kcalloc(num_opps, sizeof(*power_table),
391				      GFP_KERNEL);
392		if (!power_table)
393			return -ENOMEM;
394	}
395
396	freq_table = kcalloc(num_opps, sizeof(*freq_table),
397			     GFP_KERNEL);
398	if (!freq_table) {
399		ret = -ENOMEM;
400		goto free_power_table;
401	}
402
403	for (i = 0, freq = ULONG_MAX; i < num_opps; i++, freq--) {
404		unsigned long power, voltage;
405		struct dev_pm_opp *opp;
406
 
 
407		opp = dev_pm_opp_find_freq_floor(dev, &freq);
408		if (IS_ERR(opp)) {
 
409			ret = PTR_ERR(opp);
410			goto free_tables;
411		}
412
413		voltage = dev_pm_opp_get_voltage(opp) / 1000; /* mV */
414		dev_pm_opp_put(opp);
 
415
416		if (dfc->power_ops) {
417			if (dfc->power_ops->get_real_power)
418				power = get_total_power(dfc, freq, voltage);
419			else
420				power = get_dynamic_power(dfc, freq, voltage);
421
422			dev_dbg(dev, "Power table: %lu MHz @ %lu mV: %lu = %lu mW\n",
423				freq / 1000000, voltage, power, power);
424
425			power_table[i] = power;
426		}
427
428		freq_table[i] = freq;
429	}
430
431	if (dfc->power_ops)
432		dfc->power_table = power_table;
433
434	dfc->freq_table = freq_table;
435	dfc->freq_table_size = num_opps;
436
437	return 0;
438
439free_tables:
440	kfree(freq_table);
441free_power_table:
442	kfree(power_table);
443
444	return ret;
445}
446
447/**
448 * of_devfreq_cooling_register_power() - Register devfreq cooling device,
449 *                                      with OF and power information.
450 * @np:	Pointer to OF device_node.
451 * @df:	Pointer to devfreq device.
452 * @dfc_power:	Pointer to devfreq_cooling_power.
453 *
454 * Register a devfreq cooling device.  The available OPPs must be
455 * registered on the device.
456 *
457 * If @dfc_power is provided, the cooling device is registered with the
458 * power extensions.  For the power extensions to work correctly,
459 * devfreq should use the simple_ondemand governor, other governors
460 * are not currently supported.
461 */
462struct thermal_cooling_device *
463of_devfreq_cooling_register_power(struct device_node *np, struct devfreq *df,
464				  struct devfreq_cooling_power *dfc_power)
465{
466	struct thermal_cooling_device *cdev;
467	struct devfreq_cooling_device *dfc;
468	char dev_name[THERMAL_NAME_LENGTH];
469	int err;
470
471	dfc = kzalloc(sizeof(*dfc), GFP_KERNEL);
472	if (!dfc)
473		return ERR_PTR(-ENOMEM);
474
475	dfc->devfreq = df;
476
477	if (dfc_power) {
478		dfc->power_ops = dfc_power;
479
480		devfreq_cooling_ops.get_requested_power =
481			devfreq_cooling_get_requested_power;
482		devfreq_cooling_ops.state2power = devfreq_cooling_state2power;
483		devfreq_cooling_ops.power2state = devfreq_cooling_power2state;
484	}
485
486	err = devfreq_cooling_gen_tables(dfc);
487	if (err)
488		goto free_dfc;
489
490	err = dev_pm_qos_add_request(df->dev.parent, &dfc->req_max_freq,
491				     DEV_PM_QOS_MAX_FREQUENCY,
492				     PM_QOS_MAX_FREQUENCY_DEFAULT_VALUE);
493	if (err < 0)
494		goto free_tables;
495
496	err = ida_simple_get(&devfreq_ida, 0, 0, GFP_KERNEL);
497	if (err < 0)
498		goto remove_qos_req;
499	dfc->id = err;
500
501	snprintf(dev_name, sizeof(dev_name), "thermal-devfreq-%d", dfc->id);
502
503	cdev = thermal_of_cooling_device_register(np, dev_name, dfc,
504						  &devfreq_cooling_ops);
505	if (IS_ERR(cdev)) {
506		err = PTR_ERR(cdev);
507		dev_err(df->dev.parent,
508			"Failed to register devfreq cooling device (%d)\n",
509			err);
510		goto release_ida;
511	}
512
513	dfc->cdev = cdev;
514
515	return cdev;
516
517release_ida:
518	ida_simple_remove(&devfreq_ida, dfc->id);
519
520remove_qos_req:
521	dev_pm_qos_remove_request(&dfc->req_max_freq);
522
523free_tables:
524	kfree(dfc->power_table);
525	kfree(dfc->freq_table);
526free_dfc:
527	kfree(dfc);
528
529	return ERR_PTR(err);
530}
531EXPORT_SYMBOL_GPL(of_devfreq_cooling_register_power);
532
533/**
534 * of_devfreq_cooling_register() - Register devfreq cooling device,
535 *                                with OF information.
536 * @np: Pointer to OF device_node.
537 * @df: Pointer to devfreq device.
538 */
539struct thermal_cooling_device *
540of_devfreq_cooling_register(struct device_node *np, struct devfreq *df)
541{
542	return of_devfreq_cooling_register_power(np, df, NULL);
543}
544EXPORT_SYMBOL_GPL(of_devfreq_cooling_register);
545
546/**
547 * devfreq_cooling_register() - Register devfreq cooling device.
548 * @df: Pointer to devfreq device.
549 */
550struct thermal_cooling_device *devfreq_cooling_register(struct devfreq *df)
551{
552	return of_devfreq_cooling_register(NULL, df);
553}
554EXPORT_SYMBOL_GPL(devfreq_cooling_register);
555
556/**
557 * devfreq_cooling_unregister() - Unregister devfreq cooling device.
558 * @cdev: Pointer to devfreq cooling device to unregister.
559 */
560void devfreq_cooling_unregister(struct thermal_cooling_device *cdev)
561{
562	struct devfreq_cooling_device *dfc;
563
564	if (!cdev)
565		return;
566
567	dfc = cdev->devdata;
568
569	thermal_cooling_device_unregister(dfc->cdev);
570	ida_simple_remove(&devfreq_ida, dfc->id);
571	dev_pm_qos_remove_request(&dfc->req_max_freq);
572	kfree(dfc->power_table);
573	kfree(dfc->freq_table);
574
575	kfree(dfc);
576}
577EXPORT_SYMBOL_GPL(devfreq_cooling_unregister);
v4.6
 
