Linux Audio

Check our new training course

Loading...
v5.9
   1/*
   2 * This file is subject to the terms and conditions of the GNU General Public
   3 * License.  See the file "COPYING" in the main directory of this archive
   4 * for more details.
   5 *
   6 * KVM/MIPS: Instruction/Exception emulation
   7 *
   8 * Copyright (C) 2012  MIPS Technologies, Inc.  All rights reserved.
   9 * Authors: Sanjay Lal <sanjayl@kymasys.com>
  10 */
  11
  12#include <linux/errno.h>
  13#include <linux/err.h>
  14#include <linux/ktime.h>
  15#include <linux/kvm_host.h>
 
  16#include <linux/vmalloc.h>
  17#include <linux/fs.h>
  18#include <linux/memblock.h>
  19#include <linux/random.h>
  20#include <asm/page.h>
  21#include <asm/cacheflush.h>
  22#include <asm/cacheops.h>
  23#include <asm/cpu-info.h>
  24#include <asm/mmu_context.h>
  25#include <asm/tlbflush.h>
  26#include <asm/inst.h>
  27
  28#undef CONFIG_MIPS_MT
  29#include <asm/r4kcache.h>
  30#define CONFIG_MIPS_MT
  31
  32#include "interrupt.h"
  33#include "commpage.h"
  34
  35#include "trace.h"
  36
  37/*
  38 * Compute the return address and do emulate branch simulation, if required.
  39 * This function should be called only in branch delay slot active.
  40 */
  41static int kvm_compute_return_epc(struct kvm_vcpu *vcpu, unsigned long instpc,
  42				  unsigned long *out)
  43{
  44	unsigned int dspcontrol;
  45	union mips_instruction insn;
  46	struct kvm_vcpu_arch *arch = &vcpu->arch;
  47	long epc = instpc;
  48	long nextpc;
  49	int err;
  50
  51	if (epc & 3) {
  52		kvm_err("%s: unaligned epc\n", __func__);
  53		return -EINVAL;
  54	}
  55
  56	/* Read the instruction */
  57	err = kvm_get_badinstrp((u32 *)epc, vcpu, &insn.word);
  58	if (err)
  59		return err;
 
  60
  61	switch (insn.i_format.opcode) {
  62		/* jr and jalr are in r_format format. */
  63	case spec_op:
  64		switch (insn.r_format.func) {
  65		case jalr_op:
  66			arch->gprs[insn.r_format.rd] = epc + 8;
  67			fallthrough;
  68		case jr_op:
  69			nextpc = arch->gprs[insn.r_format.rs];
  70			break;
  71		default:
  72			return -EINVAL;
  73		}
  74		break;
  75
  76		/*
  77		 * This group contains:
  78		 * bltz_op, bgez_op, bltzl_op, bgezl_op,
  79		 * bltzal_op, bgezal_op, bltzall_op, bgezall_op.
  80		 */
  81	case bcond_op:
  82		switch (insn.i_format.rt) {
  83		case bltz_op:
  84		case bltzl_op:
  85			if ((long)arch->gprs[insn.i_format.rs] < 0)
  86				epc = epc + 4 + (insn.i_format.simmediate << 2);
  87			else
  88				epc += 8;
  89			nextpc = epc;
  90			break;
  91
  92		case bgez_op:
  93		case bgezl_op:
  94			if ((long)arch->gprs[insn.i_format.rs] >= 0)
  95				epc = epc + 4 + (insn.i_format.simmediate << 2);
  96			else
  97				epc += 8;
  98			nextpc = epc;
  99			break;
 100
 101		case bltzal_op:
 102		case bltzall_op:
 103			arch->gprs[31] = epc + 8;
 104			if ((long)arch->gprs[insn.i_format.rs] < 0)
 105				epc = epc + 4 + (insn.i_format.simmediate << 2);
 106			else
 107				epc += 8;
 108			nextpc = epc;
 109			break;
 110
 111		case bgezal_op:
 112		case bgezall_op:
 113			arch->gprs[31] = epc + 8;
 114			if ((long)arch->gprs[insn.i_format.rs] >= 0)
 115				epc = epc + 4 + (insn.i_format.simmediate << 2);
 116			else
 117				epc += 8;
 118			nextpc = epc;
 119			break;
 120		case bposge32_op:
 121			if (!cpu_has_dsp) {
 122				kvm_err("%s: DSP branch but not DSP ASE\n",
 123					__func__);
 124				return -EINVAL;
 125			}
 126
 127			dspcontrol = rddsp(0x01);
 128
 129			if (dspcontrol >= 32)
 130				epc = epc + 4 + (insn.i_format.simmediate << 2);
 131			else
 132				epc += 8;
 133			nextpc = epc;
 134			break;
 135		default:
 136			return -EINVAL;
 137		}
 138		break;
 139
 140		/* These are unconditional and in j_format. */
 141	case jal_op:
 142		arch->gprs[31] = instpc + 8;
 143		fallthrough;
 144	case j_op:
 145		epc += 4;
 146		epc >>= 28;
 147		epc <<= 28;
 148		epc |= (insn.j_format.target << 2);
 149		nextpc = epc;
 150		break;
 151
 152		/* These are conditional and in i_format. */
 153	case beq_op:
 154	case beql_op:
 155		if (arch->gprs[insn.i_format.rs] ==
 156		    arch->gprs[insn.i_format.rt])
 157			epc = epc + 4 + (insn.i_format.simmediate << 2);
 158		else
 159			epc += 8;
 160		nextpc = epc;
 161		break;
 162
 163	case bne_op:
 164	case bnel_op:
 165		if (arch->gprs[insn.i_format.rs] !=
 166		    arch->gprs[insn.i_format.rt])
 167			epc = epc + 4 + (insn.i_format.simmediate << 2);
 168		else
 169			epc += 8;
 170		nextpc = epc;
 171		break;
 172
 173	case blez_op:	/* POP06 */
 174#ifndef CONFIG_CPU_MIPSR6
 175	case blezl_op:	/* removed in R6 */
 176#endif
 177		if (insn.i_format.rt != 0)
 178			goto compact_branch;
 179		if ((long)arch->gprs[insn.i_format.rs] <= 0)
 180			epc = epc + 4 + (insn.i_format.simmediate << 2);
 181		else
 182			epc += 8;
 183		nextpc = epc;
 184		break;
 185
 186	case bgtz_op:	/* POP07 */
 187#ifndef CONFIG_CPU_MIPSR6
 188	case bgtzl_op:	/* removed in R6 */
 189#endif
 190		if (insn.i_format.rt != 0)
 191			goto compact_branch;
 192		if ((long)arch->gprs[insn.i_format.rs] > 0)
 193			epc = epc + 4 + (insn.i_format.simmediate << 2);
 194		else
 195			epc += 8;
 196		nextpc = epc;
 197		break;
 198
 199		/* And now the FPA/cp1 branch instructions. */
 200	case cop1_op:
 201		kvm_err("%s: unsupported cop1_op\n", __func__);
 202		return -EINVAL;
 203
 204#ifdef CONFIG_CPU_MIPSR6
 205	/* R6 added the following compact branches with forbidden slots */
 206	case blezl_op:	/* POP26 */
 207	case bgtzl_op:	/* POP27 */
 208		/* only rt == 0 isn't compact branch */
 209		if (insn.i_format.rt != 0)
 210			goto compact_branch;
 211		return -EINVAL;
 212	case pop10_op:
 213	case pop30_op:
 214		/* only rs == rt == 0 is reserved, rest are compact branches */
 215		if (insn.i_format.rs != 0 || insn.i_format.rt != 0)
 216			goto compact_branch;
 217		return -EINVAL;
 218	case pop66_op:
 219	case pop76_op:
 220		/* only rs == 0 isn't compact branch */
 221		if (insn.i_format.rs != 0)
 222			goto compact_branch;
 223		return -EINVAL;
 224compact_branch:
 225		/*
 226		 * If we've hit an exception on the forbidden slot, then
 227		 * the branch must not have been taken.
 228		 */
 229		epc += 8;
 230		nextpc = epc;
 231		break;
 232#else
 233compact_branch:
 234		/* Fall through - Compact branches not supported before R6 */
 235#endif
 236	default:
 237		return -EINVAL;
 238	}
 239
 240	*out = nextpc;
 241	return 0;
 
 
 
 
 
 
 
 242}
 243
 244enum emulation_result update_pc(struct kvm_vcpu *vcpu, u32 cause)
 245{
 246	int err;
 
 247
 248	if (cause & CAUSEF_BD) {
 249		err = kvm_compute_return_epc(vcpu, vcpu->arch.pc,
 250					     &vcpu->arch.pc);
 251		if (err)
 252			return EMULATE_FAIL;
 253	} else {
 
 
 
 
 254		vcpu->arch.pc += 4;
 255	}
 256
 257	kvm_debug("update_pc(): New PC: %#lx\n", vcpu->arch.pc);
 258
 259	return EMULATE_DONE;
 260}
 261
 262/**
 263 * kvm_get_badinstr() - Get bad instruction encoding.
 264 * @opc:	Guest pointer to faulting instruction.
 265 * @vcpu:	KVM VCPU information.
 266 *
 267 * Gets the instruction encoding of the faulting instruction, using the saved
 268 * BadInstr register value if it exists, otherwise falling back to reading guest
 269 * memory at @opc.
 270 *
 271 * Returns:	The instruction encoding of the faulting instruction.
 272 */
 273int kvm_get_badinstr(u32 *opc, struct kvm_vcpu *vcpu, u32 *out)
 274{
 275	if (cpu_has_badinstr) {
 276		*out = vcpu->arch.host_cp0_badinstr;
 277		return 0;
 278	} else {
 279		return kvm_get_inst(opc, vcpu, out);
 280	}
 281}
 282
 283/**
 284 * kvm_get_badinstrp() - Get bad prior instruction encoding.
 285 * @opc:	Guest pointer to prior faulting instruction.
 286 * @vcpu:	KVM VCPU information.
 287 *
 288 * Gets the instruction encoding of the prior faulting instruction (the branch
 289 * containing the delay slot which faulted), using the saved BadInstrP register
 290 * value if it exists, otherwise falling back to reading guest memory at @opc.
 291 *
 292 * Returns:	The instruction encoding of the prior faulting instruction.
 293 */
 294int kvm_get_badinstrp(u32 *opc, struct kvm_vcpu *vcpu, u32 *out)
 295{
 296	if (cpu_has_badinstrp) {
 297		*out = vcpu->arch.host_cp0_badinstrp;
 298		return 0;
 299	} else {
 300		return kvm_get_inst(opc, vcpu, out);
 301	}
 302}
 303
 304/**
 305 * kvm_mips_count_disabled() - Find whether the CP0_Count timer is disabled.
 306 * @vcpu:	Virtual CPU.
 307 *
 308 * Returns:	1 if the CP0_Count timer is disabled by either the guest
 309 *		CP0_Cause.DC bit or the count_ctl.DC bit.
 310 *		0 otherwise (in which case CP0_Count timer is running).
 311 */
 312int kvm_mips_count_disabled(struct kvm_vcpu *vcpu)
 313{
 314	struct mips_coproc *cop0 = vcpu->arch.cop0;
 315
 316	return	(vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC) ||
 317		(kvm_read_c0_guest_cause(cop0) & CAUSEF_DC);
 318}
 319
 320/**
 321 * kvm_mips_ktime_to_count() - Scale ktime_t to a 32-bit count.
 322 *
 323 * Caches the dynamic nanosecond bias in vcpu->arch.count_dyn_bias.
 324 *
 325 * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
 326 */
 327static u32 kvm_mips_ktime_to_count(struct kvm_vcpu *vcpu, ktime_t now)
 328{
 329	s64 now_ns, periods;
 330	u64 delta;
 331
 332	now_ns = ktime_to_ns(now);
 333	delta = now_ns + vcpu->arch.count_dyn_bias;
 334
 335	if (delta >= vcpu->arch.count_period) {
 336		/* If delta is out of safe range the bias needs adjusting */
 337		periods = div64_s64(now_ns, vcpu->arch.count_period);
 338		vcpu->arch.count_dyn_bias = -periods * vcpu->arch.count_period;
 339		/* Recalculate delta with new bias */
 340		delta = now_ns + vcpu->arch.count_dyn_bias;
 341	}
 342
 343	/*
 344	 * We've ensured that:
 345	 *   delta < count_period
 346	 *
 347	 * Therefore the intermediate delta*count_hz will never overflow since
 348	 * at the boundary condition:
 349	 *   delta = count_period
 350	 *   delta = NSEC_PER_SEC * 2^32 / count_hz
 351	 *   delta * count_hz = NSEC_PER_SEC * 2^32
 352	 */
 353	return div_u64(delta * vcpu->arch.count_hz, NSEC_PER_SEC);
 354}
 355
 356/**
 357 * kvm_mips_count_time() - Get effective current time.
 358 * @vcpu:	Virtual CPU.
 359 *
 360 * Get effective monotonic ktime. This is usually a straightforward ktime_get(),
 361 * except when the master disable bit is set in count_ctl, in which case it is
 362 * count_resume, i.e. the time that the count was disabled.
 363 *
 364 * Returns:	Effective monotonic ktime for CP0_Count.
 365 */
 366static inline ktime_t kvm_mips_count_time(struct kvm_vcpu *vcpu)
 367{
 368	if (unlikely(vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC))
 369		return vcpu->arch.count_resume;
 370
 371	return ktime_get();
 372}
 373
 374/**
 375 * kvm_mips_read_count_running() - Read the current count value as if running.
 376 * @vcpu:	Virtual CPU.
 377 * @now:	Kernel time to read CP0_Count at.
 378 *
 379 * Returns the current guest CP0_Count register at time @now and handles if the
 380 * timer interrupt is pending and hasn't been handled yet.
 381 *
 382 * Returns:	The current value of the guest CP0_Count register.
 383 */
 384static u32 kvm_mips_read_count_running(struct kvm_vcpu *vcpu, ktime_t now)
 385{
 386	struct mips_coproc *cop0 = vcpu->arch.cop0;
 387	ktime_t expires, threshold;
 388	u32 count, compare;
 389	int running;
 390
 391	/* Calculate the biased and scaled guest CP0_Count */
 392	count = vcpu->arch.count_bias + kvm_mips_ktime_to_count(vcpu, now);
 393	compare = kvm_read_c0_guest_compare(cop0);
 394
 395	/*
 396	 * Find whether CP0_Count has reached the closest timer interrupt. If
 397	 * not, we shouldn't inject it.
 398	 */
 399	if ((s32)(count - compare) < 0)
 400		return count;
 401
 402	/*
 403	 * The CP0_Count we're going to return has already reached the closest
 404	 * timer interrupt. Quickly check if it really is a new interrupt by
 405	 * looking at whether the interval until the hrtimer expiry time is
 406	 * less than 1/4 of the timer period.
 407	 */
 408	expires = hrtimer_get_expires(&vcpu->arch.comparecount_timer);
 409	threshold = ktime_add_ns(now, vcpu->arch.count_period / 4);
 410	if (ktime_before(expires, threshold)) {
 411		/*
 412		 * Cancel it while we handle it so there's no chance of
 413		 * interference with the timeout handler.
 414		 */
 415		running = hrtimer_cancel(&vcpu->arch.comparecount_timer);
 416
 417		/* Nothing should be waiting on the timeout */
 418		kvm_mips_callbacks->queue_timer_int(vcpu);
 419
 420		/*
 421		 * Restart the timer if it was running based on the expiry time
 422		 * we read, so that we don't push it back 2 periods.
 423		 */
 424		if (running) {
 425			expires = ktime_add_ns(expires,
 426					       vcpu->arch.count_period);
 427			hrtimer_start(&vcpu->arch.comparecount_timer, expires,
 428				      HRTIMER_MODE_ABS);
 429		}
 430	}
 431
 432	return count;
 
 433}
 434
 435/**
 436 * kvm_mips_read_count() - Read the current count value.
 437 * @vcpu:	Virtual CPU.
 438 *
 439 * Read the current guest CP0_Count value, taking into account whether the timer
 440 * is stopped.
 441 *
 442 * Returns:	The current guest CP0_Count value.
 443 */
 444u32 kvm_mips_read_count(struct kvm_vcpu *vcpu)
 445{
 446	struct mips_coproc *cop0 = vcpu->arch.cop0;
 447
 448	/* If count disabled just read static copy of count */
 449	if (kvm_mips_count_disabled(vcpu))
 450		return kvm_read_c0_guest_count(cop0);
 451
 452	return kvm_mips_read_count_running(vcpu, ktime_get());
 453}
 454
 455/**
 456 * kvm_mips_freeze_hrtimer() - Safely stop the hrtimer.
 457 * @vcpu:	Virtual CPU.
 458 * @count:	Output pointer for CP0_Count value at point of freeze.
 459 *
 460 * Freeze the hrtimer safely and return both the ktime and the CP0_Count value
 461 * at the point it was frozen. It is guaranteed that any pending interrupts at
 462 * the point it was frozen are handled, and none after that point.
 463 *
 464 * This is useful where the time/CP0_Count is needed in the calculation of the
 465 * new parameters.
 466 *
 467 * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
 468 *
 469 * Returns:	The ktime at the point of freeze.
 470 */
 471ktime_t kvm_mips_freeze_hrtimer(struct kvm_vcpu *vcpu, u32 *count)
 
 472{
 473	ktime_t now;
 474
 475	/* stop hrtimer before finding time */
 476	hrtimer_cancel(&vcpu->arch.comparecount_timer);
 477	now = ktime_get();
 478
 479	/* find count at this point and handle pending hrtimer */
 480	*count = kvm_mips_read_count_running(vcpu, now);
 481
 482	return now;
 483}
 484
 485/**
 486 * kvm_mips_resume_hrtimer() - Resume hrtimer, updating expiry.
 487 * @vcpu:	Virtual CPU.
 488 * @now:	ktime at point of resume.
 489 * @count:	CP0_Count at point of resume.
 490 *
 491 * Resumes the timer and updates the timer expiry based on @now and @count.
 492 * This can be used in conjunction with kvm_mips_freeze_timer() when timer
 493 * parameters need to be changed.
 494 *
 495 * It is guaranteed that a timer interrupt immediately after resume will be
 496 * handled, but not if CP_Compare is exactly at @count. That case is already
 497 * handled by kvm_mips_freeze_timer().
 498 *
 499 * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
 500 */
 501static void kvm_mips_resume_hrtimer(struct kvm_vcpu *vcpu,
 502				    ktime_t now, u32 count)
 503{
 504	struct mips_coproc *cop0 = vcpu->arch.cop0;
 505	u32 compare;
 506	u64 delta;
 507	ktime_t expire;
 508
 509	/* Calculate timeout (wrap 0 to 2^32) */
 510	compare = kvm_read_c0_guest_compare(cop0);
 511	delta = (u64)(u32)(compare - count - 1) + 1;
 512	delta = div_u64(delta * NSEC_PER_SEC, vcpu->arch.count_hz);
 513	expire = ktime_add_ns(now, delta);
 514
 515	/* Update hrtimer to use new timeout */
 516	hrtimer_cancel(&vcpu->arch.comparecount_timer);
 517	hrtimer_start(&vcpu->arch.comparecount_timer, expire, HRTIMER_MODE_ABS);
 518}
 519
 520/**
 521 * kvm_mips_restore_hrtimer() - Restore hrtimer after a gap, updating expiry.
 522 * @vcpu:	Virtual CPU.
 523 * @before:	Time before Count was saved, lower bound of drift calculation.
 524 * @count:	CP0_Count at point of restore.
 525 * @min_drift:	Minimum amount of drift permitted before correction.
 526 *		Must be <= 0.
 527 *
 528 * Restores the timer from a particular @count, accounting for drift. This can
 529 * be used in conjunction with kvm_mips_freeze_timer() when a hardware timer is
 530 * to be used for a period of time, but the exact ktime corresponding to the
 531 * final Count that must be restored is not known.
 532 *
 533 * It is gauranteed that a timer interrupt immediately after restore will be
 534 * handled, but not if CP0_Compare is exactly at @count. That case should
 535 * already be handled when the hardware timer state is saved.
 536 *
 537 * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is not
 538 * stopped).
 539 *
 540 * Returns:	Amount of correction to count_bias due to drift.
 
 
 
 
 
 
 
 541 */
 542int kvm_mips_restore_hrtimer(struct kvm_vcpu *vcpu, ktime_t before,
 543			     u32 count, int min_drift)
 544{
 545	ktime_t now, count_time;
 546	u32 now_count, before_count;
 547	u64 delta;
 548	int drift, ret = 0;
 549
 550	/* Calculate expected count at before */
 551	before_count = vcpu->arch.count_bias +
 552			kvm_mips_ktime_to_count(vcpu, before);
 553
 554	/*
 555	 * Detect significantly negative drift, where count is lower than
 556	 * expected. Some negative drift is expected when hardware counter is
 557	 * set after kvm_mips_freeze_timer(), and it is harmless to allow the
 558	 * time to jump forwards a little, within reason. If the drift is too
 559	 * significant, adjust the bias to avoid a big Guest.CP0_Count jump.
 560	 */
 561	drift = count - before_count;
 562	if (drift < min_drift) {
 563		count_time = before;
 564		vcpu->arch.count_bias += drift;
 565		ret = drift;
 566		goto resume;
 567	}
 568
 569	/* Calculate expected count right now */
 570	now = ktime_get();
 571	now_count = vcpu->arch.count_bias + kvm_mips_ktime_to_count(vcpu, now);
 572
 573	/*
 574	 * Detect positive drift, where count is higher than expected, and
 575	 * adjust the bias to avoid guest time going backwards.
 576	 */
 577	drift = count - now_count;
 578	if (drift > 0) {
 579		count_time = now;
 580		vcpu->arch.count_bias += drift;
 581		ret = drift;
 582		goto resume;
 583	}
 584
 585	/* Subtract nanosecond delta to find ktime when count was read */
 586	delta = (u64)(u32)(now_count - count);
 587	delta = div_u64(delta * NSEC_PER_SEC, vcpu->arch.count_hz);
 588	count_time = ktime_sub_ns(now, delta);
 589
 590resume:
 591	/* Resume using the calculated ktime */
 592	kvm_mips_resume_hrtimer(vcpu, count_time, count);
 593	return ret;
 594}
 595
 596/**
 597 * kvm_mips_write_count() - Modify the count and update timer.
 598 * @vcpu:	Virtual CPU.
 599 * @count:	Guest CP0_Count value to set.
 600 *
 601 * Sets the CP0_Count value and updates the timer accordingly.
 602 */
 603void kvm_mips_write_count(struct kvm_vcpu *vcpu, u32 count)
 604{
 605	struct mips_coproc *cop0 = vcpu->arch.cop0;
 606	ktime_t now;
 607
 608	/* Calculate bias */
 609	now = kvm_mips_count_time(vcpu);
 610	vcpu->arch.count_bias = count - kvm_mips_ktime_to_count(vcpu, now);
 611
 612	if (kvm_mips_count_disabled(vcpu))
 613		/* The timer's disabled, adjust the static count */
 614		kvm_write_c0_guest_count(cop0, count);
 615	else
 616		/* Update timeout */
 617		kvm_mips_resume_hrtimer(vcpu, now, count);
 618}
 619
 620/**
 621 * kvm_mips_init_count() - Initialise timer.
 622 * @vcpu:	Virtual CPU.
 623 * @count_hz:	Frequency of timer.
 624 *
 625 * Initialise the timer to the specified frequency, zero it, and set it going if
 626 * it's enabled.
 627 */
 628void kvm_mips_init_count(struct kvm_vcpu *vcpu, unsigned long count_hz)
 629{
 630	vcpu->arch.count_hz = count_hz;
 631	vcpu->arch.count_period = div_u64((u64)NSEC_PER_SEC << 32, count_hz);
 
 
 632	vcpu->arch.count_dyn_bias = 0;
 633
 634	/* Starting at 0 */
 635	kvm_mips_write_count(vcpu, 0);
 636}
 637
 638/**
 639 * kvm_mips_set_count_hz() - Update the frequency of the timer.
 640 * @vcpu:	Virtual CPU.
 641 * @count_hz:	Frequency of CP0_Count timer in Hz.
 642 *
 643 * Change the frequency of the CP0_Count timer. This is done atomically so that
 644 * CP0_Count is continuous and no timer interrupt is lost.
 645 *
 646 * Returns:	-EINVAL if @count_hz is out of range.
 647 *		0 on success.
 648 */
 649int kvm_mips_set_count_hz(struct kvm_vcpu *vcpu, s64 count_hz)
 650{
 651	struct mips_coproc *cop0 = vcpu->arch.cop0;
 652	int dc;
 653	ktime_t now;
 654	u32 count;
 655
 656	/* ensure the frequency is in a sensible range... */
 657	if (count_hz <= 0 || count_hz > NSEC_PER_SEC)
 658		return -EINVAL;
 659	/* ... and has actually changed */
 660	if (vcpu->arch.count_hz == count_hz)
 661		return 0;
 662
 663	/* Safely freeze timer so we can keep it continuous */
 664	dc = kvm_mips_count_disabled(vcpu);
 665	if (dc) {
 666		now = kvm_mips_count_time(vcpu);
 667		count = kvm_read_c0_guest_count(cop0);
 668	} else {
 669		now = kvm_mips_freeze_hrtimer(vcpu, &count);
 670	}
 671
 672	/* Update the frequency */
 673	vcpu->arch.count_hz = count_hz;
 674	vcpu->arch.count_period = div_u64((u64)NSEC_PER_SEC << 32, count_hz);
 675	vcpu->arch.count_dyn_bias = 0;
 676
 677	/* Calculate adjusted bias so dynamic count is unchanged */
 678	vcpu->arch.count_bias = count - kvm_mips_ktime_to_count(vcpu, now);
 679
 680	/* Update and resume hrtimer */
 681	if (!dc)
 682		kvm_mips_resume_hrtimer(vcpu, now, count);
 683	return 0;
 684}
 685
 686/**
 687 * kvm_mips_write_compare() - Modify compare and update timer.
 688 * @vcpu:	Virtual CPU.
 689 * @compare:	New CP0_Compare value.
 690 * @ack:	Whether to acknowledge timer interrupt.
 691 *
 692 * Update CP0_Compare to a new value and update the timeout.
 693 * If @ack, atomically acknowledge any pending timer interrupt, otherwise ensure
 694 * any pending timer interrupt is preserved.
 695 */
 696void kvm_mips_write_compare(struct kvm_vcpu *vcpu, u32 compare, bool ack)
 697{
 698	struct mips_coproc *cop0 = vcpu->arch.cop0;
 699	int dc;
 700	u32 old_compare = kvm_read_c0_guest_compare(cop0);
 701	s32 delta = compare - old_compare;
 702	u32 cause;
 703	ktime_t now = ktime_set(0, 0); /* silence bogus GCC warning */
 704	u32 count;
 705
 706	/* if unchanged, must just be an ack */
 707	if (old_compare == compare) {
 708		if (!ack)
 709			return;
 710		kvm_mips_callbacks->dequeue_timer_int(vcpu);
 711		kvm_write_c0_guest_compare(cop0, compare);
 712		return;
 713	}
 714
 715	/*
 716	 * If guest CP0_Compare moves forward, CP0_GTOffset should be adjusted
 717	 * too to prevent guest CP0_Count hitting guest CP0_Compare.
 718	 *
 719	 * The new GTOffset corresponds to the new value of CP0_Compare, and is
 720	 * set prior to it being written into the guest context. We disable
 721	 * preemption until the new value is written to prevent restore of a
 722	 * GTOffset corresponding to the old CP0_Compare value.
 723	 */
 724	if (IS_ENABLED(CONFIG_KVM_MIPS_VZ) && delta > 0) {
 725		preempt_disable();
 726		write_c0_gtoffset(compare - read_c0_count());
 727		back_to_back_c0_hazard();
 728	}
 729
 730	/* freeze_hrtimer() takes care of timer interrupts <= count */
 731	dc = kvm_mips_count_disabled(vcpu);
 732	if (!dc)
 733		now = kvm_mips_freeze_hrtimer(vcpu, &count);
 734
 735	if (ack)
 736		kvm_mips_callbacks->dequeue_timer_int(vcpu);
 737	else if (IS_ENABLED(CONFIG_KVM_MIPS_VZ))
 738		/*
 739		 * With VZ, writing CP0_Compare acks (clears) CP0_Cause.TI, so
 740		 * preserve guest CP0_Cause.TI if we don't want to ack it.
 741		 */
 742		cause = kvm_read_c0_guest_cause(cop0);
 743
 
