Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Copyright (c) International Business Machines Corp., 2006
4 *
5 * Author: Artem Bityutskiy (Битюцкий Артём)
6 */
7
8/* This file mostly implements UBI kernel API functions */
9
10#include <linux/module.h>
11#include <linux/err.h>
12#include <linux/slab.h>
13#include <linux/namei.h>
14#include <linux/fs.h>
15#include <asm/div64.h>
16#include "ubi.h"
17
18/**
19 * ubi_do_get_device_info - get information about UBI device.
20 * @ubi: UBI device description object
21 * @di: the information is stored here
22 *
23 * This function is the same as 'ubi_get_device_info()', but it assumes the UBI
24 * device is locked and cannot disappear.
25 */
26void ubi_do_get_device_info(struct ubi_device *ubi, struct ubi_device_info *di)
27{
28 di->ubi_num = ubi->ubi_num;
29 di->leb_size = ubi->leb_size;
30 di->leb_start = ubi->leb_start;
31 di->min_io_size = ubi->min_io_size;
32 di->max_write_size = ubi->max_write_size;
33 di->ro_mode = ubi->ro_mode;
34 di->cdev = ubi->cdev.dev;
35}
36EXPORT_SYMBOL_GPL(ubi_do_get_device_info);
37
38/**
39 * ubi_get_device_info - get information about UBI device.
40 * @ubi_num: UBI device number
41 * @di: the information is stored here
42 *
43 * This function returns %0 in case of success, %-EINVAL if the UBI device
44 * number is invalid, and %-ENODEV if there is no such UBI device.
45 */
46int ubi_get_device_info(int ubi_num, struct ubi_device_info *di)
47{
48 struct ubi_device *ubi;
49
50 if (ubi_num < 0 || ubi_num >= UBI_MAX_DEVICES)
51 return -EINVAL;
52 ubi = ubi_get_device(ubi_num);
53 if (!ubi)
54 return -ENODEV;
55 ubi_do_get_device_info(ubi, di);
56 ubi_put_device(ubi);
57 return 0;
58}
59EXPORT_SYMBOL_GPL(ubi_get_device_info);
60
61/**
62 * ubi_do_get_volume_info - get information about UBI volume.
63 * @ubi: UBI device description object
64 * @vol: volume description object
65 * @vi: the information is stored here
66 */
67void ubi_do_get_volume_info(struct ubi_device *ubi, struct ubi_volume *vol,
68 struct ubi_volume_info *vi)
69{
70 vi->vol_id = vol->vol_id;
71 vi->ubi_num = ubi->ubi_num;
72 vi->size = vol->reserved_pebs;
73 vi->used_bytes = vol->used_bytes;
74 vi->vol_type = vol->vol_type;
75 vi->corrupted = vol->corrupted;
76 vi->upd_marker = vol->upd_marker;
77 vi->alignment = vol->alignment;
78 vi->usable_leb_size = vol->usable_leb_size;
79 vi->name_len = vol->name_len;
80 vi->name = vol->name;
81 vi->cdev = vol->cdev.dev;
82}
83
84/**
85 * ubi_get_volume_info - get information about UBI volume.
86 * @desc: volume descriptor
87 * @vi: the information is stored here
88 */
89void ubi_get_volume_info(struct ubi_volume_desc *desc,
90 struct ubi_volume_info *vi)
91{
92 ubi_do_get_volume_info(desc->vol->ubi, desc->vol, vi);
93}
94EXPORT_SYMBOL_GPL(ubi_get_volume_info);
95
96/**
97 * ubi_open_volume - open UBI volume.
98 * @ubi_num: UBI device number
99 * @vol_id: volume ID
100 * @mode: open mode
101 *
102 * The @mode parameter specifies if the volume should be opened in read-only
103 * mode, read-write mode, or exclusive mode. The exclusive mode guarantees that
104 * nobody else will be able to open this volume. UBI allows to have many volume
105 * readers and one writer at a time.
106 *
107 * If a static volume is being opened for the first time since boot, it will be
108 * checked by this function, which means it will be fully read and the CRC
109 * checksum of each logical eraseblock will be checked.
110 *
111 * This function returns volume descriptor in case of success and a negative
112 * error code in case of failure.
113 */
114struct ubi_volume_desc *ubi_open_volume(int ubi_num, int vol_id, int mode)
115{
116 int err;
117 struct ubi_volume_desc *desc;
118 struct ubi_device *ubi;
119 struct ubi_volume *vol;
120
121 dbg_gen("open device %d, volume %d, mode %d", ubi_num, vol_id, mode);
122
123 if (ubi_num < 0 || ubi_num >= UBI_MAX_DEVICES)
124 return ERR_PTR(-EINVAL);
125
126 if (mode != UBI_READONLY && mode != UBI_READWRITE &&
127 mode != UBI_EXCLUSIVE && mode != UBI_METAONLY)
128 return ERR_PTR(-EINVAL);
129
130 /*
131 * First of all, we have to get the UBI device to prevent its removal.
132 */
133 ubi = ubi_get_device(ubi_num);
134 if (!ubi)
135 return ERR_PTR(-ENODEV);
136
137 if (vol_id < 0 || vol_id >= ubi->vtbl_slots) {
138 err = -EINVAL;
139 goto out_put_ubi;
140 }
141
142 desc = kmalloc(sizeof(struct ubi_volume_desc), GFP_KERNEL);
143 if (!desc) {
144 err = -ENOMEM;
145 goto out_put_ubi;
146 }
147
148 err = -ENODEV;
149 if (!try_module_get(THIS_MODULE))
150 goto out_free;
151
152 spin_lock(&ubi->volumes_lock);
153 vol = ubi->volumes[vol_id];
154 if (!vol)
155 goto out_unlock;
156
157 err = -EBUSY;
158 switch (mode) {
159 case UBI_READONLY:
160 if (vol->exclusive)
161 goto out_unlock;
162 vol->readers += 1;
163 break;
164
165 case UBI_READWRITE:
166 if (vol->exclusive || vol->writers > 0)
167 goto out_unlock;
168 vol->writers += 1;
169 break;
170
171 case UBI_EXCLUSIVE:
172 if (vol->exclusive || vol->writers || vol->readers ||
173 vol->metaonly)
174 goto out_unlock;
175 vol->exclusive = 1;
176 break;
177
178 case UBI_METAONLY:
179 if (vol->metaonly || vol->exclusive)
180 goto out_unlock;
181 vol->metaonly = 1;
182 break;
183 }
184 get_device(&vol->dev);
185 vol->ref_count += 1;
186 spin_unlock(&ubi->volumes_lock);
187
188 desc->vol = vol;
189 desc->mode = mode;
190
191 mutex_lock(&ubi->ckvol_mutex);
192 if (!vol->checked && !vol->skip_check) {
193 /* This is the first open - check the volume */
194 err = ubi_check_volume(ubi, vol_id);
195 if (err < 0) {
196 mutex_unlock(&ubi->ckvol_mutex);
197 ubi_close_volume(desc);
198 return ERR_PTR(err);
199 }
200 if (err == 1) {
201 ubi_warn(ubi, "volume %d on UBI device %d is corrupted",
202 vol_id, ubi->ubi_num);
203 vol->corrupted = 1;
204 }
205 vol->checked = 1;
206 }
207 mutex_unlock(&ubi->ckvol_mutex);
208
209 return desc;
210
211out_unlock:
212 spin_unlock(&ubi->volumes_lock);
213 module_put(THIS_MODULE);
214out_free:
215 kfree(desc);
216out_put_ubi:
217 ubi_err(ubi, "cannot open device %d, volume %d, error %d",
218 ubi_num, vol_id, err);
219 ubi_put_device(ubi);
220 return ERR_PTR(err);
221}
222EXPORT_SYMBOL_GPL(ubi_open_volume);
223
224/**
225 * ubi_open_volume_nm - open UBI volume by name.
226 * @ubi_num: UBI device number
227 * @name: volume name
228 * @mode: open mode
229 *
230 * This function is similar to 'ubi_open_volume()', but opens a volume by name.
