Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2#include <errno.h>
   3#include <inttypes.h>
 
   4#include "string2.h"
   5#include <sys/param.h>
   6#include <sys/types.h>
   7#include <byteswap.h>
   8#include <unistd.h>
   9#include <stdio.h>
  10#include <stdlib.h>
  11#include <linux/compiler.h>
  12#include <linux/list.h>
  13#include <linux/kernel.h>
  14#include <linux/bitops.h>
  15#include <linux/string.h>
  16#include <linux/stringify.h>
  17#include <linux/zalloc.h>
  18#include <sys/stat.h>
  19#include <sys/utsname.h>
  20#include <linux/time64.h>
  21#include <dirent.h>
  22#include <bpf/libbpf.h>
  23#include <perf/cpumap.h>
  24
  25#include "dso.h"
  26#include "evlist.h"
  27#include "evsel.h"
  28#include "util/evsel_fprintf.h"
  29#include "header.h"
  30#include "memswap.h"
 
  31#include "trace-event.h"
  32#include "session.h"
  33#include "symbol.h"
  34#include "debug.h"
  35#include "cpumap.h"
  36#include "pmu.h"
  37#include "vdso.h"
  38#include "strbuf.h"
  39#include "build-id.h"
  40#include "data.h"
  41#include <api/fs/fs.h>
  42#include "asm/bug.h"
  43#include "tool.h"
  44#include "time-utils.h"
  45#include "units.h"
  46#include "util/util.h" // perf_exe()
  47#include "cputopo.h"
  48#include "bpf-event.h"
  49#include "clockid.h"
  50
  51#include <linux/ctype.h>
  52#include <internal/lib.h>
  53
  54/*
  55 * magic2 = "PERFILE2"
  56 * must be a numerical value to let the endianness
  57 * determine the memory layout. That way we are able
  58 * to detect endianness when reading the perf.data file
  59 * back.
  60 *
  61 * we check for legacy (PERFFILE) format.
  62 */
  63static const char *__perf_magic1 = "PERFFILE";
  64static const u64 __perf_magic2    = 0x32454c4946524550ULL;
  65static const u64 __perf_magic2_sw = 0x50455246494c4532ULL;
  66
  67#define PERF_MAGIC	__perf_magic2
  68
  69const char perf_version_string[] = PERF_VERSION;
  70
  71struct perf_file_attr {
  72	struct perf_event_attr	attr;
  73	struct perf_file_section	ids;
  74};
  75
 
 
 
 
 
 
 
 
 
  76void perf_header__set_feat(struct perf_header *header, int feat)
  77{
  78	set_bit(feat, header->adds_features);
  79}
  80
  81void perf_header__clear_feat(struct perf_header *header, int feat)
  82{
  83	clear_bit(feat, header->adds_features);
  84}
  85
  86bool perf_header__has_feat(const struct perf_header *header, int feat)
  87{
  88	return test_bit(feat, header->adds_features);
  89}
  90
  91static int __do_write_fd(struct feat_fd *ff, const void *buf, size_t size)
  92{
  93	ssize_t ret = writen(ff->fd, buf, size);
  94
  95	if (ret != (ssize_t)size)
  96		return ret < 0 ? (int)ret : -1;
  97	return 0;
  98}
  99
 100static int __do_write_buf(struct feat_fd *ff,  const void *buf, size_t size)
 101{
 102	/* struct perf_event_header::size is u16 */
 103	const size_t max_size = 0xffff - sizeof(struct perf_event_header);
 104	size_t new_size = ff->size;
 105	void *addr;
 106
 107	if (size + ff->offset > max_size)
 108		return -E2BIG;
 109
 110	while (size > (new_size - ff->offset))
 111		new_size <<= 1;
 112	new_size = min(max_size, new_size);
 113
 114	if (ff->size < new_size) {
 115		addr = realloc(ff->buf, new_size);
 116		if (!addr)
 117			return -ENOMEM;
 118		ff->buf = addr;
 119		ff->size = new_size;
 120	}
 121
 122	memcpy(ff->buf + ff->offset, buf, size);
 123	ff->offset += size;
 124
 125	return 0;
 126}
 127
 128/* Return: 0 if succeded, -ERR if failed. */
 129int do_write(struct feat_fd *ff, const void *buf, size_t size)
 130{
 131	if (!ff->buf)
 132		return __do_write_fd(ff, buf, size);
 133	return __do_write_buf(ff, buf, size);
 134}
 135
 136/* Return: 0 if succeded, -ERR if failed. */
 137static int do_write_bitmap(struct feat_fd *ff, unsigned long *set, u64 size)
 138{
 139	u64 *p = (u64 *) set;
 140	int i, ret;
 141
 142	ret = do_write(ff, &size, sizeof(size));
 143	if (ret < 0)
 144		return ret;
 145
 146	for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
 147		ret = do_write(ff, p + i, sizeof(*p));
 148		if (ret < 0)
 149			return ret;
 150	}
 151
 152	return 0;
 153}
 154
 155/* Return: 0 if succeded, -ERR if failed. */
 156int write_padded(struct feat_fd *ff, const void *bf,
 157		 size_t count, size_t count_aligned)
 158{
 159	static const char zero_buf[NAME_ALIGN];
 160	int err = do_write(ff, bf, count);
 161
 162	if (!err)
 163		err = do_write(ff, zero_buf, count_aligned - count);
 164
 165	return err;
 166}
 167
 168#define string_size(str)						\
 169	(PERF_ALIGN((strlen(str) + 1), NAME_ALIGN) + sizeof(u32))
 170
 171/* Return: 0 if succeded, -ERR if failed. */
 172static int do_write_string(struct feat_fd *ff, const char *str)
 173{
 174	u32 len, olen;
 175	int ret;
 176
 177	olen = strlen(str) + 1;
 178	len = PERF_ALIGN(olen, NAME_ALIGN);
 179
 180	/* write len, incl. \0 */
 181	ret = do_write(ff, &len, sizeof(len));
 182	if (ret < 0)
 183		return ret;
 184
 185	return write_padded(ff, str, olen, len);
 186}
 187
 188static int __do_read_fd(struct feat_fd *ff, void *addr, ssize_t size)
 189{
 190	ssize_t ret = readn(ff->fd, addr, size);
 191
 192	if (ret != size)
 193		return ret < 0 ? (int)ret : -1;
 194	return 0;
 195}
 196
 197static int __do_read_buf(struct feat_fd *ff, void *addr, ssize_t size)
 198{
 199	if (size > (ssize_t)ff->size - ff->offset)
 200		return -1;
 201
 202	memcpy(addr, ff->buf + ff->offset, size);
 203	ff->offset += size;
 204
 205	return 0;
 206
 207}
 208
 209static int __do_read(struct feat_fd *ff, void *addr, ssize_t size)
 210{
 211	if (!ff->buf)
 212		return __do_read_fd(ff, addr, size);
 213	return __do_read_buf(ff, addr, size);
 214}
 215
 216static int do_read_u32(struct feat_fd *ff, u32 *addr)
 217{
 218	int ret;
 219
 220	ret = __do_read(ff, addr, sizeof(*addr));
 221	if (ret)
 222		return ret;
 223
 224	if (ff->ph->needs_swap)
 225		*addr = bswap_32(*addr);
 226	return 0;
 227}
 228
 229static int do_read_u64(struct feat_fd *ff, u64 *addr)
 230{
 231	int ret;
 232
 233	ret = __do_read(ff, addr, sizeof(*addr));
 234	if (ret)
 235		return ret;
 236
 237	if (ff->ph->needs_swap)
 238		*addr = bswap_64(*addr);
 239	return 0;
 240}
 241
 242static char *do_read_string(struct feat_fd *ff)
 243{
 244	u32 len;
 245	char *buf;
 246
 247	if (do_read_u32(ff, &len))
 248		return NULL;
 249
 250	buf = malloc(len);
 251	if (!buf)
 252		return NULL;
 253
 254	if (!__do_read(ff, buf, len)) {
 255		/*
 256		 * strings are padded by zeroes
 257		 * thus the actual strlen of buf
 258		 * may be less than len
 259		 */
 260		return buf;
 261	}
 262
 263	free(buf);
 264	return NULL;
 265}
 266
 267/* Return: 0 if succeded, -ERR if failed. */
 268static int do_read_bitmap(struct feat_fd *ff, unsigned long **pset, u64 *psize)
 269{
 270	unsigned long *set;
 271	u64 size, *p;
 272	int i, ret;
 273
 274	ret = do_read_u64(ff, &size);
 275	if (ret)
 276		return ret;
 277
 278	set = bitmap_alloc(size);
 279	if (!set)
 280		return -ENOMEM;
 281
 
 
 282	p = (u64 *) set;
 283
 284	for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
 285		ret = do_read_u64(ff, p + i);
 286		if (ret < 0) {
 287			free(set);
 288			return ret;
 289		}
 290	}
 291
 292	*pset  = set;
 293	*psize = size;
 294	return 0;
 295}
 296
 297static int write_tracing_data(struct feat_fd *ff,
 298			      struct evlist *evlist)
 299{
 300	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
 301		return -1;
 302
 303	return read_tracing_data(ff->fd, &evlist->core.entries);
 304}
 305
 306static int write_build_id(struct feat_fd *ff,
 307			  struct evlist *evlist __maybe_unused)
 308{
 309	struct perf_session *session;
 310	int err;
 311
 312	session = container_of(ff->ph, struct perf_session, header);
 313
 314	if (!perf_session__read_build_ids(session, true))
 315		return -1;
 316
 317	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
 318		return -1;
 319
 320	err = perf_session__write_buildid_table(session, ff);
 321	if (err < 0) {
 322		pr_debug("failed to write buildid table\n");
 323		return err;
 324	}
 325	perf_session__cache_build_ids(session);
 326
 327	return 0;
 328}
 329
 330static int write_hostname(struct feat_fd *ff,
 331			  struct evlist *evlist __maybe_unused)
 332{
 333	struct utsname uts;
 334	int ret;
 335
 336	ret = uname(&uts);
 337	if (ret < 0)
 338		return -1;
 339
 340	return do_write_string(ff, uts.nodename);
 341}
 342
 343static int write_osrelease(struct feat_fd *ff,
 344			   struct evlist *evlist __maybe_unused)
 345{
 346	struct utsname uts;
 347	int ret;
 348
 349	ret = uname(&uts);
 350	if (ret < 0)
 351		return -1;
 352
 353	return do_write_string(ff, uts.release);
 354}
 355
 356static int write_arch(struct feat_fd *ff,
 357		      struct evlist *evlist __maybe_unused)
 358{
 359	struct utsname uts;
 360	int ret;
 361
 362	ret = uname(&uts);
 363	if (ret < 0)
 364		return -1;
 365
 366	return do_write_string(ff, uts.machine);
 367}
 368
 369static int write_version(struct feat_fd *ff,
 370			 struct evlist *evlist __maybe_unused)
 371{
 372	return do_write_string(ff, perf_version_string);
 373}
 374
 375static int __write_cpudesc(struct feat_fd *ff, const char *cpuinfo_proc)
 376{
 377	FILE *file;
 378	char *buf = NULL;
 379	char *s, *p;
 380	const char *search = cpuinfo_proc;
 381	size_t len = 0;
 382	int ret = -1;
 383
 384	if (!search)
 385		return -1;
 386
 387	file = fopen("/proc/cpuinfo", "r");
 388	if (!file)
 389		return -1;
 390
 391	while (getline(&buf, &len, file) > 0) {
 392		ret = strncmp(buf, search, strlen(search));
 393		if (!ret)
 394			break;
 395	}
 396
 397	if (ret) {
 398		ret = -1;
 399		goto done;
 400	}
 401
 402	s = buf;
 403
 404	p = strchr(buf, ':');
 405	if (p && *(p+1) == ' ' && *(p+2))
 406		s = p + 2;
 407	p = strchr(s, '\n');
 408	if (p)
 409		*p = '\0';
 410
 411	/* squash extra space characters (branding string) */
 412	p = s;
 413	while (*p) {
 414		if (isspace(*p)) {
 415			char *r = p + 1;
 416			char *q = skip_spaces(r);
 417			*p = ' ';
 
 
 418			if (q != (p+1))
 419				while ((*r++ = *q++));
 420		}
 421		p++;
 422	}
 423	ret = do_write_string(ff, s);
 424done:
 425	free(buf);
 426	fclose(file);
 427	return ret;
 428}
 429
 430static int write_cpudesc(struct feat_fd *ff,
 431		       struct evlist *evlist __maybe_unused)
 432{
 433#if defined(__powerpc__) || defined(__hppa__) || defined(__sparc__)
 434#define CPUINFO_PROC	{ "cpu", }
 435#elif defined(__s390__)
 436#define CPUINFO_PROC	{ "vendor_id", }
 437#elif defined(__sh__)
 438#define CPUINFO_PROC	{ "cpu type", }
 439#elif defined(__alpha__) || defined(__mips__)
 440#define CPUINFO_PROC	{ "cpu model", }
 441#elif defined(__arm__)
 442#define CPUINFO_PROC	{ "model name", "Processor", }
 443#elif defined(__arc__)
 444#define CPUINFO_PROC	{ "Processor", }
 445#elif defined(__xtensa__)
 446#define CPUINFO_PROC	{ "core ID", }
 447#else
 448#define CPUINFO_PROC	{ "model name", }
 449#endif
 450	const char *cpuinfo_procs[] = CPUINFO_PROC;
 451#undef CPUINFO_PROC
 452	unsigned int i;
 453
 454	for (i = 0; i < ARRAY_SIZE(cpuinfo_procs); i++) {
 455		int ret;
 456		ret = __write_cpudesc(ff, cpuinfo_procs[i]);
 457		if (ret >= 0)
 458			return ret;
 459	}
 460	return -1;
 461}
 462
 463
 464static int write_nrcpus(struct feat_fd *ff,
 465			struct evlist *evlist __maybe_unused)
 466{
 467	long nr;
 468	u32 nrc, nra;
 469	int ret;
 470
 471	nrc = cpu__max_present_cpu();
 472
 473	nr = sysconf(_SC_NPROCESSORS_ONLN);
 474	if (nr < 0)
 475		return -1;
 476
 477	nra = (u32)(nr & UINT_MAX);
 478
 479	ret = do_write(ff, &nrc, sizeof(nrc));
 480	if (ret < 0)
 481		return ret;
 482
 483	return do_write(ff, &nra, sizeof(nra));
 484}
 485
 486static int write_event_desc(struct feat_fd *ff,
 487			    struct evlist *evlist)
 488{
 489	struct evsel *evsel;
 490	u32 nre, nri, sz;
 491	int ret;
 492
 493	nre = evlist->core.nr_entries;
 494
 495	/*
 496	 * write number of events
 497	 */
 498	ret = do_write(ff, &nre, sizeof(nre));
 499	if (ret < 0)
 500		return ret;
 501
 502	/*
 503	 * size of perf_event_attr struct
 504	 */
 505	sz = (u32)sizeof(evsel->core.attr);
 506	ret = do_write(ff, &sz, sizeof(sz));
 507	if (ret < 0)
 508		return ret;
 509
 510	evlist__for_each_entry(evlist, evsel) {
 511		ret = do_write(ff, &evsel->core.attr, sz);
 512		if (ret < 0)
 513			return ret;
 514		/*
 515		 * write number of unique id per event
 516		 * there is one id per instance of an event
 517		 *
 518		 * copy into an nri to be independent of the
 519		 * type of ids,
 520		 */
 521		nri = evsel->core.ids;
 522		ret = do_write(ff, &nri, sizeof(nri));
 523		if (ret < 0)
 524			return ret;
 525
 526		/*
 527		 * write event string as passed on cmdline
 528		 */
 529		ret = do_write_string(ff, evsel__name(evsel));
 530		if (ret < 0)
 531			return ret;
 532		/*
 533		 * write unique ids for this event
 534		 */
 535		ret = do_write(ff, evsel->core.id, evsel->core.ids * sizeof(u64));
 536		if (ret < 0)
 537			return ret;
 538	}
 539	return 0;
 540}
 541
 542static int write_cmdline(struct feat_fd *ff,
 543			 struct evlist *evlist __maybe_unused)
 544{
 545	char pbuf[MAXPATHLEN], *buf;
 546	int i, ret, n;
 
 547
 548	/* actual path to perf binary */
 549	buf = perf_exe(pbuf, MAXPATHLEN);
 
 
 
 
 
 550
 551	/* account for binary path */
 552	n = perf_env.nr_cmdline + 1;
 553
 554	ret = do_write(ff, &n, sizeof(n));
 555	if (ret < 0)
 556		return ret;
 557
 558	ret = do_write_string(ff, buf);
 559	if (ret < 0)
 560		return ret;
 561
 562	for (i = 0 ; i < perf_env.nr_cmdline; i++) {
 563		ret = do_write_string(ff, perf_env.cmdline_argv[i]);
 564		if (ret < 0)
 565			return ret;
 566	}
 567	return 0;
 568}
 569
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 570
 571static int write_cpu_topology(struct feat_fd *ff,
 572			      struct evlist *evlist __maybe_unused)
 573{
 574	struct cpu_topology *tp;
 575	u32 i;
 576	int ret, j;
 577
 578	tp = cpu_topology__new();
 579	if (!tp)
 580		return -1;
 581
 582	ret = do_write(ff, &tp->core_sib, sizeof(tp->core_sib));
 583	if (ret < 0)
 584		goto done;
 585
 586	for (i = 0; i < tp->core_sib; i++) {
 587		ret = do_write_string(ff, tp->core_siblings[i]);
 588		if (ret < 0)
 589			goto done;
 590	}
 591	ret = do_write(ff, &tp->thread_sib, sizeof(tp->thread_sib));
 592	if (ret < 0)
 593		goto done;
 594
 595	for (i = 0; i < tp->thread_sib; i++) {
 596		ret = do_write_string(ff, tp->thread_siblings[i]);
 597		if (ret < 0)
 598			break;
 599	}
 600
 601	ret = perf_env__read_cpu_topology_map(&perf_env);
 602	if (ret < 0)
 603		goto done;
 604
 605	for (j = 0; j < perf_env.nr_cpus_avail; j++) {
 606		ret = do_write(ff, &perf_env.cpu[j].core_id,
 607			       sizeof(perf_env.cpu[j].core_id));
 608		if (ret < 0)
 609			return ret;
 610		ret = do_write(ff, &perf_env.cpu[j].socket_id,
 611			       sizeof(perf_env.cpu[j].socket_id));
 612		if (ret < 0)
 613			return ret;
 614	}
 615
 616	if (!tp->die_sib)
 617		goto done;
 618
 619	ret = do_write(ff, &tp->die_sib, sizeof(tp->die_sib));
 620	if (ret < 0)
 621		goto done;
 622
 623	for (i = 0; i < tp->die_sib; i++) {
 624		ret = do_write_string(ff, tp->die_siblings[i]);
 625		if (ret < 0)
 626			goto done;
 627	}
 628
 629	for (j = 0; j < perf_env.nr_cpus_avail; j++) {
 630		ret = do_write(ff, &perf_env.cpu[j].die_id,
 631			       sizeof(perf_env.cpu[j].die_id));
 632		if (ret < 0)
 633			return ret;
 634	}
 635
 636done:
 637	cpu_topology__delete(tp);
 638	return ret;
 639}
 640
 641
 642
 643static int write_total_mem(struct feat_fd *ff,
 644			   struct evlist *evlist __maybe_unused)
 645{
 646	char *buf = NULL;
 647	FILE *fp;
 648	size_t len = 0;
 649	int ret = -1, n;
 650	uint64_t mem;
 651
 652	fp = fopen("/proc/meminfo", "r");
 653	if (!fp)
 654		return -1;
 655
 656	while (getline(&buf, &len, fp) > 0) {
 657		ret = strncmp(buf, "MemTotal:", 9);
 658		if (!ret)
 659			break;
 660	}
 661	if (!ret) {
 662		n = sscanf(buf, "%*s %"PRIu64, &mem);
 663		if (n == 1)
 664			ret = do_write(ff, &mem, sizeof(mem));
 665	} else
 666		ret = -1;
 667	free(buf);
 668	fclose(fp);
 669	return ret;
 670}
 671
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 672static int write_numa_topology(struct feat_fd *ff,
 673			       struct evlist *evlist __maybe_unused)
 674{
 675	struct numa_topology *tp;
 
 
 
 
 
 676	int ret = -1;
 677	u32 i;
 678
 679	tp = numa_topology__new();
 680	if (!tp)
 681		return -ENOMEM;
 682
 683	ret = do_write(ff, &tp->nr, sizeof(u32));
 684	if (ret < 0)
 685		goto err;
 686
 687	for (i = 0; i < tp->nr; i++) {
 688		struct numa_topology_node *n = &tp->nodes[i];
 
 689
 690		ret = do_write(ff, &n->node, sizeof(u32));
 691		if (ret < 0)
 692			goto err;
 
 
 693
 694		ret = do_write(ff, &n->mem_total, sizeof(u64));
 695		if (ret)
 696			goto err;
 697
 698		ret = do_write(ff, &n->mem_free, sizeof(u64));
 699		if (ret)
 700			goto err;
 
 
 701
 702		ret = do_write_string(ff, n->cpus);
 703		if (ret < 0)
 704			goto err;
 705	}
 706
 707	ret = 0;
 708
 709err:
 710	numa_topology__delete(tp);
 711	return ret;
 712}
 713
 714/*
 715 * File format:
 716 *
 717 * struct pmu_mappings {
 718 *	u32	pmu_num;
 719 *	struct pmu_map {
 720 *		u32	type;
 721 *		char	name[];
 722 *	}[pmu_num];
 723 * };
 724 */
 725
 726static int write_pmu_mappings(struct feat_fd *ff,
 727			      struct evlist *evlist __maybe_unused)
 728{
 729	struct perf_pmu *pmu = NULL;
 730	u32 pmu_num = 0;
 731	int ret;
 732
 733	/*
 734	 * Do a first pass to count number of pmu to avoid lseek so this
 735	 * works in pipe mode as well.
 736	 */
 737	while ((pmu = perf_pmu__scan(pmu))) {
 738		if (!pmu->name)
 739			continue;
 740		pmu_num++;
 741	}
 742
 743	ret = do_write(ff, &pmu_num, sizeof(pmu_num));
 744	if (ret < 0)
 745		return ret;
 746
 747	while ((pmu = perf_pmu__scan(pmu))) {
 748		if (!pmu->name)
 749			continue;
 750
 751		ret = do_write(ff, &pmu->type, sizeof(pmu->type));
 752		if (ret < 0)
 753			return ret;
 754
 755		ret = do_write_string(ff, pmu->name);
 756		if (ret < 0)
 757			return ret;
 758	}
 759
 760	return 0;
 761}
 762
 763/*
 764 * File format:
 765 *
 766 * struct group_descs {
 767 *	u32	nr_groups;
 768 *	struct group_desc {
 769 *		char	name[];
 770 *		u32	leader_idx;
 771 *		u32	nr_members;
 772 *	}[nr_groups];
 773 * };
 774 */
 775static int write_group_desc(struct feat_fd *ff,
 776			    struct evlist *evlist)
 777{
 778	u32 nr_groups = evlist->nr_groups;
 779	struct evsel *evsel;
 780	int ret;
 781
 782	ret = do_write(ff, &nr_groups, sizeof(nr_groups));
 783	if (ret < 0)
 784		return ret;
 785
 786	evlist__for_each_entry(evlist, evsel) {
 787		if (evsel__is_group_leader(evsel) && evsel->core.nr_members > 1) {
 
 788			const char *name = evsel->group_name ?: "{anon_group}";
 789			u32 leader_idx = evsel->idx;
 790			u32 nr_members = evsel->core.nr_members;
 791
 792			ret = do_write_string(ff, name);
 793			if (ret < 0)
 794				return ret;
 795
 796			ret = do_write(ff, &leader_idx, sizeof(leader_idx));
 797			if (ret < 0)
 798				return ret;
 799
 800			ret = do_write(ff, &nr_members, sizeof(nr_members));
 801			if (ret < 0)
 802				return ret;
 803		}
 804	}
 805	return 0;
 806}
 807
 808/*
 809 * Return the CPU id as a raw string.
 810 *
 811 * Each architecture should provide a more precise id string that
 812 * can be use to match the architecture's "mapfile".
 813 */
 814char * __weak get_cpuid_str(struct perf_pmu *pmu __maybe_unused)
 815{
 816	return NULL;
 817}
 818
 819/* Return zero when the cpuid from the mapfile.csv matches the
 820 * cpuid string generated on this platform.
 821 * Otherwise return non-zero.
 822 */
 823int __weak strcmp_cpuid_str(const char *mapcpuid, const char *cpuid)
 824{
 825	regex_t re;
 826	regmatch_t pmatch[1];
 827	int match;
 828
 829	if (regcomp(&re, mapcpuid, REG_EXTENDED) != 0) {
 830		/* Warn unable to generate match particular string. */
 831		pr_info("Invalid regular expression %s\n", mapcpuid);
 832		return 1;
 833	}
 834
 835	match = !regexec(&re, cpuid, 1, pmatch, 0);
 836	regfree(&re);
 837	if (match) {
 838		size_t match_len = (pmatch[0].rm_eo - pmatch[0].rm_so);
 839
 840		/* Verify the entire string matched. */
 841		if (match_len == strlen(cpuid))
 842			return 0;
 843	}
 844	return 1;
 845}
 846
 847/*
 848 * default get_cpuid(): nothing gets recorded
 849 * actual implementation must be in arch/$(SRCARCH)/util/header.c
 850 */
 851int __weak get_cpuid(char *buffer __maybe_unused, size_t sz __maybe_unused)
 852{
 853	return ENOSYS; /* Not implemented */
 854}
 855
 856static int write_cpuid(struct feat_fd *ff,
 857		       struct evlist *evlist __maybe_unused)
 858{
 859	char buffer[64];
 860	int ret;
 861
 862	ret = get_cpuid(buffer, sizeof(buffer));
 863	if (ret)
 864		return -1;
 865
 