 744	kvm_write_c0_guest_compare(cop0, compare);
 745
 746	if (IS_ENABLED(CONFIG_KVM_MIPS_VZ)) {
 747		if (delta > 0)
 748			preempt_enable();
 749
 750		back_to_back_c0_hazard();
 751
 752		if (!ack && cause & CAUSEF_TI)
 753			kvm_write_c0_guest_cause(cop0, cause);
 754	}
 755
 756	/* resume_hrtimer() takes care of timer interrupts > count */
 757	if (!dc)
 758		kvm_mips_resume_hrtimer(vcpu, now, count);
 759
 760	/*
 761	 * If guest CP0_Compare is moving backward, we delay CP0_GTOffset change
 762	 * until after the new CP0_Compare is written, otherwise new guest
 763	 * CP0_Count could hit new guest CP0_Compare.
 764	 */
 765	if (IS_ENABLED(CONFIG_KVM_MIPS_VZ) && delta <= 0)
 766		write_c0_gtoffset(compare - read_c0_count());
 767}
 768
 769/**
 770 * kvm_mips_count_disable() - Disable count.
 771 * @vcpu:	Virtual CPU.
 772 *
 773 * Disable the CP0_Count timer. A timer interrupt on or before the final stop
 774 * time will be handled but not after.
 775 *
 776 * Assumes CP0_Count was previously enabled but now Guest.CP0_Cause.DC or
 777 * count_ctl.DC has been set (count disabled).
 778 *
 779 * Returns:	The time that the timer was stopped.
 780 */
 781static ktime_t kvm_mips_count_disable(struct kvm_vcpu *vcpu)
 782{
 783	struct mips_coproc *cop0 = vcpu->arch.cop0;
 784	u32 count;
 785	ktime_t now;
 786
 787	/* Stop hrtimer */
 788	hrtimer_cancel(&vcpu->arch.comparecount_timer);
 789
 790	/* Set the static count from the dynamic count, handling pending TI */
 791	now = ktime_get();
 792	count = kvm_mips_read_count_running(vcpu, now);
 793	kvm_write_c0_guest_count(cop0, count);
 794
 795	return now;
 796}
 797
 798/**
 799 * kvm_mips_count_disable_cause() - Disable count using CP0_Cause.DC.
 800 * @vcpu:	Virtual CPU.
 801 *
 802 * Disable the CP0_Count timer and set CP0_Cause.DC. A timer interrupt on or
 803 * before the final stop time will be handled if the timer isn't disabled by
 804 * count_ctl.DC, but not after.
 805 *
 806 * Assumes CP0_Cause.DC is clear (count enabled).
 807 */
 808void kvm_mips_count_disable_cause(struct kvm_vcpu *vcpu)
 809{
 810	struct mips_coproc *cop0 = vcpu->arch.cop0;
 811
 812	kvm_set_c0_guest_cause(cop0, CAUSEF_DC);
 813	if (!(vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC))
 814		kvm_mips_count_disable(vcpu);
 815}
 816
 817/**
 818 * kvm_mips_count_enable_cause() - Enable count using CP0_Cause.DC.
 819 * @vcpu:	Virtual CPU.
 820 *
 821 * Enable the CP0_Count timer and clear CP0_Cause.DC. A timer interrupt after
 822 * the start time will be handled if the timer isn't disabled by count_ctl.DC,
 823 * potentially before even returning, so the caller should be careful with
 824 * ordering of CP0_Cause modifications so as not to lose it.
 825 *
 826 * Assumes CP0_Cause.DC is set (count disabled).
 827 */
 828void kvm_mips_count_enable_cause(struct kvm_vcpu *vcpu)
 829{
 830	struct mips_coproc *cop0 = vcpu->arch.cop0;
 831	u32 count;
 832
 833	kvm_clear_c0_guest_cause(cop0, CAUSEF_DC);
 834
 835	/*
 836	 * Set the dynamic count to match the static count.
 837	 * This starts the hrtimer if count_ctl.DC allows it.
 838	 * Otherwise it conveniently updates the biases.
 839	 */
 840	count = kvm_read_c0_guest_count(cop0);
 841	kvm_mips_write_count(vcpu, count);
 842}
 843
 844/**
 845 * kvm_mips_set_count_ctl() - Update the count control KVM register.
 846 * @vcpu:	Virtual CPU.
 847 * @count_ctl:	Count control register new value.
 848 *
 849 * Set the count control KVM register. The timer is updated accordingly.
 850 *
 851 * Returns:	-EINVAL if reserved bits are set.
 852 *		0 on success.
 853 */
 854int kvm_mips_set_count_ctl(struct kvm_vcpu *vcpu, s64 count_ctl)
 855{
 856	struct mips_coproc *cop0 = vcpu->arch.cop0;
 857	s64 changed = count_ctl ^ vcpu->arch.count_ctl;
 858	s64 delta;
 859	ktime_t expire, now;
 860	u32 count, compare;
 861
 862	/* Only allow defined bits to be changed */
 863	if (changed & ~(s64)(KVM_REG_MIPS_COUNT_CTL_DC))
 864		return -EINVAL;
 865
 866	/* Apply new value */
 867	vcpu->arch.count_ctl = count_ctl;
 868
 869	/* Master CP0_Count disable */
 870	if (changed & KVM_REG_MIPS_COUNT_CTL_DC) {
 871		/* Is CP0_Cause.DC already disabling CP0_Count? */
 872		if (kvm_read_c0_guest_cause(cop0) & CAUSEF_DC) {
 873			if (count_ctl & KVM_REG_MIPS_COUNT_CTL_DC)
 874				/* Just record the current time */
 875				vcpu->arch.count_resume = ktime_get();
 876		} else if (count_ctl & KVM_REG_MIPS_COUNT_CTL_DC) {
 877			/* disable timer and record current time */
 878			vcpu->arch.count_resume = kvm_mips_count_disable(vcpu);
 879		} else {
 880			/*
 881			 * Calculate timeout relative to static count at resume
 882			 * time (wrap 0 to 2^32).
 883			 */
 884			count = kvm_read_c0_guest_count(cop0);
 885			compare = kvm_read_c0_guest_compare(cop0);
 886			delta = (u64)(u32)(compare - count - 1) + 1;
 887			delta = div_u64(delta * NSEC_PER_SEC,
 888					vcpu->arch.count_hz);
 889			expire = ktime_add_ns(vcpu->arch.count_resume, delta);
 890
 891			/* Handle pending interrupt */
 892			now = ktime_get();
 893			if (ktime_compare(now, expire) >= 0)
 894				/* Nothing should be waiting on the timeout */
 895				kvm_mips_callbacks->queue_timer_int(vcpu);
 896
 897			/* Resume hrtimer without changing bias */
 898			count = kvm_mips_read_count_running(vcpu, now);
 899			kvm_mips_resume_hrtimer(vcpu, now, count);
 900		}
 901	}
 902
 903	return 0;
 904}
 905
 906/**
 907 * kvm_mips_set_count_resume() - Update the count resume KVM register.
 908 * @vcpu:		Virtual CPU.
 909 * @count_resume:	Count resume register new value.
 910 *
 911 * Set the count resume KVM register.
 912 *
 913 * Returns:	-EINVAL if out of valid range (0..now).
 914 *		0 on success.
 915 */
 916int kvm_mips_set_count_resume(struct kvm_vcpu *vcpu, s64 count_resume)
 917{
 918	/*
 919	 * It doesn't make sense for the resume time to be in the future, as it
 920	 * would be possible for the next interrupt to be more than a full
 921	 * period in the future.
 922	 */
 923	if (count_resume < 0 || count_resume > ktime_to_ns(ktime_get()))
 924		return -EINVAL;
 925
 926	vcpu->arch.count_resume = ns_to_ktime(count_resume);
 927	return 0;
 928}
 929
 930/**
 931 * kvm_mips_count_timeout() - Push timer forward on timeout.
 932 * @vcpu:	Virtual CPU.
 933 *
 934 * Handle an hrtimer event by push the hrtimer forward a period.
 935 *
 936 * Returns:	The hrtimer_restart value to return to the hrtimer subsystem.
 937 */
 938enum hrtimer_restart kvm_mips_count_timeout(struct kvm_vcpu *vcpu)
 939{
 940	/* Add the Count period to the current expiry time */
 941	hrtimer_add_expires_ns(&vcpu->arch.comparecount_timer,
 942			       vcpu->arch.count_period);
 943	return HRTIMER_RESTART;
 944}
 945
 946enum emulation_result kvm_mips_emul_eret(struct kvm_vcpu *vcpu)
 947{
 948	struct mips_coproc *cop0 = vcpu->arch.cop0;
 949	enum emulation_result er = EMULATE_DONE;
 950
 951	if (kvm_read_c0_guest_status(cop0) & ST0_ERL) {
 952		kvm_clear_c0_guest_status(cop0, ST0_ERL);
 953		vcpu->arch.pc = kvm_read_c0_guest_errorepc(cop0);
 954	} else if (kvm_read_c0_guest_status(cop0) & ST0_EXL) {
 955		kvm_debug("[%#lx] ERET to %#lx\n", vcpu->arch.pc,
 956			  kvm_read_c0_guest_epc(cop0));
 957		kvm_clear_c0_guest_status(cop0, ST0_EXL);
 958		vcpu->arch.pc = kvm_read_c0_guest_epc(cop0);
 959
 
 
 
 960	} else {
 961		kvm_err("[%#lx] ERET when MIPS_SR_EXL|MIPS_SR_ERL == 0\n",
 962			vcpu->arch.pc);
 963		er = EMULATE_FAIL;
 964	}
 965
 966	return er;
 967}
 968
 969enum emulation_result kvm_mips_emul_wait(struct kvm_vcpu *vcpu)
 970{
 971	kvm_debug("[%#lx] !!!WAIT!!! (%#lx)\n", vcpu->arch.pc,
 972		  vcpu->arch.pending_exceptions);
 973
 974	++vcpu->stat.wait_exits;
 975	trace_kvm_exit(vcpu, KVM_TRACE_EXIT_WAIT);
 976	if (!vcpu->arch.pending_exceptions) {
 977		kvm_vz_lose_htimer(vcpu);
 978		vcpu->arch.wait = 1;
 979		kvm_vcpu_block(vcpu);
 980
 981		/*
 982		 * We we are runnable, then definitely go off to user space to
 983		 * check if any I/O interrupts are pending.
 984		 */
 985		if (kvm_check_request(KVM_REQ_UNHALT, vcpu)) {
 986			kvm_clear_request(KVM_REQ_UNHALT, vcpu);
 987			vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
 988		}
 989	}
 990
 991	return EMULATE_DONE;
 992}
 993
 994static void kvm_mips_change_entryhi(struct kvm_vcpu *vcpu,
 995				    unsigned long entryhi)
 996{
 997	struct mips_coproc *cop0 = vcpu->arch.cop0;
 998	struct mm_struct *kern_mm = &vcpu->arch.guest_kernel_mm;
 999	int cpu, i;
1000	u32 nasid = entryhi & KVM_ENTRYHI_ASID;
1001
1002	if (((kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID) != nasid)) {
1003		trace_kvm_asid_change(vcpu, kvm_read_c0_guest_entryhi(cop0) &
1004				      KVM_ENTRYHI_ASID, nasid);
1005
1006		/*
1007		 * Flush entries from the GVA page tables.
1008		 * Guest user page table will get flushed lazily on re-entry to
1009		 * guest user if the guest ASID actually changes.
1010		 */
1011		kvm_mips_flush_gva_pt(kern_mm->pgd, KMF_KERN);
1012
1013		/*
1014		 * Regenerate/invalidate kernel MMU context.
1015		 * The user MMU context will be regenerated lazily on re-entry
1016		 * to guest user if the guest ASID actually changes.
1017		 */
1018		preempt_disable();
1019		cpu = smp_processor_id();
1020		get_new_mmu_context(kern_mm);
1021		for_each_possible_cpu(i)
1022			if (i != cpu)
1023				set_cpu_context(i, kern_mm, 0);
1024		preempt_enable();
1025	}
1026	kvm_write_c0_guest_entryhi(cop0, entryhi);
1027}
1028
1029enum emulation_result kvm_mips_emul_tlbr(struct kvm_vcpu *vcpu)
1030{
1031	struct mips_coproc *cop0 = vcpu->arch.cop0;
1032	struct kvm_mips_tlb *tlb;
1033	unsigned long pc = vcpu->arch.pc;
1034	int index;
1035
1036	index = kvm_read_c0_guest_index(cop0);
1037	if (index < 0 || index >= KVM_MIPS_GUEST_TLB_SIZE) {
1038		/* UNDEFINED */
1039		kvm_debug("[%#lx] TLBR Index %#x out of range\n", pc, index);
1040		index &= KVM_MIPS_GUEST_TLB_SIZE - 1;
1041	}
1042
1043	tlb = &vcpu->arch.guest_tlb[index];
1044	kvm_write_c0_guest_pagemask(cop0, tlb->tlb_mask);
1045	kvm_write_c0_guest_entrylo0(cop0, tlb->tlb_lo[0]);
1046	kvm_write_c0_guest_entrylo1(cop0, tlb->tlb_lo[1]);
1047	kvm_mips_change_entryhi(vcpu, tlb->tlb_hi);
1048
1049	return EMULATE_DONE;
1050}
1051
1052/**
1053 * kvm_mips_invalidate_guest_tlb() - Indicates a change in guest MMU map.
1054 * @vcpu:	VCPU with changed mappings.
1055 * @tlb:	TLB entry being removed.
1056 *
1057 * This is called to indicate a single change in guest MMU mappings, so that we
1058 * can arrange TLB flushes on this and other CPUs.
1059 */
1060static void kvm_mips_invalidate_guest_tlb(struct kvm_vcpu *vcpu,
1061					  struct kvm_mips_tlb *tlb)
1062{
1063	struct mm_struct *kern_mm = &vcpu->arch.guest_kernel_mm;
1064	struct mm_struct *user_mm = &vcpu->arch.guest_user_mm;
1065	int cpu, i;
1066	bool user;
1067
1068	/* No need to flush for entries which are already invalid */
1069	if (!((tlb->tlb_lo[0] | tlb->tlb_lo[1]) & ENTRYLO_V))
1070		return;
1071	/* Don't touch host kernel page tables or TLB mappings */
1072	if ((unsigned long)tlb->tlb_hi > 0x7fffffff)
1073		return;
1074	/* User address space doesn't need flushing for KSeg2/3 changes */
1075	user = tlb->tlb_hi < KVM_GUEST_KSEG0;
1076
1077	preempt_disable();
1078
1079	/* Invalidate page table entries */
1080	kvm_trap_emul_invalidate_gva(vcpu, tlb->tlb_hi & VPN2_MASK, user);
1081
1082	/*
1083	 * Probe the shadow host TLB for the entry being overwritten, if one
1084	 * matches, invalidate it
1085	 */
1086	kvm_mips_host_tlb_inv(vcpu, tlb->tlb_hi, user, true);
1087
1088	/* Invalidate the whole ASID on other CPUs */
1089	cpu = smp_processor_id();
1090	for_each_possible_cpu(i) {
1091		if (i == cpu)
1092			continue;
1093		if (user)
1094			set_cpu_context(i, user_mm, 0);
1095		set_cpu_context(i, kern_mm, 0);
1096	}
1097
1098	preempt_enable();
1099}
1100
1101/* Write Guest TLB Entry @ Index */
1102enum emulation_result kvm_mips_emul_tlbwi(struct kvm_vcpu *vcpu)
1103{
1104	struct mips_coproc *cop0 = vcpu->arch.cop0;
1105	int index = kvm_read_c0_guest_index(cop0);
1106	struct kvm_mips_tlb *tlb = NULL;
1107	unsigned long pc = vcpu->arch.pc;
1108
1109	if (index < 0 || index >= KVM_MIPS_GUEST_TLB_SIZE) {
1110		kvm_debug("%s: illegal index: %d\n", __func__, index);
1111		kvm_debug("[%#lx] COP0_TLBWI [%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx, mask: %#lx)\n",
1112			  pc, index, kvm_read_c0_guest_entryhi(cop0),
1113			  kvm_read_c0_guest_entrylo0(cop0),
1114			  kvm_read_c0_guest_entrylo1(cop0),
1115			  kvm_read_c0_guest_pagemask(cop0));
1116		index = (index & ~0x80000000) % KVM_MIPS_GUEST_TLB_SIZE;
1117	}
1118
1119	tlb = &vcpu->arch.guest_tlb[index];
1120
1121	kvm_mips_invalidate_guest_tlb(vcpu, tlb);
 
 
 
1122
1123	tlb->tlb_mask = kvm_read_c0_guest_pagemask(cop0);
1124	tlb->tlb_hi = kvm_read_c0_guest_entryhi(cop0);
1125	tlb->tlb_lo[0] = kvm_read_c0_guest_entrylo0(cop0);
1126	tlb->tlb_lo[1] = kvm_read_c0_guest_entrylo1(cop0);
1127
1128	kvm_debug("[%#lx] COP0_TLBWI [%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx, mask: %#lx)\n",
1129		  pc, index, kvm_read_c0_guest_entryhi(cop0),
1130		  kvm_read_c0_guest_entrylo0(cop0),
1131		  kvm_read_c0_guest_entrylo1(cop0),
1132		  kvm_read_c0_guest_pagemask(cop0));
1133
1134	return EMULATE_DONE;
1135}
1136
1137/* Write Guest TLB Entry @ Random Index */
1138enum emulation_result kvm_mips_emul_tlbwr(struct kvm_vcpu *vcpu)
1139{
1140	struct mips_coproc *cop0 = vcpu->arch.cop0;
1141	struct kvm_mips_tlb *tlb = NULL;
1142	unsigned long pc = vcpu->arch.pc;
1143	int index;
1144
1145	index = prandom_u32_max(KVM_MIPS_GUEST_TLB_SIZE);
 
 
1146	tlb = &vcpu->arch.guest_tlb[index];
1147
1148	kvm_mips_invalidate_guest_tlb(vcpu, tlb);
 
 
 
 
1149
1150	tlb->tlb_mask = kvm_read_c0_guest_pagemask(cop0);
1151	tlb->tlb_hi = kvm_read_c0_guest_entryhi(cop0);
1152	tlb->tlb_lo[0] = kvm_read_c0_guest_entrylo0(cop0);
1153	tlb->tlb_lo[1] = kvm_read_c0_guest_entrylo1(cop0);
1154
1155	kvm_debug("[%#lx] COP0_TLBWR[%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx)\n",
1156		  pc, index, kvm_read_c0_guest_entryhi(cop0),
1157		  kvm_read_c0_guest_entrylo0(cop0),
1158		  kvm_read_c0_guest_entrylo1(cop0));
1159
1160	return EMULATE_DONE;
1161}
1162
1163enum emulation_result kvm_mips_emul_tlbp(struct kvm_vcpu *vcpu)
1164{
1165	struct mips_coproc *cop0 = vcpu->arch.cop0;
1166	long entryhi = kvm_read_c0_guest_entryhi(cop0);
1167	unsigned long pc = vcpu->arch.pc;
1168	int index = -1;
1169
1170	index = kvm_mips_guest_tlb_lookup(vcpu, entryhi);
1171
1172	kvm_write_c0_guest_index(cop0, index);
1173
1174	kvm_debug("[%#lx] COP0_TLBP (entryhi: %#lx), index: %d\n", pc, entryhi,
1175		  index);
1176
1177	return EMULATE_DONE;
1178}
1179
1180/**
1181 * kvm_mips_config1_wrmask() - Find mask of writable bits in guest Config1
1182 * @vcpu:	Virtual CPU.
1183 *
1184 * Finds the mask of bits which are writable in the guest's Config1 CP0
1185 * register, by userland (currently read-only to the guest).
1186 */
1187unsigned int kvm_mips_config1_wrmask(struct kvm_vcpu *vcpu)
1188{
1189	unsigned int mask = 0;
1190
1191	/* Permit FPU to be present if FPU is supported */
1192	if (kvm_mips_guest_can_have_fpu(&vcpu->arch))
1193		mask |= MIPS_CONF1_FP;
1194
1195	return mask;
1196}
1197
1198/**
1199 * kvm_mips_config3_wrmask() - Find mask of writable bits in guest Config3
1200 * @vcpu:	Virtual CPU.
1201 *
1202 * Finds the mask of bits which are writable in the guest's Config3 CP0
1203 * register, by userland (currently read-only to the guest).
1204 */
1205unsigned int kvm_mips_config3_wrmask(struct kvm_vcpu *vcpu)
1206{
1207	/* Config4 and ULRI are optional */
1208	unsigned int mask = MIPS_CONF_M | MIPS_CONF3_ULRI;
1209
1210	/* Permit MSA to be present if MSA is supported */
1211	if (kvm_mips_guest_can_have_msa(&vcpu->arch))
1212		mask |= MIPS_CONF3_MSA;
1213
1214	return mask;
1215}
1216
1217/**
1218 * kvm_mips_config4_wrmask() - Find mask of writable bits in guest Config4
1219 * @vcpu:	Virtual CPU.
1220 *
1221 * Finds the mask of bits which are writable in the guest's Config4 CP0
1222 * register, by userland (currently read-only to the guest).
1223 */
1224unsigned int kvm_mips_config4_wrmask(struct kvm_vcpu *vcpu)
1225{
1226	/* Config5 is optional */
1227	unsigned int mask = MIPS_CONF_M;
1228
1229	/* KScrExist */
1230	mask |= 0xfc << MIPS_CONF4_KSCREXIST_SHIFT;
1231
1232	return mask;
1233}
1234
1235/**
1236 * kvm_mips_config5_wrmask() - Find mask of writable bits in guest Config5
1237 * @vcpu:	Virtual CPU.
1238 *
1239 * Finds the mask of bits which are writable in the guest's Config5 CP0
1240 * register, by the guest itself.
1241 */
1242unsigned int kvm_mips_config5_wrmask(struct kvm_vcpu *vcpu)
1243{
1244	unsigned int mask = 0;
1245
1246	/* Permit MSAEn changes if MSA supported and enabled */
1247	if (kvm_mips_guest_has_msa(&vcpu->arch))
1248		mask |= MIPS_CONF5_MSAEN;
1249
1250	/*
1251	 * Permit guest FPU mode changes if FPU is enabled and the relevant
1252	 * feature exists according to FIR register.
1253	 */
1254	if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
1255		if (cpu_has_fre)
1256			mask |= MIPS_CONF5_FRE;
1257		/* We don't support UFR or UFE */
1258	}
1259
1260	return mask;
1261}
1262
1263enum emulation_result kvm_mips_emulate_CP0(union mips_instruction inst,
1264					   u32 *opc, u32 cause,
1265					   struct kvm_vcpu *vcpu)
1266{
1267	struct mips_coproc *cop0 = vcpu->arch.cop0;
1268	enum emulation_result er = EMULATE_DONE;
1269	u32 rt, rd, sel;
 
1270	unsigned long curr_pc;
1271
1272	/*
1273	 * Update PC and hold onto current PC in case there is
1274	 * an error and we want to rollback the PC
1275	 */
1276	curr_pc = vcpu->arch.pc;
1277	er = update_pc(vcpu, cause);
1278	if (er == EMULATE_FAIL)
1279		return er;
1280
1281	if (inst.co_format.co) {
1282		switch (inst.co_format.func) {
 
 
 
 
 
 
 
 
1283		case tlbr_op:	/*  Read indexed TLB entry  */
1284			er = kvm_mips_emul_tlbr(vcpu);
1285			break;
1286		case tlbwi_op:	/*  Write indexed  */
1287			er = kvm_mips_emul_tlbwi(vcpu);
1288			break;
1289		case tlbwr_op:	/*  Write random  */
1290			er = kvm_mips_emul_tlbwr(vcpu);
1291			break;
1292		case tlbp_op:	/* TLB Probe */
1293			er = kvm_mips_emul_tlbp(vcpu);
1294			break;
1295		case rfe_op:
1296			kvm_err("!!!COP0_RFE!!!\n");
1297			break;
1298		case eret_op:
1299			er = kvm_mips_emul_eret(vcpu);
1300			goto dont_update_pc;
 
1301		case wait_op:
1302			er = kvm_mips_emul_wait(vcpu);
1303			break;
1304		case hypcall_op:
1305			er = kvm_mips_emul_hypcall(vcpu, inst);
1306			break;
1307		}
1308	} else {
1309		rt = inst.c0r_format.rt;
1310		rd = inst.c0r_format.rd;
1311		sel = inst.c0r_format.sel;
1312
1313		switch (inst.c0r_format.rs) {
1314		case mfc_op:
1315#ifdef CONFIG_KVM_MIPS_DEBUG_COP0_COUNTERS
1316			cop0->stat[rd][sel]++;
1317#endif
1318			/* Get reg */
1319			if ((rd == MIPS_CP0_COUNT) && (sel == 0)) {
1320				vcpu->arch.gprs[rt] =
1321				    (s32)kvm_mips_read_count(vcpu);
1322			} else if ((rd == MIPS_CP0_ERRCTL) && (sel == 0)) {
1323				vcpu->arch.gprs[rt] = 0x0;
1324#ifdef CONFIG_KVM_MIPS_DYN_TRANS
1325				kvm_mips_trans_mfc0(inst, opc, vcpu);
1326#endif
1327			} else {
1328				vcpu->arch.gprs[rt] = (s32)cop0->reg[rd][sel];
1329
1330#ifdef CONFIG_KVM_MIPS_DYN_TRANS
1331				kvm_mips_trans_mfc0(inst, opc, vcpu);
1332#endif
1333			}
1334
1335			trace_kvm_hwr(vcpu, KVM_TRACE_MFC0,
1336				      KVM_TRACE_COP0(rd, sel),
1337				      vcpu->arch.gprs[rt]);
 
1338			break;
1339
1340		case dmfc_op:
1341			vcpu->arch.gprs[rt] = cop0->reg[rd][sel];
1342
1343			trace_kvm_hwr(vcpu, KVM_TRACE_DMFC0,
1344				      KVM_TRACE_COP0(rd, sel),
1345				      vcpu->arch.gprs[rt]);
1346			break;
1347
1348		case mtc_op:
1349#ifdef CONFIG_KVM_MIPS_DEBUG_COP0_COUNTERS
1350			cop0->stat[rd][sel]++;
1351#endif
1352			trace_kvm_hwr(vcpu, KVM_TRACE_MTC0,
1353				      KVM_TRACE_COP0(rd, sel),
1354				      vcpu->arch.gprs[rt]);
1355
1356			if ((rd == MIPS_CP0_TLB_INDEX)
1357			    && (vcpu->arch.gprs[rt] >=
1358				KVM_MIPS_GUEST_TLB_SIZE)) {
1359				kvm_err("Invalid TLB Index: %ld",
1360					vcpu->arch.gprs[rt]);
1361				er = EMULATE_FAIL;
1362				break;
1363			}
 
1364			if ((rd == MIPS_CP0_PRID) && (sel == 1)) {
1365				/*
1366				 * Preserve core number, and keep the exception
1367				 * base in guest KSeg0.
1368				 */
1369				kvm_change_c0_guest_ebase(cop0, 0x1ffff000,
1370							  vcpu->arch.gprs[rt]);
 
 
1371			} else if (rd == MIPS_CP0_TLB_HI && sel == 0) {
1372				kvm_mips_change_entryhi(vcpu,
1373							vcpu->arch.gprs[rt]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1374			}
1375			/* Are we writing to COUNT */
1376			else if ((rd == MIPS_CP0_COUNT) && (sel == 0)) {
1377				kvm_mips_write_count(vcpu, vcpu->arch.gprs[rt]);
1378				goto done;
1379			} else if ((rd == MIPS_CP0_COMPARE) && (sel == 0)) {
 
 
 
 
1380				/* If we are writing to COMPARE */
1381				/* Clear pending timer interrupt, if any */
 