  1/*
  2 * devfreq_cooling: Thermal cooling device implementation for devices using
  3 *                  devfreq
  4 *
  5 * Copyright (C) 2014-2015 ARM Limited
  6 *
  7 * This program is free software; you can redistribute it and/or modify
  8 * it under the terms of the GNU General Public License version 2 as
  9 * published by the Free Software Foundation.
 10 *
 11 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
 12 * kind, whether express or implied; without even the implied warranty
 13 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 14 * GNU General Public License for more details.
 15 *
 16 * TODO:
 17 *    - If OPPs are added or removed after devfreq cooling has
 18 *      registered, the devfreq cooling won't react to it.
 19 */
 20
 21#include <linux/devfreq.h>
 22#include <linux/devfreq_cooling.h>
 23#include <linux/export.h>
 
 24#include <linux/slab.h>
 25#include <linux/pm_opp.h>
 
 26#include <linux/thermal.h>
 27
 28#include <trace/events/thermal.h>
 29
 30static DEFINE_MUTEX(devfreq_lock);
 31static DEFINE_IDR(devfreq_idr);
 
 
 32
 33/**
 34 * struct devfreq_cooling_device - Devfreq cooling device
 35 * @id:		unique integer value corresponding to each
 36 *		devfreq_cooling_device registered.
 37 * @cdev:	Pointer to associated thermal cooling device.
 38 * @devfreq:	Pointer to associated devfreq device.
 39 * @cooling_state:	Current cooling state.
 40 * @power_table:	Pointer to table with maximum power draw for each
 41 *			cooling state. State is the index into the table, and
 42 *			the power is in mW.
 43 * @freq_table:	Pointer to a table with the frequencies sorted in descending
 44 *		order.  You can index the table by cooling device state
 45 * @freq_table_size:	Size of the @freq_table and @power_table
 46 * @power_ops:	Pointer to devfreq_cooling_power, used to generate the
 47 *		@power_table.
 
