Linux Audio

Check our new training course

Loading...
v5.9
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Copyright (c) 2010-2014, The Linux Foundation. All rights reserved.
 
 
 
 
 
 
 
 
 
  4 */
  5
  6#include <linux/device.h>
  7#include <linux/interrupt.h>
  8#include <crypto/internal/hash.h>
  9
 10#include "common.h"
 11#include "core.h"
 12#include "sha.h"
 13
 14/* crypto hw padding constant for first operation */
 15#define SHA_PADDING		64
 16#define SHA_PADDING_MASK	(SHA_PADDING - 1)
 17
 18static LIST_HEAD(ahash_algs);
 19
 20static const u32 std_iv_sha1[SHA256_DIGEST_SIZE / sizeof(u32)] = {
 21	SHA1_H0, SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4, 0, 0, 0
 22};
 23
 24static const u32 std_iv_sha256[SHA256_DIGEST_SIZE / sizeof(u32)] = {
 25	SHA256_H0, SHA256_H1, SHA256_H2, SHA256_H3,
 26	SHA256_H4, SHA256_H5, SHA256_H6, SHA256_H7
 27};
 28
 29static void qce_ahash_done(void *data)
 30{
 31	struct crypto_async_request *async_req = data;
 32	struct ahash_request *req = ahash_request_cast(async_req);
 33	struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
 34	struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
 35	struct qce_alg_template *tmpl = to_ahash_tmpl(async_req->tfm);
 36	struct qce_device *qce = tmpl->qce;
 37	struct qce_result_dump *result = qce->dma.result_buf;
 38	unsigned int digestsize = crypto_ahash_digestsize(ahash);
 39	int error;
 40	u32 status;
 41
 42	error = qce_dma_terminate_all(&qce->dma);
 43	if (error)
 44		dev_dbg(qce->dev, "ahash dma termination error (%d)\n", error);
 45
 46	dma_unmap_sg(qce->dev, req->src, rctx->src_nents, DMA_TO_DEVICE);
 47	dma_unmap_sg(qce->dev, &rctx->result_sg, 1, DMA_FROM_DEVICE);
 48
 49	memcpy(rctx->digest, result->auth_iv, digestsize);
 50	if (req->result)
 51		memcpy(req->result, result->auth_iv, digestsize);
 52
 53	rctx->byte_count[0] = cpu_to_be32(result->auth_byte_count[0]);
 54	rctx->byte_count[1] = cpu_to_be32(result->auth_byte_count[1]);
 55
 56	error = qce_check_status(qce, &status);
 57	if (error < 0)
 58		dev_dbg(qce->dev, "ahash operation error (%x)\n", status);
 59
 60	req->src = rctx->src_orig;
 61	req->nbytes = rctx->nbytes_orig;
 62	rctx->last_blk = false;
 63	rctx->first_blk = false;
 64
 65	qce->async_req_done(tmpl->qce, error);
 66}
 67
 68static int qce_ahash_async_req_handle(struct crypto_async_request *async_req)
 69{
 70	struct ahash_request *req = ahash_request_cast(async_req);
 71	struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
 72	struct qce_sha_ctx *ctx = crypto_tfm_ctx(async_req->tfm);
 73	struct qce_alg_template *tmpl = to_ahash_tmpl(async_req->tfm);
 74	struct qce_device *qce = tmpl->qce;
 75	unsigned long flags = rctx->flags;
 76	int ret;
 77
 78	if (IS_SHA_HMAC(flags)) {
 79		rctx->authkey = ctx->authkey;
 80		rctx->authklen = QCE_SHA_HMAC_KEY_SIZE;
 81	} else if (IS_CMAC(flags)) {
 82		rctx->authkey = ctx->authkey;
 83		rctx->authklen = AES_KEYSIZE_128;
 84	}
 85
 86	rctx->src_nents = sg_nents_for_len(req->src, req->nbytes);
 87	if (rctx->src_nents < 0) {
 88		dev_err(qce->dev, "Invalid numbers of src SG.\n");
 89		return rctx->src_nents;
 90	}
 91
 92	ret = dma_map_sg(qce->dev, req->src, rctx->src_nents, DMA_TO_DEVICE);
 93	if (ret < 0)
 94		return ret;
 95
 96	sg_init_one(&rctx->result_sg, qce->dma.result_buf, QCE_RESULT_BUF_SZ);
 97
 98	ret = dma_map_sg(qce->dev, &rctx->result_sg, 1, DMA_FROM_DEVICE);
 99	if (ret < 0)
100		goto error_unmap_src;
101
102	ret = qce_dma_prep_sgs(&qce->dma, req->src, rctx->src_nents,
103			       &rctx->result_sg, 1, qce_ahash_done, async_req);
104	if (ret)
105		goto error_unmap_dst;
106
107	qce_dma_issue_pending(&qce->dma);
108
109	ret = qce_start(async_req, tmpl->crypto_alg_type, 0, 0);
110	if (ret)
111		goto error_terminate;
112
113	return 0;
114
115error_terminate:
116	qce_dma_terminate_all(&qce->dma);
117error_unmap_dst:
118	dma_unmap_sg(qce->dev, &rctx->result_sg, 1, DMA_FROM_DEVICE);
119error_unmap_src:
120	dma_unmap_sg(qce->dev, req->src, rctx->src_nents, DMA_TO_DEVICE);
121	return ret;
122}
123
124static int qce_ahash_init(struct ahash_request *req)
125{
126	struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
127	struct qce_alg_template *tmpl = to_ahash_tmpl(req->base.tfm);
128	const u32 *std_iv = tmpl->std_iv;
129
130	memset(rctx, 0, sizeof(*rctx));
131	rctx->first_blk = true;
132	rctx->last_blk = false;
133	rctx->flags = tmpl->alg_flags;
134	memcpy(rctx->digest, std_iv, sizeof(rctx->digest));
135
136	return 0;
137}
138
139static int qce_ahash_export(struct ahash_request *req, void *out)
140{
141	struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
