Linux Audio

Check our new training course

Loading...
v5.9
  1/* SPDX-License-Identifier: GPL-2.0 */
  2#ifndef _ASM_IA64_UACCESS_H
  3#define _ASM_IA64_UACCESS_H
  4
  5/*
  6 * This file defines various macros to transfer memory areas across
  7 * the user/kernel boundary.  This needs to be done carefully because
  8 * this code is executed in kernel mode and uses user-specified
  9 * addresses.  Thus, we need to be careful not to let the user to
 10 * trick us into accessing kernel memory that would normally be
 11 * inaccessible.  This code is also fairly performance sensitive,
 12 * so we want to spend as little time doing safety checks as
 13 * possible.
 14 *
 15 * To make matters a bit more interesting, these macros sometimes also
 16 * called from within the kernel itself, in which case the address
 17 * validity check must be skipped.  The get_fs() macro tells us what
 18 * to do: if get_fs()==USER_DS, checking is performed, if
 19 * get_fs()==KERNEL_DS, checking is bypassed.
 20 *
 21 * Note that even if the memory area specified by the user is in a
 22 * valid address range, it is still possible that we'll get a page
 23 * fault while accessing it.  This is handled by filling out an
 24 * exception handler fixup entry for each instruction that has the
 25 * potential to fault.  When such a fault occurs, the page fault
 26 * handler checks to see whether the faulting instruction has a fixup
 27 * associated and, if so, sets r8 to -EFAULT and clears r9 to 0 and
 28 * then resumes execution at the continuation point.
 29 *
 30 * Based on <asm-alpha/uaccess.h>.
 31 *
 32 * Copyright (C) 1998, 1999, 2001-2004 Hewlett-Packard Co
 33 *	David Mosberger-Tang <davidm@hpl.hp.com>
 34 */
 35
 36#include <linux/compiler.h>
 
 
 37#include <linux/page-flags.h>
 
 38
 39#include <asm/intrinsics.h>
 40#include <linux/pgtable.h>
 41#include <asm/io.h>
 42#include <asm/extable.h>
 43
 44/*
 45 * For historical reasons, the following macros are grossly misnamed:
 46 */
 47#define KERNEL_DS	((mm_segment_t) { ~0UL })		/* cf. access_ok() */
 48#define USER_DS		((mm_segment_t) { TASK_SIZE-1 })	/* cf. access_ok() */
 49
 
 
 
 
 50#define get_fs()  (current_thread_info()->addr_limit)
 51#define set_fs(x) (current_thread_info()->addr_limit = (x))
 52
 53#define uaccess_kernel()	(get_fs().seg == KERNEL_DS.seg)
 54
 55/*
 56 * When accessing user memory, we need to make sure the entire area really is in
 57 * user-level space.  In order to do this efficiently, we make sure that the page at
 58 * address TASK_SIZE is never valid.  We also need to make sure that the address doesn't
 59 * point inside the virtually mapped linear page table.
 60 */
 61static inline int __access_ok(const void __user *p, unsigned long size)
 62{
 63	unsigned long addr = (unsigned long)p;
 64	unsigned long seg = get_fs().seg;
 65	return likely(addr <= seg) &&
 66	 (seg == KERNEL_DS.seg || likely(REGION_OFFSET(addr) < RGN_MAP_LIMIT));
 67}
 68#define access_ok(addr, size)	__access_ok((addr), (size))
 69
 70/*
 71 * These are the main single-value transfer routines.  They automatically
 72 * use the right size if we just have the right pointer type.