1382				kvm_mips_write_compare(vcpu,
1383						       vcpu->arch.gprs[rt],
1384						       true);
1385			} else if ((rd == MIPS_CP0_STATUS) && (sel == 0)) {
1386				unsigned int old_val, val, change;
1387
1388				old_val = kvm_read_c0_guest_status(cop0);
1389				val = vcpu->arch.gprs[rt];
1390				change = val ^ old_val;
1391
1392				/* Make sure that the NMI bit is never set */
1393				val &= ~ST0_NMI;
1394
1395				/*
1396				 * Don't allow CU1 or FR to be set unless FPU
1397				 * capability enabled and exists in guest
1398				 * configuration.
1399				 */
1400				if (!kvm_mips_guest_has_fpu(&vcpu->arch))
1401					val &= ~(ST0_CU1 | ST0_FR);
1402
1403				/*
1404				 * Also don't allow FR to be set if host doesn't
1405				 * support it.
1406				 */
1407				if (!(current_cpu_data.fpu_id & MIPS_FPIR_F64))
1408					val &= ~ST0_FR;
1409
1410
1411				/* Handle changes in FPU mode */
1412				preempt_disable();
1413
1414				/*
1415				 * FPU and Vector register state is made
1416				 * UNPREDICTABLE by a change of FR, so don't
1417				 * even bother saving it.
1418				 */
1419				if (change & ST0_FR)
1420					kvm_drop_fpu(vcpu);
1421
1422				/*
1423				 * If MSA state is already live, it is undefined
1424				 * how it interacts with FR=0 FPU state, and we
1425				 * don't want to hit reserved instruction
1426				 * exceptions trying to save the MSA state later
1427				 * when CU=1 && FR=1, so play it safe and save
1428				 * it first.
1429				 */
1430				if (change & ST0_CU1 && !(val & ST0_FR) &&
1431				    vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA)
1432					kvm_lose_fpu(vcpu);
1433
1434				/*
1435				 * Propagate CU1 (FPU enable) changes
1436				 * immediately if the FPU context is already
1437				 * loaded. When disabling we leave the context
1438				 * loaded so it can be quickly enabled again in
1439				 * the near future.
1440				 */
1441				if (change & ST0_CU1 &&
1442				    vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)
1443					change_c0_status(ST0_CU1, val);
1444
1445				preempt_enable();
1446
1447				kvm_write_c0_guest_status(cop0, val);
1448
1449#ifdef CONFIG_KVM_MIPS_DYN_TRANS
1450				/*
1451				 * If FPU present, we need CU1/FR bits to take
1452				 * effect fairly soon.
1453				 */
1454				if (!kvm_mips_guest_has_fpu(&vcpu->arch))
1455					kvm_mips_trans_mtc0(inst, opc, vcpu);
1456#endif
1457			} else if ((rd == MIPS_CP0_CONFIG) && (sel == 5)) {
1458				unsigned int old_val, val, change, wrmask;
1459
1460				old_val = kvm_read_c0_guest_config5(cop0);
1461				val = vcpu->arch.gprs[rt];
1462
1463				/* Only a few bits are writable in Config5 */
1464				wrmask = kvm_mips_config5_wrmask(vcpu);
1465				change = (val ^ old_val) & wrmask;
1466				val = old_val ^ change;
1467
1468
1469				/* Handle changes in FPU/MSA modes */
1470				preempt_disable();
1471
1472				/*
1473				 * Propagate FRE changes immediately if the FPU
1474				 * context is already loaded.
1475				 */
1476				if (change & MIPS_CONF5_FRE &&
1477				    vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)
1478					change_c0_config5(MIPS_CONF5_FRE, val);
1479
1480				/*
1481				 * Propagate MSAEn changes immediately if the
1482				 * MSA context is already loaded. When disabling
1483				 * we leave the context loaded so it can be
1484				 * quickly enabled again in the near future.
1485				 */
1486				if (change & MIPS_CONF5_MSAEN &&
1487				    vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA)
1488					change_c0_config5(MIPS_CONF5_MSAEN,
1489							  val);
1490
1491				preempt_enable();
1492
1493				kvm_write_c0_guest_config5(cop0, val);
1494			} else if ((rd == MIPS_CP0_CAUSE) && (sel == 0)) {
1495				u32 old_cause, new_cause;
1496
1497				old_cause = kvm_read_c0_guest_cause(cop0);
1498				new_cause = vcpu->arch.gprs[rt];
1499				/* Update R/W bits */
1500				kvm_change_c0_guest_cause(cop0, 0x08800300,
1501							  new_cause);
1502				/* DC bit enabling/disabling timer? */
1503				if ((old_cause ^ new_cause) & CAUSEF_DC) {
1504					if (new_cause & CAUSEF_DC)
1505						kvm_mips_count_disable_cause(vcpu);
1506					else
1507						kvm_mips_count_enable_cause(vcpu);
1508				}
1509			} else if ((rd == MIPS_CP0_HWRENA) && (sel == 0)) {
1510				u32 mask = MIPS_HWRENA_CPUNUM |
1511					   MIPS_HWRENA_SYNCISTEP |
1512					   MIPS_HWRENA_CC |
1513					   MIPS_HWRENA_CCRES;
1514
1515				if (kvm_read_c0_guest_config3(cop0) &
1516				    MIPS_CONF3_ULRI)
1517					mask |= MIPS_HWRENA_ULR;
1518				cop0->reg[rd][sel] = vcpu->arch.gprs[rt] & mask;
1519			} else {
1520				cop0->reg[rd][sel] = vcpu->arch.gprs[rt];
1521#ifdef CONFIG_KVM_MIPS_DYN_TRANS
1522				kvm_mips_trans_mtc0(inst, opc, vcpu);
1523#endif
1524			}
 
 
 
1525			break;
1526
1527		case dmtc_op:
1528			kvm_err("!!!!!!![%#lx]dmtc_op: rt: %d, rd: %d, sel: %d!!!!!!\n",
1529				vcpu->arch.pc, rt, rd, sel);
1530			trace_kvm_hwr(vcpu, KVM_TRACE_DMTC0,
1531				      KVM_TRACE_COP0(rd, sel),
1532				      vcpu->arch.gprs[rt]);
1533			er = EMULATE_FAIL;
1534			break;
1535
1536		case mfmc0_op:
1537#ifdef KVM_MIPS_DEBUG_COP0_COUNTERS
1538			cop0->stat[MIPS_CP0_STATUS][0]++;
1539#endif
1540			if (rt != 0)
1541				vcpu->arch.gprs[rt] =
1542				    kvm_read_c0_guest_status(cop0);
1543			/* EI */
1544			if (inst.mfmc0_format.sc) {
1545				kvm_debug("[%#lx] mfmc0_op: EI\n",
1546					  vcpu->arch.pc);
1547				kvm_set_c0_guest_status(cop0, ST0_IE);
1548			} else {
1549				kvm_debug("[%#lx] mfmc0_op: DI\n",
1550					  vcpu->arch.pc);
1551				kvm_clear_c0_guest_status(cop0, ST0_IE);
1552			}
1553
1554			break;
1555
1556		case wrpgpr_op:
1557			{
1558				u32 css = cop0->reg[MIPS_CP0_STATUS][2] & 0xf;
1559				u32 pss =
 
1560				    (cop0->reg[MIPS_CP0_STATUS][2] >> 6) & 0xf;
1561				/*
1562				 * We don't support any shadow register sets, so
1563				 * SRSCtl[PSS] == SRSCtl[CSS] = 0
1564				 */
1565				if (css || pss) {
1566					er = EMULATE_FAIL;
1567					break;
1568				}
1569				kvm_debug("WRPGPR[%d][%d] = %#lx\n", pss, rd,
1570					  vcpu->arch.gprs[rt]);
1571				vcpu->arch.gprs[rd] = vcpu->arch.gprs[rt];
1572			}
1573			break;
1574		default:
1575			kvm_err("[%#lx]MachEmulateCP0: unsupported COP0, copz: 0x%x\n",
1576				vcpu->arch.pc, inst.c0r_format.rs);
1577			er = EMULATE_FAIL;
1578			break;
1579		}
1580	}
1581
1582done:
1583	/* Rollback PC only if emulation was unsuccessful */
1584	if (er == EMULATE_FAIL)
1585		vcpu->arch.pc = curr_pc;
1586
1587dont_update_pc:
1588	/*
1589	 * This is for special instructions whose emulation
1590	 * updates the PC, so do not overwrite the PC under
1591	 * any circumstances
1592	 */
1593
1594	return er;
1595}
1596
1597enum emulation_result kvm_mips_emulate_store(union mips_instruction inst,
1598					     u32 cause,
1599					     struct kvm_vcpu *vcpu)
1600{
1601	int r;
1602	enum emulation_result er;
1603	u32 rt;
1604	struct kvm_run *run = vcpu->run;
1605	void *data = run->mmio.data;
1606	unsigned int imme;
1607	unsigned long curr_pc;
1608
1609	/*
1610	 * Update PC and hold onto current PC in case there is
1611	 * an error and we want to rollback the PC
1612	 */
1613	curr_pc = vcpu->arch.pc;
1614	er = update_pc(vcpu, cause);
1615	if (er == EMULATE_FAIL)
1616		return er;
1617
1618	rt = inst.i_format.rt;
1619
1620	run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
1621						vcpu->arch.host_cp0_badvaddr);
1622	if (run->mmio.phys_addr == KVM_INVALID_ADDR)
1623		goto out_fail;
1624
1625	switch (inst.i_format.opcode) {
1626#if defined(CONFIG_64BIT) && defined(CONFIG_KVM_MIPS_VZ)
1627	case sd_op:
1628		run->mmio.len = 8;
1629		*(u64 *)data = vcpu->arch.gprs[rt];
1630
1631		kvm_debug("[%#lx] OP_SD: eaddr: %#lx, gpr: %#lx, data: %#llx\n",
1632			  vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1633			  vcpu->arch.gprs[rt], *(u64 *)data);
1634		break;
1635#endif
1636
1637	case sw_op:
1638		run->mmio.len = 4;
1639		*(u32 *)data = vcpu->arch.gprs[rt];
1640
1641		kvm_debug("[%#lx] OP_SW: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1642			  vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1643			  vcpu->arch.gprs[rt], *(u32 *)data);
1644		break;
1645
1646	case sh_op:
1647		run->mmio.len = 2;
1648		*(u16 *)data = vcpu->arch.gprs[rt];
1649
1650		kvm_debug("[%#lx] OP_SH: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1651			  vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1652			  vcpu->arch.gprs[rt], *(u16 *)data);
1653		break;
1654
 
1655	case sb_op:
1656		run->mmio.len = 1;
1657		*(u8 *)data = vcpu->arch.gprs[rt];
1658
1659		kvm_debug("[%#lx] OP_SB: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1660			  vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1661			  vcpu->arch.gprs[rt], *(u8 *)data);
1662		break;
1663
1664	case swl_op:
1665		run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
1666					vcpu->arch.host_cp0_badvaddr) & (~0x3);
1667		run->mmio.len = 4;
1668		imme = vcpu->arch.host_cp0_badvaddr & 0x3;
1669		switch (imme) {
1670		case 0:
1671			*(u32 *)data = ((*(u32 *)data) & 0xffffff00) |
1672					(vcpu->arch.gprs[rt] >> 24);
1673			break;
1674		case 1:
1675			*(u32 *)data = ((*(u32 *)data) & 0xffff0000) |
1676					(vcpu->arch.gprs[rt] >> 16);
1677			break;
1678		case 2:
1679			*(u32 *)data = ((*(u32 *)data) & 0xff000000) |
1680					(vcpu->arch.gprs[rt] >> 8);
1681			break;
1682		case 3:
1683			*(u32 *)data = vcpu->arch.gprs[rt];
1684			break;
1685		default:
1686			break;
1687		}
 
 
 
 
 
 
 
 
1688
1689		kvm_debug("[%#lx] OP_SWL: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1690			  vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1691			  vcpu->arch.gprs[rt], *(u32 *)data);
1692		break;
1693
1694	case swr_op:
1695		run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
1696					vcpu->arch.host_cp0_badvaddr) & (~0x3);
1697		run->mmio.len = 4;
1698		imme = vcpu->arch.host_cp0_badvaddr & 0x3;
1699		switch (imme) {
1700		case 0:
1701			*(u32 *)data = vcpu->arch.gprs[rt];
1702			break;
1703		case 1:
1704			*(u32 *)data = ((*(u32 *)data) & 0xff) |
1705					(vcpu->arch.gprs[rt] << 8);
1706			break;
1707		case 2:
1708			*(u32 *)data = ((*(u32 *)data) & 0xffff) |
1709					(vcpu->arch.gprs[rt] << 16);
1710			break;
1711		case 3:
1712			*(u32 *)data = ((*(u32 *)data) & 0xffffff) |
1713					(vcpu->arch.gprs[rt] << 24);
1714			break;
1715		default:
1716			break;
1717		}
1718
1719		kvm_debug("[%#lx] OP_SWR: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1720			  vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1721			  vcpu->arch.gprs[rt], *(u32 *)data);
1722		break;
1723
1724#if defined(CONFIG_64BIT) && defined(CONFIG_KVM_MIPS_VZ)
1725	case sdl_op:
1726		run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
1727					vcpu->arch.host_cp0_badvaddr) & (~0x7);
1728
1729		run->mmio.len = 8;
1730		imme = vcpu->arch.host_cp0_badvaddr & 0x7;
1731		switch (imme) {
1732		case 0:
1733			*(u64 *)data = ((*(u64 *)data) & 0xffffffffffffff00) |
1734					((vcpu->arch.gprs[rt] >> 56) & 0xff);
1735			break;
1736		case 1:
1737			*(u64 *)data = ((*(u64 *)data) & 0xffffffffffff0000) |
1738					((vcpu->arch.gprs[rt] >> 48) & 0xffff);
1739			break;
1740		case 2:
1741			*(u64 *)data = ((*(u64 *)data) & 0xffffffffff000000) |
1742					((vcpu->arch.gprs[rt] >> 40) & 0xffffff);
1743			break;
1744		case 3:
1745			*(u64 *)data = ((*(u64 *)data) & 0xffffffff00000000) |
1746					((vcpu->arch.gprs[rt] >> 32) & 0xffffffff);
1747			break;
1748		case 4:
1749			*(u64 *)data = ((*(u64 *)data) & 0xffffff0000000000) |
1750					((vcpu->arch.gprs[rt] >> 24) & 0xffffffffff);
1751			break;
1752		case 5:
1753			*(u64 *)data = ((*(u64 *)data) & 0xffff000000000000) |
1754					((vcpu->arch.gprs[rt] >> 16) & 0xffffffffffff);
1755			break;
1756		case 6:
1757			*(u64 *)data = ((*(u64 *)data) & 0xff00000000000000) |
1758					((vcpu->arch.gprs[rt] >> 8) & 0xffffffffffffff);
1759			break;
1760		case 7:
1761			*(u64 *)data = vcpu->arch.gprs[rt];
1762			break;
1763		default:
1764			break;
1765		}
1766
1767		kvm_debug("[%#lx] OP_SDL: eaddr: %#lx, gpr: %#lx, data: %llx\n",
1768			  vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1769			  vcpu->arch.gprs[rt], *(u64 *)data);
1770		break;
1771
1772	case sdr_op:
1773		run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
1774					vcpu->arch.host_cp0_badvaddr) & (~0x7);
1775
1776		run->mmio.len = 8;
1777		imme = vcpu->arch.host_cp0_badvaddr & 0x7;
1778		switch (imme) {
1779		case 0:
1780			*(u64 *)data = vcpu->arch.gprs[rt];
1781			break;
1782		case 1:
1783			*(u64 *)data = ((*(u64 *)data) & 0xff) |
1784					(vcpu->arch.gprs[rt] << 8);
1785			break;
1786		case 2:
1787			*(u64 *)data = ((*(u64 *)data) & 0xffff) |
1788					(vcpu->arch.gprs[rt] << 16);
1789			break;
1790		case 3:
1791			*(u64 *)data = ((*(u64 *)data) & 0xffffff) |
1792					(vcpu->arch.gprs[rt] << 24);
1793			break;
1794		case 4:
1795			*(u64 *)data = ((*(u64 *)data) & 0xffffffff) |
1796					(vcpu->arch.gprs[rt] << 32);
1797			break;
1798		case 5:
1799			*(u64 *)data = ((*(u64 *)data) & 0xffffffffff) |
1800					(vcpu->arch.gprs[rt] << 40);
1801			break;
1802		case 6:
1803			*(u64 *)data = ((*(u64 *)data) & 0xffffffffffff) |
1804					(vcpu->arch.gprs[rt] << 48);
1805			break;
1806		case 7:
1807			*(u64 *)data = ((*(u64 *)data) & 0xffffffffffffff) |
1808					(vcpu->arch.gprs[rt] << 56);
1809			break;
1810		default:
1811			break;
1812		}
1813
1814		kvm_debug("[%#lx] OP_SDR: eaddr: %#lx, gpr: %#lx, data: %llx\n",
 
 
 
 
 
 
1815			  vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1816			  vcpu->arch.gprs[rt], *(u64 *)data);
1817		break;
1818#endif
1819
1820#ifdef CONFIG_CPU_LOONGSON64
1821	case sdc2_op:
1822		rt = inst.loongson3_lsdc2_format.rt;
1823		switch (inst.loongson3_lsdc2_format.opcode1) {
1824		/*
1825		 * Loongson-3 overridden sdc2 instructions.
1826		 * opcode1              instruction
1827		 *   0x0          gssbx: store 1 bytes from GPR
1828		 *   0x1          gsshx: store 2 bytes from GPR
1829		 *   0x2          gsswx: store 4 bytes from GPR
1830		 *   0x3          gssdx: store 8 bytes from GPR
1831		 */
1832		case 0x0:
1833			run->mmio.len = 1;
1834			*(u8 *)data = vcpu->arch.gprs[rt];
1835
1836			kvm_debug("[%#lx] OP_GSSBX: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1837				  vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1838				  vcpu->arch.gprs[rt], *(u8 *)data);
1839			break;
1840		case 0x1:
1841			run->mmio.len = 2;
1842			*(u16 *)data = vcpu->arch.gprs[rt];
1843
1844			kvm_debug("[%#lx] OP_GSSSHX: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1845				  vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1846				  vcpu->arch.gprs[rt], *(u16 *)data);
1847			break;
1848		case 0x2:
1849			run->mmio.len = 4;
1850			*(u32 *)data = vcpu->arch.gprs[rt];
1851
1852			kvm_debug("[%#lx] OP_GSSWX: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1853				  vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1854				  vcpu->arch.gprs[rt], *(u32 *)data);
1855			break;
1856		case 0x3:
1857			run->mmio.len = 8;
1858			*(u64 *)data = vcpu->arch.gprs[rt];
1859
1860			kvm_debug("[%#lx] OP_GSSDX: eaddr: %#lx, gpr: %#lx, data: %#llx\n",
1861				  vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1862				  vcpu->arch.gprs[rt], *(u64 *)data);
1863			break;
1864		default:
1865			kvm_err("Godson Extended GS-Store not yet supported (inst=0x%08x)\n",
1866				inst.word);
1867			break;
1868		}
1869		break;
1870#endif
1871	default:
1872		kvm_err("Store not yet supported (inst=0x%08x)\n",
1873			inst.word);
1874		goto out_fail;
1875	}
1876
1877	vcpu->mmio_needed = 1;
1878	run->mmio.is_write = 1;
1879	vcpu->mmio_is_write = 1;
1880
1881	r = kvm_io_bus_write(vcpu, KVM_MMIO_BUS,
1882			run->mmio.phys_addr, run->mmio.len, data);
1883
1884	if (!r) {
1885		vcpu->mmio_needed = 0;
1886		return EMULATE_DONE;
1887	}
1888
1889	return EMULATE_DO_MMIO;
1890
1891out_fail:
1892	/* Rollback PC if emulation was unsuccessful */
1893	vcpu->arch.pc = curr_pc;
1894	return EMULATE_FAIL;
 
 
1895}
1896
1897enum emulation_result kvm_mips_emulate_load(union mips_instruction inst,
1898					    u32 cause, struct kvm_vcpu *vcpu)
 
1899{
1900	struct kvm_run *run = vcpu->run;
1901	int r;
1902	enum emulation_result er;
1903	unsigned long curr_pc;
1904	u32 op, rt;
1905	unsigned int imme;
1906
1907	rt = inst.i_format.rt;
1908	op = inst.i_format.opcode;
1909
1910	/*
1911	 * Find the resume PC now while we have safe and easy access to the
1912	 * prior branch instruction, and save it for
1913	 * kvm_mips_complete_mmio_load() to restore later.
1914	 */
1915	curr_pc = vcpu->arch.pc;
1916	er = update_pc(vcpu, cause);
1917	if (er == EMULATE_FAIL)
1918		return er;
1919	vcpu->arch.io_pc = vcpu->arch.pc;
1920	vcpu->arch.pc = curr_pc;
1921
 
1922	vcpu->arch.io_gpr = rt;
1923
1924	run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
1925						vcpu->arch.host_cp0_badvaddr);
1926	if (run->mmio.phys_addr == KVM_INVALID_ADDR)
1927		return EMULATE_FAIL;
1928
1929	vcpu->mmio_needed = 2;	/* signed */
1930	switch (op) {
1931#if defined(CONFIG_64BIT) && defined(CONFIG_KVM_MIPS_VZ)
1932	case ld_op:
1933		run->mmio.len = 8;
1934		break;
1935
1936	case lwu_op:
1937		vcpu->mmio_needed = 1;	/* unsigned */
1938		fallthrough;
1939#endif
1940	case lw_op:
1941		run->mmio.len = 4;
1942		break;
1943
1944	case lhu_op:
1945		vcpu->mmio_needed = 1;	/* unsigned */
1946		fallthrough;
1947	case lh_op:
1948		run->mmio.len = 2;
1949		break;
1950
1951	case lbu_op:
1952		vcpu->mmio_needed = 1;	/* unsigned */
1953		fallthrough;
1954	case lb_op:
1955		run->mmio.len = 1;
1956		break;
1957
1958	case lwl_op:
1959		run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
1960					vcpu->arch.host_cp0_badvaddr) & (~0x3);
1961
1962		run->mmio.len = 4;
1963		imme = vcpu->arch.host_cp0_badvaddr & 0x3;
1964		switch (imme) {
1965		case 0:
1966			vcpu->mmio_needed = 3;	/* 1 byte */
1967			break;
1968		case 1:
1969			vcpu->mmio_needed = 4;	/* 2 bytes */
1970			break;
1971		case 2:
1972			vcpu->mmio_needed = 5;	/* 3 bytes */
1973			break;
1974		case 3:
1975			vcpu->mmio_needed = 6;	/* 4 bytes */
1976			break;
1977		default:
1978			break;
1979		}
1980		break;
1981
1982	case lwr_op:
1983		run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
1984					vcpu->arch.host_cp0_badvaddr) & (~0x3);
1985
1986		run->mmio.len = 4;
1987		imme = vcpu->arch.host_cp0_badvaddr & 0x3;
1988		switch (imme) {
1989		case 0:
1990			vcpu->mmio_needed = 7;	/* 4 bytes */
1991			break;
1992		case 1:
1993			vcpu->mmio_needed = 8;	/* 3 bytes */
1994			break;
1995		case 2:
1996			vcpu->mmio_needed = 9;	/* 2 bytes */
1997			break;
1998		case 3:
1999			vcpu->mmio_needed = 10;	/* 1 byte */
2000			break;
2001		default:
2002			break;
2003		}
2004		break;
2005
2006#if defined(CONFIG_64BIT) && defined(CONFIG_KVM_MIPS_VZ)
2007	case ldl_op:
2008		run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
2009					vcpu->arch.host_cp0_badvaddr) & (~0x7);
 
2010
2011		run->mmio.len = 8;
2012		imme = vcpu->arch.host_cp0_badvaddr & 0x7;
2013		switch (imme) {
2014		case 0:
2015			vcpu->mmio_needed = 11;	/* 1 byte */
2016			break;
2017		case 1:
2018			vcpu->mmio_needed = 12;	/* 2 bytes */
2019			break;
2020		case 2:
2021			vcpu->mmio_needed = 13;	/* 3 bytes */
2022			break;
2023		case 3:
2024			vcpu->mmio_needed = 14;	/* 4 bytes */
2025			break;
2026		case 4:
2027			vcpu->mmio_needed = 15;	/* 5 bytes */
2028			break;
2029		case 5:
2030			vcpu->mmio_needed = 16;	/* 6 bytes */
2031			break;
2032		case 6:
2033			vcpu->mmio_needed = 17;	/* 7 bytes */
2034			break;
2035		case 7:
2036			vcpu->mmio_needed = 18;	/* 8 bytes */
2037			break;
2038		default:
 
 
 
 
 
2039			break;
2040		}
2041		break;
2042
2043	case ldr_op:
2044		run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
2045					vcpu->arch.host_cp0_badvaddr) & (~0x7);
 
 
 
 
 
 
2046
2047		run->mmio.len = 8;
2048		imme = vcpu->arch.host_cp0_badvaddr & 0x7;
2049		switch (imme) {
2050		case 0:
2051			vcpu->mmio_needed = 19;	/* 8 bytes */
2052			break;
2053		case 1:
2054			vcpu->mmio_needed = 20;	/* 7 bytes */
2055			break;
2056		case 2:
2057			vcpu->mmio_needed = 21;	/* 6 bytes */
2058			break;
2059		case 3:
2060			vcpu->mmio_needed = 22;	/* 5 bytes */
2061			break;
2062		case 4:
2063			vcpu->mmio_needed = 23;	/* 4 bytes */
2064			break;
2065		case 5:
2066			vcpu->mmio_needed = 24;	/* 3 bytes */
2067			break;
2068		case 6:
2069			vcpu->mmio_needed = 25;	/* 2 bytes */
2070			break;
2071		case 7:
2072			vcpu->mmio_needed = 26;	/* 1 byte */
2073			break;
2074		default:
2075			break;
2076		}
2077		break;
2078#endif
2079
2080#ifdef CONFIG_CPU_LOONGSON64
2081	case ldc2_op:
2082		rt = inst.loongson3_lsdc2_format.rt;
2083		switch (inst.loongson3_lsdc2_format.opcode1) {
2084		/*
2085		 * Loongson-3 overridden ldc2 instructions.
2086		 * opcode1              instruction
2087		 *   0x0          gslbx: store 1 bytes from GPR
2088		 *   0x1          gslhx: store 2 bytes from GPR
2089		 *   0x2          gslwx: store 4 bytes from GPR
2090		 *   0x3          gsldx: store 8 bytes from GPR
2091		 */
2092		case 0x0:
2093			run->mmio.len = 1;
2094			vcpu->mmio_needed = 27;	/* signed */
2095			break;
2096		case 0x1:
2097			run->mmio.len = 2;
2098			vcpu->mmio_needed = 28;	/* signed */
2099			break;
2100		case 0x2:
2101			run->mmio.len = 4;
2102			vcpu->mmio_needed = 29;	/* signed */
2103			break;
2104		case 0x3:
2105			run->mmio.len = 8;
2106			vcpu->mmio_needed = 30;	/* signed */
2107			break;
2108		default:
2109			kvm_err("Godson Extended GS-Load for float not yet supported (inst=0x%08x)\n",
2110				inst.word);
 
 
 
2111			break;
2112		}
2113		break;
2114#endif
2115
2116	default:
2117		kvm_err("Load not yet supported (inst=0x%08x)\n",
2118			inst.word);
2119		vcpu->mmio_needed = 0;
2120		return EMULATE_FAIL;
2121	}
2122
2123	run->mmio.is_write = 0;
2124	vcpu->mmio_is_write = 0;
 
 
2125
2126	r = kvm_io_bus_read(vcpu, KVM_MMIO_BUS,
2127			run->mmio.phys_addr, run->mmio.len, run->mmio.data);
2128
2129	if (!r) {
2130		kvm_mips_complete_mmio_load(vcpu);
2131		vcpu->mmio_needed = 0;
2132		return EMULATE_DONE;
2133	}
2134
2135	return EMULATE_DO_MMIO;
2136}
2137
2138#ifndef CONFIG_KVM_MIPS_VZ
2139static enum emulation_result kvm_mips_guest_cache_op(int (*fn)(unsigned long),
2140						     unsigned long curr_pc,
2141						     unsigned long addr,
2142						     struct kvm_vcpu *vcpu,
2143						     u32 cause)
2144{
2145	int err;
2146
2147	for (;;) {
2148		/* Carefully attempt the cache operation */
2149		kvm_trap_emul_gva_lockless_begin(vcpu);
2150		err = fn(addr);
2151		kvm_trap_emul_gva_lockless_end(vcpu);
 
 
 
 
 
 
 
 
 
2152
2153		if (likely(!err))
2154			return EMULATE_DONE;
2155
2156		/*
2157		 * Try to handle the fault and retry, maybe we just raced with a
2158		 * GVA invalidation.
2159		 */
2160		switch (kvm_trap_emul_gva_fault(vcpu, addr, false)) {
2161		case KVM_MIPS_GVA:
2162		case KVM_MIPS_GPA:
2163			/* bad virtual or physical address */
2164			return EMULATE_FAIL;
2165		case KVM_MIPS_TLB:
2166			/* no matching guest TLB */
2167			vcpu->arch.host_cp0_badvaddr = addr;
2168			vcpu->arch.pc = curr_pc;
2169			kvm_mips_emulate_tlbmiss_ld(cause, NULL, vcpu);
2170			return EMULATE_EXCEPT;
2171		case KVM_MIPS_TLBINV:
2172			/* invalid matching guest TLB */
2173			vcpu->arch.host_cp0_badvaddr = addr;
2174			vcpu->arch.pc = curr_pc;
2175			kvm_mips_emulate_tlbinv_ld(cause, NULL, vcpu);
2176			return EMULATE_EXCEPT;
2177		default:
2178			break;
2179		}
2180	}
2181}
2182
2183enum emulation_result kvm_mips_emulate_cache(union mips_instruction inst,
2184					     u32 *opc, u32 cause,
 