142	struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
143	unsigned long flags = rctx->flags;
144	unsigned int digestsize = crypto_ahash_digestsize(ahash);
145	unsigned int blocksize =
146			crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash));
147
148	if (IS_SHA1(flags) || IS_SHA1_HMAC(flags)) {
149		struct sha1_state *out_state = out;
150
151		out_state->count = rctx->count;
152		qce_cpu_to_be32p_array((__be32 *)out_state->state,
153				       rctx->digest, digestsize);
154		memcpy(out_state->buffer, rctx->buf, blocksize);
155	} else if (IS_SHA256(flags) || IS_SHA256_HMAC(flags)) {
156		struct sha256_state *out_state = out;
157
158		out_state->count = rctx->count;
159		qce_cpu_to_be32p_array((__be32 *)out_state->state,
160				       rctx->digest, digestsize);
161		memcpy(out_state->buf, rctx->buf, blocksize);
162	} else {
163		return -EINVAL;
164	}
165
166	return 0;
167}
168
169static int qce_import_common(struct ahash_request *req, u64 in_count,
170			     const u32 *state, const u8 *buffer, bool hmac)
171{
172	struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
173	struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
174	unsigned int digestsize = crypto_ahash_digestsize(ahash);
175	unsigned int blocksize;
176	u64 count = in_count;
177
178	blocksize = crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash));
179	rctx->count = in_count;
180	memcpy(rctx->buf, buffer, blocksize);
181
182	if (in_count <= blocksize) {
183		rctx->first_blk = 1;
184	} else {
185		rctx->first_blk = 0;
186		/*
187		 * For HMAC, there is a hardware padding done when first block
188		 * is set. Therefore the byte_count must be incremened by 64
189		 * after the first block operation.
190		 */
191		if (hmac)
192			count += SHA_PADDING;
193	}
194
195	rctx->byte_count[0] = (__force __be32)(count & ~SHA_PADDING_MASK);
196	rctx->byte_count[1] = (__force __be32)(count >> 32);
197	qce_cpu_to_be32p_array((__be32 *)rctx->digest, (const u8 *)state,
198			       digestsize);
199	rctx->buflen = (unsigned int)(in_count & (blocksize - 1));
200
201	return 0;
202}
203
204static int qce_ahash_import(struct ahash_request *req, const void *in)
205{
206	struct qce_sha_reqctx *rctx;
207	unsigned long flags;
208	bool hmac;
209	int ret;
210
211	ret = qce_ahash_init(req);
212	if (ret)
213		return ret;
214
215	rctx = ahash_request_ctx(req);
216	flags = rctx->flags;
217	hmac = IS_SHA_HMAC(flags);
218
219	if (IS_SHA1(flags) || IS_SHA1_HMAC(flags)) {
220		const struct sha1_state *state = in;
221
222		ret = qce_import_common(req, state->count, state->state,
223					state->buffer, hmac);
224	} else if (IS_SHA256(flags) || IS_SHA256_HMAC(flags)) {
225		const struct sha256_state *state = in;
226
227		ret = qce_import_common(req, state->count, state->state,
228					state->buf, hmac);
229	}
230
231	return ret;
232}
233
234static int qce_ahash_update(struct ahash_request *req)
235{
236	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
237	struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
238	struct qce_alg_template *tmpl = to_ahash_tmpl(req->base.tfm);
239	struct qce_device *qce = tmpl->qce;
240	struct scatterlist *sg_last, *sg;
241	unsigned int total, len;
242	unsigned int hash_later;
243	unsigned int nbytes;
244	unsigned int blocksize;
245
246	blocksize = crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
247	rctx->count += req->nbytes;
248
249	/* check for buffer from previous updates and append it */
250	total = req->nbytes + rctx->buflen;
251
252	if (total <= blocksize) {
253		scatterwalk_map_and_copy(rctx->buf + rctx->buflen, req->src,
254					 0, req->nbytes, 0);
255		rctx->buflen += req->nbytes;
256		return 0;
257	}
258
259	/* save the original req structure fields */
260	rctx->src_orig = req->src;
261	rctx->nbytes_orig = req->nbytes;
262
263	/*
264	 * if we have data from previous update copy them on buffer. The old
265	 * data will be combined with current request bytes.
266	 */
267	if (rctx->buflen)
268		memcpy(rctx->tmpbuf, rctx->buf, rctx->buflen);
269
270	/* calculate how many bytes will be hashed later */
271	hash_later = total % blocksize;
272	if (hash_later) {
273		unsigned int src_offset = req->nbytes - hash_later;
274		scatterwalk_map_and_copy(rctx->buf, req->src, src_offset,
275					 hash_later, 0);
276	}
277
278	/* here nbytes is multiple of blocksize */
279	nbytes = total - hash_later;
280
281	len = rctx->buflen;
282	sg = sg_last = req->src;
283
284	while (len < nbytes && sg) {
285		if (len + sg_dma_len(sg) > nbytes)
286			break;
287		len += sg_dma_len(sg);
288		sg_last = sg;
289		sg = sg_next(sg);
290	}
291
292	if (!sg_last)
293		return -EINVAL;
294
 