 73 *
 74 * Careful to not
 75 * (a) re-use the arguments for side effects (sizeof/typeof is ok)
 76 * (b) require any knowledge of processes at this stage
 77 */
 78#define put_user(x, ptr)	__put_user_check((__typeof__(*(ptr))) (x), (ptr), sizeof(*(ptr)))
 79#define get_user(x, ptr)	__get_user_check((x), (ptr), sizeof(*(ptr)))
 80
 81/*
 82 * The "__xxx" versions do not do address space checking, useful when
 83 * doing multiple accesses to the same area (the programmer has to do the
 84 * checks by hand with "access_ok()")
 85 */
 86#define __put_user(x, ptr)	__put_user_nocheck((__typeof__(*(ptr))) (x), (ptr), sizeof(*(ptr)))
 87#define __get_user(x, ptr)	__get_user_nocheck((x), (ptr), sizeof(*(ptr)))
 88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 89#ifdef ASM_SUPPORTED
 90  struct __large_struct { unsigned long buf[100]; };
 91# define __m(x) (*(struct __large_struct __user *)(x))
 92
 93/* We need to declare the __ex_table section before we can use it in .xdata.  */
 94asm (".section \"__ex_table\", \"a\"\n\t.previous");
 95
 96# define __get_user_size(val, addr, n, err)							\
 97do {												\
 98	register long __gu_r8 asm ("r8") = 0;							\
 99	register long __gu_r9 asm ("r9");							\
100	asm ("\n[1:]\tld"#n" %0=%2%P2\t// %0 and %1 get overwritten by exception handler\n"	\
101	     "\t.xdata4 \"__ex_table\", 1b-., 1f-.+4\n"						\
102	     "[1:]"										\
103	     : "=r"(__gu_r9), "=r"(__gu_r8) : "m"(__m(addr)), "1"(__gu_r8));			\
104	(err) = __gu_r8;									\
105	(val) = __gu_r9;									\
106} while (0)
107
108/*
109 * The "__put_user_size()" macro tells gcc it reads from memory instead of writing it.  This
110 * is because they do not write to any memory gcc knows about, so there are no aliasing
111 * issues.
112 */
113# define __put_user_size(val, addr, n, err)							\
114do {												\
115	register long __pu_r8 asm ("r8") = 0;							\
116	asm volatile ("\n[1:]\tst"#n" %1=%r2%P1\t// %0 gets overwritten by exception handler\n"	\
117		      "\t.xdata4 \"__ex_table\", 1b-., 1f-.\n"					\
118		      "[1:]"									\
119		      : "=r"(__pu_r8) : "m"(__m(addr)), "rO"(val), "0"(__pu_r8));		\
120	(err) = __pu_r8;									\
121} while (0)
122
123#else /* !ASM_SUPPORTED */
124# define RELOC_TYPE	2	/* ip-rel */
125# define __get_user_size(val, addr, n, err)				\
126do {									\
127	__ld_user("__ex_table", (unsigned long) addr, n, RELOC_TYPE);	\
128	(err) = ia64_getreg(_IA64_REG_R8);				\
129	(val) = ia64_getreg(_IA64_REG_R9);				\
130} while (0)
131# define __put_user_size(val, addr, n, err)				\
132do {									\
133	__st_user("__ex_table", (unsigned long) addr, n, RELOC_TYPE,	\
134		  (__force unsigned long) (val));			\
135	(err) = ia64_getreg(_IA64_REG_R8);				\
136} while (0)
137#endif /* !ASM_SUPPORTED */
138
139extern void __get_user_unknown (void);
140
141/*
142 * Evaluating arguments X, PTR, SIZE, and SEGMENT may involve subroutine-calls, which
143 * could clobber r8 and r9 (among others).  Thus, be careful not to evaluate it while
144 * using r8/r9.
