Loading...
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * KVM/MIPS: Instruction/Exception emulation
7 *
8 * Copyright (C) 2012 MIPS Technologies, Inc. All rights reserved.
9 * Authors: Sanjay Lal <sanjayl@kymasys.com>
10 */
11
12#include <linux/errno.h>
13#include <linux/err.h>
14#include <linux/ktime.h>
15#include <linux/kvm_host.h>
16#include <linux/vmalloc.h>
17#include <linux/fs.h>
18#include <linux/memblock.h>
19#include <linux/random.h>
20#include <asm/page.h>
21#include <asm/cacheflush.h>
22#include <asm/cacheops.h>
23#include <asm/cpu-info.h>
24#include <asm/mmu_context.h>
25#include <asm/tlbflush.h>
26#include <asm/inst.h>
27
28#undef CONFIG_MIPS_MT
29#include <asm/r4kcache.h>
30#define CONFIG_MIPS_MT
31
32#include "interrupt.h"
33#include "commpage.h"
34
35#include "trace.h"
36
37/*
38 * Compute the return address and do emulate branch simulation, if required.
39 * This function should be called only in branch delay slot active.
40 */
41static int kvm_compute_return_epc(struct kvm_vcpu *vcpu, unsigned long instpc,
42 unsigned long *out)
43{
44 unsigned int dspcontrol;
45 union mips_instruction insn;
46 struct kvm_vcpu_arch *arch = &vcpu->arch;
47 long epc = instpc;
48 long nextpc;
49 int err;
50
51 if (epc & 3) {
52 kvm_err("%s: unaligned epc\n", __func__);
53 return -EINVAL;
54 }
55
56 /* Read the instruction */
57 err = kvm_get_badinstrp((u32 *)epc, vcpu, &insn.word);
58 if (err)
59 return err;
60
61 switch (insn.i_format.opcode) {
62 /* jr and jalr are in r_format format. */
63 case spec_op:
64 switch (insn.r_format.func) {
65 case jalr_op:
66 arch->gprs[insn.r_format.rd] = epc + 8;
67 fallthrough;
68 case jr_op:
69 nextpc = arch->gprs[insn.r_format.rs];
70 break;
71 default:
72 return -EINVAL;
73 }
74 break;
75
76 /*
77 * This group contains:
78 * bltz_op, bgez_op, bltzl_op, bgezl_op,
79 * bltzal_op, bgezal_op, bltzall_op, bgezall_op.
80 */
81 case bcond_op:
82 switch (insn.i_format.rt) {
83 case bltz_op:
84 case bltzl_op:
85 if ((long)arch->gprs[insn.i_format.rs] < 0)
86 epc = epc + 4 + (insn.i_format.simmediate << 2);
87 else
88 epc += 8;
89 nextpc = epc;
90 break;
91
92 case bgez_op:
93 case bgezl_op:
94 if ((long)arch->gprs[insn.i_format.rs] >= 0)
95 epc = epc + 4 + (insn.i_format.simmediate << 2);
96 else
97 epc += 8;
98 nextpc = epc;
99 break;
100
101 case bltzal_op:
102 case bltzall_op:
103 arch->gprs[31] = epc + 8;
104 if ((long)arch->gprs[insn.i_format.rs] < 0)
105 epc = epc + 4 + (insn.i_format.simmediate << 2);
106 else
107 epc += 8;
108 nextpc = epc;
109 break;
110
111 case bgezal_op:
112 case bgezall_op:
113 arch->gprs[31] = epc + 8;
114 if ((long)arch->gprs[insn.i_format.rs] >= 0)
115 epc = epc + 4 + (insn.i_format.simmediate << 2);
116 else
117 epc += 8;
118 nextpc = epc;
119 break;
120 case bposge32_op:
121 if (!cpu_has_dsp) {
122 kvm_err("%s: DSP branch but not DSP ASE\n",
123 __func__);
124 return -EINVAL;
125 }
126
127 dspcontrol = rddsp(0x01);
128
129 if (dspcontrol >= 32)
130 epc = epc + 4 + (insn.i_format.simmediate << 2);
131 else
132 epc += 8;
133 nextpc = epc;
134 break;
135 default:
136 return -EINVAL;
137 }
138 break;
139
140 /* These are unconditional and in j_format. */
141 case jal_op:
142 arch->gprs[31] = instpc + 8;
143 fallthrough;
144 case j_op:
145 epc += 4;
146 epc >>= 28;
147 epc <<= 28;
148 epc |= (insn.j_format.target << 2);
149 nextpc = epc;
150 break;
151
152 /* These are conditional and in i_format. */
153 case beq_op:
154 case beql_op:
155 if (arch->gprs[insn.i_format.rs] ==
156 arch->gprs[insn.i_format.rt])
157 epc = epc + 4 + (insn.i_format.simmediate << 2);
158 else
159 epc += 8;
160 nextpc = epc;
161 break;
162
163 case bne_op:
164 case bnel_op:
165 if (arch->gprs[insn.i_format.rs] !=
166 arch->gprs[insn.i_format.rt])
167 epc = epc + 4 + (insn.i_format.simmediate << 2);
168 else
169 epc += 8;
170 nextpc = epc;
171 break;
172
173 case blez_op: /* POP06 */
174#ifndef CONFIG_CPU_MIPSR6
175 case blezl_op: /* removed in R6 */
176#endif
177 if (insn.i_format.rt != 0)
178 goto compact_branch;
179 if ((long)arch->gprs[insn.i_format.rs] <= 0)
180 epc = epc + 4 + (insn.i_format.simmediate << 2);
181 else
182 epc += 8;
183 nextpc = epc;
184 break;
185
186 case bgtz_op: /* POP07 */
187#ifndef CONFIG_CPU_MIPSR6
188 case bgtzl_op: /* removed in R6 */
189#endif
190 if (insn.i_format.rt != 0)
191 goto compact_branch;
192 if ((long)arch->gprs[insn.i_format.rs] > 0)
193 epc = epc + 4 + (insn.i_format.simmediate << 2);
194 else
195 epc += 8;
196 nextpc = epc;
197 break;
198
199 /* And now the FPA/cp1 branch instructions. */
200 case cop1_op:
201 kvm_err("%s: unsupported cop1_op\n", __func__);
202 return -EINVAL;
203
204#ifdef CONFIG_CPU_MIPSR6
205 /* R6 added the following compact branches with forbidden slots */
206 case blezl_op: /* POP26 */
207 case bgtzl_op: /* POP27 */
208 /* only rt == 0 isn't compact branch */
209 if (insn.i_format.rt != 0)
210 goto compact_branch;
211 return -EINVAL;
212 case pop10_op:
213 case pop30_op:
214 /* only rs == rt == 0 is reserved, rest are compact branches */
215 if (insn.i_format.rs != 0 || insn.i_format.rt != 0)
216 goto compact_branch;
217 return -EINVAL;
218 case pop66_op:
219 case pop76_op:
220 /* only rs == 0 isn't compact branch */
221 if (insn.i_format.rs != 0)
222 goto compact_branch;
223 return -EINVAL;
224compact_branch:
225 /*
226 * If we've hit an exception on the forbidden slot, then
227 * the branch must not have been taken.
228 */
229 epc += 8;
230 nextpc = epc;
231 break;
232#else
233compact_branch:
234 /* Fall through - Compact branches not supported before R6 */
235#endif
236 default:
237 return -EINVAL;
238 }
239
240 *out = nextpc;
241 return 0;
242}
243
244enum emulation_result update_pc(struct kvm_vcpu *vcpu, u32 cause)
245{
246 int err;
247
248 if (cause & CAUSEF_BD) {
249 err = kvm_compute_return_epc(vcpu, vcpu->arch.pc,
250 &vcpu->arch.pc);
251 if (err)
252 return EMULATE_FAIL;
253 } else {
254 vcpu->arch.pc += 4;
255 }
256
257 kvm_debug("update_pc(): New PC: %#lx\n", vcpu->arch.pc);
258
259 return EMULATE_DONE;
260}
261
262/**
263 * kvm_get_badinstr() - Get bad instruction encoding.
264 * @opc: Guest pointer to faulting instruction.
265 * @vcpu: KVM VCPU information.
266 *
267 * Gets the instruction encoding of the faulting instruction, using the saved
268 * BadInstr register value if it exists, otherwise falling back to reading guest
269 * memory at @opc.
270 *
271 * Returns: The instruction encoding of the faulting instruction.
272 */
273int kvm_get_badinstr(u32 *opc, struct kvm_vcpu *vcpu, u32 *out)
274{
275 if (cpu_has_badinstr) {
276 *out = vcpu->arch.host_cp0_badinstr;
277 return 0;
278 } else {
279 return kvm_get_inst(opc, vcpu, out);
280 }
281}
282
283/**
284 * kvm_get_badinstrp() - Get bad prior instruction encoding.
285 * @opc: Guest pointer to prior faulting instruction.
286 * @vcpu: KVM VCPU information.
287 *
288 * Gets the instruction encoding of the prior faulting instruction (the branch
289 * containing the delay slot which faulted), using the saved BadInstrP register
290 * value if it exists, otherwise falling back to reading guest memory at @opc.
291 *
292 * Returns: The instruction encoding of the prior faulting instruction.
293 */
294int kvm_get_badinstrp(u32 *opc, struct kvm_vcpu *vcpu, u32 *out)
295{
296 if (cpu_has_badinstrp) {
297 *out = vcpu->arch.host_cp0_badinstrp;
298 return 0;
299 } else {
300 return kvm_get_inst(opc, vcpu, out);
301 }
302}
303
304/**
305 * kvm_mips_count_disabled() - Find whether the CP0_Count timer is disabled.
306 * @vcpu: Virtual CPU.
307 *
308 * Returns: 1 if the CP0_Count timer is disabled by either the guest
309 * CP0_Cause.DC bit or the count_ctl.DC bit.
310 * 0 otherwise (in which case CP0_Count timer is running).
311 */
312int kvm_mips_count_disabled(struct kvm_vcpu *vcpu)
313{
314 struct mips_coproc *cop0 = vcpu->arch.cop0;
315
316 return (vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC) ||
317 (kvm_read_c0_guest_cause(cop0) & CAUSEF_DC);
318}
319
320/**
321 * kvm_mips_ktime_to_count() - Scale ktime_t to a 32-bit count.
322 *
323 * Caches the dynamic nanosecond bias in vcpu->arch.count_dyn_bias.
324 *
325 * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
326 */
327static u32 kvm_mips_ktime_to_count(struct kvm_vcpu *vcpu, ktime_t now)
328{
329 s64 now_ns, periods;
330 u64 delta;
331
332 now_ns = ktime_to_ns(now);
333 delta = now_ns + vcpu->arch.count_dyn_bias;
334
335 if (delta >= vcpu->arch.count_period) {
336 /* If delta is out of safe range the bias needs adjusting */
337 periods = div64_s64(now_ns, vcpu->arch.count_period);
338 vcpu->arch.count_dyn_bias = -periods * vcpu->arch.count_period;
339 /* Recalculate delta with new bias */
340 delta = now_ns + vcpu->arch.count_dyn_bias;
341 }
342
343 /*
344 * We've ensured that:
345 * delta < count_period
346 *
347 * Therefore the intermediate delta*count_hz will never overflow since
348 * at the boundary condition:
349 * delta = count_period
350 * delta = NSEC_PER_SEC * 2^32 / count_hz
351 * delta * count_hz = NSEC_PER_SEC * 2^32
352 */
353 return div_u64(delta * vcpu->arch.count_hz, NSEC_PER_SEC);
354}
355
356/**
357 * kvm_mips_count_time() - Get effective current time.
358 * @vcpu: Virtual CPU.
359 *
360 * Get effective monotonic ktime. This is usually a straightforward ktime_get(),
361 * except when the master disable bit is set in count_ctl, in which case it is
362 * count_resume, i.e. the time that the count was disabled.
363 *
364 * Returns: Effective monotonic ktime for CP0_Count.
365 */
366static inline ktime_t kvm_mips_count_time(struct kvm_vcpu *vcpu)
367{
368 if (unlikely(vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC))
369 return vcpu->arch.count_resume;
370
371 return ktime_get();
372}
373
374/**
375 * kvm_mips_read_count_running() - Read the current count value as if running.
376 * @vcpu: Virtual CPU.
377 * @now: Kernel time to read CP0_Count at.
378 *
379 * Returns the current guest CP0_Count register at time @now and handles if the
380 * timer interrupt is pending and hasn't been handled yet.
381 *
382 * Returns: The current value of the guest CP0_Count register.
383 */
384static u32 kvm_mips_read_count_running(struct kvm_vcpu *vcpu, ktime_t now)
385{
386 struct mips_coproc *cop0 = vcpu->arch.cop0;
387 ktime_t expires, threshold;
388 u32 count, compare;
389 int running;
390
391 /* Calculate the biased and scaled guest CP0_Count */
392 count = vcpu->arch.count_bias + kvm_mips_ktime_to_count(vcpu, now);
393 compare = kvm_read_c0_guest_compare(cop0);
394
395 /*
396 * Find whether CP0_Count has reached the closest timer interrupt. If
397 * not, we shouldn't inject it.
398 */
399 if ((s32)(count - compare) < 0)
400 return count;
401
402 /*
403 * The CP0_Count we're going to return has already reached the closest
404 * timer interrupt. Quickly check if it really is a new interrupt by
405 * looking at whether the interval until the hrtimer expiry time is
406 * less than 1/4 of the timer period.
407 */
408 expires = hrtimer_get_expires(&vcpu->arch.comparecount_timer);
409 threshold = ktime_add_ns(now, vcpu->arch.count_period / 4);
410 if (ktime_before(expires, threshold)) {
411 /*
412 * Cancel it while we handle it so there's no chance of
413 * interference with the timeout handler.
414 */
415 running = hrtimer_cancel(&vcpu->arch.comparecount_timer);
416
417 /* Nothing should be waiting on the timeout */
418 kvm_mips_callbacks->queue_timer_int(vcpu);
419
420 /*
421 * Restart the timer if it was running based on the expiry time
422 * we read, so that we don't push it back 2 periods.
423 */
424 if (running) {
425 expires = ktime_add_ns(expires,
426 vcpu->arch.count_period);
427 hrtimer_start(&vcpu->arch.comparecount_timer, expires,
428 HRTIMER_MODE_ABS);
429 }
430 }
431
432 return count;
433}
434
435/**
436 * kvm_mips_read_count() - Read the current count value.
437 * @vcpu: Virtual CPU.
438 *
439 * Read the current guest CP0_Count value, taking into account whether the timer
440 * is stopped.
441 *
442 * Returns: The current guest CP0_Count value.
443 */
444u32 kvm_mips_read_count(struct kvm_vcpu *vcpu)
445{
446 struct mips_coproc *cop0 = vcpu->arch.cop0;
447
448 /* If count disabled just read static copy of count */
449 if (kvm_mips_count_disabled(vcpu))
450 return kvm_read_c0_guest_count(cop0);
451
452 return kvm_mips_read_count_running(vcpu, ktime_get());
453}
454
455/**
456 * kvm_mips_freeze_hrtimer() - Safely stop the hrtimer.
457 * @vcpu: Virtual CPU.
458 * @count: Output pointer for CP0_Count value at point of freeze.
459 *
460 * Freeze the hrtimer safely and return both the ktime and the CP0_Count value
461 * at the point it was frozen. It is guaranteed that any pending interrupts at
462 * the point it was frozen are handled, and none after that point.
463 *
464 * This is useful where the time/CP0_Count is needed in the calculation of the
465 * new parameters.
466 *
467 * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
468 *
469 * Returns: The ktime at the point of freeze.
470 */
471ktime_t kvm_mips_freeze_hrtimer(struct kvm_vcpu *vcpu, u32 *count)
472{
473 ktime_t now;
474
475 /* stop hrtimer before finding time */
476 hrtimer_cancel(&vcpu->arch.comparecount_timer);
477 now = ktime_get();
478
479 /* find count at this point and handle pending hrtimer */
480 *count = kvm_mips_read_count_running(vcpu, now);
481
482 return now;
483}
484
485/**
486 * kvm_mips_resume_hrtimer() - Resume hrtimer, updating expiry.
487 * @vcpu: Virtual CPU.
488 * @now: ktime at point of resume.
489 * @count: CP0_Count at point of resume.
490 *
491 * Resumes the timer and updates the timer expiry based on @now and @count.
492 * This can be used in conjunction with kvm_mips_freeze_timer() when timer
493 * parameters need to be changed.
494 *
495 * It is guaranteed that a timer interrupt immediately after resume will be
496 * handled, but not if CP_Compare is exactly at @count. That case is already
497 * handled by kvm_mips_freeze_timer().
498 *
499 * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
500 */
501static void kvm_mips_resume_hrtimer(struct kvm_vcpu *vcpu,
502 ktime_t now, u32 count)
503{
504 struct mips_coproc *cop0 = vcpu->arch.cop0;
505 u32 compare;
506 u64 delta;
507 ktime_t expire;
508
509 /* Calculate timeout (wrap 0 to 2^32) */
510 compare = kvm_read_c0_guest_compare(cop0);
511 delta = (u64)(u32)(compare - count - 1) + 1;
512 delta = div_u64(delta * NSEC_PER_SEC, vcpu->arch.count_hz);
513 expire = ktime_add_ns(now, delta);
514
515 /* Update hrtimer to use new timeout */
516 hrtimer_cancel(&vcpu->arch.comparecount_timer);
517 hrtimer_start(&vcpu->arch.comparecount_timer, expire, HRTIMER_MODE_ABS);
518}
519
520/**
521 * kvm_mips_restore_hrtimer() - Restore hrtimer after a gap, updating expiry.
522 * @vcpu: Virtual CPU.
523 * @before: Time before Count was saved, lower bound of drift calculation.
524 * @count: CP0_Count at point of restore.
525 * @min_drift: Minimum amount of drift permitted before correction.
526 * Must be <= 0.
527 *
528 * Restores the timer from a particular @count, accounting for drift. This can
529 * be used in conjunction with kvm_mips_freeze_timer() when a hardware timer is
530 * to be used for a period of time, but the exact ktime corresponding to the
531 * final Count that must be restored is not known.
532 *
533 * It is gauranteed that a timer interrupt immediately after restore will be
534 * handled, but not if CP0_Compare is exactly at @count. That case should
535 * already be handled when the hardware timer state is saved.
536 *
537 * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is not
538 * stopped).
539 *
540 * Returns: Amount of correction to count_bias due to drift.
541 */
542int kvm_mips_restore_hrtimer(struct kvm_vcpu *vcpu, ktime_t before,
543 u32 count, int min_drift)
544{
545 ktime_t now, count_time;
546 u32 now_count, before_count;
547 u64 delta;
548 int drift, ret = 0;
549
550 /* Calculate expected count at before */
551 before_count = vcpu->arch.count_bias +
552 kvm_mips_ktime_to_count(vcpu, before);
553
554 /*
555 * Detect significantly negative drift, where count is lower than
556 * expected. Some negative drift is expected when hardware counter is
557 * set after kvm_mips_freeze_timer(), and it is harmless to allow the
558 * time to jump forwards a little, within reason. If the drift is too
559 * significant, adjust the bias to avoid a big Guest.CP0_Count jump.
560 */
561 drift = count - before_count;
562 if (drift < min_drift) {
563 count_time = before;
564 vcpu->arch.count_bias += drift;
565 ret = drift;
566 goto resume;
567 }
568
569 /* Calculate expected count right now */
570 now = ktime_get();
571 now_count = vcpu->arch.count_bias + kvm_mips_ktime_to_count(vcpu, now);
572
573 /*
574 * Detect positive drift, where count is higher than expected, and
575 * adjust the bias to avoid guest time going backwards.
576 */
577 drift = count - now_count;
578 if (drift > 0) {
579 count_time = now;
580 vcpu->arch.count_bias += drift;
581 ret = drift;
582 goto resume;
583 }
584
585 /* Subtract nanosecond delta to find ktime when count was read */
586 delta = (u64)(u32)(now_count - count);
587 delta = div_u64(delta * NSEC_PER_SEC, vcpu->arch.count_hz);
588 count_time = ktime_sub_ns(now, delta);
589
590resume:
591 /* Resume using the calculated ktime */
592 kvm_mips_resume_hrtimer(vcpu, count_time, count);
593 return ret;
594}
595
596/**
597 * kvm_mips_write_count() - Modify the count and update timer.
598 * @vcpu: Virtual CPU.
599 * @count: Guest CP0_Count value to set.
600 *
601 * Sets the CP0_Count value and updates the timer accordingly.
602 */
603void kvm_mips_write_count(struct kvm_vcpu *vcpu, u32 count)
604{
605 struct mips_coproc *cop0 = vcpu->arch.cop0;
606 ktime_t now;
607
608 /* Calculate bias */
609 now = kvm_mips_count_time(vcpu);
610 vcpu->arch.count_bias = count - kvm_mips_ktime_to_count(vcpu, now);
611
612 if (kvm_mips_count_disabled(vcpu))
613 /* The timer's disabled, adjust the static count */
614 kvm_write_c0_guest_count(cop0, count);
615 else
616 /* Update timeout */
617 kvm_mips_resume_hrtimer(vcpu, now, count);
618}
619
620/**
621 * kvm_mips_init_count() - Initialise timer.
622 * @vcpu: Virtual CPU.
623 * @count_hz: Frequency of timer.
624 *
625 * Initialise the timer to the specified frequency, zero it, and set it going if
626 * it's enabled.
627 */
628void kvm_mips_init_count(struct kvm_vcpu *vcpu, unsigned long count_hz)
629{
630 vcpu->arch.count_hz = count_hz;
631 vcpu->arch.count_period = div_u64((u64)NSEC_PER_SEC << 32, count_hz);
632 vcpu->arch.count_dyn_bias = 0;
633
634 /* Starting at 0 */
635 kvm_mips_write_count(vcpu, 0);
636}
637
638/**
639 * kvm_mips_set_count_hz() - Update the frequency of the timer.
640 * @vcpu: Virtual CPU.
641 * @count_hz: Frequency of CP0_Count timer in Hz.
642 *
643 * Change the frequency of the CP0_Count timer. This is done atomically so that
644 * CP0_Count is continuous and no timer interrupt is lost.
645 *
646 * Returns: -EINVAL if @count_hz is out of range.
647 * 0 on success.
648 */
649int kvm_mips_set_count_hz(struct kvm_vcpu *vcpu, s64 count_hz)
650{
651 struct mips_coproc *cop0 = vcpu->arch.cop0;
652 int dc;
653 ktime_t now;
654 u32 count;
655
656 /* ensure the frequency is in a sensible range... */
657 if (count_hz <= 0 || count_hz > NSEC_PER_SEC)
658 return -EINVAL;
659 /* ... and has actually changed */
660 if (vcpu->arch.count_hz == count_hz)
661 return 0;
662
663 /* Safely freeze timer so we can keep it continuous */
664 dc = kvm_mips_count_disabled(vcpu);
665 if (dc) {
666 now = kvm_mips_count_time(vcpu);
667 count = kvm_read_c0_guest_count(cop0);
668 } else {
669 now = kvm_mips_freeze_hrtimer(vcpu, &count);
670 }
671
672 /* Update the frequency */
673 vcpu->arch.count_hz = count_hz;
674 vcpu->arch.count_period = div_u64((u64)NSEC_PER_SEC << 32, count_hz);
675 vcpu->arch.count_dyn_bias = 0;
676
677 /* Calculate adjusted bias so dynamic count is unchanged */
678 vcpu->arch.count_bias = count - kvm_mips_ktime_to_count(vcpu, now);
679
680 /* Update and resume hrtimer */
681 if (!dc)
682 kvm_mips_resume_hrtimer(vcpu, now, count);
683 return 0;
684}
685
686/**
687 * kvm_mips_write_compare() - Modify compare and update timer.
688 * @vcpu: Virtual CPU.
689 * @compare: New CP0_Compare value.
690 * @ack: Whether to acknowledge timer interrupt.
691 *
692 * Update CP0_Compare to a new value and update the timeout.
693 * If @ack, atomically acknowledge any pending timer interrupt, otherwise ensure
694 * any pending timer interrupt is preserved.
695 */
696void kvm_mips_write_compare(struct kvm_vcpu *vcpu, u32 compare, bool ack)
697{
698 struct mips_coproc *cop0 = vcpu->arch.cop0;
699 int dc;
700 u32 old_compare = kvm_read_c0_guest_compare(cop0);
701 s32 delta = compare - old_compare;
702 u32 cause;
703 ktime_t now = ktime_set(0, 0); /* silence bogus GCC warning */
704 u32 count;
705
706 /* if unchanged, must just be an ack */
707 if (old_compare == compare) {
708 if (!ack)
709 return;
710 kvm_mips_callbacks->dequeue_timer_int(vcpu);
711 kvm_write_c0_guest_compare(cop0, compare);
712 return;
713 }
714
715 /*
716 * If guest CP0_Compare moves forward, CP0_GTOffset should be adjusted
717 * too to prevent guest CP0_Count hitting guest CP0_Compare.
718 *
719 * The new GTOffset corresponds to the new value of CP0_Compare, and is
720 * set prior to it being written into the guest context. We disable
721 * preemption until the new value is written to prevent restore of a
722 * GTOffset corresponding to the old CP0_Compare value.
723 */
724 if (IS_ENABLED(CONFIG_KVM_MIPS_VZ) && delta > 0) {
725 preempt_disable();
726 write_c0_gtoffset(compare - read_c0_count());
727 back_to_back_c0_hazard();
728 }
729
730 /* freeze_hrtimer() takes care of timer interrupts <= count */
731 dc = kvm_mips_count_disabled(vcpu);
732 if (!dc)
733 now = kvm_mips_freeze_hrtimer(vcpu, &count);
734
735 if (ack)
736 kvm_mips_callbacks->dequeue_timer_int(vcpu);
737 else if (IS_ENABLED(CONFIG_KVM_MIPS_VZ))
738 /*
739 * With VZ, writing CP0_Compare acks (clears) CP0_Cause.TI, so
740 * preserve guest CP0_Cause.TI if we don't want to ack it.
741 */
742 cause = kvm_read_c0_guest_cause(cop0);
743
744 kvm_write_c0_guest_compare(cop0, compare);
745
746 if (IS_ENABLED(CONFIG_KVM_MIPS_VZ)) {
747 if (delta > 0)
748 preempt_enable();
749
750 back_to_back_c0_hazard();
751
752 if (!ack && cause & CAUSEF_TI)
753 kvm_write_c0_guest_cause(cop0, cause);
754 }
755
756 /* resume_hrtimer() takes care of timer interrupts > count */
757 if (!dc)
758 kvm_mips_resume_hrtimer(vcpu, now, count);
759
760 /*
761 * If guest CP0_Compare is moving backward, we delay CP0_GTOffset change
762 * until after the new CP0_Compare is written, otherwise new guest
763 * CP0_Count could hit new guest CP0_Compare.
764 */
765 if (IS_ENABLED(CONFIG_KVM_MIPS_VZ) && delta <= 0)
766 write_c0_gtoffset(compare - read_c0_count());
767}
768
769/**
770 * kvm_mips_count_disable() - Disable count.
771 * @vcpu: Virtual CPU.
772 *
773 * Disable the CP0_Count timer. A timer interrupt on or before the final stop
774 * time will be handled but not after.
775 *
776 * Assumes CP0_Count was previously enabled but now Guest.CP0_Cause.DC or
777 * count_ctl.DC has been set (count disabled).
778 *
779 * Returns: The time that the timer was stopped.