 
295	if (rctx->buflen) {
296		sg_init_table(rctx->sg, 2);
297		sg_set_buf(rctx->sg, rctx->tmpbuf, rctx->buflen);
298		sg_chain(rctx->sg, 2, req->src);
299		req->src = rctx->sg;
300	}
301
302	req->nbytes = nbytes;
303	rctx->buflen = hash_later;
304
305	return qce->async_req_enqueue(tmpl->qce, &req->base);
306}
307
308static int qce_ahash_final(struct ahash_request *req)
309{
310	struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
311	struct qce_alg_template *tmpl = to_ahash_tmpl(req->base.tfm);
312	struct qce_device *qce = tmpl->qce;
313
314	if (!rctx->buflen) {
315		if (tmpl->hash_zero)
316			memcpy(req->result, tmpl->hash_zero,
317					tmpl->alg.ahash.halg.digestsize);
318		return 0;
319	}
320
321	rctx->last_blk = true;
322
323	rctx->src_orig = req->src;
324	rctx->nbytes_orig = req->nbytes;
325
326	memcpy(rctx->tmpbuf, rctx->buf, rctx->buflen);
327	sg_init_one(rctx->sg, rctx->tmpbuf, rctx->buflen);
328
329	req->src = rctx->sg;
330	req->nbytes = rctx->buflen;
331
332	return qce->async_req_enqueue(tmpl->qce, &req->base);
333}
334
335static int qce_ahash_digest(struct ahash_request *req)
336{
337	struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
338	struct qce_alg_template *tmpl = to_ahash_tmpl(req->base.tfm);
339	struct qce_device *qce = tmpl->qce;
340	int ret;
341
342	ret = qce_ahash_init(req);
343	if (ret)
344		return ret;
345
346	rctx->src_orig = req->src;
347	rctx->nbytes_orig = req->nbytes;
348	rctx->first_blk = true;
349	rctx->last_blk = true;
350
351	if (!rctx->nbytes_orig) {
352		if (tmpl->hash_zero)
353			memcpy(req->result, tmpl->hash_zero,
354					tmpl->alg.ahash.halg.digestsize);
355		return 0;
356	}
357
358	return qce->async_req_enqueue(tmpl->qce, &req->base);
359}
360
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
361static int qce_ahash_hmac_setkey(struct crypto_ahash *tfm, const u8 *key,
362				 unsigned int keylen)
363{
364	unsigned int digestsize = crypto_ahash_digestsize(tfm);
365	struct qce_sha_ctx *ctx = crypto_tfm_ctx(&tfm->base);
366	struct crypto_wait wait;
367	struct ahash_request *req;
368	struct scatterlist sg;
369	unsigned int blocksize;
370	struct crypto_ahash *ahash_tfm;
371	u8 *buf;
372	int ret;
373	const char *alg_name;
374
375	blocksize = crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
376	memset(ctx->authkey, 0, sizeof(ctx->authkey));
377
378	if (keylen <= blocksize) {
379		memcpy(ctx->authkey, key, keylen);
380		return 0;
381	}
382
383	if (digestsize == SHA1_DIGEST_SIZE)
384		alg_name = "sha1-qce";
385	else if (digestsize == SHA256_DIGEST_SIZE)
386		alg_name = "sha256-qce";
387	else
388		return -EINVAL;
389
390	ahash_tfm = crypto_alloc_ahash(alg_name, 0, 0);
 
391	if (IS_ERR(ahash_tfm))
392		return PTR_ERR(ahash_tfm);
393
394	req = ahash_request_alloc(ahash_tfm, GFP_KERNEL);
395	if (!req) {
396		ret = -ENOMEM;
397		goto err_free_ahash;
398	}
399
400	crypto_init_wait(&wait);
401	ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
402				   crypto_req_done, &wait);
403	crypto_ahash_clear_flags(ahash_tfm, ~0);
404
405	buf = kzalloc(keylen + QCE_MAX_ALIGN_SIZE, GFP_KERNEL);
406	if (!buf) {
407		ret = -ENOMEM;
408		goto err_free_req;
409	}
410
411	memcpy(buf, key, keylen);
412	sg_init_one(&sg, buf, keylen);
413	ahash_request_set_crypt(req, &sg, ctx->authkey, keylen);
414
415	ret = crypto_wait_req(crypto_ahash_digest(req), &wait);
 
 
 
 
 
 
 