 
 866	return do_write_string(ff, buffer);
 867}
 868
 869static int write_branch_stack(struct feat_fd *ff __maybe_unused,
 870			      struct evlist *evlist __maybe_unused)
 871{
 872	return 0;
 873}
 874
 875static int write_auxtrace(struct feat_fd *ff,
 876			  struct evlist *evlist __maybe_unused)
 877{
 878	struct perf_session *session;
 879	int err;
 880
 881	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
 882		return -1;
 883
 884	session = container_of(ff->ph, struct perf_session, header);
 885
 886	err = auxtrace_index__write(ff->fd, &session->auxtrace_index);
 887	if (err < 0)
 888		pr_err("Failed to write auxtrace index\n");
 889	return err;
 890}
 891
 892static int write_clockid(struct feat_fd *ff,
 893			 struct evlist *evlist __maybe_unused)
 894{
 895	return do_write(ff, &ff->ph->env.clock.clockid_res_ns,
 896			sizeof(ff->ph->env.clock.clockid_res_ns));
 897}
 898
 899static int write_clock_data(struct feat_fd *ff,
 900			    struct evlist *evlist __maybe_unused)
 901{
 902	u64 *data64;
 903	u32 data32;
 904	int ret;
 905
 906	/* version */
 907	data32 = 1;
 908
 909	ret = do_write(ff, &data32, sizeof(data32));
 910	if (ret < 0)
 911		return ret;
 912
 913	/* clockid */
 914	data32 = ff->ph->env.clock.clockid;
 915
 916	ret = do_write(ff, &data32, sizeof(data32));
 917	if (ret < 0)
 918		return ret;
 919
 920	/* TOD ref time */
 921	data64 = &ff->ph->env.clock.tod_ns;
 922
 923	ret = do_write(ff, data64, sizeof(*data64));
 924	if (ret < 0)
 925		return ret;
 926
 927	/* clockid ref time */
 928	data64 = &ff->ph->env.clock.clockid_ns;
 929
 930	return do_write(ff, data64, sizeof(*data64));
 931}
 932
 933static int write_dir_format(struct feat_fd *ff,
 934			    struct evlist *evlist __maybe_unused)
 935{
 936	struct perf_session *session;
 937	struct perf_data *data;
 938
 939	session = container_of(ff->ph, struct perf_session, header);
 940	data = session->data;
 941
 942	if (WARN_ON(!perf_data__is_dir(data)))
 943		return -1;
 944
 945	return do_write(ff, &data->dir.version, sizeof(data->dir.version));
 946}
 947
 948#ifdef HAVE_LIBBPF_SUPPORT
 949static int write_bpf_prog_info(struct feat_fd *ff,
 950			       struct evlist *evlist __maybe_unused)
 951{
 952	struct perf_env *env = &ff->ph->env;
 953	struct rb_root *root;
 954	struct rb_node *next;
 955	int ret;
 956
 957	down_read(&env->bpf_progs.lock);
 958
 959	ret = do_write(ff, &env->bpf_progs.infos_cnt,
 960		       sizeof(env->bpf_progs.infos_cnt));
 961	if (ret < 0)
 962		goto out;
 963
 964	root = &env->bpf_progs.infos;
 965	next = rb_first(root);
 966	while (next) {
 967		struct bpf_prog_info_node *node;
 968		size_t len;
 969
 970		node = rb_entry(next, struct bpf_prog_info_node, rb_node);
 971		next = rb_next(&node->rb_node);
 972		len = sizeof(struct bpf_prog_info_linear) +
 973			node->info_linear->data_len;
 974
 975		/* before writing to file, translate address to offset */
 976		bpf_program__bpil_addr_to_offs(node->info_linear);
 977		ret = do_write(ff, node->info_linear, len);
 978		/*
 979		 * translate back to address even when do_write() fails,
 980		 * so that this function never changes the data.
 981		 */
 982		bpf_program__bpil_offs_to_addr(node->info_linear);
 983		if (ret < 0)
 984			goto out;
 985	}
 986out:
 987	up_read(&env->bpf_progs.lock);
 988	return ret;
 989}
 990#else // HAVE_LIBBPF_SUPPORT
 991static int write_bpf_prog_info(struct feat_fd *ff __maybe_unused,
 992			       struct evlist *evlist __maybe_unused)
 993{
 994	return 0;
 995}
 996#endif // HAVE_LIBBPF_SUPPORT
 997
 998static int write_bpf_btf(struct feat_fd *ff,
 999			 struct evlist *evlist __maybe_unused)
1000{
1001	struct perf_env *env = &ff->ph->env;
1002	struct rb_root *root;
1003	struct rb_node *next;
1004	int ret;
1005
1006	down_read(&env->bpf_progs.lock);
1007
1008	ret = do_write(ff, &env->bpf_progs.btfs_cnt,
1009		       sizeof(env->bpf_progs.btfs_cnt));
1010
1011	if (ret < 0)
1012		goto out;
1013
1014	root = &env->bpf_progs.btfs;
1015	next = rb_first(root);
1016	while (next) {
1017		struct btf_node *node;
1018
1019		node = rb_entry(next, struct btf_node, rb_node);
1020		next = rb_next(&node->rb_node);
1021		ret = do_write(ff, &node->id,
1022			       sizeof(u32) * 2 + node->data_size);
1023		if (ret < 0)
1024			goto out;
1025	}
1026out:
1027	up_read(&env->bpf_progs.lock);
1028	return ret;
1029}
1030
1031static int cpu_cache_level__sort(const void *a, const void *b)
1032{
1033	struct cpu_cache_level *cache_a = (struct cpu_cache_level *)a;
1034	struct cpu_cache_level *cache_b = (struct cpu_cache_level *)b;
1035
1036	return cache_a->level - cache_b->level;
1037}
1038
1039static bool cpu_cache_level__cmp(struct cpu_cache_level *a, struct cpu_cache_level *b)
1040{
1041	if (a->level != b->level)
1042		return false;
1043
1044	if (a->line_size != b->line_size)
1045		return false;
1046
1047	if (a->sets != b->sets)
1048		return false;
1049
1050	if (a->ways != b->ways)
1051		return false;
1052
1053	if (strcmp(a->type, b->type))
1054		return false;
1055
1056	if (strcmp(a->size, b->size))
1057		return false;
1058
1059	if (strcmp(a->map, b->map))
1060		return false;
1061
1062	return true;
1063}
1064
1065static int cpu_cache_level__read(struct cpu_cache_level *cache, u32 cpu, u16 level)
1066{
1067	char path[PATH_MAX], file[PATH_MAX];
1068	struct stat st;
1069	size_t len;
1070
1071	scnprintf(path, PATH_MAX, "devices/system/cpu/cpu%d/cache/index%d/", cpu, level);
1072	scnprintf(file, PATH_MAX, "%s/%s", sysfs__mountpoint(), path);
1073
1074	if (stat(file, &st))
1075		return 1;
1076
1077	scnprintf(file, PATH_MAX, "%s/level", path);
1078	if (sysfs__read_int(file, (int *) &cache->level))
1079		return -1;
1080
1081	scnprintf(file, PATH_MAX, "%s/coherency_line_size", path);
1082	if (sysfs__read_int(file, (int *) &cache->line_size))
1083		return -1;
1084
1085	scnprintf(file, PATH_MAX, "%s/number_of_sets", path);
1086	if (sysfs__read_int(file, (int *) &cache->sets))
1087		return -1;
1088
1089	scnprintf(file, PATH_MAX, "%s/ways_of_associativity", path);
1090	if (sysfs__read_int(file, (int *) &cache->ways))
1091		return -1;
1092
1093	scnprintf(file, PATH_MAX, "%s/type", path);
1094	if (sysfs__read_str(file, &cache->type, &len))
1095		return -1;
1096
1097	cache->type[len] = 0;
1098	cache->type = strim(cache->type);
1099
1100	scnprintf(file, PATH_MAX, "%s/size", path);
1101	if (sysfs__read_str(file, &cache->size, &len)) {
1102		zfree(&cache->type);
1103		return -1;
1104	}
1105
1106	cache->size[len] = 0;
1107	cache->size = strim(cache->size);
1108
1109	scnprintf(file, PATH_MAX, "%s/shared_cpu_list", path);
1110	if (sysfs__read_str(file, &cache->map, &len)) {
1111		zfree(&cache->size);
1112		zfree(&cache->type);
1113		return -1;
1114	}
1115
1116	cache->map[len] = 0;
1117	cache->map = strim(cache->map);
1118	return 0;
1119}
1120
1121static void cpu_cache_level__fprintf(FILE *out, struct cpu_cache_level *c)
1122{
1123	fprintf(out, "L%d %-15s %8s [%s]\n", c->level, c->type, c->size, c->map);
1124}
1125
1126#define MAX_CACHE_LVL 4
1127
1128static int build_caches(struct cpu_cache_level caches[], u32 *cntp)
1129{
1130	u32 i, cnt = 0;
 
1131	u32 nr, cpu;
1132	u16 level;
1133
1134	nr = cpu__max_cpu();
 
 
 
 
1135
1136	for (cpu = 0; cpu < nr; cpu++) {
1137		for (level = 0; level < MAX_CACHE_LVL; level++) {
1138			struct cpu_cache_level c;
1139			int err;
1140
1141			err = cpu_cache_level__read(&c, cpu, level);
1142			if (err < 0)
1143				return err;
1144
1145			if (err == 1)
1146				break;
1147
1148			for (i = 0; i < cnt; i++) {
1149				if (cpu_cache_level__cmp(&c, &caches[i]))
1150					break;
1151			}
1152
1153			if (i == cnt)
1154				caches[cnt++] = c;
1155			else
1156				cpu_cache_level__free(&c);
 
 
 
1157		}
1158	}
 
1159	*cntp = cnt;
1160	return 0;
1161}
1162
 
 
1163static int write_cache(struct feat_fd *ff,
1164		       struct evlist *evlist __maybe_unused)
1165{
1166	u32 max_caches = cpu__max_cpu() * MAX_CACHE_LVL;
1167	struct cpu_cache_level caches[max_caches];
1168	u32 cnt = 0, i, version = 1;
1169	int ret;
1170
1171	ret = build_caches(caches, &cnt);
1172	if (ret)
1173		goto out;
1174
1175	qsort(&caches, cnt, sizeof(struct cpu_cache_level), cpu_cache_level__sort);
1176
1177	ret = do_write(ff, &version, sizeof(u32));
1178	if (ret < 0)
1179		goto out;
1180
1181	ret = do_write(ff, &cnt, sizeof(u32));
1182	if (ret < 0)
1183		goto out;
1184
1185	for (i = 0; i < cnt; i++) {
1186		struct cpu_cache_level *c = &caches[i];
1187
1188		#define _W(v)					\
1189			ret = do_write(ff, &c->v, sizeof(u32));	\
1190			if (ret < 0)				\
1191				goto out;
1192
1193		_W(level)
1194		_W(line_size)
1195		_W(sets)
1196		_W(ways)
1197		#undef _W
1198
1199		#define _W(v)						\
1200			ret = do_write_string(ff, (const char *) c->v);	\
1201			if (ret < 0)					\
1202				goto out;
1203
1204		_W(type)
1205		_W(size)
1206		_W(map)
1207		#undef _W
1208	}
1209
1210out:
1211	for (i = 0; i < cnt; i++)
1212		cpu_cache_level__free(&caches[i]);
1213	return ret;
1214}
1215
1216static int write_stat(struct feat_fd *ff __maybe_unused,
1217		      struct evlist *evlist __maybe_unused)
1218{
1219	return 0;
1220}
1221
1222static int write_sample_time(struct feat_fd *ff,
1223			     struct evlist *evlist)
1224{
1225	int ret;
1226
1227	ret = do_write(ff, &evlist->first_sample_time,
1228		       sizeof(evlist->first_sample_time));
1229	if (ret < 0)
1230		return ret;
1231
1232	return do_write(ff, &evlist->last_sample_time,
1233			sizeof(evlist->last_sample_time));
1234}
1235
1236
1237static int memory_node__read(struct memory_node *n, unsigned long idx)
1238{
1239	unsigned int phys, size = 0;
1240	char path[PATH_MAX];
1241	struct dirent *ent;
1242	DIR *dir;
1243
1244#define for_each_memory(mem, dir)					\
1245	while ((ent = readdir(dir)))					\
1246		if (strcmp(ent->d_name, ".") &&				\
1247		    strcmp(ent->d_name, "..") &&			\
1248		    sscanf(ent->d_name, "memory%u", &mem) == 1)
1249
1250	scnprintf(path, PATH_MAX,
1251		  "%s/devices/system/node/node%lu",
1252		  sysfs__mountpoint(), idx);
1253
1254	dir = opendir(path);
1255	if (!dir) {
1256		pr_warning("failed: cant' open memory sysfs data\n");
1257		return -1;
1258	}
1259
1260	for_each_memory(phys, dir) {
1261		size = max(phys, size);
1262	}
1263
1264	size++;
1265
1266	n->set = bitmap_alloc(size);
1267	if (!n->set) {
1268		closedir(dir);
1269		return -ENOMEM;
1270	}
1271
 
1272	n->node = idx;
1273	n->size = size;
1274
1275	rewinddir(dir);
1276
1277	for_each_memory(phys, dir) {
1278		set_bit(phys, n->set);
1279	}
1280
1281	closedir(dir);
1282	return 0;
1283}
1284
1285static int memory_node__sort(const void *a, const void *b)
1286{
1287	const struct memory_node *na = a;
1288	const struct memory_node *nb = b;
1289
1290	return na->node - nb->node;
1291}
1292
1293static int build_mem_topology(struct memory_node *nodes, u64 size, u64 *cntp)
1294{
1295	char path[PATH_MAX];
1296	struct dirent *ent;
1297	DIR *dir;
1298	u64 cnt = 0;
1299	int ret = 0;
1300
1301	scnprintf(path, PATH_MAX, "%s/devices/system/node/",
1302		  sysfs__mountpoint());
1303
1304	dir = opendir(path);
1305	if (!dir) {
1306		pr_debug2("%s: could't read %s, does this arch have topology information?\n",
1307			  __func__, path);
1308		return -1;
1309	}
1310
1311	while (!ret && (ent = readdir(dir))) {
1312		unsigned int idx;
1313		int r;
1314
1315		if (!strcmp(ent->d_name, ".") ||
1316		    !strcmp(ent->d_name, ".."))
1317			continue;
1318
1319		r = sscanf(ent->d_name, "node%u", &idx);
1320		if (r != 1)
1321			continue;
1322
1323		if (WARN_ONCE(cnt >= size,
1324			"failed to write MEM_TOPOLOGY, way too many nodes\n")) {
1325			closedir(dir);
1326			return -1;
1327		}
1328
1329		ret = memory_node__read(&nodes[cnt++], idx);
1330	}
1331
1332	*cntp = cnt;
1333	closedir(dir);
1334
1335	if (!ret)
1336		qsort(nodes, cnt, sizeof(nodes[0]), memory_node__sort);
1337
1338	return ret;
1339}
1340
1341#define MAX_MEMORY_NODES 2000
1342
1343/*
1344 * The MEM_TOPOLOGY holds physical memory map for every
1345 * node in system. The format of data is as follows:
1346 *
1347 *  0 - version          | for future changes
1348 *  8 - block_size_bytes | /sys/devices/system/memory/block_size_bytes
1349 * 16 - count            | number of nodes
1350 *
1351 * For each node we store map of physical indexes for
1352 * each node:
1353 *
1354 * 32 - node id          | node index
1355 * 40 - size             | size of bitmap
1356 * 48 - bitmap           | bitmap of memory indexes that belongs to node
1357 */
1358static int write_mem_topology(struct feat_fd *ff __maybe_unused,
1359			      struct evlist *evlist __maybe_unused)
1360{
1361	static struct memory_node nodes[MAX_MEMORY_NODES];
1362	u64 bsize, version = 1, i, nr;
1363	int ret;
1364
1365	ret = sysfs__read_xll("devices/system/memory/block_size_bytes",
1366			      (unsigned long long *) &bsize);
1367	if (ret)
1368		return ret;
1369
1370	ret = build_mem_topology(&nodes[0], MAX_MEMORY_NODES, &nr);
1371	if (ret)
1372		return ret;
1373
1374	ret = do_write(ff, &version, sizeof(version));
1375	if (ret < 0)
1376		goto out;
1377
1378	ret = do_write(ff, &bsize, sizeof(bsize));
1379	if (ret < 0)
1380		goto out;
1381
1382	ret = do_write(ff, &nr, sizeof(nr));
1383	if (ret < 0)
1384		goto out;
1385
1386	for (i = 0; i < nr; i++) {
1387		struct memory_node *n = &nodes[i];
1388
1389		#define _W(v)						\
1390			ret = do_write(ff, &n->v, sizeof(n->v));	\
1391			if (ret < 0)					\
1392				goto out;
1393
1394		_W(node)
1395		_W(size)
1396
1397		#undef _W
1398
1399		ret = do_write_bitmap(ff, n->set, n->size);
1400		if (ret < 0)
1401			goto out;
1402	}
1403
1404out:
1405	return ret;
1406}
1407
1408static int write_compressed(struct feat_fd *ff __maybe_unused,
1409			    struct evlist *evlist __maybe_unused)
1410{
1411	int ret;
1412
1413	ret = do_write(ff, &(ff->ph->env.comp_ver), sizeof(ff->ph->env.comp_ver));
1414	if (ret)
1415		return ret;
1416
1417	ret = do_write(ff, &(ff->ph->env.comp_type), sizeof(ff->ph->env.comp_type));
1418	if (ret)
1419		return ret;
1420
1421	ret = do_write(ff, &(ff->ph->env.comp_level), sizeof(ff->ph->env.comp_level));
1422	if (ret)
1423		return ret;
1424
1425	ret = do_write(ff, &(ff->ph->env.comp_ratio), sizeof(ff->ph->env.comp_ratio));
1426	if (ret)
1427		return ret;
1428
1429	return do_write(ff, &(ff->ph->env.comp_mmap_len), sizeof(ff->ph->env.comp_mmap_len));
1430}
1431
1432static int write_cpu_pmu_caps(struct feat_fd *ff,
1433			      struct evlist *evlist __maybe_unused)
1434{
1435	struct perf_pmu *cpu_pmu = perf_pmu__find("cpu");
1436	struct perf_pmu_caps *caps = NULL;
1437	int nr_caps;
1438	int ret;
1439
1440	if (!cpu_pmu)
1441		return -ENOENT;
1442
1443	nr_caps = perf_pmu__caps_parse(cpu_pmu);
1444	if (nr_caps < 0)
1445		return nr_caps;
1446
1447	ret = do_write(ff, &nr_caps, sizeof(nr_caps));
1448	if (ret < 0)
1449		return ret;
1450
1451	list_for_each_entry(caps, &cpu_pmu->caps, list) {
1452		ret = do_write_string(ff, caps->name);
1453		if (ret < 0)
1454			return ret;
1455
1456		ret = do_write_string(ff, caps->value);
1457		if (ret < 0)
1458			return ret;
1459	}
1460
1461	return ret;
1462}
1463
1464static void print_hostname(struct feat_fd *ff, FILE *fp)
1465{
1466	fprintf(fp, "# hostname : %s\n", ff->ph->env.hostname);
1467}
1468
1469static void print_osrelease(struct feat_fd *ff, FILE *fp)
1470{
1471	fprintf(fp, "# os release : %s\n", ff->ph->env.os_release);
1472}
1473
1474static void print_arch(struct feat_fd *ff, FILE *fp)
1475{
1476	fprintf(fp, "# arch : %s\n", ff->ph->env.arch);
1477}
1478
1479static void print_cpudesc(struct feat_fd *ff, FILE *fp)
1480{
1481	fprintf(fp, "# cpudesc : %s\n", ff->ph->env.cpu_desc);
1482}
1483
1484static void print_nrcpus(struct feat_fd *ff, FILE *fp)
1485{
1486	fprintf(fp, "# nrcpus online : %u\n", ff->ph->env.nr_cpus_online);
1487	fprintf(fp, "# nrcpus avail : %u\n", ff->ph->env.nr_cpus_avail);
1488}
1489
1490static void print_version(struct feat_fd *ff, FILE *fp)
1491{
1492	fprintf(fp, "# perf version : %s\n", ff->ph->env.version);
1493}
1494
1495static void print_cmdline(struct feat_fd *ff, FILE *fp)
1496{
1497	int nr, i;
1498
1499	nr = ff->ph->env.nr_cmdline;
1500
1501	fprintf(fp, "# cmdline : ");
1502
1503	for (i = 0; i < nr; i++) {
1504		char *argv_i = strdup(ff->ph->env.cmdline_argv[i]);
1505		if (!argv_i) {
1506			fprintf(fp, "%s ", ff->ph->env.cmdline_argv[i]);
1507		} else {
1508			char *mem = argv_i;
1509			do {
1510				char *quote = strchr(argv_i, '\'');
1511				if (!quote)
1512					break;
1513				*quote++ = '\0';
1514				fprintf(fp, "%s\\\'", argv_i);
1515				argv_i = quote;
1516			} while (1);
1517			fprintf(fp, "%s ", argv_i);
1518			free(mem);
1519		}
1520	}
1521	fputc('\n', fp);
1522}
1523
1524static void print_cpu_topology(struct feat_fd *ff, FILE *fp)
1525{
1526	struct perf_header *ph = ff->ph;
1527	int cpu_nr = ph->env.nr_cpus_avail;
1528	int nr, i;
1529	char *str;
1530
1531	nr = ph->env.nr_sibling_cores;
1532	str = ph->env.sibling_cores;
1533
1534	for (i = 0; i < nr; i++) {
1535		fprintf(fp, "# sibling sockets : %s\n", str);
1536		str += strlen(str) + 1;
1537	}
1538
1539	if (ph->env.nr_sibling_dies) {
1540		nr = ph->env.nr_sibling_dies;
1541		str = ph->env.sibling_dies;
1542
1543		for (i = 0; i < nr; i++) {
1544			fprintf(fp, "# sibling dies    : %s\n", str);
1545			str += strlen(str) + 1;
1546		}
1547	}
1548
1549	nr = ph->env.nr_sibling_threads;
1550	str = ph->env.sibling_threads;
1551
1552	for (i = 0; i < nr; i++) {
1553		fprintf(fp, "# sibling threads : %s\n", str);
1554		str += strlen(str) + 1;
1555	}
1556
1557	if (ph->env.nr_sibling_dies) {
1558		if (ph->env.cpu != NULL) {
1559			for (i = 0; i < cpu_nr; i++)
1560				fprintf(fp, "# CPU %d: Core ID %d, "
1561					    "Die ID %d, Socket ID %d\n",
1562					    i, ph->env.cpu[i].core_id,
1563					    ph->env.cpu[i].die_id,
1564					    ph->env.cpu[i].socket_id);
1565		} else
1566			fprintf(fp, "# Core ID, Die ID and Socket ID "
1567				    "information is not available\n");
1568	} else {
1569		if (ph->env.cpu != NULL) {
1570			for (i = 0; i < cpu_nr; i++)
1571				fprintf(fp, "# CPU %d: Core ID %d, "
1572					    "Socket ID %d\n",
1573					    i, ph->env.cpu[i].core_id,
1574					    ph->env.cpu[i].socket_id);
1575		} else
1576			fprintf(fp, "# Core ID and Socket ID "
1577				    "information is not available\n");
1578	}
1579}
1580
1581static void print_clockid(struct feat_fd *ff, FILE *fp)
1582{
1583	fprintf(fp, "# clockid frequency: %"PRIu64" MHz\n",
1584		ff->ph->env.clock.clockid_res_ns * 1000);
1585}
1586
1587static void print_clock_data(struct feat_fd *ff, FILE *fp)
1588{
1589	struct timespec clockid_ns;
1590	char tstr[64], date[64];
1591	struct timeval tod_ns;
1592	clockid_t clockid;
1593	struct tm ltime;
1594	u64 ref;
1595
1596	if (!ff->ph->env.clock.enabled) {
1597		fprintf(fp, "# reference time disabled\n");
1598		return;
1599	}
1600
1601	/* Compute TOD time. */
1602	ref = ff->ph->env.clock.tod_ns;
1603	tod_ns.tv_sec = ref / NSEC_PER_SEC;
1604	ref -= tod_ns.tv_sec * NSEC_PER_SEC;
1605	tod_ns.tv_usec = ref / NSEC_PER_USEC;
1606
1607	/* Compute clockid time. */
1608	ref = ff->ph->env.clock.clockid_ns;
1609	clockid_ns.tv_sec = ref / NSEC_PER_SEC;
1610	ref -= clockid_ns.tv_sec * NSEC_PER_SEC;
1611	clockid_ns.tv_nsec = ref;
1612
1613	clockid = ff->ph->env.clock.clockid;
1614
1615	if (localtime_r(&tod_ns.tv_sec, &ltime) == NULL)
1616		snprintf(tstr, sizeof(tstr), "<error>");
1617	else {
1618		strftime(date, sizeof(date), "%F %T", &ltime);
1619		scnprintf(tstr, sizeof(tstr), "%s.%06d",
1620			  date, (int) tod_ns.tv_usec);
1621	}
1622
1623	fprintf(fp, "# clockid: %s (%u)\n", clockid_name(clockid), clockid);
1624	fprintf(fp, "# reference time: %s = %ld.%06d (TOD) = %ld.%09ld (%s)\n",
1625		    tstr, tod_ns.tv_sec, (int) tod_ns.tv_usec,
1626		    clockid_ns.tv_sec, clockid_ns.tv_nsec,
1627		    clockid_name(clockid));
1628}
1629
1630static void print_dir_format(struct feat_fd *ff, FILE *fp)
1631{
1632	struct perf_session *session;
1633	struct perf_data *data;
1634
1635	session = container_of(ff->ph, struct perf_session, header);
1636	data = session->data;
1637
1638	fprintf(fp, "# directory data version : %"PRIu64"\n", data->dir.version);
1639}
1640
1641static void print_bpf_prog_info(struct feat_fd *ff, FILE *fp)
1642{
1643	struct perf_env *env = &ff->ph->env;
1644	struct rb_root *root;
1645	struct rb_node *next;
1646
1647	down_read(&env->bpf_progs.lock);
1648
1649	root = &env->bpf_progs.infos;
1650	next = rb_first(root);
1651
1652	while (next) {
1653		struct bpf_prog_info_node *node;
1654
1655		node = rb_entry(next, struct bpf_prog_info_node, rb_node);
1656		next = rb_next(&node->rb_node);
1657
1658		bpf_event__print_bpf_prog_info(&node->info_linear->info,
1659					       env, fp);
1660	}
1661
1662	up_read(&env->bpf_progs.lock);
1663}
1664
1665static void print_bpf_btf(struct feat_fd *ff, FILE *fp)
1666{
1667	struct perf_env *env = &ff->ph->env;
1668	struct rb_root *root;
1669	struct rb_node *next;
1670
1671	down_read(&env->bpf_progs.lock);
1672
1673	root = &env->bpf_progs.btfs;
1674	next = rb_first(root);
1675
1676	while (next) {
1677		struct btf_node *node;
1678
1679		node = rb_entry(next, struct btf_node, rb_node);
1680		next = rb_next(&node->rb_node);
1681		fprintf(fp, "# btf info of id %u\n", node->id);
1682	}
1683
1684	up_read(&env->bpf_progs.lock);
1685}
1686
1687static void free_event_desc(struct evsel *events)
1688{
1689	struct evsel *evsel;
1690
1691	if (!events)
1692		return;
1693
1694	for (evsel = events; evsel->core.attr.size; evsel++) {
1695		zfree(&evsel->name);
1696		zfree(&evsel->core.id);
1697	}
1698
1699	free(events);
1700}
1701
1702static bool perf_attr_check(struct perf_event_attr *attr)
1703{
1704	if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) {
1705		pr_warning("Reserved bits are set unexpectedly. "
1706			   "Please update perf tool.\n");
1707		return false;
1708	}
1709
1710	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) {
1711		pr_warning("Unknown sample type (0x%llx) is detected. "
1712			   "Please update perf tool.\n",
1713			   attr->sample_type);
1714		return false;
1715	}
1716
1717	if (attr->read_format & ~(PERF_FORMAT_MAX-1)) {
1718		pr_warning("Unknown read format (0x%llx) is detected. "
1719			   "Please update perf tool.\n",
1720			   attr->read_format);
1721		return false;
1722	}
1723
1724	if ((attr->sample_type & PERF_SAMPLE_BRANCH_STACK) &&
1725	    (attr->branch_sample_type & ~(PERF_SAMPLE_BRANCH_MAX-1))) {
1726		pr_warning("Unknown branch sample type (0x%llx) is detected. "
1727			   "Please update perf tool.\n",
1728			   attr->branch_sample_type);
1729
1730		return false;
1731	}
1732
1733	return true;
1734}
1735
1736static struct evsel *read_event_desc(struct feat_fd *ff)
1737{
1738	struct evsel *evsel, *events = NULL;
1739	u64 *id;
1740	void *buf = NULL;
1741	u32 nre, sz, nr, i, j;
1742	size_t msz;
1743
1744	/* number of events */
1745	if (do_read_u32(ff, &nre))
1746		goto error;
1747
1748	if (do_read_u32(ff, &sz))
1749		goto error;
1750
1751	/* buffer to hold on file attr struct */
1752	buf = malloc(sz);
1753	if (!buf)
1754		goto error;
1755
1756	/* the last event terminates with evsel->core.attr.size == 0: */
1757	events = calloc(nre + 1, sizeof(*events));
1758	if (!events)
1759		goto error;
1760
1761	msz = sizeof(evsel->core.attr);
1762	if (sz < msz)
1763		msz = sz;
1764
1765	for (i = 0, evsel = events; i < nre; evsel++, i++) {
1766		evsel->idx = i;
1767
1768		/*
1769		 * must read entire on-file attr struct to
1770		 * sync up with layout.
1771		 */
1772		if (__do_read(ff, buf, sz))
1773			goto error;
1774
1775		if (ff->ph->needs_swap)
1776			perf_event__attr_swap(buf);
1777
1778		memcpy(&evsel->core.attr, buf, msz);
1779
1780		if (!perf_attr_check(&evsel->core.attr))
1781			goto error;
1782
1783		if (do_read_u32(ff, &nr))
1784			goto error;
1785
1786		if (ff->ph->needs_swap)
1787			evsel->needs_swap = true;
1788
1789		evsel->name = do_read_string(ff);
1790		if (!evsel->name)
1791			goto error;
1792
1793		if (!nr)
1794			continue;
1795
1796		id = calloc(nr, sizeof(*id));
1797		if (!id)
1798			goto error;
1799		evsel->core.ids = nr;
1800		evsel->core.id = id;
1801
1802		for (j = 0 ; j < nr; j++) {
1803			if (do_read_u64(ff, id))
1804				goto error;
1805			id++;
1806		}
1807	}
1808out:
1809	free(buf);
1810	return events;
1811error:
1812	free_event_desc(events);
1813	events = NULL;
1814	goto out;
1815}
1816
1817static int __desc_attr__fprintf(FILE *fp, const char *name, const char *val,
1818				void *priv __maybe_unused)
1819{
1820	return fprintf(fp, ", %s = %s", name, val);
1821}
1822
1823static void print_event_desc(struct feat_fd *ff, FILE *fp)
1824{
1825	struct evsel *evsel, *events;
1826	u32 j;
1827	u64 *id;
1828
1829	if (ff->events)
1830		events = ff->events;
1831	else
1832		events = read_event_desc(ff);
1833
1834	if (!events) {
1835		fprintf(fp, "# event desc: not available or unable to read\n");
1836		return;
1837	}
1838
1839	for (evsel = events; evsel->core.attr.size; evsel++) {
1840		fprintf(fp, "# event : name = %s, ", evsel->name);
1841
1842		if (evsel->core.ids) {
1843			fprintf(fp, ", id = {");
1844			for (j = 0, id = evsel->core.id; j < evsel->core.ids; j++, id++) {
1845				if (j)
1846					fputc(',', fp);
1847				fprintf(fp, " %"PRIu64, *id);
1848			}
1849			fprintf(fp, " }");
1850		}
1851
1852		perf_event_attr__fprintf(fp, &evsel->core.attr, __desc_attr__fprintf, NULL);
1853
1854		fputc('\n', fp);
1855	}
1856
1857	free_event_desc(events);
1858	ff->events = NULL;
1859}
1860
1861static void print_total_mem(struct feat_fd *ff, FILE *fp)
1862{
1863	fprintf(fp, "# total memory : %llu kB\n", ff->ph->env.total_mem);
1864}
1865
1866static void print_numa_topology(struct feat_fd *ff, FILE *fp)
1867{
1868	int i;
1869	struct numa_node *n;
1870
1871	for (i = 0; i < ff->ph->env.nr_numa_nodes; i++) {
1872		n = &ff->ph->env.numa_nodes[i];
1873
1874		fprintf(fp, "# node%u meminfo  : total = %"PRIu64" kB,"
1875			    " free = %"PRIu64" kB\n",
1876			n->node, n->mem_total, n->mem_free);
1877
1878		fprintf(fp, "# node%u cpu list : ", n->node);
1879		cpu_map__fprintf(n->map, fp);
1880	}
1881}
1882
1883static void print_cpuid(struct feat_fd *ff, FILE *fp)
1884{
1885	fprintf(fp, "# cpuid : %s\n", ff->ph->env.cpuid);
1886}
1887
1888static void print_branch_stack(struct feat_fd *ff __maybe_unused, FILE *fp)
1889{
1890	fprintf(fp, "# contains samples with branch stack\n");
1891}
1892
1893static void print_auxtrace(struct feat_fd *ff __maybe_unused, FILE *fp)
1894{
1895	fprintf(fp, "# contains AUX area data (e.g. instruction trace)\n");
1896}
1897
1898static void print_stat(struct feat_fd *ff __maybe_unused, FILE *fp)
1899{
1900	fprintf(fp, "# contains stat data\n");
1901}
1902
1903static void print_cache(struct feat_fd *ff, FILE *fp __maybe_unused)
1904{
1905	int i;
1906
1907	fprintf(fp, "# CPU cache info:\n");
1908	for (i = 0; i < ff->ph->env.caches_cnt; i++) {
1909		fprintf(fp, "#  ");
1910		cpu_cache_level__fprintf(fp, &ff->ph->env.caches[i]);
1911	}
1912}
1913
1914static void print_compressed(struct feat_fd *ff, FILE *fp)
1915{
1916	fprintf(fp, "# compressed : %s, level = %d, ratio = %d\n",
1917		ff->ph->env.comp_type == PERF_COMP_ZSTD ? "Zstd" : "Unknown",
1918		ff->ph->env.comp_level, ff->ph->env.comp_ratio);
1919}
1920
1921static void print_cpu_pmu_caps(struct feat_fd *ff, FILE *fp)
1922{
1923	const char *delimiter = "# cpu pmu capabilities: ";
1924	u32 nr_caps = ff->ph->env.nr_cpu_pmu_caps;
1925	char *str;
1926
1927	if (!nr_caps) {
1928		fprintf(fp, "# cpu pmu capabilities: not available\n");
1929		return;
1930	}
1931
1932	str = ff->ph->env.cpu_pmu_caps;
1933	while (nr_caps--) {
1934		fprintf(fp, "%s%s", delimiter, str);
1935		delimiter = ", ";
1936		str += strlen(str) + 1;
1937	}
1938
1939	fprintf(fp, "\n");
1940}
1941
1942static void print_pmu_mappings(struct feat_fd *ff, FILE *fp)
1943{
1944	const char *delimiter = "# pmu mappings: ";
1945	char *str, *tmp;
1946	u32 pmu_num;
1947	u32 type;
1948
1949	pmu_num = ff->ph->env.nr_pmu_mappings;
1950	if (!pmu_num) {
1951		fprintf(fp, "# pmu mappings: not available\n");
1952		return;
1953	}
1954
1955	str = ff->ph->env.pmu_mappings;
1956
1957	while (pmu_num) {
1958		type = strtoul(str, &tmp, 0);
1959		if (*tmp != ':')
1960			goto error;
1961
1962		str = tmp + 1;
1963		fprintf(fp, "%s%s = %" PRIu32, delimiter, str, type);
1964
1965		delimiter = ", ";
1966		str += strlen(str) + 1;
1967		pmu_num--;
1968	}
1969
1970	fprintf(fp, "\n");
1971
1972	if (!pmu_num)
1973		return;
1974error:
1975	fprintf(fp, "# pmu mappings: unable to read\n");
1976}
1977
1978static void print_group_desc(struct feat_fd *ff, FILE *fp)
1979{
1980	struct perf_session *session;
1981	struct evsel *evsel;
1982	u32 nr = 0;
1983
1984	session = container_of(ff->ph, struct perf_session, header);
1985
1986	evlist__for_each_entry(session->evlist, evsel) {
1987		if (evsel__is_group_leader(evsel) && evsel->core.nr_members > 1) {
1988			fprintf(fp, "# group: %s{%s", evsel->group_name ?: "", evsel__name(evsel));
 