231 */
232struct ubi_volume_desc *ubi_open_volume_nm(int ubi_num, const char *name,
233 int mode)
234{
235 int i, vol_id = -1, len;
236 struct ubi_device *ubi;
237 struct ubi_volume_desc *ret;
238
239 dbg_gen("open device %d, volume %s, mode %d", ubi_num, name, mode);
240
241 if (!name)
242 return ERR_PTR(-EINVAL);
243
244 len = strnlen(name, UBI_VOL_NAME_MAX + 1);
245 if (len > UBI_VOL_NAME_MAX)
246 return ERR_PTR(-EINVAL);
247
248 if (ubi_num < 0 || ubi_num >= UBI_MAX_DEVICES)
249 return ERR_PTR(-EINVAL);
250
251 ubi = ubi_get_device(ubi_num);
252 if (!ubi)
253 return ERR_PTR(-ENODEV);
254
255 spin_lock(&ubi->volumes_lock);
256 /* Walk all volumes of this UBI device */
257 for (i = 0; i < ubi->vtbl_slots; i++) {
258 struct ubi_volume *vol = ubi->volumes[i];
259
260 if (vol && len == vol->name_len && !strcmp(name, vol->name)) {
261 vol_id = i;
262 break;
263 }
264 }
265 spin_unlock(&ubi->volumes_lock);
266
267 if (vol_id >= 0)
268 ret = ubi_open_volume(ubi_num, vol_id, mode);
269 else
270 ret = ERR_PTR(-ENODEV);
271
272 /*
273 * We should put the UBI device even in case of success, because
274 * 'ubi_open_volume()' took a reference as well.
275 */
276 ubi_put_device(ubi);
277 return ret;
278}
279EXPORT_SYMBOL_GPL(ubi_open_volume_nm);
280
281/**
282 * ubi_open_volume_path - open UBI volume by its character device node path.
283 * @pathname: volume character device node path
284 * @mode: open mode
285 *
286 * This function is similar to 'ubi_open_volume()', but opens a volume the path
287 * to its character device node.
288 */
289struct ubi_volume_desc *ubi_open_volume_path(const char *pathname, int mode)
290{
291 int error, ubi_num, vol_id;
292 struct path path;
293 struct kstat stat;
294
295 dbg_gen("open volume %s, mode %d", pathname, mode);
296
297 if (!pathname || !*pathname)
298 return ERR_PTR(-EINVAL);
299
300 error = kern_path(pathname, LOOKUP_FOLLOW, &path);
301 if (error)
302 return ERR_PTR(error);
303
304 error = vfs_getattr(&path, &stat, STATX_TYPE, AT_STATX_SYNC_AS_STAT);
305 path_put(&path);
306 if (error)
307 return ERR_PTR(error);
308
309 if (!S_ISCHR(stat.mode))
310 return ERR_PTR(-EINVAL);
311
312 ubi_num = ubi_major2num(MAJOR(stat.rdev));
313 vol_id = MINOR(stat.rdev) - 1;
314
315 if (vol_id >= 0 && ubi_num >= 0)
316 return ubi_open_volume(ubi_num, vol_id, mode);
317 return ERR_PTR(-ENODEV);
318}
319EXPORT_SYMBOL_GPL(ubi_open_volume_path);
320
321/**
322 * ubi_close_volume - close UBI volume.
323 * @desc: volume descriptor
324 */
325void ubi_close_volume(struct ubi_volume_desc *desc)
326{
327 struct ubi_volume *vol = desc->vol;
328 struct ubi_device *ubi = vol->ubi;
329
330 dbg_gen("close device %d, volume %d, mode %d",
331 ubi->ubi_num, vol->vol_id, desc->mode);
332
333 spin_lock(&ubi->volumes_lock);
334 switch (desc->mode) {
335 case UBI_READONLY:
336 vol->readers -= 1;
337 break;
338 case UBI_READWRITE:
339 vol->writers -= 1;
340 break;
341 case UBI_EXCLUSIVE:
342 vol->exclusive = 0;
343 break;
344 case UBI_METAONLY:
345 vol->metaonly = 0;
346 break;
347 }
348 vol->ref_count -= 1;
349 spin_unlock(&ubi->volumes_lock);
350
351 kfree(desc);
352 put_device(&vol->dev);
353 ubi_put_device(ubi);
354 module_put(THIS_MODULE);
355}
356EXPORT_SYMBOL_GPL(ubi_close_volume);
357
358/**
359 * leb_read_sanity_check - does sanity checks on read requests.
360 * @desc: volume descriptor
361 * @lnum: logical eraseblock number to read from
362 * @offset: offset within the logical eraseblock to read from
363 * @len: how many bytes to read
364 *
365 * This function is used by ubi_leb_read() and ubi_leb_read_sg()
366 * to perform sanity checks.
367 */
368static int leb_read_sanity_check(struct ubi_volume_desc *desc, int lnum,
369 int offset, int len)
370{
371 struct ubi_volume *vol = desc->vol;
372 struct ubi_device *ubi = vol->ubi;
373 int vol_id = vol->vol_id;
374
375 if (vol_id < 0 || vol_id >= ubi->vtbl_slots || lnum < 0 ||
376 lnum >= vol->used_ebs || offset < 0 || len < 0 ||
377 offset + len > vol->usable_leb_size)
378 return -EINVAL;
379
380 if (vol->vol_type == UBI_STATIC_VOLUME) {
381 if (vol->used_ebs == 0)
382 /* Empty static UBI volume */
383 return 0;
384 if (lnum == vol->used_ebs - 1 &&
385 offset + len > vol->last_eb_bytes)
386 return -EINVAL;
387 }
388
389 if (vol->upd_marker)
390 return -EBADF;
391
392 return 0;
393}
394
395/**
396 * ubi_leb_read - read data.
397 * @desc: volume descriptor
398 * @lnum: logical eraseblock number to read from
399 * @buf: buffer where to store the read data
400 * @offset: offset within the logical eraseblock to read from
401 * @len: how many bytes to read
402 * @check: whether UBI has to check the read data's CRC or not.
403 *
404 * This function reads data from offset @offset of logical eraseblock @lnum and
405 * stores the data at @buf. When reading from static volumes, @check specifies
406 * whether the data has to be checked or not. If yes, the whole logical
407 * eraseblock will be read and its CRC checksum will be checked (i.e., the CRC
408 * checksum is per-eraseblock). So checking may substantially slow down the
409 * read speed. The @check argument is ignored for dynamic volumes.
410 *
411 * In case of success, this function returns zero. In case of failure, this
412 * function returns a negative error code.
413 *
414 * %-EBADMSG error code is returned:
415 * o for both static and dynamic volumes if MTD driver has detected a data
416 * integrity problem (unrecoverable ECC checksum mismatch in case of NAND);
417 * o for static volumes in case of data CRC mismatch.
418 *
419 * If the volume is damaged because of an interrupted update this function just
420 * returns immediately with %-EBADF error code.
421 */
422int ubi_leb_read(struct ubi_volume_desc *desc, int lnum, char *buf, int offset,
423 int len, int check)
424{
425 struct ubi_volume *vol = desc->vol;
426 struct ubi_device *ubi = vol->ubi;
427 int err, vol_id = vol->vol_id;
428
429 dbg_gen("read %d bytes from LEB %d:%d:%d", len, vol_id, lnum, offset);
430
431 err = leb_read_sanity_check(desc, lnum, offset, len);
432 if (err < 0)
433 return err;
434
435 if (len == 0)
436 return 0;
437
438 err = ubi_eba_read_leb(ubi, vol, lnum, buf, offset, len, check);
439 if (err && mtd_is_eccerr(err) && vol->vol_type == UBI_STATIC_VOLUME) {
440 ubi_warn(ubi, "mark volume %d as corrupted", vol_id);
441 vol->corrupted = 1;
442 }
443
444 return err;
445}
446EXPORT_SYMBOL_GPL(ubi_leb_read);
447
448
449/**
450 * ubi_leb_read_sg - read data into a scatter gather list.