 
416
417	kfree(buf);
418err_free_req:
419	ahash_request_free(req);
420err_free_ahash:
421	crypto_free_ahash(ahash_tfm);
422	return ret;
423}
424
425static int qce_ahash_cra_init(struct crypto_tfm *tfm)
426{
427	struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
428	struct qce_sha_ctx *ctx = crypto_tfm_ctx(tfm);
429
430	crypto_ahash_set_reqsize(ahash, sizeof(struct qce_sha_reqctx));
431	memset(ctx, 0, sizeof(*ctx));
432	return 0;
433}
434
435struct qce_ahash_def {
436	unsigned long flags;
437	const char *name;
438	const char *drv_name;
439	unsigned int digestsize;
440	unsigned int blocksize;
441	unsigned int statesize;
442	const u32 *std_iv;
443};
444
445static const struct qce_ahash_def ahash_def[] = {
446	{
447		.flags		= QCE_HASH_SHA1,
448		.name		= "sha1",
449		.drv_name	= "sha1-qce",
450		.digestsize	= SHA1_DIGEST_SIZE,
451		.blocksize	= SHA1_BLOCK_SIZE,
452		.statesize	= sizeof(struct sha1_state),
453		.std_iv		= std_iv_sha1,
454	},
455	{
456		.flags		= QCE_HASH_SHA256,
457		.name		= "sha256",
458		.drv_name	= "sha256-qce",
459		.digestsize	= SHA256_DIGEST_SIZE,
460		.blocksize	= SHA256_BLOCK_SIZE,
461		.statesize	= sizeof(struct sha256_state),
462		.std_iv		= std_iv_sha256,
463	},
464	{
465		.flags		= QCE_HASH_SHA1_HMAC,
466		.name		= "hmac(sha1)",
467		.drv_name	= "hmac-sha1-qce",
468		.digestsize	= SHA1_DIGEST_SIZE,
469		.blocksize	= SHA1_BLOCK_SIZE,
470		.statesize	= sizeof(struct sha1_state),
471		.std_iv		= std_iv_sha1,
472	},
473	{
474		.flags		= QCE_HASH_SHA256_HMAC,
475		.name		= "hmac(sha256)",
476		.drv_name	= "hmac-sha256-qce",
477		.digestsize	= SHA256_DIGEST_SIZE,
478		.blocksize	= SHA256_BLOCK_SIZE,
479		.statesize	= sizeof(struct sha256_state),
480		.std_iv		= std_iv_sha256,
481	},
482};
483
484static int qce_ahash_register_one(const struct qce_ahash_def *def,
485				  struct qce_device *qce)
486{
487	struct qce_alg_template *tmpl;
488	struct ahash_alg *alg;
489	struct crypto_alg *base;
490	int ret;
491
492	tmpl = kzalloc(sizeof(*tmpl), GFP_KERNEL);
493	if (!tmpl)
494		return -ENOMEM;
495
496	tmpl->std_iv = def->std_iv;
497
498	alg = &tmpl->alg.ahash;
499	alg->init = qce_ahash_init;
500	alg->update = qce_ahash_update;
501	alg->final = qce_ahash_final;
502	alg->digest = qce_ahash_digest;
503	alg->export = qce_ahash_export;
504	alg->import = qce_ahash_import;
505	if (IS_SHA_HMAC(def->flags))
506		alg->setkey = qce_ahash_hmac_setkey;
507	alg->halg.digestsize = def->digestsize;
508	alg->halg.statesize = def->statesize;
509
510	if (IS_SHA1(def->flags))
511		tmpl->hash_zero = sha1_zero_message_hash;
512	else if (IS_SHA256(def->flags))
513		tmpl->hash_zero = sha256_zero_message_hash;
514
515	base = &alg->halg.base;
516	base->cra_blocksize = def->blocksize;
517	base->cra_priority = 300;
518	base->cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY;
519	base->cra_ctxsize = sizeof(struct qce_sha_ctx);
520	base->cra_alignmask = 0;
521	base->cra_module = THIS_MODULE;
522	base->cra_init = qce_ahash_cra_init;
 
523
524	snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "%s", def->name);
525	snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
526		 def->drv_name);
527
528	INIT_LIST_HEAD(&tmpl->entry);
529	tmpl->crypto_alg_type = CRYPTO_ALG_TYPE_AHASH;
530	tmpl->alg_flags = def->flags;
531	tmpl->qce = qce;
532
533	ret = crypto_register_ahash(alg);
534	if (ret) {
535		kfree(tmpl);
536		dev_err(qce->dev, "%s registration failed\n", base->cra_name);
537		return ret;
538	}
539
540	list_add_tail(&tmpl->entry, &ahash_algs);
541	dev_dbg(qce->dev, "%s is registered\n", base->cra_name);
542	return 0;
543}
544
545static void qce_ahash_unregister(struct qce_device *qce)
546{
547	struct qce_alg_template *tmpl, *n;
548
549	list_for_each_entry_safe(tmpl, n, &ahash_algs, entry) {
550		crypto_unregister_ahash(&tmpl->alg.ahash);
551		list_del(&tmpl->entry);
552		kfree(tmpl);
553	}
554}
555
556static int qce_ahash_register(struct qce_device *qce)
557{
558	int ret, i;
559
560	for (i = 0; i < ARRAY_SIZE(ahash_def); i++) {
561		ret = qce_ahash_register_one(&ahash_def[i], qce);
562		if (ret)
563			goto err;
564	}
565
566	return 0;
567err:
568	qce_ahash_unregister(qce);
569	return ret;
570}
571
572const struct qce_algo_ops ahash_ops = {
573	.type = CRYPTO_ALG_TYPE_AHASH,
574	.register_algs = qce_ahash_register,
575	.unregister_algs = qce_ahash_unregister,
576	.async_req_handle = qce_ahash_async_req_handle,
577};
v4.6
 