145 */
146#define __do_get_user(check, x, ptr, size)						\
147({											\
148	const __typeof__(*(ptr)) __user *__gu_ptr = (ptr);				\
149	__typeof__ (size) __gu_size = (size);						\
150	long __gu_err = -EFAULT;							\
151	unsigned long __gu_val = 0;							\
152	if (!check || __access_ok(__gu_ptr, size))					\
153		switch (__gu_size) {							\
154		      case 1: __get_user_size(__gu_val, __gu_ptr, 1, __gu_err); break;	\
155		      case 2: __get_user_size(__gu_val, __gu_ptr, 2, __gu_err); break;	\
156		      case 4: __get_user_size(__gu_val, __gu_ptr, 4, __gu_err); break;	\
157		      case 8: __get_user_size(__gu_val, __gu_ptr, 8, __gu_err); break;	\
158		      default: __get_user_unknown(); break;				\
159		}									\
160	(x) = (__force __typeof__(*(__gu_ptr))) __gu_val;				\
161	__gu_err;									\
162})
163
164#define __get_user_nocheck(x, ptr, size)	__do_get_user(0, x, ptr, size)
165#define __get_user_check(x, ptr, size)	__do_get_user(1, x, ptr, size)
166
167extern void __put_user_unknown (void);
168
169/*
170 * Evaluating arguments X, PTR, SIZE, and SEGMENT may involve subroutine-calls, which
171 * could clobber r8 (among others).  Thus, be careful not to evaluate them while using r8.
172 */
173#define __do_put_user(check, x, ptr, size)						\
174({											\
175	__typeof__ (x) __pu_x = (x);							\
176	__typeof__ (*(ptr)) __user *__pu_ptr = (ptr);					\
177	__typeof__ (size) __pu_size = (size);						\
178	long __pu_err = -EFAULT;							\
179											\
180	if (!check || __access_ok(__pu_ptr, __pu_size))					\
181		switch (__pu_size) {							\
182		      case 1: __put_user_size(__pu_x, __pu_ptr, 1, __pu_err); break;	\
183		      case 2: __put_user_size(__pu_x, __pu_ptr, 2, __pu_err); break;	\
184		      case 4: __put_user_size(__pu_x, __pu_ptr, 4, __pu_err); break;	\
185		      case 8: __put_user_size(__pu_x, __pu_ptr, 8, __pu_err); break;	\
186		      default: __put_user_unknown(); break;				\
187		}									\
188	__pu_err;									\
189})
190
191#define __put_user_nocheck(x, ptr, size)	__do_put_user(0, x, ptr, size)
192#define __put_user_check(x, ptr, size)	__do_put_user(1, x, ptr, size)
193
194/*
195 * Complex access routines
196 */
197extern unsigned long __must_check __copy_user (void __user *to, const void __user *from,
198					       unsigned long count);
199
200static inline unsigned long
201raw_copy_to_user(void __user *to, const void *from, unsigned long count)
202{
203	return __copy_user(to, (__force void __user *) from, count);
204}
205
206static inline unsigned long
207raw_copy_from_user(void *to, const void __user *from, unsigned long count)
208{
209	return __copy_user((__force void __user *) to, from, count);
210}
211
212#define INLINE_COPY_FROM_USER
213#define INLINE_COPY_TO_USER
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
214
215extern unsigned long __do_clear_user (void __user *, unsigned long);
216
217#define __clear_user(to, n)		__do_clear_user(to, n)
218
219#define clear_user(to, n)					\
220({								\
221	unsigned long __cu_len = (n);				\
222	if (__access_ok(to, __cu_len))				\
223		__cu_len = __do_clear_user(to, __cu_len);	\
224	__cu_len;						\
225})
226
227
228/*
229 * Returns: -EFAULT if exception before terminator, N if the entire buffer filled, else
230 * strlen.
231 */
232extern long __must_check __strncpy_from_user (char *to, const char __user *from, long to_len);
233
234#define strncpy_from_user(to, from, n)					\
235({									\
236	const char __user * __sfu_from = (from);			\
237	long __sfu_ret = -EFAULT;					\
238	if (__access_ok(__sfu_from, 0))					\
239		__sfu_ret = __strncpy_from_user((to), __sfu_from, (n));	\
240	__sfu_ret;							\
241})
242
 
 
 
 
 
 
 
 
 
 
 
 
243/*
244 * Returns: 0 if exception before NUL or reaching the supplied limit
245 * (N), a value greater than N if the limit would be exceeded, else
246 * strlen.