 
 
 
 
 
 
 
 
 48 */
 49struct devfreq_cooling_device {
 50	int id;
 51	struct thermal_cooling_device *cdev;
 52	struct devfreq *devfreq;
 53	unsigned long cooling_state;
 54	u32 *power_table;
 55	u32 *freq_table;
 56	size_t freq_table_size;
 57	struct devfreq_cooling_power *power_ops;
 
 
 
 58};
 59
 60/**
 61 * get_idr - function to get a unique id.
 62 * @idr: struct idr * handle used to create a id.
 63 * @id: int * value generated by this function.
 64 *
 65 * This function will populate @id with an unique
 66 * id, using the idr API.
 67 *
 68 * Return: 0 on success, an error code on failure.
 69 */
 70static int get_idr(struct idr *idr, int *id)
 71{
 72	int ret;
 73
 74	mutex_lock(&devfreq_lock);
 75	ret = idr_alloc(idr, NULL, 0, 0, GFP_KERNEL);
 76	mutex_unlock(&devfreq_lock);
 77	if (unlikely(ret < 0))
 78		return ret;
 79	*id = ret;
 80
 81	return 0;
 82}
 83
 84/**
 85 * release_idr - function to free the unique id.
 86 * @idr: struct idr * handle used for creating the id.
 87 * @id: int value representing the unique id.
 88 */
 89static void release_idr(struct idr *idr, int id)
 90{
 91	mutex_lock(&devfreq_lock);
 92	idr_remove(idr, id);
 93	mutex_unlock(&devfreq_lock);
 94}
 95
 96/**
 97 * partition_enable_opps() - disable all opps above a given state
 98 * @dfc:	Pointer to devfreq we are operating on
 99 * @cdev_state:	cooling device state we're setting
100 *
101 * Go through the OPPs of the device, enabling all OPPs until
102 * @cdev_state and disabling those frequencies above it.
103 */
104static int partition_enable_opps(struct devfreq_cooling_device *dfc,
105				 unsigned long cdev_state)
106{
107	int i;
108	struct device *dev = dfc->devfreq->dev.parent;
109
110	for (i = 0; i < dfc->freq_table_size; i++) {
111		struct dev_pm_opp *opp;
112		int ret = 0;
113		unsigned int freq = dfc->freq_table[i];
114		bool want_enable = i >= cdev_state ? true : false;
115
116		rcu_read_lock();
117		opp = dev_pm_opp_find_freq_exact(dev, freq, !want_enable);
118		rcu_read_unlock();
119
120		if (PTR_ERR(opp) == -ERANGE)
121			continue;
122		else if (IS_ERR(opp))
123			return PTR_ERR(opp);
124
125		if (want_enable)
126			ret = dev_pm_opp_enable(dev, freq);
127		else
128			ret = dev_pm_opp_disable(dev, freq);
129
130		if (ret)
131			return ret;
132	}
133
134	return 0;
135}
136
137static int devfreq_cooling_get_max_state(struct thermal_cooling_device *cdev,
138					 unsigned long *state)
139{
140	struct devfreq_cooling_device *dfc = cdev->devdata;
141
142	*state = dfc->freq_table_size - 1;
143
144	return 0;
145}
146
147static int devfreq_cooling_get_cur_state(struct thermal_cooling_device *cdev,
148					 unsigned long *state)
149{
150	struct devfreq_cooling_device *dfc = cdev->devdata;
151
152	*state = dfc->cooling_state;
153
154	return 0;
155}
156
157static int devfreq_cooling_set_cur_state(struct thermal_cooling_device *cdev,
158					 unsigned long state)
159{
160	struct devfreq_cooling_device *dfc = cdev->devdata;
161	struct devfreq *df = dfc->devfreq;
162	struct device *dev = df->dev.parent;
163	int ret;
164
165	if (state == dfc->cooling_state)
166		return 0;
167
168	dev_dbg(dev, "Setting cooling state %lu\n", state);
169
170	if (state >= dfc->freq_table_size)
171		return -EINVAL;
172
173	ret = partition_enable_opps(dfc, state);
174	if (ret)
175		return ret;
 