451 * @desc: volume descriptor
452 * @lnum: logical eraseblock number to read from
453 * @buf: buffer where to store the read data
454 * @offset: offset within the logical eraseblock to read from
455 * @len: how many bytes to read
456 * @check: whether UBI has to check the read data's CRC or not.
457 *
458 * This function works exactly like ubi_leb_read_sg(). But instead of
459 * storing the read data into a buffer it writes to an UBI scatter gather
460 * list.
461 */
462int ubi_leb_read_sg(struct ubi_volume_desc *desc, int lnum, struct ubi_sgl *sgl,
463 int offset, int len, int check)
464{
465 struct ubi_volume *vol = desc->vol;
466 struct ubi_device *ubi = vol->ubi;
467 int err, vol_id = vol->vol_id;
468
469 dbg_gen("read %d bytes from LEB %d:%d:%d", len, vol_id, lnum, offset);
470
471 err = leb_read_sanity_check(desc, lnum, offset, len);
472 if (err < 0)
473 return err;
474
475 if (len == 0)
476 return 0;
477
478 err = ubi_eba_read_leb_sg(ubi, vol, sgl, lnum, offset, len, check);
479 if (err && mtd_is_eccerr(err) && vol->vol_type == UBI_STATIC_VOLUME) {
480 ubi_warn(ubi, "mark volume %d as corrupted", vol_id);
481 vol->corrupted = 1;
482 }
483
484 return err;
485}
486EXPORT_SYMBOL_GPL(ubi_leb_read_sg);
487
488/**
489 * ubi_leb_write - write data.
490 * @desc: volume descriptor
491 * @lnum: logical eraseblock number to write to
492 * @buf: data to write
493 * @offset: offset within the logical eraseblock where to write
494 * @len: how many bytes to write
495 *
496 * This function writes @len bytes of data from @buf to offset @offset of
497 * logical eraseblock @lnum.
498 *
499 * This function takes care of physical eraseblock write failures. If write to
500 * the physical eraseblock write operation fails, the logical eraseblock is
501 * re-mapped to another physical eraseblock, the data is recovered, and the
502 * write finishes. UBI has a pool of reserved physical eraseblocks for this.
503 *
504 * If all the data were successfully written, zero is returned. If an error
505 * occurred and UBI has not been able to recover from it, this function returns
506 * a negative error code. Note, in case of an error, it is possible that
507 * something was still written to the flash media, but that may be some
508 * garbage.
509 *
510 * If the volume is damaged because of an interrupted update this function just
511 * returns immediately with %-EBADF code.
512 */
513int ubi_leb_write(struct ubi_volume_desc *desc, int lnum, const void *buf,
514 int offset, int len)
515{
516 struct ubi_volume *vol = desc->vol;
517 struct ubi_device *ubi = vol->ubi;
518 int vol_id = vol->vol_id;
519
520 dbg_gen("write %d bytes to LEB %d:%d:%d", len, vol_id, lnum, offset);
521
522 if (vol_id < 0 || vol_id >= ubi->vtbl_slots)
523 return -EINVAL;
524
525 if (desc->mode == UBI_READONLY || vol->vol_type == UBI_STATIC_VOLUME)
526 return -EROFS;
527
528 if (!ubi_leb_valid(vol, lnum) || offset < 0 || len < 0 ||
529 offset + len > vol->usable_leb_size ||
530 offset & (ubi->min_io_size - 1) || len & (ubi->min_io_size - 1))
531 return -EINVAL;
532
533 if (vol->upd_marker)
534 return -EBADF;
535
536 if (len == 0)
537 return 0;
538
539 return ubi_eba_write_leb(ubi, vol, lnum, buf, offset, len);
540}
541EXPORT_SYMBOL_GPL(ubi_leb_write);
542
543/*
544 * ubi_leb_change - change logical eraseblock atomically.
545 * @desc: volume descriptor
546 * @lnum: logical eraseblock number to change
547 * @buf: data to write
548 * @len: how many bytes to write
549 *
550 * This function changes the contents of a logical eraseblock atomically. @buf
551 * has to contain new logical eraseblock data, and @len - the length of the
552 * data, which has to be aligned. The length may be shorter than the logical
553 * eraseblock size, ant the logical eraseblock may be appended to more times
554 * later on. This function guarantees that in case of an unclean reboot the old
555 * contents is preserved. Returns zero in case of success and a negative error
556 * code in case of failure.
557 */
558int ubi_leb_change(struct ubi_volume_desc *desc, int lnum, const void *buf,
559 int len)
560{
561 struct ubi_volume *vol = desc->vol;
562 struct ubi_device *ubi = vol->ubi;
563 int vol_id = vol->vol_id;
564
565 dbg_gen("atomically write %d bytes to LEB %d:%d", len, vol_id, lnum);
566
567 if (vol_id < 0 || vol_id >= ubi->vtbl_slots)
568 return -EINVAL;
569
570 if (desc->mode == UBI_READONLY || vol->vol_type == UBI_STATIC_VOLUME)
571 return -EROFS;
572
573 if (!ubi_leb_valid(vol, lnum) || len < 0 ||
574 len > vol->usable_leb_size || len & (ubi->min_io_size - 1))
575 return -EINVAL;
576
577 if (vol->upd_marker)
578 return -EBADF;
579
580 if (len == 0)
581 return 0;
582
583 return ubi_eba_atomic_leb_change(ubi, vol, lnum, buf, len);
584}
585EXPORT_SYMBOL_GPL(ubi_leb_change);
586
587/**
588 * ubi_leb_erase - erase logical eraseblock.
589 * @desc: volume descriptor
590 * @lnum: logical eraseblock number
591 *
592 * This function un-maps logical eraseblock @lnum and synchronously erases the
593 * correspondent physical eraseblock. Returns zero in case of success and a
594 * negative error code in case of failure.
595 *
596 * If the volume is damaged because of an interrupted update this function just
597 * returns immediately with %-EBADF code.
598 */
599int ubi_leb_erase(struct ubi_volume_desc *desc, int lnum)
600{
601 struct ubi_volume *vol = desc->vol;
602 struct ubi_device *ubi = vol->ubi;
603 int err;
604
605 dbg_gen("erase LEB %d:%d", vol->vol_id, lnum);
606
607 if (desc->mode == UBI_READONLY || vol->vol_type == UBI_STATIC_VOLUME)
608 return -EROFS;
609
610 if (!ubi_leb_valid(vol, lnum))
611 return -EINVAL;
612
613 if (vol->upd_marker)
614 return -EBADF;
615
616 err = ubi_eba_unmap_leb(ubi, vol, lnum);
617 if (err)
618 return err;
619
620 return ubi_wl_flush(ubi, vol->vol_id, lnum);
621}
622EXPORT_SYMBOL_GPL(ubi_leb_erase);
623
624/**
625 * ubi_leb_unmap - un-map logical eraseblock.
626 * @desc: volume descriptor
627 * @lnum: logical eraseblock number
628 *
629 * This function un-maps logical eraseblock @lnum and schedules the
630 * corresponding physical eraseblock for erasure, so that it will eventually be
631 * physically erased in background. This operation is much faster than the
632 * erase operation.
633 *
634 * Unlike erase, the un-map operation does not guarantee that the logical
635 * eraseblock will contain all 0xFF bytes when UBI is initialized again. For
636 * example, if several logical eraseblocks are un-mapped, and an unclean reboot
637 * happens after this, the logical eraseblocks will not necessarily be
638 * un-mapped again when this MTD device is attached. They may actually be
639 * mapped to the same physical eraseblocks again. So, this function has to be
640 * used with care.
641 *
642 * In other words, when un-mapping a logical eraseblock, UBI does not store
643 * any information about this on the flash media, it just marks the logical
644 * eraseblock as "un-mapped" in RAM. If UBI is detached before the physical
645 * eraseblock is physically erased, it will be mapped again to the same logical
646 * eraseblock when the MTD device is attached again.