780 */
781static ktime_t kvm_mips_count_disable(struct kvm_vcpu *vcpu)
782{
783 struct mips_coproc *cop0 = vcpu->arch.cop0;
784 u32 count;
785 ktime_t now;
786
787 /* Stop hrtimer */
788 hrtimer_cancel(&vcpu->arch.comparecount_timer);
789
790 /* Set the static count from the dynamic count, handling pending TI */
791 now = ktime_get();
792 count = kvm_mips_read_count_running(vcpu, now);
793 kvm_write_c0_guest_count(cop0, count);
794
795 return now;
796}
797
798/**
799 * kvm_mips_count_disable_cause() - Disable count using CP0_Cause.DC.
800 * @vcpu: Virtual CPU.
801 *
802 * Disable the CP0_Count timer and set CP0_Cause.DC. A timer interrupt on or
803 * before the final stop time will be handled if the timer isn't disabled by
804 * count_ctl.DC, but not after.
805 *
806 * Assumes CP0_Cause.DC is clear (count enabled).
807 */
808void kvm_mips_count_disable_cause(struct kvm_vcpu *vcpu)
809{
810 struct mips_coproc *cop0 = vcpu->arch.cop0;
811
812 kvm_set_c0_guest_cause(cop0, CAUSEF_DC);
813 if (!(vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC))
814 kvm_mips_count_disable(vcpu);
815}
816
817/**
818 * kvm_mips_count_enable_cause() - Enable count using CP0_Cause.DC.
819 * @vcpu: Virtual CPU.
820 *
821 * Enable the CP0_Count timer and clear CP0_Cause.DC. A timer interrupt after
822 * the start time will be handled if the timer isn't disabled by count_ctl.DC,
823 * potentially before even returning, so the caller should be careful with
824 * ordering of CP0_Cause modifications so as not to lose it.
825 *
826 * Assumes CP0_Cause.DC is set (count disabled).
827 */
828void kvm_mips_count_enable_cause(struct kvm_vcpu *vcpu)
829{
830 struct mips_coproc *cop0 = vcpu->arch.cop0;
831 u32 count;
832
833 kvm_clear_c0_guest_cause(cop0, CAUSEF_DC);
834
835 /*
836 * Set the dynamic count to match the static count.
837 * This starts the hrtimer if count_ctl.DC allows it.
838 * Otherwise it conveniently updates the biases.
839 */
840 count = kvm_read_c0_guest_count(cop0);
841 kvm_mips_write_count(vcpu, count);
842}
843
844/**
845 * kvm_mips_set_count_ctl() - Update the count control KVM register.
846 * @vcpu: Virtual CPU.
847 * @count_ctl: Count control register new value.
848 *
849 * Set the count control KVM register. The timer is updated accordingly.
850 *
851 * Returns: -EINVAL if reserved bits are set.
852 * 0 on success.
853 */
854int kvm_mips_set_count_ctl(struct kvm_vcpu *vcpu, s64 count_ctl)
855{
856 struct mips_coproc *cop0 = vcpu->arch.cop0;
857 s64 changed = count_ctl ^ vcpu->arch.count_ctl;
858 s64 delta;
859 ktime_t expire, now;
860 u32 count, compare;
861
862 /* Only allow defined bits to be changed */
863 if (changed & ~(s64)(KVM_REG_MIPS_COUNT_CTL_DC))
864 return -EINVAL;
865
866 /* Apply new value */
867 vcpu->arch.count_ctl = count_ctl;
868
869 /* Master CP0_Count disable */
870 if (changed & KVM_REG_MIPS_COUNT_CTL_DC) {
871 /* Is CP0_Cause.DC already disabling CP0_Count? */
872 if (kvm_read_c0_guest_cause(cop0) & CAUSEF_DC) {
873 if (count_ctl & KVM_REG_MIPS_COUNT_CTL_DC)
874 /* Just record the current time */
875 vcpu->arch.count_resume = ktime_get();
876 } else if (count_ctl & KVM_REG_MIPS_COUNT_CTL_DC) {
877 /* disable timer and record current time */
878 vcpu->arch.count_resume = kvm_mips_count_disable(vcpu);
879 } else {
880 /*
881 * Calculate timeout relative to static count at resume
882 * time (wrap 0 to 2^32).
883 */
884 count = kvm_read_c0_guest_count(cop0);
885 compare = kvm_read_c0_guest_compare(cop0);
886 delta = (u64)(u32)(compare - count - 1) + 1;
887 delta = div_u64(delta * NSEC_PER_SEC,
888 vcpu->arch.count_hz);
889 expire = ktime_add_ns(vcpu->arch.count_resume, delta);
890
891 /* Handle pending interrupt */
892 now = ktime_get();
893 if (ktime_compare(now, expire) >= 0)
894 /* Nothing should be waiting on the timeout */
895 kvm_mips_callbacks->queue_timer_int(vcpu);
896
897 /* Resume hrtimer without changing bias */
898 count = kvm_mips_read_count_running(vcpu, now);
899 kvm_mips_resume_hrtimer(vcpu, now, count);
900 }
901 }
902
903 return 0;
904}
905
906/**
907 * kvm_mips_set_count_resume() - Update the count resume KVM register.
908 * @vcpu: Virtual CPU.
909 * @count_resume: Count resume register new value.
910 *
911 * Set the count resume KVM register.
912 *
913 * Returns: -EINVAL if out of valid range (0..now).
914 * 0 on success.
915 */
916int kvm_mips_set_count_resume(struct kvm_vcpu *vcpu, s64 count_resume)
917{
918 /*
919 * It doesn't make sense for the resume time to be in the future, as it
920 * would be possible for the next interrupt to be more than a full
921 * period in the future.
922 */
923 if (count_resume < 0 || count_resume > ktime_to_ns(ktime_get()))
924 return -EINVAL;
925
926 vcpu->arch.count_resume = ns_to_ktime(count_resume);
927 return 0;
928}
929
930/**
931 * kvm_mips_count_timeout() - Push timer forward on timeout.
932 * @vcpu: Virtual CPU.
933 *
934 * Handle an hrtimer event by push the hrtimer forward a period.
935 *
936 * Returns: The hrtimer_restart value to return to the hrtimer subsystem.
937 */
938enum hrtimer_restart kvm_mips_count_timeout(struct kvm_vcpu *vcpu)
939{
940 /* Add the Count period to the current expiry time */
941 hrtimer_add_expires_ns(&vcpu->arch.comparecount_timer,
942 vcpu->arch.count_period);
943 return HRTIMER_RESTART;
944}
945
946enum emulation_result kvm_mips_emul_eret(struct kvm_vcpu *vcpu)
947{
948 struct mips_coproc *cop0 = vcpu->arch.cop0;
949 enum emulation_result er = EMULATE_DONE;
950
951 if (kvm_read_c0_guest_status(cop0) & ST0_ERL) {
952 kvm_clear_c0_guest_status(cop0, ST0_ERL);
953 vcpu->arch.pc = kvm_read_c0_guest_errorepc(cop0);
954 } else if (kvm_read_c0_guest_status(cop0) & ST0_EXL) {
955 kvm_debug("[%#lx] ERET to %#lx\n", vcpu->arch.pc,
956 kvm_read_c0_guest_epc(cop0));
957 kvm_clear_c0_guest_status(cop0, ST0_EXL);
958 vcpu->arch.pc = kvm_read_c0_guest_epc(cop0);
959
960 } else {
961 kvm_err("[%#lx] ERET when MIPS_SR_EXL|MIPS_SR_ERL == 0\n",
962 vcpu->arch.pc);
963 er = EMULATE_FAIL;
964 }
965
966 return er;
967}
968
969enum emulation_result kvm_mips_emul_wait(struct kvm_vcpu *vcpu)
970{
971 kvm_debug("[%#lx] !!!WAIT!!! (%#lx)\n", vcpu->arch.pc,
972 vcpu->arch.pending_exceptions);
973
974 ++vcpu->stat.wait_exits;
975 trace_kvm_exit(vcpu, KVM_TRACE_EXIT_WAIT);
976 if (!vcpu->arch.pending_exceptions) {
977 kvm_vz_lose_htimer(vcpu);
978 vcpu->arch.wait = 1;
979 kvm_vcpu_block(vcpu);
980
981 /*
982 * We we are runnable, then definitely go off to user space to
983 * check if any I/O interrupts are pending.
984 */
985 if (kvm_check_request(KVM_REQ_UNHALT, vcpu)) {
986 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
987 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
988 }
989 }
990
991 return EMULATE_DONE;
992}
993
994static void kvm_mips_change_entryhi(struct kvm_vcpu *vcpu,
995 unsigned long entryhi)
996{
997 struct mips_coproc *cop0 = vcpu->arch.cop0;
998 struct mm_struct *kern_mm = &vcpu->arch.guest_kernel_mm;
999 int cpu, i;
1000 u32 nasid = entryhi & KVM_ENTRYHI_ASID;
1001
1002 if (((kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID) != nasid)) {
1003 trace_kvm_asid_change(vcpu, kvm_read_c0_guest_entryhi(cop0) &
1004 KVM_ENTRYHI_ASID, nasid);
1005
1006 /*
1007 * Flush entries from the GVA page tables.
1008 * Guest user page table will get flushed lazily on re-entry to
1009 * guest user if the guest ASID actually changes.
1010 */
1011 kvm_mips_flush_gva_pt(kern_mm->pgd, KMF_KERN);
1012
1013 /*
1014 * Regenerate/invalidate kernel MMU context.
1015 * The user MMU context will be regenerated lazily on re-entry
1016 * to guest user if the guest ASID actually changes.
1017 */
1018 preempt_disable();
1019 cpu = smp_processor_id();
1020 get_new_mmu_context(kern_mm);
1021 for_each_possible_cpu(i)
1022 if (i != cpu)
1023 set_cpu_context(i, kern_mm, 0);
1024 preempt_enable();
1025 }
1026 kvm_write_c0_guest_entryhi(cop0, entryhi);
1027}
1028
1029enum emulation_result kvm_mips_emul_tlbr(struct kvm_vcpu *vcpu)
1030{
1031 struct mips_coproc *cop0 = vcpu->arch.cop0;
1032 struct kvm_mips_tlb *tlb;
1033 unsigned long pc = vcpu->arch.pc;
1034 int index;
1035
1036 index = kvm_read_c0_guest_index(cop0);
1037 if (index < 0 || index >= KVM_MIPS_GUEST_TLB_SIZE) {
1038 /* UNDEFINED */
1039 kvm_debug("[%#lx] TLBR Index %#x out of range\n", pc, index);
1040 index &= KVM_MIPS_GUEST_TLB_SIZE - 1;
1041 }
1042
1043 tlb = &vcpu->arch.guest_tlb[index];
1044 kvm_write_c0_guest_pagemask(cop0, tlb->tlb_mask);
1045 kvm_write_c0_guest_entrylo0(cop0, tlb->tlb_lo[0]);
1046 kvm_write_c0_guest_entrylo1(cop0, tlb->tlb_lo[1]);
1047 kvm_mips_change_entryhi(vcpu, tlb->tlb_hi);
1048
1049 return EMULATE_DONE;
1050}
1051
1052/**
1053 * kvm_mips_invalidate_guest_tlb() - Indicates a change in guest MMU map.
1054 * @vcpu: VCPU with changed mappings.
1055 * @tlb: TLB entry being removed.
1056 *
1057 * This is called to indicate a single change in guest MMU mappings, so that we
1058 * can arrange TLB flushes on this and other CPUs.
1059 */
1060static void kvm_mips_invalidate_guest_tlb(struct kvm_vcpu *vcpu,
1061 struct kvm_mips_tlb *tlb)
1062{
1063 struct mm_struct *kern_mm = &vcpu->arch.guest_kernel_mm;
1064 struct mm_struct *user_mm = &vcpu->arch.guest_user_mm;
1065 int cpu, i;
1066 bool user;
1067
1068 /* No need to flush for entries which are already invalid */
1069 if (!((tlb->tlb_lo[0] | tlb->tlb_lo[1]) & ENTRYLO_V))
1070 return;
1071 /* Don't touch host kernel page tables or TLB mappings */
1072 if ((unsigned long)tlb->tlb_hi > 0x7fffffff)
1073 return;
1074 /* User address space doesn't need flushing for KSeg2/3 changes */
1075 user = tlb->tlb_hi < KVM_GUEST_KSEG0;
1076
1077 preempt_disable();
1078
1079 /* Invalidate page table entries */
1080 kvm_trap_emul_invalidate_gva(vcpu, tlb->tlb_hi & VPN2_MASK, user);
1081
1082 /*
1083 * Probe the shadow host TLB for the entry being overwritten, if one
1084 * matches, invalidate it
1085 */
1086 kvm_mips_host_tlb_inv(vcpu, tlb->tlb_hi, user, true);
1087
1088 /* Invalidate the whole ASID on other CPUs */
1089 cpu = smp_processor_id();
1090 for_each_possible_cpu(i) {
1091 if (i == cpu)
1092 continue;
1093 if (user)
1094 set_cpu_context(i, user_mm, 0);
1095 set_cpu_context(i, kern_mm, 0);
1096 }
1097
1098 preempt_enable();
1099}
1100
1101/* Write Guest TLB Entry @ Index */
1102enum emulation_result kvm_mips_emul_tlbwi(struct kvm_vcpu *vcpu)
1103{
1104 struct mips_coproc *cop0 = vcpu->arch.cop0;
1105 int index = kvm_read_c0_guest_index(cop0);
1106 struct kvm_mips_tlb *tlb = NULL;
1107 unsigned long pc = vcpu->arch.pc;
1108
1109 if (index < 0 || index >= KVM_MIPS_GUEST_TLB_SIZE) {
1110 kvm_debug("%s: illegal index: %d\n", __func__, index);
1111 kvm_debug("[%#lx] COP0_TLBWI [%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx, mask: %#lx)\n",
1112 pc, index, kvm_read_c0_guest_entryhi(cop0),
1113 kvm_read_c0_guest_entrylo0(cop0),
1114 kvm_read_c0_guest_entrylo1(cop0),
1115 kvm_read_c0_guest_pagemask(cop0));
1116 index = (index & ~0x80000000) % KVM_MIPS_GUEST_TLB_SIZE;
1117 }
1118
1119 tlb = &vcpu->arch.guest_tlb[index];
1120
1121 kvm_mips_invalidate_guest_tlb(vcpu, tlb);
1122
1123 tlb->tlb_mask = kvm_read_c0_guest_pagemask(cop0);
1124 tlb->tlb_hi = kvm_read_c0_guest_entryhi(cop0);
1125 tlb->tlb_lo[0] = kvm_read_c0_guest_entrylo0(cop0);
1126 tlb->tlb_lo[1] = kvm_read_c0_guest_entrylo1(cop0);
1127
1128 kvm_debug("[%#lx] COP0_TLBWI [%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx, mask: %#lx)\n",
1129 pc, index, kvm_read_c0_guest_entryhi(cop0),
1130 kvm_read_c0_guest_entrylo0(cop0),
1131 kvm_read_c0_guest_entrylo1(cop0),
1132 kvm_read_c0_guest_pagemask(cop0));
1133
1134 return EMULATE_DONE;
1135}
1136
1137/* Write Guest TLB Entry @ Random Index */
1138enum emulation_result kvm_mips_emul_tlbwr(struct kvm_vcpu *vcpu)
1139{
1140 struct mips_coproc *cop0 = vcpu->arch.cop0;
1141 struct kvm_mips_tlb *tlb = NULL;
1142 unsigned long pc = vcpu->arch.pc;
1143 int index;
1144
1145 index = prandom_u32_max(KVM_MIPS_GUEST_TLB_SIZE);
1146 tlb = &vcpu->arch.guest_tlb[index];
1147
1148 kvm_mips_invalidate_guest_tlb(vcpu, tlb);
1149
1150 tlb->tlb_mask = kvm_read_c0_guest_pagemask(cop0);
1151 tlb->tlb_hi = kvm_read_c0_guest_entryhi(cop0);
1152 tlb->tlb_lo[0] = kvm_read_c0_guest_entrylo0(cop0);
1153 tlb->tlb_lo[1] = kvm_read_c0_guest_entrylo1(cop0);
1154
1155 kvm_debug("[%#lx] COP0_TLBWR[%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx)\n",
1156 pc, index, kvm_read_c0_guest_entryhi(cop0),
1157 kvm_read_c0_guest_entrylo0(cop0),
1158 kvm_read_c0_guest_entrylo1(cop0));
1159
1160 return EMULATE_DONE;
1161}
1162
1163enum emulation_result kvm_mips_emul_tlbp(struct kvm_vcpu *vcpu)
1164{
1165 struct mips_coproc *cop0 = vcpu->arch.cop0;
1166 long entryhi = kvm_read_c0_guest_entryhi(cop0);
1167 unsigned long pc = vcpu->arch.pc;
1168 int index = -1;
1169
1170 index = kvm_mips_guest_tlb_lookup(vcpu, entryhi);
1171
1172 kvm_write_c0_guest_index(cop0, index);
1173
1174 kvm_debug("[%#lx] COP0_TLBP (entryhi: %#lx), index: %d\n", pc, entryhi,
1175 index);
1176
1177 return EMULATE_DONE;
1178}
1179
1180/**
1181 * kvm_mips_config1_wrmask() - Find mask of writable bits in guest Config1
1182 * @vcpu: Virtual CPU.
1183 *
1184 * Finds the mask of bits which are writable in the guest's Config1 CP0
1185 * register, by userland (currently read-only to the guest).
1186 */
1187unsigned int kvm_mips_config1_wrmask(struct kvm_vcpu *vcpu)
1188{
1189 unsigned int mask = 0;
1190
1191 /* Permit FPU to be present if FPU is supported */
1192 if (kvm_mips_guest_can_have_fpu(&vcpu->arch))
1193 mask |= MIPS_CONF1_FP;
1194
1195 return mask;
1196}
1197
1198/**
1199 * kvm_mips_config3_wrmask() - Find mask of writable bits in guest Config3
1200 * @vcpu: Virtual CPU.
1201 *
1202 * Finds the mask of bits which are writable in the guest's Config3 CP0
1203 * register, by userland (currently read-only to the guest).
1204 */
1205unsigned int kvm_mips_config3_wrmask(struct kvm_vcpu *vcpu)
1206{
1207 /* Config4 and ULRI are optional */
1208 unsigned int mask = MIPS_CONF_M | MIPS_CONF3_ULRI;
1209
1210 /* Permit MSA to be present if MSA is supported */
1211 if (kvm_mips_guest_can_have_msa(&vcpu->arch))
1212 mask |= MIPS_CONF3_MSA;
1213
1214 return mask;
1215}
1216
1217/**
1218 * kvm_mips_config4_wrmask() - Find mask of writable bits in guest Config4
1219 * @vcpu: Virtual CPU.
1220 *
1221 * Finds the mask of bits which are writable in the guest's Config4 CP0
1222 * register, by userland (currently read-only to the guest).
1223 */
1224unsigned int kvm_mips_config4_wrmask(struct kvm_vcpu *vcpu)
1225{
1226 /* Config5 is optional */
1227 unsigned int mask = MIPS_CONF_M;
1228
1229 /* KScrExist */
1230 mask |= 0xfc << MIPS_CONF4_KSCREXIST_SHIFT;
1231
1232 return mask;
1233}
1234
1235/**
1236 * kvm_mips_config5_wrmask() - Find mask of writable bits in guest Config5
1237 * @vcpu: Virtual CPU.
1238 *
1239 * Finds the mask of bits which are writable in the guest's Config5 CP0
1240 * register, by the guest itself.
1241 */
1242unsigned int kvm_mips_config5_wrmask(struct kvm_vcpu *vcpu)
1243{
1244 unsigned int mask = 0;
1245
1246 /* Permit MSAEn changes if MSA supported and enabled */
1247 if (kvm_mips_guest_has_msa(&vcpu->arch))
1248 mask |= MIPS_CONF5_MSAEN;
1249
1250 /*
1251 * Permit guest FPU mode changes if FPU is enabled and the relevant
1252 * feature exists according to FIR register.
1253 */
1254 if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
1255 if (cpu_has_fre)
1256 mask |= MIPS_CONF5_FRE;
1257 /* We don't support UFR or UFE */
1258 }
1259
1260 return mask;
1261}
1262
1263enum emulation_result kvm_mips_emulate_CP0(union mips_instruction inst,
1264 u32 *opc, u32 cause,
1265 struct kvm_vcpu *vcpu)
1266{
1267 struct mips_coproc *cop0 = vcpu->arch.cop0;
1268 enum emulation_result er = EMULATE_DONE;
1269 u32 rt, rd, sel;
1270 unsigned long curr_pc;
1271
1272 /*
1273 * Update PC and hold onto current PC in case there is
1274 * an error and we want to rollback the PC
1275 */
1276 curr_pc = vcpu->arch.pc;
1277 er = update_pc(vcpu, cause);
1278 if (er == EMULATE_FAIL)
1279 return er;
1280
1281 if (inst.co_format.co) {
1282 switch (inst.co_format.func) {
1283 case tlbr_op: /* Read indexed TLB entry */
1284 er = kvm_mips_emul_tlbr(vcpu);
1285 break;
1286 case tlbwi_op: /* Write indexed */
1287 er = kvm_mips_emul_tlbwi(vcpu);
1288 break;
1289 case tlbwr_op: /* Write random */
1290 er = kvm_mips_emul_tlbwr(vcpu);
1291 break;
1292 case tlbp_op: /* TLB Probe */
1293 er = kvm_mips_emul_tlbp(vcpu);
1294 break;
1295 case rfe_op:
1296 kvm_err("!!!COP0_RFE!!!\n");
1297 break;
1298 case eret_op:
1299 er = kvm_mips_emul_eret(vcpu);
1300 goto dont_update_pc;
1301 case wait_op:
1302 er = kvm_mips_emul_wait(vcpu);
1303 break;
1304 case hypcall_op:
1305 er = kvm_mips_emul_hypcall(vcpu, inst);
1306 break;
1307 }
1308 } else {
1309 rt = inst.c0r_format.rt;
1310 rd = inst.c0r_format.rd;
1311 sel = inst.c0r_format.sel;
1312
1313 switch (inst.c0r_format.rs) {
1314 case mfc_op:
1315#ifdef CONFIG_KVM_MIPS_DEBUG_COP0_COUNTERS
1316 cop0->stat[rd][sel]++;
1317#endif
1318 /* Get reg */
1319 if ((rd == MIPS_CP0_COUNT) && (sel == 0)) {
1320 vcpu->arch.gprs[rt] =
1321 (s32)kvm_mips_read_count(vcpu);
1322 } else if ((rd == MIPS_CP0_ERRCTL) && (sel == 0)) {
1323 vcpu->arch.gprs[rt] = 0x0;
1324#ifdef CONFIG_KVM_MIPS_DYN_TRANS
1325 kvm_mips_trans_mfc0(inst, opc, vcpu);
1326#endif
1327 } else {
1328 vcpu->arch.gprs[rt] = (s32)cop0->reg[rd][sel];
1329
1330#ifdef CONFIG_KVM_MIPS_DYN_TRANS
1331 kvm_mips_trans_mfc0(inst, opc, vcpu);
1332#endif
1333 }
1334
1335 trace_kvm_hwr(vcpu, KVM_TRACE_MFC0,
1336 KVM_TRACE_COP0(rd, sel),
1337 vcpu->arch.gprs[rt]);
1338 break;
1339
1340 case dmfc_op:
1341 vcpu->arch.gprs[rt] = cop0->reg[rd][sel];
1342
1343 trace_kvm_hwr(vcpu, KVM_TRACE_DMFC0,
1344 KVM_TRACE_COP0(rd, sel),
1345 vcpu->arch.gprs[rt]);
1346 break;
1347
1348 case mtc_op:
1349#ifdef CONFIG_KVM_MIPS_DEBUG_COP0_COUNTERS
1350 cop0->stat[rd][sel]++;
1351#endif
1352 trace_kvm_hwr(vcpu, KVM_TRACE_MTC0,
1353 KVM_TRACE_COP0(rd, sel),
1354 vcpu->arch.gprs[rt]);
1355
1356 if ((rd == MIPS_CP0_TLB_INDEX)
1357 && (vcpu->arch.gprs[rt] >=
1358 KVM_MIPS_GUEST_TLB_SIZE)) {
1359 kvm_err("Invalid TLB Index: %ld",
1360 vcpu->arch.gprs[rt]);
1361 er = EMULATE_FAIL;
1362 break;
1363 }
1364 if ((rd == MIPS_CP0_PRID) && (sel == 1)) {
1365 /*
1366 * Preserve core number, and keep the exception
1367 * base in guest KSeg0.
1368 */
1369 kvm_change_c0_guest_ebase(cop0, 0x1ffff000,
1370 vcpu->arch.gprs[rt]);
1371 } else if (rd == MIPS_CP0_TLB_HI && sel == 0) {
1372 kvm_mips_change_entryhi(vcpu,
1373 vcpu->arch.gprs[rt]);
1374 }
1375 /* Are we writing to COUNT */
1376 else if ((rd == MIPS_CP0_COUNT) && (sel == 0)) {
1377 kvm_mips_write_count(vcpu, vcpu->arch.gprs[rt]);
1378 goto done;
1379 } else if ((rd == MIPS_CP0_COMPARE) && (sel == 0)) {
1380 /* If we are writing to COMPARE */
1381 /* Clear pending timer interrupt, if any */
1382 kvm_mips_write_compare(vcpu,
1383 vcpu->arch.gprs[rt],
1384 true);
1385 } else if ((rd == MIPS_CP0_STATUS) && (sel == 0)) {
1386 unsigned int old_val, val, change;
1387
1388 old_val = kvm_read_c0_guest_status(cop0);
1389 val = vcpu->arch.gprs[rt];
1390 change = val ^ old_val;
1391
1392 /* Make sure that the NMI bit is never set */
1393 val &= ~ST0_NMI;
1394
1395 /*
1396 * Don't allow CU1 or FR to be set unless FPU
1397 * capability enabled and exists in guest
1398 * configuration.
1399 */
1400 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
1401 val &= ~(ST0_CU1 | ST0_FR);
1402
1403 /*
1404 * Also don't allow FR to be set if host doesn't
1405 * support it.
1406 */
1407 if (!(current_cpu_data.fpu_id & MIPS_FPIR_F64))
1408 val &= ~ST0_FR;
1409
1410
1411 /* Handle changes in FPU mode */
1412 preempt_disable();
1413
1414 /*
1415 * FPU and Vector register state is made
1416 * UNPREDICTABLE by a change of FR, so don't
1417 * even bother saving it.
1418 */
1419 if (change & ST0_FR)
1420 kvm_drop_fpu(vcpu);
1421
1422 /*
1423 * If MSA state is already live, it is undefined
1424 * how it interacts with FR=0 FPU state, and we
1425 * don't want to hit reserved instruction
1426 * exceptions trying to save the MSA state later
1427 * when CU=1 && FR=1, so play it safe and save
1428 * it first.
1429 */
1430 if (change & ST0_CU1 && !(val & ST0_FR) &&
1431 vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA)
1432 kvm_lose_fpu(vcpu);
1433
1434 /*
1435 * Propagate CU1 (FPU enable) changes
1436 * immediately if the FPU context is already
1437 * loaded. When disabling we leave the context
1438 * loaded so it can be quickly enabled again in
1439 * the near future.