176
177	dfc->cooling_state = state;
178
179	return 0;
180}
181
182/**
183 * freq_get_state() - get the cooling state corresponding to a frequency
184 * @dfc:	Pointer to devfreq cooling device
185 * @freq:	frequency in Hz
186 *
187 * Return: the cooling state associated with the @freq, or
188 * THERMAL_CSTATE_INVALID if it wasn't found.
189 */
190static unsigned long
191freq_get_state(struct devfreq_cooling_device *dfc, unsigned long freq)
192{
193	int i;
194
195	for (i = 0; i < dfc->freq_table_size; i++) {
196		if (dfc->freq_table[i] == freq)
197			return i;
198	}
199
200	return THERMAL_CSTATE_INVALID;
201}
202
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
203/**
204 * get_static_power() - calculate the static power
205 * @dfc:	Pointer to devfreq cooling device
206 * @freq:	Frequency in Hz
207 *
208 * Calculate the static power in milliwatts using the supplied
209 * get_static_power().  The current voltage is calculated using the
210 * OPP library.  If no get_static_power() was supplied, assume the
211 * static power is negligible.
212 */
213static unsigned long
214get_static_power(struct devfreq_cooling_device *dfc, unsigned long freq)
215{
216	struct devfreq *df = dfc->devfreq;
217	struct device *dev = df->dev.parent;
218	unsigned long voltage;
219	struct dev_pm_opp *opp;
220
221	if (!dfc->power_ops->get_static_power)
222		return 0;
223
224	rcu_read_lock();
225
226	opp = dev_pm_opp_find_freq_exact(dev, freq, true);
227	if (IS_ERR(opp) && (PTR_ERR(opp) == -ERANGE))
228		opp = dev_pm_opp_find_freq_exact(dev, freq, false);
229
230	voltage = dev_pm_opp_get_voltage(opp) / 1000; /* mV */
231
232	rcu_read_unlock();
233
234	if (voltage == 0) {
235		dev_warn_ratelimited(dev,
236				     "Failed to get voltage for frequency %lu: %ld\n",
237				     freq, IS_ERR(opp) ? PTR_ERR(opp) : 0);
238		return 0;
239	}
240
241	return dfc->power_ops->get_static_power(voltage);
242}
243
244/**
245 * get_dynamic_power - calculate the dynamic power
246 * @dfc:	Pointer to devfreq cooling device
247 * @freq:	Frequency in Hz
248 * @voltage:	Voltage in millivolts
249 *
250 * Calculate the dynamic power in milliwatts consumed by the device at
251 * frequency @freq and voltage @voltage.  If the get_dynamic_power()
252 * was supplied as part of the devfreq_cooling_power struct, then that
253 * function is used.  Otherwise, a simple power model (Pdyn = Coeff *
254 * Voltage^2 * Frequency) is used.
255 */
256static unsigned long
257get_dynamic_power(struct devfreq_cooling_device *dfc, unsigned long freq,
258		  unsigned long voltage)
259{
260	u64 power;
261	u32 freq_mhz;
262	struct devfreq_cooling_power *dfc_power = dfc->power_ops;
263
264	if (dfc_power->get_dynamic_power)
265		return dfc_power->get_dynamic_power(freq, voltage);
 
266
267	freq_mhz = freq / 1000000;
268	power = (u64)dfc_power->dyn_power_coeff * freq_mhz * voltage * voltage;
269	do_div(power, 1000000000);
270
271	return power;
272}
273
 
 
 
 
 
 
 
 
 
 
274static int devfreq_cooling_get_requested_power(struct thermal_cooling_device *cdev,
275					       struct thermal_zone_device *tz,
276					       u32 *power)
277{
278	struct devfreq_cooling_device *dfc = cdev->devdata;
279	struct devfreq *df = dfc->devfreq;
280	struct devfreq_dev_status *status = &df->last_status;
281	unsigned long state;
282	unsigned long freq = status->current_frequency;
283	u32 dyn_power, static_power;
 
 
 
284
285	/* Get dynamic power for state */
286	state = freq_get_state(dfc, freq);
287	if (state == THERMAL_CSTATE_INVALID)
288		return -EAGAIN;
 
 
289
290	dyn_power = dfc->power_table[state];
 
 
 
 
 
291
292	/* Scale dynamic power for utilization */
293	dyn_power = (dyn_power * status->busy_time) / status->total_time;
 
 
 
 
 
 
 
 
 
 
 
294
295	/* Get static power */
296	static_power = get_static_power(dfc, freq);
 
 
 
 
 
 
297
298	trace_thermal_power_devfreq_get_power(cdev, status, freq, dyn_power,
299					      static_power);
300
301	*power = dyn_power + static_power;
302
303	return 0;
 
 
 