2185					     struct kvm_vcpu *vcpu)
2186{
 
2187	enum emulation_result er = EMULATE_DONE;
2188	u32 cache, op_inst, op, base;
2189	s16 offset;
2190	struct kvm_vcpu_arch *arch = &vcpu->arch;
2191	unsigned long va;
2192	unsigned long curr_pc;
2193
2194	/*
2195	 * Update PC and hold onto current PC in case there is
2196	 * an error and we want to rollback the PC
2197	 */
2198	curr_pc = vcpu->arch.pc;
2199	er = update_pc(vcpu, cause);
2200	if (er == EMULATE_FAIL)
2201		return er;
2202
2203	base = inst.i_format.rs;
2204	op_inst = inst.i_format.rt;
2205	if (cpu_has_mips_r6)
2206		offset = inst.spec3_format.simmediate;
2207	else
2208		offset = inst.i_format.simmediate;
2209	cache = op_inst & CacheOp_Cache;
2210	op = op_inst & CacheOp_Op;
2211
2212	va = arch->gprs[base] + offset;
2213
2214	kvm_debug("CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
2215		  cache, op, base, arch->gprs[base], offset);
2216
2217	/*
2218	 * Treat INDEX_INV as a nop, basically issued by Linux on startup to
2219	 * invalidate the caches entirely by stepping through all the
2220	 * ways/indexes
2221	 */
2222	if (op == Index_Writeback_Inv) {
2223		kvm_debug("@ %#lx/%#lx CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
2224			  vcpu->arch.pc, vcpu->arch.gprs[31], cache, op, base,
2225			  arch->gprs[base], offset);
2226
2227		if (cache == Cache_D) {
2228#ifdef CONFIG_CPU_R4K_CACHE_TLB
2229			r4k_blast_dcache();
2230#else
2231			switch (boot_cpu_type()) {
2232			case CPU_CAVIUM_OCTEON3:
2233				/* locally flush icache */
2234				local_flush_icache_range(0, 0);
2235				break;
2236			default:
2237				__flush_cache_all();
2238				break;
2239			}
2240#endif
2241		} else if (cache == Cache_I) {
2242#ifdef CONFIG_CPU_R4K_CACHE_TLB
2243			r4k_blast_icache();
2244#else
2245			switch (boot_cpu_type()) {
2246			case CPU_CAVIUM_OCTEON3:
2247				/* locally flush icache */
2248				local_flush_icache_range(0, 0);
2249				break;
2250			default:
2251				flush_icache_all();
2252				break;
2253			}
2254#endif
2255		} else {
2256			kvm_err("%s: unsupported CACHE INDEX operation\n",
2257				__func__);
2258			return EMULATE_FAIL;
2259		}
2260
2261#ifdef CONFIG_KVM_MIPS_DYN_TRANS
2262		kvm_mips_trans_cache_index(inst, opc, vcpu);
2263#endif
2264		goto done;
2265	}
2266
2267	/* XXXKYMA: Only a subset of cache ops are supported, used by Linux */
2268	if (op_inst == Hit_Writeback_Inv_D || op_inst == Hit_Invalidate_D) {
 
 
 
 
 
 
 
 
 
 
2269		/*
2270		 * Perform the dcache part of icache synchronisation on the
2271		 * guest's behalf.
2272		 */
2273		er = kvm_mips_guest_cache_op(protected_writeback_dcache_line,
2274					     curr_pc, va, vcpu, cause);
2275		if (er != EMULATE_DONE)
2276			goto done;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2277#ifdef CONFIG_KVM_MIPS_DYN_TRANS
2278		/*
2279		 * Replace the CACHE instruction, with a SYNCI, not the same,
2280		 * but avoids a trap
2281		 */
2282		kvm_mips_trans_cache_va(inst, opc, vcpu);
2283#endif
2284	} else if (op_inst == Hit_Invalidate_I) {
2285		/* Perform the icache synchronisation on the guest's behalf */
2286		er = kvm_mips_guest_cache_op(protected_writeback_dcache_line,
2287					     curr_pc, va, vcpu, cause);
2288		if (er != EMULATE_DONE)
2289			goto done;
2290		er = kvm_mips_guest_cache_op(protected_flush_icache_line,
2291					     curr_pc, va, vcpu, cause);
2292		if (er != EMULATE_DONE)
2293			goto done;
2294
2295#ifdef CONFIG_KVM_MIPS_DYN_TRANS
2296		/* Replace the CACHE instruction, with a SYNCI */
2297		kvm_mips_trans_cache_va(inst, opc, vcpu);
2298#endif
2299	} else {
2300		kvm_err("NO-OP CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
2301			cache, op, base, arch->gprs[base], offset);
2302		er = EMULATE_FAIL;
 
 
2303	}
2304
2305done:
2306	/* Rollback PC only if emulation was unsuccessful */
2307	if (er == EMULATE_FAIL)
2308		vcpu->arch.pc = curr_pc;
2309	/* Guest exception needs guest to resume */
2310	if (er == EMULATE_EXCEPT)
2311		er = EMULATE_DONE;
2312
 
 
 
 
2313	return er;
2314}
2315
2316enum emulation_result kvm_mips_emulate_inst(u32 cause, u32 *opc,
 
2317					    struct kvm_vcpu *vcpu)
2318{
2319	union mips_instruction inst;
2320	enum emulation_result er = EMULATE_DONE;
2321	int err;
2322
2323	/* Fetch the instruction. */
2324	if (cause & CAUSEF_BD)
2325		opc += 1;
2326	err = kvm_get_badinstr(opc, vcpu, &inst.word);
2327	if (err)
2328		return EMULATE_FAIL;
2329
2330	switch (inst.r_format.opcode) {
 
 
2331	case cop0_op:
2332		er = kvm_mips_emulate_CP0(inst, opc, cause, vcpu);
 
 
 
 
 
 
 
 
 
 
 
 
2333		break;
2334
2335#ifndef CONFIG_CPU_MIPSR6
2336	case cache_op:
2337		++vcpu->stat.cache_exits;
2338		trace_kvm_exit(vcpu, KVM_TRACE_EXIT_CACHE);
2339		er = kvm_mips_emulate_cache(inst, opc, cause, vcpu);
2340		break;
2341#else
2342	case spec3_op:
2343		switch (inst.spec3_format.func) {
2344		case cache6_op:
2345			++vcpu->stat.cache_exits;
2346			trace_kvm_exit(vcpu, KVM_TRACE_EXIT_CACHE);
2347			er = kvm_mips_emulate_cache(inst, opc, cause,
2348						    vcpu);
2349			break;
2350		default:
2351			goto unknown;
2352		}
2353		break;
2354unknown:
2355#endif
2356
2357	default:
2358		kvm_err("Instruction emulation not supported (%p/%#x)\n", opc,
2359			inst.word);
2360		kvm_arch_vcpu_dump_regs(vcpu);
2361		er = EMULATE_FAIL;
2362		break;
2363	}
2364
2365	return er;
2366}
2367#endif /* CONFIG_KVM_MIPS_VZ */
2368
2369/**
2370 * kvm_mips_guest_exception_base() - Find guest exception vector base address.
2371 *
2372 * Returns:	The base address of the current guest exception vector, taking
2373 *		both Guest.CP0_Status.BEV and Guest.CP0_EBase into account.
2374 */
2375long kvm_mips_guest_exception_base(struct kvm_vcpu *vcpu)
2376{
2377	struct mips_coproc *cop0 = vcpu->arch.cop0;
2378
2379	if (kvm_read_c0_guest_status(cop0) & ST0_BEV)
2380		return KVM_GUEST_CKSEG1ADDR(0x1fc00200);
2381	else
2382		return kvm_read_c0_guest_ebase(cop0) & MIPS_EBASE_BASE;
2383}
2384
2385enum emulation_result kvm_mips_emulate_syscall(u32 cause,
2386					       u32 *opc,
2387					       struct kvm_vcpu *vcpu)
2388{
2389	struct mips_coproc *cop0 = vcpu->arch.cop0;
2390	struct kvm_vcpu_arch *arch = &vcpu->arch;
2391	enum emulation_result er = EMULATE_DONE;
2392
2393	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2394		/* save old pc */
2395		kvm_write_c0_guest_epc(cop0, arch->pc);
2396		kvm_set_c0_guest_status(cop0, ST0_EXL);
2397
2398		if (cause & CAUSEF_BD)
2399			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2400		else
2401			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2402
2403		kvm_debug("Delivering SYSCALL @ pc %#lx\n", arch->pc);
2404
2405		kvm_change_c0_guest_cause(cop0, (0xff),
2406					  (EXCCODE_SYS << CAUSEB_EXCCODE));
2407
2408		/* Set PC to the exception entry point */
2409		arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2410
2411	} else {
2412		kvm_err("Trying to deliver SYSCALL when EXL is already set\n");
2413		er = EMULATE_FAIL;
2414	}
2415
2416	return er;
2417}
2418
2419enum emulation_result kvm_mips_emulate_tlbmiss_ld(u32 cause,
2420						  u32 *opc,
 
2421						  struct kvm_vcpu *vcpu)
2422{
2423	struct mips_coproc *cop0 = vcpu->arch.cop0;
2424	struct kvm_vcpu_arch *arch = &vcpu->arch;
2425	unsigned long entryhi = (vcpu->arch.  host_cp0_badvaddr & VPN2_MASK) |
2426			(kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
2427
2428	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2429		/* save old pc */
2430		kvm_write_c0_guest_epc(cop0, arch->pc);
2431		kvm_set_c0_guest_status(cop0, ST0_EXL);
2432
2433		if (cause & CAUSEF_BD)
2434			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2435		else
2436			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2437
2438		kvm_debug("[EXL == 0] delivering TLB MISS @ pc %#lx\n",
2439			  arch->pc);
2440
2441		/* set pc to the exception entry point */
2442		arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x0;
2443
2444	} else {
2445		kvm_debug("[EXL == 1] delivering TLB MISS @ pc %#lx\n",
2446			  arch->pc);
2447
2448		arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2449	}
2450
2451	kvm_change_c0_guest_cause(cop0, (0xff),
2452				  (EXCCODE_TLBL << CAUSEB_EXCCODE));
2453
2454	/* setup badvaddr, context and entryhi registers for the guest */
2455	kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
2456	/* XXXKYMA: is the context register used by linux??? */
2457	kvm_write_c0_guest_entryhi(cop0, entryhi);
 
 
2458
2459	return EMULATE_DONE;
2460}
2461
2462enum emulation_result kvm_mips_emulate_tlbinv_ld(u32 cause,
2463						 u32 *opc,
 
2464						 struct kvm_vcpu *vcpu)
2465{
2466	struct mips_coproc *cop0 = vcpu->arch.cop0;
2467	struct kvm_vcpu_arch *arch = &vcpu->arch;
2468	unsigned long entryhi =
2469		(vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
2470		(kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
2471
2472	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2473		/* save old pc */
2474		kvm_write_c0_guest_epc(cop0, arch->pc);
2475		kvm_set_c0_guest_status(cop0, ST0_EXL);
2476
2477		if (cause & CAUSEF_BD)
2478			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2479		else
2480			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2481
2482		kvm_debug("[EXL == 0] delivering TLB INV @ pc %#lx\n",
2483			  arch->pc);
 
 
 
 
2484	} else {
2485		kvm_debug("[EXL == 1] delivering TLB MISS @ pc %#lx\n",
2486			  arch->pc);
 
2487	}
2488
2489	/* set pc to the exception entry point */
2490	arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2491
2492	kvm_change_c0_guest_cause(cop0, (0xff),
2493				  (EXCCODE_TLBL << CAUSEB_EXCCODE));
2494
2495	/* setup badvaddr, context and entryhi registers for the guest */
2496	kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
2497	/* XXXKYMA: is the context register used by linux??? */
2498	kvm_write_c0_guest_entryhi(cop0, entryhi);
 
 
2499
2500	return EMULATE_DONE;
2501}
2502
2503enum emulation_result kvm_mips_emulate_tlbmiss_st(u32 cause,
2504						  u32 *opc,
 
2505						  struct kvm_vcpu *vcpu)
2506{
2507	struct mips_coproc *cop0 = vcpu->arch.cop0;
2508	struct kvm_vcpu_arch *arch = &vcpu->arch;
2509	unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
2510			(kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
2511
2512	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2513		/* save old pc */
2514		kvm_write_c0_guest_epc(cop0, arch->pc);
2515		kvm_set_c0_guest_status(cop0, ST0_EXL);
2516
2517		if (cause & CAUSEF_BD)
2518			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2519		else
2520			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2521
2522		kvm_debug("[EXL == 0] Delivering TLB MISS @ pc %#lx\n",
2523			  arch->pc);
2524
2525		/* Set PC to the exception entry point */
2526		arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x0;
2527	} else {
2528		kvm_debug("[EXL == 1] Delivering TLB MISS @ pc %#lx\n",
2529			  arch->pc);
2530		arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2531	}
2532
2533	kvm_change_c0_guest_cause(cop0, (0xff),
2534				  (EXCCODE_TLBS << CAUSEB_EXCCODE));
2535
2536	/* setup badvaddr, context and entryhi registers for the guest */
2537	kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
2538	/* XXXKYMA: is the context register used by linux??? */
2539	kvm_write_c0_guest_entryhi(cop0, entryhi);
 
 
2540
2541	return EMULATE_DONE;
2542}
2543
2544enum emulation_result kvm_mips_emulate_tlbinv_st(u32 cause,
2545						 u32 *opc,
 
2546						 struct kvm_vcpu *vcpu)
2547{
2548	struct mips_coproc *cop0 = vcpu->arch.cop0;
2549	struct kvm_vcpu_arch *arch = &vcpu->arch;
2550	unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
2551		(kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
2552
2553	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2554		/* save old pc */
2555		kvm_write_c0_guest_epc(cop0, arch->pc);
2556		kvm_set_c0_guest_status(cop0, ST0_EXL);
2557
2558		if (cause & CAUSEF_BD)
2559			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2560		else
2561			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2562
2563		kvm_debug("[EXL == 0] Delivering TLB MISS @ pc %#lx\n",
2564			  arch->pc);
 
 
 
2565	} else {
2566		kvm_debug("[EXL == 1] Delivering TLB MISS @ pc %#lx\n",
2567			  arch->pc);
 
2568	}
2569
2570	/* Set PC to the exception entry point */
2571	arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2572
2573	kvm_change_c0_guest_cause(cop0, (0xff),
2574				  (EXCCODE_TLBS << CAUSEB_EXCCODE));
2575
2576	/* setup badvaddr, context and entryhi registers for the guest */
2577	kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
2578	/* XXXKYMA: is the context register used by linux??? */
2579	kvm_write_c0_guest_entryhi(cop0, entryhi);
 
 
2580
2581	return EMULATE_DONE;
2582}
2583
2584enum emulation_result kvm_mips_emulate_tlbmod(u32 cause,
2585					      u32 *opc,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2586					      struct kvm_vcpu *vcpu)
2587{
2588	struct mips_coproc *cop0 = vcpu->arch.cop0;
2589	unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
2590			(kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
2591	struct kvm_vcpu_arch *arch = &vcpu->arch;
2592
2593	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2594		/* save old pc */
2595		kvm_write_c0_guest_epc(cop0, arch->pc);
2596		kvm_set_c0_guest_status(cop0, ST0_EXL);
2597
2598		if (cause & CAUSEF_BD)
2599			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2600		else
2601			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2602
2603		kvm_debug("[EXL == 0] Delivering TLB MOD @ pc %#lx\n",
2604			  arch->pc);
 
 
2605	} else {
2606		kvm_debug("[EXL == 1] Delivering TLB MOD @ pc %#lx\n",
2607			  arch->pc);
 
2608	}
2609
2610	arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2611
2612	kvm_change_c0_guest_cause(cop0, (0xff),
2613				  (EXCCODE_MOD << CAUSEB_EXCCODE));
2614
2615	/* setup badvaddr, context and entryhi registers for the guest */
2616	kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
2617	/* XXXKYMA: is the context register used by linux??? */
2618	kvm_write_c0_guest_entryhi(cop0, entryhi);
 
 
2619
2620	return EMULATE_DONE;
2621}
2622
2623enum emulation_result kvm_mips_emulate_fpu_exc(u32 cause,
2624					       u32 *opc,
 
2625					       struct kvm_vcpu *vcpu)
2626{
2627	struct mips_coproc *cop0 = vcpu->arch.cop0;
2628	struct kvm_vcpu_arch *arch = &vcpu->arch;
2629
2630	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2631		/* save old pc */
2632		kvm_write_c0_guest_epc(cop0, arch->pc);
2633		kvm_set_c0_guest_status(cop0, ST0_EXL);
2634
2635		if (cause & CAUSEF_BD)
2636			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2637		else
2638			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2639
2640	}
2641
2642	arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2643
2644	kvm_change_c0_guest_cause(cop0, (0xff),
2645				  (EXCCODE_CPU << CAUSEB_EXCCODE));
2646	kvm_change_c0_guest_cause(cop0, (CAUSEF_CE), (0x1 << CAUSEB_CE));
2647
2648	return EMULATE_DONE;
2649}
2650
2651enum emulation_result kvm_mips_emulate_ri_exc(u32 cause,
2652					      u32 *opc,
 
2653					      struct kvm_vcpu *vcpu)
2654{
2655	struct mips_coproc *cop0 = vcpu->arch.cop0;
2656	struct kvm_vcpu_arch *arch = &vcpu->arch;
2657	enum emulation_result er = EMULATE_DONE;
2658
2659	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2660		/* save old pc */
2661		kvm_write_c0_guest_epc(cop0, arch->pc);
2662		kvm_set_c0_guest_status(cop0, ST0_EXL);
2663
2664		if (cause & CAUSEF_BD)
2665			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2666		else
2667			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2668
2669		kvm_debug("Delivering RI @ pc %#lx\n", arch->pc);
2670
2671		kvm_change_c0_guest_cause(cop0, (0xff),
2672					  (EXCCODE_RI << CAUSEB_EXCCODE));
2673
2674		/* Set PC to the exception entry point */
2675		arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2676
2677	} else {
2678		kvm_err("Trying to deliver RI when EXL is already set\n");
2679		er = EMULATE_FAIL;
2680	}
2681
2682	return er;
2683}
2684
2685enum emulation_result kvm_mips_emulate_bp_exc(u32 cause,
2686					      u32 *opc,
 
2687					      struct kvm_vcpu *vcpu)
2688{
2689	struct mips_coproc *cop0 = vcpu->arch.cop0;
2690	struct kvm_vcpu_arch *arch = &vcpu->arch;
2691	enum emulation_result er = EMULATE_DONE;
2692
2693	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2694		/* save old pc */
2695		kvm_write_c0_guest_epc(cop0, arch->pc);
2696		kvm_set_c0_guest_status(cop0, ST0_EXL);
2697
2698		if (cause & CAUSEF_BD)
2699			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2700		else
2701			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2702
2703		kvm_debug("Delivering BP @ pc %#lx\n", arch->pc);
2704
2705		kvm_change_c0_guest_cause(cop0, (0xff),
2706					  (EXCCODE_BP << CAUSEB_EXCCODE));
2707
2708		/* Set PC to the exception entry point */
2709		arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2710
2711	} else {
2712		kvm_err("Trying to deliver BP when EXL is already set\n");
2713		er = EMULATE_FAIL;
2714	}
2715
2716	return er;
2717}
2718
2719enum emulation_result kvm_mips_emulate_trap_exc(u32 cause,
2720						u32 *opc,
 
2721						struct kvm_vcpu *vcpu)
2722{
2723	struct mips_coproc *cop0 = vcpu->arch.cop0;
2724	struct kvm_vcpu_arch *arch = &vcpu->arch;
2725	enum emulation_result er = EMULATE_DONE;
2726
2727	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2728		/* save old pc */
2729		kvm_write_c0_guest_epc(cop0, arch->pc);
2730		kvm_set_c0_guest_status(cop0, ST0_EXL);
2731
2732		if (cause & CAUSEF_BD)
2733			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2734		else
2735			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2736
2737		kvm_debug("Delivering TRAP @ pc %#lx\n", arch->pc);
2738
2739		kvm_change_c0_guest_cause(cop0, (0xff),
2740					  (EXCCODE_TR << CAUSEB_EXCCODE));
2741
2742		/* Set PC to the exception entry point */
2743		arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2744
2745	} else {
2746		kvm_err("Trying to deliver TRAP when EXL is already set\n");
2747		er = EMULATE_FAIL;
2748	}
2749
2750	return er;
2751}
2752
2753enum emulation_result kvm_mips_emulate_msafpe_exc(u32 cause,
2754						  u32 *opc,
 
2755						  struct kvm_vcpu *vcpu)
2756{
2757	struct mips_coproc *cop0 = vcpu->arch.cop0;
2758	struct kvm_vcpu_arch *arch = &vcpu->arch;
2759	enum emulation_result er = EMULATE_DONE;
2760
2761	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2762		/* save old pc */
2763		kvm_write_c0_guest_epc(cop0, arch->pc);
2764		kvm_set_c0_guest_status(cop0, ST0_EXL);
2765
2766		if (cause & CAUSEF_BD)
2767			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2768		else
2769			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2770
2771		kvm_debug("Delivering MSAFPE @ pc %#lx\n", arch->pc);
2772
2773		kvm_change_c0_guest_cause(cop0, (0xff),
2774					  (EXCCODE_MSAFPE << CAUSEB_EXCCODE));
2775
2776		/* Set PC to the exception entry point */
2777		arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2778
2779	} else {
2780		kvm_err("Trying to deliver MSAFPE when EXL is already set\n");
2781		er = EMULATE_FAIL;
2782	}
2783
2784	return er;
2785}
2786
2787enum emulation_result kvm_mips_emulate_fpe_exc(u32 cause,
2788					       u32 *opc,
 
2789					       struct kvm_vcpu *vcpu)
2790{
2791	struct mips_coproc *cop0 = vcpu->arch.cop0;
2792	struct kvm_vcpu_arch *arch = &vcpu->arch;
2793	enum emulation_result er = EMULATE_DONE;
2794
2795	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2796		/* save old pc */
2797		kvm_write_c0_guest_epc(cop0, arch->pc);
2798		kvm_set_c0_guest_status(cop0, ST0_EXL);
2799
2800		if (cause & CAUSEF_BD)
2801			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2802		else
2803			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2804
2805		kvm_debug("Delivering FPE @ pc %#lx\n", arch->pc);
2806
2807		kvm_change_c0_guest_cause(cop0, (0xff),
2808					  (EXCCODE_FPE << CAUSEB_EXCCODE));
2809
2810		/* Set PC to the exception entry point */
2811		arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2812
2813	} else {
2814		kvm_err("Trying to deliver FPE when EXL is already set\n");
2815		er = EMULATE_FAIL;
2816	}
2817
2818	return er;
2819}
2820
2821enum emulation_result kvm_mips_emulate_msadis_exc(u32 cause,
2822						  u32 *opc,
 
2823						  struct kvm_vcpu *vcpu)
2824{
2825	struct mips_coproc *cop0 = vcpu->arch.cop0;
2826	struct kvm_vcpu_arch *arch = &vcpu->arch;
2827	enum emulation_result er = EMULATE_DONE;
2828
2829	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2830		/* save old pc */
2831		kvm_write_c0_guest_epc(cop0, arch->pc);
2832		kvm_set_c0_guest_status(cop0, ST0_EXL);
2833
2834		if (cause & CAUSEF_BD)
2835			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2836		else
2837			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2838
2839		kvm_debug("Delivering MSADIS @ pc %#lx\n", arch->pc);
2840
2841		kvm_change_c0_guest_cause(cop0, (0xff),
2842					  (EXCCODE_MSADIS << CAUSEB_EXCCODE));
2843
2844		/* Set PC to the exception entry point */
2845		arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2846
2847	} else {
2848		kvm_err("Trying to deliver MSADIS when EXL is already set\n");
2849		er = EMULATE_FAIL;
2850	}
2851
2852	return er;
2853}
2854
2855enum emulation_result kvm_mips_handle_ri(u32 cause, u32 *opc,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2856					 struct kvm_vcpu *vcpu)
2857{
2858	struct mips_coproc *cop0 = vcpu->arch.cop0;
2859	struct kvm_vcpu_arch *arch = &vcpu->arch;
2860	enum emulation_result er = EMULATE_DONE;
2861	unsigned long curr_pc;
2862	union mips_instruction inst;
2863	int err;
2864
2865	/*
2866	 * Update PC and hold onto current PC in case there is
2867	 * an error and we want to rollback the PC
2868	 */
2869	curr_pc = vcpu->arch.pc;
2870	er = update_pc(vcpu, cause);
2871	if (er == EMULATE_FAIL)
2872		return er;
2873
2874	/* Fetch the instruction. */
2875	if (cause & CAUSEF_BD)
2876		opc += 1;
2877	err = kvm_get_badinstr(opc, vcpu, &inst.word);
2878	if (err) {
2879		kvm_err("%s: Cannot get inst @ %p (%d)\n", __func__, opc, err);
 
 
2880		return EMULATE_FAIL;
2881	}
2882
2883	if (inst.r_format.opcode == spec3_op &&
2884	    inst.r_format.func == rdhwr_op &&
2885	    inst.r_format.rs == 0 &&
2886	    (inst.r_format.re >> 3) == 0) {
2887		int usermode = !KVM_GUEST_KERNEL_MODE(vcpu);
2888		int rd = inst.r_format.rd;
2889		int rt = inst.r_format.rt;
2890		int sel = inst.r_format.re & 0x7;
2891
2892		/* If usermode, check RDHWR rd is allowed by guest HWREna */
2893		if (usermode && !(kvm_read_c0_guest_hwrena(cop0) & BIT(rd))) {
2894			kvm_debug("RDHWR %#x disallowed by HWREna @ %p\n",
2895				  rd, opc);
2896			goto emulate_ri;
2897		}
2898		switch (rd) {
2899		case MIPS_HWR_CPUNUM:		/* CPU number */
2900			arch->gprs[rt] = vcpu->vcpu_id;
2901			break;
2902		case MIPS_HWR_SYNCISTEP:	/* SYNCI length */
2903			arch->gprs[rt] = min(current_cpu_data.dcache.linesz,
2904					     current_cpu_data.icache.linesz);
2905			break;
2906		case MIPS_HWR_CC:		/* Read count register */
2907			arch->gprs[rt] = (s32)kvm_mips_read_count(vcpu);
2908			break;
2909		case MIPS_HWR_CCRES:		/* Count register resolution */
2910			switch (current_cpu_data.cputype) {
2911			case CPU_20KC:
2912			case CPU_25KF:
2913				arch->gprs[rt] = 1;
2914				break;
2915			default:
2916				arch->gprs[rt] = 2;
2917			}
2918			break;
2919		case MIPS_HWR_ULR:		/* Read UserLocal register */
2920			arch->gprs[rt] = kvm_read_c0_guest_userlocal(cop0);
2921			break;
2922
2923		default:
2924			kvm_debug("RDHWR %#x not supported @ %p\n", rd, opc);
2925			goto emulate_ri;
2926		}
2927
2928		trace_kvm_hwr(vcpu, KVM_TRACE_RDHWR, KVM_TRACE_HWR(rd, sel),
2929			      vcpu->arch.gprs[rt]);
2930	} else {
2931		kvm_debug("Emulate RI not supported @ %p: %#x\n",
2932			  opc, inst.word);
2933		goto emulate_ri;
2934	}
2935
2936	return EMULATE_DONE;
2937
2938emulate_ri:
2939	/*
2940	 * Rollback PC (if in branch delay slot then the PC already points to
2941	 * branch target), and pass the RI exception to the guest OS.
2942	 */
2943	vcpu->arch.pc = curr_pc;
2944	return kvm_mips_emulate_ri_exc(cause, opc, vcpu);
2945}
2946
2947enum emulation_result kvm_mips_complete_mmio_load(struct kvm_vcpu *vcpu)
 
2948{
2949	struct kvm_run *run = vcpu->run;
2950	unsigned long *gpr = &vcpu->arch.gprs[vcpu->arch.io_gpr];
2951	enum emulation_result er = EMULATE_DONE;
2952
2953	if (run->mmio.len > sizeof(*gpr)) {
2954		kvm_err("Bad MMIO length: %d", run->mmio.len);
2955		er = EMULATE_FAIL;
2956		goto done;
2957	}
2958
2959	/* Restore saved resume PC */
2960	vcpu->arch.pc = vcpu->arch.io_pc;
 