647 *
648 * The main and obvious use-case of this function is when the contents of a
649 * logical eraseblock has to be re-written. Then it is much more efficient to
650 * first un-map it, then write new data, rather than first erase it, then write
651 * new data. Note, once new data has been written to the logical eraseblock,
652 * UBI guarantees that the old contents has gone forever. In other words, if an
653 * unclean reboot happens after the logical eraseblock has been un-mapped and
654 * then written to, it will contain the last written data.
655 *
656 * This function returns zero in case of success and a negative error code in
657 * case of failure. If the volume is damaged because of an interrupted update
658 * this function just returns immediately with %-EBADF code.
659 */
660int ubi_leb_unmap(struct ubi_volume_desc *desc, int lnum)
661{
662 struct ubi_volume *vol = desc->vol;
663 struct ubi_device *ubi = vol->ubi;
664
665 dbg_gen("unmap LEB %d:%d", vol->vol_id, lnum);
666
667 if (desc->mode == UBI_READONLY || vol->vol_type == UBI_STATIC_VOLUME)
668 return -EROFS;
669
670 if (!ubi_leb_valid(vol, lnum))
671 return -EINVAL;
672
673 if (vol->upd_marker)
674 return -EBADF;
675
676 return ubi_eba_unmap_leb(ubi, vol, lnum);
677}
678EXPORT_SYMBOL_GPL(ubi_leb_unmap);
679
680/**
681 * ubi_leb_map - map logical eraseblock to a physical eraseblock.
682 * @desc: volume descriptor
683 * @lnum: logical eraseblock number
684 *
685 * This function maps an un-mapped logical eraseblock @lnum to a physical
686 * eraseblock. This means, that after a successful invocation of this
687 * function the logical eraseblock @lnum will be empty (contain only %0xFF
688 * bytes) and be mapped to a physical eraseblock, even if an unclean reboot
689 * happens.
690 *
691 * This function returns zero in case of success, %-EBADF if the volume is
692 * damaged because of an interrupted update, %-EBADMSG if the logical
693 * eraseblock is already mapped, and other negative error codes in case of
694 * other failures.
695 */
696int ubi_leb_map(struct ubi_volume_desc *desc, int lnum)
697{
698 struct ubi_volume *vol = desc->vol;
699 struct ubi_device *ubi = vol->ubi;
700
701 dbg_gen("map LEB %d:%d", vol->vol_id, lnum);
702
703 if (desc->mode == UBI_READONLY || vol->vol_type == UBI_STATIC_VOLUME)
704 return -EROFS;
705
706 if (!ubi_leb_valid(vol, lnum))
707 return -EINVAL;
708
709 if (vol->upd_marker)
710 return -EBADF;
711
712 if (ubi_eba_is_mapped(vol, lnum))
713 return -EBADMSG;
714
715 return ubi_eba_write_leb(ubi, vol, lnum, NULL, 0, 0);
716}
717EXPORT_SYMBOL_GPL(ubi_leb_map);
718
719/**
720 * ubi_is_mapped - check if logical eraseblock is mapped.
721 * @desc: volume descriptor
722 * @lnum: logical eraseblock number
723 *
724 * This function checks if logical eraseblock @lnum is mapped to a physical
725 * eraseblock. If a logical eraseblock is un-mapped, this does not necessarily
726 * mean it will still be un-mapped after the UBI device is re-attached. The
727 * logical eraseblock may become mapped to the physical eraseblock it was last
728 * mapped to.
729 *
730 * This function returns %1 if the LEB is mapped, %0 if not, and a negative
731 * error code in case of failure. If the volume is damaged because of an
732 * interrupted update this function just returns immediately with %-EBADF error
733 * code.
734 */
735int ubi_is_mapped(struct ubi_volume_desc *desc, int lnum)
736{
737 struct ubi_volume *vol = desc->vol;
738
739 dbg_gen("test LEB %d:%d", vol->vol_id, lnum);
740
741 if (!ubi_leb_valid(vol, lnum))
742 return -EINVAL;
743
744 if (vol->upd_marker)
745 return -EBADF;
746
747 return ubi_eba_is_mapped(vol, lnum);
748}
749EXPORT_SYMBOL_GPL(ubi_is_mapped);
750
751/**
752 * ubi_sync - synchronize UBI device buffers.
753 * @ubi_num: UBI device to synchronize
754 *
755 * The underlying MTD device may cache data in hardware or in software. This
756 * function ensures the caches are flushed. Returns zero in case of success and
757 * a negative error code in case of failure.
758 */
759int ubi_sync(int ubi_num)
760{
761 struct ubi_device *ubi;
762
763 ubi = ubi_get_device(ubi_num);
764 if (!ubi)
765 return -ENODEV;
766
767 mtd_sync(ubi->mtd);
768 ubi_put_device(ubi);
769 return 0;
770}
771EXPORT_SYMBOL_GPL(ubi_sync);
772
773/**
774 * ubi_flush - flush UBI work queue.
775 * @ubi_num: UBI device to flush work queue
776 * @vol_id: volume id to flush for
777 * @lnum: logical eraseblock number to flush for
778 *
779 * This function executes all pending works for a particular volume id / logical
780 * eraseblock number pair. If either value is set to %UBI_ALL, then it acts as
781 * a wildcard for all of the corresponding volume numbers or logical
782 * eraseblock numbers. It returns zero in case of success and a negative error
783 * code in case of failure.
784 */
785int ubi_flush(int ubi_num, int vol_id, int lnum)
786{
787 struct ubi_device *ubi;
788 int err = 0;
789
790 ubi = ubi_get_device(ubi_num);
791 if (!ubi)
792 return -ENODEV;
793
794 err = ubi_wl_flush(ubi, vol_id, lnum);
795 ubi_put_device(ubi);
796 return err;
797}
798EXPORT_SYMBOL_GPL(ubi_flush);
799
800BLOCKING_NOTIFIER_HEAD(ubi_notifiers);
801
802/**
803 * ubi_register_volume_notifier - register a volume notifier.
804 * @nb: the notifier description object
805 * @ignore_existing: if non-zero, do not send "added" notification for all
806 * already existing volumes
807 *
808 * This function registers a volume notifier, which means that
809 * 'nb->notifier_call()' will be invoked when an UBI volume is created,
810 * removed, re-sized, re-named, or updated. The first argument of the function
811 * is the notification type. The second argument is pointer to a
812 * &struct ubi_notification object which describes the notification event.
813 * Using UBI API from the volume notifier is prohibited.
814 *
815 * This function returns zero in case of success and a negative error code
816 * in case of failure.
817 */
818int ubi_register_volume_notifier(struct notifier_block *nb,
819 int ignore_existing)
820{
821 int err;
822
823 err = blocking_notifier_chain_register(&ubi_notifiers, nb);
824 if (err != 0)
825 return err;
826 if (ignore_existing)
827 return 0;
828
829 /*
830 * We are going to walk all UBI devices and all volumes, and
831 * notify the user about existing volumes by the %UBI_VOLUME_ADDED
832 * event. We have to lock the @ubi_devices_mutex to make sure UBI
833 * devices do not disappear.
834 */
835 mutex_lock(&ubi_devices_mutex);
836 ubi_enumerate_volumes(nb);
837 mutex_unlock(&ubi_devices_mutex);
838
839 return err;
840}
841EXPORT_SYMBOL_GPL(ubi_register_volume_notifier);
842
843/**
844 * ubi_unregister_volume_notifier - unregister the volume notifier.
845 * @nb: the notifier description object
846 *
847 * This function unregisters volume notifier @nm and returns zero in case of
848 * success and a negative error code in case of failure.