1440 */
1441 if (change & ST0_CU1 &&
1442 vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)
1443 change_c0_status(ST0_CU1, val);
1444
1445 preempt_enable();
1446
1447 kvm_write_c0_guest_status(cop0, val);
1448
1449#ifdef CONFIG_KVM_MIPS_DYN_TRANS
1450 /*
1451 * If FPU present, we need CU1/FR bits to take
1452 * effect fairly soon.
1453 */
1454 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
1455 kvm_mips_trans_mtc0(inst, opc, vcpu);
1456#endif
1457 } else if ((rd == MIPS_CP0_CONFIG) && (sel == 5)) {
1458 unsigned int old_val, val, change, wrmask;
1459
1460 old_val = kvm_read_c0_guest_config5(cop0);
1461 val = vcpu->arch.gprs[rt];
1462
1463 /* Only a few bits are writable in Config5 */
1464 wrmask = kvm_mips_config5_wrmask(vcpu);
1465 change = (val ^ old_val) & wrmask;
1466 val = old_val ^ change;
1467
1468
1469 /* Handle changes in FPU/MSA modes */
1470 preempt_disable();
1471
1472 /*
1473 * Propagate FRE changes immediately if the FPU
1474 * context is already loaded.
1475 */
1476 if (change & MIPS_CONF5_FRE &&
1477 vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)
1478 change_c0_config5(MIPS_CONF5_FRE, val);
1479
1480 /*
1481 * Propagate MSAEn changes immediately if the
1482 * MSA context is already loaded. When disabling
1483 * we leave the context loaded so it can be
1484 * quickly enabled again in the near future.
1485 */
1486 if (change & MIPS_CONF5_MSAEN &&
1487 vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA)
1488 change_c0_config5(MIPS_CONF5_MSAEN,
1489 val);
1490
1491 preempt_enable();
1492
1493 kvm_write_c0_guest_config5(cop0, val);
1494 } else if ((rd == MIPS_CP0_CAUSE) && (sel == 0)) {
1495 u32 old_cause, new_cause;
1496
1497 old_cause = kvm_read_c0_guest_cause(cop0);
1498 new_cause = vcpu->arch.gprs[rt];
1499 /* Update R/W bits */
1500 kvm_change_c0_guest_cause(cop0, 0x08800300,
1501 new_cause);
1502 /* DC bit enabling/disabling timer? */
1503 if ((old_cause ^ new_cause) & CAUSEF_DC) {
1504 if (new_cause & CAUSEF_DC)
1505 kvm_mips_count_disable_cause(vcpu);
1506 else
1507 kvm_mips_count_enable_cause(vcpu);
1508 }
1509 } else if ((rd == MIPS_CP0_HWRENA) && (sel == 0)) {
1510 u32 mask = MIPS_HWRENA_CPUNUM |
1511 MIPS_HWRENA_SYNCISTEP |
1512 MIPS_HWRENA_CC |
1513 MIPS_HWRENA_CCRES;
1514
1515 if (kvm_read_c0_guest_config3(cop0) &
1516 MIPS_CONF3_ULRI)
1517 mask |= MIPS_HWRENA_ULR;
1518 cop0->reg[rd][sel] = vcpu->arch.gprs[rt] & mask;
1519 } else {
1520 cop0->reg[rd][sel] = vcpu->arch.gprs[rt];
1521#ifdef CONFIG_KVM_MIPS_DYN_TRANS
1522 kvm_mips_trans_mtc0(inst, opc, vcpu);
1523#endif
1524 }
1525 break;
1526
1527 case dmtc_op:
1528 kvm_err("!!!!!!![%#lx]dmtc_op: rt: %d, rd: %d, sel: %d!!!!!!\n",
1529 vcpu->arch.pc, rt, rd, sel);
1530 trace_kvm_hwr(vcpu, KVM_TRACE_DMTC0,
1531 KVM_TRACE_COP0(rd, sel),
1532 vcpu->arch.gprs[rt]);
1533 er = EMULATE_FAIL;
1534 break;
1535
1536 case mfmc0_op:
1537#ifdef KVM_MIPS_DEBUG_COP0_COUNTERS
1538 cop0->stat[MIPS_CP0_STATUS][0]++;
1539#endif
1540 if (rt != 0)
1541 vcpu->arch.gprs[rt] =
1542 kvm_read_c0_guest_status(cop0);
1543 /* EI */
1544 if (inst.mfmc0_format.sc) {
1545 kvm_debug("[%#lx] mfmc0_op: EI\n",
1546 vcpu->arch.pc);
1547 kvm_set_c0_guest_status(cop0, ST0_IE);
1548 } else {
1549 kvm_debug("[%#lx] mfmc0_op: DI\n",
1550 vcpu->arch.pc);
1551 kvm_clear_c0_guest_status(cop0, ST0_IE);
1552 }
1553
1554 break;
1555
1556 case wrpgpr_op:
1557 {
1558 u32 css = cop0->reg[MIPS_CP0_STATUS][2] & 0xf;
1559 u32 pss =
1560 (cop0->reg[MIPS_CP0_STATUS][2] >> 6) & 0xf;
1561 /*
1562 * We don't support any shadow register sets, so
1563 * SRSCtl[PSS] == SRSCtl[CSS] = 0
1564 */
1565 if (css || pss) {
1566 er = EMULATE_FAIL;
1567 break;
1568 }
1569 kvm_debug("WRPGPR[%d][%d] = %#lx\n", pss, rd,
1570 vcpu->arch.gprs[rt]);
1571 vcpu->arch.gprs[rd] = vcpu->arch.gprs[rt];
1572 }
1573 break;
1574 default:
1575 kvm_err("[%#lx]MachEmulateCP0: unsupported COP0, copz: 0x%x\n",
1576 vcpu->arch.pc, inst.c0r_format.rs);
1577 er = EMULATE_FAIL;
1578 break;
1579 }
1580 }
1581
1582done:
1583 /* Rollback PC only if emulation was unsuccessful */
1584 if (er == EMULATE_FAIL)
1585 vcpu->arch.pc = curr_pc;
1586
1587dont_update_pc:
1588 /*
1589 * This is for special instructions whose emulation
1590 * updates the PC, so do not overwrite the PC under
1591 * any circumstances
1592 */
1593
1594 return er;
1595}
1596
1597enum emulation_result kvm_mips_emulate_store(union mips_instruction inst,
1598 u32 cause,
1599 struct kvm_vcpu *vcpu)
1600{
1601 int r;
1602 enum emulation_result er;
1603 u32 rt;
1604 struct kvm_run *run = vcpu->run;
1605 void *data = run->mmio.data;
1606 unsigned int imme;
1607 unsigned long curr_pc;
1608
1609 /*
1610 * Update PC and hold onto current PC in case there is
1611 * an error and we want to rollback the PC
1612 */
1613 curr_pc = vcpu->arch.pc;
1614 er = update_pc(vcpu, cause);
1615 if (er == EMULATE_FAIL)
1616 return er;
1617
1618 rt = inst.i_format.rt;
1619
1620 run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
1621 vcpu->arch.host_cp0_badvaddr);
1622 if (run->mmio.phys_addr == KVM_INVALID_ADDR)
1623 goto out_fail;
1624
1625 switch (inst.i_format.opcode) {
1626#if defined(CONFIG_64BIT) && defined(CONFIG_KVM_MIPS_VZ)
1627 case sd_op:
1628 run->mmio.len = 8;
1629 *(u64 *)data = vcpu->arch.gprs[rt];
1630
1631 kvm_debug("[%#lx] OP_SD: eaddr: %#lx, gpr: %#lx, data: %#llx\n",
1632 vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1633 vcpu->arch.gprs[rt], *(u64 *)data);
1634 break;
1635#endif
1636
1637 case sw_op:
1638 run->mmio.len = 4;
1639 *(u32 *)data = vcpu->arch.gprs[rt];
1640
1641 kvm_debug("[%#lx] OP_SW: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1642 vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1643 vcpu->arch.gprs[rt], *(u32 *)data);
1644 break;
1645
1646 case sh_op:
1647 run->mmio.len = 2;
1648 *(u16 *)data = vcpu->arch.gprs[rt];
1649
1650 kvm_debug("[%#lx] OP_SH: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1651 vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1652 vcpu->arch.gprs[rt], *(u16 *)data);
1653 break;
1654
1655 case sb_op:
1656 run->mmio.len = 1;
1657 *(u8 *)data = vcpu->arch.gprs[rt];
1658
1659 kvm_debug("[%#lx] OP_SB: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1660 vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1661 vcpu->arch.gprs[rt], *(u8 *)data);
1662 break;
1663
1664 case swl_op:
1665 run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
1666 vcpu->arch.host_cp0_badvaddr) & (~0x3);
1667 run->mmio.len = 4;
1668 imme = vcpu->arch.host_cp0_badvaddr & 0x3;
1669 switch (imme) {
1670 case 0:
1671 *(u32 *)data = ((*(u32 *)data) & 0xffffff00) |
1672 (vcpu->arch.gprs[rt] >> 24);
1673 break;
1674 case 1:
1675 *(u32 *)data = ((*(u32 *)data) & 0xffff0000) |
1676 (vcpu->arch.gprs[rt] >> 16);
1677 break;
1678 case 2:
1679 *(u32 *)data = ((*(u32 *)data) & 0xff000000) |
1680 (vcpu->arch.gprs[rt] >> 8);
1681 break;
1682 case 3:
1683 *(u32 *)data = vcpu->arch.gprs[rt];
1684 break;
1685 default:
1686 break;
1687 }
1688
1689 kvm_debug("[%#lx] OP_SWL: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1690 vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1691 vcpu->arch.gprs[rt], *(u32 *)data);
1692 break;
1693
1694 case swr_op:
1695 run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
1696 vcpu->arch.host_cp0_badvaddr) & (~0x3);
1697 run->mmio.len = 4;
1698 imme = vcpu->arch.host_cp0_badvaddr & 0x3;
1699 switch (imme) {
1700 case 0:
1701 *(u32 *)data = vcpu->arch.gprs[rt];
1702 break;
1703 case 1:
1704 *(u32 *)data = ((*(u32 *)data) & 0xff) |
1705 (vcpu->arch.gprs[rt] << 8);
1706 break;
1707 case 2:
1708 *(u32 *)data = ((*(u32 *)data) & 0xffff) |
1709 (vcpu->arch.gprs[rt] << 16);
1710 break;
1711 case 3:
1712 *(u32 *)data = ((*(u32 *)data) & 0xffffff) |
1713 (vcpu->arch.gprs[rt] << 24);
1714 break;
1715 default:
1716 break;
1717 }
1718
1719 kvm_debug("[%#lx] OP_SWR: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1720 vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1721 vcpu->arch.gprs[rt], *(u32 *)data);
1722 break;
1723
1724#if defined(CONFIG_64BIT) && defined(CONFIG_KVM_MIPS_VZ)
1725 case sdl_op:
1726 run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
1727 vcpu->arch.host_cp0_badvaddr) & (~0x7);
1728
1729 run->mmio.len = 8;
1730 imme = vcpu->arch.host_cp0_badvaddr & 0x7;
1731 switch (imme) {
1732 case 0:
1733 *(u64 *)data = ((*(u64 *)data) & 0xffffffffffffff00) |
1734 ((vcpu->arch.gprs[rt] >> 56) & 0xff);
1735 break;
1736 case 1:
1737 *(u64 *)data = ((*(u64 *)data) & 0xffffffffffff0000) |
1738 ((vcpu->arch.gprs[rt] >> 48) & 0xffff);
1739 break;
1740 case 2:
1741 *(u64 *)data = ((*(u64 *)data) & 0xffffffffff000000) |
1742 ((vcpu->arch.gprs[rt] >> 40) & 0xffffff);
1743 break;
1744 case 3:
1745 *(u64 *)data = ((*(u64 *)data) & 0xffffffff00000000) |
1746 ((vcpu->arch.gprs[rt] >> 32) & 0xffffffff);
1747 break;
1748 case 4:
1749 *(u64 *)data = ((*(u64 *)data) & 0xffffff0000000000) |
1750 ((vcpu->arch.gprs[rt] >> 24) & 0xffffffffff);
1751 break;
1752 case 5:
1753 *(u64 *)data = ((*(u64 *)data) & 0xffff000000000000) |
1754 ((vcpu->arch.gprs[rt] >> 16) & 0xffffffffffff);
1755 break;
1756 case 6:
1757 *(u64 *)data = ((*(u64 *)data) & 0xff00000000000000) |
1758 ((vcpu->arch.gprs[rt] >> 8) & 0xffffffffffffff);
1759 break;
1760 case 7:
1761 *(u64 *)data = vcpu->arch.gprs[rt];
1762 break;
1763 default:
1764 break;
1765 }
1766
1767 kvm_debug("[%#lx] OP_SDL: eaddr: %#lx, gpr: %#lx, data: %llx\n",
1768 vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1769 vcpu->arch.gprs[rt], *(u64 *)data);
1770 break;
1771
1772 case sdr_op:
1773 run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
1774 vcpu->arch.host_cp0_badvaddr) & (~0x7);
1775
1776 run->mmio.len = 8;
1777 imme = vcpu->arch.host_cp0_badvaddr & 0x7;
1778 switch (imme) {
1779 case 0:
1780 *(u64 *)data = vcpu->arch.gprs[rt];
1781 break;
1782 case 1:
1783 *(u64 *)data = ((*(u64 *)data) & 0xff) |
1784 (vcpu->arch.gprs[rt] << 8);
1785 break;
1786 case 2:
1787 *(u64 *)data = ((*(u64 *)data) & 0xffff) |
1788 (vcpu->arch.gprs[rt] << 16);
1789 break;
1790 case 3:
1791 *(u64 *)data = ((*(u64 *)data) & 0xffffff) |
1792 (vcpu->arch.gprs[rt] << 24);
1793 break;
1794 case 4:
1795 *(u64 *)data = ((*(u64 *)data) & 0xffffffff) |
1796 (vcpu->arch.gprs[rt] << 32);
1797 break;
1798 case 5:
1799 *(u64 *)data = ((*(u64 *)data) & 0xffffffffff) |
1800 (vcpu->arch.gprs[rt] << 40);
1801 break;
1802 case 6:
1803 *(u64 *)data = ((*(u64 *)data) & 0xffffffffffff) |
1804 (vcpu->arch.gprs[rt] << 48);
1805 break;
1806 case 7:
1807 *(u64 *)data = ((*(u64 *)data) & 0xffffffffffffff) |
1808 (vcpu->arch.gprs[rt] << 56);
1809 break;
1810 default:
1811 break;
1812 }
1813
1814 kvm_debug("[%#lx] OP_SDR: eaddr: %#lx, gpr: %#lx, data: %llx\n",
1815 vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1816 vcpu->arch.gprs[rt], *(u64 *)data);
1817 break;
1818#endif
1819
1820#ifdef CONFIG_CPU_LOONGSON64
1821 case sdc2_op:
1822 rt = inst.loongson3_lsdc2_format.rt;
1823 switch (inst.loongson3_lsdc2_format.opcode1) {
1824 /*
1825 * Loongson-3 overridden sdc2 instructions.
1826 * opcode1 instruction
1827 * 0x0 gssbx: store 1 bytes from GPR
1828 * 0x1 gsshx: store 2 bytes from GPR
1829 * 0x2 gsswx: store 4 bytes from GPR
1830 * 0x3 gssdx: store 8 bytes from GPR
1831 */
1832 case 0x0:
1833 run->mmio.len = 1;
1834 *(u8 *)data = vcpu->arch.gprs[rt];
1835
1836 kvm_debug("[%#lx] OP_GSSBX: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1837 vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1838 vcpu->arch.gprs[rt], *(u8 *)data);
1839 break;
1840 case 0x1:
1841 run->mmio.len = 2;
1842 *(u16 *)data = vcpu->arch.gprs[rt];
1843
1844 kvm_debug("[%#lx] OP_GSSSHX: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1845 vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1846 vcpu->arch.gprs[rt], *(u16 *)data);
1847 break;
1848 case 0x2:
1849 run->mmio.len = 4;
1850 *(u32 *)data = vcpu->arch.gprs[rt];
1851
1852 kvm_debug("[%#lx] OP_GSSWX: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1853 vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1854 vcpu->arch.gprs[rt], *(u32 *)data);
1855 break;
1856 case 0x3:
1857 run->mmio.len = 8;
1858 *(u64 *)data = vcpu->arch.gprs[rt];
1859
1860 kvm_debug("[%#lx] OP_GSSDX: eaddr: %#lx, gpr: %#lx, data: %#llx\n",
1861 vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1862 vcpu->arch.gprs[rt], *(u64 *)data);
1863 break;
1864 default:
1865 kvm_err("Godson Extended GS-Store not yet supported (inst=0x%08x)\n",
1866 inst.word);
1867 break;
1868 }
1869 break;
1870#endif
1871 default:
1872 kvm_err("Store not yet supported (inst=0x%08x)\n",
1873 inst.word);
1874 goto out_fail;
1875 }
1876
1877 vcpu->mmio_needed = 1;
1878 run->mmio.is_write = 1;
1879 vcpu->mmio_is_write = 1;
1880
1881 r = kvm_io_bus_write(vcpu, KVM_MMIO_BUS,
1882 run->mmio.phys_addr, run->mmio.len, data);
1883
1884 if (!r) {
1885 vcpu->mmio_needed = 0;
1886 return EMULATE_DONE;
1887 }
1888
1889 return EMULATE_DO_MMIO;
1890
1891out_fail:
1892 /* Rollback PC if emulation was unsuccessful */
1893 vcpu->arch.pc = curr_pc;
1894 return EMULATE_FAIL;
1895}
1896
1897enum emulation_result kvm_mips_emulate_load(union mips_instruction inst,
1898 u32 cause, struct kvm_vcpu *vcpu)
1899{
1900 struct kvm_run *run = vcpu->run;
1901 int r;
1902 enum emulation_result er;
1903 unsigned long curr_pc;
1904 u32 op, rt;
1905 unsigned int imme;
1906
1907 rt = inst.i_format.rt;
1908 op = inst.i_format.opcode;
1909
1910 /*
1911 * Find the resume PC now while we have safe and easy access to the
1912 * prior branch instruction, and save it for
1913 * kvm_mips_complete_mmio_load() to restore later.
1914 */
1915 curr_pc = vcpu->arch.pc;
1916 er = update_pc(vcpu, cause);
1917 if (er == EMULATE_FAIL)
1918 return er;
1919 vcpu->arch.io_pc = vcpu->arch.pc;
1920 vcpu->arch.pc = curr_pc;
1921
1922 vcpu->arch.io_gpr = rt;
1923
1924 run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
1925 vcpu->arch.host_cp0_badvaddr);
1926 if (run->mmio.phys_addr == KVM_INVALID_ADDR)
1927 return EMULATE_FAIL;
1928
1929 vcpu->mmio_needed = 2; /* signed */
1930 switch (op) {
1931#if defined(CONFIG_64BIT) && defined(CONFIG_KVM_MIPS_VZ)
1932 case ld_op:
1933 run->mmio.len = 8;
1934 break;
1935
1936 case lwu_op:
1937 vcpu->mmio_needed = 1; /* unsigned */
1938 fallthrough;
1939#endif
1940 case lw_op:
1941 run->mmio.len = 4;
1942 break;
1943
1944 case lhu_op:
1945 vcpu->mmio_needed = 1; /* unsigned */
1946 fallthrough;
1947 case lh_op:
1948 run->mmio.len = 2;
1949 break;
1950
1951 case lbu_op:
1952 vcpu->mmio_needed = 1; /* unsigned */
1953 fallthrough;
1954 case lb_op:
1955 run->mmio.len = 1;
1956 break;
1957
1958 case lwl_op:
1959 run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
1960 vcpu->arch.host_cp0_badvaddr) & (~0x3);
1961
1962 run->mmio.len = 4;
1963 imme = vcpu->arch.host_cp0_badvaddr & 0x3;
1964 switch (imme) {
1965 case 0:
1966 vcpu->mmio_needed = 3; /* 1 byte */
1967 break;
1968 case 1:
1969 vcpu->mmio_needed = 4; /* 2 bytes */
1970 break;
1971 case 2:
1972 vcpu->mmio_needed = 5; /* 3 bytes */
1973 break;
1974 case 3:
1975 vcpu->mmio_needed = 6; /* 4 bytes */
1976 break;
1977 default:
1978 break;
1979 }
1980 break;
1981
1982 case lwr_op:
1983 run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
1984 vcpu->arch.host_cp0_badvaddr) & (~0x3);
1985
1986 run->mmio.len = 4;
1987 imme = vcpu->arch.host_cp0_badvaddr & 0x3;
1988 switch (imme) {
1989 case 0:
1990 vcpu->mmio_needed = 7; /* 4 bytes */
1991 break;
1992 case 1:
1993 vcpu->mmio_needed = 8; /* 3 bytes */
1994 break;
1995 case 2:
1996 vcpu->mmio_needed = 9; /* 2 bytes */
1997 break;
1998 case 3:
1999 vcpu->mmio_needed = 10; /* 1 byte */
2000 break;
2001 default:
2002 break;
2003 }
2004 break;
2005
2006#if defined(CONFIG_64BIT) && defined(CONFIG_KVM_MIPS_VZ)
2007 case ldl_op:
2008 run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
2009 vcpu->arch.host_cp0_badvaddr) & (~0x7);
2010
2011 run->mmio.len = 8;
2012 imme = vcpu->arch.host_cp0_badvaddr & 0x7;
2013 switch (imme) {
2014 case 0:
2015 vcpu->mmio_needed = 11; /* 1 byte */
2016 break;
2017 case 1:
2018 vcpu->mmio_needed = 12; /* 2 bytes */
2019 break;
2020 case 2:
2021 vcpu->mmio_needed = 13; /* 3 bytes */
2022 break;
2023 case 3:
2024 vcpu->mmio_needed = 14; /* 4 bytes */
2025 break;
2026 case 4:
2027 vcpu->mmio_needed = 15; /* 5 bytes */
2028 break;
2029 case 5:
2030 vcpu->mmio_needed = 16; /* 6 bytes */
2031 break;
2032 case 6:
2033 vcpu->mmio_needed = 17; /* 7 bytes */
2034 break;
2035 case 7:
2036 vcpu->mmio_needed = 18; /* 8 bytes */
2037 break;
2038 default:
2039 break;
2040 }
2041 break;
2042
2043 case ldr_op:
2044 run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
2045 vcpu->arch.host_cp0_badvaddr) & (~0x7);
2046
2047 run->mmio.len = 8;
2048 imme = vcpu->arch.host_cp0_badvaddr & 0x7;
2049 switch (imme) {
2050 case 0:
2051 vcpu->mmio_needed = 19; /* 8 bytes */
2052 break;
2053 case 1:
2054 vcpu->mmio_needed = 20; /* 7 bytes */
2055 break;
2056 case 2:
2057 vcpu->mmio_needed = 21; /* 6 bytes */
2058 break;
2059 case 3:
2060 vcpu->mmio_needed = 22; /* 5 bytes */
2061 break;
2062 case 4:
2063 vcpu->mmio_needed = 23; /* 4 bytes */
2064 break;
2065 case 5:
2066 vcpu->mmio_needed = 24; /* 3 bytes */
2067 break;
2068 case 6:
2069 vcpu->mmio_needed = 25; /* 2 bytes */
2070 break;
2071 case 7:
2072 vcpu->mmio_needed = 26; /* 1 byte */
2073 break;
2074 default:
2075 break;
2076 }
2077 break;
2078#endif
2079
2080#ifdef CONFIG_CPU_LOONGSON64
2081 case ldc2_op:
2082 rt = inst.loongson3_lsdc2_format.rt;
2083 switch (inst.loongson3_lsdc2_format.opcode1) {
2084 /*
2085 * Loongson-3 overridden ldc2 instructions.
2086 * opcode1 instruction
2087 * 0x0 gslbx: store 1 bytes from GPR
2088 * 0x1 gslhx: store 2 bytes from GPR
2089 * 0x2 gslwx: store 4 bytes from GPR
2090 * 0x3 gsldx: store 8 bytes from GPR
2091 */
2092 case 0x0:
2093 run->mmio.len = 1;
2094 vcpu->mmio_needed = 27; /* signed */
2095 break;
2096 case 0x1:
2097 run->mmio.len = 2;
2098 vcpu->mmio_needed = 28; /* signed */
2099 break;
2100 case 0x2:
2101 run->mmio.len = 4;
2102 vcpu->mmio_needed = 29; /* signed */
2103 break;
2104 case 0x3:
2105 run->mmio.len = 8;
2106 vcpu->mmio_needed = 30; /* signed */
2107 break;
2108 default:
2109 kvm_err("Godson Extended GS-Load for float not yet supported (inst=0x%08x)\n",
2110 inst.word);
2111 break;
2112 }
2113 break;
2114#endif
2115
2116 default:
2117 kvm_err("Load not yet supported (inst=0x%08x)\n",
2118 inst.word);
2119 vcpu->mmio_needed = 0;
2120 return EMULATE_FAIL;
2121 }
2122
2123 run->mmio.is_write = 0;
2124 vcpu->mmio_is_write = 0;
2125
2126 r = kvm_io_bus_read(vcpu, KVM_MMIO_BUS,
2127 run->mmio.phys_addr, run->mmio.len, run->mmio.data);
2128
2129 if (!r) {
2130 kvm_mips_complete_mmio_load(vcpu);
2131 vcpu->mmio_needed = 0;
2132 return EMULATE_DONE;
2133 }
2134
2135 return EMULATE_DO_MMIO;
2136}
2137
2138#ifndef CONFIG_KVM_MIPS_VZ
2139static enum emulation_result kvm_mips_guest_cache_op(int (*fn)(unsigned long),
2140 unsigned long curr_pc,
2141 unsigned long addr,
2142 struct kvm_vcpu *vcpu,
2143 u32 cause)
2144{
2145 int err;
2146
2147 for (;;) {
2148 /* Carefully attempt the cache operation */
2149 kvm_trap_emul_gva_lockless_begin(vcpu);
2150 err = fn(addr);
2151 kvm_trap_emul_gva_lockless_end(vcpu);
2152
2153 if (likely(!err))
2154 return EMULATE_DONE;
2155
2156 /*
2157 * Try to handle the fault and retry, maybe we just raced with a
2158 * GVA invalidation.