 
1989
1990			nr = evsel->core.nr_members - 1;
1991		} else if (nr) {
1992			fprintf(fp, ",%s", evsel__name(evsel));
1993
1994			if (--nr == 0)
1995				fprintf(fp, "}\n");
1996		}
1997	}
1998}
1999
2000static void print_sample_time(struct feat_fd *ff, FILE *fp)
2001{
2002	struct perf_session *session;
2003	char time_buf[32];
2004	double d;
2005
2006	session = container_of(ff->ph, struct perf_session, header);
2007
2008	timestamp__scnprintf_usec(session->evlist->first_sample_time,
2009				  time_buf, sizeof(time_buf));
2010	fprintf(fp, "# time of first sample : %s\n", time_buf);
2011
2012	timestamp__scnprintf_usec(session->evlist->last_sample_time,
2013				  time_buf, sizeof(time_buf));
2014	fprintf(fp, "# time of last sample : %s\n", time_buf);
2015
2016	d = (double)(session->evlist->last_sample_time -
2017		session->evlist->first_sample_time) / NSEC_PER_MSEC;
2018
2019	fprintf(fp, "# sample duration : %10.3f ms\n", d);
2020}
2021
2022static void memory_node__fprintf(struct memory_node *n,
2023				 unsigned long long bsize, FILE *fp)
2024{
2025	char buf_map[100], buf_size[50];
2026	unsigned long long size;
2027
2028	size = bsize * bitmap_weight(n->set, n->size);
2029	unit_number__scnprintf(buf_size, 50, size);
2030
2031	bitmap_scnprintf(n->set, n->size, buf_map, 100);
2032	fprintf(fp, "#  %3" PRIu64 " [%s]: %s\n", n->node, buf_size, buf_map);
2033}
2034
2035static void print_mem_topology(struct feat_fd *ff, FILE *fp)
2036{
2037	struct memory_node *nodes;
2038	int i, nr;
2039
2040	nodes = ff->ph->env.memory_nodes;
2041	nr    = ff->ph->env.nr_memory_nodes;
2042
2043	fprintf(fp, "# memory nodes (nr %d, block size 0x%llx):\n",
2044		nr, ff->ph->env.memory_bsize);
2045
2046	for (i = 0; i < nr; i++) {
2047		memory_node__fprintf(&nodes[i], ff->ph->env.memory_bsize, fp);
2048	}
2049}
2050
2051static int __event_process_build_id(struct perf_record_header_build_id *bev,
2052				    char *filename,
2053				    struct perf_session *session)
2054{
2055	int err = -1;
2056	struct machine *machine;
2057	u16 cpumode;
2058	struct dso *dso;
2059	enum dso_space_type dso_space;
2060
2061	machine = perf_session__findnew_machine(session, bev->pid);
2062	if (!machine)
2063		goto out;
2064
2065	cpumode = bev->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
2066
2067	switch (cpumode) {
2068	case PERF_RECORD_MISC_KERNEL:
2069		dso_space = DSO_SPACE__KERNEL;
2070		break;
2071	case PERF_RECORD_MISC_GUEST_KERNEL:
2072		dso_space = DSO_SPACE__KERNEL_GUEST;
2073		break;
2074	case PERF_RECORD_MISC_USER:
2075	case PERF_RECORD_MISC_GUEST_USER:
2076		dso_space = DSO_SPACE__USER;
2077		break;
2078	default:
2079		goto out;
2080	}
2081
2082	dso = machine__findnew_dso(machine, filename);
2083	if (dso != NULL) {
2084		char sbuild_id[SBUILD_ID_SIZE];
2085
2086		dso__set_build_id(dso, &bev->build_id);
2087
2088		if (dso_space != DSO_SPACE__USER) {
2089			struct kmod_path m = { .name = NULL, };
2090
2091			if (!kmod_path__parse_name(&m, filename) && m.kmod)
2092				dso__set_module_info(dso, &m, machine);
 