849 */
850int ubi_unregister_volume_notifier(struct notifier_block *nb)
851{
852 return blocking_notifier_chain_unregister(&ubi_notifiers, nb);
853}
854EXPORT_SYMBOL_GPL(ubi_unregister_volume_notifier);
1/*
2 * Copyright (c) International Business Machines Corp., 2006
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
12 * the GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17 *
18 * Author: Artem Bityutskiy (Битюцкий Артём)
19 */
20
21/* This file mostly implements UBI kernel API functions */
22
23#include <linux/module.h>
24#include <linux/err.h>
25#include <linux/slab.h>
26#include <linux/namei.h>
27#include <linux/fs.h>
28#include <asm/div64.h>
29#include "ubi.h"
30
31/**
32 * ubi_do_get_device_info - get information about UBI device.
33 * @ubi: UBI device description object
34 * @di: the information is stored here
35 *
36 * This function is the same as 'ubi_get_device_info()', but it assumes the UBI
37 * device is locked and cannot disappear.
38 */
39void ubi_do_get_device_info(struct ubi_device *ubi, struct ubi_device_info *di)
40{
41 di->ubi_num = ubi->ubi_num;
42 di->leb_size = ubi->leb_size;
43 di->leb_start = ubi->leb_start;
44 di->min_io_size = ubi->min_io_size;
45 di->max_write_size = ubi->max_write_size;
46 di->ro_mode = ubi->ro_mode;
47 di->cdev = ubi->cdev.dev;
48}
49EXPORT_SYMBOL_GPL(ubi_do_get_device_info);
50
51/**
52 * ubi_get_device_info - get information about UBI device.
53 * @ubi_num: UBI device number
54 * @di: the information is stored here
55 *
56 * This function returns %0 in case of success, %-EINVAL if the UBI device
57 * number is invalid, and %-ENODEV if there is no such UBI device.
58 */
59int ubi_get_device_info(int ubi_num, struct ubi_device_info *di)
60{
61 struct ubi_device *ubi;
62
63 if (ubi_num < 0 || ubi_num >= UBI_MAX_DEVICES)
64 return -EINVAL;
65 ubi = ubi_get_device(ubi_num);
66 if (!ubi)
67 return -ENODEV;
68 ubi_do_get_device_info(ubi, di);
69 ubi_put_device(ubi);
70 return 0;
71}
72EXPORT_SYMBOL_GPL(ubi_get_device_info);
73
74/**
75 * ubi_do_get_volume_info - get information about UBI volume.
76 * @ubi: UBI device description object
77 * @vol: volume description object
78 * @vi: the information is stored here
79 */
80void ubi_do_get_volume_info(struct ubi_device *ubi, struct ubi_volume *vol,
81 struct ubi_volume_info *vi)
82{
83 vi->vol_id = vol->vol_id;
84 vi->ubi_num = ubi->ubi_num;
85 vi->size = vol->reserved_pebs;
86 vi->used_bytes = vol->used_bytes;
87 vi->vol_type = vol->vol_type;
88 vi->corrupted = vol->corrupted;
89 vi->upd_marker = vol->upd_marker;
90 vi->alignment = vol->alignment;
91 vi->usable_leb_size = vol->usable_leb_size;
92 vi->name_len = vol->name_len;
93 vi->name = vol->name;
94 vi->cdev = vol->cdev.dev;
95}
96
97/**
98 * ubi_get_volume_info - get information about UBI volume.
99 * @desc: volume descriptor
100 * @vi: the information is stored here
101 */
102void ubi_get_volume_info(struct ubi_volume_desc *desc,
103 struct ubi_volume_info *vi)
104{
105 ubi_do_get_volume_info(desc->vol->ubi, desc->vol, vi);
106}
107EXPORT_SYMBOL_GPL(ubi_get_volume_info);
108
109/**
110 * ubi_open_volume - open UBI volume.
111 * @ubi_num: UBI device number
112 * @vol_id: volume ID
113 * @mode: open mode
114 *
115 * The @mode parameter specifies if the volume should be opened in read-only
116 * mode, read-write mode, or exclusive mode. The exclusive mode guarantees that
117 * nobody else will be able to open this volume. UBI allows to have many volume
118 * readers and one writer at a time.
119 *
120 * If a static volume is being opened for the first time since boot, it will be
121 * checked by this function, which means it will be fully read and the CRC
122 * checksum of each logical eraseblock will be checked.
123 *
124 * This function returns volume descriptor in case of success and a negative
125 * error code in case of failure.
126 */
127struct ubi_volume_desc *ubi_open_volume(int ubi_num, int vol_id, int mode)
128{
129 int err;
130 struct ubi_volume_desc *desc;
131 struct ubi_device *ubi;
132 struct ubi_volume *vol;
133
134 dbg_gen("open device %d, volume %d, mode %d", ubi_num, vol_id, mode);
135
136 if (ubi_num < 0 || ubi_num >= UBI_MAX_DEVICES)
137 return ERR_PTR(-EINVAL);
138
139 if (mode != UBI_READONLY && mode != UBI_READWRITE &&
140 mode != UBI_EXCLUSIVE && mode != UBI_METAONLY)
141 return ERR_PTR(-EINVAL);
142
143 /*
144 * First of all, we have to get the UBI device to prevent its removal.
145 */
146 ubi = ubi_get_device(ubi_num);
147 if (!ubi)
148 return ERR_PTR(-ENODEV);
149
150 if (vol_id < 0 || vol_id >= ubi->vtbl_slots) {
151 err = -EINVAL;
152 goto out_put_ubi;
153 }
154
155 desc = kmalloc(sizeof(struct ubi_volume_desc), GFP_KERNEL);
156 if (!desc) {
157 err = -ENOMEM;
158 goto out_put_ubi;
159 }
160
161 err = -ENODEV;
162 if (!try_module_get(THIS_MODULE))
163 goto out_free;
164
165 spin_lock(&ubi->volumes_lock);
166 vol = ubi->volumes[vol_id];
167 if (!vol)
168 goto out_unlock;
169
170 err = -EBUSY;
171 switch (mode) {
172 case UBI_READONLY:
173 if (vol->exclusive)
174 goto out_unlock;
175 vol->readers += 1;
176 break;
177
178 case UBI_READWRITE:
179 if (vol->exclusive || vol->writers > 0)
180 goto out_unlock;
181 vol->writers += 1;
182 break;
183
184 case UBI_EXCLUSIVE:
185 if (vol->exclusive || vol->writers || vol->readers ||
186 vol->metaonly)
187 goto out_unlock;
188 vol->exclusive = 1;
189 break;
190
191 case UBI_METAONLY:
192 if (vol->metaonly || vol->exclusive)
193 goto out_unlock;
194 vol->metaonly = 1;
195 break;
196 }
197 get_device(&vol->dev);
198 vol->ref_count += 1;
199 spin_unlock(&ubi->volumes_lock);
200
201 desc->vol = vol;
202 desc->mode = mode;
203
204 mutex_lock(&ubi->ckvol_mutex);
205 if (!vol->checked) {
206 /* This is the first open - check the volume */
207 err = ubi_check_volume(ubi, vol_id);
208 if (err < 0) {
209 mutex_unlock(&ubi->ckvol_mutex);
210 ubi_close_volume(desc);
211 return ERR_PTR(err);
212 }
213 if (err == 1) {
214 ubi_warn(ubi, "volume %d on UBI device %d is corrupted",
215 vol_id, ubi->ubi_num);
216 vol->corrupted = 1;
217 }
218 vol->checked = 1;
219 }
220 mutex_unlock(&ubi->ckvol_mutex);
221
222 return desc;
223
224out_unlock:
225 spin_unlock(&ubi->volumes_lock);
226 module_put(THIS_MODULE);
227out_free:
228 kfree(desc);
229out_put_ubi:
230 ubi_put_device(ubi);
231 ubi_err(ubi, "cannot open device %d, volume %d, error %d",
232 ubi_num, vol_id, err);
233 return ERR_PTR(err);
234}
235EXPORT_SYMBOL_GPL(ubi_open_volume);
236
237/**
238 * ubi_open_volume_nm - open UBI volume by name.