  1/*
  2 * Copyright (c) 2010-2014, The Linux Foundation. All rights reserved.
  3 *
  4 * This program is free software; you can redistribute it and/or modify
  5 * it under the terms of the GNU General Public License version 2 and
  6 * only version 2 as published by the Free Software Foundation.
  7 *
  8 * This program is distributed in the hope that it will be useful,
  9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 11 * GNU General Public License for more details.
 12 */
 13
 14#include <linux/device.h>
 15#include <linux/interrupt.h>
 16#include <crypto/internal/hash.h>
 17
 18#include "common.h"
 19#include "core.h"
 20#include "sha.h"
 21
 22/* crypto hw padding constant for first operation */
 23#define SHA_PADDING		64
 24#define SHA_PADDING_MASK	(SHA_PADDING - 1)
 25
 26static LIST_HEAD(ahash_algs);
 27
 28static const u32 std_iv_sha1[SHA256_DIGEST_SIZE / sizeof(u32)] = {
 29	SHA1_H0, SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4, 0, 0, 0
 30};
 31
 32static const u32 std_iv_sha256[SHA256_DIGEST_SIZE / sizeof(u32)] = {
 33	SHA256_H0, SHA256_H1, SHA256_H2, SHA256_H3,
 34	SHA256_H4, SHA256_H5, SHA256_H6, SHA256_H7
 35};
 36
 37static void qce_ahash_done(void *data)
 38{
 39	struct crypto_async_request *async_req = data;
 40	struct ahash_request *req = ahash_request_cast(async_req);
 41	struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
 42	struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
 43	struct qce_alg_template *tmpl = to_ahash_tmpl(async_req->tfm);
 44	struct qce_device *qce = tmpl->qce;
 45	struct qce_result_dump *result = qce->dma.result_buf;
 46	unsigned int digestsize = crypto_ahash_digestsize(ahash);
 47	int error;
 48	u32 status;
 49
 50	error = qce_dma_terminate_all(&qce->dma);
 51	if (error)
 52		dev_dbg(qce->dev, "ahash dma termination error (%d)\n", error);
 53
 54	dma_unmap_sg(qce->dev, req->src, rctx->src_nents, DMA_TO_DEVICE);
 55	dma_unmap_sg(qce->dev, &rctx->result_sg, 1, DMA_FROM_DEVICE);
 56
 57	memcpy(rctx->digest, result->auth_iv, digestsize);
 58	if (req->result)
 59		memcpy(req->result, result->auth_iv, digestsize);
 60
 61	rctx->byte_count[0] = cpu_to_be32(result->auth_byte_count[0]);
 62	rctx->byte_count[1] = cpu_to_be32(result->auth_byte_count[1]);
 63
 64	error = qce_check_status(qce, &status);
 65	if (error < 0)
 66		dev_dbg(qce->dev, "ahash operation error (%x)\n", status);
 67
 68	req->src = rctx->src_orig;
 69	req->nbytes = rctx->nbytes_orig;
 70	rctx->last_blk = false;
 71	rctx->first_blk = false;
 72
 73	qce->async_req_done(tmpl->qce, error);
 74}
 75
 76static int qce_ahash_async_req_handle(struct crypto_async_request *async_req)
 77{
 78	struct ahash_request *req = ahash_request_cast(async_req);
 79	struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
 80	struct qce_sha_ctx *ctx = crypto_tfm_ctx(async_req->tfm);
 81	struct qce_alg_template *tmpl = to_ahash_tmpl(async_req->tfm);
 82	struct qce_device *qce = tmpl->qce;
 83	unsigned long flags = rctx->flags;
 84	int ret;
 85
 86	if (IS_SHA_HMAC(flags)) {
 87		rctx->authkey = ctx->authkey;
 88		rctx->authklen = QCE_SHA_HMAC_KEY_SIZE;
 89	} else if (IS_CMAC(flags)) {
 90		rctx->authkey = ctx->authkey;
 91		rctx->authklen = AES_KEYSIZE_128;
 92	}
 93
 94	rctx->src_nents = sg_nents_for_len(req->src, req->nbytes);
 95	if (rctx->src_nents < 0) {
 96		dev_err(qce->dev, "Invalid numbers of src SG.\n");
 97		return rctx->src_nents;
 98	}
 99
100	ret = dma_map_sg(qce->dev, req->src, rctx->src_nents, DMA_TO_DEVICE);
101	if (ret < 0)
102		return ret;
103
104	sg_init_one(&rctx->result_sg, qce->dma.result_buf, QCE_RESULT_BUF_SZ);
105
106	ret = dma_map_sg(qce->dev, &rctx->result_sg, 1, DMA_FROM_DEVICE);
107	if (ret < 0)
108		goto error_unmap_src;
109
110	ret = qce_dma_prep_sgs(&qce->dma, req->src, rctx->src_nents,
111			       &rctx->result_sg, 1, qce_ahash_done, async_req);
112	if (ret)
113		goto error_unmap_dst;
114
115	qce_dma_issue_pending(&qce->dma);
116
117	ret = qce_start(async_req, tmpl->crypto_alg_type, 0, 0);
118	if (ret)
119		goto error_terminate;
120
121	return 0;
122
123error_terminate:
124	qce_dma_terminate_all(&qce->dma);
125error_unmap_dst:
126	dma_unmap_sg(qce->dev, &rctx->result_sg, 1, DMA_FROM_DEVICE);
127error_unmap_src:
128	dma_unmap_sg(qce->dev, req->src, rctx->src_nents, DMA_TO_DEVICE);
129	return ret;
130}
131
132static int qce_ahash_init(struct ahash_request *req)
133{
134	struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
135	struct qce_alg_template *tmpl = to_ahash_tmpl(req->base.tfm);
136	const u32 *std_iv = tmpl->std_iv;
137
138	memset(rctx, 0, sizeof(*rctx));
139	rctx->first_blk = true;
140	rctx->last_blk = false;
141	rctx->flags = tmpl->alg_flags;
142	memcpy(rctx->digest, std_iv, sizeof(rctx->digest));
143
144	return 0;
145}
146
147static int qce_ahash_export(struct ahash_request *req, void *out)
148{
149	struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
150	struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
151	unsigned long flags = rctx->flags;
152	unsigned int digestsize = crypto_ahash_digestsize(ahash);
153	unsigned int blocksize =
154			crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash));
155
156	if (IS_SHA1(flags) || IS_SHA1_HMAC(flags)) {
157		struct sha1_state *out_state = out;
158
159		out_state->count = rctx->count;
160		qce_cpu_to_be32p_array((__be32 *)out_state->state,
161				       rctx->digest, digestsize);
162		memcpy(out_state->buffer, rctx->buf, blocksize);
163	} else if (IS_SHA256(flags) || IS_SHA256_HMAC(flags)) {
164		struct sha256_state *out_state = out;
165
166		out_state->count = rctx->count;
167		qce_cpu_to_be32p_array((__be32 *)out_state->state,
168				       rctx->digest, digestsize);
169		memcpy(out_state->buf, rctx->buf, blocksize);
170	} else {
171		return -EINVAL;
172	}
173
174	return 0;
175}
176
177static int qce_import_common(struct ahash_request *req, u64 in_count,
178			     const u32 *state, const u8 *buffer, bool hmac)
179{
180	struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
181	struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
182	unsigned int digestsize = crypto_ahash_digestsize(ahash);
183	unsigned int blocksize;
184	u64 count = in_count;
185
186	blocksize = crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash));
187	rctx->count = in_count;
188	memcpy(rctx->buf, buffer, blocksize);
189
190	if (in_count <= blocksize) {
191		rctx->first_blk = 1;
192	} else {
193		rctx->first_blk = 0;
194		/*
195		 * For HMAC, there is a hardware padding done when first block
196		 * is set. Therefore the byte_count must be incremened by 64
197		 * after the first block operation.
198		 */
199		if (hmac)
200			count += SHA_PADDING;
201	}
202
203	rctx->byte_count[0] = (__force __be32)(count & ~SHA_PADDING_MASK);
204	rctx->byte_count[1] = (__force __be32)(count >> 32);
205	qce_cpu_to_be32p_array((__be32 *)rctx->digest, (const u8 *)state,
206			       digestsize);
207	rctx->buflen = (unsigned int)(in_count & (blocksize - 1));
208
209	return 0;
210}
211
212static int qce_ahash_import(struct ahash_request *req, const void *in)
213{
214	struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
215	unsigned long flags = rctx->flags;
216	bool hmac = IS_SHA_HMAC(flags);
217	int ret = -EINVAL;
 