247 */
248extern unsigned long __strnlen_user (const char __user *, long);
249
250#define strnlen_user(str, len)					\
251({								\
252	const char __user *__su_str = (str);			\
253	unsigned long __su_ret = 0;				\
254	if (__access_ok(__su_str, 0))				\
255		__su_ret = __strnlen_user(__su_str, len);	\
256	__su_ret;						\
257})
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
258
259#define ARCH_HAS_TRANSLATE_MEM_PTR	1
260static __inline__ void *
261xlate_dev_mem_ptr(phys_addr_t p)
262{
263	struct page *page;
264	void *ptr;
265
266	page = pfn_to_page(p >> PAGE_SHIFT);
267	if (PageUncached(page))
268		ptr = (void *)p + __IA64_UNCACHED_OFFSET;
269	else
270		ptr = __va(p);
271
272	return ptr;
273}
274
275/*
276 * Convert a virtual cached kernel memory pointer to an uncached pointer
277 */
278static __inline__ void *
279xlate_dev_kmem_ptr(void *p)
280{
281	struct page *page;
282	void *ptr;
283
284	page = virt_to_page((unsigned long)p);
285	if (PageUncached(page))
286		ptr = (void *)__pa(p) + __IA64_UNCACHED_OFFSET;
287	else
288		ptr = p;
289
290	return ptr;
291}
292
293#endif /* _ASM_IA64_UACCESS_H */
v4.6
 
  1#ifndef _ASM_IA64_UACCESS_H
  2#define _ASM_IA64_UACCESS_H
  3
  4/*
  5 * This file defines various macros to transfer memory areas across
  6 * the user/kernel boundary.  This needs to be done carefully because
  7 * this code is executed in kernel mode and uses user-specified
  8 * addresses.  Thus, we need to be careful not to let the user to
  9 * trick us into accessing kernel memory that would normally be
 10 * inaccessible.  This code is also fairly performance sensitive,
 11 * so we want to spend as little time doing safety checks as
 12 * possible.
 13 *
 14 * To make matters a bit more interesting, these macros sometimes also
 15 * called from within the kernel itself, in which case the address
 16 * validity check must be skipped.  The get_fs() macro tells us what
 17 * to do: if get_fs()==USER_DS, checking is performed, if
 18 * get_fs()==KERNEL_DS, checking is bypassed.
 19 *
 20 * Note that even if the memory area specified by the user is in a
 21 * valid address range, it is still possible that we'll get a page
 22 * fault while accessing it.  This is handled by filling out an
 23 * exception handler fixup entry for each instruction that has the
 24 * potential to fault.  When such a fault occurs, the page fault
 25 * handler checks to see whether the faulting instruction has a fixup
 26 * associated and, if so, sets r8 to -EFAULT and clears r9 to 0 and
 27 * then resumes execution at the continuation point.
 28 *
 29 * Based on <asm-alpha/uaccess.h>.
 30 *
 31 * Copyright (C) 1998, 1999, 2001-2004 Hewlett-Packard Co
 32 *	David Mosberger-Tang <davidm@hpl.hp.com>
 33 */
 34
 35#include <linux/compiler.h>
 36#include <linux/errno.h>
 37#include <linux/sched.h>
 38#include <linux/page-flags.h>
 39#include <linux/mm.h>
 40
 41#include <asm/intrinsics.h>
 42#include <asm/pgtable.h>
 43#include <asm/io.h>
 
 44
 45/*
 46 * For historical reasons, the following macros are grossly misnamed:
 47 */
 48#define KERNEL_DS	((mm_segment_t) { ~0UL })		/* cf. access_ok() */
 49#define USER_DS		((mm_segment_t) { TASK_SIZE-1 })	/* cf. access_ok() */
 50
 51#define VERIFY_READ	0
 52#define VERIFY_WRITE	1
 53
 54#define get_ds()  (KERNEL_DS)
 55#define get_fs()  (current_thread_info()->addr_limit)
 56#define set_fs(x) (current_thread_info()->addr_limit = (x))
 57
 58#define segment_eq(a, b)	((a).seg == (b).seg)
 59
 60/*
 61 * When accessing user memory, we need to make sure the entire area really is in
 62 * user-level space.  In order to do this efficiently, we make sure that the page at
 63 * address TASK_SIZE is never valid.  We also need to make sure that the address doesn't
 64 * point inside the virtually mapped linear page table.