 
2093
2094			dso->kernel = dso_space;
2095			free(m.name);
2096		}
2097
2098		build_id__sprintf(dso->build_id, sizeof(dso->build_id),
2099				  sbuild_id);
2100		pr_debug("build id event received for %s: %s\n",
2101			 dso->long_name, sbuild_id);
2102		dso__put(dso);
2103	}
2104
2105	err = 0;
2106out:
2107	return err;
2108}
2109
2110static int perf_header__read_build_ids_abi_quirk(struct perf_header *header,
2111						 int input, u64 offset, u64 size)
2112{
2113	struct perf_session *session = container_of(header, struct perf_session, header);
2114	struct {
2115		struct perf_event_header   header;
2116		u8			   build_id[PERF_ALIGN(BUILD_ID_SIZE, sizeof(u64))];
2117		char			   filename[0];
2118	} old_bev;
2119	struct perf_record_header_build_id bev;
2120	char filename[PATH_MAX];
2121	u64 limit = offset + size;
2122
2123	while (offset < limit) {
2124		ssize_t len;
2125
2126		if (readn(input, &old_bev, sizeof(old_bev)) != sizeof(old_bev))
2127			return -1;
2128
2129		if (header->needs_swap)
2130			perf_event_header__bswap(&old_bev.header);
2131
2132		len = old_bev.header.size - sizeof(old_bev);
2133		if (readn(input, filename, len) != len)
2134			return -1;
2135
2136		bev.header = old_bev.header;
2137
2138		/*
2139		 * As the pid is the missing value, we need to fill
2140		 * it properly. The header.misc value give us nice hint.
2141		 */
2142		bev.pid	= HOST_KERNEL_ID;
2143		if (bev.header.misc == PERF_RECORD_MISC_GUEST_USER ||
2144		    bev.header.misc == PERF_RECORD_MISC_GUEST_KERNEL)
2145			bev.pid	= DEFAULT_GUEST_KERNEL_ID;
2146
2147		memcpy(bev.build_id, old_bev.build_id, sizeof(bev.build_id));
2148		__event_process_build_id(&bev, filename, session);
2149
2150		offset += bev.header.size;
2151	}
2152
2153	return 0;
2154}
2155
2156static int perf_header__read_build_ids(struct perf_header *header,
2157				       int input, u64 offset, u64 size)
2158{
2159	struct perf_session *session = container_of(header, struct perf_session, header);
2160	struct perf_record_header_build_id bev;
2161	char filename[PATH_MAX];
2162	u64 limit = offset + size, orig_offset = offset;
2163	int err = -1;
2164
2165	while (offset < limit) {
2166		ssize_t len;
2167
2168		if (readn(input, &bev, sizeof(bev)) != sizeof(bev))
2169			goto out;
2170
2171		if (header->needs_swap)
2172			perf_event_header__bswap(&bev.header);
2173
2174		len = bev.header.size - sizeof(bev);
2175		if (readn(input, filename, len) != len)
2176			goto out;
2177		/*
2178		 * The a1645ce1 changeset:
2179		 *
2180		 * "perf: 'perf kvm' tool for monitoring guest performance from host"
2181		 *
2182		 * Added a field to struct perf_record_header_build_id that broke the file
2183		 * format.
2184		 *
2185		 * Since the kernel build-id is the first entry, process the
2186		 * table using the old format if the well known
2187		 * '[kernel.kallsyms]' string for the kernel build-id has the
2188		 * first 4 characters chopped off (where the pid_t sits).
2189		 */
2190		if (memcmp(filename, "nel.kallsyms]", 13) == 0) {
2191			if (lseek(input, orig_offset, SEEK_SET) == (off_t)-1)
2192				return -1;
2193			return perf_header__read_build_ids_abi_quirk(header, input, offset, size);
2194		}
2195
2196		__event_process_build_id(&bev, filename, session);
2197
2198		offset += bev.header.size;
2199	}
2200	err = 0;
2201out:
2202	return err;
2203}
2204
2205/* Macro for features that simply need to read and store a string. */
2206#define FEAT_PROCESS_STR_FUN(__feat, __feat_env) \
2207static int process_##__feat(struct feat_fd *ff, void *data __maybe_unused) \
2208{\
2209	ff->ph->env.__feat_env = do_read_string(ff); \
2210	return ff->ph->env.__feat_env ? 0 : -ENOMEM; \
2211}
2212
2213FEAT_PROCESS_STR_FUN(hostname, hostname);
2214FEAT_PROCESS_STR_FUN(osrelease, os_release);
2215FEAT_PROCESS_STR_FUN(version, version);
2216FEAT_PROCESS_STR_FUN(arch, arch);
2217FEAT_PROCESS_STR_FUN(cpudesc, cpu_desc);
2218FEAT_PROCESS_STR_FUN(cpuid, cpuid);
2219
2220static int process_tracing_data(struct feat_fd *ff, void *data)
2221{
2222	ssize_t ret = trace_report(ff->fd, data, false);
2223
2224	return ret < 0 ? -1 : 0;
2225}
2226
2227static int process_build_id(struct feat_fd *ff, void *data __maybe_unused)
2228{
2229	if (perf_header__read_build_ids(ff->ph, ff->fd, ff->offset, ff->size))
2230		pr_debug("Failed to read buildids, continuing...\n");
2231	return 0;
2232}
2233
2234static int process_nrcpus(struct feat_fd *ff, void *data __maybe_unused)
2235{
2236	int ret;
2237	u32 nr_cpus_avail, nr_cpus_online;
2238
2239	ret = do_read_u32(ff, &nr_cpus_avail);
2240	if (ret)
2241		return ret;
2242
2243	ret = do_read_u32(ff, &nr_cpus_online);
2244	if (ret)
2245		return ret;
2246	ff->ph->env.nr_cpus_avail = (int)nr_cpus_avail;
2247	ff->ph->env.nr_cpus_online = (int)nr_cpus_online;
2248	return 0;
2249}
2250
2251static int process_total_mem(struct feat_fd *ff, void *data __maybe_unused)
2252{
2253	u64 total_mem;
2254	int ret;
2255
2256	ret = do_read_u64(ff, &total_mem);
2257	if (ret)
2258		return -1;
2259	ff->ph->env.total_mem = (unsigned long long)total_mem;
2260	return 0;
2261}
2262
2263static struct evsel *
2264perf_evlist__find_by_index(struct evlist *evlist, int idx)
2265{
2266	struct evsel *evsel;
2267
2268	evlist__for_each_entry(evlist, evsel) {
2269		if (evsel->idx == idx)
2270			return evsel;
2271	}
2272
2273	return NULL;
2274}
2275
2276static void
2277perf_evlist__set_event_name(struct evlist *evlist,
2278			    struct evsel *event)
2279{
2280	struct evsel *evsel;
2281
2282	if (!event->name)
2283		return;
2284
2285	evsel = perf_evlist__find_by_index(evlist, event->idx);
2286	if (!evsel)
2287		return;
2288
2289	if (evsel->name)
2290		return;
2291
2292	evsel->name = strdup(event->name);
2293}
2294
2295static int
2296process_event_desc(struct feat_fd *ff, void *data __maybe_unused)
2297{
2298	struct perf_session *session;
2299	struct evsel *evsel, *events = read_event_desc(ff);
2300
2301	if (!events)
2302		return 0;
2303
2304	session = container_of(ff->ph, struct perf_session, header);
2305
2306	if (session->data->is_pipe) {
2307		/* Save events for reading later by print_event_desc,
2308		 * since they can't be read again in pipe mode. */
2309		ff->events = events;
2310	}
2311
2312	for (evsel = events; evsel->core.attr.size; evsel++)
2313		perf_evlist__set_event_name(session->evlist, evsel);
2314
2315	if (!session->data->is_pipe)
2316		free_event_desc(events);
2317
2318	return 0;
2319}
2320
2321static int process_cmdline(struct feat_fd *ff, void *data __maybe_unused)
2322{
2323	char *str, *cmdline = NULL, **argv = NULL;
2324	u32 nr, i, len = 0;
2325
2326	if (do_read_u32(ff, &nr))
2327		return -1;
2328
2329	ff->ph->env.nr_cmdline = nr;
2330
2331	cmdline = zalloc(ff->size + nr + 1);
2332	if (!cmdline)
2333		return -1;
2334
2335	argv = zalloc(sizeof(char *) * (nr + 1));
2336	if (!argv)
2337		goto error;
2338
2339	for (i = 0; i < nr; i++) {
2340		str = do_read_string(ff);
2341		if (!str)
2342			goto error;
2343
2344		argv[i] = cmdline + len;
2345		memcpy(argv[i], str, strlen(str) + 1);
2346		len += strlen(str) + 1;
2347		free(str);
2348	}
2349	ff->ph->env.cmdline = cmdline;
2350	ff->ph->env.cmdline_argv = (const char **) argv;
2351	return 0;
2352
2353error:
2354	free(argv);
2355	free(cmdline);
2356	return -1;
2357}
2358
2359static int process_cpu_topology(struct feat_fd *ff, void *data __maybe_unused)
2360{
2361	u32 nr, i;
2362	char *str;
2363	struct strbuf sb;
2364	int cpu_nr = ff->ph->env.nr_cpus_avail;
2365	u64 size = 0;
2366	struct perf_header *ph = ff->ph;
2367	bool do_core_id_test = true;
2368
2369	ph->env.cpu = calloc(cpu_nr, sizeof(*ph->env.cpu));
2370	if (!ph->env.cpu)
2371		return -1;
2372
2373	if (do_read_u32(ff, &nr))
2374		goto free_cpu;
2375
2376	ph->env.nr_sibling_cores = nr;
2377	size += sizeof(u32);
2378	if (strbuf_init(&sb, 128) < 0)
2379		goto free_cpu;
2380
2381	for (i = 0; i < nr; i++) {
2382		str = do_read_string(ff);
2383		if (!str)
2384			goto error;
2385
2386		/* include a NULL character at the end */
2387		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2388			goto error;
2389		size += string_size(str);
2390		free(str);
2391	}
2392	ph->env.sibling_cores = strbuf_detach(&sb, NULL);
2393
2394	if (do_read_u32(ff, &nr))
2395		return -1;
2396
2397	ph->env.nr_sibling_threads = nr;
2398	size += sizeof(u32);
2399
2400	for (i = 0; i < nr; i++) {
2401		str = do_read_string(ff);
2402		if (!str)
2403			goto error;
2404
2405		/* include a NULL character at the end */
2406		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2407			goto error;
2408		size += string_size(str);
2409		free(str);
2410	}
2411	ph->env.sibling_threads = strbuf_detach(&sb, NULL);
2412
2413	/*
2414	 * The header may be from old perf,
2415	 * which doesn't include core id and socket id information.
2416	 */
2417	if (ff->size <= size) {
2418		zfree(&ph->env.cpu);
2419		return 0;
2420	}
2421
2422	/* On s390 the socket_id number is not related to the numbers of cpus.
2423	 * The socket_id number might be higher than the numbers of cpus.
2424	 * This depends on the configuration.
2425	 * AArch64 is the same.
2426	 */
2427	if (ph->env.arch && (!strncmp(ph->env.arch, "s390", 4)
2428			  || !strncmp(ph->env.arch, "aarch64", 7)))
2429		do_core_id_test = false;
2430
2431	for (i = 0; i < (u32)cpu_nr; i++) {
2432		if (do_read_u32(ff, &nr))
2433			goto free_cpu;
2434
2435		ph->env.cpu[i].core_id = nr;
2436		size += sizeof(u32);
2437
2438		if (do_read_u32(ff, &nr))
2439			goto free_cpu;
2440
2441		if (do_core_id_test && nr != (u32)-1 && nr > (u32)cpu_nr) {
2442			pr_debug("socket_id number is too big."
2443				 "You may need to upgrade the perf tool.\n");
2444			goto free_cpu;
2445		}
2446
2447		ph->env.cpu[i].socket_id = nr;
2448		size += sizeof(u32);
2449	}
2450
2451	/*
2452	 * The header may be from old perf,
2453	 * which doesn't include die information.
2454	 */
2455	if (ff->size <= size)
2456		return 0;
2457
2458	if (do_read_u32(ff, &nr))
2459		return -1;
2460
2461	ph->env.nr_sibling_dies = nr;
2462	size += sizeof(u32);
2463
2464	for (i = 0; i < nr; i++) {
2465		str = do_read_string(ff);
2466		if (!str)
2467			goto error;
2468
2469		/* include a NULL character at the end */
2470		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2471			goto error;
2472		size += string_size(str);
2473		free(str);
2474	}
2475	ph->env.sibling_dies = strbuf_detach(&sb, NULL);
2476
2477	for (i = 0; i < (u32)cpu_nr; i++) {
2478		if (do_read_u32(ff, &nr))
2479			goto free_cpu;
2480
2481		ph->env.cpu[i].die_id = nr;
2482	}
2483
2484	return 0;
2485
2486error:
2487	strbuf_release(&sb);
2488free_cpu:
2489	zfree(&ph->env.cpu);
2490	return -1;
2491}
2492
2493static int process_numa_topology(struct feat_fd *ff, void *data __maybe_unused)
2494{
2495	struct numa_node *nodes, *n;
2496	u32 nr, i;
2497	char *str;
2498
2499	/* nr nodes */
2500	if (do_read_u32(ff, &nr))
2501		return -1;
2502
2503	nodes = zalloc(sizeof(*nodes) * nr);
2504	if (!nodes)
2505		return -ENOMEM;
2506
2507	for (i = 0; i < nr; i++) {
2508		n = &nodes[i];
2509
2510		/* node number */
2511		if (do_read_u32(ff, &n->node))
2512			goto error;
2513
2514		if (do_read_u64(ff, &n->mem_total))
2515			goto error;
2516
2517		if (do_read_u64(ff, &n->mem_free))
2518			goto error;
2519
2520		str = do_read_string(ff);
2521		if (!str)
2522			goto error;
2523
2524		n->map = perf_cpu_map__new(str);
2525		if (!n->map)
2526			goto error;
2527
2528		free(str);
2529	}
2530	ff->ph->env.nr_numa_nodes = nr;
2531	ff->ph->env.numa_nodes = nodes;
2532	return 0;
2533
2534error:
2535	free(nodes);
2536	return -1;
2537}
2538
2539static int process_pmu_mappings(struct feat_fd *ff, void *data __maybe_unused)
2540{
2541	char *name;
2542	u32 pmu_num;
2543	u32 type;
2544	struct strbuf sb;
2545
2546	if (do_read_u32(ff, &pmu_num))
2547		return -1;
2548
2549	if (!pmu_num) {
2550		pr_debug("pmu mappings not available\n");
2551		return 0;
2552	}
2553
2554	ff->ph->env.nr_pmu_mappings = pmu_num;
2555	if (strbuf_init(&sb, 128) < 0)
2556		return -1;
2557
2558	while (pmu_num) {
2559		if (do_read_u32(ff, &type))
2560			goto error;
2561
2562		name = do_read_string(ff);
2563		if (!name)
2564			goto error;
2565
2566		if (strbuf_addf(&sb, "%u:%s", type, name) < 0)
2567			goto error;
2568		/* include a NULL character at the end */
2569		if (strbuf_add(&sb, "", 1) < 0)
2570			goto error;
2571
2572		if (!strcmp(name, "msr"))
2573			ff->ph->env.msr_pmu_type = type;
2574
2575		free(name);
2576		pmu_num--;
2577	}
2578	ff->ph->env.pmu_mappings = strbuf_detach(&sb, NULL);
2579	return 0;
2580
2581error:
2582	strbuf_release(&sb);
2583	return -1;
2584}
2585
2586static int process_group_desc(struct feat_fd *ff, void *data __maybe_unused)
2587{
2588	size_t ret = -1;
2589	u32 i, nr, nr_groups;
2590	struct perf_session *session;
2591	struct evsel *evsel, *leader = NULL;
2592	struct group_desc {
2593		char *name;
2594		u32 leader_idx;
2595		u32 nr_members;
2596	} *desc;
2597
2598	if (do_read_u32(ff, &nr_groups))
2599		return -1;
2600
2601	ff->ph->env.nr_groups = nr_groups;
2602	if (!nr_groups) {
2603		pr_debug("group desc not available\n");
2604		return 0;
2605	}
2606
2607	desc = calloc(nr_groups, sizeof(*desc));
2608	if (!desc)
2609		return -1;
2610
2611	for (i = 0; i < nr_groups; i++) {
2612		desc[i].name = do_read_string(ff);
2613		if (!desc[i].name)
2614			goto out_free;
2615
2616		if (do_read_u32(ff, &desc[i].leader_idx))
2617			goto out_free;
2618
2619		if (do_read_u32(ff, &desc[i].nr_members))
2620			goto out_free;
2621	}
2622
2623	/*
2624	 * Rebuild group relationship based on the group_desc
2625	 */
2626	session = container_of(ff->ph, struct perf_session, header);
2627	session->evlist->nr_groups = nr_groups;
2628
2629	i = nr = 0;
2630	evlist__for_each_entry(session->evlist, evsel) {
2631		if (evsel->idx == (int) desc[i].leader_idx) {
2632			evsel->leader = evsel;
2633			/* {anon_group} is a dummy name */
2634			if (strcmp(desc[i].name, "{anon_group}")) {
2635				evsel->group_name = desc[i].name;
2636				desc[i].name = NULL;
2637			}
2638			evsel->core.nr_members = desc[i].nr_members;
2639
2640			if (i >= nr_groups || nr > 0) {
2641				pr_debug("invalid group desc\n");
2642				goto out_free;
2643			}
2644
2645			leader = evsel;
2646			nr = evsel->core.nr_members - 1;
2647			i++;
2648		} else if (nr) {
2649			/* This is a group member */
2650			evsel->leader = leader;
2651
2652			nr--;
2653		}
2654	}
2655
2656	if (i != nr_groups || nr != 0) {
2657		pr_debug("invalid group desc\n");
2658		goto out_free;
2659	}
2660
2661	ret = 0;
2662out_free:
2663	for (i = 0; i < nr_groups; i++)
2664		zfree(&desc[i].name);
2665	free(desc);
2666
2667	return ret;
2668}
2669
2670static int process_auxtrace(struct feat_fd *ff, void *data __maybe_unused)
2671{
2672	struct perf_session *session;
2673	int err;
2674
2675	session = container_of(ff->ph, struct perf_session, header);
2676
2677	err = auxtrace_index__process(ff->fd, ff->size, session,
2678				      ff->ph->needs_swap);
2679	if (err < 0)
2680		pr_err("Failed to process auxtrace index\n");
2681	return err;
2682}
2683
2684static int process_cache(struct feat_fd *ff, void *data __maybe_unused)
2685{
2686	struct cpu_cache_level *caches;
2687	u32 cnt, i, version;
2688
2689	if (do_read_u32(ff, &version))
2690		return -1;
2691
2692	if (version != 1)
2693		return -1;
2694
2695	if (do_read_u32(ff, &cnt))
2696		return -1;
2697
2698	caches = zalloc(sizeof(*caches) * cnt);
2699	if (!caches)
2700		return -1;
2701
2702	for (i = 0; i < cnt; i++) {
2703		struct cpu_cache_level c;
2704
2705		#define _R(v)						\
2706			if (do_read_u32(ff, &c.v))\
2707				goto out_free_caches;			\
2708
2709		_R(level)
2710		_R(line_size)
2711		_R(sets)
2712		_R(ways)
2713		#undef _R
2714
2715		#define _R(v)					\
2716			c.v = do_read_string(ff);		\
2717			if (!c.v)				\
2718				goto out_free_caches;
2719
2720		_R(type)
2721		_R(size)
2722		_R(map)
2723		#undef _R
2724
2725		caches[i] = c;
2726	}
2727
2728	ff->ph->env.caches = caches;
2729	ff->ph->env.caches_cnt = cnt;
2730	return 0;
2731out_free_caches:
2732	free(caches);
2733	return -1;
2734}
2735
2736static int process_sample_time(struct feat_fd *ff, void *data __maybe_unused)
2737{
2738	struct perf_session *session;
2739	u64 first_sample_time, last_sample_time;
2740	int ret;
2741
2742	session = container_of(ff->ph, struct perf_session, header);
2743
2744	ret = do_read_u64(ff, &first_sample_time);
2745	if (ret)
2746		return -1;
2747
2748	ret = do_read_u64(ff, &last_sample_time);
2749	if (ret)
2750		return -1;
2751
2752	session->evlist->first_sample_time = first_sample_time;
2753	session->evlist->last_sample_time = last_sample_time;
2754	return 0;
2755}
2756
2757static int process_mem_topology(struct feat_fd *ff,
2758				void *data __maybe_unused)
2759{
2760	struct memory_node *nodes;
2761	u64 version, i, nr, bsize;
2762	int ret = -1;
2763
2764	if (do_read_u64(ff, &version))
2765		return -1;
2766
2767	if (version != 1)
2768		return -1;
2769
2770	if (do_read_u64(ff, &bsize))
2771		return -1;
2772
2773	if (do_read_u64(ff, &nr))
2774		return -1;
2775
2776	nodes = zalloc(sizeof(*nodes) * nr);
2777	if (!nodes)
2778		return -1;
2779
2780	for (i = 0; i < nr; i++) {
2781		struct memory_node n;
2782
2783		#define _R(v)				\
2784			if (do_read_u64(ff, &n.v))	\
2785				goto out;		\
2786
2787		_R(node)
2788		_R(size)
2789
2790		#undef _R
2791
2792		if (do_read_bitmap(ff, &n.set, &n.size))
2793			goto out;
2794
2795		nodes[i] = n;
2796	}
2797
2798	ff->ph->env.memory_bsize    = bsize;
2799	ff->ph->env.memory_nodes    = nodes;
2800	ff->ph->env.nr_memory_nodes = nr;
2801	ret = 0;
2802
2803out:
2804	if (ret)
2805		free(nodes);
2806	return ret;
2807}
2808
2809static int process_clockid(struct feat_fd *ff,
2810			   void *data __maybe_unused)
2811{
2812	if (do_read_u64(ff, &ff->ph->env.clock.clockid_res_ns))
2813		return -1;
2814
2815	return 0;
2816}
2817
2818static int process_clock_data(struct feat_fd *ff,
2819			      void *_data __maybe_unused)
2820{
2821	u32 data32;
2822	u64 data64;
2823
2824	/* version */
2825	if (do_read_u32(ff, &data32))
2826		return -1;
2827
2828	if (data32 != 1)
2829		return -1;
2830
2831	/* clockid */
2832	if (do_read_u32(ff, &data32))
2833		return -1;
2834
2835	ff->ph->env.clock.clockid = data32;
2836
2837	/* TOD ref time */
2838	if (do_read_u64(ff, &data64))
2839		return -1;
2840
2841	ff->ph->env.clock.tod_ns = data64;
2842
2843	/* clockid ref time */
2844	if (do_read_u64(ff, &data64))
2845		return -1;
2846
2847	ff->ph->env.clock.clockid_ns = data64;
2848	ff->ph->env.clock.enabled = true;
2849	return 0;
2850}
2851
2852static int process_dir_format(struct feat_fd *ff,
2853			      void *_data __maybe_unused)
2854{
2855	struct perf_session *session;
2856	struct perf_data *data;
2857
2858	session = container_of(ff->ph, struct perf_session, header);
2859	data = session->data;
2860
2861	if (WARN_ON(!perf_data__is_dir(data)))
2862		return -1;
2863
2864	return do_read_u64(ff, &data->dir.version);
2865}
2866
2867#ifdef HAVE_LIBBPF_SUPPORT
2868static int process_bpf_prog_info(struct feat_fd *ff, void *data __maybe_unused)
2869{
2870	struct bpf_prog_info_linear *info_linear;
2871	struct bpf_prog_info_node *info_node;
2872	struct perf_env *env = &ff->ph->env;
2873	u32 count, i;
2874	int err = -1;
2875
2876	if (ff->ph->needs_swap) {
2877		pr_warning("interpreting bpf_prog_info from systems with endianity is not yet supported\n");
2878		return 0;
2879	}
2880
2881	if (do_read_u32(ff, &count))
2882		return -1;
2883
2884	down_write(&env->bpf_progs.lock);
2885
2886	for (i = 0; i < count; ++i) {
2887		u32 info_len, data_len;
2888
2889		info_linear = NULL;
2890		info_node = NULL;
2891		if (do_read_u32(ff, &info_len))
2892			goto out;
2893		if (do_read_u32(ff, &data_len))
2894			goto out;
2895
2896		if (info_len > sizeof(struct bpf_prog_info)) {
2897			pr_warning("detected invalid bpf_prog_info\n");
2898			goto out;
2899		}
2900
2901		info_linear = malloc(sizeof(struct bpf_prog_info_linear) +
2902				     data_len);
2903		if (!info_linear)
2904			goto out;
2905		info_linear->info_len = sizeof(struct bpf_prog_info);
2906		info_linear->data_len = data_len;
2907		if (do_read_u64(ff, (u64 *)(&info_linear->arrays)))
2908			goto out;
2909		if (__do_read(ff, &info_linear->info, info_len))
2910			goto out;
2911		if (info_len < sizeof(struct bpf_prog_info))
2912			memset(((void *)(&info_linear->info)) + info_len, 0,
2913			       sizeof(struct bpf_prog_info) - info_len);
2914
2915		if (__do_read(ff, info_linear->data, data_len))
2916			goto out;
2917
2918		info_node = malloc(sizeof(struct bpf_prog_info_node));
2919		if (!info_node)
2920			goto out;
2921
2922		/* after reading from file, translate offset to address */
2923		bpf_program__bpil_offs_to_addr(info_linear);
2924		info_node->info_linear = info_linear;
2925		perf_env__insert_bpf_prog_info(env, info_node);
2926	}
2927
2928	up_write(&env->bpf_progs.lock);
2929	return 0;
2930out:
2931	free(info_linear);
2932	free(info_node);
2933	up_write(&env->bpf_progs.lock);
2934	return err;
2935}
2936#else // HAVE_LIBBPF_SUPPORT
2937static int process_bpf_prog_info(struct feat_fd *ff __maybe_unused, void *data __maybe_unused)
2938{
2939	return 0;
2940}
2941#endif // HAVE_LIBBPF_SUPPORT
2942
2943static int process_bpf_btf(struct feat_fd *ff, void *data __maybe_unused)
2944{
2945	struct perf_env *env = &ff->ph->env;
2946	struct btf_node *node = NULL;
2947	u32 count, i;
2948	int err = -1;
2949
2950	if (ff->ph->needs_swap) {
2951		pr_warning("interpreting btf from systems with endianity is not yet supported\n");
2952		return 0;
2953	}
2954
2955	if (do_read_u32(ff, &count))
2956		return -1;
2957
2958	down_write(&env->bpf_progs.lock);
2959
2960	for (i = 0; i < count; ++i) {
2961		u32 id, data_size;
2962
2963		if (do_read_u32(ff, &id))
2964			goto out;
2965		if (do_read_u32(ff, &data_size))
2966			goto out;
2967
2968		node = malloc(sizeof(struct btf_node) + data_size);
2969		if (!node)
2970			goto out;
2971
2972		node->id = id;
2973		node->data_size = data_size;
2974
2975		if (__do_read(ff, node->data, data_size))
2976			goto out;
2977
2978		perf_env__insert_btf(env, node);
2979		node = NULL;
2980	}
2981
2982	err = 0;
2983out:
2984	up_write(&env->bpf_progs.lock);
2985	free(node);
2986	return err;
2987}
2988
2989static int process_compressed(struct feat_fd *ff,
2990			      void *data __maybe_unused)
2991{
2992	if (do_read_u32(ff, &(ff->ph->env.comp_ver)))
2993		return -1;
2994
2995	if (do_read_u32(ff, &(ff->ph->env.comp_type)))
2996		return -1;
2997
2998	if (do_read_u32(ff, &(ff->ph->env.comp_level)))
2999		return -1;
3000
3001	if (do_read_u32(ff, &(ff->ph->env.comp_ratio)))
3002		return -1;
3003
3004	if (do_read_u32(ff, &(ff->ph->env.comp_mmap_len)))
3005		return -1;
3006
3007	return 0;
3008}
3009
3010static int process_cpu_pmu_caps(struct feat_fd *ff,
3011				void *data __maybe_unused)
3012{
3013	char *name, *value;
3014	struct strbuf sb;
3015	u32 nr_caps;
3016
3017	if (do_read_u32(ff, &nr_caps))
3018		return -1;
3019
3020	if (!nr_caps) {
3021		pr_debug("cpu pmu capabilities not available\n");
3022		return 0;
3023	}
3024
3025	ff->ph->env.nr_cpu_pmu_caps = nr_caps;
3026
3027	if (strbuf_init(&sb, 128) < 0)
3028		return -1;
3029
3030	while (nr_caps--) {
3031		name = do_read_string(ff);
3032		if (!name)
3033			goto error;
3034
3035		value = do_read_string(ff);
3036		if (!value)
3037			goto free_name;
3038
3039		if (strbuf_addf(&sb, "%s=%s", name, value) < 0)
3040			goto free_value;
3041
3042		/* include a NULL character at the end */
3043		if (strbuf_add(&sb, "", 1) < 0)
3044			goto free_value;
3045
3046		if (!strcmp(name, "branches"))
3047			ff->ph->env.max_branches = atoi(value);
3048
3049		free(value);
3050		free(name);
3051	}
3052	ff->ph->env.cpu_pmu_caps = strbuf_detach(&sb, NULL);
3053	return 0;
3054
3055free_value:
3056	free(value);
3057free_name:
3058	free(name);
3059error:
3060	strbuf_release(&sb);
3061	return -1;
3062}
3063
3064#define FEAT_OPR(n, func, __full_only) \
3065	[HEADER_##n] = {					\
3066		.name	    = __stringify(n),			\
3067		.write	    = write_##func,			\
3068		.print	    = print_##func,			\
3069		.full_only  = __full_only,			\
3070		.process    = process_##func,			\
3071		.synthesize = true				\
3072	}
3073
3074#define FEAT_OPN(n, func, __full_only) \
3075	[HEADER_##n] = {					\
3076		.name	    = __stringify(n),			\
3077		.write	    = write_##func,			\
3078		.print	    = print_##func,			\
3079		.full_only  = __full_only,			\
3080		.process    = process_##func			\
3081	}
3082
3083/* feature_ops not implemented: */
3084#define print_tracing_data	NULL
3085#define print_build_id		NULL
3086
3087#define process_branch_stack	NULL
3088#define process_stat		NULL
3089
3090// Only used in util/synthetic-events.c
3091const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE];
3092
3093const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE] = {
3094	FEAT_OPN(TRACING_DATA,	tracing_data,	false),
3095	FEAT_OPN(BUILD_ID,	build_id,	false),
3096	FEAT_OPR(HOSTNAME,	hostname,	false),
3097	FEAT_OPR(OSRELEASE,	osrelease,	false),
3098	FEAT_OPR(VERSION,	version,	false),
3099	FEAT_OPR(ARCH,		arch,		false),
3100	FEAT_OPR(NRCPUS,	nrcpus,		false),
3101	FEAT_OPR(CPUDESC,	cpudesc,	false),
3102	FEAT_OPR(CPUID,		cpuid,		false),
3103	FEAT_OPR(TOTAL_MEM,	total_mem,	false),
3104	FEAT_OPR(EVENT_DESC,	event_desc,	false),
3105	FEAT_OPR(CMDLINE,	cmdline,	false),
3106	FEAT_OPR(CPU_TOPOLOGY,	cpu_topology,	true),
3107	FEAT_OPR(NUMA_TOPOLOGY,	numa_topology,	true),
3108	FEAT_OPN(BRANCH_STACK,	branch_stack,	false),
3109	FEAT_OPR(PMU_MAPPINGS,	pmu_mappings,	false),
3110	FEAT_OPR(GROUP_DESC,	group_desc,	false),
3111	FEAT_OPN(AUXTRACE,	auxtrace,	false),
3112	FEAT_OPN(STAT,		stat,		false),
3113	FEAT_OPN(CACHE,		cache,		true),
3114	FEAT_OPR(SAMPLE_TIME,	sample_time,	false),
3115	FEAT_OPR(MEM_TOPOLOGY,	mem_topology,	true),
3116	FEAT_OPR(CLOCKID,	clockid,	false),
3117	FEAT_OPN(DIR_FORMAT,	dir_format,	false),
3118	FEAT_OPR(BPF_PROG_INFO, bpf_prog_info,  false),
3119	FEAT_OPR(BPF_BTF,       bpf_btf,        false),
3120	FEAT_OPR(COMPRESSED,	compressed,	false),
3121	FEAT_OPR(CPU_PMU_CAPS,	cpu_pmu_caps,	false),
3122	FEAT_OPR(CLOCK_DATA,	clock_data,	false),
3123};
3124
3125struct header_print_data {
3126	FILE *fp;
3127	bool full; /* extended list of headers */
3128};
3129
3130static int perf_file_section__fprintf_info(struct perf_file_section *section,
3131					   struct perf_header *ph,
3132					   int feat, int fd, void *data)
3133{
3134	struct header_print_data *hd = data;
3135	struct feat_fd ff;
3136
3137	if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
3138		pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
3139				"%d, continuing...\n", section->offset, feat);
3140		return 0;
3141	}
3142	if (feat >= HEADER_LAST_FEATURE) {
3143		pr_warning("unknown feature %d\n", feat);
3144		return 0;
3145	}
3146	if (!feat_ops[feat].print)
3147		return 0;
3148
3149	ff = (struct  feat_fd) {
3150		.fd = fd,
3151		.ph = ph,
3152	};
3153
3154	if (!feat_ops[feat].full_only || hd->full)
3155		feat_ops[feat].print(&ff, hd->fp);
3156	else
3157		fprintf(hd->fp, "# %s info available, use -I to display\n",
3158			feat_ops[feat].name);
3159
3160	return 0;
3161}
3162
3163int perf_header__fprintf_info(struct perf_session *session, FILE *fp, bool full)
3164{
3165	struct header_print_data hd;
3166	struct perf_header *header = &session->header;
3167	int fd = perf_data__fd(session->data);
3168	struct stat st;
3169	time_t stctime;
3170	int ret, bit;
3171
3172	hd.fp = fp;
3173	hd.full = full;
3174
3175	ret = fstat(fd, &st);
3176	if (ret == -1)
3177		return -1;
3178
3179	stctime = st.st_mtime;
3180	fprintf(fp, "# captured on    : %s", ctime(&stctime));
3181
3182	fprintf(fp, "# header version : %u\n", header->version);
3183	fprintf(fp, "# data offset    : %" PRIu64 "\n", header->data_offset);
3184	fprintf(fp, "# data size      : %" PRIu64 "\n", header->data_size);
3185	fprintf(fp, "# feat offset    : %" PRIu64 "\n", header->feat_offset);
3186
3187	perf_header__process_sections(header, fd, &hd,
3188				      perf_file_section__fprintf_info);
3189
3190	if (session->data->is_pipe)
3191		return 0;
3192
3193	fprintf(fp, "# missing features: ");
3194	for_each_clear_bit(bit, header->adds_features, HEADER_LAST_FEATURE) {
3195		if (bit)
3196			fprintf(fp, "%s ", feat_ops[bit].name);
3197	}
3198
3199	fprintf(fp, "\n");
3200	return 0;
3201}
3202
3203static int do_write_feat(struct feat_fd *ff, int type,
3204			 struct perf_file_section **p,
3205			 struct evlist *evlist)
3206{
3207	int err;
3208	int ret = 0;
3209
3210	if (perf_header__has_feat(ff->ph, type)) {
3211		if (!feat_ops[type].write)
3212			return -1;
3213
3214		if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
3215			return -1;
3216
3217		(*p)->offset = lseek(ff->fd, 0, SEEK_CUR);
3218
3219		err = feat_ops[type].write(ff, evlist);
3220		if (err < 0) {
3221			pr_debug("failed to write feature %s\n", feat_ops[type].name);
3222
3223			/* undo anything written */
3224			lseek(ff->fd, (*p)->offset, SEEK_SET);
3225
3226			return -1;
3227		}
3228		(*p)->size = lseek(ff->fd, 0, SEEK_CUR) - (*p)->offset;
3229		(*p)++;
3230	}
3231	return ret;
3232}
3233
3234static int perf_header__adds_write(struct perf_header *header,
3235				   struct evlist *evlist, int fd)
3236{
3237	int nr_sections;
3238	struct feat_fd ff;
3239	struct perf_file_section *feat_sec, *p;
3240	int sec_size;
3241	u64 sec_start;
3242	int feat;
3243	int err;
3244
3245	ff = (struct feat_fd){
3246		.fd  = fd,
3247		.ph = header,
3248	};
3249
3250	nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3251	if (!nr_sections)
3252		return 0;
3253
3254	feat_sec = p = calloc(nr_sections, sizeof(*feat_sec));
3255	if (feat_sec == NULL)
3256		return -ENOMEM;
3257
3258	sec_size = sizeof(*feat_sec) * nr_sections;
3259
3260	sec_start = header->feat_offset;
3261	lseek(fd, sec_start + sec_size, SEEK_SET);
3262
3263	for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) {
3264		if (do_write_feat(&ff, feat, &p, evlist))
3265			perf_header__clear_feat(header, feat);
3266	}
3267
3268	lseek(fd, sec_start, SEEK_SET);
3269	/*
3270	 * may write more than needed due to dropped feature, but
3271	 * this is okay, reader will skip the missing entries
3272	 */
3273	err = do_write(&ff, feat_sec, sec_size);
3274	if (err < 0)
3275		pr_debug("failed to write feature section\n");
3276	free(feat_sec);
3277	return err;
3278}
3279
3280int perf_header__write_pipe(int fd)
3281{
3282	struct perf_pipe_file_header f_header;
3283	struct feat_fd ff;
3284	int err;
3285
3286	ff = (struct feat_fd){ .fd = fd };
3287
3288	f_header = (struct perf_pipe_file_header){
3289		.magic	   = PERF_MAGIC,
3290		.size	   = sizeof(f_header),
3291	};
3292
3293	err = do_write(&ff, &f_header, sizeof(f_header));
3294	if (err < 0) {
3295		pr_debug("failed to write perf pipe header\n");
3296		return err;
3297	}
3298
3299	return 0;
3300}
3301
3302int perf_session__write_header(struct perf_session *session,
3303			       struct evlist *evlist,
3304			       int fd, bool at_exit)
3305{
3306	struct perf_file_header f_header;
3307	struct perf_file_attr   f_attr;
3308	struct perf_header *header = &session->header;
3309	struct evsel *evsel;
3310	struct feat_fd ff;
3311	u64 attr_offset;
3312	int err;
3313
3314	ff = (struct feat_fd){ .fd = fd};
3315	lseek(fd, sizeof(f_header), SEEK_SET);
3316
3317	evlist__for_each_entry(session->evlist, evsel) {
3318		evsel->id_offset = lseek(fd, 0, SEEK_CUR);
3319		err = do_write(&ff, evsel->core.id, evsel->core.ids * sizeof(u64));
3320		if (err < 0) {
3321			pr_debug("failed to write perf header\n");
3322			return err;
3323		}
3324	}
3325
3326	attr_offset = lseek(ff.fd, 0, SEEK_CUR);
3327
3328	evlist__for_each_entry(evlist, evsel) {
3329		f_attr = (struct perf_file_attr){
3330			.attr = evsel->core.attr,
3331			.ids  = {
3332				.offset = evsel->id_offset,
3333				.size   = evsel->core.ids * sizeof(u64),
3334			}
3335		};
3336		err = do_write(&ff, &f_attr, sizeof(f_attr));
3337		if (err < 0) {
3338			pr_debug("failed to write perf header attribute\n");
3339			return err;
3340		}
3341	}
3342
3343	if (!header->data_offset)
3344		header->data_offset = lseek(fd, 0, SEEK_CUR);
3345	header->feat_offset = header->data_offset + header->data_size;
3346
3347	if (at_exit) {
3348		err = perf_header__adds_write(header, evlist, fd);
3349		if (err < 0)
3350			return err;
3351	}
3352
3353	f_header = (struct perf_file_header){
3354		.magic	   = PERF_MAGIC,
3355		.size	   = sizeof(f_header),
3356		.attr_size = sizeof(f_attr),
3357		.attrs = {
3358			.offset = attr_offset,
3359			.size   = evlist->core.nr_entries * sizeof(f_attr),
3360		},
3361		.data = {
3362			.offset = header->data_offset,
3363			.size	= header->data_size,
3364		},
3365		/* event_types is ignored, store zeros */
3366	};
3367
3368	memcpy(&f_header.adds_features, &header->adds_features, sizeof(header->adds_features));
3369
3370	lseek(fd, 0, SEEK_SET);
3371	err = do_write(&ff, &f_header, sizeof(f_header));
3372	if (err < 0) {
3373		pr_debug("failed to write perf header\n");
3374		return err;
3375	}
3376	lseek(fd, header->data_offset + header->data_size, SEEK_SET);
3377
3378	return 0;
3379}
3380
3381static int perf_header__getbuffer64(struct perf_header *header,
3382				    int fd, void *buf, size_t size)
3383{
3384	if (readn(fd, buf, size) <= 0)
3385		return -1;
3386
3387	if (header->needs_swap)
3388		mem_bswap_64(buf, size);
3389
3390	return 0;
3391}
3392
3393int perf_header__process_sections(struct perf_header *header, int fd,
3394				  void *data,
3395				  int (*process)(struct perf_file_section *section,
3396						 struct perf_header *ph,
3397						 int feat, int fd, void *data))
3398{
3399	struct perf_file_section *feat_sec, *sec;
3400	int nr_sections;
3401	int sec_size;
3402	int feat;
3403	int err;
3404
3405	nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3406	if (!nr_sections)
3407		return 0;
3408
3409	feat_sec = sec = calloc(nr_sections, sizeof(*feat_sec));
3410	if (!feat_sec)
3411		return -1;
3412
3413	sec_size = sizeof(*feat_sec) * nr_sections;
3414
3415	lseek(fd, header->feat_offset, SEEK_SET);
3416
3417	err = perf_header__getbuffer64(header, fd, feat_sec, sec_size);
3418	if (err < 0)
3419		goto out_free;
3420
3421	for_each_set_bit(feat, header->adds_features, HEADER_LAST_FEATURE) {
3422		err = process(sec++, header, feat, fd, data);
3423		if (err < 0)
3424			goto out_free;
3425	}
3426	err = 0;
3427out_free:
3428	free(feat_sec);
3429	return err;
3430}
3431
3432static const int attr_file_abi_sizes[] = {
3433	[0] = PERF_ATTR_SIZE_VER0,
3434	[1] = PERF_ATTR_SIZE_VER1,
3435	[2] = PERF_ATTR_SIZE_VER2,
3436	[3] = PERF_ATTR_SIZE_VER3,
3437	[4] = PERF_ATTR_SIZE_VER4,
3438	0,
3439};
3440
3441/*
3442 * In the legacy file format, the magic number is not used to encode endianness.
3443 * hdr_sz was used to encode endianness. But given that hdr_sz can vary based
3444 * on ABI revisions, we need to try all combinations for all endianness to
3445 * detect the endianness.
3446 */
3447static int try_all_file_abis(uint64_t hdr_sz, struct perf_header *ph)
3448{
3449	uint64_t ref_size, attr_size;
3450	int i;
3451
3452	for (i = 0 ; attr_file_abi_sizes[i]; i++) {
3453		ref_size = attr_file_abi_sizes[i]
3454			 + sizeof(struct perf_file_section);
3455		if (hdr_sz != ref_size) {
3456			attr_size = bswap_64(hdr_sz);
3457			if (attr_size != ref_size)
3458				continue;
3459
3460			ph->needs_swap = true;
3461		}
3462		pr_debug("ABI%d perf.data file detected, need_swap=%d\n",
3463			 i,
3464			 ph->needs_swap);
3465		return 0;
3466	}
3467	/* could not determine endianness */
3468	return -1;
3469}
3470
3471#define PERF_PIPE_HDR_VER0	16
3472
3473static const size_t attr_pipe_abi_sizes[] = {
3474	[0] = PERF_PIPE_HDR_VER0,
3475	0,
3476};
3477
3478/*
3479 * In the legacy pipe format, there is an implicit assumption that endiannesss
3480 * between host recording the samples, and host parsing the samples is the
3481 * same. This is not always the case given that the pipe output may always be
3482 * redirected into a file and analyzed on a different machine with possibly a
3483 * different endianness and perf_event ABI revsions in the perf tool itself.
3484 */
3485static int try_all_pipe_abis(uint64_t hdr_sz, struct perf_header *ph)
3486{
3487	u64 attr_size;
3488	int i;
3489
3490	for (i = 0 ; attr_pipe_abi_sizes[i]; i++) {
3491		if (hdr_sz != attr_pipe_abi_sizes[i]) {
3492			attr_size = bswap_64(hdr_sz);
3493			if (attr_size != hdr_sz)
3494				continue;
3495
3496			ph->needs_swap = true;
3497		}
3498		pr_debug("Pipe ABI%d perf.data file detected\n", i);
3499		return 0;
3500	}
3501	return -1;
3502}
3503
3504bool is_perf_magic(u64 magic)
3505{
3506	if (!memcmp(&magic, __perf_magic1, sizeof(magic))
3507		|| magic == __perf_magic2
3508		|| magic == __perf_magic2_sw)
3509		return true;
3510
3511	return false;
3512}
3513
3514static int check_magic_endian(u64 magic, uint64_t hdr_sz,
3515			      bool is_pipe, struct perf_header *ph)
3516{
3517	int ret;
3518
3519	/* check for legacy format */
3520	ret = memcmp(&magic, __perf_magic1, sizeof(magic));
3521	if (ret == 0) {
3522		ph->version = PERF_HEADER_VERSION_1;
3523		pr_debug("legacy perf.data format\n");
3524		if (is_pipe)
3525			return try_all_pipe_abis(hdr_sz, ph);
3526
3527		return try_all_file_abis(hdr_sz, ph);
3528	}
3529	/*
3530	 * the new magic number serves two purposes:
3531	 * - unique number to identify actual perf.data files
3532	 * - encode endianness of file
3533	 */
3534	ph->version = PERF_HEADER_VERSION_2;
3535
3536	/* check magic number with one endianness */
3537	if (magic == __perf_magic2)
3538		return 0;
3539
3540	/* check magic number with opposite endianness */
3541	if (magic != __perf_magic2_sw)
3542		return -1;
3543
3544	ph->needs_swap = true;
3545
3546	return 0;
3547}
3548
3549int perf_file_header__read(struct perf_file_header *header,
3550			   struct perf_header *ph, int fd)
3551{
3552	ssize_t ret;
3553
3554	lseek(fd, 0, SEEK_SET);
3555
3556	ret = readn(fd, header, sizeof(*header));
3557	if (ret <= 0)
3558		return -1;
3559
3560	if (check_magic_endian(header->magic,
3561			       header->attr_size, false, ph) < 0) {
3562		pr_debug("magic/endian check failed\n");
3563		return -1;
3564	}
3565
3566	if (ph->needs_swap) {
3567		mem_bswap_64(header, offsetof(struct perf_file_header,
3568			     adds_features));
3569	}
3570
3571	if (header->size != sizeof(*header)) {
3572		/* Support the previous format */
3573		if (header->size == offsetof(typeof(*header), adds_features))
3574			bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3575		else
3576			return -1;
3577	} else if (ph->needs_swap) {
3578		/*
3579		 * feature bitmap is declared as an array of unsigned longs --
3580		 * not good since its size can differ between the host that
3581		 * generated the data file and the host analyzing the file.
3582		 *
3583		 * We need to handle endianness, but we don't know the size of
3584		 * the unsigned long where the file was generated. Take a best
3585		 * guess at determining it: try 64-bit swap first (ie., file
3586		 * created on a 64-bit host), and check if the hostname feature
3587		 * bit is set (this feature bit is forced on as of fbe96f2).
3588		 * If the bit is not, undo the 64-bit swap and try a 32-bit
3589		 * swap. If the hostname bit is still not set (e.g., older data
3590		 * file), punt and fallback to the original behavior --
3591		 * clearing all feature bits and setting buildid.
3592		 */
3593		mem_bswap_64(&header->adds_features,
3594			    BITS_TO_U64(HEADER_FEAT_BITS));
3595
3596		if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3597			/* unswap as u64 */
3598			mem_bswap_64(&header->adds_features,
3599				    BITS_TO_U64(HEADER_FEAT_BITS));
3600
3601			/* unswap as u32 */
3602			mem_bswap_32(&header->adds_features,
3603				    BITS_TO_U32(HEADER_FEAT_BITS));
3604		}
3605
3606		if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3607			bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3608			set_bit(HEADER_BUILD_ID, header->adds_features);
3609		}
3610	}
3611
3612	memcpy(&ph->adds_features, &header->adds_features,
3613	       sizeof(ph->adds_features));
3614
3615	ph->data_offset  = header->data.offset;
3616	ph->data_size	 = header->data.size;
3617	ph->feat_offset  = header->data.offset + header->data.size;
3618	return 0;
3619}
3620
3621static int perf_file_section__process(struct perf_file_section *section,
3622				      struct perf_header *ph,
3623				      int feat, int fd, void *data)
3624{
3625	struct feat_fd fdd = {
3626		.fd	= fd,
3627		.ph	= ph,
3628		.size	= section->size,
3629		.offset	= section->offset,
3630	};
3631
3632	if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
3633		pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
3634			  "%d, continuing...\n", section->offset, feat);
3635		return 0;
3636	}
3637
3638	if (feat >= HEADER_LAST_FEATURE) {
3639		pr_debug("unknown feature %d, continuing...\n", feat);
3640		return 0;
3641	}
3642
3643	if (!feat_ops[feat].process)
3644		return 0;
3645
3646	return feat_ops[feat].process(&fdd, data);
3647}
3648
3649static int perf_file_header__read_pipe(struct perf_pipe_file_header *header,
3650				       struct perf_header *ph, int fd,
3651				       bool repipe)
3652{
3653	struct feat_fd ff = {
3654		.fd = STDOUT_FILENO,
3655		.ph = ph,
3656	};
3657	ssize_t ret;
3658
3659	ret = readn(fd, header, sizeof(*header));
3660	if (ret <= 0)
3661		return -1;
3662
3663	if (check_magic_endian(header->magic, header->size, true, ph) < 0) {
3664		pr_debug("endian/magic failed\n");
3665		return -1;
3666	}
3667
3668	if (ph->needs_swap)
3669		header->size = bswap_64(header->size);
3670
3671	if (repipe && do_write(&ff, header, sizeof(*header)) < 0)
3672		return -1;
3673
3674	return 0;
3675}
3676
3677static int perf_header__read_pipe(struct perf_session *session)
3678{
3679	struct perf_header *header = &session->header;
3680	struct perf_pipe_file_header f_header;
3681
3682	if (perf_file_header__read_pipe(&f_header, header,
3683					perf_data__fd(session->data),
3684					session->repipe) < 0) {
3685		pr_debug("incompatible file format\n");
3686		return -EINVAL;
3687	}
3688
3689	return f_header.size == sizeof(f_header) ? 0 : -1;
3690}
3691
3692static int read_attr(int fd, struct perf_header *ph,
3693		     struct perf_file_attr *f_attr)
3694{
3695	struct perf_event_attr *attr = &f_attr->attr;
3696	size_t sz, left;
3697	size_t our_sz = sizeof(f_attr->attr);
3698	ssize_t ret;
3699
3700	memset(f_attr, 0, sizeof(*f_attr));
3701
3702	/* read minimal guaranteed structure */
3703	ret = readn(fd, attr, PERF_ATTR_SIZE_VER0);
3704	if (ret <= 0) {
3705		pr_debug("cannot read %d bytes of header attr\n",
3706			 PERF_ATTR_SIZE_VER0);
3707		return -1;
3708	}
3709
3710	/* on file perf_event_attr size */
3711	sz = attr->size;
3712
3713	if (ph->needs_swap)
3714		sz = bswap_32(sz);
3715
3716	if (sz == 0) {
3717		/* assume ABI0 */
3718		sz =  PERF_ATTR_SIZE_VER0;
3719	} else if (sz > our_sz) {
3720		pr_debug("file uses a more recent and unsupported ABI"
3721			 " (%zu bytes extra)\n", sz - our_sz);
3722		return -1;
3723	}
3724	/* what we have not yet read and that we know about */
3725	left = sz - PERF_ATTR_SIZE_VER0;
3726	if (left) {
3727		void *ptr = attr;
3728		ptr += PERF_ATTR_SIZE_VER0;
3729
3730		ret = readn(fd, ptr, left);
3731	}
3732	/* read perf_file_section, ids are read in caller */
3733	ret = readn(fd, &f_attr->ids, sizeof(f_attr->ids));
3734
3735	return ret <= 0 ? -1 : 0;
3736}
3737
3738static int perf_evsel__prepare_tracepoint_event(struct evsel *evsel,
3739						struct tep_handle *pevent)
3740{
3741	struct tep_event *event;
3742	char bf[128];
3743
3744	/* already prepared */
3745	if (evsel->tp_format)
3746		return 0;
3747
3748	if (pevent == NULL) {
3749		pr_debug("broken or missing trace data\n");
3750		return -1;
3751	}
3752
3753	event = tep_find_event(pevent, evsel->core.attr.config);
3754	if (event == NULL) {
3755		pr_debug("cannot find event format for %d\n", (int)evsel->core.attr.config);
3756		return -1;
3757	}
3758
3759	if (!evsel->name) {
3760		snprintf(bf, sizeof(bf), "%s:%s", event->system, event->name);
3761		evsel->name = strdup(bf);
3762		if (evsel->name == NULL)
3763			return -1;
3764	}
3765
3766	evsel->tp_format = event;
3767	return 0;
3768}
3769
3770static int perf_evlist__prepare_tracepoint_events(struct evlist *evlist,
3771						  struct tep_handle *pevent)
3772{
3773	struct evsel *pos;
3774
3775	evlist__for_each_entry(evlist, pos) {
3776		if (pos->core.attr.type == PERF_TYPE_TRACEPOINT &&
3777		    perf_evsel__prepare_tracepoint_event(pos, pevent))
3778			return -1;
3779	}
3780
3781	return 0;
3782}
3783
3784int perf_session__read_header(struct perf_session *session)
3785{
3786	struct perf_data *data = session->data;
3787	struct perf_header *header = &session->header;
3788	struct perf_file_header	f_header;
3789	struct perf_file_attr	f_attr;
3790	u64			f_id;
3791	int nr_attrs, nr_ids, i, j, err;
3792	int fd = perf_data__fd(data);
3793
3794	session->evlist = evlist__new();
3795	if (session->evlist == NULL)
3796		return -ENOMEM;
3797
3798	session->evlist->env = &header->env;
3799	session->machines.host.env = &header->env;
3800
3801	/*
3802	 * We can read 'pipe' data event from regular file,
3803	 * check for the pipe header regardless of source.
3804	 */
3805	err = perf_header__read_pipe(session);
3806	if (!err || (err && perf_data__is_pipe(data))) {
3807		data->is_pipe = true;
3808		return err;
3809	}
3810
3811	if (perf_file_header__read(&f_header, header, fd) < 0)
3812		return -EINVAL;
3813
3814	/*
3815	 * Sanity check that perf.data was written cleanly; data size is
3816	 * initialized to 0 and updated only if the on_exit function is run.
3817	 * If data size is still 0 then the file contains only partial
3818	 * information.  Just warn user and process it as much as it can.
3819	 */
3820	if (f_header.data.size == 0) {
3821		pr_warning("WARNING: The %s file's data size field is 0 which is unexpected.\n"
3822			   "Was the 'perf record' command properly terminated?\n",
3823			   data->file.path);
3824	}
3825
3826	if (f_header.attr_size == 0) {
3827		pr_err("ERROR: The %s file's attr size field is 0 which is unexpected.\n"
3828		       "Was the 'perf record' command properly terminated?\n",
3829		       data->file.path);
3830		return -EINVAL;
3831	}
3832
3833	nr_attrs = f_header.attrs.size / f_header.attr_size;
3834	lseek(fd, f_header.attrs.offset, SEEK_SET);
3835
3836	for (i = 0; i < nr_attrs; i++) {
3837		struct evsel *evsel;
3838		off_t tmp;
3839
3840		if (read_attr(fd, header, &f_attr) < 0)
3841			goto out_errno;
3842
3843		if (header->needs_swap) {
3844			f_attr.ids.size   = bswap_64(f_attr.ids.size);
3845			f_attr.ids.offset = bswap_64(f_attr.ids.offset);
3846			perf_event__attr_swap(&f_attr.attr);
3847		}
3848
3849		tmp = lseek(fd, 0, SEEK_CUR);
3850		evsel = evsel__new(&f_attr.attr);
3851
3852		if (evsel == NULL)
3853			goto out_delete_evlist;
3854
3855		evsel->needs_swap = header->needs_swap;
3856		/*
3857		 * Do it before so that if perf_evsel__alloc_id fails, this
3858		 * entry gets purged too at evlist__delete().
3859		 */
3860		evlist__add(session->evlist, evsel);
3861
3862		nr_ids = f_attr.ids.size / sizeof(u64);
3863		/*
3864		 * We don't have the cpu and thread maps on the header, so
3865		 * for allocating the perf_sample_id table we fake 1 cpu and
3866		 * hattr->ids threads.
3867		 */
3868		if (perf_evsel__alloc_id(&evsel->core, 1, nr_ids))
3869			goto out_delete_evlist;
3870
3871		lseek(fd, f_attr.ids.offset, SEEK_SET);
3872
3873		for (j = 0; j < nr_ids; j++) {
3874			if (perf_header__getbuffer64(header, fd, &f_id, sizeof(f_id)))
3875				goto out_errno;
3876
3877			perf_evlist__id_add(&session->evlist->core, &evsel->core, 0, j, f_id);
3878		}
3879
3880		lseek(fd, tmp, SEEK_SET);
3881	}
3882
 