2159 */
2160 switch (kvm_trap_emul_gva_fault(vcpu, addr, false)) {
2161 case KVM_MIPS_GVA:
2162 case KVM_MIPS_GPA:
2163 /* bad virtual or physical address */
2164 return EMULATE_FAIL;
2165 case KVM_MIPS_TLB:
2166 /* no matching guest TLB */
2167 vcpu->arch.host_cp0_badvaddr = addr;
2168 vcpu->arch.pc = curr_pc;
2169 kvm_mips_emulate_tlbmiss_ld(cause, NULL, vcpu);
2170 return EMULATE_EXCEPT;
2171 case KVM_MIPS_TLBINV:
2172 /* invalid matching guest TLB */
2173 vcpu->arch.host_cp0_badvaddr = addr;
2174 vcpu->arch.pc = curr_pc;
2175 kvm_mips_emulate_tlbinv_ld(cause, NULL, vcpu);
2176 return EMULATE_EXCEPT;
2177 default:
2178 break;
2179 }
2180 }
2181}
2182
2183enum emulation_result kvm_mips_emulate_cache(union mips_instruction inst,
2184 u32 *opc, u32 cause,
2185 struct kvm_vcpu *vcpu)
2186{
2187 enum emulation_result er = EMULATE_DONE;
2188 u32 cache, op_inst, op, base;
2189 s16 offset;
2190 struct kvm_vcpu_arch *arch = &vcpu->arch;
2191 unsigned long va;
2192 unsigned long curr_pc;
2193
2194 /*
2195 * Update PC and hold onto current PC in case there is
2196 * an error and we want to rollback the PC
2197 */
2198 curr_pc = vcpu->arch.pc;
2199 er = update_pc(vcpu, cause);
2200 if (er == EMULATE_FAIL)
2201 return er;
2202
2203 base = inst.i_format.rs;
2204 op_inst = inst.i_format.rt;
2205 if (cpu_has_mips_r6)
2206 offset = inst.spec3_format.simmediate;
2207 else
2208 offset = inst.i_format.simmediate;
2209 cache = op_inst & CacheOp_Cache;
2210 op = op_inst & CacheOp_Op;
2211
2212 va = arch->gprs[base] + offset;
2213
2214 kvm_debug("CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
2215 cache, op, base, arch->gprs[base], offset);
2216
2217 /*
2218 * Treat INDEX_INV as a nop, basically issued by Linux on startup to
2219 * invalidate the caches entirely by stepping through all the
2220 * ways/indexes
2221 */
2222 if (op == Index_Writeback_Inv) {
2223 kvm_debug("@ %#lx/%#lx CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
2224 vcpu->arch.pc, vcpu->arch.gprs[31], cache, op, base,
2225 arch->gprs[base], offset);
2226
2227 if (cache == Cache_D) {
2228#ifdef CONFIG_CPU_R4K_CACHE_TLB
2229 r4k_blast_dcache();
2230#else
2231 switch (boot_cpu_type()) {
2232 case CPU_CAVIUM_OCTEON3:
2233 /* locally flush icache */
2234 local_flush_icache_range(0, 0);
2235 break;
2236 default:
2237 __flush_cache_all();
2238 break;
2239 }
2240#endif
2241 } else if (cache == Cache_I) {
2242#ifdef CONFIG_CPU_R4K_CACHE_TLB
2243 r4k_blast_icache();
2244#else
2245 switch (boot_cpu_type()) {
2246 case CPU_CAVIUM_OCTEON3:
2247 /* locally flush icache */
2248 local_flush_icache_range(0, 0);
2249 break;
2250 default:
2251 flush_icache_all();
2252 break;
2253 }
2254#endif
2255 } else {
2256 kvm_err("%s: unsupported CACHE INDEX operation\n",
2257 __func__);
2258 return EMULATE_FAIL;
2259 }
2260
2261#ifdef CONFIG_KVM_MIPS_DYN_TRANS
2262 kvm_mips_trans_cache_index(inst, opc, vcpu);
2263#endif
2264 goto done;
2265 }
2266
2267 /* XXXKYMA: Only a subset of cache ops are supported, used by Linux */
2268 if (op_inst == Hit_Writeback_Inv_D || op_inst == Hit_Invalidate_D) {
2269 /*
2270 * Perform the dcache part of icache synchronisation on the
2271 * guest's behalf.
2272 */
2273 er = kvm_mips_guest_cache_op(protected_writeback_dcache_line,
2274 curr_pc, va, vcpu, cause);
2275 if (er != EMULATE_DONE)
2276 goto done;
2277#ifdef CONFIG_KVM_MIPS_DYN_TRANS
2278 /*
2279 * Replace the CACHE instruction, with a SYNCI, not the same,
2280 * but avoids a trap
2281 */
2282 kvm_mips_trans_cache_va(inst, opc, vcpu);
2283#endif
2284 } else if (op_inst == Hit_Invalidate_I) {
2285 /* Perform the icache synchronisation on the guest's behalf */
2286 er = kvm_mips_guest_cache_op(protected_writeback_dcache_line,
2287 curr_pc, va, vcpu, cause);
2288 if (er != EMULATE_DONE)
2289 goto done;
2290 er = kvm_mips_guest_cache_op(protected_flush_icache_line,
2291 curr_pc, va, vcpu, cause);
2292 if (er != EMULATE_DONE)
2293 goto done;
2294
2295#ifdef CONFIG_KVM_MIPS_DYN_TRANS
2296 /* Replace the CACHE instruction, with a SYNCI */
2297 kvm_mips_trans_cache_va(inst, opc, vcpu);
2298#endif
2299 } else {
2300 kvm_err("NO-OP CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
2301 cache, op, base, arch->gprs[base], offset);
2302 er = EMULATE_FAIL;
2303 }
2304
2305done:
2306 /* Rollback PC only if emulation was unsuccessful */
2307 if (er == EMULATE_FAIL)
2308 vcpu->arch.pc = curr_pc;
2309 /* Guest exception needs guest to resume */
2310 if (er == EMULATE_EXCEPT)
2311 er = EMULATE_DONE;
2312
2313 return er;
2314}
2315
2316enum emulation_result kvm_mips_emulate_inst(u32 cause, u32 *opc,
2317 struct kvm_vcpu *vcpu)
2318{
2319 union mips_instruction inst;
2320 enum emulation_result er = EMULATE_DONE;
2321 int err;
2322
2323 /* Fetch the instruction. */
2324 if (cause & CAUSEF_BD)
2325 opc += 1;
2326 err = kvm_get_badinstr(opc, vcpu, &inst.word);
2327 if (err)
2328 return EMULATE_FAIL;
2329
2330 switch (inst.r_format.opcode) {
2331 case cop0_op:
2332 er = kvm_mips_emulate_CP0(inst, opc, cause, vcpu);
2333 break;
2334
2335#ifndef CONFIG_CPU_MIPSR6
2336 case cache_op:
2337 ++vcpu->stat.cache_exits;
2338 trace_kvm_exit(vcpu, KVM_TRACE_EXIT_CACHE);
2339 er = kvm_mips_emulate_cache(inst, opc, cause, vcpu);
2340 break;
2341#else
2342 case spec3_op:
2343 switch (inst.spec3_format.func) {
2344 case cache6_op:
2345 ++vcpu->stat.cache_exits;
2346 trace_kvm_exit(vcpu, KVM_TRACE_EXIT_CACHE);
2347 er = kvm_mips_emulate_cache(inst, opc, cause,
2348 vcpu);
2349 break;
2350 default:
2351 goto unknown;
2352 }
2353 break;
2354unknown:
2355#endif
2356
2357 default:
2358 kvm_err("Instruction emulation not supported (%p/%#x)\n", opc,
2359 inst.word);
2360 kvm_arch_vcpu_dump_regs(vcpu);
2361 er = EMULATE_FAIL;
2362 break;
2363 }
2364
2365 return er;
2366}
2367#endif /* CONFIG_KVM_MIPS_VZ */
2368
2369/**
2370 * kvm_mips_guest_exception_base() - Find guest exception vector base address.
2371 *
2372 * Returns: The base address of the current guest exception vector, taking
2373 * both Guest.CP0_Status.BEV and Guest.CP0_EBase into account.
2374 */
2375long kvm_mips_guest_exception_base(struct kvm_vcpu *vcpu)
2376{
2377 struct mips_coproc *cop0 = vcpu->arch.cop0;
2378
2379 if (kvm_read_c0_guest_status(cop0) & ST0_BEV)
2380 return KVM_GUEST_CKSEG1ADDR(0x1fc00200);
2381 else
2382 return kvm_read_c0_guest_ebase(cop0) & MIPS_EBASE_BASE;
2383}
2384
2385enum emulation_result kvm_mips_emulate_syscall(u32 cause,
2386 u32 *opc,
2387 struct kvm_vcpu *vcpu)
2388{
2389 struct mips_coproc *cop0 = vcpu->arch.cop0;
2390 struct kvm_vcpu_arch *arch = &vcpu->arch;
2391 enum emulation_result er = EMULATE_DONE;
2392
2393 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2394 /* save old pc */
2395 kvm_write_c0_guest_epc(cop0, arch->pc);
2396 kvm_set_c0_guest_status(cop0, ST0_EXL);
2397
2398 if (cause & CAUSEF_BD)
2399 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2400 else
2401 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2402
2403 kvm_debug("Delivering SYSCALL @ pc %#lx\n", arch->pc);
2404
2405 kvm_change_c0_guest_cause(cop0, (0xff),
2406 (EXCCODE_SYS << CAUSEB_EXCCODE));
2407
2408 /* Set PC to the exception entry point */
2409 arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2410
2411 } else {
2412 kvm_err("Trying to deliver SYSCALL when EXL is already set\n");
2413 er = EMULATE_FAIL;
2414 }
2415
2416 return er;
2417}
2418
2419enum emulation_result kvm_mips_emulate_tlbmiss_ld(u32 cause,
2420 u32 *opc,
2421 struct kvm_vcpu *vcpu)
2422{
2423 struct mips_coproc *cop0 = vcpu->arch.cop0;
2424 struct kvm_vcpu_arch *arch = &vcpu->arch;
2425 unsigned long entryhi = (vcpu->arch. host_cp0_badvaddr & VPN2_MASK) |
2426 (kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
2427
2428 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2429 /* save old pc */
2430 kvm_write_c0_guest_epc(cop0, arch->pc);
2431 kvm_set_c0_guest_status(cop0, ST0_EXL);
2432
2433 if (cause & CAUSEF_BD)
2434 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2435 else
2436 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2437
2438 kvm_debug("[EXL == 0] delivering TLB MISS @ pc %#lx\n",
2439 arch->pc);
2440
2441 /* set pc to the exception entry point */
2442 arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x0;
2443
2444 } else {
2445 kvm_debug("[EXL == 1] delivering TLB MISS @ pc %#lx\n",
2446 arch->pc);
2447
2448 arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2449 }
2450
2451 kvm_change_c0_guest_cause(cop0, (0xff),
2452 (EXCCODE_TLBL << CAUSEB_EXCCODE));
2453
2454 /* setup badvaddr, context and entryhi registers for the guest */
2455 kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
2456 /* XXXKYMA: is the context register used by linux??? */
2457 kvm_write_c0_guest_entryhi(cop0, entryhi);
2458
2459 return EMULATE_DONE;
2460}
2461
2462enum emulation_result kvm_mips_emulate_tlbinv_ld(u32 cause,
2463 u32 *opc,
2464 struct kvm_vcpu *vcpu)
2465{
2466 struct mips_coproc *cop0 = vcpu->arch.cop0;
2467 struct kvm_vcpu_arch *arch = &vcpu->arch;
2468 unsigned long entryhi =
2469 (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
2470 (kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
2471
2472 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2473 /* save old pc */
2474 kvm_write_c0_guest_epc(cop0, arch->pc);
2475 kvm_set_c0_guest_status(cop0, ST0_EXL);
2476
2477 if (cause & CAUSEF_BD)
2478 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2479 else
2480 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2481
2482 kvm_debug("[EXL == 0] delivering TLB INV @ pc %#lx\n",
2483 arch->pc);
2484 } else {
2485 kvm_debug("[EXL == 1] delivering TLB MISS @ pc %#lx\n",
2486 arch->pc);
2487 }
2488
2489 /* set pc to the exception entry point */
2490 arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2491
2492 kvm_change_c0_guest_cause(cop0, (0xff),
2493 (EXCCODE_TLBL << CAUSEB_EXCCODE));
2494
2495 /* setup badvaddr, context and entryhi registers for the guest */
2496 kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
2497 /* XXXKYMA: is the context register used by linux??? */
2498 kvm_write_c0_guest_entryhi(cop0, entryhi);
2499
2500 return EMULATE_DONE;
2501}
2502
2503enum emulation_result kvm_mips_emulate_tlbmiss_st(u32 cause,
2504 u32 *opc,
2505 struct kvm_vcpu *vcpu)
2506{
2507 struct mips_coproc *cop0 = vcpu->arch.cop0;
2508 struct kvm_vcpu_arch *arch = &vcpu->arch;
2509 unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
2510 (kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
2511
2512 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2513 /* save old pc */
2514 kvm_write_c0_guest_epc(cop0, arch->pc);
2515 kvm_set_c0_guest_status(cop0, ST0_EXL);
2516
2517 if (cause & CAUSEF_BD)
2518 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2519 else
2520 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2521
2522 kvm_debug("[EXL == 0] Delivering TLB MISS @ pc %#lx\n",
2523 arch->pc);
2524
2525 /* Set PC to the exception entry point */
2526 arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x0;
2527 } else {
2528 kvm_debug("[EXL == 1] Delivering TLB MISS @ pc %#lx\n",
2529 arch->pc);
2530 arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2531 }
2532
2533 kvm_change_c0_guest_cause(cop0, (0xff),
2534 (EXCCODE_TLBS << CAUSEB_EXCCODE));
2535
2536 /* setup badvaddr, context and entryhi registers for the guest */
2537 kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
2538 /* XXXKYMA: is the context register used by linux??? */
2539 kvm_write_c0_guest_entryhi(cop0, entryhi);
2540
2541 return EMULATE_DONE;
2542}
2543
2544enum emulation_result kvm_mips_emulate_tlbinv_st(u32 cause,
2545 u32 *opc,
2546 struct kvm_vcpu *vcpu)
2547{
2548 struct mips_coproc *cop0 = vcpu->arch.cop0;
2549 struct kvm_vcpu_arch *arch = &vcpu->arch;
2550 unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
2551 (kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
2552
2553 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2554 /* save old pc */
2555 kvm_write_c0_guest_epc(cop0, arch->pc);
2556 kvm_set_c0_guest_status(cop0, ST0_EXL);
2557
2558 if (cause & CAUSEF_BD)
2559 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2560 else
2561 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2562
2563 kvm_debug("[EXL == 0] Delivering TLB MISS @ pc %#lx\n",
2564 arch->pc);
2565 } else {
2566 kvm_debug("[EXL == 1] Delivering TLB MISS @ pc %#lx\n",
2567 arch->pc);
2568 }
2569
2570 /* Set PC to the exception entry point */
2571 arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2572
2573 kvm_change_c0_guest_cause(cop0, (0xff),
2574 (EXCCODE_TLBS << CAUSEB_EXCCODE));
2575
2576 /* setup badvaddr, context and entryhi registers for the guest */
2577 kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
2578 /* XXXKYMA: is the context register used by linux??? */
2579 kvm_write_c0_guest_entryhi(cop0, entryhi);
2580
2581 return EMULATE_DONE;
2582}
2583
2584enum emulation_result kvm_mips_emulate_tlbmod(u32 cause,
2585 u32 *opc,
2586 struct kvm_vcpu *vcpu)
2587{
2588 struct mips_coproc *cop0 = vcpu->arch.cop0;
2589 unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
2590 (kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
2591 struct kvm_vcpu_arch *arch = &vcpu->arch;
2592
2593 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2594 /* save old pc */
2595 kvm_write_c0_guest_epc(cop0, arch->pc);
2596 kvm_set_c0_guest_status(cop0, ST0_EXL);
2597
2598 if (cause & CAUSEF_BD)
2599 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2600 else
2601 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2602
2603 kvm_debug("[EXL == 0] Delivering TLB MOD @ pc %#lx\n",
2604 arch->pc);
2605 } else {
2606 kvm_debug("[EXL == 1] Delivering TLB MOD @ pc %#lx\n",
2607 arch->pc);
2608 }
2609
2610 arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2611
2612 kvm_change_c0_guest_cause(cop0, (0xff),
2613 (EXCCODE_MOD << CAUSEB_EXCCODE));
2614
2615 /* setup badvaddr, context and entryhi registers for the guest */
2616 kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
2617 /* XXXKYMA: is the context register used by linux??? */
2618 kvm_write_c0_guest_entryhi(cop0, entryhi);
2619
2620 return EMULATE_DONE;
2621}
2622
2623enum emulation_result kvm_mips_emulate_fpu_exc(u32 cause,
2624 u32 *opc,
2625 struct kvm_vcpu *vcpu)
2626{
2627 struct mips_coproc *cop0 = vcpu->arch.cop0;
2628 struct kvm_vcpu_arch *arch = &vcpu->arch;
2629
2630 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2631 /* save old pc */
2632 kvm_write_c0_guest_epc(cop0, arch->pc);
2633 kvm_set_c0_guest_status(cop0, ST0_EXL);
2634
2635 if (cause & CAUSEF_BD)
2636 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2637 else
2638 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2639
2640 }
2641
2642 arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2643
2644 kvm_change_c0_guest_cause(cop0, (0xff),
2645 (EXCCODE_CPU << CAUSEB_EXCCODE));
2646 kvm_change_c0_guest_cause(cop0, (CAUSEF_CE), (0x1 << CAUSEB_CE));
2647
2648 return EMULATE_DONE;
2649}
2650
2651enum emulation_result kvm_mips_emulate_ri_exc(u32 cause,
2652 u32 *opc,
2653 struct kvm_vcpu *vcpu)
2654{
2655 struct mips_coproc *cop0 = vcpu->arch.cop0;
2656 struct kvm_vcpu_arch *arch = &vcpu->arch;
2657 enum emulation_result er = EMULATE_DONE;
2658
2659 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2660 /* save old pc */
2661 kvm_write_c0_guest_epc(cop0, arch->pc);
2662 kvm_set_c0_guest_status(cop0, ST0_EXL);
2663
2664 if (cause & CAUSEF_BD)
2665 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2666 else
2667 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2668
2669 kvm_debug("Delivering RI @ pc %#lx\n", arch->pc);
2670
2671 kvm_change_c0_guest_cause(cop0, (0xff),
2672 (EXCCODE_RI << CAUSEB_EXCCODE));
2673
2674 /* Set PC to the exception entry point */
2675 arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2676
2677 } else {
2678 kvm_err("Trying to deliver RI when EXL is already set\n");
2679 er = EMULATE_FAIL;
2680 }
2681
2682 return er;
2683}
2684
2685enum emulation_result kvm_mips_emulate_bp_exc(u32 cause,
2686 u32 *opc,
2687 struct kvm_vcpu *vcpu)
2688{
2689 struct mips_coproc *cop0 = vcpu->arch.cop0;
2690 struct kvm_vcpu_arch *arch = &vcpu->arch;
2691 enum emulation_result er = EMULATE_DONE;
2692
2693 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2694 /* save old pc */
2695 kvm_write_c0_guest_epc(cop0, arch->pc);
2696 kvm_set_c0_guest_status(cop0, ST0_EXL);
2697
2698 if (cause & CAUSEF_BD)
2699 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2700 else
2701 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2702
2703 kvm_debug("Delivering BP @ pc %#lx\n", arch->pc);
2704
2705 kvm_change_c0_guest_cause(cop0, (0xff),
2706 (EXCCODE_BP << CAUSEB_EXCCODE));
2707
2708 /* Set PC to the exception entry point */
2709 arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2710
2711 } else {
2712 kvm_err("Trying to deliver BP when EXL is already set\n");
2713 er = EMULATE_FAIL;
2714 }
2715
2716 return er;
2717}
2718
2719enum emulation_result kvm_mips_emulate_trap_exc(u32 cause,
2720 u32 *opc,
2721 struct kvm_vcpu *vcpu)
2722{
2723 struct mips_coproc *cop0 = vcpu->arch.cop0;
2724 struct kvm_vcpu_arch *arch = &vcpu->arch;
2725 enum emulation_result er = EMULATE_DONE;
2726
2727 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2728 /* save old pc */
2729 kvm_write_c0_guest_epc(cop0, arch->pc);
2730 kvm_set_c0_guest_status(cop0, ST0_EXL);
2731
2732 if (cause & CAUSEF_BD)
2733 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2734 else
2735 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2736
2737 kvm_debug("Delivering TRAP @ pc %#lx\n", arch->pc);
2738
2739 kvm_change_c0_guest_cause(cop0, (0xff),
2740 (EXCCODE_TR << CAUSEB_EXCCODE));
2741
2742 /* Set PC to the exception entry point */
2743 arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2744
2745 } else {
2746 kvm_err("Trying to deliver TRAP when EXL is already set\n");
2747 er = EMULATE_FAIL;
2748 }
2749
2750 return er;
2751}
2752
2753enum emulation_result kvm_mips_emulate_msafpe_exc(u32 cause,
2754 u32 *opc,
2755 struct kvm_vcpu *vcpu)
2756{
2757 struct mips_coproc *cop0 = vcpu->arch.cop0;
2758 struct kvm_vcpu_arch *arch = &vcpu->arch;
2759 enum emulation_result er = EMULATE_DONE;
2760
2761 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2762 /* save old pc */
2763 kvm_write_c0_guest_epc(cop0, arch->pc);
2764 kvm_set_c0_guest_status(cop0, ST0_EXL);
2765
2766 if (cause & CAUSEF_BD)
2767 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2768 else
2769 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2770
2771 kvm_debug("Delivering MSAFPE @ pc %#lx\n", arch->pc);
2772
2773 kvm_change_c0_guest_cause(cop0, (0xff),
2774 (EXCCODE_MSAFPE << CAUSEB_EXCCODE));
2775
2776 /* Set PC to the exception entry point */
2777 arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2778
2779 } else {
2780 kvm_err("Trying to deliver MSAFPE when EXL is already set\n");
2781 er = EMULATE_FAIL;
2782 }
2783
2784 return er;
2785}
2786
2787enum emulation_result kvm_mips_emulate_fpe_exc(u32 cause,
2788 u32 *opc,
2789 struct kvm_vcpu *vcpu)
2790{
2791 struct mips_coproc *cop0 = vcpu->arch.cop0;
2792 struct kvm_vcpu_arch *arch = &vcpu->arch;
2793 enum emulation_result er = EMULATE_DONE;
2794
2795 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2796 /* save old pc */
2797 kvm_write_c0_guest_epc(cop0, arch->pc);
2798 kvm_set_c0_guest_status(cop0, ST0_EXL);
2799
2800 if (cause & CAUSEF_BD)
2801 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2802 else
2803 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2804
2805 kvm_debug("Delivering FPE @ pc %#lx\n", arch->pc);
2806
2807 kvm_change_c0_guest_cause(cop0, (0xff),
2808 (EXCCODE_FPE << CAUSEB_EXCCODE));
2809
2810 /* Set PC to the exception entry point */
2811 arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2812
2813 } else {
2814 kvm_err("Trying to deliver FPE when EXL is already set\n");
2815 er = EMULATE_FAIL;
2816 }
2817
2818 return er;
2819}
2820
2821enum emulation_result kvm_mips_emulate_msadis_exc(u32 cause,
2822 u32 *opc,
2823 struct kvm_vcpu *vcpu)
2824{
2825 struct mips_coproc *cop0 = vcpu->arch.cop0;
2826 struct kvm_vcpu_arch *arch = &vcpu->arch;
2827 enum emulation_result er = EMULATE_DONE;
2828
2829 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2830 /* save old pc */
2831 kvm_write_c0_guest_epc(cop0, arch->pc);
2832 kvm_set_c0_guest_status(cop0, ST0_EXL);
2833
2834 if (cause & CAUSEF_BD)
2835 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2836 else
2837 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2838
2839 kvm_debug("Delivering MSADIS @ pc %#lx\n", arch->pc);
2840
2841 kvm_change_c0_guest_cause(cop0, (0xff),
2842 (EXCCODE_MSADIS << CAUSEB_EXCCODE));
2843
2844 /* Set PC to the exception entry point */
2845 arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2846
2847 } else {
2848 kvm_err("Trying to deliver MSADIS when EXL is already set\n");
2849 er = EMULATE_FAIL;
2850 }
2851
2852 return er;
2853}
2854
2855enum emulation_result kvm_mips_handle_ri(u32 cause, u32 *opc,
2856 struct kvm_vcpu *vcpu)
2857{
2858 struct mips_coproc *cop0 = vcpu->arch.cop0;
2859 struct kvm_vcpu_arch *arch = &vcpu->arch;
2860 enum emulation_result er = EMULATE_DONE;
2861 unsigned long curr_pc;
2862 union mips_instruction inst;
2863 int err;
2864
2865 /*
2866 * Update PC and hold onto current PC in case there is
2867 * an error and we want to rollback the PC
2868 */
2869 curr_pc = vcpu->arch.pc;
2870 er = update_pc(vcpu, cause);
2871 if (er == EMULATE_FAIL)
2872 return er;
2873
2874 /* Fetch the instruction. */
2875 if (cause & CAUSEF_BD)
2876 opc += 1;
2877 err = kvm_get_badinstr(opc, vcpu, &inst.word);
2878 if (err) {
2879 kvm_err("%s: Cannot get inst @ %p (%d)\n", __func__, opc, err);
2880 return EMULATE_FAIL;
2881 }
2882
2883 if (inst.r_format.opcode == spec3_op &&
2884 inst.r_format.func == rdhwr_op &&
2885 inst.r_format.rs == 0 &&
2886 (inst.r_format.re >> 3) == 0) {
2887 int usermode = !KVM_GUEST_KERNEL_MODE(vcpu);
2888 int rd = inst.r_format.rd;
2889 int rt = inst.r_format.rt;
2890 int sel = inst.r_format.re & 0x7;
2891
2892 /* If usermode, check RDHWR rd is allowed by guest HWREna */
2893 if (usermode && !(kvm_read_c0_guest_hwrena(cop0) & BIT(rd))) {
2894 kvm_debug("RDHWR %#x disallowed by HWREna @ %p\n",
2895 rd, opc);
2896 goto emulate_ri;
2897 }
2898 switch (rd) {
2899 case MIPS_HWR_CPUNUM: /* CPU number */
2900 arch->gprs[rt] = vcpu->vcpu_id;
2901 break;
2902 case MIPS_HWR_SYNCISTEP: /* SYNCI length */
2903 arch->gprs[rt] = min(current_cpu_data.dcache.linesz,
2904 current_cpu_data.icache.linesz);
2905 break;
2906 case MIPS_HWR_CC: /* Read count register */
2907 arch->gprs[rt] = (s32)kvm_mips_read_count(vcpu);
2908 break;
2909 case MIPS_HWR_CCRES: /* Count register resolution */
2910 switch (current_cpu_data.cputype) {
2911 case CPU_20KC:
2912 case CPU_25KF:
2913 arch->gprs[rt] = 1;
2914 break;
2915 default:
2916 arch->gprs[rt] = 2;
2917 }
2918 break;
2919 case MIPS_HWR_ULR: /* Read UserLocal register */
2920 arch->gprs[rt] = kvm_read_c0_guest_userlocal(cop0);
2921 break;
2922
2923 default:
2924 kvm_debug("RDHWR %#x not supported @ %p\n", rd, opc);
2925 goto emulate_ri;
2926 }
2927
2928 trace_kvm_hwr(vcpu, KVM_TRACE_RDHWR, KVM_TRACE_HWR(rd, sel),
2929 vcpu->arch.gprs[rt]);
2930 } else {
2931 kvm_debug("Emulate RI not supported @ %p: %#x\n",
2932 opc, inst.word);
2933 goto emulate_ri;
2934 }
2935
2936 return EMULATE_DONE;
2937
2938emulate_ri:
2939 /*
2940 * Rollback PC (if in branch delay slot then the PC already points to
2941 * branch target), and pass the RI exception to the guest OS.