 
 
 
 
 
 
 
218
219	if (IS_SHA1(flags) || IS_SHA1_HMAC(flags)) {
220		const struct sha1_state *state = in;
221
222		ret = qce_import_common(req, state->count, state->state,
223					state->buffer, hmac);
224	} else if (IS_SHA256(flags) || IS_SHA256_HMAC(flags)) {
225		const struct sha256_state *state = in;
226
227		ret = qce_import_common(req, state->count, state->state,
228					state->buf, hmac);
229	}
230
231	return ret;
232}
233
234static int qce_ahash_update(struct ahash_request *req)
235{
236	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
237	struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
238	struct qce_alg_template *tmpl = to_ahash_tmpl(req->base.tfm);
239	struct qce_device *qce = tmpl->qce;
240	struct scatterlist *sg_last, *sg;
241	unsigned int total, len;
242	unsigned int hash_later;
243	unsigned int nbytes;
244	unsigned int blocksize;
245
246	blocksize = crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
247	rctx->count += req->nbytes;
248
249	/* check for buffer from previous updates and append it */
250	total = req->nbytes + rctx->buflen;
251
252	if (total <= blocksize) {
253		scatterwalk_map_and_copy(rctx->buf + rctx->buflen, req->src,
254					 0, req->nbytes, 0);
255		rctx->buflen += req->nbytes;
256		return 0;
257	}
258
259	/* save the original req structure fields */
260	rctx->src_orig = req->src;
261	rctx->nbytes_orig = req->nbytes;
262
263	/*
264	 * if we have data from previous update copy them on buffer. The old
265	 * data will be combined with current request bytes.
266	 */
267	if (rctx->buflen)
268		memcpy(rctx->tmpbuf, rctx->buf, rctx->buflen);
269
270	/* calculate how many bytes will be hashed later */
271	hash_later = total % blocksize;
272	if (hash_later) {
273		unsigned int src_offset = req->nbytes - hash_later;
274		scatterwalk_map_and_copy(rctx->buf, req->src, src_offset,
275					 hash_later, 0);
276	}
277
278	/* here nbytes is multiple of blocksize */
279	nbytes = total - hash_later;
280
281	len = rctx->buflen;
282	sg = sg_last = req->src;
283
284	while (len < nbytes && sg) {
285		if (len + sg_dma_len(sg) > nbytes)
286			break;
287		len += sg_dma_len(sg);
288		sg_last = sg;
289		sg = sg_next(sg);
290	}
291
292	if (!sg_last)
293		return -EINVAL;
294
295	sg_mark_end(sg_last);
296
297	if (rctx->buflen) {
298		sg_init_table(rctx->sg, 2);
299		sg_set_buf(rctx->sg, rctx->tmpbuf, rctx->buflen);
300		sg_chain(rctx->sg, 2, req->src);
301		req->src = rctx->sg;
302	}
303
304	req->nbytes = nbytes;
305	rctx->buflen = hash_later;
306
307	return qce->async_req_enqueue(tmpl->qce, &req->base);
308}
309
310static int qce_ahash_final(struct ahash_request *req)
311{
312	struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
313	struct qce_alg_template *tmpl = to_ahash_tmpl(req->base.tfm);
314	struct qce_device *qce = tmpl->qce;
315
316	if (!rctx->buflen)
 