 
3883	perf_header__process_sections(header, fd, &session->tevent,
3884				      perf_file_section__process);
3885
3886	if (perf_evlist__prepare_tracepoint_events(session->evlist,
3887						   session->tevent.pevent))
3888		goto out_delete_evlist;
3889
3890	return 0;
3891out_errno:
3892	return -errno;
3893
3894out_delete_evlist:
3895	evlist__delete(session->evlist);
3896	session->evlist = NULL;
3897	return -ENOMEM;
3898}
3899
3900int perf_event__process_feature(struct perf_session *session,
3901				union perf_event *event)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3902{
3903	struct perf_tool *tool = session->tool;
3904	struct feat_fd ff = { .fd = 0 };
3905	struct perf_record_header_feature *fe = (struct perf_record_header_feature *)event;
3906	int type = fe->header.type;
3907	u64 feat = fe->feat_id;
3908
3909	if (type < 0 || type >= PERF_RECORD_HEADER_MAX) {
3910		pr_warning("invalid record type %d in pipe-mode\n", type);
3911		return 0;
3912	}
3913	if (feat == HEADER_RESERVED || feat >= HEADER_LAST_FEATURE) {
3914		pr_warning("invalid record type %d in pipe-mode\n", type);
3915		return -1;
3916	}
3917
3918	if (!feat_ops[feat].process)
3919		return 0;
3920
3921	ff.buf  = (void *)fe->data;
3922	ff.size = event->header.size - sizeof(*fe);
3923	ff.ph = &session->header;
3924
3925	if (feat_ops[feat].process(&ff, NULL))
3926		return -1;
3927
3928	if (!feat_ops[feat].print || !tool->show_feat_hdr)
3929		return 0;
3930
3931	if (!feat_ops[feat].full_only ||
3932	    tool->show_feat_hdr >= SHOW_FEAT_HEADER_FULL_INFO) {
3933		feat_ops[feat].print(&ff, stdout);
3934	} else {
3935		fprintf(stdout, "# %s info available, use -I to display\n",
3936			feat_ops[feat].name);
3937	}
3938
3939	return 0;
3940}
3941
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3942size_t perf_event__fprintf_event_update(union perf_event *event, FILE *fp)
3943{
3944	struct perf_record_event_update *ev = &event->event_update;
3945	struct perf_record_event_update_scale *ev_scale;
3946	struct perf_record_event_update_cpus *ev_cpus;
3947	struct perf_cpu_map *map;
3948	size_t ret;
3949
3950	ret = fprintf(fp, "\n... id:    %" PRI_lu64 "\n", ev->id);
3951
3952	switch (ev->type) {
3953	case PERF_EVENT_UPDATE__SCALE:
3954		ev_scale = (struct perf_record_event_update_scale *)ev->data;
3955		ret += fprintf(fp, "... scale: %f\n", ev_scale->scale);
3956		break;
3957	case PERF_EVENT_UPDATE__UNIT:
3958		ret += fprintf(fp, "... unit:  %s\n", ev->data);
3959		break;
3960	case PERF_EVENT_UPDATE__NAME:
3961		ret += fprintf(fp, "... name:  %s\n", ev->data);
3962		break;
3963	case PERF_EVENT_UPDATE__CPUS:
3964		ev_cpus = (struct perf_record_event_update_cpus *)ev->data;
3965		ret += fprintf(fp, "... ");
3966
3967		map = cpu_map__new_data(&ev_cpus->cpus);
3968		if (map)
3969			ret += cpu_map__fprintf(map, fp);
3970		else
3971			ret += fprintf(fp, "failed to get cpus\n");
3972		break;
3973	default:
3974		ret += fprintf(fp, "... unknown type\n");
3975		break;
3976	}
3977
3978	return ret;
3979}
3980
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3981int perf_event__process_attr(struct perf_tool *tool __maybe_unused,
3982			     union perf_event *event,
3983			     struct evlist **pevlist)
3984{
3985	u32 i, ids, n_ids;
3986	struct evsel *evsel;
3987	struct evlist *evlist = *pevlist;
3988
3989	if (evlist == NULL) {
3990		*pevlist = evlist = evlist__new();
3991		if (evlist == NULL)
3992			return -ENOMEM;
3993	}
3994
3995	evsel = evsel__new(&event->attr.attr);
3996	if (evsel == NULL)
3997		return -ENOMEM;
3998
3999	evlist__add(evlist, evsel);
4000
4001	ids = event->header.size;
4002	ids -= (void *)&event->attr.id - (void *)event;
4003	n_ids = ids / sizeof(u64);
4004	/*
4005	 * We don't have the cpu and thread maps on the header, so
4006	 * for allocating the perf_sample_id table we fake 1 cpu and
4007	 * hattr->ids threads.
4008	 */
4009	if (perf_evsel__alloc_id(&evsel->core, 1, n_ids))
4010		return -ENOMEM;
4011
4012	for (i = 0; i < n_ids; i++) {
4013		perf_evlist__id_add(&evlist->core, &evsel->core, 0, i, event->attr.id[i]);
4014	}
4015
 
 
4016	return 0;
4017}
4018
4019int perf_event__process_event_update(struct perf_tool *tool __maybe_unused,
4020				     union perf_event *event,
4021				     struct evlist **pevlist)
4022{
4023	struct perf_record_event_update *ev = &event->event_update;
4024	struct perf_record_event_update_scale *ev_scale;
4025	struct perf_record_event_update_cpus *ev_cpus;
4026	struct evlist *evlist;
4027	struct evsel *evsel;
4028	struct perf_cpu_map *map;
4029
4030	if (!pevlist || *pevlist == NULL)
4031		return -EINVAL;
4032
4033	evlist = *pevlist;
4034
4035	evsel = perf_evlist__id2evsel(evlist, ev->id);
4036	if (evsel == NULL)
4037		return -EINVAL;
4038
4039	switch (ev->type) {
4040	case PERF_EVENT_UPDATE__UNIT:
4041		evsel->unit = strdup(ev->data);
4042		break;
4043	case PERF_EVENT_UPDATE__NAME:
4044		evsel->name = strdup(ev->data);
4045		break;
4046	case PERF_EVENT_UPDATE__SCALE:
4047		ev_scale = (struct perf_record_event_update_scale *)ev->data;
4048		evsel->scale = ev_scale->scale;
4049		break;
4050	case PERF_EVENT_UPDATE__CPUS:
4051		ev_cpus = (struct perf_record_event_update_cpus *)ev->data;
4052
4053		map = cpu_map__new_data(&ev_cpus->cpus);
4054		if (map)
4055			evsel->core.own_cpus = map;
4056		else
4057			pr_err("failed to get event_update cpus\n");
4058	default:
4059		break;
4060	}
4061
4062	return 0;
4063}
4064
4065int perf_event__process_tracing_data(struct perf_session *session,
4066				     union perf_event *event)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4067{
4068	ssize_t size_read, padding, size = event->tracing_data.size;
4069	int fd = perf_data__fd(session->data);
 