2961
2962	switch (run->mmio.len) {
2963	case 8:
2964		switch (vcpu->mmio_needed) {
2965		case 11:
2966			*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffffffffff) |
2967				(((*(s64 *)run->mmio.data) & 0xff) << 56);
2968			break;
2969		case 12:
2970			*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffffffff) |
2971				(((*(s64 *)run->mmio.data) & 0xffff) << 48);
2972			break;
2973		case 13:
2974			*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffffff) |
2975				(((*(s64 *)run->mmio.data) & 0xffffff) << 40);
2976			break;
2977		case 14:
2978			*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffff) |
2979				(((*(s64 *)run->mmio.data) & 0xffffffff) << 32);
2980			break;
2981		case 15:
2982			*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffff) |
2983				(((*(s64 *)run->mmio.data) & 0xffffffffff) << 24);
2984			break;
2985		case 16:
2986			*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffff) |
2987				(((*(s64 *)run->mmio.data) & 0xffffffffffff) << 16);
2988			break;
2989		case 17:
2990			*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xff) |
2991				(((*(s64 *)run->mmio.data) & 0xffffffffffffff) << 8);
2992			break;
2993		case 18:
2994		case 19:
2995			*gpr = *(s64 *)run->mmio.data;
2996			break;
2997		case 20:
2998			*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xff00000000000000) |
2999				((((*(s64 *)run->mmio.data)) >> 8) & 0xffffffffffffff);
3000			break;
3001		case 21:
3002			*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffff000000000000) |
3003				((((*(s64 *)run->mmio.data)) >> 16) & 0xffffffffffff);
3004			break;
3005		case 22:
3006			*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffff0000000000) |
3007				((((*(s64 *)run->mmio.data)) >> 24) & 0xffffffffff);
3008			break;
3009		case 23:
3010			*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffff00000000) |
3011				((((*(s64 *)run->mmio.data)) >> 32) & 0xffffffff);
3012			break;
3013		case 24:
3014			*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffffff000000) |
3015				((((*(s64 *)run->mmio.data)) >> 40) & 0xffffff);
3016			break;
3017		case 25:
3018			*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffffffff0000) |
3019				((((*(s64 *)run->mmio.data)) >> 48) & 0xffff);
3020			break;
3021		case 26:
3022			*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffffffffff00) |
3023				((((*(s64 *)run->mmio.data)) >> 56) & 0xff);
3024			break;
3025		default:
3026			*gpr = *(s64 *)run->mmio.data;
3027		}
3028		break;
3029
3030	case 4:
3031		switch (vcpu->mmio_needed) {
3032		case 1:
3033			*gpr = *(u32 *)run->mmio.data;
3034			break;
3035		case 2:
3036			*gpr = *(s32 *)run->mmio.data;
3037			break;
3038		case 3:
3039			*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffff) |
3040				(((*(s32 *)run->mmio.data) & 0xff) << 24);
3041			break;
3042		case 4:
3043			*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffff) |
3044				(((*(s32 *)run->mmio.data) & 0xffff) << 16);
3045			break;
3046		case 5:
3047			*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xff) |
3048				(((*(s32 *)run->mmio.data) & 0xffffff) << 8);
3049			break;
3050		case 6:
3051		case 7:
3052			*gpr = *(s32 *)run->mmio.data;
3053			break;
3054		case 8:
3055			*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xff000000) |
3056				((((*(s32 *)run->mmio.data)) >> 8) & 0xffffff);
3057			break;
3058		case 9:
3059			*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffff0000) |
3060				((((*(s32 *)run->mmio.data)) >> 16) & 0xffff);
3061			break;
3062		case 10:
3063			*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffff00) |
3064				((((*(s32 *)run->mmio.data)) >> 24) & 0xff);
3065			break;
3066		default:
3067			*gpr = *(s32 *)run->mmio.data;
3068		}
3069		break;
3070
3071	case 2:
3072		if (vcpu->mmio_needed == 1)
3073			*gpr = *(u16 *)run->mmio.data;
3074		else
3075			*gpr = *(s16 *)run->mmio.data;
3076
3077		break;
3078	case 1:
3079		if (vcpu->mmio_needed == 1)
3080			*gpr = *(u8 *)run->mmio.data;
3081		else
3082			*gpr = *(s8 *)run->mmio.data;
3083		break;
3084	}
3085
 
 
 
 
 
3086done:
3087	return er;
3088}
3089
3090static enum emulation_result kvm_mips_emulate_exc(u32 cause,
3091						  u32 *opc,
 
3092						  struct kvm_vcpu *vcpu)
3093{
3094	u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
3095	struct mips_coproc *cop0 = vcpu->arch.cop0;
3096	struct kvm_vcpu_arch *arch = &vcpu->arch;
3097	enum emulation_result er = EMULATE_DONE;
3098
3099	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
3100		/* save old pc */
3101		kvm_write_c0_guest_epc(cop0, arch->pc);
3102		kvm_set_c0_guest_status(cop0, ST0_EXL);
3103
3104		if (cause & CAUSEF_BD)
3105			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
3106		else
3107			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
3108
3109		kvm_change_c0_guest_cause(cop0, (0xff),
3110					  (exccode << CAUSEB_EXCCODE));
3111
3112		/* Set PC to the exception entry point */
3113		arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
3114		kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
3115
3116		kvm_debug("Delivering EXC %d @ pc %#lx, badVaddr: %#lx\n",
3117			  exccode, kvm_read_c0_guest_epc(cop0),
3118			  kvm_read_c0_guest_badvaddr(cop0));
3119	} else {
3120		kvm_err("Trying to deliver EXC when EXL is already set\n");
3121		er = EMULATE_FAIL;
3122	}
3123
3124	return er;
3125}
3126
3127enum emulation_result kvm_mips_check_privilege(u32 cause,
3128					       u32 *opc,
 
3129					       struct kvm_vcpu *vcpu)
3130{
3131	enum emulation_result er = EMULATE_DONE;
3132	u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
3133	unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
3134
3135	int usermode = !KVM_GUEST_KERNEL_MODE(vcpu);
3136
3137	if (usermode) {
3138		switch (exccode) {
3139		case EXCCODE_INT:
3140		case EXCCODE_SYS:
3141		case EXCCODE_BP:
3142		case EXCCODE_RI:
3143		case EXCCODE_TR:
3144		case EXCCODE_MSAFPE:
3145		case EXCCODE_FPE:
3146		case EXCCODE_MSADIS:
3147			break;
3148
3149		case EXCCODE_CPU:
3150			if (((cause & CAUSEF_CE) >> CAUSEB_CE) == 0)
3151				er = EMULATE_PRIV_FAIL;
3152			break;
3153
3154		case EXCCODE_MOD:
3155			break;
3156
3157		case EXCCODE_TLBL:
3158			/*
3159			 * We we are accessing Guest kernel space, then send an
3160			 * address error exception to the guest
3161			 */
3162			if (badvaddr >= (unsigned long) KVM_GUEST_KSEG0) {
3163				kvm_debug("%s: LD MISS @ %#lx\n", __func__,
3164					  badvaddr);
3165				cause &= ~0xff;
3166				cause |= (EXCCODE_ADEL << CAUSEB_EXCCODE);
3167				er = EMULATE_PRIV_FAIL;
3168			}
3169			break;
3170
3171		case EXCCODE_TLBS:
3172			/*
3173			 * We we are accessing Guest kernel space, then send an
3174			 * address error exception to the guest
3175			 */
3176			if (badvaddr >= (unsigned long) KVM_GUEST_KSEG0) {
3177				kvm_debug("%s: ST MISS @ %#lx\n", __func__,
3178					  badvaddr);
3179				cause &= ~0xff;
3180				cause |= (EXCCODE_ADES << CAUSEB_EXCCODE);
3181				er = EMULATE_PRIV_FAIL;
3182			}
3183			break;
3184
3185		case EXCCODE_ADES:
3186			kvm_debug("%s: address error ST @ %#lx\n", __func__,
3187				  badvaddr);
3188			if ((badvaddr & PAGE_MASK) == KVM_GUEST_COMMPAGE_ADDR) {
3189				cause &= ~0xff;
3190				cause |= (EXCCODE_TLBS << CAUSEB_EXCCODE);
3191			}
3192			er = EMULATE_PRIV_FAIL;
3193			break;
3194		case EXCCODE_ADEL:
3195			kvm_debug("%s: address error LD @ %#lx\n", __func__,
3196				  badvaddr);
3197			if ((badvaddr & PAGE_MASK) == KVM_GUEST_COMMPAGE_ADDR) {
3198				cause &= ~0xff;
3199				cause |= (EXCCODE_TLBL << CAUSEB_EXCCODE);
3200			}
3201			er = EMULATE_PRIV_FAIL;
3202			break;
3203		default:
3204			er = EMULATE_PRIV_FAIL;
3205			break;
3206		}
3207	}
3208
3209	if (er == EMULATE_PRIV_FAIL)
3210		kvm_mips_emulate_exc(cause, opc, vcpu);
3211
3212	return er;
3213}
3214
3215/*
3216 * User Address (UA) fault, this could happen if
3217 * (1) TLB entry not present/valid in both Guest and shadow host TLBs, in this
3218 *     case we pass on the fault to the guest kernel and let it handle it.
3219 * (2) TLB entry is present in the Guest TLB but not in the shadow, in this
3220 *     case we inject the TLB from the Guest TLB into the shadow host TLB
3221 */
3222enum emulation_result kvm_mips_handle_tlbmiss(u32 cause,
3223					      u32 *opc,
3224					      struct kvm_vcpu *vcpu,
3225					      bool write_fault)
3226{
3227	enum emulation_result er = EMULATE_DONE;
3228	u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
3229	unsigned long va = vcpu->arch.host_cp0_badvaddr;
3230	int index;
3231
3232	kvm_debug("kvm_mips_handle_tlbmiss: badvaddr: %#lx\n",
3233		  vcpu->arch.host_cp0_badvaddr);
3234
3235	/*
3236	 * KVM would not have got the exception if this entry was valid in the
3237	 * shadow host TLB. Check the Guest TLB, if the entry is not there then
3238	 * send the guest an exception. The guest exc handler should then inject
3239	 * an entry into the guest TLB.
3240	 */
3241	index = kvm_mips_guest_tlb_lookup(vcpu,
3242		      (va & VPN2_MASK) |
3243		      (kvm_read_c0_guest_entryhi(vcpu->arch.cop0) &
3244		       KVM_ENTRYHI_ASID));
3245	if (index < 0) {
3246		if (exccode == EXCCODE_TLBL) {
3247			er = kvm_mips_emulate_tlbmiss_ld(cause, opc, vcpu);
3248		} else if (exccode == EXCCODE_TLBS) {
3249			er = kvm_mips_emulate_tlbmiss_st(cause, opc, vcpu);
3250		} else {
3251			kvm_err("%s: invalid exc code: %d\n", __func__,
3252				exccode);
3253			er = EMULATE_FAIL;
3254		}
3255	} else {
3256		struct kvm_mips_tlb *tlb = &vcpu->arch.guest_tlb[index];
3257
3258		/*
3259		 * Check if the entry is valid, if not then setup a TLB invalid
3260		 * exception to the guest
3261		 */
3262		if (!TLB_IS_VALID(*tlb, va)) {
3263			if (exccode == EXCCODE_TLBL) {
3264				er = kvm_mips_emulate_tlbinv_ld(cause, opc,
3265								vcpu);
3266			} else if (exccode == EXCCODE_TLBS) {
3267				er = kvm_mips_emulate_tlbinv_st(cause, opc,
3268								vcpu);
3269			} else {
3270				kvm_err("%s: invalid exc code: %d\n", __func__,
3271					exccode);
3272				er = EMULATE_FAIL;
3273			}
3274		} else {
3275			kvm_debug("Injecting hi: %#lx, lo0: %#lx, lo1: %#lx into shadow host TLB\n",
3276				  tlb->tlb_hi, tlb->tlb_lo[0], tlb->tlb_lo[1]);
3277			/*
3278			 * OK we have a Guest TLB entry, now inject it into the
3279			 * shadow host TLB
3280			 */
3281			if (kvm_mips_handle_mapped_seg_tlb_fault(vcpu, tlb, va,
3282								 write_fault)) {
3283				kvm_err("%s: handling mapped seg tlb fault for %lx, index: %u, vcpu: %p, ASID: %#lx\n",
3284					__func__, va, index, vcpu,
3285					read_c0_entryhi());
3286				er = EMULATE_FAIL;
3287			}
3288		}
3289	}
3290
3291	return er;
3292}
v4.6
   1/*
   2 * This file is subject to the terms and conditions of the GNU General Public
   3 * License.  See the file "COPYING" in the main directory of this archive
   4 * for more details.
   5 *
   6 * KVM/MIPS: Instruction/Exception emulation
   7 *
   8 * Copyright (C) 2012  MIPS Technologies, Inc.  All rights reserved.
   9 * Authors: Sanjay Lal <sanjayl@kymasys.com>
  10 */
  11
  12#include <linux/errno.h>
  13#include <linux/err.h>
  14#include <linux/ktime.h>
  15#include <linux/kvm_host.h>
  16#include <linux/module.h>
  17#include <linux/vmalloc.h>
  18#include <linux/fs.h>
  19#include <linux/bootmem.h>
  20#include <linux/random.h>
  21#include <asm/page.h>
  22#include <asm/cacheflush.h>
  23#include <asm/cacheops.h>
  24#include <asm/cpu-info.h>
  25#include <asm/mmu_context.h>
  26#include <asm/tlbflush.h>
  27#include <asm/inst.h>
  28
  29#undef CONFIG_MIPS_MT
  30#include <asm/r4kcache.h>
  31#define CONFIG_MIPS_MT
  32
  33#include "interrupt.h"
  34#include "commpage.h"
  35
  36#include "trace.h"
  37
  38/*
  39 * Compute the return address and do emulate branch simulation, if required.
  40 * This function should be called only in branch delay slot active.
  41 */
  42unsigned long kvm_compute_return_epc(struct kvm_vcpu *vcpu,
  43	unsigned long instpc)
  44{
  45	unsigned int dspcontrol;
  46	union mips_instruction insn;
  47	struct kvm_vcpu_arch *arch = &vcpu->arch;
  48	long epc = instpc;
  49	long nextpc = KVM_INVALID_INST;
 
  50
  51	if (epc & 3)
  52		goto unaligned;
 
 
  53
  54	/* Read the instruction */
  55	insn.word = kvm_get_inst((uint32_t *) epc, vcpu);
  56
  57	if (insn.word == KVM_INVALID_INST)
  58		return KVM_INVALID_INST;
  59
  60	switch (insn.i_format.opcode) {
  61		/* jr and jalr are in r_format format. */
  62	case spec_op:
  63		switch (insn.r_format.func) {
  64		case jalr_op:
  65			arch->gprs[insn.r_format.rd] = epc + 8;
  66			/* Fall through */
  67		case jr_op:
  68			nextpc = arch->gprs[insn.r_format.rs];
  69			break;
 
 
  70		}
  71		break;
  72
  73		/*
  74		 * This group contains:
  75		 * bltz_op, bgez_op, bltzl_op, bgezl_op,
  76		 * bltzal_op, bgezal_op, bltzall_op, bgezall_op.
  77		 */
  78	case bcond_op:
  79		switch (insn.i_format.rt) {
  80		case bltz_op:
  81		case bltzl_op:
  82			if ((long)arch->gprs[insn.i_format.rs] < 0)
  83				epc = epc + 4 + (insn.i_format.simmediate << 2);
  84			else
  85				epc += 8;
  86			nextpc = epc;
  87			break;
  88
  89		case bgez_op:
  90		case bgezl_op:
  91			if ((long)arch->gprs[insn.i_format.rs] >= 0)
  92				epc = epc + 4 + (insn.i_format.simmediate << 2);
  93			else
  94				epc += 8;
  95			nextpc = epc;
  96			break;
  97
  98		case bltzal_op:
  99		case bltzall_op:
 100			arch->gprs[31] = epc + 8;
 101			if ((long)arch->gprs[insn.i_format.rs] < 0)
 102				epc = epc + 4 + (insn.i_format.simmediate << 2);
 103			else
 104				epc += 8;
 105			nextpc = epc;
 106			break;
 107
 108		case bgezal_op:
 109		case bgezall_op:
 110			arch->gprs[31] = epc + 8;
 111			if ((long)arch->gprs[insn.i_format.rs] >= 0)
 112				epc = epc + 4 + (insn.i_format.simmediate << 2);
 113			else
 114				epc += 8;
 115			nextpc = epc;
 116			break;
 117		case bposge32_op:
 118			if (!cpu_has_dsp)
 119				goto sigill;
 
 
 
 120
 121			dspcontrol = rddsp(0x01);
 122
 123			if (dspcontrol >= 32)
 124				epc = epc + 4 + (insn.i_format.simmediate << 2);
 125			else
 126				epc += 8;
 127			nextpc = epc;
 128			break;
 
 
 129		}
 130		break;
 131
 132		/* These are unconditional and in j_format. */
 133	case jal_op:
 134		arch->gprs[31] = instpc + 8;
 
 135	case j_op:
 136		epc += 4;
 137		epc >>= 28;
 138		epc <<= 28;
 139		epc |= (insn.j_format.target << 2);
 140		nextpc = epc;
 141		break;
 142
 143		/* These are conditional and in i_format. */
 144	case beq_op:
 145	case beql_op:
 146		if (arch->gprs[insn.i_format.rs] ==
 147		    arch->gprs[insn.i_format.rt])
 148			epc = epc + 4 + (insn.i_format.simmediate << 2);
 149		else
 150			epc += 8;
 151		nextpc = epc;
 152		break;
 153
 154	case bne_op:
 155	case bnel_op:
 156		if (arch->gprs[insn.i_format.rs] !=
 157		    arch->gprs[insn.i_format.rt])
 158			epc = epc + 4 + (insn.i_format.simmediate << 2);
 159		else
 160			epc += 8;
 161		nextpc = epc;
 162		break;
 163
 164	case blez_op:		/* not really i_format */
 165	case blezl_op:
 166		/* rt field assumed to be zero */
 
 
 
 167		if ((long)arch->gprs[insn.i_format.rs] <= 0)
 168			epc = epc + 4 + (insn.i_format.simmediate << 2);
 169		else
 170			epc += 8;
 171		nextpc = epc;
 172		break;
 173
 174	case bgtz_op:
 175	case bgtzl_op:
 176		/* rt field assumed to be zero */
 
 
 
 177		if ((long)arch->gprs[insn.i_format.rs] > 0)
 178			epc = epc + 4 + (insn.i_format.simmediate << 2);
 179		else
 180			epc += 8;
 181		nextpc = epc;
 182		break;
 183
 184		/* And now the FPA/cp1 branch instructions. */
 185	case cop1_op:
 186		kvm_err("%s: unsupported cop1_op\n", __func__);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 187		break;
 
 
 
 
 
 
 188	}
 189
 190	return nextpc;
 191
 192unaligned:
 193	kvm_err("%s: unaligned epc\n", __func__);
 194	return nextpc;
 195
 196sigill:
 197	kvm_err("%s: DSP branch but not DSP ASE\n", __func__);
 198	return nextpc;
 199}
 200
 201enum emulation_result update_pc(struct kvm_vcpu *vcpu, uint32_t cause)
 202{
 203	unsigned long branch_pc;
 204	enum emulation_result er = EMULATE_DONE;
 205
 206	if (cause & CAUSEF_BD) {
 207		branch_pc = kvm_compute_return_epc(vcpu, vcpu->arch.pc);
 208		if (branch_pc == KVM_INVALID_INST) {
 209			er = EMULATE_FAIL;
 210		} else {
 211			vcpu->arch.pc = branch_pc;
 212			kvm_debug("BD update_pc(): New PC: %#lx\n",
 213				  vcpu->arch.pc);
 214		}
 215	} else
 216		vcpu->arch.pc += 4;
 
 217
 218	kvm_debug("update_pc(): New PC: %#lx\n", vcpu->arch.pc);
 219
 220	return er;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 221}
 222
 223/**
 224 * kvm_mips_count_disabled() - Find whether the CP0_Count timer is disabled.
 225 * @vcpu:	Virtual CPU.
 226 *
 227 * Returns:	1 if the CP0_Count timer is disabled by either the guest
 228 *		CP0_Cause.DC bit or the count_ctl.DC bit.
 229 *		0 otherwise (in which case CP0_Count timer is running).
 230 */
 231static inline int kvm_mips_count_disabled(struct kvm_vcpu *vcpu)
 232{
 233	struct mips_coproc *cop0 = vcpu->arch.cop0;
 234
 235	return	(vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC) ||
 236		(kvm_read_c0_guest_cause(cop0) & CAUSEF_DC);
 237}
 238
 239/**
 240 * kvm_mips_ktime_to_count() - Scale ktime_t to a 32-bit count.
 241 *
 242 * Caches the dynamic nanosecond bias in vcpu->arch.count_dyn_bias.
 243 *
 244 * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
 245 */
 246static uint32_t kvm_mips_ktime_to_count(struct kvm_vcpu *vcpu, ktime_t now)
 247{
 248	s64 now_ns, periods;
 249	u64 delta;
 250
 251	now_ns = ktime_to_ns(now);
 252	delta = now_ns + vcpu->arch.count_dyn_bias;
 253
 254	if (delta >= vcpu->arch.count_period) {
 255		/* If delta is out of safe range the bias needs adjusting */
 256		periods = div64_s64(now_ns, vcpu->arch.count_period);
 257		vcpu->arch.count_dyn_bias = -periods * vcpu->arch.count_period;
 258		/* Recalculate delta with new bias */
 259		delta = now_ns + vcpu->arch.count_dyn_bias;
 260	}
 261
 262	/*
 263	 * We've ensured that:
 264	 *   delta < count_period
 265	 *
 266	 * Therefore the intermediate delta*count_hz will never overflow since
 267	 * at the boundary condition:
 268	 *   delta = count_period
 269	 *   delta = NSEC_PER_SEC * 2^32 / count_hz
 270	 *   delta * count_hz = NSEC_PER_SEC * 2^32
 271	 */
 272	return div_u64(delta * vcpu->arch.count_hz, NSEC_PER_SEC);
 273}
 274
 275/**
 276 * kvm_mips_count_time() - Get effective current time.
 277 * @vcpu:	Virtual CPU.
 278 *
 279 * Get effective monotonic ktime. This is usually a straightforward ktime_get(),
 280 * except when the master disable bit is set in count_ctl, in which case it is
 281 * count_resume, i.e. the time that the count was disabled.
 282 *
 283 * Returns:	Effective monotonic ktime for CP0_Count.
 284 */
 285static inline ktime_t kvm_mips_count_time(struct kvm_vcpu *vcpu)
 286{
 287	if (unlikely(vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC))
 288		return vcpu->arch.count_resume;
 289
 290	return ktime_get();
 291}
 292
 293/**
 294 * kvm_mips_read_count_running() - Read the current count value as if running.
 295 * @vcpu:	Virtual CPU.
 296 * @now:	Kernel time to read CP0_Count at.
 297 *
 298 * Returns the current guest CP0_Count register at time @now and handles if the
 299 * timer interrupt is pending and hasn't been handled yet.
 300 *
 301 * Returns:	The current value of the guest CP0_Count register.
 302 */
 303static uint32_t kvm_mips_read_count_running(struct kvm_vcpu *vcpu, ktime_t now)
 304{
 305	ktime_t expires;
 
 
 306	int running;
 307
 308	/* Is the hrtimer pending? */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 309	expires = hrtimer_get_expires(&vcpu->arch.comparecount_timer);
 310	if (ktime_compare(now, expires) >= 0) {
 
 311		/*
 312		 * Cancel it while we handle it so there's no chance of
 313		 * interference with the timeout handler.
 314		 */
 315		running = hrtimer_cancel(&vcpu->arch.comparecount_timer);
 316
 317		/* Nothing should be waiting on the timeout */
 318		kvm_mips_callbacks->queue_timer_int(vcpu);
 319
 320		/*
 321		 * Restart the timer if it was running based on the expiry time
 322		 * we read, so that we don't push it back 2 periods.
 323		 */
 324		if (running) {
 325			expires = ktime_add_ns(expires,
 326					       vcpu->arch.count_period);
 327			hrtimer_start(&vcpu->arch.comparecount_timer, expires,
 328				      HRTIMER_MODE_ABS);
 329		}
 330	}
 331
 332	/* Return the biased and scaled guest CP0_Count */
 333	return vcpu->arch.count_bias + kvm_mips_ktime_to_count(vcpu, now);
 334}
 335
 336/**
 337 * kvm_mips_read_count() - Read the current count value.
 338 * @vcpu:	Virtual CPU.
 339 *
 340 * Read the current guest CP0_Count value, taking into account whether the timer
 341 * is stopped.
 342 *
 343 * Returns:	The current guest CP0_Count value.
 344 */
 345uint32_t kvm_mips_read_count(struct kvm_vcpu *vcpu)
 346{
 347	struct mips_coproc *cop0 = vcpu->arch.cop0;
 348
 349	/* If count disabled just read static copy of count */
 350	if (kvm_mips_count_disabled(vcpu))
 351		return kvm_read_c0_guest_count(cop0);
 352
 353	return kvm_mips_read_count_running(vcpu, ktime_get());
 354}
 355
 356/**
 357 * kvm_mips_freeze_hrtimer() - Safely stop the hrtimer.
 358 * @vcpu:	Virtual CPU.
 359 * @count:	Output pointer for CP0_Count value at point of freeze.
 360 *
 361 * Freeze the hrtimer safely and return both the ktime and the CP0_Count value
 362 * at the point it was frozen. It is guaranteed that any pending interrupts at
 363 * the point it was frozen are handled, and none after that point.
 364 *
 365 * This is useful where the time/CP0_Count is needed in the calculation of the
 366 * new parameters.
 367 *
 368 * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
 369 *
 370 * Returns:	The ktime at the point of freeze.
 371 */
 372static ktime_t kvm_mips_freeze_hrtimer(struct kvm_vcpu *vcpu,
 373				       uint32_t *count)
 374{
 375	ktime_t now;
 376
 377	/* stop hrtimer before finding time */
 378	hrtimer_cancel(&vcpu->arch.comparecount_timer);
 379	now = ktime_get();
 380
 381	/* find count at this point and handle pending hrtimer */
 382	*count = kvm_mips_read_count_running(vcpu, now);
 383
 384	return now;
 385}
 386
 387/**
 388 * kvm_mips_resume_hrtimer() - Resume hrtimer, updating expiry.
 389 * @vcpu:	Virtual CPU.
 390 * @now:	ktime at point of resume.
 391 * @count:	CP0_Count at point of resume.
 392 *
 393 * Resumes the timer and updates the timer expiry based on @now and @count.
 394 * This can be used in conjunction with kvm_mips_freeze_timer() when timer
 395 * parameters need to be changed.
 396 *
 397 * It is guaranteed that a timer interrupt immediately after resume will be
 398 * handled, but not if CP_Compare is exactly at @count. That case is already
 399 * handled by kvm_mips_freeze_timer().
 400 *
 401 * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
 402 */
 403static void kvm_mips_resume_hrtimer(struct kvm_vcpu *vcpu,
 404				    ktime_t now, uint32_t count)
 405{
 406	struct mips_coproc *cop0 = vcpu->arch.cop0;
 407	uint32_t compare;
 408	u64 delta;
 409	ktime_t expire;
 410
 411	/* Calculate timeout (wrap 0 to 2^32) */
 412	compare = kvm_read_c0_guest_compare(cop0);
 413	delta = (u64)(uint32_t)(compare - count - 1) + 1;
 414	delta = div_u64(delta * NSEC_PER_SEC, vcpu->arch.count_hz);
 415	expire = ktime_add_ns(now, delta);
 416
 417	/* Update hrtimer to use new timeout */
 418	hrtimer_cancel(&vcpu->arch.comparecount_timer);
 419	hrtimer_start(&vcpu->arch.comparecount_timer, expire, HRTIMER_MODE_ABS);
 420}
 421
 422/**
 423 * kvm_mips_update_hrtimer() - Update next expiry time of hrtimer.
 424 * @vcpu:	Virtual CPU.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 425 *
 426 * Recalculates and updates the expiry time of the hrtimer. This can be used
 427 * after timer parameters have been altered which do not depend on the time that
 428 * the change occurs (in those cases kvm_mips_freeze_hrtimer() and
 429 * kvm_mips_resume_hrtimer() are used directly).
 430 *
 431 * It is guaranteed that no timer interrupts will be lost in the process.
 432 *
 433 * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
 434 */
 435static void kvm_mips_update_hrtimer(struct kvm_vcpu *vcpu)
 
 436{
 437	ktime_t now;
 438	uint32_t count;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 439
 440	/*
 441	 * freeze_hrtimer takes care of a timer interrupts <= count, and
 442	 * resume_hrtimer the hrtimer takes care of a timer interrupts > count.
 443	 */
 444	now = kvm_mips_freeze_hrtimer(vcpu, &count);
 445	kvm_mips_resume_hrtimer(vcpu, now, count);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 446}
 447
 448/**
 449 * kvm_mips_write_count() - Modify the count and update timer.
 450 * @vcpu:	Virtual CPU.
 451 * @count:	Guest CP0_Count value to set.
 452 *
 453 * Sets the CP0_Count value and updates the timer accordingly.
 454 */
 455void kvm_mips_write_count(struct kvm_vcpu *vcpu, uint32_t count)
 456{
 457	struct mips_coproc *cop0 = vcpu->arch.cop0;
 458	ktime_t now;
 459
 460	/* Calculate bias */
 461	now = kvm_mips_count_time(vcpu);
 462	vcpu->arch.count_bias = count - kvm_mips_ktime_to_count(vcpu, now);
 463
 464	if (kvm_mips_count_disabled(vcpu))
 465		/* The timer's disabled, adjust the static count */
 466		kvm_write_c0_guest_count(cop0, count);
 467	else
 468		/* Update timeout */
 469		kvm_mips_resume_hrtimer(vcpu, now, count);
 470}
 471
 472/**
 473 * kvm_mips_init_count() - Initialise timer.
 474 * @vcpu:	Virtual CPU.
 