 
304}
305
306static int devfreq_cooling_state2power(struct thermal_cooling_device *cdev,
307				       struct thermal_zone_device *tz,
308				       unsigned long state,
309				       u32 *power)
310{
311	struct devfreq_cooling_device *dfc = cdev->devdata;
312	unsigned long freq;
313	u32 static_power;
314
315	if (state < 0 || state >= dfc->freq_table_size)
316		return -EINVAL;
317
318	freq = dfc->freq_table[state];
319	static_power = get_static_power(dfc, freq);
320
321	*power = dfc->power_table[state] + static_power;
322	return 0;
323}
324
325static int devfreq_cooling_power2state(struct thermal_cooling_device *cdev,
326				       struct thermal_zone_device *tz,
327				       u32 power, unsigned long *state)
328{
329	struct devfreq_cooling_device *dfc = cdev->devdata;
330	struct devfreq *df = dfc->devfreq;
331	struct devfreq_dev_status *status = &df->last_status;
332	unsigned long freq = status->current_frequency;
333	unsigned long busy_time;
334	s32 dyn_power;
335	u32 static_power;
 
336	int i;
337
338	static_power = get_static_power(dfc, freq);
339
340	dyn_power = power - static_power;
341	dyn_power = dyn_power > 0 ? dyn_power : 0;
342
343	/* Scale dynamic power for utilization */
344	busy_time = status->busy_time ?: 1;
345	dyn_power = (dyn_power * status->total_time) / busy_time;
 
 
 
 
 
 
346
347	/*
348	 * Find the first cooling state that is within the power
349	 * budget for dynamic power.
350	 */
351	for (i = 0; i < dfc->freq_table_size - 1; i++)
352		if (dyn_power >= dfc->power_table[i])
353			break;
354
355	*state = i;
 
356	trace_thermal_power_devfreq_limit(cdev, freq, *state, power);
357	return 0;
358}
359
360static struct thermal_cooling_device_ops devfreq_cooling_ops = {
361	.get_max_state = devfreq_cooling_get_max_state,
362	.get_cur_state = devfreq_cooling_get_cur_state,
363	.set_cur_state = devfreq_cooling_set_cur_state,
364};
365
366/**
367 * devfreq_cooling_gen_tables() - Generate power and freq tables.
368 * @dfc: Pointer to devfreq cooling device.
369 *
370 * Generate power and frequency tables: the power table hold the
371 * device's maximum power usage at each cooling state (OPP).  The
372 * static and dynamic power using the appropriate voltage and
373 * frequency for the state, is acquired from the struct
374 * devfreq_cooling_power, and summed to make the maximum power draw.
375 *
376 * The frequency table holds the frequencies in descending order.
377 * That way its indexed by cooling device state.
378 *
379 * The tables are malloced, and pointers put in dfc.  They must be
380 * freed when unregistering the devfreq cooling device.
381 *
382 * Return: 0 on success, negative error code on failure.
383 */
384static int devfreq_cooling_gen_tables(struct devfreq_cooling_device *dfc)
385{
386	struct devfreq *df = dfc->devfreq;
387	struct device *dev = df->dev.parent;
388	int ret, num_opps;
389	unsigned long freq;
390	u32 *power_table = NULL;
391	u32 *freq_table;
392	int i;
393
394	num_opps = dev_pm_opp_get_opp_count(dev);
395
396	if (dfc->power_ops) {
397		power_table = kcalloc(num_opps, sizeof(*power_table),
398				      GFP_KERNEL);
399		if (!power_table)
400			return -ENOMEM;
401	}
402
403	freq_table = kcalloc(num_opps, sizeof(*freq_table),
404			     GFP_KERNEL);
405	if (!freq_table) {
406		ret = -ENOMEM;
407		goto free_power_table;
408	}
409
410	for (i = 0, freq = ULONG_MAX; i < num_opps; i++, freq--) {
411		unsigned long power_dyn, voltage;
412		struct dev_pm_opp *opp;
413
414		rcu_read_lock();
415
416		opp = dev_pm_opp_find_freq_floor(dev, &freq);
417		if (IS_ERR(opp)) {
418			rcu_read_unlock();
419			ret = PTR_ERR(opp);
420			goto free_tables;
421		}
422
423		voltage = dev_pm_opp_get_voltage(opp) / 1000; /* mV */
424
425		rcu_read_unlock();
426
427		if (dfc->power_ops) {
428			power_dyn = get_dynamic_power(dfc, freq, voltage);
 
 
 