 65 */
 66#define __access_ok(addr, size, segment)						\
 67({											\
 68	__chk_user_ptr(addr);								\
 69	(likely((unsigned long) (addr) <= (segment).seg)				\
 70	 && ((segment).seg == KERNEL_DS.seg						\
 71	     || likely(REGION_OFFSET((unsigned long) (addr)) < RGN_MAP_LIMIT)));	\
 72})
 73#define access_ok(type, addr, size)	__access_ok((addr), (size), get_fs())
 74
 75/*
 76 * These are the main single-value transfer routines.  They automatically
 77 * use the right size if we just have the right pointer type.
 78 *
 79 * Careful to not
 80 * (a) re-use the arguments for side effects (sizeof/typeof is ok)
 81 * (b) require any knowledge of processes at this stage
 82 */
 83#define put_user(x, ptr)	__put_user_check((__typeof__(*(ptr))) (x), (ptr), sizeof(*(ptr)), get_fs())
 84#define get_user(x, ptr)	__get_user_check((x), (ptr), sizeof(*(ptr)), get_fs())
 85
 86/*
 87 * The "__xxx" versions do not do address space checking, useful when
 88 * doing multiple accesses to the same area (the programmer has to do the
 89 * checks by hand with "access_ok()")
 90 */
 91#define __put_user(x, ptr)	__put_user_nocheck((__typeof__(*(ptr))) (x), (ptr), sizeof(*(ptr)))
 92#define __get_user(x, ptr)	__get_user_nocheck((x), (ptr), sizeof(*(ptr)))
 93
 94extern long __put_user_unaligned_unknown (void);
 95
 96#define __put_user_unaligned(x, ptr)								\
 97({												\
 98	long __ret;										\
 99	switch (sizeof(*(ptr))) {								\
100		case 1: __ret = __put_user((x), (ptr)); break;					\
101		case 2: __ret = (__put_user((x), (u8 __user *)(ptr)))				\
102			| (__put_user((x) >> 8, ((u8 __user *)(ptr) + 1))); break;		\
103		case 4: __ret = (__put_user((x), (u16 __user *)(ptr)))				\
104			| (__put_user((x) >> 16, ((u16 __user *)(ptr) + 1))); break;		\
105		case 8: __ret = (__put_user((x), (u32 __user *)(ptr)))				\
106			| (__put_user((x) >> 32, ((u32 __user *)(ptr) + 1))); break;		\
107		default: __ret = __put_user_unaligned_unknown();				\
108	}											\
109	__ret;											\
110})
111
112extern long __get_user_unaligned_unknown (void);
113
114#define __get_user_unaligned(x, ptr)								\
115({												\
116	long __ret;										\
117	switch (sizeof(*(ptr))) {								\
118		case 1: __ret = __get_user((x), (ptr)); break;					\
119		case 2: __ret = (__get_user((x), (u8 __user *)(ptr)))				\
120			| (__get_user((x) >> 8, ((u8 __user *)(ptr) + 1))); break;		\
121		case 4: __ret = (__get_user((x), (u16 __user *)(ptr)))				\
122			| (__get_user((x) >> 16, ((u16 __user *)(ptr) + 1))); break;		\