 475 *
 476 * Initialise the timer to a sensible frequency, namely 100MHz, zero it, and set
 477 * it going if it's enabled.
 478 */
 479void kvm_mips_init_count(struct kvm_vcpu *vcpu)
 480{
 481	/* 100 MHz */
 482	vcpu->arch.count_hz = 100*1000*1000;
 483	vcpu->arch.count_period = div_u64((u64)NSEC_PER_SEC << 32,
 484					  vcpu->arch.count_hz);
 485	vcpu->arch.count_dyn_bias = 0;
 486
 487	/* Starting at 0 */
 488	kvm_mips_write_count(vcpu, 0);
 489}
 490
 491/**
 492 * kvm_mips_set_count_hz() - Update the frequency of the timer.
 493 * @vcpu:	Virtual CPU.
 494 * @count_hz:	Frequency of CP0_Count timer in Hz.
 495 *
 496 * Change the frequency of the CP0_Count timer. This is done atomically so that
 497 * CP0_Count is continuous and no timer interrupt is lost.
 498 *
 499 * Returns:	-EINVAL if @count_hz is out of range.
 500 *		0 on success.
 501 */
 502int kvm_mips_set_count_hz(struct kvm_vcpu *vcpu, s64 count_hz)
 503{
 504	struct mips_coproc *cop0 = vcpu->arch.cop0;
 505	int dc;
 506	ktime_t now;
 507	u32 count;
 508
 509	/* ensure the frequency is in a sensible range... */
 510	if (count_hz <= 0 || count_hz > NSEC_PER_SEC)
 511		return -EINVAL;
 512	/* ... and has actually changed */
 513	if (vcpu->arch.count_hz == count_hz)
 514		return 0;
 515
 516	/* Safely freeze timer so we can keep it continuous */
 517	dc = kvm_mips_count_disabled(vcpu);
 518	if (dc) {
 519		now = kvm_mips_count_time(vcpu);
 520		count = kvm_read_c0_guest_count(cop0);
 521	} else {
 522		now = kvm_mips_freeze_hrtimer(vcpu, &count);
 523	}
 524
 525	/* Update the frequency */
 526	vcpu->arch.count_hz = count_hz;
 527	vcpu->arch.count_period = div_u64((u64)NSEC_PER_SEC << 32, count_hz);
 528	vcpu->arch.count_dyn_bias = 0;
 529
 530	/* Calculate adjusted bias so dynamic count is unchanged */
 531	vcpu->arch.count_bias = count - kvm_mips_ktime_to_count(vcpu, now);
 532
 533	/* Update and resume hrtimer */
 534	if (!dc)
 535		kvm_mips_resume_hrtimer(vcpu, now, count);
 536	return 0;
 537}
 538
 539/**
 540 * kvm_mips_write_compare() - Modify compare and update timer.
 541 * @vcpu:	Virtual CPU.
 542 * @compare:	New CP0_Compare value.
 
 543 *
 544 * Update CP0_Compare to a new value and update the timeout.
 
 
 545 */
 546void kvm_mips_write_compare(struct kvm_vcpu *vcpu, uint32_t compare)
 547{
 548	struct mips_coproc *cop0 = vcpu->arch.cop0;
 
 
 
 
 
 
 549
 550	/* if unchanged, must just be an ack */
 551	if (kvm_read_c0_guest_compare(cop0) == compare)
 
 
 
 
 552		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 553
 554	/* Update compare */
 555	kvm_write_c0_guest_compare(cop0, compare);
 556
 557	/* Update timeout if count enabled */
 558	if (!kvm_mips_count_disabled(vcpu))
 559		kvm_mips_update_hrtimer(vcpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 560}
 561
 562/**
 563 * kvm_mips_count_disable() - Disable count.
 564 * @vcpu:	Virtual CPU.
 565 *
 566 * Disable the CP0_Count timer. A timer interrupt on or before the final stop
 567 * time will be handled but not after.
 568 *
 569 * Assumes CP0_Count was previously enabled but now Guest.CP0_Cause.DC or
 570 * count_ctl.DC has been set (count disabled).
 571 *
 572 * Returns:	The time that the timer was stopped.
 573 */
 574static ktime_t kvm_mips_count_disable(struct kvm_vcpu *vcpu)
 575{
 576	struct mips_coproc *cop0 = vcpu->arch.cop0;
 577	uint32_t count;
 578	ktime_t now;
 579
 580	/* Stop hrtimer */
 581	hrtimer_cancel(&vcpu->arch.comparecount_timer);
 582
 583	/* Set the static count from the dynamic count, handling pending TI */
 584	now = ktime_get();
 585	count = kvm_mips_read_count_running(vcpu, now);
 586	kvm_write_c0_guest_count(cop0, count);
 587
 588	return now;
 589}
 590
 591/**
 592 * kvm_mips_count_disable_cause() - Disable count using CP0_Cause.DC.
 593 * @vcpu:	Virtual CPU.
 594 *
 595 * Disable the CP0_Count timer and set CP0_Cause.DC. A timer interrupt on or
 596 * before the final stop time will be handled if the timer isn't disabled by
 597 * count_ctl.DC, but not after.
 598 *
 599 * Assumes CP0_Cause.DC is clear (count enabled).
 600 */
 601void kvm_mips_count_disable_cause(struct kvm_vcpu *vcpu)
 602{
 603	struct mips_coproc *cop0 = vcpu->arch.cop0;
 604
 605	kvm_set_c0_guest_cause(cop0, CAUSEF_DC);
 606	if (!(vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC))
 607		kvm_mips_count_disable(vcpu);
 608}
 609
 610/**
 611 * kvm_mips_count_enable_cause() - Enable count using CP0_Cause.DC.
 612 * @vcpu:	Virtual CPU.
 613 *
 614 * Enable the CP0_Count timer and clear CP0_Cause.DC. A timer interrupt after
 615 * the start time will be handled if the timer isn't disabled by count_ctl.DC,
 616 * potentially before even returning, so the caller should be careful with
 617 * ordering of CP0_Cause modifications so as not to lose it.
 618 *
 619 * Assumes CP0_Cause.DC is set (count disabled).
 620 */
 621void kvm_mips_count_enable_cause(struct kvm_vcpu *vcpu)
 622{
 623	struct mips_coproc *cop0 = vcpu->arch.cop0;
 624	uint32_t count;
 625
 626	kvm_clear_c0_guest_cause(cop0, CAUSEF_DC);
 627
 628	/*
 629	 * Set the dynamic count to match the static count.
 630	 * This starts the hrtimer if count_ctl.DC allows it.
 631	 * Otherwise it conveniently updates the biases.
 632	 */
 633	count = kvm_read_c0_guest_count(cop0);
 634	kvm_mips_write_count(vcpu, count);
 635}
 636
 637/**
 638 * kvm_mips_set_count_ctl() - Update the count control KVM register.
 639 * @vcpu:	Virtual CPU.
 640 * @count_ctl:	Count control register new value.
 641 *
 642 * Set the count control KVM register. The timer is updated accordingly.
 643 *
 644 * Returns:	-EINVAL if reserved bits are set.
 645 *		0 on success.
 646 */
 647int kvm_mips_set_count_ctl(struct kvm_vcpu *vcpu, s64 count_ctl)
 648{
 649	struct mips_coproc *cop0 = vcpu->arch.cop0;
 650	s64 changed = count_ctl ^ vcpu->arch.count_ctl;
 651	s64 delta;
 652	ktime_t expire, now;
 653	uint32_t count, compare;
 654
 655	/* Only allow defined bits to be changed */
 656	if (changed & ~(s64)(KVM_REG_MIPS_COUNT_CTL_DC))
 657		return -EINVAL;
 658
 659	/* Apply new value */
 660	vcpu->arch.count_ctl = count_ctl;
 661
 662	/* Master CP0_Count disable */
 663	if (changed & KVM_REG_MIPS_COUNT_CTL_DC) {
 664		/* Is CP0_Cause.DC already disabling CP0_Count? */
 665		if (kvm_read_c0_guest_cause(cop0) & CAUSEF_DC) {
 666			if (count_ctl & KVM_REG_MIPS_COUNT_CTL_DC)
 667				/* Just record the current time */
 668				vcpu->arch.count_resume = ktime_get();
 669		} else if (count_ctl & KVM_REG_MIPS_COUNT_CTL_DC) {
 670			/* disable timer and record current time */
 671			vcpu->arch.count_resume = kvm_mips_count_disable(vcpu);
 672		} else {
 673			/*
 674			 * Calculate timeout relative to static count at resume
 675			 * time (wrap 0 to 2^32).
 676			 */
 677			count = kvm_read_c0_guest_count(cop0);
 678			compare = kvm_read_c0_guest_compare(cop0);
 679			delta = (u64)(uint32_t)(compare - count - 1) + 1;
 680			delta = div_u64(delta * NSEC_PER_SEC,
 681					vcpu->arch.count_hz);
 682			expire = ktime_add_ns(vcpu->arch.count_resume, delta);
 683
 684			/* Handle pending interrupt */
 685			now = ktime_get();
 686			if (ktime_compare(now, expire) >= 0)
 687				/* Nothing should be waiting on the timeout */
 688				kvm_mips_callbacks->queue_timer_int(vcpu);
 689
 690			/* Resume hrtimer without changing bias */
 691			count = kvm_mips_read_count_running(vcpu, now);
 692			kvm_mips_resume_hrtimer(vcpu, now, count);
 693		}
 694	}
 695
 696	return 0;
 697}
 698
 699/**
 700 * kvm_mips_set_count_resume() - Update the count resume KVM register.
 701 * @vcpu:		Virtual CPU.
 702 * @count_resume:	Count resume register new value.
 703 *
 704 * Set the count resume KVM register.
 705 *
 706 * Returns:	-EINVAL if out of valid range (0..now).
 707 *		0 on success.
 708 */
 709int kvm_mips_set_count_resume(struct kvm_vcpu *vcpu, s64 count_resume)
 710{
 711	/*
 712	 * It doesn't make sense for the resume time to be in the future, as it
 713	 * would be possible for the next interrupt to be more than a full
 714	 * period in the future.
 715	 */
 716	if (count_resume < 0 || count_resume > ktime_to_ns(ktime_get()))
 717		return -EINVAL;
 718
 719	vcpu->arch.count_resume = ns_to_ktime(count_resume);
 720	return 0;
 721}
 722
 723/**
 724 * kvm_mips_count_timeout() - Push timer forward on timeout.
 725 * @vcpu:	Virtual CPU.
 726 *
 727 * Handle an hrtimer event by push the hrtimer forward a period.
 728 *
 729 * Returns:	The hrtimer_restart value to return to the hrtimer subsystem.
 730 */
 731enum hrtimer_restart kvm_mips_count_timeout(struct kvm_vcpu *vcpu)
 732{
 733	/* Add the Count period to the current expiry time */
 734	hrtimer_add_expires_ns(&vcpu->arch.comparecount_timer,
 735			       vcpu->arch.count_period);
 736	return HRTIMER_RESTART;
 737}
 738
 739enum emulation_result kvm_mips_emul_eret(struct kvm_vcpu *vcpu)
 740{
 741	struct mips_coproc *cop0 = vcpu->arch.cop0;
 742	enum emulation_result er = EMULATE_DONE;
 743
 744	if (kvm_read_c0_guest_status(cop0) & ST0_EXL) {
 
 
 
 745		kvm_debug("[%#lx] ERET to %#lx\n", vcpu->arch.pc,
 746			  kvm_read_c0_guest_epc(cop0));
 747		kvm_clear_c0_guest_status(cop0, ST0_EXL);
 748		vcpu->arch.pc = kvm_read_c0_guest_epc(cop0);
 749
 750	} else if (kvm_read_c0_guest_status(cop0) & ST0_ERL) {
 751		kvm_clear_c0_guest_status(cop0, ST0_ERL);
 752		vcpu->arch.pc = kvm_read_c0_guest_errorepc(cop0);
 753	} else {
 754		kvm_err("[%#lx] ERET when MIPS_SR_EXL|MIPS_SR_ERL == 0\n",
 755			vcpu->arch.pc);
 756		er = EMULATE_FAIL;
 757	}
 758
 759	return er;
 760}
 761
 762enum emulation_result kvm_mips_emul_wait(struct kvm_vcpu *vcpu)
 763{
 764	kvm_debug("[%#lx] !!!WAIT!!! (%#lx)\n", vcpu->arch.pc,
 765		  vcpu->arch.pending_exceptions);
 766
 767	++vcpu->stat.wait_exits;
 768	trace_kvm_exit(vcpu, WAIT_EXITS);
 769	if (!vcpu->arch.pending_exceptions) {
 
 770		vcpu->arch.wait = 1;
 771		kvm_vcpu_block(vcpu);
 772
 773		/*
 774		 * We we are runnable, then definitely go off to user space to
 775		 * check if any I/O interrupts are pending.
 776		 */
 777		if (kvm_check_request(KVM_REQ_UNHALT, vcpu)) {
 778			clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
 779			vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
 780		}
 781	}
 782
 783	return EMULATE_DONE;
 784}
 785
 786/*
 787 * XXXKYMA: Linux doesn't seem to use TLBR, return EMULATE_FAIL for now so that
 788 * we can catch this, if things ever change
 789 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 790enum emulation_result kvm_mips_emul_tlbr(struct kvm_vcpu *vcpu)
 791{
 792	struct mips_coproc *cop0 = vcpu->arch.cop0;
 793	uint32_t pc = vcpu->arch.pc;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 794
 795	kvm_err("[%#x] COP0_TLBR [%ld]\n", pc, kvm_read_c0_guest_index(cop0));
 796	return EMULATE_FAIL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 797}
 798
 799/* Write Guest TLB Entry @ Index */
 800enum emulation_result kvm_mips_emul_tlbwi(struct kvm_vcpu *vcpu)
 801{
 802	struct mips_coproc *cop0 = vcpu->arch.cop0;
 803	int index = kvm_read_c0_guest_index(cop0);
 804	struct kvm_mips_tlb *tlb = NULL;
 805	uint32_t pc = vcpu->arch.pc;
 806
 807	if (index < 0 || index >= KVM_MIPS_GUEST_TLB_SIZE) {
 808		kvm_debug("%s: illegal index: %d\n", __func__, index);
 809		kvm_debug("[%#x] COP0_TLBWI [%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx, mask: %#lx)\n",
 810			  pc, index, kvm_read_c0_guest_entryhi(cop0),
 811			  kvm_read_c0_guest_entrylo0(cop0),
 812			  kvm_read_c0_guest_entrylo1(cop0),
 813			  kvm_read_c0_guest_pagemask(cop0));
 814		index = (index & ~0x80000000) % KVM_MIPS_GUEST_TLB_SIZE;
 815	}
 816
 817	tlb = &vcpu->arch.guest_tlb[index];
 818	/*
 819	 * Probe the shadow host TLB for the entry being overwritten, if one
 820	 * matches, invalidate it
 821	 */
 822	kvm_mips_host_tlb_inv(vcpu, tlb->tlb_hi);
 823
 824	tlb->tlb_mask = kvm_read_c0_guest_pagemask(cop0);
 825	tlb->tlb_hi = kvm_read_c0_guest_entryhi(cop0);
 826	tlb->tlb_lo0 = kvm_read_c0_guest_entrylo0(cop0);
 827	tlb->tlb_lo1 = kvm_read_c0_guest_entrylo1(cop0);
 828
 829	kvm_debug("[%#x] COP0_TLBWI [%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx, mask: %#lx)\n",
 830		  pc, index, kvm_read_c0_guest_entryhi(cop0),
 831		  kvm_read_c0_guest_entrylo0(cop0),
 832		  kvm_read_c0_guest_entrylo1(cop0),
 833		  kvm_read_c0_guest_pagemask(cop0));
 834
 835	return EMULATE_DONE;
 836}
 837
 838/* Write Guest TLB Entry @ Random Index */
 839enum emulation_result kvm_mips_emul_tlbwr(struct kvm_vcpu *vcpu)
 840{
 841	struct mips_coproc *cop0 = vcpu->arch.cop0;
 842	struct kvm_mips_tlb *tlb = NULL;
 843	uint32_t pc = vcpu->arch.pc;
 844	int index;
 845
 846	get_random_bytes(&index, sizeof(index));
 847	index &= (KVM_MIPS_GUEST_TLB_SIZE - 1);
 848
 849	tlb = &vcpu->arch.guest_tlb[index];
 850
 851	/*
 852	 * Probe the shadow host TLB for the entry being overwritten, if one
 853	 * matches, invalidate it
 854	 */
 855	kvm_mips_host_tlb_inv(vcpu, tlb->tlb_hi);
 856
 857	tlb->tlb_mask = kvm_read_c0_guest_pagemask(cop0);
 858	tlb->tlb_hi = kvm_read_c0_guest_entryhi(cop0);
 859	tlb->tlb_lo0 = kvm_read_c0_guest_entrylo0(cop0);
 860	tlb->tlb_lo1 = kvm_read_c0_guest_entrylo1(cop0);
 861
 862	kvm_debug("[%#x] COP0_TLBWR[%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx)\n",
 863		  pc, index, kvm_read_c0_guest_entryhi(cop0),
 864		  kvm_read_c0_guest_entrylo0(cop0),
 865		  kvm_read_c0_guest_entrylo1(cop0));
 866
 867	return EMULATE_DONE;
 868}
 869
 870enum emulation_result kvm_mips_emul_tlbp(struct kvm_vcpu *vcpu)
 871{
 872	struct mips_coproc *cop0 = vcpu->arch.cop0;
 873	long entryhi = kvm_read_c0_guest_entryhi(cop0);
 874	uint32_t pc = vcpu->arch.pc;
 875	int index = -1;
 876
 877	index = kvm_mips_guest_tlb_lookup(vcpu, entryhi);
 878
 879	kvm_write_c0_guest_index(cop0, index);
 880
 881	kvm_debug("[%#x] COP0_TLBP (entryhi: %#lx), index: %d\n", pc, entryhi,
 882		  index);
 883
 884	return EMULATE_DONE;
 885}
 886
 887/**
 888 * kvm_mips_config1_wrmask() - Find mask of writable bits in guest Config1
 889 * @vcpu:	Virtual CPU.
 890 *
 891 * Finds the mask of bits which are writable in the guest's Config1 CP0
 892 * register, by userland (currently read-only to the guest).
 893 */
 894unsigned int kvm_mips_config1_wrmask(struct kvm_vcpu *vcpu)
 895{
 896	unsigned int mask = 0;
 897
 898	/* Permit FPU to be present if FPU is supported */
 899	if (kvm_mips_guest_can_have_fpu(&vcpu->arch))
 900		mask |= MIPS_CONF1_FP;
 901
 902	return mask;
 903}
 904
 905/**
 906 * kvm_mips_config3_wrmask() - Find mask of writable bits in guest Config3
 907 * @vcpu:	Virtual CPU.
 908 *
 909 * Finds the mask of bits which are writable in the guest's Config3 CP0
 910 * register, by userland (currently read-only to the guest).
 911 */
 912unsigned int kvm_mips_config3_wrmask(struct kvm_vcpu *vcpu)
 913{
 914	/* Config4 is optional */
 915	unsigned int mask = MIPS_CONF_M;
 916
 917	/* Permit MSA to be present if MSA is supported */
 918	if (kvm_mips_guest_can_have_msa(&vcpu->arch))
 919		mask |= MIPS_CONF3_MSA;
 920
 921	return mask;
 922}
 923
 924/**
 925 * kvm_mips_config4_wrmask() - Find mask of writable bits in guest Config4
 926 * @vcpu:	Virtual CPU.
 927 *
 928 * Finds the mask of bits which are writable in the guest's Config4 CP0
 929 * register, by userland (currently read-only to the guest).
 930 */
 931unsigned int kvm_mips_config4_wrmask(struct kvm_vcpu *vcpu)
 932{
 933	/* Config5 is optional */
 934	return MIPS_CONF_M;
 
 
 
 
 
 935}
 936
 937/**
 938 * kvm_mips_config5_wrmask() - Find mask of writable bits in guest Config5
 939 * @vcpu:	Virtual CPU.
 940 *
 941 * Finds the mask of bits which are writable in the guest's Config5 CP0
 942 * register, by the guest itself.
 943 */
 944unsigned int kvm_mips_config5_wrmask(struct kvm_vcpu *vcpu)
 945{
 946	unsigned int mask = 0;
 947
 948	/* Permit MSAEn changes if MSA supported and enabled */
 949	if (kvm_mips_guest_has_msa(&vcpu->arch))
 950		mask |= MIPS_CONF5_MSAEN;
 951
 952	/*
 953	 * Permit guest FPU mode changes if FPU is enabled and the relevant
 954	 * feature exists according to FIR register.
 955	 */
 956	if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
 957		if (cpu_has_fre)
 958			mask |= MIPS_CONF5_FRE;
 959		/* We don't support UFR or UFE */
 960	}
 961
 962	return mask;
 963}
 964
 965enum emulation_result kvm_mips_emulate_CP0(uint32_t inst, uint32_t *opc,
 966					   uint32_t cause, struct kvm_run *run,
 967					   struct kvm_vcpu *vcpu)
 968{
 969	struct mips_coproc *cop0 = vcpu->arch.cop0;
 970	enum emulation_result er = EMULATE_DONE;
 971	int32_t rt, rd, copz, sel, co_bit, op;
 972	uint32_t pc = vcpu->arch.pc;
 973	unsigned long curr_pc;
 974
 975	/*
 976	 * Update PC and hold onto current PC in case there is
 977	 * an error and we want to rollback the PC
 978	 */
 979	curr_pc = vcpu->arch.pc;
 980	er = update_pc(vcpu, cause);
 981	if (er == EMULATE_FAIL)
 982		return er;
 983
 984	copz = (inst >> 21) & 0x1f;
 985	rt = (inst >> 16) & 0x1f;
 986	rd = (inst >> 11) & 0x1f;
 987	sel = inst & 0x7;
 988	co_bit = (inst >> 25) & 1;
 989
 990	if (co_bit) {
 991		op = (inst) & 0xff;
 992
 993		switch (op) {
 994		case tlbr_op:	/*  Read indexed TLB entry  */
 995			er = kvm_mips_emul_tlbr(vcpu);
 996			break;
 997		case tlbwi_op:	/*  Write indexed  */
 998			er = kvm_mips_emul_tlbwi(vcpu);
 999			break;
1000		case tlbwr_op:	/*  Write random  */
1001			er = kvm_mips_emul_tlbwr(vcpu);
1002			break;
1003		case tlbp_op:	/* TLB Probe */
1004			er = kvm_mips_emul_tlbp(vcpu);
1005			break;
1006		case rfe_op:
1007			kvm_err("!!!COP0_RFE!!!\n");
1008			break;
1009		case eret_op:
1010			er = kvm_mips_emul_eret(vcpu);
1011			goto dont_update_pc;
1012			break;
1013		case wait_op:
1014			er = kvm_mips_emul_wait(vcpu);
1015			break;
 
 
 
1016		}
1017	} else {
1018		switch (copz) {
 
 
 
 
1019		case mfc_op:
1020#ifdef CONFIG_KVM_MIPS_DEBUG_COP0_COUNTERS
1021			cop0->stat[rd][sel]++;
1022#endif
1023			/* Get reg */
1024			if ((rd == MIPS_CP0_COUNT) && (sel == 0)) {
1025				vcpu->arch.gprs[rt] = kvm_mips_read_count(vcpu);
 
1026			} else if ((rd == MIPS_CP0_ERRCTL) && (sel == 0)) {
1027				vcpu->arch.gprs[rt] = 0x0;
1028#ifdef CONFIG_KVM_MIPS_DYN_TRANS
1029				kvm_mips_trans_mfc0(inst, opc, vcpu);
1030#endif
1031			} else {
1032				vcpu->arch.gprs[rt] = cop0->reg[rd][sel];
1033
1034#ifdef CONFIG_KVM_MIPS_DYN_TRANS
1035				kvm_mips_trans_mfc0(inst, opc, vcpu);
1036#endif
1037			}
1038
1039			kvm_debug
1040			    ("[%#x] MFCz[%d][%d], vcpu->arch.gprs[%d]: %#lx\n",
1041			     pc, rd, sel, rt, vcpu->arch.gprs[rt]);
1042
1043			break;
1044
1045		case dmfc_op:
1046			vcpu->arch.gprs[rt] = cop0->reg[rd][sel];
 
 
 
 
1047			break;
1048
1049		case mtc_op:
1050#ifdef CONFIG_KVM_MIPS_DEBUG_COP0_COUNTERS
1051			cop0->stat[rd][sel]++;
1052#endif
 
 
 
 
1053			if ((rd == MIPS_CP0_TLB_INDEX)
1054			    && (vcpu->arch.gprs[rt] >=
1055				KVM_MIPS_GUEST_TLB_SIZE)) {
1056				kvm_err("Invalid TLB Index: %ld",
1057					vcpu->arch.gprs[rt]);
1058				er = EMULATE_FAIL;
1059				break;
1060			}
1061#define C0_EBASE_CORE_MASK 0xff
1062			if ((rd == MIPS_CP0_PRID) && (sel == 1)) {
1063				/* Preserve CORE number */
1064				kvm_change_c0_guest_ebase(cop0,
1065							  ~(C0_EBASE_CORE_MASK),
 
 
1066							  vcpu->arch.gprs[rt]);
1067				kvm_err("MTCz, cop0->reg[EBASE]: %#lx\n",
1068					kvm_read_c0_guest_ebase(cop0));
1069			} else if (rd == MIPS_CP0_TLB_HI && sel == 0) {
1070				uint32_t nasid =
1071					vcpu->arch.gprs[rt] & ASID_MASK;
1072				if ((KSEGX(vcpu->arch.gprs[rt]) != CKSEG0) &&
1073				    ((kvm_read_c0_guest_entryhi(cop0) &
1074				      ASID_MASK) != nasid)) {
1075					kvm_debug("MTCz, change ASID from %#lx to %#lx\n",
1076						kvm_read_c0_guest_entryhi(cop0)
1077						& ASID_MASK,
1078						vcpu->arch.gprs[rt]
1079						& ASID_MASK);
1080
1081					/* Blow away the shadow host TLBs */
1082					kvm_mips_flush_host_tlb(1);
1083				}
1084				kvm_write_c0_guest_entryhi(cop0,
1085							   vcpu->arch.gprs[rt]);
1086			}
1087			/* Are we writing to COUNT */
1088			else if ((rd == MIPS_CP0_COUNT) && (sel == 0)) {
1089				kvm_mips_write_count(vcpu, vcpu->arch.gprs[rt]);
1090				goto done;
1091			} else if ((rd == MIPS_CP0_COMPARE) && (sel == 0)) {
1092				kvm_debug("[%#x] MTCz, COMPARE %#lx <- %#lx\n",
1093					  pc, kvm_read_c0_guest_compare(cop0),
1094					  vcpu->arch.gprs[rt]);
1095
1096				/* If we are writing to COMPARE */
1097				/* Clear pending timer interrupt, if any */
1098				kvm_mips_callbacks->dequeue_timer_int(vcpu);
1099				kvm_mips_write_compare(vcpu,
1100						       vcpu->arch.gprs[rt]);
 