4070	char buf[BUFSIZ];
4071
4072	/*
4073	 * The pipe fd is already in proper place and in any case
4074	 * we can't move it, and we'd screw the case where we read
4075	 * 'pipe' data from regular file. The trace_report reads
4076	 * data from 'fd' so we need to set it directly behind the
4077	 * event, where the tracing data starts.
4078	 */
4079	if (!perf_data__is_pipe(session->data)) {
4080		off_t offset = lseek(fd, 0, SEEK_CUR);
4081
4082		/* setup for reading amidst mmap */
4083		lseek(fd, offset + sizeof(struct perf_record_header_tracing_data),
4084		      SEEK_SET);
4085	}
4086
4087	size_read = trace_report(fd, &session->tevent,
4088				 session->repipe);
4089	padding = PERF_ALIGN(size_read, sizeof(u64)) - size_read;
4090
4091	if (readn(fd, buf, padding) < 0) {
4092		pr_err("%s: reading input file", __func__);
4093		return -1;
4094	}
4095	if (session->repipe) {
4096		int retw = write(STDOUT_FILENO, buf, padding);
4097		if (retw <= 0 || retw != padding) {
4098			pr_err("%s: repiping tracing data padding", __func__);
4099			return -1;
4100		}
4101	}
4102
4103	if (size_read + padding != size) {
4104		pr_err("%s: tracing data size mismatch", __func__);
4105		return -1;
4106	}
4107
4108	perf_evlist__prepare_tracepoint_events(session->evlist,
4109					       session->tevent.pevent);
4110
4111	return size_read + padding;
4112}
4113
4114int perf_event__process_build_id(struct perf_session *session,
4115				 union perf_event *event)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4116{
4117	__event_process_build_id(&event->build_id,
4118				 event->build_id.filename,
4119				 session);
4120	return 0;
4121}
v4.17
   1// SPDX-License-Identifier: GPL-2.0
   2#include <errno.h>
   3#include <inttypes.h>
   4#include "util.h"
   5#include "string2.h"
   6#include <sys/param.h>
   7#include <sys/types.h>
   8#include <byteswap.h>
   9#include <unistd.h>
  10#include <stdio.h>
  11#include <stdlib.h>
  12#include <linux/compiler.h>
  13#include <linux/list.h>
  14#include <linux/kernel.h>
  15#include <linux/bitops.h>
 
  16#include <linux/stringify.h>
 
  17#include <sys/stat.h>
  18#include <sys/utsname.h>
  19#include <linux/time64.h>
  20#include <dirent.h>
 
 
  21
 
  22#include "evlist.h"
  23#include "evsel.h"
 
  24#include "header.h"
  25#include "memswap.h"
  26#include "../perf.h"
  27#include "trace-event.h"
  28#include "session.h"
  29#include "symbol.h"
  30#include "debug.h"
  31#include "cpumap.h"
  32#include "pmu.h"
  33#include "vdso.h"
  34#include "strbuf.h"
  35#include "build-id.h"
  36#include "data.h"
  37#include <api/fs/fs.h>
  38#include "asm/bug.h"
  39#include "tool.h"
  40#include "time-utils.h"
  41#include "units.h"
 
 
 
 
  42
  43#include "sane_ctype.h"
 
  44
  45/*
  46 * magic2 = "PERFILE2"
  47 * must be a numerical value to let the endianness
  48 * determine the memory layout. That way we are able
  49 * to detect endianness when reading the perf.data file
  50 * back.
  51 *
  52 * we check for legacy (PERFFILE) format.
  53 */
  54static const char *__perf_magic1 = "PERFFILE";
  55static const u64 __perf_magic2    = 0x32454c4946524550ULL;
  56static const u64 __perf_magic2_sw = 0x50455246494c4532ULL;
  57
  58#define PERF_MAGIC	__perf_magic2
  59
  60const char perf_version_string[] = PERF_VERSION;
  61
  62struct perf_file_attr {
  63	struct perf_event_attr	attr;
  64	struct perf_file_section	ids;
  65};
  66
  67struct feat_fd {
  68	struct perf_header	*ph;
  69	int			fd;
  70	void			*buf;	/* Either buf != NULL or fd >= 0 */
  71	ssize_t			offset;
  72	size_t			size;
  73	struct perf_evsel	*events;
  74};
  75
  76void perf_header__set_feat(struct perf_header *header, int feat)
  77{
  78	set_bit(feat, header->adds_features);
  79}
  80
  81void perf_header__clear_feat(struct perf_header *header, int feat)
  82{
  83	clear_bit(feat, header->adds_features);
  84}
  85
  86bool perf_header__has_feat(const struct perf_header *header, int feat)
  87{
  88	return test_bit(feat, header->adds_features);
  89}
  90
  91static int __do_write_fd(struct feat_fd *ff, const void *buf, size_t size)
  92{
  93	ssize_t ret = writen(ff->fd, buf, size);
  94
  95	if (ret != (ssize_t)size)
  96		return ret < 0 ? (int)ret : -1;
  97	return 0;
  98}
  99
 100static int __do_write_buf(struct feat_fd *ff,  const void *buf, size_t size)
 101{
 102	/* struct perf_event_header::size is u16 */
 103	const size_t max_size = 0xffff - sizeof(struct perf_event_header);
 104	size_t new_size = ff->size;
 105	void *addr;
 106
 107	if (size + ff->offset > max_size)
 108		return -E2BIG;
 109
 110	while (size > (new_size - ff->offset))
 111		new_size <<= 1;
 112	new_size = min(max_size, new_size);
 113
 114	if (ff->size < new_size) {
 115		addr = realloc(ff->buf, new_size);
 116		if (!addr)
 117			return -ENOMEM;
 118		ff->buf = addr;
 119		ff->size = new_size;
 120	}
 121
 122	memcpy(ff->buf + ff->offset, buf, size);
 123	ff->offset += size;
 124
 125	return 0;
 126}
 127
 128/* Return: 0 if succeded, -ERR if failed. */
 129int do_write(struct feat_fd *ff, const void *buf, size_t size)
 130{
 131	if (!ff->buf)
 132		return __do_write_fd(ff, buf, size);
 133	return __do_write_buf(ff, buf, size);
 134}
 135
 136/* Return: 0 if succeded, -ERR if failed. */
 137static int do_write_bitmap(struct feat_fd *ff, unsigned long *set, u64 size)
 138{
 139	u64 *p = (u64 *) set;
 140	int i, ret;
 141
 142	ret = do_write(ff, &size, sizeof(size));
 143	if (ret < 0)
 144		return ret;
 145
 146	for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
 147		ret = do_write(ff, p + i, sizeof(*p));
 148		if (ret < 0)
 149			return ret;
 150	}
 151
 152	return 0;
 153}
 154
 155/* Return: 0 if succeded, -ERR if failed. */
 156int write_padded(struct feat_fd *ff, const void *bf,
 157		 size_t count, size_t count_aligned)
 158{
 159	static const char zero_buf[NAME_ALIGN];
 160	int err = do_write(ff, bf, count);
 161
 162	if (!err)
 163		err = do_write(ff, zero_buf, count_aligned - count);
 164
 165	return err;
 166}
 167
 168#define string_size(str)						\
 169	(PERF_ALIGN((strlen(str) + 1), NAME_ALIGN) + sizeof(u32))
 170
 171/* Return: 0 if succeded, -ERR if failed. */
 172static int do_write_string(struct feat_fd *ff, const char *str)
 173{
 174	u32 len, olen;
 175	int ret;
 176
 177	olen = strlen(str) + 1;
 178	len = PERF_ALIGN(olen, NAME_ALIGN);
 179
 180	/* write len, incl. \0 */
 181	ret = do_write(ff, &len, sizeof(len));
 182	if (ret < 0)
 183		return ret;
 184
 185	return write_padded(ff, str, olen, len);
 186}
 187
 188static int __do_read_fd(struct feat_fd *ff, void *addr, ssize_t size)
 189{
 190	ssize_t ret = readn(ff->fd, addr, size);
 191
 192	if (ret != size)
 193		return ret < 0 ? (int)ret : -1;
 194	return 0;
 195}
 196
 197static int __do_read_buf(struct feat_fd *ff, void *addr, ssize_t size)
 198{
 199	if (size > (ssize_t)ff->size - ff->offset)
 200		return -1;
 201
 202	memcpy(addr, ff->buf + ff->offset, size);
 203	ff->offset += size;
 204
 205	return 0;
 206
 207}
 208
 209static int __do_read(struct feat_fd *ff, void *addr, ssize_t size)
 210{
 211	if (!ff->buf)
 212		return __do_read_fd(ff, addr, size);
 213	return __do_read_buf(ff, addr, size);
 214}
 215
 216static int do_read_u32(struct feat_fd *ff, u32 *addr)
 217{
 218	int ret;
 219
 220	ret = __do_read(ff, addr, sizeof(*addr));
 221	if (ret)
 222		return ret;
 223
 224	if (ff->ph->needs_swap)
 225		*addr = bswap_32(*addr);
 226	return 0;
 227}
 228
 229static int do_read_u64(struct feat_fd *ff, u64 *addr)
 230{
 231	int ret;
 232
 233	ret = __do_read(ff, addr, sizeof(*addr));
 234	if (ret)
 235		return ret;
 236
 237	if (ff->ph->needs_swap)
 238		*addr = bswap_64(*addr);
 239	return 0;
 240}
 241
 242static char *do_read_string(struct feat_fd *ff)
 243{
 244	u32 len;
 245	char *buf;
 246
 247	if (do_read_u32(ff, &len))
 248		return NULL;
 249
 250	buf = malloc(len);
 251	if (!buf)
 252		return NULL;
 253
 254	if (!__do_read(ff, buf, len)) {
 255		/*
 256		 * strings are padded by zeroes
 257		 * thus the actual strlen of buf
 258		 * may be less than len
 259		 */
 260		return buf;
 261	}
 262
 263	free(buf);
 264	return NULL;
 265}
 266
 267/* Return: 0 if succeded, -ERR if failed. */
 268static int do_read_bitmap(struct feat_fd *ff, unsigned long **pset, u64 *psize)
 269{
 270	unsigned long *set;
 271	u64 size, *p;
 272	int i, ret;
 273
 274	ret = do_read_u64(ff, &size);
 275	if (ret)
 276		return ret;
 277
 278	set = bitmap_alloc(size);
 279	if (!set)
 280		return -ENOMEM;
 281
 282	bitmap_zero(set, size);
 283
 284	p = (u64 *) set;
 285
 286	for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
 287		ret = do_read_u64(ff, p + i);
 288		if (ret < 0) {
 289			free(set);
 290			return ret;
 291		}
 292	}
 293
 294	*pset  = set;
 295	*psize = size;
 296	return 0;
 297}
 298
 299static int write_tracing_data(struct feat_fd *ff,
 300			      struct perf_evlist *evlist)
 301{
 302	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
 303		return -1;
 304
 305	return read_tracing_data(ff->fd, &evlist->entries);
 306}
 307
 308static int write_build_id(struct feat_fd *ff,
 309			  struct perf_evlist *evlist __maybe_unused)
 310{
 311	struct perf_session *session;
 312	int err;
 313
 314	session = container_of(ff->ph, struct perf_session, header);
 315
 316	if (!perf_session__read_build_ids(session, true))
 317		return -1;
 318
 319	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
 320		return -1;
 321
 322	err = perf_session__write_buildid_table(session, ff);
 323	if (err < 0) {
 324		pr_debug("failed to write buildid table\n");
 325		return err;
 326	}
 327	perf_session__cache_build_ids(session);
 328
 329	return 0;
 330}
 331
 332static int write_hostname(struct feat_fd *ff,
 333			  struct perf_evlist *evlist __maybe_unused)
 334{
 335	struct utsname uts;
 336	int ret;
 337
 338	ret = uname(&uts);
 339	if (ret < 0)
 340		return -1;
 341
 342	return do_write_string(ff, uts.nodename);
 343}
 344
 345static int write_osrelease(struct feat_fd *ff,
 346			   struct perf_evlist *evlist __maybe_unused)
 347{
 348	struct utsname uts;
 349	int ret;
 350
 351	ret = uname(&uts);
 352	if (ret < 0)
 353		return -1;
 354
 355	return do_write_string(ff, uts.release);
 356}
 357
 358static int write_arch(struct feat_fd *ff,
 359		      struct perf_evlist *evlist __maybe_unused)
 360{
 361	struct utsname uts;
 362	int ret;
 363
 364	ret = uname(&uts);
 365	if (ret < 0)
 366		return -1;
 367
 368	return do_write_string(ff, uts.machine);
 369}
 370
 371static int write_version(struct feat_fd *ff,
 372			 struct perf_evlist *evlist __maybe_unused)
 373{
 374	return do_write_string(ff, perf_version_string);
 375}
 376
 377static int __write_cpudesc(struct feat_fd *ff, const char *cpuinfo_proc)
 378{
 379	FILE *file;
 380	char *buf = NULL;
 381	char *s, *p;
 382	const char *search = cpuinfo_proc;
 383	size_t len = 0;
 384	int ret = -1;
 385
 386	if (!search)
 387		return -1;
 388
 389	file = fopen("/proc/cpuinfo", "r");
 390	if (!file)
 391		return -1;
 392
 393	while (getline(&buf, &len, file) > 0) {
 394		ret = strncmp(buf, search, strlen(search));
 395		if (!ret)
 396			break;
 397	}
 398
 399	if (ret) {
 400		ret = -1;
 401		goto done;
 402	}
 403
 404	s = buf;
 405
 406	p = strchr(buf, ':');
 407	if (p && *(p+1) == ' ' && *(p+2))
 408		s = p + 2;
 409	p = strchr(s, '\n');
 410	if (p)
 411		*p = '\0';
 412
 413	/* squash extra space characters (branding string) */
 414	p = s;
 415	while (*p) {
 416		if (isspace(*p)) {
 417			char *r = p + 1;
 418			char *q = r;
 419			*p = ' ';
 420			while (*q && isspace(*q))
 421				q++;
 422			if (q != (p+1))
 423				while ((*r++ = *q++));
 424		}
 425		p++;
 426	}
 427	ret = do_write_string(ff, s);
 428done:
 429	free(buf);
 430	fclose(file);
 431	return ret;
 432}
 433
 434static int write_cpudesc(struct feat_fd *ff,
 435		       struct perf_evlist *evlist __maybe_unused)
 436{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 437	const char *cpuinfo_procs[] = CPUINFO_PROC;
 
 438	unsigned int i;
 439
 440	for (i = 0; i < ARRAY_SIZE(cpuinfo_procs); i++) {
 441		int ret;
 442		ret = __write_cpudesc(ff, cpuinfo_procs[i]);
 443		if (ret >= 0)
 444			return ret;
 445	}
 446	return -1;
 447}
 448
 449
 450static int write_nrcpus(struct feat_fd *ff,
 451			struct perf_evlist *evlist __maybe_unused)
 452{
 453	long nr;
 454	u32 nrc, nra;
 455	int ret;
 456
 457	nrc = cpu__max_present_cpu();
 458
 459	nr = sysconf(_SC_NPROCESSORS_ONLN);
 460	if (nr < 0)
 461		return -1;
 462
 463	nra = (u32)(nr & UINT_MAX);
 464
 465	ret = do_write(ff, &nrc, sizeof(nrc));
 466	if (ret < 0)
 467		return ret;
 468
 469	return do_write(ff, &nra, sizeof(nra));
 470}
 471
 472static int write_event_desc(struct feat_fd *ff,
 473			    struct perf_evlist *evlist)
 474{
 475	struct perf_evsel *evsel;
 476	u32 nre, nri, sz;
 477	int ret;
 478
 479	nre = evlist->nr_entries;
 480
 481	/*
 482	 * write number of events
 483	 */
 484	ret = do_write(ff, &nre, sizeof(nre));
 485	if (ret < 0)
 486		return ret;
 487
 488	/*
 489	 * size of perf_event_attr struct
 490	 */
 491	sz = (u32)sizeof(evsel->attr);
 492	ret = do_write(ff, &sz, sizeof(sz));
 493	if (ret < 0)
 494		return ret;
 495
 496	evlist__for_each_entry(evlist, evsel) {
 497		ret = do_write(ff, &evsel->attr, sz);
 498		if (ret < 0)
 499			return ret;
 500		/*
 501		 * write number of unique id per event
 502		 * there is one id per instance of an event
 503		 *
 504		 * copy into an nri to be independent of the
 505		 * type of ids,
 506		 */
 507		nri = evsel->ids;
 508		ret = do_write(ff, &nri, sizeof(nri));
 509		if (ret < 0)
 510			return ret;
 511
 512		/*
 513		 * write event string as passed on cmdline
 514		 */
 515		ret = do_write_string(ff, perf_evsel__name(evsel));
 516		if (ret < 0)
 517			return ret;
 518		/*
 519		 * write unique ids for this event
 520		 */
 521		ret = do_write(ff, evsel->id, evsel->ids * sizeof(u64));
 522		if (ret < 0)
 523			return ret;
 524	}
 525	return 0;
 526}
 527
 528static int write_cmdline(struct feat_fd *ff,
 529			 struct perf_evlist *evlist __maybe_unused)
 530{
 531	char buf[MAXPATHLEN];
 532	u32 n;
 533	int i, ret;
 534
 535	/* actual path to perf binary */
 536	ret = readlink("/proc/self/exe", buf, sizeof(buf) - 1);
 537	if (ret <= 0)
 538		return -1;
 539
 540	/* readlink() does not add null termination */
 541	buf[ret] = '\0';
 542
 543	/* account for binary path */
 544	n = perf_env.nr_cmdline + 1;
 545
 546	ret = do_write(ff, &n, sizeof(n));
 547	if (ret < 0)
 548		return ret;
 549
 550	ret = do_write_string(ff, buf);
 551	if (ret < 0)
 552		return ret;
 553
 554	for (i = 0 ; i < perf_env.nr_cmdline; i++) {
 555		ret = do_write_string(ff, perf_env.cmdline_argv[i]);
 556		if (ret < 0)
 557			return ret;
 558	}
 559	return 0;
 560}
 561
 562#define CORE_SIB_FMT \
 563	"/sys/devices/system/cpu/cpu%d/topology/core_siblings_list"
 564#define THRD_SIB_FMT \
 565	"/sys/devices/system/cpu/cpu%d/topology/thread_siblings_list"
 566
 567struct cpu_topo {
 568	u32 cpu_nr;
 569	u32 core_sib;
 570	u32 thread_sib;
 571	char **core_siblings;
 572	char **thread_siblings;
 573};
 574
 575static int build_cpu_topo(struct cpu_topo *tp, int cpu)
 576{
 577	FILE *fp;
 578	char filename[MAXPATHLEN];
 579	char *buf = NULL, *p;
 580	size_t len = 0;
 581	ssize_t sret;
 582	u32 i = 0;
 583	int ret = -1;
 584
 585	sprintf(filename, CORE_SIB_FMT, cpu);
 586	fp = fopen(filename, "r");
 587	if (!fp)
 588		goto try_threads;
 589
 590	sret = getline(&buf, &len, fp);
 591	fclose(fp);
 592	if (sret <= 0)
 593		goto try_threads;
 594
 595	p = strchr(buf, '\n');
 596	if (p)
 597		*p = '\0';
 598
 599	for (i = 0; i < tp->core_sib; i++) {
 600		if (!strcmp(buf, tp->core_siblings[i]))
 601			break;
 602	}
 603	if (i == tp->core_sib) {
 604		tp->core_siblings[i] = buf;
 605		tp->core_sib++;
 606		buf = NULL;
 607		len = 0;
 608	}
 609	ret = 0;
 610
 611try_threads:
 612	sprintf(filename, THRD_SIB_FMT, cpu);
 613	fp = fopen(filename, "r");
 614	if (!fp)
 615		goto done;
 616
 617	if (getline(&buf, &len, fp) <= 0)
 618		goto done;
 619
 620	p = strchr(buf, '\n');
 621	if (p)
 622		*p = '\0';
 623
 624	for (i = 0; i < tp->thread_sib; i++) {
 625		if (!strcmp(buf, tp->thread_siblings[i]))
 626			break;
 627	}
 628	if (i == tp->thread_sib) {
 629		tp->thread_siblings[i] = buf;
 630		tp->thread_sib++;
 631		buf = NULL;
 632	}
 633	ret = 0;
 634done:
 635	if(fp)
 636		fclose(fp);
 637	free(buf);
 638	return ret;
 639}
 640
 641static void free_cpu_topo(struct cpu_topo *tp)
 642{
 643	u32 i;
 644
 645	if (!tp)
 646		return;
 647
 648	for (i = 0 ; i < tp->core_sib; i++)
 649		zfree(&tp->core_siblings[i]);
 650
 651	for (i = 0 ; i < tp->thread_sib; i++)
 652		zfree(&tp->thread_siblings[i]);
 653
 654	free(tp);
 655}
 656
 657static struct cpu_topo *build_cpu_topology(void)
 658{
 659	struct cpu_topo *tp = NULL;
 660	void *addr;
 661	u32 nr, i;
 662	size_t sz;
 663	long ncpus;
 664	int ret = -1;
 665	struct cpu_map *map;
 666
 667	ncpus = cpu__max_present_cpu();
 668
 669	/* build online CPU map */
 670	map = cpu_map__new(NULL);
 671	if (map == NULL) {
 672		pr_debug("failed to get system cpumap\n");
 673		return NULL;
 674	}
 675
 676	nr = (u32)(ncpus & UINT_MAX);
 677
 678	sz = nr * sizeof(char *);
 679	addr = calloc(1, sizeof(*tp) + 2 * sz);
 680	if (!addr)
 681		goto out_free;
 682
 683	tp = addr;
 684	tp->cpu_nr = nr;
 685	addr += sizeof(*tp);
 686	tp->core_siblings = addr;
 687	addr += sz;
 688	tp->thread_siblings = addr;
 689
 690	for (i = 0; i < nr; i++) {
 691		if (!cpu_map__has(map, i))
 692			continue;
 693
 694		ret = build_cpu_topo(tp, i);
 695		if (ret < 0)
 696			break;
 697	}
 698
 699out_free:
 700	cpu_map__put(map);
 701	if (ret) {
 702		free_cpu_topo(tp);
 703		tp = NULL;
 704	}
 705	return tp;
 706}
 707
 708static int write_cpu_topology(struct feat_fd *ff,
 709			      struct perf_evlist *evlist __maybe_unused)
 710{
 711	struct cpu_topo *tp;
 712	u32 i;
 713	int ret, j;
 714
 715	tp = build_cpu_topology();
 716	if (!tp)
 717		return -1;
 718
 719	ret = do_write(ff, &tp->core_sib, sizeof(tp->core_sib));
 720	if (ret < 0)
 721		goto done;
 722
 723	for (i = 0; i < tp->core_sib; i++) {
 724		ret = do_write_string(ff, tp->core_siblings[i]);
 725		if (ret < 0)
 726			goto done;
 727	}
 728	ret = do_write(ff, &tp->thread_sib, sizeof(tp->thread_sib));
 729	if (ret < 0)
 730		goto done;
 731
 732	for (i = 0; i < tp->thread_sib; i++) {
 733		ret = do_write_string(ff, tp->thread_siblings[i]);
 734		if (ret < 0)
 735			break;
 736	}
 737
 738	ret = perf_env__read_cpu_topology_map(&perf_env);
 739	if (ret < 0)
 740		goto done;
 741
 742	for (j = 0; j < perf_env.nr_cpus_avail; j++) {
 743		ret = do_write(ff, &perf_env.cpu[j].core_id,
 744			       sizeof(perf_env.cpu[j].core_id));
 745		if (ret < 0)
 746			return ret;
 747		ret = do_write(ff, &perf_env.cpu[j].socket_id,
 748			       sizeof(perf_env.cpu[j].socket_id));
 749		if (ret < 0)
 750			return ret;
 751	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 752done:
 753	free_cpu_topo(tp);
 754	return ret;
 755}
 756
 757
 758
 759static int write_total_mem(struct feat_fd *ff,
 760			   struct perf_evlist *evlist __maybe_unused)
 761{
 762	char *buf = NULL;
 763	FILE *fp;
 764	size_t len = 0;
 765	int ret = -1, n;
 766	uint64_t mem;
 767
 768	fp = fopen("/proc/meminfo", "r");
 769	if (!fp)
 770		return -1;
 771
 772	while (getline(&buf, &len, fp) > 0) {
 773		ret = strncmp(buf, "MemTotal:", 9);
 774		if (!ret)
 775			break;
 776	}
 777	if (!ret) {
 778		n = sscanf(buf, "%*s %"PRIu64, &mem);
 779		if (n == 1)
 780			ret = do_write(ff, &mem, sizeof(mem));
 781	} else
 782		ret = -1;
 783	free(buf);
 784	fclose(fp);
 785	return ret;
 786}
 787
 788static int write_topo_node(struct feat_fd *ff, int node)
 789{
 790	char str[MAXPATHLEN];
 791	char field[32];
 792	char *buf = NULL, *p;
 793	size_t len = 0;
 794	FILE *fp;
 795	u64 mem_total, mem_free, mem;
 796	int ret = -1;
 797
 798	sprintf(str, "/sys/devices/system/node/node%d/meminfo", node);
 799	fp = fopen(str, "r");
 800	if (!fp)
 801		return -1;
 802
 803	while (getline(&buf, &len, fp) > 0) {
 804		/* skip over invalid lines */
 805		if (!strchr(buf, ':'))
 806			continue;
 807		if (sscanf(buf, "%*s %*d %31s %"PRIu64, field, &mem) != 2)
 808			goto done;
 809		if (!strcmp(field, "MemTotal:"))
 810			mem_total = mem;
 811		if (!strcmp(field, "MemFree:"))
 812			mem_free = mem;
 813	}
 814
 815	fclose(fp);
 816	fp = NULL;
 817
 818	ret = do_write(ff, &mem_total, sizeof(u64));
 819	if (ret)
 820		goto done;
 821
 822	ret = do_write(ff, &mem_free, sizeof(u64));
 823	if (ret)
 824		goto done;
 825
 826	ret = -1;
 827	sprintf(str, "/sys/devices/system/node/node%d/cpulist", node);
 828
 829	fp = fopen(str, "r");
 830	if (!fp)
 831		goto done;
 832
 833	if (getline(&buf, &len, fp) <= 0)
 834		goto done;
 835
 836	p = strchr(buf, '\n');
 837	if (p)
 838		*p = '\0';
 839
 840	ret = do_write_string(ff, buf);
 841done:
 842	free(buf);
 843	if (fp)
 844		fclose(fp);
 845	return ret;
 846}
 847
 848static int write_numa_topology(struct feat_fd *ff,
 849			       struct perf_evlist *evlist __maybe_unused)
 850{
 851	char *buf = NULL;
 852	size_t len = 0;
 853	FILE *fp;
 854	struct cpu_map *node_map = NULL;
 855	char *c;
 856	u32 nr, i, j;
 857	int ret = -1;
 