123		case 8: __ret = (__get_user((x), (u32 __user *)(ptr)))				\
124			| (__get_user((x) >> 32, ((u32 __user *)(ptr) + 1))); break;		\
125		default: __ret = __get_user_unaligned_unknown();				\
126	}											\
127	__ret;											\
128})
129
130#ifdef ASM_SUPPORTED
131  struct __large_struct { unsigned long buf[100]; };
132# define __m(x) (*(struct __large_struct __user *)(x))
133
134/* We need to declare the __ex_table section before we can use it in .xdata.  */
135asm (".section \"__ex_table\", \"a\"\n\t.previous");
136
137# define __get_user_size(val, addr, n, err)							\
138do {												\
139	register long __gu_r8 asm ("r8") = 0;							\
140	register long __gu_r9 asm ("r9");							\
141	asm ("\n[1:]\tld"#n" %0=%2%P2\t// %0 and %1 get overwritten by exception handler\n"	\
142	     "\t.xdata4 \"__ex_table\", 1b-., 1f-.+4\n"						\
143	     "[1:]"										\
144	     : "=r"(__gu_r9), "=r"(__gu_r8) : "m"(__m(addr)), "1"(__gu_r8));			\
145	(err) = __gu_r8;									\
146	(val) = __gu_r9;									\
147} while (0)
148
149/*
150 * The "__put_user_size()" macro tells gcc it reads from memory instead of writing it.  This
151 * is because they do not write to any memory gcc knows about, so there are no aliasing
152 * issues.
153 */
154# define __put_user_size(val, addr, n, err)							\
155do {												\
156	register long __pu_r8 asm ("r8") = 0;							\
157	asm volatile ("\n[1:]\tst"#n" %1=%r2%P1\t// %0 gets overwritten by exception handler\n"	\
158		      "\t.xdata4 \"__ex_table\", 1b-., 1f-.\n"					\
159		      "[1:]"									\
160		      : "=r"(__pu_r8) : "m"(__m(addr)), "rO"(val), "0"(__pu_r8));		\
161	(err) = __pu_r8;									\
162} while (0)
163
164#else /* !ASM_SUPPORTED */
165# define RELOC_TYPE	2	/* ip-rel */
166# define __get_user_size(val, addr, n, err)				\
167do {									\
168	__ld_user("__ex_table", (unsigned long) addr, n, RELOC_TYPE);	\
169	(err) = ia64_getreg(_IA64_REG_R8);				\
170	(val) = ia64_getreg(_IA64_REG_R9);				\
171} while (0)
172# define __put_user_size(val, addr, n, err)				\
173do {									\
174	__st_user("__ex_table", (unsigned long) addr, n, RELOC_TYPE,	\
175		  (__force unsigned long) (val));			\
176	(err) = ia64_getreg(_IA64_REG_R8);				\
177} while (0)
178#endif /* !ASM_SUPPORTED */
179
180extern void __get_user_unknown (void);
181
182/*
183 * Evaluating arguments X, PTR, SIZE, and SEGMENT may involve subroutine-calls, which
184 * could clobber r8 and r9 (among others).  Thus, be careful not to evaluate it while
185 * using r8/r9.