2942 */
2943 vcpu->arch.pc = curr_pc;
2944 return kvm_mips_emulate_ri_exc(cause, opc, vcpu);
2945}
2946
2947enum emulation_result kvm_mips_complete_mmio_load(struct kvm_vcpu *vcpu)
2948{
2949 struct kvm_run *run = vcpu->run;
2950 unsigned long *gpr = &vcpu->arch.gprs[vcpu->arch.io_gpr];
2951 enum emulation_result er = EMULATE_DONE;
2952
2953 if (run->mmio.len > sizeof(*gpr)) {
2954 kvm_err("Bad MMIO length: %d", run->mmio.len);
2955 er = EMULATE_FAIL;
2956 goto done;
2957 }
2958
2959 /* Restore saved resume PC */
2960 vcpu->arch.pc = vcpu->arch.io_pc;
2961
2962 switch (run->mmio.len) {
2963 case 8:
2964 switch (vcpu->mmio_needed) {
2965 case 11:
2966 *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffffffffff) |
2967 (((*(s64 *)run->mmio.data) & 0xff) << 56);
2968 break;
2969 case 12:
2970 *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffffffff) |
2971 (((*(s64 *)run->mmio.data) & 0xffff) << 48);
2972 break;
2973 case 13:
2974 *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffffff) |
2975 (((*(s64 *)run->mmio.data) & 0xffffff) << 40);
2976 break;
2977 case 14:
2978 *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffff) |
2979 (((*(s64 *)run->mmio.data) & 0xffffffff) << 32);
2980 break;
2981 case 15:
2982 *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffff) |
2983 (((*(s64 *)run->mmio.data) & 0xffffffffff) << 24);
2984 break;
2985 case 16:
2986 *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffff) |
2987 (((*(s64 *)run->mmio.data) & 0xffffffffffff) << 16);
2988 break;
2989 case 17:
2990 *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xff) |
2991 (((*(s64 *)run->mmio.data) & 0xffffffffffffff) << 8);
2992 break;
2993 case 18:
2994 case 19:
2995 *gpr = *(s64 *)run->mmio.data;
2996 break;
2997 case 20:
2998 *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xff00000000000000) |
2999 ((((*(s64 *)run->mmio.data)) >> 8) & 0xffffffffffffff);
3000 break;
3001 case 21:
3002 *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffff000000000000) |
3003 ((((*(s64 *)run->mmio.data)) >> 16) & 0xffffffffffff);
3004 break;
3005 case 22:
3006 *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffff0000000000) |
3007 ((((*(s64 *)run->mmio.data)) >> 24) & 0xffffffffff);
3008 break;
3009 case 23:
3010 *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffff00000000) |
3011 ((((*(s64 *)run->mmio.data)) >> 32) & 0xffffffff);
3012 break;
3013 case 24:
3014 *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffffff000000) |
3015 ((((*(s64 *)run->mmio.data)) >> 40) & 0xffffff);
3016 break;
3017 case 25:
3018 *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffffffff0000) |
3019 ((((*(s64 *)run->mmio.data)) >> 48) & 0xffff);
3020 break;
3021 case 26:
3022 *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffffffffff00) |
3023 ((((*(s64 *)run->mmio.data)) >> 56) & 0xff);
3024 break;
3025 default:
3026 *gpr = *(s64 *)run->mmio.data;
3027 }
3028 break;
3029
3030 case 4:
3031 switch (vcpu->mmio_needed) {
3032 case 1:
3033 *gpr = *(u32 *)run->mmio.data;
3034 break;
3035 case 2:
3036 *gpr = *(s32 *)run->mmio.data;
3037 break;
3038 case 3:
3039 *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffff) |
3040 (((*(s32 *)run->mmio.data) & 0xff) << 24);
3041 break;
3042 case 4:
3043 *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffff) |
3044 (((*(s32 *)run->mmio.data) & 0xffff) << 16);
3045 break;
3046 case 5:
3047 *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xff) |
3048 (((*(s32 *)run->mmio.data) & 0xffffff) << 8);
3049 break;
3050 case 6:
3051 case 7:
3052 *gpr = *(s32 *)run->mmio.data;
3053 break;
3054 case 8:
3055 *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xff000000) |
3056 ((((*(s32 *)run->mmio.data)) >> 8) & 0xffffff);
3057 break;
3058 case 9:
3059 *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffff0000) |
3060 ((((*(s32 *)run->mmio.data)) >> 16) & 0xffff);
3061 break;
3062 case 10:
3063 *gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffff00) |
3064 ((((*(s32 *)run->mmio.data)) >> 24) & 0xff);
3065 break;
3066 default:
3067 *gpr = *(s32 *)run->mmio.data;
3068 }
3069 break;
3070
3071 case 2:
3072 if (vcpu->mmio_needed == 1)
3073 *gpr = *(u16 *)run->mmio.data;
3074 else
3075 *gpr = *(s16 *)run->mmio.data;
3076
3077 break;
3078 case 1:
3079 if (vcpu->mmio_needed == 1)
3080 *gpr = *(u8 *)run->mmio.data;
3081 else
3082 *gpr = *(s8 *)run->mmio.data;
3083 break;
3084 }
3085
3086done:
3087 return er;
3088}
3089
3090static enum emulation_result kvm_mips_emulate_exc(u32 cause,
3091 u32 *opc,
3092 struct kvm_vcpu *vcpu)
3093{
3094 u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
3095 struct mips_coproc *cop0 = vcpu->arch.cop0;
3096 struct kvm_vcpu_arch *arch = &vcpu->arch;
3097 enum emulation_result er = EMULATE_DONE;
3098
3099 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
3100 /* save old pc */
3101 kvm_write_c0_guest_epc(cop0, arch->pc);
3102 kvm_set_c0_guest_status(cop0, ST0_EXL);
3103
3104 if (cause & CAUSEF_BD)
3105 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
3106 else
3107 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
3108
3109 kvm_change_c0_guest_cause(cop0, (0xff),
3110 (exccode << CAUSEB_EXCCODE));
3111
3112 /* Set PC to the exception entry point */
3113 arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
3114 kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
3115
3116 kvm_debug("Delivering EXC %d @ pc %#lx, badVaddr: %#lx\n",
3117 exccode, kvm_read_c0_guest_epc(cop0),
3118 kvm_read_c0_guest_badvaddr(cop0));
3119 } else {
3120 kvm_err("Trying to deliver EXC when EXL is already set\n");
3121 er = EMULATE_FAIL;
3122 }
3123
3124 return er;
3125}
3126
3127enum emulation_result kvm_mips_check_privilege(u32 cause,
3128 u32 *opc,
3129 struct kvm_vcpu *vcpu)
3130{
3131 enum emulation_result er = EMULATE_DONE;
3132 u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
3133 unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
3134
3135 int usermode = !KVM_GUEST_KERNEL_MODE(vcpu);
3136
3137 if (usermode) {
3138 switch (exccode) {
3139 case EXCCODE_INT:
3140 case EXCCODE_SYS:
3141 case EXCCODE_BP:
3142 case EXCCODE_RI:
3143 case EXCCODE_TR:
3144 case EXCCODE_MSAFPE:
3145 case EXCCODE_FPE:
3146 case EXCCODE_MSADIS:
3147 break;
3148
3149 case EXCCODE_CPU:
3150 if (((cause & CAUSEF_CE) >> CAUSEB_CE) == 0)
3151 er = EMULATE_PRIV_FAIL;
3152 break;
3153
3154 case EXCCODE_MOD:
3155 break;
3156
3157 case EXCCODE_TLBL:
3158 /*
3159 * We we are accessing Guest kernel space, then send an
3160 * address error exception to the guest
3161 */
3162 if (badvaddr >= (unsigned long) KVM_GUEST_KSEG0) {
3163 kvm_debug("%s: LD MISS @ %#lx\n", __func__,
3164 badvaddr);
3165 cause &= ~0xff;
3166 cause |= (EXCCODE_ADEL << CAUSEB_EXCCODE);
3167 er = EMULATE_PRIV_FAIL;
3168 }
3169 break;
3170
3171 case EXCCODE_TLBS:
3172 /*
3173 * We we are accessing Guest kernel space, then send an
3174 * address error exception to the guest
3175 */
3176 if (badvaddr >= (unsigned long) KVM_GUEST_KSEG0) {
3177 kvm_debug("%s: ST MISS @ %#lx\n", __func__,
3178 badvaddr);
3179 cause &= ~0xff;
3180 cause |= (EXCCODE_ADES << CAUSEB_EXCCODE);
3181 er = EMULATE_PRIV_FAIL;
3182 }
3183 break;
3184
3185 case EXCCODE_ADES:
3186 kvm_debug("%s: address error ST @ %#lx\n", __func__,
3187 badvaddr);
3188 if ((badvaddr & PAGE_MASK) == KVM_GUEST_COMMPAGE_ADDR) {
3189 cause &= ~0xff;
3190 cause |= (EXCCODE_TLBS << CAUSEB_EXCCODE);
3191 }
3192 er = EMULATE_PRIV_FAIL;
3193 break;
3194 case EXCCODE_ADEL:
3195 kvm_debug("%s: address error LD @ %#lx\n", __func__,
3196 badvaddr);
3197 if ((badvaddr & PAGE_MASK) == KVM_GUEST_COMMPAGE_ADDR) {
3198 cause &= ~0xff;
3199 cause |= (EXCCODE_TLBL << CAUSEB_EXCCODE);
3200 }
3201 er = EMULATE_PRIV_FAIL;
3202 break;
3203 default:
3204 er = EMULATE_PRIV_FAIL;
3205 break;
3206 }
3207 }
3208
3209 if (er == EMULATE_PRIV_FAIL)
3210 kvm_mips_emulate_exc(cause, opc, vcpu);
3211
3212 return er;
3213}
3214
3215/*
3216 * User Address (UA) fault, this could happen if
3217 * (1) TLB entry not present/valid in both Guest and shadow host TLBs, in this
3218 * case we pass on the fault to the guest kernel and let it handle it.
3219 * (2) TLB entry is present in the Guest TLB but not in the shadow, in this
3220 * case we inject the TLB from the Guest TLB into the shadow host TLB
3221 */
3222enum emulation_result kvm_mips_handle_tlbmiss(u32 cause,
3223 u32 *opc,
3224 struct kvm_vcpu *vcpu,
3225 bool write_fault)
3226{
3227 enum emulation_result er = EMULATE_DONE;
3228 u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
3229 unsigned long va = vcpu->arch.host_cp0_badvaddr;
3230 int index;
3231
3232 kvm_debug("kvm_mips_handle_tlbmiss: badvaddr: %#lx\n",
3233 vcpu->arch.host_cp0_badvaddr);
3234
3235 /*
3236 * KVM would not have got the exception if this entry was valid in the
3237 * shadow host TLB. Check the Guest TLB, if the entry is not there then
3238 * send the guest an exception. The guest exc handler should then inject
3239 * an entry into the guest TLB.
3240 */
3241 index = kvm_mips_guest_tlb_lookup(vcpu,
3242 (va & VPN2_MASK) |
3243 (kvm_read_c0_guest_entryhi(vcpu->arch.cop0) &
3244 KVM_ENTRYHI_ASID));
3245 if (index < 0) {
3246 if (exccode == EXCCODE_TLBL) {
3247 er = kvm_mips_emulate_tlbmiss_ld(cause, opc, vcpu);
3248 } else if (exccode == EXCCODE_TLBS) {
3249 er = kvm_mips_emulate_tlbmiss_st(cause, opc, vcpu);
3250 } else {
3251 kvm_err("%s: invalid exc code: %d\n", __func__,
3252 exccode);
3253 er = EMULATE_FAIL;
3254 }
3255 } else {
3256 struct kvm_mips_tlb *tlb = &vcpu->arch.guest_tlb[index];
3257
3258 /*
3259 * Check if the entry is valid, if not then setup a TLB invalid
3260 * exception to the guest
3261 */
3262 if (!TLB_IS_VALID(*tlb, va)) {
3263 if (exccode == EXCCODE_TLBL) {
3264 er = kvm_mips_emulate_tlbinv_ld(cause, opc,
3265 vcpu);
3266 } else if (exccode == EXCCODE_TLBS) {
3267 er = kvm_mips_emulate_tlbinv_st(cause, opc,
3268 vcpu);
3269 } else {
3270 kvm_err("%s: invalid exc code: %d\n", __func__,
3271 exccode);
3272 er = EMULATE_FAIL;
3273 }
3274 } else {
3275 kvm_debug("Injecting hi: %#lx, lo0: %#lx, lo1: %#lx into shadow host TLB\n",
3276 tlb->tlb_hi, tlb->tlb_lo[0], tlb->tlb_lo[1]);
3277 /*
3278 * OK we have a Guest TLB entry, now inject it into the
3279 * shadow host TLB
3280 */
3281 if (kvm_mips_handle_mapped_seg_tlb_fault(vcpu, tlb, va,
3282 write_fault)) {
3283 kvm_err("%s: handling mapped seg tlb fault for %lx, index: %u, vcpu: %p, ASID: %#lx\n",
3284 __func__, va, index, vcpu,
3285 read_c0_entryhi());
3286 er = EMULATE_FAIL;
3287 }
3288 }
3289 }
3290
3291 return er;
3292}
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * KVM/MIPS: Instruction/Exception emulation
7 *
8 * Copyright (C) 2012 MIPS Technologies, Inc. All rights reserved.
9 * Authors: Sanjay Lal <sanjayl@kymasys.com>
10 */
11
12#include <linux/errno.h>
13#include <linux/err.h>
14#include <linux/ktime.h>
15#include <linux/kvm_host.h>
16#include <linux/module.h>
17#include <linux/vmalloc.h>
18#include <linux/fs.h>
19#include <linux/bootmem.h>
20#include <linux/random.h>
21#include <asm/page.h>
22#include <asm/cacheflush.h>
23#include <asm/cacheops.h>
24#include <asm/cpu-info.h>
25#include <asm/mmu_context.h>
26#include <asm/tlbflush.h>
27#include <asm/inst.h>
28
29#undef CONFIG_MIPS_MT
30#include <asm/r4kcache.h>
31#define CONFIG_MIPS_MT
32
33#include "interrupt.h"
34#include "commpage.h"
35
36#include "trace.h"
37
38/*
39 * Compute the return address and do emulate branch simulation, if required.
40 * This function should be called only in branch delay slot active.
41 */
42unsigned long kvm_compute_return_epc(struct kvm_vcpu *vcpu,
43 unsigned long instpc)
44{
45 unsigned int dspcontrol;
46 union mips_instruction insn;
47 struct kvm_vcpu_arch *arch = &vcpu->arch;
48 long epc = instpc;
49 long nextpc = KVM_INVALID_INST;
50
51 if (epc & 3)
52 goto unaligned;
53
54 /* Read the instruction */
55 insn.word = kvm_get_inst((uint32_t *) epc, vcpu);
56
57 if (insn.word == KVM_INVALID_INST)
58 return KVM_INVALID_INST;
59
60 switch (insn.i_format.opcode) {
61 /* jr and jalr are in r_format format. */
62 case spec_op:
63 switch (insn.r_format.func) {
64 case jalr_op:
65 arch->gprs[insn.r_format.rd] = epc + 8;
66 /* Fall through */
67 case jr_op:
68 nextpc = arch->gprs[insn.r_format.rs];
69 break;
70 }
71 break;
72
73 /*
74 * This group contains:
75 * bltz_op, bgez_op, bltzl_op, bgezl_op,
76 * bltzal_op, bgezal_op, bltzall_op, bgezall_op.
77 */
78 case bcond_op:
79 switch (insn.i_format.rt) {
80 case bltz_op:
81 case bltzl_op:
82 if ((long)arch->gprs[insn.i_format.rs] < 0)
83 epc = epc + 4 + (insn.i_format.simmediate << 2);
84 else
85 epc += 8;
86 nextpc = epc;
87 break;
88
89 case bgez_op:
90 case bgezl_op:
91 if ((long)arch->gprs[insn.i_format.rs] >= 0)
92 epc = epc + 4 + (insn.i_format.simmediate << 2);
93 else
94 epc += 8;
95 nextpc = epc;
96 break;
97
98 case bltzal_op:
99 case bltzall_op:
100 arch->gprs[31] = epc + 8;
101 if ((long)arch->gprs[insn.i_format.rs] < 0)
102 epc = epc + 4 + (insn.i_format.simmediate << 2);
103 else
104 epc += 8;
105 nextpc = epc;
106 break;
107
108 case bgezal_op:
109 case bgezall_op:
110 arch->gprs[31] = epc + 8;
111 if ((long)arch->gprs[insn.i_format.rs] >= 0)
112 epc = epc + 4 + (insn.i_format.simmediate << 2);
113 else
114 epc += 8;
115 nextpc = epc;
116 break;
117 case bposge32_op:
118 if (!cpu_has_dsp)
119 goto sigill;
120
121 dspcontrol = rddsp(0x01);
122
123 if (dspcontrol >= 32)
124 epc = epc + 4 + (insn.i_format.simmediate << 2);
125 else
126 epc += 8;
127 nextpc = epc;
128 break;
129 }
130 break;
131
132 /* These are unconditional and in j_format. */
133 case jal_op:
134 arch->gprs[31] = instpc + 8;
135 case j_op:
136 epc += 4;
137 epc >>= 28;
138 epc <<= 28;
139 epc |= (insn.j_format.target << 2);
140 nextpc = epc;
141 break;
142
143 /* These are conditional and in i_format. */
144 case beq_op:
145 case beql_op:
146 if (arch->gprs[insn.i_format.rs] ==
147 arch->gprs[insn.i_format.rt])
148 epc = epc + 4 + (insn.i_format.simmediate << 2);
149 else
150 epc += 8;
151 nextpc = epc;
152 break;
153
154 case bne_op:
155 case bnel_op:
156 if (arch->gprs[insn.i_format.rs] !=
157 arch->gprs[insn.i_format.rt])
158 epc = epc + 4 + (insn.i_format.simmediate << 2);
159 else
160 epc += 8;
161 nextpc = epc;
162 break;
163
164 case blez_op: /* not really i_format */
165 case blezl_op:
166 /* rt field assumed to be zero */
167 if ((long)arch->gprs[insn.i_format.rs] <= 0)
168 epc = epc + 4 + (insn.i_format.simmediate << 2);
169 else
170 epc += 8;
171 nextpc = epc;
172 break;
173
174 case bgtz_op:
175 case bgtzl_op:
176 /* rt field assumed to be zero */
177 if ((long)arch->gprs[insn.i_format.rs] > 0)
178 epc = epc + 4 + (insn.i_format.simmediate << 2);
179 else
180 epc += 8;
181 nextpc = epc;
182 break;
183
184 /* And now the FPA/cp1 branch instructions. */
185 case cop1_op:
186 kvm_err("%s: unsupported cop1_op\n", __func__);
187 break;
188 }
189
190 return nextpc;
191
192unaligned:
193 kvm_err("%s: unaligned epc\n", __func__);
194 return nextpc;
195
196sigill:
197 kvm_err("%s: DSP branch but not DSP ASE\n", __func__);
198 return nextpc;
199}
200
201enum emulation_result update_pc(struct kvm_vcpu *vcpu, uint32_t cause)
202{
203 unsigned long branch_pc;
204 enum emulation_result er = EMULATE_DONE;
205
206 if (cause & CAUSEF_BD) {
207 branch_pc = kvm_compute_return_epc(vcpu, vcpu->arch.pc);
208 if (branch_pc == KVM_INVALID_INST) {
209 er = EMULATE_FAIL;
210 } else {
211 vcpu->arch.pc = branch_pc;
212 kvm_debug("BD update_pc(): New PC: %#lx\n",
213 vcpu->arch.pc);
214 }
215 } else
216 vcpu->arch.pc += 4;
217
218 kvm_debug("update_pc(): New PC: %#lx\n", vcpu->arch.pc);
219
220 return er;
221}
222
223/**
224 * kvm_mips_count_disabled() - Find whether the CP0_Count timer is disabled.
225 * @vcpu: Virtual CPU.
226 *
227 * Returns: 1 if the CP0_Count timer is disabled by either the guest
228 * CP0_Cause.DC bit or the count_ctl.DC bit.
229 * 0 otherwise (in which case CP0_Count timer is running).
230 */
231static inline int kvm_mips_count_disabled(struct kvm_vcpu *vcpu)
232{
233 struct mips_coproc *cop0 = vcpu->arch.cop0;
234
235 return (vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC) ||
236 (kvm_read_c0_guest_cause(cop0) & CAUSEF_DC);
237}
238
239/**
240 * kvm_mips_ktime_to_count() - Scale ktime_t to a 32-bit count.
241 *
242 * Caches the dynamic nanosecond bias in vcpu->arch.count_dyn_bias.
243 *
244 * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
245 */
246static uint32_t kvm_mips_ktime_to_count(struct kvm_vcpu *vcpu, ktime_t now)
247{
248 s64 now_ns, periods;
249 u64 delta;
250
251 now_ns = ktime_to_ns(now);
252 delta = now_ns + vcpu->arch.count_dyn_bias;
253
254 if (delta >= vcpu->arch.count_period) {
255 /* If delta is out of safe range the bias needs adjusting */
256 periods = div64_s64(now_ns, vcpu->arch.count_period);
257 vcpu->arch.count_dyn_bias = -periods * vcpu->arch.count_period;
258 /* Recalculate delta with new bias */
259 delta = now_ns + vcpu->arch.count_dyn_bias;
260 }
261
262 /*
263 * We've ensured that:
264 * delta < count_period
265 *
266 * Therefore the intermediate delta*count_hz will never overflow since
267 * at the boundary condition:
268 * delta = count_period
269 * delta = NSEC_PER_SEC * 2^32 / count_hz
270 * delta * count_hz = NSEC_PER_SEC * 2^32
271 */
272 return div_u64(delta * vcpu->arch.count_hz, NSEC_PER_SEC);
273}
274
275/**
276 * kvm_mips_count_time() - Get effective current time.
277 * @vcpu: Virtual CPU.
278 *
279 * Get effective monotonic ktime. This is usually a straightforward ktime_get(),
280 * except when the master disable bit is set in count_ctl, in which case it is
281 * count_resume, i.e. the time that the count was disabled.
282 *
283 * Returns: Effective monotonic ktime for CP0_Count.
284 */
285static inline ktime_t kvm_mips_count_time(struct kvm_vcpu *vcpu)
286{
287 if (unlikely(vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC))
288 return vcpu->arch.count_resume;
289
290 return ktime_get();
291}
292
293/**
294 * kvm_mips_read_count_running() - Read the current count value as if running.
295 * @vcpu: Virtual CPU.
296 * @now: Kernel time to read CP0_Count at.
297 *
298 * Returns the current guest CP0_Count register at time @now and handles if the
299 * timer interrupt is pending and hasn't been handled yet.
300 *
301 * Returns: The current value of the guest CP0_Count register.
302 */
303static uint32_t kvm_mips_read_count_running(struct kvm_vcpu *vcpu, ktime_t now)
304{
305 ktime_t expires;
306 int running;
307
308 /* Is the hrtimer pending? */
309 expires = hrtimer_get_expires(&vcpu->arch.comparecount_timer);
310 if (ktime_compare(now, expires) >= 0) {
311 /*
312 * Cancel it while we handle it so there's no chance of
313 * interference with the timeout handler.
314 */
315 running = hrtimer_cancel(&vcpu->arch.comparecount_timer);
316
317 /* Nothing should be waiting on the timeout */
318 kvm_mips_callbacks->queue_timer_int(vcpu);
319
320 /*
321 * Restart the timer if it was running based on the expiry time
322 * we read, so that we don't push it back 2 periods.
323 */
324 if (running) {
325 expires = ktime_add_ns(expires,
326 vcpu->arch.count_period);
327 hrtimer_start(&vcpu->arch.comparecount_timer, expires,
328 HRTIMER_MODE_ABS);
329 }
330 }
331
332 /* Return the biased and scaled guest CP0_Count */
333 return vcpu->arch.count_bias + kvm_mips_ktime_to_count(vcpu, now);
334}
335
336/**
337 * kvm_mips_read_count() - Read the current count value.
338 * @vcpu: Virtual CPU.
339 *
340 * Read the current guest CP0_Count value, taking into account whether the timer
341 * is stopped.
342 *
343 * Returns: The current guest CP0_Count value.
344 */
345uint32_t kvm_mips_read_count(struct kvm_vcpu *vcpu)
346{
347 struct mips_coproc *cop0 = vcpu->arch.cop0;
348
349 /* If count disabled just read static copy of count */
350 if (kvm_mips_count_disabled(vcpu))
351 return kvm_read_c0_guest_count(cop0);
352
353 return kvm_mips_read_count_running(vcpu, ktime_get());
354}
355
356/**
357 * kvm_mips_freeze_hrtimer() - Safely stop the hrtimer.
358 * @vcpu: Virtual CPU.
359 * @count: Output pointer for CP0_Count value at point of freeze.
360 *
361 * Freeze the hrtimer safely and return both the ktime and the CP0_Count value
362 * at the point it was frozen. It is guaranteed that any pending interrupts at
363 * the point it was frozen are handled, and none after that point.
364 *
365 * This is useful where the time/CP0_Count is needed in the calculation of the
366 * new parameters.
367 *
368 * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
369 *
370 * Returns: The ktime at the point of freeze.
371 */
372static ktime_t kvm_mips_freeze_hrtimer(struct kvm_vcpu *vcpu,
373 uint32_t *count)
374{
375 ktime_t now;
376
377 /* stop hrtimer before finding time */
378 hrtimer_cancel(&vcpu->arch.comparecount_timer);
379 now = ktime_get();
380
381 /* find count at this point and handle pending hrtimer */
382 *count = kvm_mips_read_count_running(vcpu, now);
383
384 return now;
385}
386
387/**
388 * kvm_mips_resume_hrtimer() - Resume hrtimer, updating expiry.
389 * @vcpu: Virtual CPU.
390 * @now: ktime at point of resume.
391 * @count: CP0_Count at point of resume.
392 *
393 * Resumes the timer and updates the timer expiry based on @now and @count.
394 * This can be used in conjunction with kvm_mips_freeze_timer() when timer
395 * parameters need to be changed.
396 *
397 * It is guaranteed that a timer interrupt immediately after resume will be
398 * handled, but not if CP_Compare is exactly at @count. That case is already
399 * handled by kvm_mips_freeze_timer().
400 *
401 * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
402 */
403static void kvm_mips_resume_hrtimer(struct kvm_vcpu *vcpu,
404 ktime_t now, uint32_t count)
405{
406 struct mips_coproc *cop0 = vcpu->arch.cop0;
407 uint32_t compare;
408 u64 delta;
409 ktime_t expire;
410
411 /* Calculate timeout (wrap 0 to 2^32) */
412 compare = kvm_read_c0_guest_compare(cop0);
413 delta = (u64)(uint32_t)(compare - count - 1) + 1;
414 delta = div_u64(delta * NSEC_PER_SEC, vcpu->arch.count_hz);
415 expire = ktime_add_ns(now, delta);
416
417 /* Update hrtimer to use new timeout */
418 hrtimer_cancel(&vcpu->arch.comparecount_timer);
419 hrtimer_start(&vcpu->arch.comparecount_timer, expire, HRTIMER_MODE_ABS);
420}
421
422/**
423 * kvm_mips_update_hrtimer() - Update next expiry time of hrtimer.
424 * @vcpu: Virtual CPU.
425 *
426 * Recalculates and updates the expiry time of the hrtimer. This can be used
427 * after timer parameters have been altered which do not depend on the time that
428 * the change occurs (in those cases kvm_mips_freeze_hrtimer() and
429 * kvm_mips_resume_hrtimer() are used directly).
430 *
431 * It is guaranteed that no timer interrupts will be lost in the process.
432 *
433 * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
434 */
435static void kvm_mips_update_hrtimer(struct kvm_vcpu *vcpu)
436{
437 ktime_t now;
438 uint32_t count;
439
440 /*
441 * freeze_hrtimer takes care of a timer interrupts <= count, and
442 * resume_hrtimer the hrtimer takes care of a timer interrupts > count.