1101			} else if ((rd == MIPS_CP0_STATUS) && (sel == 0)) {
1102				unsigned int old_val, val, change;
1103
1104				old_val = kvm_read_c0_guest_status(cop0);
1105				val = vcpu->arch.gprs[rt];
1106				change = val ^ old_val;
1107
1108				/* Make sure that the NMI bit is never set */
1109				val &= ~ST0_NMI;
1110
1111				/*
1112				 * Don't allow CU1 or FR to be set unless FPU
1113				 * capability enabled and exists in guest
1114				 * configuration.
1115				 */
1116				if (!kvm_mips_guest_has_fpu(&vcpu->arch))
1117					val &= ~(ST0_CU1 | ST0_FR);
1118
1119				/*
1120				 * Also don't allow FR to be set if host doesn't
1121				 * support it.
1122				 */
1123				if (!(current_cpu_data.fpu_id & MIPS_FPIR_F64))
1124					val &= ~ST0_FR;
1125
1126
1127				/* Handle changes in FPU mode */
1128				preempt_disable();
1129
1130				/*
1131				 * FPU and Vector register state is made
1132				 * UNPREDICTABLE by a change of FR, so don't
1133				 * even bother saving it.
1134				 */
1135				if (change & ST0_FR)
1136					kvm_drop_fpu(vcpu);
1137
1138				/*
1139				 * If MSA state is already live, it is undefined
1140				 * how it interacts with FR=0 FPU state, and we
1141				 * don't want to hit reserved instruction
1142				 * exceptions trying to save the MSA state later
1143				 * when CU=1 && FR=1, so play it safe and save
1144				 * it first.
1145				 */
1146				if (change & ST0_CU1 && !(val & ST0_FR) &&
1147				    vcpu->arch.fpu_inuse & KVM_MIPS_FPU_MSA)
1148					kvm_lose_fpu(vcpu);
1149
1150				/*
1151				 * Propagate CU1 (FPU enable) changes
1152				 * immediately if the FPU context is already
1153				 * loaded. When disabling we leave the context
1154				 * loaded so it can be quickly enabled again in
1155				 * the near future.
1156				 */
1157				if (change & ST0_CU1 &&
1158				    vcpu->arch.fpu_inuse & KVM_MIPS_FPU_FPU)
1159					change_c0_status(ST0_CU1, val);
1160
1161				preempt_enable();
1162
1163				kvm_write_c0_guest_status(cop0, val);
1164
1165#ifdef CONFIG_KVM_MIPS_DYN_TRANS
1166				/*
1167				 * If FPU present, we need CU1/FR bits to take
1168				 * effect fairly soon.
1169				 */
1170				if (!kvm_mips_guest_has_fpu(&vcpu->arch))
1171					kvm_mips_trans_mtc0(inst, opc, vcpu);
1172#endif
1173			} else if ((rd == MIPS_CP0_CONFIG) && (sel == 5)) {
1174				unsigned int old_val, val, change, wrmask;
1175
1176				old_val = kvm_read_c0_guest_config5(cop0);
1177				val = vcpu->arch.gprs[rt];
1178
1179				/* Only a few bits are writable in Config5 */
1180				wrmask = kvm_mips_config5_wrmask(vcpu);
1181				change = (val ^ old_val) & wrmask;
1182				val = old_val ^ change;
1183
1184
1185				/* Handle changes in FPU/MSA modes */
1186				preempt_disable();
1187
1188				/*
1189				 * Propagate FRE changes immediately if the FPU
1190				 * context is already loaded.
1191				 */
1192				if (change & MIPS_CONF5_FRE &&
1193				    vcpu->arch.fpu_inuse & KVM_MIPS_FPU_FPU)
1194					change_c0_config5(MIPS_CONF5_FRE, val);
1195
1196				/*
1197				 * Propagate MSAEn changes immediately if the
1198				 * MSA context is already loaded. When disabling
1199				 * we leave the context loaded so it can be
1200				 * quickly enabled again in the near future.
1201				 */
1202				if (change & MIPS_CONF5_MSAEN &&
1203				    vcpu->arch.fpu_inuse & KVM_MIPS_FPU_MSA)
1204					change_c0_config5(MIPS_CONF5_MSAEN,
1205							  val);
1206
1207				preempt_enable();
1208
1209				kvm_write_c0_guest_config5(cop0, val);
1210			} else if ((rd == MIPS_CP0_CAUSE) && (sel == 0)) {
1211				uint32_t old_cause, new_cause;
1212
1213				old_cause = kvm_read_c0_guest_cause(cop0);
1214				new_cause = vcpu->arch.gprs[rt];
1215				/* Update R/W bits */
1216				kvm_change_c0_guest_cause(cop0, 0x08800300,
1217							  new_cause);
1218				/* DC bit enabling/disabling timer? */
1219				if ((old_cause ^ new_cause) & CAUSEF_DC) {
1220					if (new_cause & CAUSEF_DC)
1221						kvm_mips_count_disable_cause(vcpu);
1222					else
1223						kvm_mips_count_enable_cause(vcpu);
1224				}
 
 
 
 
 
 
 
 
 
 
1225			} else {
1226				cop0->reg[rd][sel] = vcpu->arch.gprs[rt];
1227#ifdef CONFIG_KVM_MIPS_DYN_TRANS
1228				kvm_mips_trans_mtc0(inst, opc, vcpu);
1229#endif
1230			}
1231
1232			kvm_debug("[%#x] MTCz, cop0->reg[%d][%d]: %#lx\n", pc,
1233				  rd, sel, cop0->reg[rd][sel]);
1234			break;
1235
1236		case dmtc_op:
1237			kvm_err("!!!!!!![%#lx]dmtc_op: rt: %d, rd: %d, sel: %d!!!!!!\n",
1238				vcpu->arch.pc, rt, rd, sel);
 
 
 
1239			er = EMULATE_FAIL;
1240			break;
1241
1242		case mfmc0_op:
1243#ifdef KVM_MIPS_DEBUG_COP0_COUNTERS
1244			cop0->stat[MIPS_CP0_STATUS][0]++;
1245#endif
1246			if (rt != 0)
1247				vcpu->arch.gprs[rt] =
1248				    kvm_read_c0_guest_status(cop0);
1249			/* EI */
1250			if (inst & 0x20) {
1251				kvm_debug("[%#lx] mfmc0_op: EI\n",
1252					  vcpu->arch.pc);
1253				kvm_set_c0_guest_status(cop0, ST0_IE);
1254			} else {
1255				kvm_debug("[%#lx] mfmc0_op: DI\n",
1256					  vcpu->arch.pc);
1257				kvm_clear_c0_guest_status(cop0, ST0_IE);
1258			}
1259
1260			break;
1261
1262		case wrpgpr_op:
1263			{
1264				uint32_t css =
1265				    cop0->reg[MIPS_CP0_STATUS][2] & 0xf;
1266				uint32_t pss =
1267				    (cop0->reg[MIPS_CP0_STATUS][2] >> 6) & 0xf;
1268				/*
1269				 * We don't support any shadow register sets, so
1270				 * SRSCtl[PSS] == SRSCtl[CSS] = 0
1271				 */
1272				if (css || pss) {
1273					er = EMULATE_FAIL;
1274					break;
1275				}
1276				kvm_debug("WRPGPR[%d][%d] = %#lx\n", pss, rd,
1277					  vcpu->arch.gprs[rt]);
1278				vcpu->arch.gprs[rd] = vcpu->arch.gprs[rt];
1279			}
1280			break;
1281		default:
1282			kvm_err("[%#lx]MachEmulateCP0: unsupported COP0, copz: 0x%x\n",
1283				vcpu->arch.pc, copz);
1284			er = EMULATE_FAIL;
1285			break;
1286		}
1287	}
1288
1289done:
1290	/* Rollback PC only if emulation was unsuccessful */
1291	if (er == EMULATE_FAIL)
1292		vcpu->arch.pc = curr_pc;
1293
1294dont_update_pc:
1295	/*
1296	 * This is for special instructions whose emulation
1297	 * updates the PC, so do not overwrite the PC under
1298	 * any circumstances
1299	 */
1300
1301	return er;
1302}
1303
1304enum emulation_result kvm_mips_emulate_store(uint32_t inst, uint32_t cause,
1305					     struct kvm_run *run,
1306					     struct kvm_vcpu *vcpu)
1307{
1308	enum emulation_result er = EMULATE_DO_MMIO;
1309	int32_t op, base, rt, offset;
1310	uint32_t bytes;
 
1311	void *data = run->mmio.data;
 
1312	unsigned long curr_pc;
1313
1314	/*
1315	 * Update PC and hold onto current PC in case there is
1316	 * an error and we want to rollback the PC
1317	 */
1318	curr_pc = vcpu->arch.pc;
1319	er = update_pc(vcpu, cause);
1320	if (er == EMULATE_FAIL)
1321		return er;
1322
1323	rt = (inst >> 16) & 0x1f;
1324	base = (inst >> 21) & 0x1f;
1325	offset = inst & 0xffff;
1326	op = (inst >> 26) & 0x3f;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1327
1328	switch (op) {
1329	case sb_op:
1330		bytes = 1;
1331		if (bytes > sizeof(run->mmio.data)) {
1332			kvm_err("%s: bad MMIO length: %d\n", __func__,
1333			       run->mmio.len);
1334		}
1335		run->mmio.phys_addr =
1336		    kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1337						   host_cp0_badvaddr);
1338		if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1339			er = EMULATE_FAIL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1340			break;
1341		}
1342		run->mmio.len = bytes;
1343		run->mmio.is_write = 1;
1344		vcpu->mmio_needed = 1;
1345		vcpu->mmio_is_write = 1;
1346		*(u8 *) data = vcpu->arch.gprs[rt];
1347		kvm_debug("OP_SB: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1348			  vcpu->arch.host_cp0_badvaddr, vcpu->arch.gprs[rt],
1349			  *(uint8_t *) data);
1350
 
 
 
1351		break;
1352
1353	case sw_op:
1354		bytes = 4;
1355		if (bytes > sizeof(run->mmio.data)) {
1356			kvm_err("%s: bad MMIO length: %d\n", __func__,
1357			       run->mmio.len);
1358		}
1359		run->mmio.phys_addr =
1360		    kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1361						   host_cp0_badvaddr);
1362		if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1363			er = EMULATE_FAIL;
 
 
 
 
 
 
 
 
 
 
 
1364			break;
1365		}
1366
1367		run->mmio.len = bytes;
1368		run->mmio.is_write = 1;
1369		vcpu->mmio_needed = 1;
1370		vcpu->mmio_is_write = 1;
1371		*(uint32_t *) data = vcpu->arch.gprs[rt];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1372
1373		kvm_debug("[%#lx] OP_SW: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1374			  vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1375			  vcpu->arch.gprs[rt], *(uint32_t *) data);
1376		break;
1377
1378	case sh_op:
1379		bytes = 2;
1380		if (bytes > sizeof(run->mmio.data)) {
1381			kvm_err("%s: bad MMIO length: %d\n", __func__,
1382			       run->mmio.len);
1383		}
1384		run->mmio.phys_addr =
1385		    kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1386						   host_cp0_badvaddr);
1387		if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1388			er = EMULATE_FAIL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1389			break;
1390		}
1391
1392		run->mmio.len = bytes;
1393		run->mmio.is_write = 1;
1394		vcpu->mmio_needed = 1;
1395		vcpu->mmio_is_write = 1;
1396		*(uint16_t *) data = vcpu->arch.gprs[rt];
1397
1398		kvm_debug("[%#lx] OP_SH: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1399			  vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1400			  vcpu->arch.gprs[rt], *(uint32_t *) data);
1401		break;
 
1402
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1403	default:
1404		kvm_err("Store not yet supported");
1405		er = EMULATE_FAIL;
1406		break;
 
 
 
 
 
 
 
 
 
 
 
 
1407	}
1408
 
 
 
1409	/* Rollback PC if emulation was unsuccessful */
1410	if (er == EMULATE_FAIL)
1411		vcpu->arch.pc = curr_pc;
1412
1413	return er;
1414}
1415
1416enum emulation_result kvm_mips_emulate_load(uint32_t inst, uint32_t cause,
1417					    struct kvm_run *run,
1418					    struct kvm_vcpu *vcpu)
1419{
1420	enum emulation_result er = EMULATE_DO_MMIO;
1421	int32_t op, base, rt, offset;
1422	uint32_t bytes;
1423
1424	rt = (inst >> 16) & 0x1f;
1425	base = (inst >> 21) & 0x1f;
1426	offset = inst & 0xffff;
1427	op = (inst >> 26) & 0x3f;
 
 
 
 
 
 
 
 
 
 
 
 
 
1428
1429	vcpu->arch.pending_load_cause = cause;
1430	vcpu->arch.io_gpr = rt;
1431
 
 
 
 
 
 
1432	switch (op) {
 
 
 
 
 
 
 
 
 
1433	case lw_op:
1434		bytes = 4;
1435		if (bytes > sizeof(run->mmio.data)) {
1436			kvm_err("%s: bad MMIO length: %d\n", __func__,
1437			       run->mmio.len);
1438			er = EMULATE_FAIL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1439			break;
1440		}
1441		run->mmio.phys_addr =
1442		    kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1443						   host_cp0_badvaddr);
1444		if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1445			er = EMULATE_FAIL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1446			break;
1447		}
 
1448
1449		run->mmio.len = bytes;
1450		run->mmio.is_write = 0;
1451		vcpu->mmio_needed = 1;
1452		vcpu->mmio_is_write = 0;
1453		break;
1454
1455	case lh_op:
1456	case lhu_op:
1457		bytes = 2;
1458		if (bytes > sizeof(run->mmio.data)) {
1459			kvm_err("%s: bad MMIO length: %d\n", __func__,
1460			       run->mmio.len);
1461			er = EMULATE_FAIL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1462			break;
1463		}
1464		run->mmio.phys_addr =
1465		    kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1466						   host_cp0_badvaddr);
1467		if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1468			er = EMULATE_FAIL;
1469			break;
1470		}
 
1471
1472		run->mmio.len = bytes;
1473		run->mmio.is_write = 0;
1474		vcpu->mmio_needed = 1;
1475		vcpu->mmio_is_write = 0;
1476
1477		if (op == lh_op)
1478			vcpu->mmio_needed = 2;
1479		else
1480			vcpu->mmio_needed = 1;
1481
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1482		break;
 
1483
1484	case lbu_op:
1485	case lb_op:
1486		bytes = 1;
1487		if (bytes > sizeof(run->mmio.data)) {
1488			kvm_err("%s: bad MMIO length: %d\n", __func__,
1489			       run->mmio.len);
1490			er = EMULATE_FAIL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1491			break;
1492		}
1493		run->mmio.phys_addr =
1494		    kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1495						   host_cp0_badvaddr);
1496		if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1497			er = EMULATE_FAIL;
1498			break;
1499		}
 
 
1500
1501		run->mmio.len = bytes;
1502		run->mmio.is_write = 0;
1503		vcpu->mmio_is_write = 0;
 
 
 
1504
1505		if (op == lb_op)
1506			vcpu->mmio_needed = 2;
1507		else
1508			vcpu->mmio_needed = 1;
1509
1510		break;
 
1511
1512	default:
1513		kvm_err("Load not yet supported");
1514		er = EMULATE_FAIL;
1515		break;
1516	}
1517
1518	return er;
1519}
1520
1521int kvm_mips_sync_icache(unsigned long va, struct kvm_vcpu *vcpu)
 
 
 
 
 
1522{
1523	unsigned long offset = (va & ~PAGE_MASK);
1524	struct kvm *kvm = vcpu->kvm;
1525	unsigned long pa;
1526	gfn_t gfn;
1527	kvm_pfn_t pfn;
1528
1529	gfn = va >> PAGE_SHIFT;
1530
1531	if (gfn >= kvm->arch.guest_pmap_npages) {
1532		kvm_err("%s: Invalid gfn: %#llx\n", __func__, gfn);
1533		kvm_mips_dump_host_tlbs();
1534		kvm_arch_vcpu_dump_regs(vcpu);
1535		return -1;
1536	}
1537	pfn = kvm->arch.guest_pmap[gfn];
1538	pa = (pfn << PAGE_SHIFT) | offset;
1539
1540	kvm_debug("%s: va: %#lx, unmapped: %#x\n", __func__, va,
1541		  CKSEG0ADDR(pa));
1542
1543	local_flush_icache_range(CKSEG0ADDR(pa), 32);
1544	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1545}
1546
1547enum emulation_result kvm_mips_emulate_cache(uint32_t inst, uint32_t *opc,
1548					     uint32_t cause,
1549					     struct kvm_run *run,
1550					     struct kvm_vcpu *vcpu)
1551{
1552	struct mips_coproc *cop0 = vcpu->arch.cop0;
1553	enum emulation_result er = EMULATE_DONE;
1554	int32_t offset, cache, op_inst, op, base;
 
1555	struct kvm_vcpu_arch *arch = &vcpu->arch;
1556	unsigned long va;
1557	unsigned long curr_pc;
1558
1559	/*
1560	 * Update PC and hold onto current PC in case there is
1561	 * an error and we want to rollback the PC
1562	 */
1563	curr_pc = vcpu->arch.pc;
1564	er = update_pc(vcpu, cause);
1565	if (er == EMULATE_FAIL)
1566		return er;
1567
1568	base = (inst >> 21) & 0x1f;
1569	op_inst = (inst >> 16) & 0x1f;
1570	offset = (int16_t)inst;
 
 
 
1571	cache = op_inst & CacheOp_Cache;
1572	op = op_inst & CacheOp_Op;
1573
1574	va = arch->gprs[base] + offset;
1575
1576	kvm_debug("CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
1577		  cache, op, base, arch->gprs[base], offset);
1578
1579	/*
1580	 * Treat INDEX_INV as a nop, basically issued by Linux on startup to
1581	 * invalidate the caches entirely by stepping through all the
1582	 * ways/indexes
1583	 */
1584	if (op == Index_Writeback_Inv) {
1585		kvm_debug("@ %#lx/%#lx CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
1586			  vcpu->arch.pc, vcpu->arch.gprs[31], cache, op, base,
1587			  arch->gprs[base], offset);
1588
1589		if (cache == Cache_D)
 
1590			r4k_blast_dcache();
1591		else if (cache == Cache_I)
 
 
 
 
 
 
 
 
 
 
 
 
1592			r4k_blast_icache();
1593		else {
 
 
 
 
 
 
 
 
 
 
 
1594			kvm_err("%s: unsupported CACHE INDEX operation\n",
1595				__func__);
1596			return EMULATE_FAIL;
1597		}
1598
1599#ifdef CONFIG_KVM_MIPS_DYN_TRANS
1600		kvm_mips_trans_cache_index(inst, opc, vcpu);
1601#endif
1602		goto done;
1603	}
1604
1605	preempt_disable();
1606	if (KVM_GUEST_KSEGX(va) == KVM_GUEST_KSEG0) {
1607		if (kvm_mips_host_tlb_lookup(vcpu, va) < 0)
1608			kvm_mips_handle_kseg0_tlb_fault(va, vcpu);
1609	} else if ((KVM_GUEST_KSEGX(va) < KVM_GUEST_KSEG0) ||
1610		   KVM_GUEST_KSEGX(va) == KVM_GUEST_KSEG23) {
1611		int index;
1612
1613		/* If an entry already exists then skip */
1614		if (kvm_mips_host_tlb_lookup(vcpu, va) >= 0)
1615			goto skip_fault;
1616
1617		/*
1618		 * If address not in the guest TLB, then give the guest a fault,
1619		 * the resulting handler will do the right thing
1620		 */
1621		index = kvm_mips_guest_tlb_lookup(vcpu, (va & VPN2_MASK) |
1622						  (kvm_read_c0_guest_entryhi
1623						   (cop0) & ASID_MASK));
1624
1625		if (index < 0) {
1626			vcpu->arch.host_cp0_entryhi = (va & VPN2_MASK);
1627			vcpu->arch.host_cp0_badvaddr = va;
1628			er = kvm_mips_emulate_tlbmiss_ld(cause, NULL, run,
1629							 vcpu);
1630			preempt_enable();
1631			goto dont_update_pc;
1632		} else {
1633			struct kvm_mips_tlb *tlb = &vcpu->arch.guest_tlb[index];
1634			/*
1635			 * Check if the entry is valid, if not then setup a TLB
1636			 * invalid exception to the guest
1637			 */
1638			if (!TLB_IS_VALID(*tlb, va)) {
1639				er = kvm_mips_emulate_tlbinv_ld(cause, NULL,
1640								run, vcpu);
1641				preempt_enable();
1642				goto dont_update_pc;
1643			} else {
1644				/*
1645				 * We fault an entry from the guest tlb to the
1646				 * shadow host TLB
1647				 */
1648				kvm_mips_handle_mapped_seg_tlb_fault(vcpu, tlb,
1649								     NULL,
1650								     NULL);
1651			}
1652		}
1653	} else {
1654		kvm_err("INVALID CACHE INDEX/ADDRESS (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
1655			cache, op, base, arch->gprs[base], offset);
1656		er = EMULATE_FAIL;
1657		preempt_enable();
1658		goto dont_update_pc;
1659
1660	}
1661
1662skip_fault:
1663	/* XXXKYMA: Only a subset of cache ops are supported, used by Linux */
1664	if (op_inst == Hit_Writeback_Inv_D || op_inst == Hit_Invalidate_D) {
1665		flush_dcache_line(va);
1666
1667#ifdef CONFIG_KVM_MIPS_DYN_TRANS
1668		/*
1669		 * Replace the CACHE instruction, with a SYNCI, not the same,
1670		 * but avoids a trap
1671		 */
1672		kvm_mips_trans_cache_va(inst, opc, vcpu);
1673#endif
1674	} else if (op_inst == Hit_Invalidate_I) {
1675		flush_dcache_line(va);
1676		flush_icache_line(va);
 
 
 
 
 
 
 
1677
1678#ifdef CONFIG_KVM_MIPS_DYN_TRANS
1679		/* Replace the CACHE instruction, with a SYNCI */
1680		kvm_mips_trans_cache_va(inst, opc, vcpu);
1681#endif
1682	} else {
1683		kvm_err("NO-OP CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
1684			cache, op, base, arch->gprs[base], offset);
1685		er = EMULATE_FAIL;
1686		preempt_enable();
1687		goto dont_update_pc;
1688	}
1689
1690	preempt_enable();
 
 
 
 
 
 
1691
1692dont_update_pc:
1693	/* Rollback PC */
1694	vcpu->arch.pc = curr_pc;
1695done:
1696	return er;
1697}
1698
1699enum emulation_result kvm_mips_emulate_inst(unsigned long cause, uint32_t *opc,
1700					    struct kvm_run *run,
1701					    struct kvm_vcpu *vcpu)
1702{
 
1703	enum emulation_result er = EMULATE_DONE;
1704	uint32_t inst;
1705
1706	/* Fetch the instruction. */
1707	if (cause & CAUSEF_BD)
1708		opc += 1;
 
 
 
1709
1710	inst = kvm_get_inst(opc, vcpu);
1711
1712	switch (((union mips_instruction)inst).r_format.opcode) {
1713	case cop0_op:
1714		er = kvm_mips_emulate_CP0(inst, opc, cause, run, vcpu);
1715		break;
1716	case sb_op:
1717	case sh_op:
1718	case sw_op:
1719		er = kvm_mips_emulate_store(inst, cause, run, vcpu);
1720		break;
1721	case lb_op:
1722	case lbu_op:
1723	case lhu_op:
1724	case lh_op:
1725	case lw_op:
1726		er = kvm_mips_emulate_load(inst, cause, run, vcpu);
1727		break;
1728
 
1729	case cache_op:
1730		++vcpu->stat.cache_exits;
1731		trace_kvm_exit(vcpu, CACHE_EXITS);
1732		er = kvm_mips_emulate_cache(inst, opc, cause, run, vcpu);
1733		break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1734
1735	default:
1736		kvm_err("Instruction emulation not supported (%p/%#x)\n", opc,
1737			inst);
1738		kvm_arch_vcpu_dump_regs(vcpu);
1739		er = EMULATE_FAIL;
1740		break;
1741	}
1742
1743	return er;
1744}
 
1745
1746enum emulation_result kvm_mips_emulate_syscall(unsigned long cause,
1747					       uint32_t *opc,
1748					       struct kvm_run *run,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1749					       struct kvm_vcpu *vcpu)
1750{
1751	struct mips_coproc *cop0 = vcpu->arch.cop0;
1752	struct kvm_vcpu_arch *arch = &vcpu->arch;
1753	enum emulation_result er = EMULATE_DONE;
1754
1755	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1756		/* save old pc */
1757		kvm_write_c0_guest_epc(cop0, arch->pc);
1758		kvm_set_c0_guest_status(cop0, ST0_EXL);
1759
1760		if (cause & CAUSEF_BD)
1761			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1762		else
1763			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
1764
1765		kvm_debug("Delivering SYSCALL @ pc %#lx\n", arch->pc);
1766
1767		kvm_change_c0_guest_cause(cop0, (0xff),
1768					  (EXCCODE_SYS << CAUSEB_EXCCODE));
1769
1770		/* Set PC to the exception entry point */
1771		arch->pc = KVM_GUEST_KSEG0 + 0x180;
1772
1773	} else {
1774		kvm_err("Trying to deliver SYSCALL when EXL is already set\n");
1775		er = EMULATE_FAIL;
1776	}
1777
1778	return er;
1779}
1780
1781enum emulation_result kvm_mips_emulate_tlbmiss_ld(unsigned long cause,
1782						  uint32_t *opc,
1783						  struct kvm_run *run,
1784						  struct kvm_vcpu *vcpu)
1785{
1786	struct mips_coproc *cop0 = vcpu->arch.cop0;
1787	struct kvm_vcpu_arch *arch = &vcpu->arch;
1788	unsigned long entryhi = (vcpu->arch.  host_cp0_badvaddr & VPN2_MASK) |
1789				(kvm_read_c0_guest_entryhi(cop0) & ASID_MASK);
1790
1791	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1792		/* save old pc */
1793		kvm_write_c0_guest_epc(cop0, arch->pc);
1794		kvm_set_c0_guest_status(cop0, ST0_EXL);
1795
1796		if (cause & CAUSEF_BD)
1797			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1798		else
1799			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
1800
1801		kvm_debug("[EXL == 0] delivering TLB MISS @ pc %#lx\n",
1802			  arch->pc);
1803
1804		/* set pc to the exception entry point */
1805		arch->pc = KVM_GUEST_KSEG0 + 0x0;
1806
1807	} else {
1808		kvm_debug("[EXL == 1] delivering TLB MISS @ pc %#lx\n",
1809			  arch->pc);
1810
1811		arch->pc = KVM_GUEST_KSEG0 + 0x180;
1812	}
1813
1814	kvm_change_c0_guest_cause(cop0, (0xff),
1815				  (EXCCODE_TLBL << CAUSEB_EXCCODE));
1816
1817	/* setup badvaddr, context and entryhi registers for the guest */
1818	kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
1819	/* XXXKYMA: is the context register used by linux??? */
1820	kvm_write_c0_guest_entryhi(cop0, entryhi);
1821	/* Blow away the shadow host TLBs */
1822	kvm_mips_flush_host_tlb(1);
1823
1824	return EMULATE_DONE;
1825}
1826
1827enum emulation_result kvm_mips_emulate_tlbinv_ld(unsigned long cause,
1828						 uint32_t *opc,
1829						 struct kvm_run *run,
1830						 struct kvm_vcpu *vcpu)
1831{
1832	struct mips_coproc *cop0 = vcpu->arch.cop0;
1833	struct kvm_vcpu_arch *arch = &vcpu->arch;
1834	unsigned long entryhi =
1835		(vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
1836		(kvm_read_c0_guest_entryhi(cop0) & ASID_MASK);
1837
1838	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1839		/* save old pc */
1840		kvm_write_c0_guest_epc(cop0, arch->pc);
1841		kvm_set_c0_guest_status(cop0, ST0_EXL);
1842
1843		if (cause & CAUSEF_BD)
1844			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1845		else
1846			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
1847
1848		kvm_debug("[EXL == 0] delivering TLB INV @ pc %#lx\n",
1849			  arch->pc);
1850
1851		/* set pc to the exception entry point */
1852		arch->pc = KVM_GUEST_KSEG0 + 0x180;
1853
1854	} else {
1855		kvm_debug("[EXL == 1] delivering TLB MISS @ pc %#lx\n",
1856			  arch->pc);
1857		arch->pc = KVM_GUEST_KSEG0 + 0x180;
1858	}
1859
 
 
 