 
 
317		return 0;
 
318
319	rctx->last_blk = true;
320
321	rctx->src_orig = req->src;
322	rctx->nbytes_orig = req->nbytes;
323
324	memcpy(rctx->tmpbuf, rctx->buf, rctx->buflen);
325	sg_init_one(rctx->sg, rctx->tmpbuf, rctx->buflen);
326
327	req->src = rctx->sg;
328	req->nbytes = rctx->buflen;
329
330	return qce->async_req_enqueue(tmpl->qce, &req->base);
331}
332
333static int qce_ahash_digest(struct ahash_request *req)
334{
335	struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
336	struct qce_alg_template *tmpl = to_ahash_tmpl(req->base.tfm);
337	struct qce_device *qce = tmpl->qce;
338	int ret;
339
340	ret = qce_ahash_init(req);
341	if (ret)
342		return ret;
343
344	rctx->src_orig = req->src;
345	rctx->nbytes_orig = req->nbytes;
346	rctx->first_blk = true;
347	rctx->last_blk = true;
348
 
 
 
 
 
 
 
349	return qce->async_req_enqueue(tmpl->qce, &req->base);
350}
351
352struct qce_ahash_result {
353	struct completion completion;
354	int error;
355};
356
357static void qce_digest_complete(struct crypto_async_request *req, int error)
358{
359	struct qce_ahash_result *result = req->data;
360
361	if (error == -EINPROGRESS)
362		return;
363
364	result->error = error;
365	complete(&result->completion);
366}
367
368static int qce_ahash_hmac_setkey(struct crypto_ahash *tfm, const u8 *key,
369				 unsigned int keylen)
370{
371	unsigned int digestsize = crypto_ahash_digestsize(tfm);
372	struct qce_sha_ctx *ctx = crypto_tfm_ctx(&tfm->base);
373	struct qce_ahash_result result;
374	struct ahash_request *req;
375	struct scatterlist sg;
376	unsigned int blocksize;
377	struct crypto_ahash *ahash_tfm;
378	u8 *buf;
379	int ret;
380	const char *alg_name;
381
382	blocksize = crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
383	memset(ctx->authkey, 0, sizeof(ctx->authkey));
384
385	if (keylen <= blocksize) {
386		memcpy(ctx->authkey, key, keylen);
387		return 0;
388	}
389
390	if (digestsize == SHA1_DIGEST_SIZE)
391		alg_name = "sha1-qce";
392	else if (digestsize == SHA256_DIGEST_SIZE)
393		alg_name = "sha256-qce";
394	else
395		return -EINVAL;
396
397	ahash_tfm = crypto_alloc_ahash(alg_name, CRYPTO_ALG_TYPE_AHASH,
398				       CRYPTO_ALG_TYPE_AHASH_MASK);
399	if (IS_ERR(ahash_tfm))
400		return PTR_ERR(ahash_tfm);
401
402	req = ahash_request_alloc(ahash_tfm, GFP_KERNEL);
403	if (!req) {
404		ret = -ENOMEM;
405		goto err_free_ahash;
406	}
407
408	init_completion(&result.completion);
409	ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
410				   qce_digest_complete, &result);
411	crypto_ahash_clear_flags(ahash_tfm, ~0);
412
413	buf = kzalloc(keylen + QCE_MAX_ALIGN_SIZE, GFP_KERNEL);
414	if (!buf) {
415		ret = -ENOMEM;
416		goto err_free_req;
417	}
418
419	memcpy(buf, key, keylen);
420	sg_init_one(&sg, buf, keylen);
421	ahash_request_set_crypt(req, &sg, ctx->authkey, keylen);
422
423	ret = crypto_ahash_digest(req);
424	if (ret == -EINPROGRESS || ret == -EBUSY) {
425		ret = wait_for_completion_interruptible(&result.completion);
426		if (!ret)
427			ret = result.error;
428	}
429
430	if (ret)
431		crypto_ahash_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
432
433	kfree(buf);
434err_free_req:
435	ahash_request_free(req);
436err_free_ahash:
437	crypto_free_ahash(ahash_tfm);
438	return ret;
439}
440
441static int qce_ahash_cra_init(struct crypto_tfm *tfm)
442{
443	struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
444	struct qce_sha_ctx *ctx = crypto_tfm_ctx(tfm);
445
446	crypto_ahash_set_reqsize(ahash, sizeof(struct qce_sha_reqctx));
447	memset(ctx, 0, sizeof(*ctx));
448	return 0;
449}
450
451struct qce_ahash_def {
452	unsigned long flags;
453	const char *name;
454	const char *drv_name;
455	unsigned int digestsize;
456	unsigned int blocksize;
457	unsigned int statesize;
458	const u32 *std_iv;
459};
460
461static const struct qce_ahash_def ahash_def[] = {
462	{
463		.flags		= QCE_HASH_SHA1,
464		.name		= "sha1",
465		.drv_name	= "sha1-qce",
466		.digestsize	= SHA1_DIGEST_SIZE,
467		.blocksize	= SHA1_BLOCK_SIZE,
468		.statesize	= sizeof(struct sha1_state),
469		.std_iv		= std_iv_sha1,
470	},
471	{
472		.flags		= QCE_HASH_SHA256,
473		.name		= "sha256",
474		.drv_name	= "sha256-qce",
475		.digestsize	= SHA256_DIGEST_SIZE,
476		.blocksize	= SHA256_BLOCK_SIZE,
477		.statesize	= sizeof(struct sha256_state),
478		.std_iv		= std_iv_sha256,
479	},
480	{
481		.flags		= QCE_HASH_SHA1_HMAC,
482		.name		= "hmac(sha1)",
483		.drv_name	= "hmac-sha1-qce",
484		.digestsize	= SHA1_DIGEST_SIZE,
485		.blocksize	= SHA1_BLOCK_SIZE,
486		.statesize	= sizeof(struct sha1_state),
487		.std_iv		= std_iv_sha1,
488	},
489	{
490		.flags		= QCE_HASH_SHA256_HMAC,
491		.name		= "hmac(sha256)",
492		.drv_name	= "hmac-sha256-qce",
493		.digestsize	= SHA256_DIGEST_SIZE,
494		.blocksize	= SHA256_BLOCK_SIZE,
495		.statesize	= sizeof(struct sha256_state),
496		.std_iv		= std_iv_sha256,
497	},
498};
499
500static int qce_ahash_register_one(const struct qce_ahash_def *def,
501				  struct qce_device *qce)
502{
503	struct qce_alg_template *tmpl;
504	struct ahash_alg *alg;
505	struct crypto_alg *base;
506	int ret;
507
508	tmpl = kzalloc(sizeof(*tmpl), GFP_KERNEL);
509	if (!tmpl)
510		return -ENOMEM;
511
512	tmpl->std_iv = def->std_iv;
513
514	alg = &tmpl->alg.ahash;
515	alg->init = qce_ahash_init;
516	alg->update = qce_ahash_update;
517	alg->final = qce_ahash_final;
518	alg->digest = qce_ahash_digest;
519	alg->export = qce_ahash_export;
520	alg->import = qce_ahash_import;
521	if (IS_SHA_HMAC(def->flags))
522		alg->setkey = qce_ahash_hmac_setkey;
523	alg->halg.digestsize = def->digestsize;
524	alg->halg.statesize = def->statesize;
525
 