443 */
444 now = kvm_mips_freeze_hrtimer(vcpu, &count);
445 kvm_mips_resume_hrtimer(vcpu, now, count);
446}
447
448/**
449 * kvm_mips_write_count() - Modify the count and update timer.
450 * @vcpu: Virtual CPU.
451 * @count: Guest CP0_Count value to set.
452 *
453 * Sets the CP0_Count value and updates the timer accordingly.
454 */
455void kvm_mips_write_count(struct kvm_vcpu *vcpu, uint32_t count)
456{
457 struct mips_coproc *cop0 = vcpu->arch.cop0;
458 ktime_t now;
459
460 /* Calculate bias */
461 now = kvm_mips_count_time(vcpu);
462 vcpu->arch.count_bias = count - kvm_mips_ktime_to_count(vcpu, now);
463
464 if (kvm_mips_count_disabled(vcpu))
465 /* The timer's disabled, adjust the static count */
466 kvm_write_c0_guest_count(cop0, count);
467 else
468 /* Update timeout */
469 kvm_mips_resume_hrtimer(vcpu, now, count);
470}
471
472/**
473 * kvm_mips_init_count() - Initialise timer.
474 * @vcpu: Virtual CPU.
475 *
476 * Initialise the timer to a sensible frequency, namely 100MHz, zero it, and set
477 * it going if it's enabled.
478 */
479void kvm_mips_init_count(struct kvm_vcpu *vcpu)
480{
481 /* 100 MHz */
482 vcpu->arch.count_hz = 100*1000*1000;
483 vcpu->arch.count_period = div_u64((u64)NSEC_PER_SEC << 32,
484 vcpu->arch.count_hz);
485 vcpu->arch.count_dyn_bias = 0;
486
487 /* Starting at 0 */
488 kvm_mips_write_count(vcpu, 0);
489}
490
491/**
492 * kvm_mips_set_count_hz() - Update the frequency of the timer.
493 * @vcpu: Virtual CPU.
494 * @count_hz: Frequency of CP0_Count timer in Hz.
495 *
496 * Change the frequency of the CP0_Count timer. This is done atomically so that
497 * CP0_Count is continuous and no timer interrupt is lost.
498 *
499 * Returns: -EINVAL if @count_hz is out of range.
500 * 0 on success.
501 */
502int kvm_mips_set_count_hz(struct kvm_vcpu *vcpu, s64 count_hz)
503{
504 struct mips_coproc *cop0 = vcpu->arch.cop0;
505 int dc;
506 ktime_t now;
507 u32 count;
508
509 /* ensure the frequency is in a sensible range... */
510 if (count_hz <= 0 || count_hz > NSEC_PER_SEC)
511 return -EINVAL;
512 /* ... and has actually changed */
513 if (vcpu->arch.count_hz == count_hz)
514 return 0;
515
516 /* Safely freeze timer so we can keep it continuous */
517 dc = kvm_mips_count_disabled(vcpu);
518 if (dc) {
519 now = kvm_mips_count_time(vcpu);
520 count = kvm_read_c0_guest_count(cop0);
521 } else {
522 now = kvm_mips_freeze_hrtimer(vcpu, &count);
523 }
524
525 /* Update the frequency */
526 vcpu->arch.count_hz = count_hz;
527 vcpu->arch.count_period = div_u64((u64)NSEC_PER_SEC << 32, count_hz);
528 vcpu->arch.count_dyn_bias = 0;
529
530 /* Calculate adjusted bias so dynamic count is unchanged */
531 vcpu->arch.count_bias = count - kvm_mips_ktime_to_count(vcpu, now);
532
533 /* Update and resume hrtimer */
534 if (!dc)
535 kvm_mips_resume_hrtimer(vcpu, now, count);
536 return 0;
537}
538
539/**
540 * kvm_mips_write_compare() - Modify compare and update timer.
541 * @vcpu: Virtual CPU.
542 * @compare: New CP0_Compare value.
543 *
544 * Update CP0_Compare to a new value and update the timeout.
545 */
546void kvm_mips_write_compare(struct kvm_vcpu *vcpu, uint32_t compare)
547{
548 struct mips_coproc *cop0 = vcpu->arch.cop0;
549
550 /* if unchanged, must just be an ack */
551 if (kvm_read_c0_guest_compare(cop0) == compare)
552 return;
553
554 /* Update compare */
555 kvm_write_c0_guest_compare(cop0, compare);
556
557 /* Update timeout if count enabled */
558 if (!kvm_mips_count_disabled(vcpu))
559 kvm_mips_update_hrtimer(vcpu);
560}
561
562/**
563 * kvm_mips_count_disable() - Disable count.
564 * @vcpu: Virtual CPU.
565 *
566 * Disable the CP0_Count timer. A timer interrupt on or before the final stop
567 * time will be handled but not after.
568 *
569 * Assumes CP0_Count was previously enabled but now Guest.CP0_Cause.DC or
570 * count_ctl.DC has been set (count disabled).
571 *
572 * Returns: The time that the timer was stopped.
573 */
574static ktime_t kvm_mips_count_disable(struct kvm_vcpu *vcpu)
575{
576 struct mips_coproc *cop0 = vcpu->arch.cop0;
577 uint32_t count;
578 ktime_t now;
579
580 /* Stop hrtimer */
581 hrtimer_cancel(&vcpu->arch.comparecount_timer);
582
583 /* Set the static count from the dynamic count, handling pending TI */
584 now = ktime_get();
585 count = kvm_mips_read_count_running(vcpu, now);
586 kvm_write_c0_guest_count(cop0, count);
587
588 return now;
589}
590
591/**
592 * kvm_mips_count_disable_cause() - Disable count using CP0_Cause.DC.
593 * @vcpu: Virtual CPU.
594 *
595 * Disable the CP0_Count timer and set CP0_Cause.DC. A timer interrupt on or
596 * before the final stop time will be handled if the timer isn't disabled by
597 * count_ctl.DC, but not after.
598 *
599 * Assumes CP0_Cause.DC is clear (count enabled).
600 */
601void kvm_mips_count_disable_cause(struct kvm_vcpu *vcpu)
602{
603 struct mips_coproc *cop0 = vcpu->arch.cop0;
604
605 kvm_set_c0_guest_cause(cop0, CAUSEF_DC);
606 if (!(vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC))
607 kvm_mips_count_disable(vcpu);
608}
609
610/**
611 * kvm_mips_count_enable_cause() - Enable count using CP0_Cause.DC.
612 * @vcpu: Virtual CPU.
613 *
614 * Enable the CP0_Count timer and clear CP0_Cause.DC. A timer interrupt after
615 * the start time will be handled if the timer isn't disabled by count_ctl.DC,
616 * potentially before even returning, so the caller should be careful with
617 * ordering of CP0_Cause modifications so as not to lose it.
618 *
619 * Assumes CP0_Cause.DC is set (count disabled).
620 */
621void kvm_mips_count_enable_cause(struct kvm_vcpu *vcpu)
622{
623 struct mips_coproc *cop0 = vcpu->arch.cop0;
624 uint32_t count;
625
626 kvm_clear_c0_guest_cause(cop0, CAUSEF_DC);
627
628 /*
629 * Set the dynamic count to match the static count.
630 * This starts the hrtimer if count_ctl.DC allows it.
631 * Otherwise it conveniently updates the biases.
632 */
633 count = kvm_read_c0_guest_count(cop0);
634 kvm_mips_write_count(vcpu, count);
635}
636
637/**
638 * kvm_mips_set_count_ctl() - Update the count control KVM register.
639 * @vcpu: Virtual CPU.
640 * @count_ctl: Count control register new value.
641 *
642 * Set the count control KVM register. The timer is updated accordingly.
643 *
644 * Returns: -EINVAL if reserved bits are set.
645 * 0 on success.
646 */
647int kvm_mips_set_count_ctl(struct kvm_vcpu *vcpu, s64 count_ctl)
648{
649 struct mips_coproc *cop0 = vcpu->arch.cop0;
650 s64 changed = count_ctl ^ vcpu->arch.count_ctl;
651 s64 delta;
652 ktime_t expire, now;
653 uint32_t count, compare;
654
655 /* Only allow defined bits to be changed */
656 if (changed & ~(s64)(KVM_REG_MIPS_COUNT_CTL_DC))
657 return -EINVAL;
658
659 /* Apply new value */
660 vcpu->arch.count_ctl = count_ctl;
661
662 /* Master CP0_Count disable */
663 if (changed & KVM_REG_MIPS_COUNT_CTL_DC) {
664 /* Is CP0_Cause.DC already disabling CP0_Count? */
665 if (kvm_read_c0_guest_cause(cop0) & CAUSEF_DC) {
666 if (count_ctl & KVM_REG_MIPS_COUNT_CTL_DC)
667 /* Just record the current time */
668 vcpu->arch.count_resume = ktime_get();
669 } else if (count_ctl & KVM_REG_MIPS_COUNT_CTL_DC) {
670 /* disable timer and record current time */
671 vcpu->arch.count_resume = kvm_mips_count_disable(vcpu);
672 } else {
673 /*
674 * Calculate timeout relative to static count at resume
675 * time (wrap 0 to 2^32).
676 */
677 count = kvm_read_c0_guest_count(cop0);
678 compare = kvm_read_c0_guest_compare(cop0);
679 delta = (u64)(uint32_t)(compare - count - 1) + 1;
680 delta = div_u64(delta * NSEC_PER_SEC,
681 vcpu->arch.count_hz);
682 expire = ktime_add_ns(vcpu->arch.count_resume, delta);
683
684 /* Handle pending interrupt */
685 now = ktime_get();
686 if (ktime_compare(now, expire) >= 0)
687 /* Nothing should be waiting on the timeout */
688 kvm_mips_callbacks->queue_timer_int(vcpu);
689
690 /* Resume hrtimer without changing bias */
691 count = kvm_mips_read_count_running(vcpu, now);
692 kvm_mips_resume_hrtimer(vcpu, now, count);
693 }
694 }
695
696 return 0;
697}
698
699/**
700 * kvm_mips_set_count_resume() - Update the count resume KVM register.
701 * @vcpu: Virtual CPU.
702 * @count_resume: Count resume register new value.
703 *
704 * Set the count resume KVM register.
705 *
706 * Returns: -EINVAL if out of valid range (0..now).
707 * 0 on success.
708 */
709int kvm_mips_set_count_resume(struct kvm_vcpu *vcpu, s64 count_resume)
710{
711 /*
712 * It doesn't make sense for the resume time to be in the future, as it
713 * would be possible for the next interrupt to be more than a full
714 * period in the future.
715 */
716 if (count_resume < 0 || count_resume > ktime_to_ns(ktime_get()))
717 return -EINVAL;
718
719 vcpu->arch.count_resume = ns_to_ktime(count_resume);
720 return 0;
721}
722
723/**
724 * kvm_mips_count_timeout() - Push timer forward on timeout.
725 * @vcpu: Virtual CPU.
726 *
727 * Handle an hrtimer event by push the hrtimer forward a period.
728 *
729 * Returns: The hrtimer_restart value to return to the hrtimer subsystem.
730 */
731enum hrtimer_restart kvm_mips_count_timeout(struct kvm_vcpu *vcpu)
732{
733 /* Add the Count period to the current expiry time */
734 hrtimer_add_expires_ns(&vcpu->arch.comparecount_timer,
735 vcpu->arch.count_period);
736 return HRTIMER_RESTART;
737}
738
739enum emulation_result kvm_mips_emul_eret(struct kvm_vcpu *vcpu)
740{
741 struct mips_coproc *cop0 = vcpu->arch.cop0;
742 enum emulation_result er = EMULATE_DONE;
743
744 if (kvm_read_c0_guest_status(cop0) & ST0_EXL) {
745 kvm_debug("[%#lx] ERET to %#lx\n", vcpu->arch.pc,
746 kvm_read_c0_guest_epc(cop0));
747 kvm_clear_c0_guest_status(cop0, ST0_EXL);
748 vcpu->arch.pc = kvm_read_c0_guest_epc(cop0);
749
750 } else if (kvm_read_c0_guest_status(cop0) & ST0_ERL) {
751 kvm_clear_c0_guest_status(cop0, ST0_ERL);
752 vcpu->arch.pc = kvm_read_c0_guest_errorepc(cop0);
753 } else {
754 kvm_err("[%#lx] ERET when MIPS_SR_EXL|MIPS_SR_ERL == 0\n",
755 vcpu->arch.pc);
756 er = EMULATE_FAIL;
757 }
758
759 return er;
760}
761
762enum emulation_result kvm_mips_emul_wait(struct kvm_vcpu *vcpu)
763{
764 kvm_debug("[%#lx] !!!WAIT!!! (%#lx)\n", vcpu->arch.pc,
765 vcpu->arch.pending_exceptions);
766
767 ++vcpu->stat.wait_exits;
768 trace_kvm_exit(vcpu, WAIT_EXITS);
769 if (!vcpu->arch.pending_exceptions) {
770 vcpu->arch.wait = 1;
771 kvm_vcpu_block(vcpu);
772
773 /*
774 * We we are runnable, then definitely go off to user space to
775 * check if any I/O interrupts are pending.
776 */
777 if (kvm_check_request(KVM_REQ_UNHALT, vcpu)) {
778 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
779 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
780 }
781 }
782
783 return EMULATE_DONE;
784}
785
786/*
787 * XXXKYMA: Linux doesn't seem to use TLBR, return EMULATE_FAIL for now so that
788 * we can catch this, if things ever change
789 */
790enum emulation_result kvm_mips_emul_tlbr(struct kvm_vcpu *vcpu)
791{
792 struct mips_coproc *cop0 = vcpu->arch.cop0;
793 uint32_t pc = vcpu->arch.pc;
794
795 kvm_err("[%#x] COP0_TLBR [%ld]\n", pc, kvm_read_c0_guest_index(cop0));
796 return EMULATE_FAIL;
797}
798
799/* Write Guest TLB Entry @ Index */
800enum emulation_result kvm_mips_emul_tlbwi(struct kvm_vcpu *vcpu)
801{
802 struct mips_coproc *cop0 = vcpu->arch.cop0;
803 int index = kvm_read_c0_guest_index(cop0);
804 struct kvm_mips_tlb *tlb = NULL;
805 uint32_t pc = vcpu->arch.pc;
806
807 if (index < 0 || index >= KVM_MIPS_GUEST_TLB_SIZE) {
808 kvm_debug("%s: illegal index: %d\n", __func__, index);
809 kvm_debug("[%#x] COP0_TLBWI [%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx, mask: %#lx)\n",
810 pc, index, kvm_read_c0_guest_entryhi(cop0),
811 kvm_read_c0_guest_entrylo0(cop0),
812 kvm_read_c0_guest_entrylo1(cop0),
813 kvm_read_c0_guest_pagemask(cop0));
814 index = (index & ~0x80000000) % KVM_MIPS_GUEST_TLB_SIZE;
815 }
816
817 tlb = &vcpu->arch.guest_tlb[index];
818 /*
819 * Probe the shadow host TLB for the entry being overwritten, if one
820 * matches, invalidate it
821 */
822 kvm_mips_host_tlb_inv(vcpu, tlb->tlb_hi);
823
824 tlb->tlb_mask = kvm_read_c0_guest_pagemask(cop0);
825 tlb->tlb_hi = kvm_read_c0_guest_entryhi(cop0);
826 tlb->tlb_lo0 = kvm_read_c0_guest_entrylo0(cop0);
827 tlb->tlb_lo1 = kvm_read_c0_guest_entrylo1(cop0);
828
829 kvm_debug("[%#x] COP0_TLBWI [%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx, mask: %#lx)\n",
830 pc, index, kvm_read_c0_guest_entryhi(cop0),
831 kvm_read_c0_guest_entrylo0(cop0),
832 kvm_read_c0_guest_entrylo1(cop0),
833 kvm_read_c0_guest_pagemask(cop0));
834
835 return EMULATE_DONE;
836}
837
838/* Write Guest TLB Entry @ Random Index */
839enum emulation_result kvm_mips_emul_tlbwr(struct kvm_vcpu *vcpu)
840{
841 struct mips_coproc *cop0 = vcpu->arch.cop0;
842 struct kvm_mips_tlb *tlb = NULL;
843 uint32_t pc = vcpu->arch.pc;
844 int index;
845
846 get_random_bytes(&index, sizeof(index));
847 index &= (KVM_MIPS_GUEST_TLB_SIZE - 1);
848
849 tlb = &vcpu->arch.guest_tlb[index];
850
851 /*
852 * Probe the shadow host TLB for the entry being overwritten, if one
853 * matches, invalidate it
854 */
855 kvm_mips_host_tlb_inv(vcpu, tlb->tlb_hi);
856
857 tlb->tlb_mask = kvm_read_c0_guest_pagemask(cop0);
858 tlb->tlb_hi = kvm_read_c0_guest_entryhi(cop0);
859 tlb->tlb_lo0 = kvm_read_c0_guest_entrylo0(cop0);
860 tlb->tlb_lo1 = kvm_read_c0_guest_entrylo1(cop0);
861
862 kvm_debug("[%#x] COP0_TLBWR[%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx)\n",
863 pc, index, kvm_read_c0_guest_entryhi(cop0),
864 kvm_read_c0_guest_entrylo0(cop0),
865 kvm_read_c0_guest_entrylo1(cop0));
866
867 return EMULATE_DONE;
868}
869
870enum emulation_result kvm_mips_emul_tlbp(struct kvm_vcpu *vcpu)
871{
872 struct mips_coproc *cop0 = vcpu->arch.cop0;
873 long entryhi = kvm_read_c0_guest_entryhi(cop0);
874 uint32_t pc = vcpu->arch.pc;
875 int index = -1;
876
877 index = kvm_mips_guest_tlb_lookup(vcpu, entryhi);
878
879 kvm_write_c0_guest_index(cop0, index);
880
881 kvm_debug("[%#x] COP0_TLBP (entryhi: %#lx), index: %d\n", pc, entryhi,
882 index);
883
884 return EMULATE_DONE;
885}
886
887/**
888 * kvm_mips_config1_wrmask() - Find mask of writable bits in guest Config1
889 * @vcpu: Virtual CPU.
890 *
891 * Finds the mask of bits which are writable in the guest's Config1 CP0
892 * register, by userland (currently read-only to the guest).
893 */
894unsigned int kvm_mips_config1_wrmask(struct kvm_vcpu *vcpu)
895{
896 unsigned int mask = 0;
897
898 /* Permit FPU to be present if FPU is supported */
899 if (kvm_mips_guest_can_have_fpu(&vcpu->arch))
900 mask |= MIPS_CONF1_FP;
901
902 return mask;
903}
904
905/**
906 * kvm_mips_config3_wrmask() - Find mask of writable bits in guest Config3
907 * @vcpu: Virtual CPU.
908 *
909 * Finds the mask of bits which are writable in the guest's Config3 CP0
910 * register, by userland (currently read-only to the guest).
911 */
912unsigned int kvm_mips_config3_wrmask(struct kvm_vcpu *vcpu)
913{
914 /* Config4 is optional */
915 unsigned int mask = MIPS_CONF_M;
916
917 /* Permit MSA to be present if MSA is supported */
918 if (kvm_mips_guest_can_have_msa(&vcpu->arch))
919 mask |= MIPS_CONF3_MSA;
920
921 return mask;
922}
923
924/**
925 * kvm_mips_config4_wrmask() - Find mask of writable bits in guest Config4
926 * @vcpu: Virtual CPU.
927 *
928 * Finds the mask of bits which are writable in the guest's Config4 CP0
929 * register, by userland (currently read-only to the guest).
930 */
931unsigned int kvm_mips_config4_wrmask(struct kvm_vcpu *vcpu)
932{
933 /* Config5 is optional */
934 return MIPS_CONF_M;
935}
936
937/**
938 * kvm_mips_config5_wrmask() - Find mask of writable bits in guest Config5
939 * @vcpu: Virtual CPU.
940 *
941 * Finds the mask of bits which are writable in the guest's Config5 CP0
942 * register, by the guest itself.
943 */
944unsigned int kvm_mips_config5_wrmask(struct kvm_vcpu *vcpu)
945{
946 unsigned int mask = 0;
947
948 /* Permit MSAEn changes if MSA supported and enabled */
949 if (kvm_mips_guest_has_msa(&vcpu->arch))
950 mask |= MIPS_CONF5_MSAEN;
951
952 /*
953 * Permit guest FPU mode changes if FPU is enabled and the relevant
954 * feature exists according to FIR register.
955 */
956 if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
957 if (cpu_has_fre)
958 mask |= MIPS_CONF5_FRE;
959 /* We don't support UFR or UFE */
960 }
961
962 return mask;
963}
964
965enum emulation_result kvm_mips_emulate_CP0(uint32_t inst, uint32_t *opc,
966 uint32_t cause, struct kvm_run *run,
967 struct kvm_vcpu *vcpu)
968{
969 struct mips_coproc *cop0 = vcpu->arch.cop0;
970 enum emulation_result er = EMULATE_DONE;
971 int32_t rt, rd, copz, sel, co_bit, op;
972 uint32_t pc = vcpu->arch.pc;
973 unsigned long curr_pc;
974
975 /*
976 * Update PC and hold onto current PC in case there is
977 * an error and we want to rollback the PC
978 */
979 curr_pc = vcpu->arch.pc;
980 er = update_pc(vcpu, cause);
981 if (er == EMULATE_FAIL)
982 return er;
983
984 copz = (inst >> 21) & 0x1f;
985 rt = (inst >> 16) & 0x1f;
986 rd = (inst >> 11) & 0x1f;
987 sel = inst & 0x7;
988 co_bit = (inst >> 25) & 1;
989
990 if (co_bit) {
991 op = (inst) & 0xff;
992
993 switch (op) {
994 case tlbr_op: /* Read indexed TLB entry */
995 er = kvm_mips_emul_tlbr(vcpu);
996 break;
997 case tlbwi_op: /* Write indexed */
998 er = kvm_mips_emul_tlbwi(vcpu);
999 break;
1000 case tlbwr_op: /* Write random */
1001 er = kvm_mips_emul_tlbwr(vcpu);
1002 break;
1003 case tlbp_op: /* TLB Probe */
1004 er = kvm_mips_emul_tlbp(vcpu);
1005 break;
1006 case rfe_op:
1007 kvm_err("!!!COP0_RFE!!!\n");
1008 break;
1009 case eret_op:
1010 er = kvm_mips_emul_eret(vcpu);
1011 goto dont_update_pc;
1012 break;
1013 case wait_op:
1014 er = kvm_mips_emul_wait(vcpu);
1015 break;
1016 }
1017 } else {
1018 switch (copz) {
1019 case mfc_op:
1020#ifdef CONFIG_KVM_MIPS_DEBUG_COP0_COUNTERS
1021 cop0->stat[rd][sel]++;
1022#endif
1023 /* Get reg */
1024 if ((rd == MIPS_CP0_COUNT) && (sel == 0)) {
1025 vcpu->arch.gprs[rt] = kvm_mips_read_count(vcpu);
1026 } else if ((rd == MIPS_CP0_ERRCTL) && (sel == 0)) {
1027 vcpu->arch.gprs[rt] = 0x0;
1028#ifdef CONFIG_KVM_MIPS_DYN_TRANS
1029 kvm_mips_trans_mfc0(inst, opc, vcpu);
1030#endif
1031 } else {
1032 vcpu->arch.gprs[rt] = cop0->reg[rd][sel];
1033
1034#ifdef CONFIG_KVM_MIPS_DYN_TRANS
1035 kvm_mips_trans_mfc0(inst, opc, vcpu);
1036#endif
1037 }
1038
1039 kvm_debug
1040 ("[%#x] MFCz[%d][%d], vcpu->arch.gprs[%d]: %#lx\n",
1041 pc, rd, sel, rt, vcpu->arch.gprs[rt]);
1042
1043 break;
1044
1045 case dmfc_op:
1046 vcpu->arch.gprs[rt] = cop0->reg[rd][sel];
1047 break;
1048
1049 case mtc_op:
1050#ifdef CONFIG_KVM_MIPS_DEBUG_COP0_COUNTERS
1051 cop0->stat[rd][sel]++;
1052#endif
1053 if ((rd == MIPS_CP0_TLB_INDEX)
1054 && (vcpu->arch.gprs[rt] >=
1055 KVM_MIPS_GUEST_TLB_SIZE)) {
1056 kvm_err("Invalid TLB Index: %ld",
1057 vcpu->arch.gprs[rt]);
1058 er = EMULATE_FAIL;
1059 break;
1060 }
1061#define C0_EBASE_CORE_MASK 0xff
1062 if ((rd == MIPS_CP0_PRID) && (sel == 1)) {
1063 /* Preserve CORE number */
1064 kvm_change_c0_guest_ebase(cop0,
1065 ~(C0_EBASE_CORE_MASK),
1066 vcpu->arch.gprs[rt]);
1067 kvm_err("MTCz, cop0->reg[EBASE]: %#lx\n",
1068 kvm_read_c0_guest_ebase(cop0));
1069 } else if (rd == MIPS_CP0_TLB_HI && sel == 0) {
1070 uint32_t nasid =
1071 vcpu->arch.gprs[rt] & ASID_MASK;
1072 if ((KSEGX(vcpu->arch.gprs[rt]) != CKSEG0) &&
1073 ((kvm_read_c0_guest_entryhi(cop0) &
1074 ASID_MASK) != nasid)) {
1075 kvm_debug("MTCz, change ASID from %#lx to %#lx\n",
1076 kvm_read_c0_guest_entryhi(cop0)
1077 & ASID_MASK,
1078 vcpu->arch.gprs[rt]
1079 & ASID_MASK);
1080
1081 /* Blow away the shadow host TLBs */
1082 kvm_mips_flush_host_tlb(1);
1083 }
1084 kvm_write_c0_guest_entryhi(cop0,
1085 vcpu->arch.gprs[rt]);
1086 }
1087 /* Are we writing to COUNT */
1088 else if ((rd == MIPS_CP0_COUNT) && (sel == 0)) {
1089 kvm_mips_write_count(vcpu, vcpu->arch.gprs[rt]);
1090 goto done;
1091 } else if ((rd == MIPS_CP0_COMPARE) && (sel == 0)) {
1092 kvm_debug("[%#x] MTCz, COMPARE %#lx <- %#lx\n",
1093 pc, kvm_read_c0_guest_compare(cop0),
1094 vcpu->arch.gprs[rt]);
1095
1096 /* If we are writing to COMPARE */
1097 /* Clear pending timer interrupt, if any */
1098 kvm_mips_callbacks->dequeue_timer_int(vcpu);
1099 kvm_mips_write_compare(vcpu,
1100 vcpu->arch.gprs[rt]);
1101 } else if ((rd == MIPS_CP0_STATUS) && (sel == 0)) {
1102 unsigned int old_val, val, change;
1103
1104 old_val = kvm_read_c0_guest_status(cop0);
1105 val = vcpu->arch.gprs[rt];
1106 change = val ^ old_val;
1107
1108 /* Make sure that the NMI bit is never set */
1109 val &= ~ST0_NMI;
1110
1111 /*
1112 * Don't allow CU1 or FR to be set unless FPU
1113 * capability enabled and exists in guest
1114 * configuration.
1115 */
1116 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
1117 val &= ~(ST0_CU1 | ST0_FR);
1118
1119 /*
1120 * Also don't allow FR to be set if host doesn't
1121 * support it.
1122 */
1123 if (!(current_cpu_data.fpu_id & MIPS_FPIR_F64))
1124 val &= ~ST0_FR;
1125
1126
1127 /* Handle changes in FPU mode */
1128 preempt_disable();
1129
1130 /*
1131 * FPU and Vector register state is made
1132 * UNPREDICTABLE by a change of FR, so don't
1133 * even bother saving it.