239 * @ubi_num: UBI device number
240 * @name: volume name
241 * @mode: open mode
242 *
243 * This function is similar to 'ubi_open_volume()', but opens a volume by name.
244 */
245struct ubi_volume_desc *ubi_open_volume_nm(int ubi_num, const char *name,
246 int mode)
247{
248 int i, vol_id = -1, len;
249 struct ubi_device *ubi;
250 struct ubi_volume_desc *ret;
251
252 dbg_gen("open device %d, volume %s, mode %d", ubi_num, name, mode);
253
254 if (!name)
255 return ERR_PTR(-EINVAL);
256
257 len = strnlen(name, UBI_VOL_NAME_MAX + 1);
258 if (len > UBI_VOL_NAME_MAX)
259 return ERR_PTR(-EINVAL);
260
261 if (ubi_num < 0 || ubi_num >= UBI_MAX_DEVICES)
262 return ERR_PTR(-EINVAL);
263
264 ubi = ubi_get_device(ubi_num);
265 if (!ubi)
266 return ERR_PTR(-ENODEV);
267
268 spin_lock(&ubi->volumes_lock);
269 /* Walk all volumes of this UBI device */
270 for (i = 0; i < ubi->vtbl_slots; i++) {
271 struct ubi_volume *vol = ubi->volumes[i];
272
273 if (vol && len == vol->name_len && !strcmp(name, vol->name)) {
274 vol_id = i;
275 break;
276 }
277 }
278 spin_unlock(&ubi->volumes_lock);
279
280 if (vol_id >= 0)
281 ret = ubi_open_volume(ubi_num, vol_id, mode);
282 else
283 ret = ERR_PTR(-ENODEV);
284
285 /*
286 * We should put the UBI device even in case of success, because
287 * 'ubi_open_volume()' took a reference as well.
288 */
289 ubi_put_device(ubi);
290 return ret;
291}
292EXPORT_SYMBOL_GPL(ubi_open_volume_nm);
293
294/**
295 * ubi_open_volume_path - open UBI volume by its character device node path.
296 * @pathname: volume character device node path
297 * @mode: open mode
298 *
299 * This function is similar to 'ubi_open_volume()', but opens a volume the path
300 * to its character device node.
301 */
302struct ubi_volume_desc *ubi_open_volume_path(const char *pathname, int mode)
303{
304 int error, ubi_num, vol_id, mod;
305 struct inode *inode;
306 struct path path;
307
308 dbg_gen("open volume %s, mode %d", pathname, mode);
309
310 if (!pathname || !*pathname)
311 return ERR_PTR(-EINVAL);
312
313 error = kern_path(pathname, LOOKUP_FOLLOW, &path);
314 if (error)
315 return ERR_PTR(error);
316
317 inode = d_backing_inode(path.dentry);
318 mod = inode->i_mode;
319 ubi_num = ubi_major2num(imajor(inode));
320 vol_id = iminor(inode) - 1;
321 path_put(&path);
322
323 if (!S_ISCHR(mod))
324 return ERR_PTR(-EINVAL);
325 if (vol_id >= 0 && ubi_num >= 0)
326 return ubi_open_volume(ubi_num, vol_id, mode);
327 return ERR_PTR(-ENODEV);
328}
329EXPORT_SYMBOL_GPL(ubi_open_volume_path);
330
331/**
332 * ubi_close_volume - close UBI volume.
333 * @desc: volume descriptor
334 */
335void ubi_close_volume(struct ubi_volume_desc *desc)
336{
337 struct ubi_volume *vol = desc->vol;
338 struct ubi_device *ubi = vol->ubi;
339
340 dbg_gen("close device %d, volume %d, mode %d",
341 ubi->ubi_num, vol->vol_id, desc->mode);
342
343 spin_lock(&ubi->volumes_lock);
344 switch (desc->mode) {
345 case UBI_READONLY:
346 vol->readers -= 1;
347 break;
348 case UBI_READWRITE:
349 vol->writers -= 1;
350 break;
351 case UBI_EXCLUSIVE:
352 vol->exclusive = 0;
353 break;
354 case UBI_METAONLY:
355 vol->metaonly = 0;
356 break;
357 }
358 vol->ref_count -= 1;
359 spin_unlock(&ubi->volumes_lock);
360
361 kfree(desc);
362 put_device(&vol->dev);
363 ubi_put_device(ubi);
364 module_put(THIS_MODULE);
365}
366EXPORT_SYMBOL_GPL(ubi_close_volume);
367
368/**
369 * leb_read_sanity_check - does sanity checks on read requests.
370 * @desc: volume descriptor
371 * @lnum: logical eraseblock number to read from
372 * @offset: offset within the logical eraseblock to read from
373 * @len: how many bytes to read
374 *
375 * This function is used by ubi_leb_read() and ubi_leb_read_sg()
376 * to perform sanity checks.
377 */
378static int leb_read_sanity_check(struct ubi_volume_desc *desc, int lnum,
379 int offset, int len)
380{
381 struct ubi_volume *vol = desc->vol;
382 struct ubi_device *ubi = vol->ubi;
383 int vol_id = vol->vol_id;
384
385 if (vol_id < 0 || vol_id >= ubi->vtbl_slots || lnum < 0 ||
386 lnum >= vol->used_ebs || offset < 0 || len < 0 ||
387 offset + len > vol->usable_leb_size)
388 return -EINVAL;
389
390 if (vol->vol_type == UBI_STATIC_VOLUME) {
391 if (vol->used_ebs == 0)
392 /* Empty static UBI volume */
393 return 0;
394 if (lnum == vol->used_ebs - 1 &&
395 offset + len > vol->last_eb_bytes)
396 return -EINVAL;
397 }
398
399 if (vol->upd_marker)
400 return -EBADF;
401
402 return 0;
403}
404
405/**
406 * ubi_leb_read - read data.
407 * @desc: volume descriptor
408 * @lnum: logical eraseblock number to read from
409 * @buf: buffer where to store the read data
410 * @offset: offset within the logical eraseblock to read from
411 * @len: how many bytes to read
412 * @check: whether UBI has to check the read data's CRC or not.
413 *
414 * This function reads data from offset @offset of logical eraseblock @lnum and
415 * stores the data at @buf. When reading from static volumes, @check specifies
416 * whether the data has to be checked or not. If yes, the whole logical
417 * eraseblock will be read and its CRC checksum will be checked (i.e., the CRC
418 * checksum is per-eraseblock). So checking may substantially slow down the
419 * read speed. The @check argument is ignored for dynamic volumes.
420 *
421 * In case of success, this function returns zero. In case of failure, this
422 * function returns a negative error code.
423 *
424 * %-EBADMSG error code is returned:
425 * o for both static and dynamic volumes if MTD driver has detected a data
426 * integrity problem (unrecoverable ECC checksum mismatch in case of NAND);
427 * o for static volumes in case of data CRC mismatch.
428 *
429 * If the volume is damaged because of an interrupted update this function just
430 * returns immediately with %-EBADF error code.
431 */
432int ubi_leb_read(struct ubi_volume_desc *desc, int lnum, char *buf, int offset,
433 int len, int check)
434{
435 struct ubi_volume *vol = desc->vol;
436 struct ubi_device *ubi = vol->ubi;
437 int err, vol_id = vol->vol_id;
438
439 dbg_gen("read %d bytes from LEB %d:%d:%d", len, vol_id, lnum, offset);
440
441 err = leb_read_sanity_check(desc, lnum, offset, len);
442 if (err < 0)
443 return err;
444
445 if (len == 0)
446 return 0;
447
448 err = ubi_eba_read_leb(ubi, vol, lnum, buf, offset, len, check);
449 if (err && mtd_is_eccerr(err) && vol->vol_type == UBI_STATIC_VOLUME) {
450 ubi_warn(ubi, "mark volume %d as corrupted", vol_id);
451 vol->corrupted = 1;
452 }
453
454 return err;
455}
456EXPORT_SYMBOL_GPL(ubi_leb_read);
457
458
459/**
460 * ubi_leb_read_sg - read data into a scatter gather list.