 
 
 
 
526	base = &alg->halg.base;
527	base->cra_blocksize = def->blocksize;
528	base->cra_priority = 300;
529	base->cra_flags = CRYPTO_ALG_ASYNC;
530	base->cra_ctxsize = sizeof(struct qce_sha_ctx);
531	base->cra_alignmask = 0;
532	base->cra_module = THIS_MODULE;
533	base->cra_init = qce_ahash_cra_init;
534	INIT_LIST_HEAD(&base->cra_list);
535
536	snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "%s", def->name);
537	snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
538		 def->drv_name);
539
540	INIT_LIST_HEAD(&tmpl->entry);
541	tmpl->crypto_alg_type = CRYPTO_ALG_TYPE_AHASH;
542	tmpl->alg_flags = def->flags;
543	tmpl->qce = qce;
544
545	ret = crypto_register_ahash(alg);
546	if (ret) {
547		kfree(tmpl);
548		dev_err(qce->dev, "%s registration failed\n", base->cra_name);
549		return ret;
550	}
551
552	list_add_tail(&tmpl->entry, &ahash_algs);
553	dev_dbg(qce->dev, "%s is registered\n", base->cra_name);
554	return 0;
555}
556
557static void qce_ahash_unregister(struct qce_device *qce)
558{
559	struct qce_alg_template *tmpl, *n;
560
561	list_for_each_entry_safe(tmpl, n, &ahash_algs, entry) {
562		crypto_unregister_ahash(&tmpl->alg.ahash);
563		list_del(&tmpl->entry);
564		kfree(tmpl);
565	}
566}
567
568static int qce_ahash_register(struct qce_device *qce)
569{
570	int ret, i;
571
572	for (i = 0; i < ARRAY_SIZE(ahash_def); i++) {
573		ret = qce_ahash_register_one(&ahash_def[i], qce);
574		if (ret)
575			goto err;
576	}
577
578	return 0;
579err:
580	qce_ahash_unregister(qce);
581	return ret;
582}
583
584const struct qce_algo_ops ahash_ops = {
585	.type = CRYPTO_ALG_TYPE_AHASH,
586	.register_algs = qce_ahash_register,
587	.unregister_algs = qce_ahash_unregister,
588	.async_req_handle = qce_ahash_async_req_handle,
589};