186 */
187#define __do_get_user(check, x, ptr, size, segment)					\
188({											\
189	const __typeof__(*(ptr)) __user *__gu_ptr = (ptr);				\
190	__typeof__ (size) __gu_size = (size);						\
191	long __gu_err = -EFAULT;							\
192	unsigned long __gu_val = 0;							\
193	if (!check || __access_ok(__gu_ptr, size, segment))				\
194		switch (__gu_size) {							\
195		      case 1: __get_user_size(__gu_val, __gu_ptr, 1, __gu_err); break;	\
196		      case 2: __get_user_size(__gu_val, __gu_ptr, 2, __gu_err); break;	\
197		      case 4: __get_user_size(__gu_val, __gu_ptr, 4, __gu_err); break;	\
198		      case 8: __get_user_size(__gu_val, __gu_ptr, 8, __gu_err); break;	\
199		      default: __get_user_unknown(); break;				\
200		}									\
201	(x) = (__force __typeof__(*(__gu_ptr))) __gu_val;				\
202	__gu_err;									\
203})
204
205#define __get_user_nocheck(x, ptr, size)	__do_get_user(0, x, ptr, size, KERNEL_DS)
206#define __get_user_check(x, ptr, size, segment)	__do_get_user(1, x, ptr, size, segment)
207
208extern void __put_user_unknown (void);
209
210/*
211 * Evaluating arguments X, PTR, SIZE, and SEGMENT may involve subroutine-calls, which
212 * could clobber r8 (among others).  Thus, be careful not to evaluate them while using r8.
213 */
214#define __do_put_user(check, x, ptr, size, segment)					\
215({											\
216	__typeof__ (x) __pu_x = (x);							\
217	__typeof__ (*(ptr)) __user *__pu_ptr = (ptr);					\
218	__typeof__ (size) __pu_size = (size);						\
219	long __pu_err = -EFAULT;							\
220											\
221	if (!check || __access_ok(__pu_ptr, __pu_size, segment))			\
222		switch (__pu_size) {							\
223		      case 1: __put_user_size(__pu_x, __pu_ptr, 1, __pu_err); break;	\
224		      case 2: __put_user_size(__pu_x, __pu_ptr, 2, __pu_err); break;	\
225		      case 4: __put_user_size(__pu_x, __pu_ptr, 4, __pu_err); break;	\
226		      case 8: __put_user_size(__pu_x, __pu_ptr, 8, __pu_err); break;	\
227		      default: __put_user_unknown(); break;				\
228		}									\
229	__pu_err;									\
230})
231
232#define __put_user_nocheck(x, ptr, size)	__do_put_user(0, x, ptr, size, KERNEL_DS)
233#define __put_user_check(x, ptr, size, segment)	__do_put_user(1, x, ptr, size, segment)
234
235/*
236 * Complex access routines
237 */
238extern unsigned long __must_check __copy_user (void __user *to, const void __user *from,
239					       unsigned long count);
240
241static inline unsigned long
242__copy_to_user (void __user *to, const void *from, unsigned long count)
243{
244	return __copy_user(to, (__force void __user *) from, count);
245}
246
247static inline unsigned long
248__copy_from_user (void *to, const void __user *from, unsigned long count)
249{
250	return __copy_user((__force void __user *) to, from, count);
251}
252
253#define __copy_to_user_inatomic		__copy_to_user
254#define __copy_from_user_inatomic	__copy_from_user
255#define copy_to_user(to, from, n)							\
256({											\
257	void __user *__cu_to = (to);							\
258	const void *__cu_from = (from);							\
259	long __cu_len = (n);								\
260											\
261	if (__access_ok(__cu_to, __cu_len, get_fs()))					\
262		__cu_len = __copy_user(__cu_to, (__force void __user *) __cu_from, __cu_len);	\
263	__cu_len;									\
264})
265
266#define copy_from_user(to, from, n)							\
267({											\
268	void *__cu_to = (to);								\
269	const void __user *__cu_from = (from);						\
270	long __cu_len = (n);								\
271											\
272	__chk_user_ptr(__cu_from);							\
273	if (__access_ok(__cu_from, __cu_len, get_fs()))					\
274		__cu_len = __copy_user((__force void __user *) __cu_to, __cu_from, __cu_len);	\
275	__cu_len;									\
276})
277
278#define __copy_in_user(to, from, size)	__copy_user((to), (from), (size))
279
280static inline unsigned long
281copy_in_user (void __user *to, const void __user *from, unsigned long n)
282{
283	if (likely(access_ok(VERIFY_READ, from, n) && access_ok(VERIFY_WRITE, to, n)))
284		n = __copy_user(to, from, n);
285	return n;
286}
287
288extern unsigned long __do_clear_user (void __user *, unsigned long);
289
290#define __clear_user(to, n)		__do_clear_user(to, n)
291
292#define clear_user(to, n)					\
293({								\
294	unsigned long __cu_len = (n);				\
295	if (__access_ok(to, __cu_len, get_fs()))		\
296		__cu_len = __do_clear_user(to, __cu_len);	\
297	__cu_len;						\
298})
299
300
301/*
302 * Returns: -EFAULT if exception before terminator, N if the entire buffer filled, else
303 * strlen.