461 * @desc: volume descriptor
462 * @lnum: logical eraseblock number to read from
463 * @buf: buffer where to store the read data
464 * @offset: offset within the logical eraseblock to read from
465 * @len: how many bytes to read
466 * @check: whether UBI has to check the read data's CRC or not.
467 *
468 * This function works exactly like ubi_leb_read_sg(). But instead of
469 * storing the read data into a buffer it writes to an UBI scatter gather
470 * list.
471 */
472int ubi_leb_read_sg(struct ubi_volume_desc *desc, int lnum, struct ubi_sgl *sgl,
473 int offset, int len, int check)
474{
475 struct ubi_volume *vol = desc->vol;
476 struct ubi_device *ubi = vol->ubi;
477 int err, vol_id = vol->vol_id;
478
479 dbg_gen("read %d bytes from LEB %d:%d:%d", len, vol_id, lnum, offset);
480
481 err = leb_read_sanity_check(desc, lnum, offset, len);
482 if (err < 0)
483 return err;
484
485 if (len == 0)
486 return 0;
487
488 err = ubi_eba_read_leb_sg(ubi, vol, sgl, lnum, offset, len, check);
489 if (err && mtd_is_eccerr(err) && vol->vol_type == UBI_STATIC_VOLUME) {
490 ubi_warn(ubi, "mark volume %d as corrupted", vol_id);
491 vol->corrupted = 1;
492 }
493
494 return err;
495}
496EXPORT_SYMBOL_GPL(ubi_leb_read_sg);
497
498/**
499 * ubi_leb_write - write data.
500 * @desc: volume descriptor
501 * @lnum: logical eraseblock number to write to
502 * @buf: data to write
503 * @offset: offset within the logical eraseblock where to write
504 * @len: how many bytes to write
505 *
506 * This function writes @len bytes of data from @buf to offset @offset of
507 * logical eraseblock @lnum.
508 *
509 * This function takes care of physical eraseblock write failures. If write to
510 * the physical eraseblock write operation fails, the logical eraseblock is
511 * re-mapped to another physical eraseblock, the data is recovered, and the
512 * write finishes. UBI has a pool of reserved physical eraseblocks for this.
513 *
514 * If all the data were successfully written, zero is returned. If an error
515 * occurred and UBI has not been able to recover from it, this function returns
516 * a negative error code. Note, in case of an error, it is possible that
517 * something was still written to the flash media, but that may be some
518 * garbage.
519 *
520 * If the volume is damaged because of an interrupted update this function just
521 * returns immediately with %-EBADF code.
522 */
523int ubi_leb_write(struct ubi_volume_desc *desc, int lnum, const void *buf,
524 int offset, int len)
525{
526 struct ubi_volume *vol = desc->vol;
527 struct ubi_device *ubi = vol->ubi;
528 int vol_id = vol->vol_id;
529
530 dbg_gen("write %d bytes to LEB %d:%d:%d", len, vol_id, lnum, offset);
531
532 if (vol_id < 0 || vol_id >= ubi->vtbl_slots)
533 return -EINVAL;
534
535 if (desc->mode == UBI_READONLY || vol->vol_type == UBI_STATIC_VOLUME)
536 return -EROFS;
537
538 if (lnum < 0 || lnum >= vol->reserved_pebs || offset < 0 || len < 0 ||
539 offset + len > vol->usable_leb_size ||
540 offset & (ubi->min_io_size - 1) || len & (ubi->min_io_size - 1))
541 return -EINVAL;
542
543 if (vol->upd_marker)
544 return -EBADF;
545
546 if (len == 0)
547 return 0;
548
549 return ubi_eba_write_leb(ubi, vol, lnum, buf, offset, len);
550}
551EXPORT_SYMBOL_GPL(ubi_leb_write);
552
553/*
554 * ubi_leb_change - change logical eraseblock atomically.
555 * @desc: volume descriptor
556 * @lnum: logical eraseblock number to change
557 * @buf: data to write
558 * @len: how many bytes to write
559 *
560 * This function changes the contents of a logical eraseblock atomically. @buf
561 * has to contain new logical eraseblock data, and @len - the length of the
562 * data, which has to be aligned. The length may be shorter than the logical
563 * eraseblock size, ant the logical eraseblock may be appended to more times
564 * later on. This function guarantees that in case of an unclean reboot the old
565 * contents is preserved. Returns zero in case of success and a negative error
566 * code in case of failure.
567 */
568int ubi_leb_change(struct ubi_volume_desc *desc, int lnum, const void *buf,
569 int len)
570{
571 struct ubi_volume *vol = desc->vol;
572 struct ubi_device *ubi = vol->ubi;
573 int vol_id = vol->vol_id;
574
575 dbg_gen("atomically write %d bytes to LEB %d:%d", len, vol_id, lnum);
576
577 if (vol_id < 0 || vol_id >= ubi->vtbl_slots)
578 return -EINVAL;
579
580 if (desc->mode == UBI_READONLY || vol->vol_type == UBI_STATIC_VOLUME)
581 return -EROFS;
582
583 if (lnum < 0 || lnum >= vol->reserved_pebs || len < 0 ||
584 len > vol->usable_leb_size || len & (ubi->min_io_size - 1))
585 return -EINVAL;
586
587 if (vol->upd_marker)
588 return -EBADF;
589
590 if (len == 0)
591 return 0;
592
593 return ubi_eba_atomic_leb_change(ubi, vol, lnum, buf, len);
594}
595EXPORT_SYMBOL_GPL(ubi_leb_change);
596
597/**
598 * ubi_leb_erase - erase logical eraseblock.
599 * @desc: volume descriptor
600 * @lnum: logical eraseblock number
601 *
602 * This function un-maps logical eraseblock @lnum and synchronously erases the
603 * correspondent physical eraseblock. Returns zero in case of success and a
604 * negative error code in case of failure.
605 *
606 * If the volume is damaged because of an interrupted update this function just
607 * returns immediately with %-EBADF code.
608 */
609int ubi_leb_erase(struct ubi_volume_desc *desc, int lnum)
610{
611 struct ubi_volume *vol = desc->vol;
612 struct ubi_device *ubi = vol->ubi;
613 int err;
614
615 dbg_gen("erase LEB %d:%d", vol->vol_id, lnum);
616
617 if (desc->mode == UBI_READONLY || vol->vol_type == UBI_STATIC_VOLUME)
618 return -EROFS;
619
620 if (lnum < 0 || lnum >= vol->reserved_pebs)
621 return -EINVAL;
622
623 if (vol->upd_marker)
624 return -EBADF;
625
626 err = ubi_eba_unmap_leb(ubi, vol, lnum);
627 if (err)
628 return err;
629
630 return ubi_wl_flush(ubi, vol->vol_id, lnum);
631}
632EXPORT_SYMBOL_GPL(ubi_leb_erase);
633
634/**
635 * ubi_leb_unmap - un-map logical eraseblock.
636 * @desc: volume descriptor
637 * @lnum: logical eraseblock number
638 *
639 * This function un-maps logical eraseblock @lnum and schedules the
640 * corresponding physical eraseblock for erasure, so that it will eventually be
641 * physically erased in background. This operation is much faster than the
642 * erase operation.
643 *
644 * Unlike erase, the un-map operation does not guarantee that the logical
645 * eraseblock will contain all 0xFF bytes when UBI is initialized again. For
646 * example, if several logical eraseblocks are un-mapped, and an unclean reboot
647 * happens after this, the logical eraseblocks will not necessarily be
648 * un-mapped again when this MTD device is attached. They may actually be
649 * mapped to the same physical eraseblocks again. So, this function has to be
650 * used with care.
651 *
652 * In other words, when un-mapping a logical eraseblock, UBI does not store
653 * any information about this on the flash media, it just marks the logical
654 * eraseblock as "un-mapped" in RAM. If UBI is detached before the physical
655 * eraseblock is physically erased, it will be mapped again to the same logical
656 * eraseblock when the MTD device is attached again.