1134 */
1135 if (change & ST0_FR)
1136 kvm_drop_fpu(vcpu);
1137
1138 /*
1139 * If MSA state is already live, it is undefined
1140 * how it interacts with FR=0 FPU state, and we
1141 * don't want to hit reserved instruction
1142 * exceptions trying to save the MSA state later
1143 * when CU=1 && FR=1, so play it safe and save
1144 * it first.
1145 */
1146 if (change & ST0_CU1 && !(val & ST0_FR) &&
1147 vcpu->arch.fpu_inuse & KVM_MIPS_FPU_MSA)
1148 kvm_lose_fpu(vcpu);
1149
1150 /*
1151 * Propagate CU1 (FPU enable) changes
1152 * immediately if the FPU context is already
1153 * loaded. When disabling we leave the context
1154 * loaded so it can be quickly enabled again in
1155 * the near future.
1156 */
1157 if (change & ST0_CU1 &&
1158 vcpu->arch.fpu_inuse & KVM_MIPS_FPU_FPU)
1159 change_c0_status(ST0_CU1, val);
1160
1161 preempt_enable();
1162
1163 kvm_write_c0_guest_status(cop0, val);
1164
1165#ifdef CONFIG_KVM_MIPS_DYN_TRANS
1166 /*
1167 * If FPU present, we need CU1/FR bits to take
1168 * effect fairly soon.
1169 */
1170 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
1171 kvm_mips_trans_mtc0(inst, opc, vcpu);
1172#endif
1173 } else if ((rd == MIPS_CP0_CONFIG) && (sel == 5)) {
1174 unsigned int old_val, val, change, wrmask;
1175
1176 old_val = kvm_read_c0_guest_config5(cop0);
1177 val = vcpu->arch.gprs[rt];
1178
1179 /* Only a few bits are writable in Config5 */
1180 wrmask = kvm_mips_config5_wrmask(vcpu);
1181 change = (val ^ old_val) & wrmask;
1182 val = old_val ^ change;
1183
1184
1185 /* Handle changes in FPU/MSA modes */
1186 preempt_disable();
1187
1188 /*
1189 * Propagate FRE changes immediately if the FPU
1190 * context is already loaded.
1191 */
1192 if (change & MIPS_CONF5_FRE &&
1193 vcpu->arch.fpu_inuse & KVM_MIPS_FPU_FPU)
1194 change_c0_config5(MIPS_CONF5_FRE, val);
1195
1196 /*
1197 * Propagate MSAEn changes immediately if the
1198 * MSA context is already loaded. When disabling
1199 * we leave the context loaded so it can be
1200 * quickly enabled again in the near future.
1201 */
1202 if (change & MIPS_CONF5_MSAEN &&
1203 vcpu->arch.fpu_inuse & KVM_MIPS_FPU_MSA)
1204 change_c0_config5(MIPS_CONF5_MSAEN,
1205 val);
1206
1207 preempt_enable();
1208
1209 kvm_write_c0_guest_config5(cop0, val);
1210 } else if ((rd == MIPS_CP0_CAUSE) && (sel == 0)) {
1211 uint32_t old_cause, new_cause;
1212
1213 old_cause = kvm_read_c0_guest_cause(cop0);
1214 new_cause = vcpu->arch.gprs[rt];
1215 /* Update R/W bits */
1216 kvm_change_c0_guest_cause(cop0, 0x08800300,
1217 new_cause);
1218 /* DC bit enabling/disabling timer? */
1219 if ((old_cause ^ new_cause) & CAUSEF_DC) {
1220 if (new_cause & CAUSEF_DC)
1221 kvm_mips_count_disable_cause(vcpu);
1222 else
1223 kvm_mips_count_enable_cause(vcpu);
1224 }
1225 } else {
1226 cop0->reg[rd][sel] = vcpu->arch.gprs[rt];
1227#ifdef CONFIG_KVM_MIPS_DYN_TRANS
1228 kvm_mips_trans_mtc0(inst, opc, vcpu);
1229#endif
1230 }
1231
1232 kvm_debug("[%#x] MTCz, cop0->reg[%d][%d]: %#lx\n", pc,
1233 rd, sel, cop0->reg[rd][sel]);
1234 break;
1235
1236 case dmtc_op:
1237 kvm_err("!!!!!!![%#lx]dmtc_op: rt: %d, rd: %d, sel: %d!!!!!!\n",
1238 vcpu->arch.pc, rt, rd, sel);
1239 er = EMULATE_FAIL;
1240 break;
1241
1242 case mfmc0_op:
1243#ifdef KVM_MIPS_DEBUG_COP0_COUNTERS
1244 cop0->stat[MIPS_CP0_STATUS][0]++;
1245#endif
1246 if (rt != 0)
1247 vcpu->arch.gprs[rt] =
1248 kvm_read_c0_guest_status(cop0);
1249 /* EI */
1250 if (inst & 0x20) {
1251 kvm_debug("[%#lx] mfmc0_op: EI\n",
1252 vcpu->arch.pc);
1253 kvm_set_c0_guest_status(cop0, ST0_IE);
1254 } else {
1255 kvm_debug("[%#lx] mfmc0_op: DI\n",
1256 vcpu->arch.pc);
1257 kvm_clear_c0_guest_status(cop0, ST0_IE);
1258 }
1259
1260 break;
1261
1262 case wrpgpr_op:
1263 {
1264 uint32_t css =
1265 cop0->reg[MIPS_CP0_STATUS][2] & 0xf;
1266 uint32_t pss =
1267 (cop0->reg[MIPS_CP0_STATUS][2] >> 6) & 0xf;
1268 /*
1269 * We don't support any shadow register sets, so
1270 * SRSCtl[PSS] == SRSCtl[CSS] = 0
1271 */
1272 if (css || pss) {
1273 er = EMULATE_FAIL;
1274 break;
1275 }
1276 kvm_debug("WRPGPR[%d][%d] = %#lx\n", pss, rd,
1277 vcpu->arch.gprs[rt]);
1278 vcpu->arch.gprs[rd] = vcpu->arch.gprs[rt];
1279 }
1280 break;
1281 default:
1282 kvm_err("[%#lx]MachEmulateCP0: unsupported COP0, copz: 0x%x\n",
1283 vcpu->arch.pc, copz);
1284 er = EMULATE_FAIL;
1285 break;
1286 }
1287 }
1288
1289done:
1290 /* Rollback PC only if emulation was unsuccessful */
1291 if (er == EMULATE_FAIL)
1292 vcpu->arch.pc = curr_pc;
1293
1294dont_update_pc:
1295 /*
1296 * This is for special instructions whose emulation
1297 * updates the PC, so do not overwrite the PC under
1298 * any circumstances
1299 */
1300
1301 return er;
1302}
1303
1304enum emulation_result kvm_mips_emulate_store(uint32_t inst, uint32_t cause,
1305 struct kvm_run *run,
1306 struct kvm_vcpu *vcpu)
1307{
1308 enum emulation_result er = EMULATE_DO_MMIO;
1309 int32_t op, base, rt, offset;
1310 uint32_t bytes;
1311 void *data = run->mmio.data;
1312 unsigned long curr_pc;
1313
1314 /*
1315 * Update PC and hold onto current PC in case there is
1316 * an error and we want to rollback the PC
1317 */
1318 curr_pc = vcpu->arch.pc;
1319 er = update_pc(vcpu, cause);
1320 if (er == EMULATE_FAIL)
1321 return er;
1322
1323 rt = (inst >> 16) & 0x1f;
1324 base = (inst >> 21) & 0x1f;
1325 offset = inst & 0xffff;
1326 op = (inst >> 26) & 0x3f;
1327
1328 switch (op) {
1329 case sb_op:
1330 bytes = 1;
1331 if (bytes > sizeof(run->mmio.data)) {
1332 kvm_err("%s: bad MMIO length: %d\n", __func__,
1333 run->mmio.len);
1334 }
1335 run->mmio.phys_addr =
1336 kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1337 host_cp0_badvaddr);
1338 if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1339 er = EMULATE_FAIL;
1340 break;
1341 }
1342 run->mmio.len = bytes;
1343 run->mmio.is_write = 1;
1344 vcpu->mmio_needed = 1;
1345 vcpu->mmio_is_write = 1;
1346 *(u8 *) data = vcpu->arch.gprs[rt];
1347 kvm_debug("OP_SB: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1348 vcpu->arch.host_cp0_badvaddr, vcpu->arch.gprs[rt],
1349 *(uint8_t *) data);
1350
1351 break;
1352
1353 case sw_op:
1354 bytes = 4;
1355 if (bytes > sizeof(run->mmio.data)) {
1356 kvm_err("%s: bad MMIO length: %d\n", __func__,
1357 run->mmio.len);
1358 }
1359 run->mmio.phys_addr =
1360 kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1361 host_cp0_badvaddr);
1362 if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1363 er = EMULATE_FAIL;
1364 break;
1365 }
1366
1367 run->mmio.len = bytes;
1368 run->mmio.is_write = 1;
1369 vcpu->mmio_needed = 1;
1370 vcpu->mmio_is_write = 1;
1371 *(uint32_t *) data = vcpu->arch.gprs[rt];
1372
1373 kvm_debug("[%#lx] OP_SW: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1374 vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1375 vcpu->arch.gprs[rt], *(uint32_t *) data);
1376 break;
1377
1378 case sh_op:
1379 bytes = 2;
1380 if (bytes > sizeof(run->mmio.data)) {
1381 kvm_err("%s: bad MMIO length: %d\n", __func__,
1382 run->mmio.len);
1383 }
1384 run->mmio.phys_addr =
1385 kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1386 host_cp0_badvaddr);
1387 if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1388 er = EMULATE_FAIL;
1389 break;
1390 }
1391
1392 run->mmio.len = bytes;
1393 run->mmio.is_write = 1;
1394 vcpu->mmio_needed = 1;
1395 vcpu->mmio_is_write = 1;
1396 *(uint16_t *) data = vcpu->arch.gprs[rt];
1397
1398 kvm_debug("[%#lx] OP_SH: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1399 vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1400 vcpu->arch.gprs[rt], *(uint32_t *) data);
1401 break;
1402
1403 default:
1404 kvm_err("Store not yet supported");
1405 er = EMULATE_FAIL;
1406 break;
1407 }
1408
1409 /* Rollback PC if emulation was unsuccessful */
1410 if (er == EMULATE_FAIL)
1411 vcpu->arch.pc = curr_pc;
1412
1413 return er;
1414}
1415
1416enum emulation_result kvm_mips_emulate_load(uint32_t inst, uint32_t cause,
1417 struct kvm_run *run,
1418 struct kvm_vcpu *vcpu)
1419{
1420 enum emulation_result er = EMULATE_DO_MMIO;
1421 int32_t op, base, rt, offset;
1422 uint32_t bytes;
1423
1424 rt = (inst >> 16) & 0x1f;
1425 base = (inst >> 21) & 0x1f;
1426 offset = inst & 0xffff;
1427 op = (inst >> 26) & 0x3f;
1428
1429 vcpu->arch.pending_load_cause = cause;
1430 vcpu->arch.io_gpr = rt;
1431
1432 switch (op) {
1433 case lw_op:
1434 bytes = 4;
1435 if (bytes > sizeof(run->mmio.data)) {
1436 kvm_err("%s: bad MMIO length: %d\n", __func__,
1437 run->mmio.len);
1438 er = EMULATE_FAIL;
1439 break;
1440 }
1441 run->mmio.phys_addr =
1442 kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1443 host_cp0_badvaddr);
1444 if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1445 er = EMULATE_FAIL;
1446 break;
1447 }
1448
1449 run->mmio.len = bytes;
1450 run->mmio.is_write = 0;
1451 vcpu->mmio_needed = 1;
1452 vcpu->mmio_is_write = 0;
1453 break;
1454
1455 case lh_op:
1456 case lhu_op:
1457 bytes = 2;
1458 if (bytes > sizeof(run->mmio.data)) {
1459 kvm_err("%s: bad MMIO length: %d\n", __func__,
1460 run->mmio.len);
1461 er = EMULATE_FAIL;
1462 break;
1463 }
1464 run->mmio.phys_addr =
1465 kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1466 host_cp0_badvaddr);
1467 if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1468 er = EMULATE_FAIL;
1469 break;
1470 }
1471
1472 run->mmio.len = bytes;
1473 run->mmio.is_write = 0;
1474 vcpu->mmio_needed = 1;
1475 vcpu->mmio_is_write = 0;
1476
1477 if (op == lh_op)
1478 vcpu->mmio_needed = 2;
1479 else
1480 vcpu->mmio_needed = 1;
1481
1482 break;
1483
1484 case lbu_op:
1485 case lb_op:
1486 bytes = 1;
1487 if (bytes > sizeof(run->mmio.data)) {
1488 kvm_err("%s: bad MMIO length: %d\n", __func__,
1489 run->mmio.len);
1490 er = EMULATE_FAIL;
1491 break;
1492 }
1493 run->mmio.phys_addr =
1494 kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1495 host_cp0_badvaddr);
1496 if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1497 er = EMULATE_FAIL;
1498 break;
1499 }
1500
1501 run->mmio.len = bytes;
1502 run->mmio.is_write = 0;
1503 vcpu->mmio_is_write = 0;
1504
1505 if (op == lb_op)
1506 vcpu->mmio_needed = 2;
1507 else
1508 vcpu->mmio_needed = 1;
1509
1510 break;
1511
1512 default:
1513 kvm_err("Load not yet supported");
1514 er = EMULATE_FAIL;
1515 break;
1516 }
1517
1518 return er;
1519}
1520
1521int kvm_mips_sync_icache(unsigned long va, struct kvm_vcpu *vcpu)
1522{
1523 unsigned long offset = (va & ~PAGE_MASK);
1524 struct kvm *kvm = vcpu->kvm;
1525 unsigned long pa;
1526 gfn_t gfn;
1527 kvm_pfn_t pfn;
1528
1529 gfn = va >> PAGE_SHIFT;
1530
1531 if (gfn >= kvm->arch.guest_pmap_npages) {
1532 kvm_err("%s: Invalid gfn: %#llx\n", __func__, gfn);
1533 kvm_mips_dump_host_tlbs();
1534 kvm_arch_vcpu_dump_regs(vcpu);
1535 return -1;
1536 }
1537 pfn = kvm->arch.guest_pmap[gfn];
1538 pa = (pfn << PAGE_SHIFT) | offset;
1539
1540 kvm_debug("%s: va: %#lx, unmapped: %#x\n", __func__, va,
1541 CKSEG0ADDR(pa));
1542
1543 local_flush_icache_range(CKSEG0ADDR(pa), 32);
1544 return 0;
1545}
1546
1547enum emulation_result kvm_mips_emulate_cache(uint32_t inst, uint32_t *opc,
1548 uint32_t cause,
1549 struct kvm_run *run,
1550 struct kvm_vcpu *vcpu)
1551{
1552 struct mips_coproc *cop0 = vcpu->arch.cop0;
1553 enum emulation_result er = EMULATE_DONE;
1554 int32_t offset, cache, op_inst, op, base;
1555 struct kvm_vcpu_arch *arch = &vcpu->arch;
1556 unsigned long va;
1557 unsigned long curr_pc;
1558
1559 /*
1560 * Update PC and hold onto current PC in case there is
1561 * an error and we want to rollback the PC
1562 */
1563 curr_pc = vcpu->arch.pc;
1564 er = update_pc(vcpu, cause);
1565 if (er == EMULATE_FAIL)
1566 return er;
1567
1568 base = (inst >> 21) & 0x1f;
1569 op_inst = (inst >> 16) & 0x1f;
1570 offset = (int16_t)inst;
1571 cache = op_inst & CacheOp_Cache;
1572 op = op_inst & CacheOp_Op;
1573
1574 va = arch->gprs[base] + offset;
1575
1576 kvm_debug("CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
1577 cache, op, base, arch->gprs[base], offset);
1578
1579 /*
1580 * Treat INDEX_INV as a nop, basically issued by Linux on startup to
1581 * invalidate the caches entirely by stepping through all the
1582 * ways/indexes
1583 */
1584 if (op == Index_Writeback_Inv) {
1585 kvm_debug("@ %#lx/%#lx CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
1586 vcpu->arch.pc, vcpu->arch.gprs[31], cache, op, base,
1587 arch->gprs[base], offset);
1588
1589 if (cache == Cache_D)
1590 r4k_blast_dcache();
1591 else if (cache == Cache_I)
1592 r4k_blast_icache();
1593 else {
1594 kvm_err("%s: unsupported CACHE INDEX operation\n",
1595 __func__);
1596 return EMULATE_FAIL;
1597 }
1598
1599#ifdef CONFIG_KVM_MIPS_DYN_TRANS
1600 kvm_mips_trans_cache_index(inst, opc, vcpu);
1601#endif
1602 goto done;
1603 }
1604
1605 preempt_disable();
1606 if (KVM_GUEST_KSEGX(va) == KVM_GUEST_KSEG0) {
1607 if (kvm_mips_host_tlb_lookup(vcpu, va) < 0)
1608 kvm_mips_handle_kseg0_tlb_fault(va, vcpu);
1609 } else if ((KVM_GUEST_KSEGX(va) < KVM_GUEST_KSEG0) ||
1610 KVM_GUEST_KSEGX(va) == KVM_GUEST_KSEG23) {
1611 int index;
1612
1613 /* If an entry already exists then skip */
1614 if (kvm_mips_host_tlb_lookup(vcpu, va) >= 0)
1615 goto skip_fault;
1616
1617 /*
1618 * If address not in the guest TLB, then give the guest a fault,
1619 * the resulting handler will do the right thing
1620 */
1621 index = kvm_mips_guest_tlb_lookup(vcpu, (va & VPN2_MASK) |
1622 (kvm_read_c0_guest_entryhi
1623 (cop0) & ASID_MASK));
1624
1625 if (index < 0) {
1626 vcpu->arch.host_cp0_entryhi = (va & VPN2_MASK);
1627 vcpu->arch.host_cp0_badvaddr = va;
1628 er = kvm_mips_emulate_tlbmiss_ld(cause, NULL, run,
1629 vcpu);
1630 preempt_enable();
1631 goto dont_update_pc;
1632 } else {
1633 struct kvm_mips_tlb *tlb = &vcpu->arch.guest_tlb[index];
1634 /*
1635 * Check if the entry is valid, if not then setup a TLB
1636 * invalid exception to the guest
1637 */
1638 if (!TLB_IS_VALID(*tlb, va)) {
1639 er = kvm_mips_emulate_tlbinv_ld(cause, NULL,
1640 run, vcpu);
1641 preempt_enable();
1642 goto dont_update_pc;
1643 } else {
1644 /*
1645 * We fault an entry from the guest tlb to the
1646 * shadow host TLB
1647 */
1648 kvm_mips_handle_mapped_seg_tlb_fault(vcpu, tlb,
1649 NULL,
1650 NULL);
1651 }
1652 }
1653 } else {
1654 kvm_err("INVALID CACHE INDEX/ADDRESS (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
1655 cache, op, base, arch->gprs[base], offset);
1656 er = EMULATE_FAIL;
1657 preempt_enable();
1658 goto dont_update_pc;
1659
1660 }
1661
1662skip_fault:
1663 /* XXXKYMA: Only a subset of cache ops are supported, used by Linux */
1664 if (op_inst == Hit_Writeback_Inv_D || op_inst == Hit_Invalidate_D) {
1665 flush_dcache_line(va);
1666
1667#ifdef CONFIG_KVM_MIPS_DYN_TRANS
1668 /*
1669 * Replace the CACHE instruction, with a SYNCI, not the same,
1670 * but avoids a trap
1671 */
1672 kvm_mips_trans_cache_va(inst, opc, vcpu);
1673#endif
1674 } else if (op_inst == Hit_Invalidate_I) {
1675 flush_dcache_line(va);
1676 flush_icache_line(va);
1677
1678#ifdef CONFIG_KVM_MIPS_DYN_TRANS
1679 /* Replace the CACHE instruction, with a SYNCI */
1680 kvm_mips_trans_cache_va(inst, opc, vcpu);
1681#endif
1682 } else {
1683 kvm_err("NO-OP CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
1684 cache, op, base, arch->gprs[base], offset);
1685 er = EMULATE_FAIL;
1686 preempt_enable();
1687 goto dont_update_pc;
1688 }
1689
1690 preempt_enable();
1691
1692dont_update_pc:
1693 /* Rollback PC */
1694 vcpu->arch.pc = curr_pc;
1695done:
1696 return er;
1697}
1698
1699enum emulation_result kvm_mips_emulate_inst(unsigned long cause, uint32_t *opc,
1700 struct kvm_run *run,
1701 struct kvm_vcpu *vcpu)
1702{
1703 enum emulation_result er = EMULATE_DONE;
1704 uint32_t inst;
1705
1706 /* Fetch the instruction. */
1707 if (cause & CAUSEF_BD)
1708 opc += 1;
1709
1710 inst = kvm_get_inst(opc, vcpu);
1711
1712 switch (((union mips_instruction)inst).r_format.opcode) {
1713 case cop0_op:
1714 er = kvm_mips_emulate_CP0(inst, opc, cause, run, vcpu);
1715 break;
1716 case sb_op:
1717 case sh_op:
1718 case sw_op:
1719 er = kvm_mips_emulate_store(inst, cause, run, vcpu);
1720 break;
1721 case lb_op:
1722 case lbu_op:
1723 case lhu_op:
1724 case lh_op:
1725 case lw_op:
1726 er = kvm_mips_emulate_load(inst, cause, run, vcpu);
1727 break;
1728
1729 case cache_op:
1730 ++vcpu->stat.cache_exits;
1731 trace_kvm_exit(vcpu, CACHE_EXITS);
1732 er = kvm_mips_emulate_cache(inst, opc, cause, run, vcpu);
1733 break;
1734
1735 default:
1736 kvm_err("Instruction emulation not supported (%p/%#x)\n", opc,
1737 inst);
1738 kvm_arch_vcpu_dump_regs(vcpu);
1739 er = EMULATE_FAIL;
1740 break;
1741 }
1742
1743 return er;
1744}
1745
1746enum emulation_result kvm_mips_emulate_syscall(unsigned long cause,
1747 uint32_t *opc,
1748 struct kvm_run *run,
1749 struct kvm_vcpu *vcpu)
1750{
1751 struct mips_coproc *cop0 = vcpu->arch.cop0;
1752 struct kvm_vcpu_arch *arch = &vcpu->arch;
1753 enum emulation_result er = EMULATE_DONE;
1754
1755 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1756 /* save old pc */
1757 kvm_write_c0_guest_epc(cop0, arch->pc);
1758 kvm_set_c0_guest_status(cop0, ST0_EXL);
1759
1760 if (cause & CAUSEF_BD)
1761 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1762 else
1763 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
1764
1765 kvm_debug("Delivering SYSCALL @ pc %#lx\n", arch->pc);
1766
1767 kvm_change_c0_guest_cause(cop0, (0xff),
1768 (EXCCODE_SYS << CAUSEB_EXCCODE));
1769
1770 /* Set PC to the exception entry point */
1771 arch->pc = KVM_GUEST_KSEG0 + 0x180;
1772
1773 } else {
1774 kvm_err("Trying to deliver SYSCALL when EXL is already set\n");
1775 er = EMULATE_FAIL;
1776 }
1777
1778 return er;
1779}
1780
1781enum emulation_result kvm_mips_emulate_tlbmiss_ld(unsigned long cause,
1782 uint32_t *opc,
1783 struct kvm_run *run,
1784 struct kvm_vcpu *vcpu)
1785{
1786 struct mips_coproc *cop0 = vcpu->arch.cop0;
1787 struct kvm_vcpu_arch *arch = &vcpu->arch;
1788 unsigned long entryhi = (vcpu->arch. host_cp0_badvaddr & VPN2_MASK) |
1789 (kvm_read_c0_guest_entryhi(cop0) & ASID_MASK);
1790
1791 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1792 /* save old pc */
1793 kvm_write_c0_guest_epc(cop0, arch->pc);
1794 kvm_set_c0_guest_status(cop0, ST0_EXL);
1795
1796 if (cause & CAUSEF_BD)
1797 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1798 else
1799 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
1800
1801 kvm_debug("[EXL == 0] delivering TLB MISS @ pc %#lx\n",
1802 arch->pc);
1803
1804 /* set pc to the exception entry point */
1805 arch->pc = KVM_GUEST_KSEG0 + 0x0;
1806
1807 } else {
1808 kvm_debug("[EXL == 1] delivering TLB MISS @ pc %#lx\n",
1809 arch->pc);
1810
1811 arch->pc = KVM_GUEST_KSEG0 + 0x180;
1812 }
1813
1814 kvm_change_c0_guest_cause(cop0, (0xff),
1815 (EXCCODE_TLBL << CAUSEB_EXCCODE));
1816
1817 /* setup badvaddr, context and entryhi registers for the guest */
1818 kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
1819 /* XXXKYMA: is the context register used by linux??? */
1820 kvm_write_c0_guest_entryhi(cop0, entryhi);
1821 /* Blow away the shadow host TLBs */
1822 kvm_mips_flush_host_tlb(1);
1823
1824 return EMULATE_DONE;
1825}
1826
1827enum emulation_result kvm_mips_emulate_tlbinv_ld(unsigned long cause,
1828 uint32_t *opc,
1829 struct kvm_run *run,
1830 struct kvm_vcpu *vcpu)
1831{
1832 struct mips_coproc *cop0 = vcpu->arch.cop0;
1833 struct kvm_vcpu_arch *arch = &vcpu->arch;
1834 unsigned long entryhi =
1835 (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
1836 (kvm_read_c0_guest_entryhi(cop0) & ASID_MASK);
1837
1838 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1839 /* save old pc */
1840 kvm_write_c0_guest_epc(cop0, arch->pc);
1841 kvm_set_c0_guest_status(cop0, ST0_EXL);
1842
1843 if (cause & CAUSEF_BD)
1844 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1845 else
1846 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
1847
1848 kvm_debug("[EXL == 0] delivering TLB INV @ pc %#lx\n",
1849 arch->pc);
1850
1851 /* set pc to the exception entry point */
1852 arch->pc = KVM_GUEST_KSEG0 + 0x180;
1853
1854 } else {
1855 kvm_debug("[EXL == 1] delivering TLB MISS @ pc %#lx\n",
1856 arch->pc);
1857 arch->pc = KVM_GUEST_KSEG0 + 0x180;
1858 }
1859
1860 kvm_change_c0_guest_cause(cop0, (0xff),
1861 (EXCCODE_TLBL << CAUSEB_EXCCODE));
1862
1863 /* setup badvaddr, context and entryhi registers for the guest */
1864 kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
1865 /* XXXKYMA: is the context register used by linux??? */
1866 kvm_write_c0_guest_entryhi(cop0, entryhi);
1867 /* Blow away the shadow host TLBs */
1868 kvm_mips_flush_host_tlb(1);
1869
1870 return EMULATE_DONE;
1871}
1872
1873enum emulation_result kvm_mips_emulate_tlbmiss_st(unsigned long cause,
1874 uint32_t *opc,
1875 struct kvm_run *run,
1876 struct kvm_vcpu *vcpu)
1877{
1878 struct mips_coproc *cop0 = vcpu->arch.cop0;
1879 struct kvm_vcpu_arch *arch = &vcpu->arch;
1880 unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
1881 (kvm_read_c0_guest_entryhi(cop0) & ASID_MASK);
1882
1883 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1884 /* save old pc */
1885 kvm_write_c0_guest_epc(cop0, arch->pc);
1886 kvm_set_c0_guest_status(cop0, ST0_EXL);
1887
1888 if (cause & CAUSEF_BD)
1889 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1890 else
1891 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
1892
1893 kvm_debug("[EXL == 0] Delivering TLB MISS @ pc %#lx\n",
1894 arch->pc);
1895
1896 /* Set PC to the exception entry point */
1897 arch->pc = KVM_GUEST_KSEG0 + 0x0;
1898 } else {
1899 kvm_debug("[EXL == 1] Delivering TLB MISS @ pc %#lx\n",
1900 arch->pc);