 858
 859	fp = fopen("/sys/devices/system/node/online", "r");
 860	if (!fp)
 861		return -1;
 862
 863	if (getline(&buf, &len, fp) <= 0)
 864		goto done;
 
 865
 866	c = strchr(buf, '\n');
 867	if (c)
 868		*c = '\0';
 869
 870	node_map = cpu_map__new(buf);
 871	if (!node_map)
 872		goto done;
 873
 874	nr = (u32)node_map->nr;
 875
 876	ret = do_write(ff, &nr, sizeof(nr));
 877	if (ret < 0)
 878		goto done;
 879
 880	for (i = 0; i < nr; i++) {
 881		j = (u32)node_map->map[i];
 882		ret = do_write(ff, &j, sizeof(j));
 883		if (ret < 0)
 884			break;
 885
 886		ret = write_topo_node(ff, i);
 887		if (ret < 0)
 888			break;
 889	}
 890done:
 891	free(buf);
 892	fclose(fp);
 893	cpu_map__put(node_map);
 
 894	return ret;
 895}
 896
 897/*
 898 * File format:
 899 *
 900 * struct pmu_mappings {
 901 *	u32	pmu_num;
 902 *	struct pmu_map {
 903 *		u32	type;
 904 *		char	name[];
 905 *	}[pmu_num];
 906 * };
 907 */
 908
 909static int write_pmu_mappings(struct feat_fd *ff,
 910			      struct perf_evlist *evlist __maybe_unused)
 911{
 912	struct perf_pmu *pmu = NULL;
 913	u32 pmu_num = 0;
 914	int ret;
 915
 916	/*
 917	 * Do a first pass to count number of pmu to avoid lseek so this
 918	 * works in pipe mode as well.
 919	 */
 920	while ((pmu = perf_pmu__scan(pmu))) {
 921		if (!pmu->name)
 922			continue;
 923		pmu_num++;
 924	}
 925
 926	ret = do_write(ff, &pmu_num, sizeof(pmu_num));
 927	if (ret < 0)
 928		return ret;
 929
 930	while ((pmu = perf_pmu__scan(pmu))) {
 931		if (!pmu->name)
 932			continue;
 933
 934		ret = do_write(ff, &pmu->type, sizeof(pmu->type));
 935		if (ret < 0)
 936			return ret;
 937
 938		ret = do_write_string(ff, pmu->name);
 939		if (ret < 0)
 940			return ret;
 941	}
 942
 943	return 0;
 944}
 945
 946/*
 947 * File format:
 948 *
 949 * struct group_descs {
 950 *	u32	nr_groups;
 951 *	struct group_desc {
 952 *		char	name[];
 953 *		u32	leader_idx;
 954 *		u32	nr_members;
 955 *	}[nr_groups];
 956 * };
 957 */
 958static int write_group_desc(struct feat_fd *ff,
 959			    struct perf_evlist *evlist)
 960{
 961	u32 nr_groups = evlist->nr_groups;
 962	struct perf_evsel *evsel;
 963	int ret;
 964
 965	ret = do_write(ff, &nr_groups, sizeof(nr_groups));
 966	if (ret < 0)
 967		return ret;
 968
 969	evlist__for_each_entry(evlist, evsel) {
 970		if (perf_evsel__is_group_leader(evsel) &&
 971		    evsel->nr_members > 1) {
 972			const char *name = evsel->group_name ?: "{anon_group}";
 973			u32 leader_idx = evsel->idx;
 974			u32 nr_members = evsel->nr_members;
 975
 976			ret = do_write_string(ff, name);
 977			if (ret < 0)
 978				return ret;
 979
 980			ret = do_write(ff, &leader_idx, sizeof(leader_idx));
 981			if (ret < 0)
 982				return ret;
 983
 984			ret = do_write(ff, &nr_members, sizeof(nr_members));
 985			if (ret < 0)
 986				return ret;
 987		}
 988	}
 989	return 0;
 990}
 991
 992/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 993 * default get_cpuid(): nothing gets recorded
 994 * actual implementation must be in arch/$(SRCARCH)/util/header.c
 995 */
 996int __weak get_cpuid(char *buffer __maybe_unused, size_t sz __maybe_unused)
 997{
 998	return -1;
 999}
1000
1001static int write_cpuid(struct feat_fd *ff,
1002		       struct perf_evlist *evlist __maybe_unused)
1003{
1004	char buffer[64];
1005	int ret;
1006
1007	ret = get_cpuid(buffer, sizeof(buffer));
1008	if (!ret)
1009		goto write_it;
1010
1011	return -1;
1012write_it:
1013	return do_write_string(ff, buffer);
1014}
1015
1016static int write_branch_stack(struct feat_fd *ff __maybe_unused,
1017			      struct perf_evlist *evlist __maybe_unused)
1018{
1019	return 0;
1020}
1021
1022static int write_auxtrace(struct feat_fd *ff,
1023			  struct perf_evlist *evlist __maybe_unused)
1024{
1025	struct perf_session *session;
1026	int err;
1027
1028	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
1029		return -1;
1030
1031	session = container_of(ff->ph, struct perf_session, header);
1032
1033	err = auxtrace_index__write(ff->fd, &session->auxtrace_index);
1034	if (err < 0)
1035		pr_err("Failed to write auxtrace index\n");
1036	return err;
1037}
1038
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1039static int cpu_cache_level__sort(const void *a, const void *b)
1040{
1041	struct cpu_cache_level *cache_a = (struct cpu_cache_level *)a;
1042	struct cpu_cache_level *cache_b = (struct cpu_cache_level *)b;
1043
1044	return cache_a->level - cache_b->level;
1045}
1046
1047static bool cpu_cache_level__cmp(struct cpu_cache_level *a, struct cpu_cache_level *b)
1048{
1049	if (a->level != b->level)
1050		return false;
1051
1052	if (a->line_size != b->line_size)
1053		return false;
1054
1055	if (a->sets != b->sets)
1056		return false;
1057
1058	if (a->ways != b->ways)
1059		return false;
1060
1061	if (strcmp(a->type, b->type))
1062		return false;
1063
1064	if (strcmp(a->size, b->size))
1065		return false;
1066
1067	if (strcmp(a->map, b->map))
1068		return false;
1069
1070	return true;
1071}
1072
1073static int cpu_cache_level__read(struct cpu_cache_level *cache, u32 cpu, u16 level)
1074{
1075	char path[PATH_MAX], file[PATH_MAX];
1076	struct stat st;
1077	size_t len;
1078
1079	scnprintf(path, PATH_MAX, "devices/system/cpu/cpu%d/cache/index%d/", cpu, level);
1080	scnprintf(file, PATH_MAX, "%s/%s", sysfs__mountpoint(), path);
1081
1082	if (stat(file, &st))
1083		return 1;
1084
1085	scnprintf(file, PATH_MAX, "%s/level", path);
1086	if (sysfs__read_int(file, (int *) &cache->level))
1087		return -1;
1088
1089	scnprintf(file, PATH_MAX, "%s/coherency_line_size", path);
1090	if (sysfs__read_int(file, (int *) &cache->line_size))
1091		return -1;
1092
1093	scnprintf(file, PATH_MAX, "%s/number_of_sets", path);
1094	if (sysfs__read_int(file, (int *) &cache->sets))
1095		return -1;
1096
1097	scnprintf(file, PATH_MAX, "%s/ways_of_associativity", path);
1098	if (sysfs__read_int(file, (int *) &cache->ways))
1099		return -1;
1100
1101	scnprintf(file, PATH_MAX, "%s/type", path);
1102	if (sysfs__read_str(file, &cache->type, &len))
1103		return -1;
1104
1105	cache->type[len] = 0;
1106	cache->type = rtrim(cache->type);
1107
1108	scnprintf(file, PATH_MAX, "%s/size", path);
1109	if (sysfs__read_str(file, &cache->size, &len)) {
1110		free(cache->type);
1111		return -1;
1112	}
1113
1114	cache->size[len] = 0;
1115	cache->size = rtrim(cache->size);
1116
1117	scnprintf(file, PATH_MAX, "%s/shared_cpu_list", path);
1118	if (sysfs__read_str(file, &cache->map, &len)) {
1119		free(cache->map);
1120		free(cache->type);
1121		return -1;
1122	}
1123
1124	cache->map[len] = 0;
1125	cache->map = rtrim(cache->map);
1126	return 0;
1127}
1128
1129static void cpu_cache_level__fprintf(FILE *out, struct cpu_cache_level *c)
1130{
1131	fprintf(out, "L%d %-15s %8s [%s]\n", c->level, c->type, c->size, c->map);
1132}
1133
1134static int build_caches(struct cpu_cache_level caches[], u32 size, u32 *cntp)
 
 
1135{
1136	u32 i, cnt = 0;
1137	long ncpus;
1138	u32 nr, cpu;
1139	u16 level;
1140
1141	ncpus = sysconf(_SC_NPROCESSORS_CONF);
1142	if (ncpus < 0)
1143		return -1;
1144
1145	nr = (u32)(ncpus & UINT_MAX);
1146
1147	for (cpu = 0; cpu < nr; cpu++) {
1148		for (level = 0; level < 10; level++) {
1149			struct cpu_cache_level c;
1150			int err;
1151
1152			err = cpu_cache_level__read(&c, cpu, level);
1153			if (err < 0)
1154				return err;
1155
1156			if (err == 1)
1157				break;
1158
1159			for (i = 0; i < cnt; i++) {
1160				if (cpu_cache_level__cmp(&c, &caches[i]))
1161					break;
1162			}
1163
1164			if (i == cnt)
1165				caches[cnt++] = c;
1166			else
1167				cpu_cache_level__free(&c);
1168
1169			if (WARN_ONCE(cnt == size, "way too many cpu caches.."))
1170				goto out;
1171		}
1172	}
1173 out:
1174	*cntp = cnt;
1175	return 0;
1176}
1177
1178#define MAX_CACHES 2000
1179
1180static int write_cache(struct feat_fd *ff,
1181		       struct perf_evlist *evlist __maybe_unused)
1182{
1183	struct cpu_cache_level caches[MAX_CACHES];
 
1184	u32 cnt = 0, i, version = 1;
1185	int ret;
1186
1187	ret = build_caches(caches, MAX_CACHES, &cnt);
1188	if (ret)
1189		goto out;
1190
1191	qsort(&caches, cnt, sizeof(struct cpu_cache_level), cpu_cache_level__sort);
1192
1193	ret = do_write(ff, &version, sizeof(u32));
1194	if (ret < 0)
1195		goto out;
1196
1197	ret = do_write(ff, &cnt, sizeof(u32));
1198	if (ret < 0)
1199		goto out;
1200
1201	for (i = 0; i < cnt; i++) {
1202		struct cpu_cache_level *c = &caches[i];
1203
1204		#define _W(v)					\
1205			ret = do_write(ff, &c->v, sizeof(u32));	\
1206			if (ret < 0)				\
1207				goto out;
1208
1209		_W(level)
1210		_W(line_size)
1211		_W(sets)
1212		_W(ways)
1213		#undef _W
1214
1215		#define _W(v)						\
1216			ret = do_write_string(ff, (const char *) c->v);	\
1217			if (ret < 0)					\
1218				goto out;
1219
1220		_W(type)
1221		_W(size)
1222		_W(map)
1223		#undef _W
1224	}
1225
1226out:
1227	for (i = 0; i < cnt; i++)
1228		cpu_cache_level__free(&caches[i]);
1229	return ret;
1230}
1231
1232static int write_stat(struct feat_fd *ff __maybe_unused,
1233		      struct perf_evlist *evlist __maybe_unused)
1234{
1235	return 0;
1236}
1237
1238static int write_sample_time(struct feat_fd *ff,
1239			     struct perf_evlist *evlist)
1240{
1241	int ret;
1242
1243	ret = do_write(ff, &evlist->first_sample_time,
1244		       sizeof(evlist->first_sample_time));
1245	if (ret < 0)
1246		return ret;
1247
1248	return do_write(ff, &evlist->last_sample_time,
1249			sizeof(evlist->last_sample_time));
1250}
1251
1252
1253static int memory_node__read(struct memory_node *n, unsigned long idx)
1254{
1255	unsigned int phys, size = 0;
1256	char path[PATH_MAX];
1257	struct dirent *ent;
1258	DIR *dir;
1259
1260#define for_each_memory(mem, dir)					\
1261	while ((ent = readdir(dir)))					\
1262		if (strcmp(ent->d_name, ".") &&				\
1263		    strcmp(ent->d_name, "..") &&			\
1264		    sscanf(ent->d_name, "memory%u", &mem) == 1)
1265
1266	scnprintf(path, PATH_MAX,
1267		  "%s/devices/system/node/node%lu",
1268		  sysfs__mountpoint(), idx);
1269
1270	dir = opendir(path);
1271	if (!dir) {
1272		pr_warning("failed: cant' open memory sysfs data\n");
1273		return -1;
1274	}
1275
1276	for_each_memory(phys, dir) {
1277		size = max(phys, size);
1278	}
1279
1280	size++;
1281
1282	n->set = bitmap_alloc(size);
1283	if (!n->set) {
1284		closedir(dir);
1285		return -ENOMEM;
1286	}
1287
1288	bitmap_zero(n->set, size);
1289	n->node = idx;
1290	n->size = size;
1291
1292	rewinddir(dir);
1293
1294	for_each_memory(phys, dir) {
1295		set_bit(phys, n->set);
1296	}
1297
1298	closedir(dir);
1299	return 0;
1300}
1301
1302static int memory_node__sort(const void *a, const void *b)
1303{
1304	const struct memory_node *na = a;
1305	const struct memory_node *nb = b;
1306
1307	return na->node - nb->node;
1308}
1309
1310static int build_mem_topology(struct memory_node *nodes, u64 size, u64 *cntp)
1311{
1312	char path[PATH_MAX];
1313	struct dirent *ent;
1314	DIR *dir;
1315	u64 cnt = 0;
1316	int ret = 0;
1317
1318	scnprintf(path, PATH_MAX, "%s/devices/system/node/",
1319		  sysfs__mountpoint());
1320
1321	dir = opendir(path);
1322	if (!dir) {
1323		pr_debug2("%s: could't read %s, does this arch have topology information?\n",
1324			  __func__, path);
1325		return -1;
1326	}
1327
1328	while (!ret && (ent = readdir(dir))) {
1329		unsigned int idx;
1330		int r;
1331
1332		if (!strcmp(ent->d_name, ".") ||
1333		    !strcmp(ent->d_name, ".."))
1334			continue;
1335
1336		r = sscanf(ent->d_name, "node%u", &idx);
1337		if (r != 1)
1338			continue;
1339
1340		if (WARN_ONCE(cnt >= size,
1341			      "failed to write MEM_TOPOLOGY, way too many nodes\n"))
 
1342			return -1;
 
1343
1344		ret = memory_node__read(&nodes[cnt++], idx);
1345	}
1346
1347	*cntp = cnt;
1348	closedir(dir);
1349
1350	if (!ret)
1351		qsort(nodes, cnt, sizeof(nodes[0]), memory_node__sort);
1352
1353	return ret;
1354}
1355
1356#define MAX_MEMORY_NODES 2000
1357
1358/*
1359 * The MEM_TOPOLOGY holds physical memory map for every
1360 * node in system. The format of data is as follows:
1361 *
1362 *  0 - version          | for future changes
1363 *  8 - block_size_bytes | /sys/devices/system/memory/block_size_bytes
1364 * 16 - count            | number of nodes
1365 *
1366 * For each node we store map of physical indexes for
1367 * each node:
1368 *
1369 * 32 - node id          | node index
1370 * 40 - size             | size of bitmap
1371 * 48 - bitmap           | bitmap of memory indexes that belongs to node
1372 */
1373static int write_mem_topology(struct feat_fd *ff __maybe_unused,
1374			      struct perf_evlist *evlist __maybe_unused)
1375{
1376	static struct memory_node nodes[MAX_MEMORY_NODES];
1377	u64 bsize, version = 1, i, nr;
1378	int ret;
1379
1380	ret = sysfs__read_xll("devices/system/memory/block_size_bytes",
1381			      (unsigned long long *) &bsize);
1382	if (ret)
1383		return ret;
1384
1385	ret = build_mem_topology(&nodes[0], MAX_MEMORY_NODES, &nr);
1386	if (ret)
1387		return ret;
1388
1389	ret = do_write(ff, &version, sizeof(version));
1390	if (ret < 0)
1391		goto out;
1392
1393	ret = do_write(ff, &bsize, sizeof(bsize));
1394	if (ret < 0)
1395		goto out;
1396
1397	ret = do_write(ff, &nr, sizeof(nr));
1398	if (ret < 0)
1399		goto out;
1400
1401	for (i = 0; i < nr; i++) {
1402		struct memory_node *n = &nodes[i];
1403
1404		#define _W(v)						\
1405			ret = do_write(ff, &n->v, sizeof(n->v));	\
1406			if (ret < 0)					\
1407				goto out;
1408
1409		_W(node)
1410		_W(size)
1411
1412		#undef _W
1413
1414		ret = do_write_bitmap(ff, n->set, n->size);
1415		if (ret < 0)
1416			goto out;
1417	}
1418
1419out:
1420	return ret;
1421}
1422
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1423static void print_hostname(struct feat_fd *ff, FILE *fp)
1424{
1425	fprintf(fp, "# hostname : %s\n", ff->ph->env.hostname);
1426}
1427
1428static void print_osrelease(struct feat_fd *ff, FILE *fp)
1429{
1430	fprintf(fp, "# os release : %s\n", ff->ph->env.os_release);
1431}
1432
1433static void print_arch(struct feat_fd *ff, FILE *fp)
1434{
1435	fprintf(fp, "# arch : %s\n", ff->ph->env.arch);
1436}
1437
1438static void print_cpudesc(struct feat_fd *ff, FILE *fp)
1439{
1440	fprintf(fp, "# cpudesc : %s\n", ff->ph->env.cpu_desc);
1441}
1442
1443static void print_nrcpus(struct feat_fd *ff, FILE *fp)
1444{
1445	fprintf(fp, "# nrcpus online : %u\n", ff->ph->env.nr_cpus_online);
1446	fprintf(fp, "# nrcpus avail : %u\n", ff->ph->env.nr_cpus_avail);
1447}
1448
1449static void print_version(struct feat_fd *ff, FILE *fp)
1450{
1451	fprintf(fp, "# perf version : %s\n", ff->ph->env.version);
1452}
1453
1454static void print_cmdline(struct feat_fd *ff, FILE *fp)
1455{
1456	int nr, i;
1457
1458	nr = ff->ph->env.nr_cmdline;
1459
1460	fprintf(fp, "# cmdline : ");
1461
1462	for (i = 0; i < nr; i++)
1463		fprintf(fp, "%s ", ff->ph->env.cmdline_argv[i]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1464	fputc('\n', fp);
1465}
1466
1467static void print_cpu_topology(struct feat_fd *ff, FILE *fp)
1468{
1469	struct perf_header *ph = ff->ph;
1470	int cpu_nr = ph->env.nr_cpus_avail;
1471	int nr, i;
1472	char *str;
1473
1474	nr = ph->env.nr_sibling_cores;
1475	str = ph->env.sibling_cores;
1476
1477	for (i = 0; i < nr; i++) {
1478		fprintf(fp, "# sibling cores   : %s\n", str);
1479		str += strlen(str) + 1;
1480	}
1481
 
 
 
 
 
 
 
 
 
 
1482	nr = ph->env.nr_sibling_threads;
1483	str = ph->env.sibling_threads;
1484
1485	for (i = 0; i < nr; i++) {
1486		fprintf(fp, "# sibling threads : %s\n", str);
1487		str += strlen(str) + 1;
1488	}
1489
1490	if (ph->env.cpu != NULL) {
1491		for (i = 0; i < cpu_nr; i++)
1492			fprintf(fp, "# CPU %d: Core ID %d, Socket ID %d\n", i,
1493				ph->env.cpu[i].core_id, ph->env.cpu[i].socket_id);
1494	} else
1495		fprintf(fp, "# Core ID and Socket ID information is not available\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1496}
1497
1498static void free_event_desc(struct perf_evsel *events)
1499{
1500	struct perf_evsel *evsel;
1501
1502	if (!events)
1503		return;
1504
1505	for (evsel = events; evsel->attr.size; evsel++) {
1506		zfree(&evsel->name);
1507		zfree(&evsel->id);
1508	}
1509
1510	free(events);
1511}
1512
1513static struct perf_evsel *read_event_desc(struct feat_fd *ff)
1514{
1515	struct perf_evsel *evsel, *events = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1516	u64 *id;
1517	void *buf = NULL;
1518	u32 nre, sz, nr, i, j;
1519	size_t msz;
1520
1521	/* number of events */
1522	if (do_read_u32(ff, &nre))
1523		goto error;
1524
1525	if (do_read_u32(ff, &sz))
1526		goto error;
1527
1528	/* buffer to hold on file attr struct */
1529	buf = malloc(sz);
1530	if (!buf)
1531		goto error;
1532
1533	/* the last event terminates with evsel->attr.size == 0: */
1534	events = calloc(nre + 1, sizeof(*events));
1535	if (!events)
1536		goto error;
1537
1538	msz = sizeof(evsel->attr);
1539	if (sz < msz)
1540		msz = sz;
1541
1542	for (i = 0, evsel = events; i < nre; evsel++, i++) {
1543		evsel->idx = i;
1544
1545		/*
1546		 * must read entire on-file attr struct to
1547		 * sync up with layout.
1548		 */
1549		if (__do_read(ff, buf, sz))
1550			goto error;
1551
1552		if (ff->ph->needs_swap)
1553			perf_event__attr_swap(buf);
1554
1555		memcpy(&evsel->attr, buf, msz);
 
 
 