304 */
305extern long __must_check __strncpy_from_user (char *to, const char __user *from, long to_len);
306
307#define strncpy_from_user(to, from, n)					\
308({									\
309	const char __user * __sfu_from = (from);			\
310	long __sfu_ret = -EFAULT;					\
311	if (__access_ok(__sfu_from, 0, get_fs()))			\
312		__sfu_ret = __strncpy_from_user((to), __sfu_from, (n));	\
313	__sfu_ret;							\
314})
315
316/* Returns: 0 if bad, string length+1 (memory size) of string if ok */
317extern unsigned long __strlen_user (const char __user *);
318
319#define strlen_user(str)				\
320({							\
321	const char __user *__su_str = (str);		\
322	unsigned long __su_ret = 0;			\
323	if (__access_ok(__su_str, 0, get_fs()))		\
324		__su_ret = __strlen_user(__su_str);	\
325	__su_ret;					\
326})
327
328/*
329 * Returns: 0 if exception before NUL or reaching the supplied limit
330 * (N), a value greater than N if the limit would be exceeded, else
331 * strlen.
332 */
333extern unsigned long __strnlen_user (const char __user *, long);
334
335#define strnlen_user(str, len)					\
336({								\
337	const char __user *__su_str = (str);			\
338	unsigned long __su_ret = 0;				\
339	if (__access_ok(__su_str, 0, get_fs()))			\
340		__su_ret = __strnlen_user(__su_str, len);	\
341	__su_ret;						\
342})
343
344#define ARCH_HAS_RELATIVE_EXTABLE
345
346struct exception_table_entry {
347	int insn;	/* location-relative address of insn this fixup is for */
348	int fixup;	/* location-relative continuation addr.; if bit 2 is set, r9 is set to 0 */
349};
350
351extern void ia64_handle_exception (struct pt_regs *regs, const struct exception_table_entry *e);
352extern const struct exception_table_entry *search_exception_tables (unsigned long addr);
353
354static inline int
355ia64_done_with_exception (struct pt_regs *regs)
356{
357	const struct exception_table_entry *e;
358	e = search_exception_tables(regs->cr_iip + ia64_psr(regs)->ri);
359	if (e) {
360		ia64_handle_exception(regs, e);
361		return 1;
362	}
363	return 0;
364}
365
366#define ARCH_HAS_TRANSLATE_MEM_PTR	1
367static __inline__ void *
368xlate_dev_mem_ptr(phys_addr_t p)
369{
370	struct page *page;
371	void *ptr;
372
373	page = pfn_to_page(p >> PAGE_SHIFT);
374	if (PageUncached(page))
375		ptr = (void *)p + __IA64_UNCACHED_OFFSET;
376	else
377		ptr = __va(p);
378
379	return ptr;
380}
381
382/*
383 * Convert a virtual cached kernel memory pointer to an uncached pointer
384 */
385static __inline__ void *
386xlate_dev_kmem_ptr(void *p)
387{
388	struct page *page;
389	void *ptr;
390
391	page = virt_to_page((unsigned long)p);
392	if (PageUncached(page))
393		ptr = (void *)__pa(p) + __IA64_UNCACHED_OFFSET;
394	else
395		ptr = p;
396
397	return ptr;
398}
399
400#endif /* _ASM_IA64_UACCESS_H */