1901 arch->pc = KVM_GUEST_KSEG0 + 0x180;
1902 }
1903
1904 kvm_change_c0_guest_cause(cop0, (0xff),
1905 (EXCCODE_TLBS << CAUSEB_EXCCODE));
1906
1907 /* setup badvaddr, context and entryhi registers for the guest */
1908 kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
1909 /* XXXKYMA: is the context register used by linux??? */
1910 kvm_write_c0_guest_entryhi(cop0, entryhi);
1911 /* Blow away the shadow host TLBs */
1912 kvm_mips_flush_host_tlb(1);
1913
1914 return EMULATE_DONE;
1915}
1916
1917enum emulation_result kvm_mips_emulate_tlbinv_st(unsigned long cause,
1918 uint32_t *opc,
1919 struct kvm_run *run,
1920 struct kvm_vcpu *vcpu)
1921{
1922 struct mips_coproc *cop0 = vcpu->arch.cop0;
1923 struct kvm_vcpu_arch *arch = &vcpu->arch;
1924 unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
1925 (kvm_read_c0_guest_entryhi(cop0) & ASID_MASK);
1926
1927 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1928 /* save old pc */
1929 kvm_write_c0_guest_epc(cop0, arch->pc);
1930 kvm_set_c0_guest_status(cop0, ST0_EXL);
1931
1932 if (cause & CAUSEF_BD)
1933 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1934 else
1935 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
1936
1937 kvm_debug("[EXL == 0] Delivering TLB MISS @ pc %#lx\n",
1938 arch->pc);
1939
1940 /* Set PC to the exception entry point */
1941 arch->pc = KVM_GUEST_KSEG0 + 0x180;
1942 } else {
1943 kvm_debug("[EXL == 1] Delivering TLB MISS @ pc %#lx\n",
1944 arch->pc);
1945 arch->pc = KVM_GUEST_KSEG0 + 0x180;
1946 }
1947
1948 kvm_change_c0_guest_cause(cop0, (0xff),
1949 (EXCCODE_TLBS << CAUSEB_EXCCODE));
1950
1951 /* setup badvaddr, context and entryhi registers for the guest */
1952 kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
1953 /* XXXKYMA: is the context register used by linux??? */
1954 kvm_write_c0_guest_entryhi(cop0, entryhi);
1955 /* Blow away the shadow host TLBs */
1956 kvm_mips_flush_host_tlb(1);
1957
1958 return EMULATE_DONE;
1959}
1960
1961/* TLBMOD: store into address matching TLB with Dirty bit off */
1962enum emulation_result kvm_mips_handle_tlbmod(unsigned long cause, uint32_t *opc,
1963 struct kvm_run *run,
1964 struct kvm_vcpu *vcpu)
1965{
1966 enum emulation_result er = EMULATE_DONE;
1967#ifdef DEBUG
1968 struct mips_coproc *cop0 = vcpu->arch.cop0;
1969 unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
1970 (kvm_read_c0_guest_entryhi(cop0) & ASID_MASK);
1971 int index;
1972
1973 /* If address not in the guest TLB, then we are in trouble */
1974 index = kvm_mips_guest_tlb_lookup(vcpu, entryhi);
1975 if (index < 0) {
1976 /* XXXKYMA Invalidate and retry */
1977 kvm_mips_host_tlb_inv(vcpu, vcpu->arch.host_cp0_badvaddr);
1978 kvm_err("%s: host got TLBMOD for %#lx but entry not present in Guest TLB\n",
1979 __func__, entryhi);
1980 kvm_mips_dump_guest_tlbs(vcpu);
1981 kvm_mips_dump_host_tlbs();
1982 return EMULATE_FAIL;
1983 }
1984#endif
1985
1986 er = kvm_mips_emulate_tlbmod(cause, opc, run, vcpu);
1987 return er;
1988}
1989
1990enum emulation_result kvm_mips_emulate_tlbmod(unsigned long cause,
1991 uint32_t *opc,
1992 struct kvm_run *run,
1993 struct kvm_vcpu *vcpu)
1994{
1995 struct mips_coproc *cop0 = vcpu->arch.cop0;
1996 unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
1997 (kvm_read_c0_guest_entryhi(cop0) & ASID_MASK);
1998 struct kvm_vcpu_arch *arch = &vcpu->arch;
1999
2000 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2001 /* save old pc */
2002 kvm_write_c0_guest_epc(cop0, arch->pc);
2003 kvm_set_c0_guest_status(cop0, ST0_EXL);
2004
2005 if (cause & CAUSEF_BD)
2006 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2007 else
2008 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2009
2010 kvm_debug("[EXL == 0] Delivering TLB MOD @ pc %#lx\n",
2011 arch->pc);
2012
2013 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2014 } else {
2015 kvm_debug("[EXL == 1] Delivering TLB MOD @ pc %#lx\n",
2016 arch->pc);
2017 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2018 }
2019
2020 kvm_change_c0_guest_cause(cop0, (0xff),
2021 (EXCCODE_MOD << CAUSEB_EXCCODE));
2022
2023 /* setup badvaddr, context and entryhi registers for the guest */
2024 kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
2025 /* XXXKYMA: is the context register used by linux??? */
2026 kvm_write_c0_guest_entryhi(cop0, entryhi);
2027 /* Blow away the shadow host TLBs */
2028 kvm_mips_flush_host_tlb(1);
2029
2030 return EMULATE_DONE;
2031}
2032
2033enum emulation_result kvm_mips_emulate_fpu_exc(unsigned long cause,
2034 uint32_t *opc,
2035 struct kvm_run *run,
2036 struct kvm_vcpu *vcpu)
2037{
2038 struct mips_coproc *cop0 = vcpu->arch.cop0;
2039 struct kvm_vcpu_arch *arch = &vcpu->arch;
2040
2041 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2042 /* save old pc */
2043 kvm_write_c0_guest_epc(cop0, arch->pc);
2044 kvm_set_c0_guest_status(cop0, ST0_EXL);
2045
2046 if (cause & CAUSEF_BD)
2047 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2048 else
2049 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2050
2051 }
2052
2053 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2054
2055 kvm_change_c0_guest_cause(cop0, (0xff),
2056 (EXCCODE_CPU << CAUSEB_EXCCODE));
2057 kvm_change_c0_guest_cause(cop0, (CAUSEF_CE), (0x1 << CAUSEB_CE));
2058
2059 return EMULATE_DONE;
2060}
2061
2062enum emulation_result kvm_mips_emulate_ri_exc(unsigned long cause,
2063 uint32_t *opc,
2064 struct kvm_run *run,
2065 struct kvm_vcpu *vcpu)
2066{
2067 struct mips_coproc *cop0 = vcpu->arch.cop0;
2068 struct kvm_vcpu_arch *arch = &vcpu->arch;
2069 enum emulation_result er = EMULATE_DONE;
2070
2071 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2072 /* save old pc */
2073 kvm_write_c0_guest_epc(cop0, arch->pc);
2074 kvm_set_c0_guest_status(cop0, ST0_EXL);
2075
2076 if (cause & CAUSEF_BD)
2077 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2078 else
2079 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2080
2081 kvm_debug("Delivering RI @ pc %#lx\n", arch->pc);
2082
2083 kvm_change_c0_guest_cause(cop0, (0xff),
2084 (EXCCODE_RI << CAUSEB_EXCCODE));
2085
2086 /* Set PC to the exception entry point */
2087 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2088
2089 } else {
2090 kvm_err("Trying to deliver RI when EXL is already set\n");
2091 er = EMULATE_FAIL;
2092 }
2093
2094 return er;
2095}
2096
2097enum emulation_result kvm_mips_emulate_bp_exc(unsigned long cause,
2098 uint32_t *opc,
2099 struct kvm_run *run,
2100 struct kvm_vcpu *vcpu)
2101{
2102 struct mips_coproc *cop0 = vcpu->arch.cop0;
2103 struct kvm_vcpu_arch *arch = &vcpu->arch;
2104 enum emulation_result er = EMULATE_DONE;
2105
2106 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2107 /* save old pc */
2108 kvm_write_c0_guest_epc(cop0, arch->pc);
2109 kvm_set_c0_guest_status(cop0, ST0_EXL);
2110
2111 if (cause & CAUSEF_BD)
2112 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2113 else
2114 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2115
2116 kvm_debug("Delivering BP @ pc %#lx\n", arch->pc);
2117
2118 kvm_change_c0_guest_cause(cop0, (0xff),
2119 (EXCCODE_BP << CAUSEB_EXCCODE));
2120
2121 /* Set PC to the exception entry point */
2122 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2123
2124 } else {
2125 kvm_err("Trying to deliver BP when EXL is already set\n");
2126 er = EMULATE_FAIL;
2127 }
2128
2129 return er;
2130}
2131
2132enum emulation_result kvm_mips_emulate_trap_exc(unsigned long cause,
2133 uint32_t *opc,
2134 struct kvm_run *run,
2135 struct kvm_vcpu *vcpu)
2136{
2137 struct mips_coproc *cop0 = vcpu->arch.cop0;
2138 struct kvm_vcpu_arch *arch = &vcpu->arch;
2139 enum emulation_result er = EMULATE_DONE;
2140
2141 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2142 /* save old pc */
2143 kvm_write_c0_guest_epc(cop0, arch->pc);
2144 kvm_set_c0_guest_status(cop0, ST0_EXL);
2145
2146 if (cause & CAUSEF_BD)
2147 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2148 else
2149 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2150
2151 kvm_debug("Delivering TRAP @ pc %#lx\n", arch->pc);
2152
2153 kvm_change_c0_guest_cause(cop0, (0xff),
2154 (EXCCODE_TR << CAUSEB_EXCCODE));
2155
2156 /* Set PC to the exception entry point */
2157 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2158
2159 } else {
2160 kvm_err("Trying to deliver TRAP when EXL is already set\n");
2161 er = EMULATE_FAIL;
2162 }
2163
2164 return er;
2165}
2166
2167enum emulation_result kvm_mips_emulate_msafpe_exc(unsigned long cause,
2168 uint32_t *opc,
2169 struct kvm_run *run,
2170 struct kvm_vcpu *vcpu)
2171{
2172 struct mips_coproc *cop0 = vcpu->arch.cop0;
2173 struct kvm_vcpu_arch *arch = &vcpu->arch;
2174 enum emulation_result er = EMULATE_DONE;
2175
2176 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2177 /* save old pc */
2178 kvm_write_c0_guest_epc(cop0, arch->pc);
2179 kvm_set_c0_guest_status(cop0, ST0_EXL);
2180
2181 if (cause & CAUSEF_BD)
2182 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2183 else
2184 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2185
2186 kvm_debug("Delivering MSAFPE @ pc %#lx\n", arch->pc);
2187
2188 kvm_change_c0_guest_cause(cop0, (0xff),
2189 (EXCCODE_MSAFPE << CAUSEB_EXCCODE));
2190
2191 /* Set PC to the exception entry point */
2192 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2193
2194 } else {
2195 kvm_err("Trying to deliver MSAFPE when EXL is already set\n");
2196 er = EMULATE_FAIL;
2197 }
2198
2199 return er;
2200}
2201
2202enum emulation_result kvm_mips_emulate_fpe_exc(unsigned long cause,
2203 uint32_t *opc,
2204 struct kvm_run *run,
2205 struct kvm_vcpu *vcpu)
2206{
2207 struct mips_coproc *cop0 = vcpu->arch.cop0;
2208 struct kvm_vcpu_arch *arch = &vcpu->arch;
2209 enum emulation_result er = EMULATE_DONE;
2210
2211 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2212 /* save old pc */
2213 kvm_write_c0_guest_epc(cop0, arch->pc);
2214 kvm_set_c0_guest_status(cop0, ST0_EXL);
2215
2216 if (cause & CAUSEF_BD)
2217 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2218 else
2219 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2220
2221 kvm_debug("Delivering FPE @ pc %#lx\n", arch->pc);
2222
2223 kvm_change_c0_guest_cause(cop0, (0xff),
2224 (EXCCODE_FPE << CAUSEB_EXCCODE));
2225
2226 /* Set PC to the exception entry point */
2227 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2228
2229 } else {
2230 kvm_err("Trying to deliver FPE when EXL is already set\n");
2231 er = EMULATE_FAIL;
2232 }
2233
2234 return er;
2235}
2236
2237enum emulation_result kvm_mips_emulate_msadis_exc(unsigned long cause,
2238 uint32_t *opc,
2239 struct kvm_run *run,
2240 struct kvm_vcpu *vcpu)
2241{
2242 struct mips_coproc *cop0 = vcpu->arch.cop0;
2243 struct kvm_vcpu_arch *arch = &vcpu->arch;
2244 enum emulation_result er = EMULATE_DONE;
2245
2246 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2247 /* save old pc */
2248 kvm_write_c0_guest_epc(cop0, arch->pc);
2249 kvm_set_c0_guest_status(cop0, ST0_EXL);
2250
2251 if (cause & CAUSEF_BD)
2252 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2253 else
2254 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2255
2256 kvm_debug("Delivering MSADIS @ pc %#lx\n", arch->pc);
2257
2258 kvm_change_c0_guest_cause(cop0, (0xff),
2259 (EXCCODE_MSADIS << CAUSEB_EXCCODE));
2260
2261 /* Set PC to the exception entry point */
2262 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2263
2264 } else {
2265 kvm_err("Trying to deliver MSADIS when EXL is already set\n");
2266 er = EMULATE_FAIL;
2267 }
2268
2269 return er;
2270}
2271
2272/* ll/sc, rdhwr, sync emulation */
2273
2274#define OPCODE 0xfc000000
2275#define BASE 0x03e00000
2276#define RT 0x001f0000
2277#define OFFSET 0x0000ffff
2278#define LL 0xc0000000
2279#define SC 0xe0000000
2280#define SPEC0 0x00000000
2281#define SPEC3 0x7c000000
2282#define RD 0x0000f800
2283#define FUNC 0x0000003f
2284#define SYNC 0x0000000f
2285#define RDHWR 0x0000003b
2286
2287enum emulation_result kvm_mips_handle_ri(unsigned long cause, uint32_t *opc,
2288 struct kvm_run *run,
2289 struct kvm_vcpu *vcpu)
2290{
2291 struct mips_coproc *cop0 = vcpu->arch.cop0;
2292 struct kvm_vcpu_arch *arch = &vcpu->arch;
2293 enum emulation_result er = EMULATE_DONE;
2294 unsigned long curr_pc;
2295 uint32_t inst;
2296
2297 /*
2298 * Update PC and hold onto current PC in case there is
2299 * an error and we want to rollback the PC
2300 */
2301 curr_pc = vcpu->arch.pc;
2302 er = update_pc(vcpu, cause);
2303 if (er == EMULATE_FAIL)
2304 return er;
2305
2306 /* Fetch the instruction. */
2307 if (cause & CAUSEF_BD)
2308 opc += 1;
2309
2310 inst = kvm_get_inst(opc, vcpu);
2311
2312 if (inst == KVM_INVALID_INST) {
2313 kvm_err("%s: Cannot get inst @ %p\n", __func__, opc);
2314 return EMULATE_FAIL;
2315 }
2316
2317 if ((inst & OPCODE) == SPEC3 && (inst & FUNC) == RDHWR) {
2318 int usermode = !KVM_GUEST_KERNEL_MODE(vcpu);
2319 int rd = (inst & RD) >> 11;
2320 int rt = (inst & RT) >> 16;
2321 /* If usermode, check RDHWR rd is allowed by guest HWREna */
2322 if (usermode && !(kvm_read_c0_guest_hwrena(cop0) & BIT(rd))) {
2323 kvm_debug("RDHWR %#x disallowed by HWREna @ %p\n",
2324 rd, opc);
2325 goto emulate_ri;
2326 }
2327 switch (rd) {
2328 case 0: /* CPU number */
2329 arch->gprs[rt] = 0;
2330 break;
2331 case 1: /* SYNCI length */
2332 arch->gprs[rt] = min(current_cpu_data.dcache.linesz,
2333 current_cpu_data.icache.linesz);
2334 break;
2335 case 2: /* Read count register */
2336 arch->gprs[rt] = kvm_mips_read_count(vcpu);
2337 break;
2338 case 3: /* Count register resolution */
2339 switch (current_cpu_data.cputype) {
2340 case CPU_20KC:
2341 case CPU_25KF:
2342 arch->gprs[rt] = 1;
2343 break;
2344 default:
2345 arch->gprs[rt] = 2;
2346 }
2347 break;
2348 case 29:
2349 arch->gprs[rt] = kvm_read_c0_guest_userlocal(cop0);
2350 break;
2351
2352 default:
2353 kvm_debug("RDHWR %#x not supported @ %p\n", rd, opc);
2354 goto emulate_ri;
2355 }
2356 } else {
2357 kvm_debug("Emulate RI not supported @ %p: %#x\n", opc, inst);
2358 goto emulate_ri;
2359 }
2360
2361 return EMULATE_DONE;
2362
2363emulate_ri:
2364 /*
2365 * Rollback PC (if in branch delay slot then the PC already points to
2366 * branch target), and pass the RI exception to the guest OS.
2367 */
2368 vcpu->arch.pc = curr_pc;
2369 return kvm_mips_emulate_ri_exc(cause, opc, run, vcpu);
2370}
2371
2372enum emulation_result kvm_mips_complete_mmio_load(struct kvm_vcpu *vcpu,
2373 struct kvm_run *run)
2374{
2375 unsigned long *gpr = &vcpu->arch.gprs[vcpu->arch.io_gpr];
2376 enum emulation_result er = EMULATE_DONE;
2377
2378 if (run->mmio.len > sizeof(*gpr)) {
2379 kvm_err("Bad MMIO length: %d", run->mmio.len);
2380 er = EMULATE_FAIL;
2381 goto done;
2382 }
2383
2384 er = update_pc(vcpu, vcpu->arch.pending_load_cause);
2385 if (er == EMULATE_FAIL)
2386 return er;
2387
2388 switch (run->mmio.len) {
2389 case 4:
2390 *gpr = *(int32_t *) run->mmio.data;
2391 break;
2392
2393 case 2:
2394 if (vcpu->mmio_needed == 2)
2395 *gpr = *(int16_t *) run->mmio.data;
2396 else
2397 *gpr = *(uint16_t *)run->mmio.data;
2398
2399 break;
2400 case 1:
2401 if (vcpu->mmio_needed == 2)
2402 *gpr = *(int8_t *) run->mmio.data;
2403 else
2404 *gpr = *(u8 *) run->mmio.data;
2405 break;
2406 }
2407
2408 if (vcpu->arch.pending_load_cause & CAUSEF_BD)
2409 kvm_debug("[%#lx] Completing %d byte BD Load to gpr %d (0x%08lx) type %d\n",
2410 vcpu->arch.pc, run->mmio.len, vcpu->arch.io_gpr, *gpr,
2411 vcpu->mmio_needed);
2412
2413done:
2414 return er;
2415}
2416
2417static enum emulation_result kvm_mips_emulate_exc(unsigned long cause,
2418 uint32_t *opc,
2419 struct kvm_run *run,
2420 struct kvm_vcpu *vcpu)
2421{
2422 uint32_t exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
2423 struct mips_coproc *cop0 = vcpu->arch.cop0;
2424 struct kvm_vcpu_arch *arch = &vcpu->arch;
2425 enum emulation_result er = EMULATE_DONE;
2426
2427 if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2428 /* save old pc */
2429 kvm_write_c0_guest_epc(cop0, arch->pc);
2430 kvm_set_c0_guest_status(cop0, ST0_EXL);
2431
2432 if (cause & CAUSEF_BD)
2433 kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2434 else
2435 kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2436
2437 kvm_change_c0_guest_cause(cop0, (0xff),
2438 (exccode << CAUSEB_EXCCODE));
2439
2440 /* Set PC to the exception entry point */
2441 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2442 kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
2443
2444 kvm_debug("Delivering EXC %d @ pc %#lx, badVaddr: %#lx\n",
2445 exccode, kvm_read_c0_guest_epc(cop0),
2446 kvm_read_c0_guest_badvaddr(cop0));
2447 } else {
2448 kvm_err("Trying to deliver EXC when EXL is already set\n");
2449 er = EMULATE_FAIL;
2450 }
2451
2452 return er;
2453}
2454
2455enum emulation_result kvm_mips_check_privilege(unsigned long cause,
2456 uint32_t *opc,
2457 struct kvm_run *run,
2458 struct kvm_vcpu *vcpu)
2459{
2460 enum emulation_result er = EMULATE_DONE;
2461 uint32_t exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
2462 unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
2463
2464 int usermode = !KVM_GUEST_KERNEL_MODE(vcpu);
2465
2466 if (usermode) {
2467 switch (exccode) {
2468 case EXCCODE_INT:
2469 case EXCCODE_SYS:
2470 case EXCCODE_BP:
2471 case EXCCODE_RI:
2472 case EXCCODE_TR:
2473 case EXCCODE_MSAFPE:
2474 case EXCCODE_FPE:
2475 case EXCCODE_MSADIS:
2476 break;
2477
2478 case EXCCODE_CPU:
2479 if (((cause & CAUSEF_CE) >> CAUSEB_CE) == 0)
2480 er = EMULATE_PRIV_FAIL;
2481 break;
2482
2483 case EXCCODE_MOD:
2484 break;
2485
2486 case EXCCODE_TLBL:
2487 /*
2488 * We we are accessing Guest kernel space, then send an
2489 * address error exception to the guest
2490 */
2491 if (badvaddr >= (unsigned long) KVM_GUEST_KSEG0) {
2492 kvm_debug("%s: LD MISS @ %#lx\n", __func__,
2493 badvaddr);
2494 cause &= ~0xff;
2495 cause |= (EXCCODE_ADEL << CAUSEB_EXCCODE);
2496 er = EMULATE_PRIV_FAIL;
2497 }
2498 break;
2499
2500 case EXCCODE_TLBS:
2501 /*
2502 * We we are accessing Guest kernel space, then send an
2503 * address error exception to the guest
2504 */
2505 if (badvaddr >= (unsigned long) KVM_GUEST_KSEG0) {
2506 kvm_debug("%s: ST MISS @ %#lx\n", __func__,
2507 badvaddr);
2508 cause &= ~0xff;
2509 cause |= (EXCCODE_ADES << CAUSEB_EXCCODE);
2510 er = EMULATE_PRIV_FAIL;
2511 }
2512 break;
2513
2514 case EXCCODE_ADES:
2515 kvm_debug("%s: address error ST @ %#lx\n", __func__,
2516 badvaddr);
2517 if ((badvaddr & PAGE_MASK) == KVM_GUEST_COMMPAGE_ADDR) {
2518 cause &= ~0xff;
2519 cause |= (EXCCODE_TLBS << CAUSEB_EXCCODE);
2520 }
2521 er = EMULATE_PRIV_FAIL;
2522 break;
2523 case EXCCODE_ADEL:
2524 kvm_debug("%s: address error LD @ %#lx\n", __func__,
2525 badvaddr);
2526 if ((badvaddr & PAGE_MASK) == KVM_GUEST_COMMPAGE_ADDR) {
2527 cause &= ~0xff;
2528 cause |= (EXCCODE_TLBL << CAUSEB_EXCCODE);
2529 }
2530 er = EMULATE_PRIV_FAIL;
2531 break;
2532 default:
2533 er = EMULATE_PRIV_FAIL;
2534 break;
2535 }
2536 }
2537
2538 if (er == EMULATE_PRIV_FAIL)
2539 kvm_mips_emulate_exc(cause, opc, run, vcpu);
2540
2541 return er;
2542}
2543
2544/*
2545 * User Address (UA) fault, this could happen if
2546 * (1) TLB entry not present/valid in both Guest and shadow host TLBs, in this
2547 * case we pass on the fault to the guest kernel and let it handle it.
2548 * (2) TLB entry is present in the Guest TLB but not in the shadow, in this
2549 * case we inject the TLB from the Guest TLB into the shadow host TLB
2550 */
2551enum emulation_result kvm_mips_handle_tlbmiss(unsigned long cause,
2552 uint32_t *opc,
2553 struct kvm_run *run,
2554 struct kvm_vcpu *vcpu)
2555{
2556 enum emulation_result er = EMULATE_DONE;
2557 uint32_t exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
2558 unsigned long va = vcpu->arch.host_cp0_badvaddr;
2559 int index;
2560
2561 kvm_debug("kvm_mips_handle_tlbmiss: badvaddr: %#lx, entryhi: %#lx\n",
2562 vcpu->arch.host_cp0_badvaddr, vcpu->arch.host_cp0_entryhi);
2563
2564 /*
2565 * KVM would not have got the exception if this entry was valid in the
2566 * shadow host TLB. Check the Guest TLB, if the entry is not there then
2567 * send the guest an exception. The guest exc handler should then inject
2568 * an entry into the guest TLB.
2569 */
2570 index = kvm_mips_guest_tlb_lookup(vcpu,
2571 (va & VPN2_MASK) |
2572 (kvm_read_c0_guest_entryhi(vcpu->arch.cop0) & ASID_MASK));
2573 if (index < 0) {
2574 if (exccode == EXCCODE_TLBL) {
2575 er = kvm_mips_emulate_tlbmiss_ld(cause, opc, run, vcpu);
2576 } else if (exccode == EXCCODE_TLBS) {
2577 er = kvm_mips_emulate_tlbmiss_st(cause, opc, run, vcpu);
2578 } else {
2579 kvm_err("%s: invalid exc code: %d\n", __func__,
2580 exccode);
2581 er = EMULATE_FAIL;
2582 }
2583 } else {
2584 struct kvm_mips_tlb *tlb = &vcpu->arch.guest_tlb[index];
2585
2586 /*
2587 * Check if the entry is valid, if not then setup a TLB invalid
2588 * exception to the guest
2589 */
2590 if (!TLB_IS_VALID(*tlb, va)) {
2591 if (exccode == EXCCODE_TLBL) {
2592 er = kvm_mips_emulate_tlbinv_ld(cause, opc, run,
2593 vcpu);
2594 } else if (exccode == EXCCODE_TLBS) {
2595 er = kvm_mips_emulate_tlbinv_st(cause, opc, run,
2596 vcpu);
2597 } else {
2598 kvm_err("%s: invalid exc code: %d\n", __func__,
2599 exccode);
2600 er = EMULATE_FAIL;
2601 }
2602 } else {
2603 kvm_debug("Injecting hi: %#lx, lo0: %#lx, lo1: %#lx into shadow host TLB\n",
2604 tlb->tlb_hi, tlb->tlb_lo0, tlb->tlb_lo1);
2605 /*
2606 * OK we have a Guest TLB entry, now inject it into the
2607 * shadow host TLB
2608 */
2609 kvm_mips_handle_mapped_seg_tlb_fault(vcpu, tlb, NULL,
2610 NULL);
2611 }
2612 }
2613
2614 return er;
2615}