429
430			dev_dbg(dev, "Dynamic power table: %lu MHz @ %lu mV: %lu = %lu mW\n",
431				freq / 1000000, voltage, power_dyn, power_dyn);
432
433			power_table[i] = power_dyn;
434		}
435
436		freq_table[i] = freq;
437	}
438
439	if (dfc->power_ops)
440		dfc->power_table = power_table;
441
442	dfc->freq_table = freq_table;
443	dfc->freq_table_size = num_opps;
444
445	return 0;
446
447free_tables:
448	kfree(freq_table);
449free_power_table:
450	kfree(power_table);
451
452	return ret;
453}
454
455/**
456 * of_devfreq_cooling_register_power() - Register devfreq cooling device,
457 *                                      with OF and power information.
458 * @np:	Pointer to OF device_node.
459 * @df:	Pointer to devfreq device.
460 * @dfc_power:	Pointer to devfreq_cooling_power.
461 *
462 * Register a devfreq cooling device.  The available OPPs must be
463 * registered on the device.
464 *
465 * If @dfc_power is provided, the cooling device is registered with the
466 * power extensions.  For the power extensions to work correctly,
467 * devfreq should use the simple_ondemand governor, other governors
468 * are not currently supported.
469 */
470struct thermal_cooling_device *
471of_devfreq_cooling_register_power(struct device_node *np, struct devfreq *df,
472				  struct devfreq_cooling_power *dfc_power)
473{
474	struct thermal_cooling_device *cdev;
475	struct devfreq_cooling_device *dfc;
476	char dev_name[THERMAL_NAME_LENGTH];
477	int err;
478
479	dfc = kzalloc(sizeof(*dfc), GFP_KERNEL);
480	if (!dfc)
481		return ERR_PTR(-ENOMEM);
482
483	dfc->devfreq = df;
484
485	if (dfc_power) {
486		dfc->power_ops = dfc_power;
487
488		devfreq_cooling_ops.get_requested_power =
489			devfreq_cooling_get_requested_power;
490		devfreq_cooling_ops.state2power = devfreq_cooling_state2power;
491		devfreq_cooling_ops.power2state = devfreq_cooling_power2state;
492	}
493
494	err = devfreq_cooling_gen_tables(dfc);
495	if (err)
496		goto free_dfc;
497
498	err = get_idr(&devfreq_idr, &dfc->id);
499	if (err)
 
 
500		goto free_tables;
501
 
 
 
 
 
502	snprintf(dev_name, sizeof(dev_name), "thermal-devfreq-%d", dfc->id);
503
504	cdev = thermal_of_cooling_device_register(np, dev_name, dfc,
505						  &devfreq_cooling_ops);
506	if (IS_ERR(cdev)) {
507		err = PTR_ERR(cdev);
508		dev_err(df->dev.parent,
509			"Failed to register devfreq cooling device (%d)\n",
510			err);
511		goto release_idr;
512	}
513
514	dfc->cdev = cdev;
515
516	return cdev;
517
518release_idr:
519	release_idr(&devfreq_idr, dfc->id);
 
 
 
 
520free_tables:
521	kfree(dfc->power_table);
522	kfree(dfc->freq_table);
523free_dfc:
524	kfree(dfc);
525
526	return ERR_PTR(err);
527}
528EXPORT_SYMBOL_GPL(of_devfreq_cooling_register_power);
529
530/**
531 * of_devfreq_cooling_register() - Register devfreq cooling device,
532 *                                with OF information.
533 * @np: Pointer to OF device_node.
534 * @df: Pointer to devfreq device.
535 */
536struct thermal_cooling_device *
537of_devfreq_cooling_register(struct device_node *np, struct devfreq *df)
538{
539	return of_devfreq_cooling_register_power(np, df, NULL);
540}
541EXPORT_SYMBOL_GPL(of_devfreq_cooling_register);
542
543/**
544 * devfreq_cooling_register() - Register devfreq cooling device.
545 * @df: Pointer to devfreq device.
546 */
547struct thermal_cooling_device *devfreq_cooling_register(struct devfreq *df)
548{
549	return of_devfreq_cooling_register(NULL, df);
550}
551EXPORT_SYMBOL_GPL(devfreq_cooling_register);
552
553/**
554 * devfreq_cooling_unregister() - Unregister devfreq cooling device.
555 * @dfc: Pointer to devfreq cooling device to unregister.
556 */
557void devfreq_cooling_unregister(struct thermal_cooling_device *cdev)
558{
559	struct devfreq_cooling_device *dfc;
560
561	if (!cdev)
562		return;
563
564	dfc = cdev->devdata;
565
566	thermal_cooling_device_unregister(dfc->cdev);
567	release_idr(&devfreq_idr, dfc->id);
 
568	kfree(dfc->power_table);
569	kfree(dfc->freq_table);
570
571	kfree(dfc);
572}
573EXPORT_SYMBOL_GPL(devfreq_cooling_unregister);