1860	kvm_change_c0_guest_cause(cop0, (0xff),
1861				  (EXCCODE_TLBL << CAUSEB_EXCCODE));
1862
1863	/* setup badvaddr, context and entryhi registers for the guest */
1864	kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
1865	/* XXXKYMA: is the context register used by linux??? */
1866	kvm_write_c0_guest_entryhi(cop0, entryhi);
1867	/* Blow away the shadow host TLBs */
1868	kvm_mips_flush_host_tlb(1);
1869
1870	return EMULATE_DONE;
1871}
1872
1873enum emulation_result kvm_mips_emulate_tlbmiss_st(unsigned long cause,
1874						  uint32_t *opc,
1875						  struct kvm_run *run,
1876						  struct kvm_vcpu *vcpu)
1877{
1878	struct mips_coproc *cop0 = vcpu->arch.cop0;
1879	struct kvm_vcpu_arch *arch = &vcpu->arch;
1880	unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
1881				(kvm_read_c0_guest_entryhi(cop0) & ASID_MASK);
1882
1883	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1884		/* save old pc */
1885		kvm_write_c0_guest_epc(cop0, arch->pc);
1886		kvm_set_c0_guest_status(cop0, ST0_EXL);
1887
1888		if (cause & CAUSEF_BD)
1889			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1890		else
1891			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
1892
1893		kvm_debug("[EXL == 0] Delivering TLB MISS @ pc %#lx\n",
1894			  arch->pc);
1895
1896		/* Set PC to the exception entry point */
1897		arch->pc = KVM_GUEST_KSEG0 + 0x0;
1898	} else {
1899		kvm_debug("[EXL == 1] Delivering TLB MISS @ pc %#lx\n",
1900			  arch->pc);
1901		arch->pc = KVM_GUEST_KSEG0 + 0x180;
1902	}
1903
1904	kvm_change_c0_guest_cause(cop0, (0xff),
1905				  (EXCCODE_TLBS << CAUSEB_EXCCODE));
1906
1907	/* setup badvaddr, context and entryhi registers for the guest */
1908	kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
1909	/* XXXKYMA: is the context register used by linux??? */
1910	kvm_write_c0_guest_entryhi(cop0, entryhi);
1911	/* Blow away the shadow host TLBs */
1912	kvm_mips_flush_host_tlb(1);
1913
1914	return EMULATE_DONE;
1915}
1916
1917enum emulation_result kvm_mips_emulate_tlbinv_st(unsigned long cause,
1918						 uint32_t *opc,
1919						 struct kvm_run *run,
1920						 struct kvm_vcpu *vcpu)
1921{
1922	struct mips_coproc *cop0 = vcpu->arch.cop0;
1923	struct kvm_vcpu_arch *arch = &vcpu->arch;
1924	unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
1925		(kvm_read_c0_guest_entryhi(cop0) & ASID_MASK);
1926
1927	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1928		/* save old pc */
1929		kvm_write_c0_guest_epc(cop0, arch->pc);
1930		kvm_set_c0_guest_status(cop0, ST0_EXL);
1931
1932		if (cause & CAUSEF_BD)
1933			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1934		else
1935			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
1936
1937		kvm_debug("[EXL == 0] Delivering TLB MISS @ pc %#lx\n",
1938			  arch->pc);
1939
1940		/* Set PC to the exception entry point */
1941		arch->pc = KVM_GUEST_KSEG0 + 0x180;
1942	} else {
1943		kvm_debug("[EXL == 1] Delivering TLB MISS @ pc %#lx\n",
1944			  arch->pc);
1945		arch->pc = KVM_GUEST_KSEG0 + 0x180;
1946	}
1947
 
 
 
1948	kvm_change_c0_guest_cause(cop0, (0xff),
1949				  (EXCCODE_TLBS << CAUSEB_EXCCODE));
1950
1951	/* setup badvaddr, context and entryhi registers for the guest */
1952	kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
1953	/* XXXKYMA: is the context register used by linux??? */
1954	kvm_write_c0_guest_entryhi(cop0, entryhi);
1955	/* Blow away the shadow host TLBs */
1956	kvm_mips_flush_host_tlb(1);
1957
1958	return EMULATE_DONE;
1959}
1960
1961/* TLBMOD: store into address matching TLB with Dirty bit off */
1962enum emulation_result kvm_mips_handle_tlbmod(unsigned long cause, uint32_t *opc,
1963					     struct kvm_run *run,
1964					     struct kvm_vcpu *vcpu)
1965{
1966	enum emulation_result er = EMULATE_DONE;
1967#ifdef DEBUG
1968	struct mips_coproc *cop0 = vcpu->arch.cop0;
1969	unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
1970				(kvm_read_c0_guest_entryhi(cop0) & ASID_MASK);
1971	int index;
1972
1973	/* If address not in the guest TLB, then we are in trouble */
1974	index = kvm_mips_guest_tlb_lookup(vcpu, entryhi);
1975	if (index < 0) {
1976		/* XXXKYMA Invalidate and retry */
1977		kvm_mips_host_tlb_inv(vcpu, vcpu->arch.host_cp0_badvaddr);
1978		kvm_err("%s: host got TLBMOD for %#lx but entry not present in Guest TLB\n",
1979		     __func__, entryhi);
1980		kvm_mips_dump_guest_tlbs(vcpu);
1981		kvm_mips_dump_host_tlbs();
1982		return EMULATE_FAIL;
1983	}
1984#endif
1985
1986	er = kvm_mips_emulate_tlbmod(cause, opc, run, vcpu);
1987	return er;
1988}
1989
1990enum emulation_result kvm_mips_emulate_tlbmod(unsigned long cause,
1991					      uint32_t *opc,
1992					      struct kvm_run *run,
1993					      struct kvm_vcpu *vcpu)
1994{
1995	struct mips_coproc *cop0 = vcpu->arch.cop0;
1996	unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
1997				(kvm_read_c0_guest_entryhi(cop0) & ASID_MASK);
1998	struct kvm_vcpu_arch *arch = &vcpu->arch;
1999
2000	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2001		/* save old pc */
2002		kvm_write_c0_guest_epc(cop0, arch->pc);
2003		kvm_set_c0_guest_status(cop0, ST0_EXL);
2004
2005		if (cause & CAUSEF_BD)
2006			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2007		else
2008			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2009
2010		kvm_debug("[EXL == 0] Delivering TLB MOD @ pc %#lx\n",
2011			  arch->pc);
2012
2013		arch->pc = KVM_GUEST_KSEG0 + 0x180;
2014	} else {
2015		kvm_debug("[EXL == 1] Delivering TLB MOD @ pc %#lx\n",
2016			  arch->pc);
2017		arch->pc = KVM_GUEST_KSEG0 + 0x180;
2018	}
2019
 
 
2020	kvm_change_c0_guest_cause(cop0, (0xff),
2021				  (EXCCODE_MOD << CAUSEB_EXCCODE));
2022
2023	/* setup badvaddr, context and entryhi registers for the guest */
2024	kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
2025	/* XXXKYMA: is the context register used by linux??? */
2026	kvm_write_c0_guest_entryhi(cop0, entryhi);
2027	/* Blow away the shadow host TLBs */
2028	kvm_mips_flush_host_tlb(1);
2029
2030	return EMULATE_DONE;
2031}
2032
2033enum emulation_result kvm_mips_emulate_fpu_exc(unsigned long cause,
2034					       uint32_t *opc,
2035					       struct kvm_run *run,
2036					       struct kvm_vcpu *vcpu)
2037{
2038	struct mips_coproc *cop0 = vcpu->arch.cop0;
2039	struct kvm_vcpu_arch *arch = &vcpu->arch;
2040
2041	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2042		/* save old pc */
2043		kvm_write_c0_guest_epc(cop0, arch->pc);
2044		kvm_set_c0_guest_status(cop0, ST0_EXL);
2045
2046		if (cause & CAUSEF_BD)
2047			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2048		else
2049			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2050
2051	}
2052
2053	arch->pc = KVM_GUEST_KSEG0 + 0x180;
2054
2055	kvm_change_c0_guest_cause(cop0, (0xff),
2056				  (EXCCODE_CPU << CAUSEB_EXCCODE));
2057	kvm_change_c0_guest_cause(cop0, (CAUSEF_CE), (0x1 << CAUSEB_CE));
2058
2059	return EMULATE_DONE;
2060}
2061
2062enum emulation_result kvm_mips_emulate_ri_exc(unsigned long cause,
2063					      uint32_t *opc,
2064					      struct kvm_run *run,
2065					      struct kvm_vcpu *vcpu)
2066{
2067	struct mips_coproc *cop0 = vcpu->arch.cop0;
2068	struct kvm_vcpu_arch *arch = &vcpu->arch;
2069	enum emulation_result er = EMULATE_DONE;
2070
2071	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2072		/* save old pc */
2073		kvm_write_c0_guest_epc(cop0, arch->pc);
2074		kvm_set_c0_guest_status(cop0, ST0_EXL);
2075
2076		if (cause & CAUSEF_BD)
2077			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2078		else
2079			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2080
2081		kvm_debug("Delivering RI @ pc %#lx\n", arch->pc);
2082
2083		kvm_change_c0_guest_cause(cop0, (0xff),
2084					  (EXCCODE_RI << CAUSEB_EXCCODE));
2085
2086		/* Set PC to the exception entry point */
2087		arch->pc = KVM_GUEST_KSEG0 + 0x180;
2088
2089	} else {
2090		kvm_err("Trying to deliver RI when EXL is already set\n");
2091		er = EMULATE_FAIL;
2092	}
2093
2094	return er;
2095}
2096
2097enum emulation_result kvm_mips_emulate_bp_exc(unsigned long cause,
2098					      uint32_t *opc,
2099					      struct kvm_run *run,
2100					      struct kvm_vcpu *vcpu)
2101{
2102	struct mips_coproc *cop0 = vcpu->arch.cop0;
2103	struct kvm_vcpu_arch *arch = &vcpu->arch;
2104	enum emulation_result er = EMULATE_DONE;
2105
2106	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2107		/* save old pc */
2108		kvm_write_c0_guest_epc(cop0, arch->pc);
2109		kvm_set_c0_guest_status(cop0, ST0_EXL);
2110
2111		if (cause & CAUSEF_BD)
2112			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2113		else
2114			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2115
2116		kvm_debug("Delivering BP @ pc %#lx\n", arch->pc);
2117
2118		kvm_change_c0_guest_cause(cop0, (0xff),
2119					  (EXCCODE_BP << CAUSEB_EXCCODE));
2120
2121		/* Set PC to the exception entry point */
2122		arch->pc = KVM_GUEST_KSEG0 + 0x180;
2123
2124	} else {
2125		kvm_err("Trying to deliver BP when EXL is already set\n");
2126		er = EMULATE_FAIL;
2127	}
2128
2129	return er;
2130}
2131
2132enum emulation_result kvm_mips_emulate_trap_exc(unsigned long cause,
2133						uint32_t *opc,
2134						struct kvm_run *run,
2135						struct kvm_vcpu *vcpu)
2136{
2137	struct mips_coproc *cop0 = vcpu->arch.cop0;
2138	struct kvm_vcpu_arch *arch = &vcpu->arch;
2139	enum emulation_result er = EMULATE_DONE;
2140
2141	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2142		/* save old pc */
2143		kvm_write_c0_guest_epc(cop0, arch->pc);
2144		kvm_set_c0_guest_status(cop0, ST0_EXL);
2145
2146		if (cause & CAUSEF_BD)
2147			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2148		else
2149			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2150
2151		kvm_debug("Delivering TRAP @ pc %#lx\n", arch->pc);
2152
2153		kvm_change_c0_guest_cause(cop0, (0xff),
2154					  (EXCCODE_TR << CAUSEB_EXCCODE));
2155
2156		/* Set PC to the exception entry point */
2157		arch->pc = KVM_GUEST_KSEG0 + 0x180;
2158
2159	} else {
2160		kvm_err("Trying to deliver TRAP when EXL is already set\n");
2161		er = EMULATE_FAIL;
2162	}
2163
2164	return er;
2165}
2166
2167enum emulation_result kvm_mips_emulate_msafpe_exc(unsigned long cause,
2168						  uint32_t *opc,
2169						  struct kvm_run *run,
2170						  struct kvm_vcpu *vcpu)
2171{
2172	struct mips_coproc *cop0 = vcpu->arch.cop0;
2173	struct kvm_vcpu_arch *arch = &vcpu->arch;
2174	enum emulation_result er = EMULATE_DONE;
2175
2176	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2177		/* save old pc */
2178		kvm_write_c0_guest_epc(cop0, arch->pc);
2179		kvm_set_c0_guest_status(cop0, ST0_EXL);
2180
2181		if (cause & CAUSEF_BD)
2182			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2183		else
2184			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2185
2186		kvm_debug("Delivering MSAFPE @ pc %#lx\n", arch->pc);
2187
2188		kvm_change_c0_guest_cause(cop0, (0xff),
2189					  (EXCCODE_MSAFPE << CAUSEB_EXCCODE));
2190
2191		/* Set PC to the exception entry point */
2192		arch->pc = KVM_GUEST_KSEG0 + 0x180;
2193
2194	} else {
2195		kvm_err("Trying to deliver MSAFPE when EXL is already set\n");
2196		er = EMULATE_FAIL;
2197	}
2198
2199	return er;
2200}
2201
2202enum emulation_result kvm_mips_emulate_fpe_exc(unsigned long cause,
2203					       uint32_t *opc,
2204					       struct kvm_run *run,
2205					       struct kvm_vcpu *vcpu)
2206{
2207	struct mips_coproc *cop0 = vcpu->arch.cop0;
2208	struct kvm_vcpu_arch *arch = &vcpu->arch;
2209	enum emulation_result er = EMULATE_DONE;
2210
2211	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2212		/* save old pc */
2213		kvm_write_c0_guest_epc(cop0, arch->pc);
2214		kvm_set_c0_guest_status(cop0, ST0_EXL);
2215
2216		if (cause & CAUSEF_BD)
2217			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2218		else
2219			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2220
2221		kvm_debug("Delivering FPE @ pc %#lx\n", arch->pc);
2222
2223		kvm_change_c0_guest_cause(cop0, (0xff),
2224					  (EXCCODE_FPE << CAUSEB_EXCCODE));
2225
2226		/* Set PC to the exception entry point */
2227		arch->pc = KVM_GUEST_KSEG0 + 0x180;
2228
2229	} else {
2230		kvm_err("Trying to deliver FPE when EXL is already set\n");
2231		er = EMULATE_FAIL;
2232	}
2233
2234	return er;
2235}
2236
2237enum emulation_result kvm_mips_emulate_msadis_exc(unsigned long cause,
2238						  uint32_t *opc,
2239						  struct kvm_run *run,
2240						  struct kvm_vcpu *vcpu)
2241{
2242	struct mips_coproc *cop0 = vcpu->arch.cop0;
2243	struct kvm_vcpu_arch *arch = &vcpu->arch;
2244	enum emulation_result er = EMULATE_DONE;
2245
2246	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2247		/* save old pc */
2248		kvm_write_c0_guest_epc(cop0, arch->pc);
2249		kvm_set_c0_guest_status(cop0, ST0_EXL);
2250
2251		if (cause & CAUSEF_BD)
2252			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2253		else
2254			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2255
2256		kvm_debug("Delivering MSADIS @ pc %#lx\n", arch->pc);
2257
2258		kvm_change_c0_guest_cause(cop0, (0xff),
2259					  (EXCCODE_MSADIS << CAUSEB_EXCCODE));
2260
2261		/* Set PC to the exception entry point */
2262		arch->pc = KVM_GUEST_KSEG0 + 0x180;
2263
2264	} else {
2265		kvm_err("Trying to deliver MSADIS when EXL is already set\n");
2266		er = EMULATE_FAIL;
2267	}
2268
2269	return er;
2270}
2271
2272/* ll/sc, rdhwr, sync emulation */
2273
2274#define OPCODE 0xfc000000
2275#define BASE   0x03e00000
2276#define RT     0x001f0000
2277#define OFFSET 0x0000ffff
2278#define LL     0xc0000000
2279#define SC     0xe0000000
2280#define SPEC0  0x00000000
2281#define SPEC3  0x7c000000
2282#define RD     0x0000f800
2283#define FUNC   0x0000003f
2284#define SYNC   0x0000000f
2285#define RDHWR  0x0000003b
2286
2287enum emulation_result kvm_mips_handle_ri(unsigned long cause, uint32_t *opc,
2288					 struct kvm_run *run,
2289					 struct kvm_vcpu *vcpu)
2290{
2291	struct mips_coproc *cop0 = vcpu->arch.cop0;
2292	struct kvm_vcpu_arch *arch = &vcpu->arch;
2293	enum emulation_result er = EMULATE_DONE;
2294	unsigned long curr_pc;
2295	uint32_t inst;
 
2296
2297	/*
2298	 * Update PC and hold onto current PC in case there is
2299	 * an error and we want to rollback the PC
2300	 */
2301	curr_pc = vcpu->arch.pc;
2302	er = update_pc(vcpu, cause);
2303	if (er == EMULATE_FAIL)
2304		return er;
2305
2306	/* Fetch the instruction. */
2307	if (cause & CAUSEF_BD)
2308		opc += 1;
2309
2310	inst = kvm_get_inst(opc, vcpu);
2311
2312	if (inst == KVM_INVALID_INST) {
2313		kvm_err("%s: Cannot get inst @ %p\n", __func__, opc);
2314		return EMULATE_FAIL;
2315	}
2316
2317	if ((inst & OPCODE) == SPEC3 && (inst & FUNC) == RDHWR) {
 
 
 
2318		int usermode = !KVM_GUEST_KERNEL_MODE(vcpu);
2319		int rd = (inst & RD) >> 11;
2320		int rt = (inst & RT) >> 16;
 
 
2321		/* If usermode, check RDHWR rd is allowed by guest HWREna */
2322		if (usermode && !(kvm_read_c0_guest_hwrena(cop0) & BIT(rd))) {
2323			kvm_debug("RDHWR %#x disallowed by HWREna @ %p\n",
2324				  rd, opc);
2325			goto emulate_ri;
2326		}
2327		switch (rd) {
2328		case 0:	/* CPU number */
2329			arch->gprs[rt] = 0;
2330			break;
2331		case 1:	/* SYNCI length */
2332			arch->gprs[rt] = min(current_cpu_data.dcache.linesz,
2333					     current_cpu_data.icache.linesz);
2334			break;
2335		case 2:	/* Read count register */
2336			arch->gprs[rt] = kvm_mips_read_count(vcpu);
2337			break;
2338		case 3:	/* Count register resolution */
2339			switch (current_cpu_data.cputype) {
2340			case CPU_20KC:
2341			case CPU_25KF:
2342				arch->gprs[rt] = 1;
2343				break;
2344			default:
2345				arch->gprs[rt] = 2;
2346			}
2347			break;
2348		case 29:
2349			arch->gprs[rt] = kvm_read_c0_guest_userlocal(cop0);
2350			break;
2351
2352		default:
2353			kvm_debug("RDHWR %#x not supported @ %p\n", rd, opc);
2354			goto emulate_ri;
2355		}
 
 
 
2356	} else {
2357		kvm_debug("Emulate RI not supported @ %p: %#x\n", opc, inst);
 
2358		goto emulate_ri;
2359	}
2360
2361	return EMULATE_DONE;
2362
2363emulate_ri:
2364	/*
2365	 * Rollback PC (if in branch delay slot then the PC already points to
2366	 * branch target), and pass the RI exception to the guest OS.
2367	 */
2368	vcpu->arch.pc = curr_pc;
2369	return kvm_mips_emulate_ri_exc(cause, opc, run, vcpu);
2370}
2371
2372enum emulation_result kvm_mips_complete_mmio_load(struct kvm_vcpu *vcpu,
2373						  struct kvm_run *run)
2374{
 
2375	unsigned long *gpr = &vcpu->arch.gprs[vcpu->arch.io_gpr];
2376	enum emulation_result er = EMULATE_DONE;
2377
2378	if (run->mmio.len > sizeof(*gpr)) {
2379		kvm_err("Bad MMIO length: %d", run->mmio.len);
2380		er = EMULATE_FAIL;
2381		goto done;
2382	}
2383
2384	er = update_pc(vcpu, vcpu->arch.pending_load_cause);
2385	if (er == EMULATE_FAIL)
2386		return er;
2387
2388	switch (run->mmio.len) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2389	case 4:
2390		*gpr = *(int32_t *) run->mmio.data;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2391		break;
2392
2393	case 2:
2394		if (vcpu->mmio_needed == 2)
2395			*gpr = *(int16_t *) run->mmio.data;
2396		else
2397			*gpr = *(uint16_t *)run->mmio.data;
2398
2399		break;
2400	case 1:
2401		if (vcpu->mmio_needed == 2)
2402			*gpr = *(int8_t *) run->mmio.data;
2403		else
2404			*gpr = *(u8 *) run->mmio.data;
2405		break;
2406	}
2407
2408	if (vcpu->arch.pending_load_cause & CAUSEF_BD)
2409		kvm_debug("[%#lx] Completing %d byte BD Load to gpr %d (0x%08lx) type %d\n",
2410			  vcpu->arch.pc, run->mmio.len, vcpu->arch.io_gpr, *gpr,
2411			  vcpu->mmio_needed);
2412
2413done:
2414	return er;
2415}
2416
2417static enum emulation_result kvm_mips_emulate_exc(unsigned long cause,
2418						  uint32_t *opc,
2419						  struct kvm_run *run,
2420						  struct kvm_vcpu *vcpu)
2421{
2422	uint32_t exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
2423	struct mips_coproc *cop0 = vcpu->arch.cop0;
2424	struct kvm_vcpu_arch *arch = &vcpu->arch;
2425	enum emulation_result er = EMULATE_DONE;
2426
2427	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2428		/* save old pc */
2429		kvm_write_c0_guest_epc(cop0, arch->pc);
2430		kvm_set_c0_guest_status(cop0, ST0_EXL);
2431
2432		if (cause & CAUSEF_BD)
2433			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2434		else
2435			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2436
2437		kvm_change_c0_guest_cause(cop0, (0xff),
2438					  (exccode << CAUSEB_EXCCODE));
2439
2440		/* Set PC to the exception entry point */
2441		arch->pc = KVM_GUEST_KSEG0 + 0x180;
2442		kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
2443
2444		kvm_debug("Delivering EXC %d @ pc %#lx, badVaddr: %#lx\n",
2445			  exccode, kvm_read_c0_guest_epc(cop0),
2446			  kvm_read_c0_guest_badvaddr(cop0));
2447	} else {
2448		kvm_err("Trying to deliver EXC when EXL is already set\n");
2449		er = EMULATE_FAIL;
2450	}
2451
2452	return er;
2453}
2454
2455enum emulation_result kvm_mips_check_privilege(unsigned long cause,
2456					       uint32_t *opc,
2457					       struct kvm_run *run,
2458					       struct kvm_vcpu *vcpu)
2459{
2460	enum emulation_result er = EMULATE_DONE;
2461	uint32_t exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
2462	unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
2463
2464	int usermode = !KVM_GUEST_KERNEL_MODE(vcpu);
2465
2466	if (usermode) {
2467		switch (exccode) {
2468		case EXCCODE_INT:
2469		case EXCCODE_SYS:
2470		case EXCCODE_BP:
2471		case EXCCODE_RI:
2472		case EXCCODE_TR:
2473		case EXCCODE_MSAFPE:
2474		case EXCCODE_FPE:
2475		case EXCCODE_MSADIS:
2476			break;
2477
2478		case EXCCODE_CPU:
2479			if (((cause & CAUSEF_CE) >> CAUSEB_CE) == 0)
2480				er = EMULATE_PRIV_FAIL;
2481			break;
2482
2483		case EXCCODE_MOD:
2484			break;
2485
2486		case EXCCODE_TLBL:
2487			/*
2488			 * We we are accessing Guest kernel space, then send an
2489			 * address error exception to the guest
2490			 */
2491			if (badvaddr >= (unsigned long) KVM_GUEST_KSEG0) {
2492				kvm_debug("%s: LD MISS @ %#lx\n", __func__,
2493					  badvaddr);
2494				cause &= ~0xff;
2495				cause |= (EXCCODE_ADEL << CAUSEB_EXCCODE);
2496				er = EMULATE_PRIV_FAIL;
2497			}
2498			break;
2499
2500		case EXCCODE_TLBS:
2501			/*
2502			 * We we are accessing Guest kernel space, then send an
2503			 * address error exception to the guest
2504			 */
2505			if (badvaddr >= (unsigned long) KVM_GUEST_KSEG0) {
2506				kvm_debug("%s: ST MISS @ %#lx\n", __func__,
2507					  badvaddr);
2508				cause &= ~0xff;
2509				cause |= (EXCCODE_ADES << CAUSEB_EXCCODE);
2510				er = EMULATE_PRIV_FAIL;
2511			}
2512			break;
2513
2514		case EXCCODE_ADES:
2515			kvm_debug("%s: address error ST @ %#lx\n", __func__,
2516				  badvaddr);
2517			if ((badvaddr & PAGE_MASK) == KVM_GUEST_COMMPAGE_ADDR) {
2518				cause &= ~0xff;
2519				cause |= (EXCCODE_TLBS << CAUSEB_EXCCODE);
2520			}
2521			er = EMULATE_PRIV_FAIL;
2522			break;
2523		case EXCCODE_ADEL:
2524			kvm_debug("%s: address error LD @ %#lx\n", __func__,
2525				  badvaddr);
2526			if ((badvaddr & PAGE_MASK) == KVM_GUEST_COMMPAGE_ADDR) {
2527				cause &= ~0xff;
2528				cause |= (EXCCODE_TLBL << CAUSEB_EXCCODE);
2529			}
2530			er = EMULATE_PRIV_FAIL;
2531			break;
2532		default:
2533			er = EMULATE_PRIV_FAIL;
2534			break;
2535		}
2536	}
2537
2538	if (er == EMULATE_PRIV_FAIL)
2539		kvm_mips_emulate_exc(cause, opc, run, vcpu);
2540
2541	return er;
2542}
2543
2544/*
2545 * User Address (UA) fault, this could happen if
2546 * (1) TLB entry not present/valid in both Guest and shadow host TLBs, in this
2547 *     case we pass on the fault to the guest kernel and let it handle it.
2548 * (2) TLB entry is present in the Guest TLB but not in the shadow, in this
2549 *     case we inject the TLB from the Guest TLB into the shadow host TLB
2550 */
2551enum emulation_result kvm_mips_handle_tlbmiss(unsigned long cause,
2552					      uint32_t *opc,
2553					      struct kvm_run *run,
2554					      struct kvm_vcpu *vcpu)
2555{
2556	enum emulation_result er = EMULATE_DONE;
2557	uint32_t exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
2558	unsigned long va = vcpu->arch.host_cp0_badvaddr;
2559	int index;
2560
2561	kvm_debug("kvm_mips_handle_tlbmiss: badvaddr: %#lx, entryhi: %#lx\n",
2562		  vcpu->arch.host_cp0_badvaddr, vcpu->arch.host_cp0_entryhi);
2563
2564	/*
2565	 * KVM would not have got the exception if this entry was valid in the
2566	 * shadow host TLB. Check the Guest TLB, if the entry is not there then
2567	 * send the guest an exception. The guest exc handler should then inject
2568	 * an entry into the guest TLB.
2569	 */
2570	index = kvm_mips_guest_tlb_lookup(vcpu,
2571		      (va & VPN2_MASK) |
2572		      (kvm_read_c0_guest_entryhi(vcpu->arch.cop0) & ASID_MASK));
 
2573	if (index < 0) {
2574		if (exccode == EXCCODE_TLBL) {
2575			er = kvm_mips_emulate_tlbmiss_ld(cause, opc, run, vcpu);
2576		} else if (exccode == EXCCODE_TLBS) {
2577			er = kvm_mips_emulate_tlbmiss_st(cause, opc, run, vcpu);
2578		} else {
2579			kvm_err("%s: invalid exc code: %d\n", __func__,
2580				exccode);
2581			er = EMULATE_FAIL;
2582		}
2583	} else {
2584		struct kvm_mips_tlb *tlb = &vcpu->arch.guest_tlb[index];
2585
2586		/*
2587		 * Check if the entry is valid, if not then setup a TLB invalid
2588		 * exception to the guest
2589		 */
2590		if (!TLB_IS_VALID(*tlb, va)) {
2591			if (exccode == EXCCODE_TLBL) {
2592				er = kvm_mips_emulate_tlbinv_ld(cause, opc, run,
2593								vcpu);
2594			} else if (exccode == EXCCODE_TLBS) {
2595				er = kvm_mips_emulate_tlbinv_st(cause, opc, run,
2596								vcpu);
2597			} else {
2598				kvm_err("%s: invalid exc code: %d\n", __func__,
2599					exccode);
2600				er = EMULATE_FAIL;
2601			}
2602		} else {
2603			kvm_debug("Injecting hi: %#lx, lo0: %#lx, lo1: %#lx into shadow host TLB\n",
2604				  tlb->tlb_hi, tlb->tlb_lo0, tlb->tlb_lo1);
2605			/*
2606			 * OK we have a Guest TLB entry, now inject it into the
2607			 * shadow host TLB
2608			 */
2609			kvm_mips_handle_mapped_seg_tlb_fault(vcpu, tlb, NULL,
2610							     NULL);
 
 
 
 
 
2611		}
2612	}
2613
2614	return er;
2615}