657 *
658 * The main and obvious use-case of this function is when the contents of a
659 * logical eraseblock has to be re-written. Then it is much more efficient to
660 * first un-map it, then write new data, rather than first erase it, then write
661 * new data. Note, once new data has been written to the logical eraseblock,
662 * UBI guarantees that the old contents has gone forever. In other words, if an
663 * unclean reboot happens after the logical eraseblock has been un-mapped and
664 * then written to, it will contain the last written data.
665 *
666 * This function returns zero in case of success and a negative error code in
667 * case of failure. If the volume is damaged because of an interrupted update
668 * this function just returns immediately with %-EBADF code.
669 */
670int ubi_leb_unmap(struct ubi_volume_desc *desc, int lnum)
671{
672 struct ubi_volume *vol = desc->vol;
673 struct ubi_device *ubi = vol->ubi;
674
675 dbg_gen("unmap LEB %d:%d", vol->vol_id, lnum);
676
677 if (desc->mode == UBI_READONLY || vol->vol_type == UBI_STATIC_VOLUME)
678 return -EROFS;
679
680 if (lnum < 0 || lnum >= vol->reserved_pebs)
681 return -EINVAL;
682
683 if (vol->upd_marker)
684 return -EBADF;
685
686 return ubi_eba_unmap_leb(ubi, vol, lnum);
687}
688EXPORT_SYMBOL_GPL(ubi_leb_unmap);
689
690/**
691 * ubi_leb_map - map logical eraseblock to a physical eraseblock.
692 * @desc: volume descriptor
693 * @lnum: logical eraseblock number
694 *
695 * This function maps an un-mapped logical eraseblock @lnum to a physical
696 * eraseblock. This means, that after a successful invocation of this
697 * function the logical eraseblock @lnum will be empty (contain only %0xFF
698 * bytes) and be mapped to a physical eraseblock, even if an unclean reboot
699 * happens.
700 *
701 * This function returns zero in case of success, %-EBADF if the volume is
702 * damaged because of an interrupted update, %-EBADMSG if the logical
703 * eraseblock is already mapped, and other negative error codes in case of
704 * other failures.
705 */
706int ubi_leb_map(struct ubi_volume_desc *desc, int lnum)
707{
708 struct ubi_volume *vol = desc->vol;
709 struct ubi_device *ubi = vol->ubi;
710
711 dbg_gen("unmap LEB %d:%d", vol->vol_id, lnum);
712
713 if (desc->mode == UBI_READONLY || vol->vol_type == UBI_STATIC_VOLUME)
714 return -EROFS;
715
716 if (lnum < 0 || lnum >= vol->reserved_pebs)
717 return -EINVAL;
718
719 if (vol->upd_marker)
720 return -EBADF;
721
722 if (vol->eba_tbl[lnum] >= 0)
723 return -EBADMSG;
724
725 return ubi_eba_write_leb(ubi, vol, lnum, NULL, 0, 0);
726}
727EXPORT_SYMBOL_GPL(ubi_leb_map);
728
729/**
730 * ubi_is_mapped - check if logical eraseblock is mapped.
731 * @desc: volume descriptor
732 * @lnum: logical eraseblock number
733 *
734 * This function checks if logical eraseblock @lnum is mapped to a physical
735 * eraseblock. If a logical eraseblock is un-mapped, this does not necessarily
736 * mean it will still be un-mapped after the UBI device is re-attached. The
737 * logical eraseblock may become mapped to the physical eraseblock it was last
738 * mapped to.
739 *
740 * This function returns %1 if the LEB is mapped, %0 if not, and a negative
741 * error code in case of failure. If the volume is damaged because of an
742 * interrupted update this function just returns immediately with %-EBADF error
743 * code.
744 */
745int ubi_is_mapped(struct ubi_volume_desc *desc, int lnum)
746{
747 struct ubi_volume *vol = desc->vol;
748
749 dbg_gen("test LEB %d:%d", vol->vol_id, lnum);
750
751 if (lnum < 0 || lnum >= vol->reserved_pebs)
752 return -EINVAL;
753
754 if (vol->upd_marker)
755 return -EBADF;
756
757 return vol->eba_tbl[lnum] >= 0;
758}
759EXPORT_SYMBOL_GPL(ubi_is_mapped);
760
761/**
762 * ubi_sync - synchronize UBI device buffers.
763 * @ubi_num: UBI device to synchronize
764 *
765 * The underlying MTD device may cache data in hardware or in software. This
766 * function ensures the caches are flushed. Returns zero in case of success and
767 * a negative error code in case of failure.
768 */
769int ubi_sync(int ubi_num)
770{
771 struct ubi_device *ubi;
772
773 ubi = ubi_get_device(ubi_num);
774 if (!ubi)
775 return -ENODEV;
776
777 mtd_sync(ubi->mtd);
778 ubi_put_device(ubi);
779 return 0;
780}
781EXPORT_SYMBOL_GPL(ubi_sync);
782
783/**
784 * ubi_flush - flush UBI work queue.
785 * @ubi_num: UBI device to flush work queue
786 * @vol_id: volume id to flush for
787 * @lnum: logical eraseblock number to flush for
788 *
789 * This function executes all pending works for a particular volume id / logical
790 * eraseblock number pair. If either value is set to %UBI_ALL, then it acts as
791 * a wildcard for all of the corresponding volume numbers or logical
792 * eraseblock numbers. It returns zero in case of success and a negative error
793 * code in case of failure.
794 */
795int ubi_flush(int ubi_num, int vol_id, int lnum)
796{
797 struct ubi_device *ubi;
798 int err = 0;
799
800 ubi = ubi_get_device(ubi_num);
801 if (!ubi)
802 return -ENODEV;
803
804 err = ubi_wl_flush(ubi, vol_id, lnum);
805 ubi_put_device(ubi);
806 return err;
807}
808EXPORT_SYMBOL_GPL(ubi_flush);
809
810BLOCKING_NOTIFIER_HEAD(ubi_notifiers);
811
812/**
813 * ubi_register_volume_notifier - register a volume notifier.
814 * @nb: the notifier description object
815 * @ignore_existing: if non-zero, do not send "added" notification for all
816 * already existing volumes
817 *
818 * This function registers a volume notifier, which means that
819 * 'nb->notifier_call()' will be invoked when an UBI volume is created,
820 * removed, re-sized, re-named, or updated. The first argument of the function
821 * is the notification type. The second argument is pointer to a
822 * &struct ubi_notification object which describes the notification event.
823 * Using UBI API from the volume notifier is prohibited.
824 *
825 * This function returns zero in case of success and a negative error code
826 * in case of failure.
827 */
828int ubi_register_volume_notifier(struct notifier_block *nb,
829 int ignore_existing)
830{
831 int err;
832
833 err = blocking_notifier_chain_register(&ubi_notifiers, nb);
834 if (err != 0)
835 return err;
836 if (ignore_existing)
837 return 0;
838
839 /*
840 * We are going to walk all UBI devices and all volumes, and
841 * notify the user about existing volumes by the %UBI_VOLUME_ADDED
842 * event. We have to lock the @ubi_devices_mutex to make sure UBI
843 * devices do not disappear.
844 */
845 mutex_lock(&ubi_devices_mutex);
846 ubi_enumerate_volumes(nb);
847 mutex_unlock(&ubi_devices_mutex);
848
849 return err;
850}
851EXPORT_SYMBOL_GPL(ubi_register_volume_notifier);
852
853/**
854 * ubi_unregister_volume_notifier - unregister the volume notifier.
855 * @nb: the notifier description object
856 *
857 * This function unregisters volume notifier @nm and returns zero in case of
858 * success and a negative error code in case of failure.
859 */
860int ubi_unregister_volume_notifier(struct notifier_block *nb)
861{
862 return blocking_notifier_chain_unregister(&ubi_notifiers, nb);
863}
864EXPORT_SYMBOL_GPL(ubi_unregister_volume_notifier);