1556
1557		if (do_read_u32(ff, &nr))
1558			goto error;
1559
1560		if (ff->ph->needs_swap)
1561			evsel->needs_swap = true;
1562
1563		evsel->name = do_read_string(ff);
1564		if (!evsel->name)
1565			goto error;
1566
1567		if (!nr)
1568			continue;
1569
1570		id = calloc(nr, sizeof(*id));
1571		if (!id)
1572			goto error;
1573		evsel->ids = nr;
1574		evsel->id = id;
1575
1576		for (j = 0 ; j < nr; j++) {
1577			if (do_read_u64(ff, id))
1578				goto error;
1579			id++;
1580		}
1581	}
1582out:
1583	free(buf);
1584	return events;
1585error:
1586	free_event_desc(events);
1587	events = NULL;
1588	goto out;
1589}
1590
1591static int __desc_attr__fprintf(FILE *fp, const char *name, const char *val,
1592				void *priv __maybe_unused)
1593{
1594	return fprintf(fp, ", %s = %s", name, val);
1595}
1596
1597static void print_event_desc(struct feat_fd *ff, FILE *fp)
1598{
1599	struct perf_evsel *evsel, *events;
1600	u32 j;
1601	u64 *id;
1602
1603	if (ff->events)
1604		events = ff->events;
1605	else
1606		events = read_event_desc(ff);
1607
1608	if (!events) {
1609		fprintf(fp, "# event desc: not available or unable to read\n");
1610		return;
1611	}
1612
1613	for (evsel = events; evsel->attr.size; evsel++) {
1614		fprintf(fp, "# event : name = %s, ", evsel->name);
1615
1616		if (evsel->ids) {
1617			fprintf(fp, ", id = {");
1618			for (j = 0, id = evsel->id; j < evsel->ids; j++, id++) {
1619				if (j)
1620					fputc(',', fp);
1621				fprintf(fp, " %"PRIu64, *id);
1622			}
1623			fprintf(fp, " }");
1624		}
1625
1626		perf_event_attr__fprintf(fp, &evsel->attr, __desc_attr__fprintf, NULL);
1627
1628		fputc('\n', fp);
1629	}
1630
1631	free_event_desc(events);
1632	ff->events = NULL;
1633}
1634
1635static void print_total_mem(struct feat_fd *ff, FILE *fp)
1636{
1637	fprintf(fp, "# total memory : %llu kB\n", ff->ph->env.total_mem);
1638}
1639
1640static void print_numa_topology(struct feat_fd *ff, FILE *fp)
1641{
1642	int i;
1643	struct numa_node *n;
1644
1645	for (i = 0; i < ff->ph->env.nr_numa_nodes; i++) {
1646		n = &ff->ph->env.numa_nodes[i];
1647
1648		fprintf(fp, "# node%u meminfo  : total = %"PRIu64" kB,"
1649			    " free = %"PRIu64" kB\n",
1650			n->node, n->mem_total, n->mem_free);
1651
1652		fprintf(fp, "# node%u cpu list : ", n->node);
1653		cpu_map__fprintf(n->map, fp);
1654	}
1655}
1656
1657static void print_cpuid(struct feat_fd *ff, FILE *fp)
1658{
1659	fprintf(fp, "# cpuid : %s\n", ff->ph->env.cpuid);
1660}
1661
1662static void print_branch_stack(struct feat_fd *ff __maybe_unused, FILE *fp)
1663{
1664	fprintf(fp, "# contains samples with branch stack\n");
1665}
1666
1667static void print_auxtrace(struct feat_fd *ff __maybe_unused, FILE *fp)
1668{
1669	fprintf(fp, "# contains AUX area data (e.g. instruction trace)\n");
1670}
1671
1672static void print_stat(struct feat_fd *ff __maybe_unused, FILE *fp)
1673{
1674	fprintf(fp, "# contains stat data\n");
1675}
1676
1677static void print_cache(struct feat_fd *ff, FILE *fp __maybe_unused)
1678{
1679	int i;
1680
1681	fprintf(fp, "# CPU cache info:\n");
1682	for (i = 0; i < ff->ph->env.caches_cnt; i++) {
1683		fprintf(fp, "#  ");
1684		cpu_cache_level__fprintf(fp, &ff->ph->env.caches[i]);
1685	}
1686}
1687
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1688static void print_pmu_mappings(struct feat_fd *ff, FILE *fp)
1689{
1690	const char *delimiter = "# pmu mappings: ";
1691	char *str, *tmp;
1692	u32 pmu_num;
1693	u32 type;
1694
1695	pmu_num = ff->ph->env.nr_pmu_mappings;
1696	if (!pmu_num) {
1697		fprintf(fp, "# pmu mappings: not available\n");
1698		return;
1699	}
1700
1701	str = ff->ph->env.pmu_mappings;
1702
1703	while (pmu_num) {
1704		type = strtoul(str, &tmp, 0);
1705		if (*tmp != ':')
1706			goto error;
1707
1708		str = tmp + 1;
1709		fprintf(fp, "%s%s = %" PRIu32, delimiter, str, type);
1710
1711		delimiter = ", ";
1712		str += strlen(str) + 1;
1713		pmu_num--;
1714	}
1715
1716	fprintf(fp, "\n");
1717
1718	if (!pmu_num)
1719		return;
1720error:
1721	fprintf(fp, "# pmu mappings: unable to read\n");
1722}
1723
1724static void print_group_desc(struct feat_fd *ff, FILE *fp)
1725{
1726	struct perf_session *session;
1727	struct perf_evsel *evsel;
1728	u32 nr = 0;
1729
1730	session = container_of(ff->ph, struct perf_session, header);
1731
1732	evlist__for_each_entry(session->evlist, evsel) {
1733		if (perf_evsel__is_group_leader(evsel) &&
1734		    evsel->nr_members > 1) {
1735			fprintf(fp, "# group: %s{%s", evsel->group_name ?: "",
1736				perf_evsel__name(evsel));
1737
1738			nr = evsel->nr_members - 1;
1739		} else if (nr) {
1740			fprintf(fp, ",%s", perf_evsel__name(evsel));
1741
1742			if (--nr == 0)
1743				fprintf(fp, "}\n");
1744		}
1745	}
1746}
1747
1748static void print_sample_time(struct feat_fd *ff, FILE *fp)
1749{
1750	struct perf_session *session;
1751	char time_buf[32];
1752	double d;
1753
1754	session = container_of(ff->ph, struct perf_session, header);
1755
1756	timestamp__scnprintf_usec(session->evlist->first_sample_time,
1757				  time_buf, sizeof(time_buf));
1758	fprintf(fp, "# time of first sample : %s\n", time_buf);
1759
1760	timestamp__scnprintf_usec(session->evlist->last_sample_time,
1761				  time_buf, sizeof(time_buf));
1762	fprintf(fp, "# time of last sample : %s\n", time_buf);
1763
1764	d = (double)(session->evlist->last_sample_time -
1765		session->evlist->first_sample_time) / NSEC_PER_MSEC;
1766
1767	fprintf(fp, "# sample duration : %10.3f ms\n", d);
1768}
1769
1770static void memory_node__fprintf(struct memory_node *n,
1771				 unsigned long long bsize, FILE *fp)
1772{
1773	char buf_map[100], buf_size[50];
1774	unsigned long long size;
1775
1776	size = bsize * bitmap_weight(n->set, n->size);
1777	unit_number__scnprintf(buf_size, 50, size);
1778
1779	bitmap_scnprintf(n->set, n->size, buf_map, 100);
1780	fprintf(fp, "#  %3" PRIu64 " [%s]: %s\n", n->node, buf_size, buf_map);
1781}
1782
1783static void print_mem_topology(struct feat_fd *ff, FILE *fp)
1784{
1785	struct memory_node *nodes;
1786	int i, nr;
1787
1788	nodes = ff->ph->env.memory_nodes;
1789	nr    = ff->ph->env.nr_memory_nodes;
1790
1791	fprintf(fp, "# memory nodes (nr %d, block size 0x%llx):\n",
1792		nr, ff->ph->env.memory_bsize);
1793
1794	for (i = 0; i < nr; i++) {
1795		memory_node__fprintf(&nodes[i], ff->ph->env.memory_bsize, fp);
1796	}
1797}
1798
1799static int __event_process_build_id(struct build_id_event *bev,
1800				    char *filename,
1801				    struct perf_session *session)
1802{
1803	int err = -1;
1804	struct machine *machine;
1805	u16 cpumode;
1806	struct dso *dso;
1807	enum dso_kernel_type dso_type;
1808
1809	machine = perf_session__findnew_machine(session, bev->pid);
1810	if (!machine)
1811		goto out;
1812
1813	cpumode = bev->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
1814
1815	switch (cpumode) {
1816	case PERF_RECORD_MISC_KERNEL:
1817		dso_type = DSO_TYPE_KERNEL;
1818		break;
1819	case PERF_RECORD_MISC_GUEST_KERNEL:
1820		dso_type = DSO_TYPE_GUEST_KERNEL;
1821		break;
1822	case PERF_RECORD_MISC_USER:
1823	case PERF_RECORD_MISC_GUEST_USER:
1824		dso_type = DSO_TYPE_USER;
1825		break;
1826	default:
1827		goto out;
1828	}
1829
1830	dso = machine__findnew_dso(machine, filename);
1831	if (dso != NULL) {
1832		char sbuild_id[SBUILD_ID_SIZE];
1833
1834		dso__set_build_id(dso, &bev->build_id);
1835
1836		if (dso_type != DSO_TYPE_USER) {
1837			struct kmod_path m = { .name = NULL, };
1838
1839			if (!kmod_path__parse_name(&m, filename) && m.kmod)
1840				dso__set_module_info(dso, &m, machine);
1841			else
1842				dso->kernel = dso_type;
1843
 
1844			free(m.name);
1845		}
1846
1847		build_id__sprintf(dso->build_id, sizeof(dso->build_id),
1848				  sbuild_id);
1849		pr_debug("build id event received for %s: %s\n",
1850			 dso->long_name, sbuild_id);
1851		dso__put(dso);
1852	}
1853
1854	err = 0;
1855out:
1856	return err;
1857}
1858
1859static int perf_header__read_build_ids_abi_quirk(struct perf_header *header,
1860						 int input, u64 offset, u64 size)
1861{
1862	struct perf_session *session = container_of(header, struct perf_session, header);
1863	struct {
1864		struct perf_event_header   header;
1865		u8			   build_id[PERF_ALIGN(BUILD_ID_SIZE, sizeof(u64))];
1866		char			   filename[0];
1867	} old_bev;
1868	struct build_id_event bev;
1869	char filename[PATH_MAX];
1870	u64 limit = offset + size;
1871
1872	while (offset < limit) {
1873		ssize_t len;
1874
1875		if (readn(input, &old_bev, sizeof(old_bev)) != sizeof(old_bev))
1876			return -1;
1877
1878		if (header->needs_swap)
1879			perf_event_header__bswap(&old_bev.header);
1880
1881		len = old_bev.header.size - sizeof(old_bev);
1882		if (readn(input, filename, len) != len)
1883			return -1;
1884
1885		bev.header = old_bev.header;
1886
1887		/*
1888		 * As the pid is the missing value, we need to fill
1889		 * it properly. The header.misc value give us nice hint.
1890		 */
1891		bev.pid	= HOST_KERNEL_ID;
1892		if (bev.header.misc == PERF_RECORD_MISC_GUEST_USER ||
1893		    bev.header.misc == PERF_RECORD_MISC_GUEST_KERNEL)
1894			bev.pid	= DEFAULT_GUEST_KERNEL_ID;
1895
1896		memcpy(bev.build_id, old_bev.build_id, sizeof(bev.build_id));
1897		__event_process_build_id(&bev, filename, session);
1898
1899		offset += bev.header.size;
1900	}
1901
1902	return 0;
1903}
1904
1905static int perf_header__read_build_ids(struct perf_header *header,
1906				       int input, u64 offset, u64 size)
1907{
1908	struct perf_session *session = container_of(header, struct perf_session, header);
1909	struct build_id_event bev;
1910	char filename[PATH_MAX];
1911	u64 limit = offset + size, orig_offset = offset;
1912	int err = -1;
1913
1914	while (offset < limit) {
1915		ssize_t len;
1916
1917		if (readn(input, &bev, sizeof(bev)) != sizeof(bev))
1918			goto out;
1919
1920		if (header->needs_swap)
1921			perf_event_header__bswap(&bev.header);
1922
1923		len = bev.header.size - sizeof(bev);
1924		if (readn(input, filename, len) != len)
1925			goto out;
1926		/*
1927		 * The a1645ce1 changeset:
1928		 *
1929		 * "perf: 'perf kvm' tool for monitoring guest performance from host"
1930		 *
1931		 * Added a field to struct build_id_event that broke the file
1932		 * format.
1933		 *
1934		 * Since the kernel build-id is the first entry, process the
1935		 * table using the old format if the well known
1936		 * '[kernel.kallsyms]' string for the kernel build-id has the
1937		 * first 4 characters chopped off (where the pid_t sits).
1938		 */
1939		if (memcmp(filename, "nel.kallsyms]", 13) == 0) {
1940			if (lseek(input, orig_offset, SEEK_SET) == (off_t)-1)
1941				return -1;
1942			return perf_header__read_build_ids_abi_quirk(header, input, offset, size);
1943		}
1944
1945		__event_process_build_id(&bev, filename, session);
1946
1947		offset += bev.header.size;
1948	}
1949	err = 0;
1950out:
1951	return err;
1952}
1953
1954/* Macro for features that simply need to read and store a string. */
1955#define FEAT_PROCESS_STR_FUN(__feat, __feat_env) \
1956static int process_##__feat(struct feat_fd *ff, void *data __maybe_unused) \
1957{\
1958	ff->ph->env.__feat_env = do_read_string(ff); \
1959	return ff->ph->env.__feat_env ? 0 : -ENOMEM; \
1960}
1961
1962FEAT_PROCESS_STR_FUN(hostname, hostname);
1963FEAT_PROCESS_STR_FUN(osrelease, os_release);
1964FEAT_PROCESS_STR_FUN(version, version);
1965FEAT_PROCESS_STR_FUN(arch, arch);
1966FEAT_PROCESS_STR_FUN(cpudesc, cpu_desc);
1967FEAT_PROCESS_STR_FUN(cpuid, cpuid);
1968
1969static int process_tracing_data(struct feat_fd *ff, void *data)
1970{
1971	ssize_t ret = trace_report(ff->fd, data, false);
1972
1973	return ret < 0 ? -1 : 0;
1974}
1975
1976static int process_build_id(struct feat_fd *ff, void *data __maybe_unused)
1977{
1978	if (perf_header__read_build_ids(ff->ph, ff->fd, ff->offset, ff->size))
1979		pr_debug("Failed to read buildids, continuing...\n");
1980	return 0;
1981}
1982
1983static int process_nrcpus(struct feat_fd *ff, void *data __maybe_unused)
1984{
1985	int ret;
1986	u32 nr_cpus_avail, nr_cpus_online;
1987
1988	ret = do_read_u32(ff, &nr_cpus_avail);
1989	if (ret)
1990		return ret;
1991
1992	ret = do_read_u32(ff, &nr_cpus_online);
1993	if (ret)
1994		return ret;
1995	ff->ph->env.nr_cpus_avail = (int)nr_cpus_avail;
1996	ff->ph->env.nr_cpus_online = (int)nr_cpus_online;
1997	return 0;
1998}
1999
2000static int process_total_mem(struct feat_fd *ff, void *data __maybe_unused)
2001{
2002	u64 total_mem;
2003	int ret;
2004
2005	ret = do_read_u64(ff, &total_mem);
2006	if (ret)
2007		return -1;
2008	ff->ph->env.total_mem = (unsigned long long)total_mem;
2009	return 0;
2010}
2011
2012static struct perf_evsel *
2013perf_evlist__find_by_index(struct perf_evlist *evlist, int idx)
2014{
2015	struct perf_evsel *evsel;
2016
2017	evlist__for_each_entry(evlist, evsel) {
2018		if (evsel->idx == idx)
2019			return evsel;
2020	}
2021
2022	return NULL;
2023}
2024
2025static void
2026perf_evlist__set_event_name(struct perf_evlist *evlist,
2027			    struct perf_evsel *event)
2028{
2029	struct perf_evsel *evsel;
2030
2031	if (!event->name)
2032		return;
2033
2034	evsel = perf_evlist__find_by_index(evlist, event->idx);
2035	if (!evsel)
2036		return;
2037
2038	if (evsel->name)
2039		return;
2040
2041	evsel->name = strdup(event->name);
2042}
2043
2044static int
2045process_event_desc(struct feat_fd *ff, void *data __maybe_unused)
2046{
2047	struct perf_session *session;
2048	struct perf_evsel *evsel, *events = read_event_desc(ff);
2049
2050	if (!events)
2051		return 0;
2052
2053	session = container_of(ff->ph, struct perf_session, header);
2054
2055	if (session->data->is_pipe) {
2056		/* Save events for reading later by print_event_desc,
2057		 * since they can't be read again in pipe mode. */
2058		ff->events = events;
2059	}
2060
2061	for (evsel = events; evsel->attr.size; evsel++)
2062		perf_evlist__set_event_name(session->evlist, evsel);
2063
2064	if (!session->data->is_pipe)
2065		free_event_desc(events);
2066
2067	return 0;
2068}
2069
2070static int process_cmdline(struct feat_fd *ff, void *data __maybe_unused)
2071{
2072	char *str, *cmdline = NULL, **argv = NULL;
2073	u32 nr, i, len = 0;
2074
2075	if (do_read_u32(ff, &nr))
2076		return -1;
2077
2078	ff->ph->env.nr_cmdline = nr;
2079
2080	cmdline = zalloc(ff->size + nr + 1);
2081	if (!cmdline)
2082		return -1;
2083
2084	argv = zalloc(sizeof(char *) * (nr + 1));
2085	if (!argv)
2086		goto error;
2087
2088	for (i = 0; i < nr; i++) {
2089		str = do_read_string(ff);
2090		if (!str)
2091			goto error;
2092
2093		argv[i] = cmdline + len;
2094		memcpy(argv[i], str, strlen(str) + 1);
2095		len += strlen(str) + 1;
2096		free(str);
2097	}
2098	ff->ph->env.cmdline = cmdline;
2099	ff->ph->env.cmdline_argv = (const char **) argv;
2100	return 0;
2101
2102error:
2103	free(argv);
2104	free(cmdline);
2105	return -1;
2106}
2107
2108static int process_cpu_topology(struct feat_fd *ff, void *data __maybe_unused)
2109{
2110	u32 nr, i;
2111	char *str;
2112	struct strbuf sb;
2113	int cpu_nr = ff->ph->env.nr_cpus_avail;
2114	u64 size = 0;
2115	struct perf_header *ph = ff->ph;
 
2116
2117	ph->env.cpu = calloc(cpu_nr, sizeof(*ph->env.cpu));
2118	if (!ph->env.cpu)
2119		return -1;
2120
2121	if (do_read_u32(ff, &nr))
2122		goto free_cpu;
2123
2124	ph->env.nr_sibling_cores = nr;
2125	size += sizeof(u32);
2126	if (strbuf_init(&sb, 128) < 0)
2127		goto free_cpu;
2128
2129	for (i = 0; i < nr; i++) {
2130		str = do_read_string(ff);
2131		if (!str)
2132			goto error;
2133
2134		/* include a NULL character at the end */
2135		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2136			goto error;
2137		size += string_size(str);
2138		free(str);
2139	}
2140	ph->env.sibling_cores = strbuf_detach(&sb, NULL);
2141
2142	if (do_read_u32(ff, &nr))
2143		return -1;
2144
2145	ph->env.nr_sibling_threads = nr;
2146	size += sizeof(u32);
2147
2148	for (i = 0; i < nr; i++) {
2149		str = do_read_string(ff);
2150		if (!str)
2151			goto error;
2152
2153		/* include a NULL character at the end */
2154		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2155			goto error;
2156		size += string_size(str);
2157		free(str);
2158	}
2159	ph->env.sibling_threads = strbuf_detach(&sb, NULL);
2160
2161	/*
2162	 * The header may be from old perf,
2163	 * which doesn't include core id and socket id information.
2164	 */
2165	if (ff->size <= size) {
2166		zfree(&ph->env.cpu);
2167		return 0;
2168	}
2169
 
 
 
 
 
 
 
 
 
2170	for (i = 0; i < (u32)cpu_nr; i++) {
2171		if (do_read_u32(ff, &nr))
2172			goto free_cpu;
2173
2174		ph->env.cpu[i].core_id = nr;
 
2175
2176		if (do_read_u32(ff, &nr))
2177			goto free_cpu;
2178
2179		if (nr != (u32)-1 && nr > (u32)cpu_nr) {
2180			pr_debug("socket_id number is too big."
2181				 "You may need to upgrade the perf tool.\n");
2182			goto free_cpu;
2183		}
2184
2185		ph->env.cpu[i].socket_id = nr;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2186	}
2187
2188	return 0;
2189
2190error:
2191	strbuf_release(&sb);
2192free_cpu:
2193	zfree(&ph->env.cpu);
2194	return -1;
2195}
2196
2197static int process_numa_topology(struct feat_fd *ff, void *data __maybe_unused)
2198{
2199	struct numa_node *nodes, *n;
2200	u32 nr, i;
2201	char *str;
2202
2203	/* nr nodes */
2204	if (do_read_u32(ff, &nr))
2205		return -1;
2206
2207	nodes = zalloc(sizeof(*nodes) * nr);
2208	if (!nodes)
2209		return -ENOMEM;
2210
2211	for (i = 0; i < nr; i++) {
2212		n = &nodes[i];
2213
2214		/* node number */
2215		if (do_read_u32(ff, &n->node))
2216			goto error;
2217
2218		if (do_read_u64(ff, &n->mem_total))
2219			goto error;
2220
2221		if (do_read_u64(ff, &n->mem_free))
2222			goto error;
2223
2224		str = do_read_string(ff);
2225		if (!str)
2226			goto error;
2227
2228		n->map = cpu_map__new(str);
2229		if (!n->map)
2230			goto error;
2231
2232		free(str);
2233	}
2234	ff->ph->env.nr_numa_nodes = nr;
2235	ff->ph->env.numa_nodes = nodes;
2236	return 0;
2237
2238error:
2239	free(nodes);
2240	return -1;
2241}
2242
2243static int process_pmu_mappings(struct feat_fd *ff, void *data __maybe_unused)
2244{
2245	char *name;
2246	u32 pmu_num;
2247	u32 type;
2248	struct strbuf sb;
2249
2250	if (do_read_u32(ff, &pmu_num))
2251		return -1;
2252
2253	if (!pmu_num) {
2254		pr_debug("pmu mappings not available\n");
2255		return 0;
2256	}
2257
2258	ff->ph->env.nr_pmu_mappings = pmu_num;
2259	if (strbuf_init(&sb, 128) < 0)
2260		return -1;
2261
2262	while (pmu_num) {
2263		if (do_read_u32(ff, &type))
2264			goto error;
2265
2266		name = do_read_string(ff);
2267		if (!name)
2268			goto error;
2269
2270		if (strbuf_addf(&sb, "%u:%s", type, name) < 0)
2271			goto error;
2272		/* include a NULL character at the end */
2273		if (strbuf_add(&sb, "", 1) < 0)
2274			goto error;
2275
2276		if (!strcmp(name, "msr"))
2277			ff->ph->env.msr_pmu_type = type;
2278
2279		free(name);
2280		pmu_num--;
2281	}
2282	ff->ph->env.pmu_mappings = strbuf_detach(&sb, NULL);
2283	return 0;
2284
2285error:
2286	strbuf_release(&sb);
2287	return -1;
2288}
2289
2290static int process_group_desc(struct feat_fd *ff, void *data __maybe_unused)
2291{
2292	size_t ret = -1;
2293	u32 i, nr, nr_groups;
2294	struct perf_session *session;
2295	struct perf_evsel *evsel, *leader = NULL;
2296	struct group_desc {
2297		char *name;
2298		u32 leader_idx;
2299		u32 nr_members;
2300	} *desc;
2301
2302	if (do_read_u32(ff, &nr_groups))
2303		return -1;
2304
2305	ff->ph->env.nr_groups = nr_groups;
2306	if (!nr_groups) {
2307		pr_debug("group desc not available\n");
2308		return 0;
2309	}
2310
2311	desc = calloc(nr_groups, sizeof(*desc));
2312	if (!desc)
2313		return -1;
2314
2315	for (i = 0; i < nr_groups; i++) {
2316		desc[i].name = do_read_string(ff);
2317		if (!desc[i].name)
2318			goto out_free;
2319
2320		if (do_read_u32(ff, &desc[i].leader_idx))
2321			goto out_free;
2322
2323		if (do_read_u32(ff, &desc[i].nr_members))
2324			goto out_free;
2325	}
2326
2327	/*
2328	 * Rebuild group relationship based on the group_desc
2329	 */
2330	session = container_of(ff->ph, struct perf_session, header);
2331	session->evlist->nr_groups = nr_groups;
2332
2333	i = nr = 0;
2334	evlist__for_each_entry(session->evlist, evsel) {
2335		if (evsel->idx == (int) desc[i].leader_idx) {
2336			evsel->leader = evsel;
2337			/* {anon_group} is a dummy name */
2338			if (strcmp(desc[i].name, "{anon_group}")) {
2339				evsel->group_name = desc[i].name;
2340				desc[i].name = NULL;
2341			}
2342			evsel->nr_members = desc[i].nr_members;
2343
2344			if (i >= nr_groups || nr > 0) {
2345				pr_debug("invalid group desc\n");
2346				goto out_free;
2347			}
2348
2349			leader = evsel;
2350			nr = evsel->nr_members - 1;
2351			i++;
2352		} else if (nr) {
2353			/* This is a group member */
2354			evsel->leader = leader;
2355
2356			nr--;
2357		}
2358	}
2359
2360	if (i != nr_groups || nr != 0) {
2361		pr_debug("invalid group desc\n");
2362		goto out_free;
2363	}
2364
2365	ret = 0;
2366out_free:
2367	for (i = 0; i < nr_groups; i++)
2368		zfree(&desc[i].name);
2369	free(desc);
2370
2371	return ret;
2372}
2373
2374static int process_auxtrace(struct feat_fd *ff, void *data __maybe_unused)
2375{
2376	struct perf_session *session;
2377	int err;
2378
2379	session = container_of(ff->ph, struct perf_session, header);
2380
2381	err = auxtrace_index__process(ff->fd, ff->size, session,
2382				      ff->ph->needs_swap);
2383	if (err < 0)
2384		pr_err("Failed to process auxtrace index\n");
2385	return err;
2386}
2387
2388static int process_cache(struct feat_fd *ff, void *data __maybe_unused)
2389{
2390	struct cpu_cache_level *caches;
2391	u32 cnt, i, version;
2392
2393	if (do_read_u32(ff, &version))
2394		return -1;
2395
2396	if (version != 1)
2397		return -1;
2398
2399	if (do_read_u32(ff, &cnt))
2400		return -1;
2401
2402	caches = zalloc(sizeof(*caches) * cnt);
2403	if (!caches)
2404		return -1;
2405
2406	for (i = 0; i < cnt; i++) {
2407		struct cpu_cache_level c;
2408
2409		#define _R(v)						\
2410			if (do_read_u32(ff, &c.v))\
2411				goto out_free_caches;			\
2412
2413		_R(level)
2414		_R(line_size)
2415		_R(sets)
2416		_R(ways)
2417		#undef _R
2418
2419		#define _R(v)					\
2420			c.v = do_read_string(ff);		\
2421			if (!c.v)				\
2422				goto out_free_caches;
2423
2424		_R(type)
2425		_R(size)
2426		_R(map)
2427		#undef _R
2428
2429		caches[i] = c;
2430	}
2431
2432	ff->ph->env.caches = caches;
2433	ff->ph->env.caches_cnt = cnt;
2434	return 0;
2435out_free_caches:
2436	free(caches);
2437	return -1;
2438}
2439
2440static int process_sample_time(struct feat_fd *ff, void *data __maybe_unused)
2441{
2442	struct perf_session *session;
2443	u64 first_sample_time, last_sample_time;
2444	int ret;
2445
2446	session = container_of(ff->ph, struct perf_session, header);
2447
2448	ret = do_read_u64(ff, &first_sample_time);
2449	if (ret)
2450		return -1;
2451
2452	ret = do_read_u64(ff, &last_sample_time);
2453	if (ret)
2454		return -1;
2455
2456	session->evlist->first_sample_time = first_sample_time;
2457	session->evlist->last_sample_time = last_sample_time;
2458	return 0;
2459}
2460
2461static int process_mem_topology(struct feat_fd *ff,
2462				void *data __maybe_unused)
2463{
2464	struct memory_node *nodes;
2465	u64 version, i, nr, bsize;
2466	int ret = -1;
2467
2468	if (do_read_u64(ff, &version))
2469		return -1;
2470
2471	if (version != 1)
2472		return -1;
2473
2474	if (do_read_u64(ff, &bsize))
2475		return -1;
2476
2477	if (do_read_u64(ff, &nr))
2478		return -1;
2479
2480	nodes = zalloc(sizeof(*nodes) * nr);
2481	if (!nodes)
2482		return -1;
2483
2484	for (i = 0; i < nr; i++) {
2485		struct memory_node n;
2486
2487		#define _R(v)				\
2488			if (do_read_u64(ff, &n.v))	\
2489				goto out;		\
2490
2491		_R(node)
2492		_R(size)
2493
2494		#undef _R
2495
2496		if (do_read_bitmap(ff, &n.set, &n.size))
2497			goto out;
2498
2499		nodes[i] = n;
2500	}
2501
2502	ff->ph->env.memory_bsize    = bsize;
2503	ff->ph->env.memory_nodes    = nodes;
2504	ff->ph->env.nr_memory_nodes = nr;
2505	ret = 0;
2506
2507out:
2508	if (ret)
2509		free(nodes);
2510	return ret;
2511}
2512
2513struct feature_ops {
2514	int (*write)(struct feat_fd *ff, struct perf_evlist *evlist);
2515	void (*print)(struct feat_fd *ff, FILE *fp);
2516	int (*process)(struct feat_fd *ff, void *data);
2517	const char *name;
2518	bool full_only;
2519	bool synthesize;
2520};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2521
2522#define FEAT_OPR(n, func, __full_only) \
2523	[HEADER_##n] = {					\
2524		.name	    = __stringify(n),			\
2525		.write	    = write_##func,			\
2526		.print	    = print_##func,			\
2527		.full_only  = __full_only,			\
2528		.process    = process_##func,			\
2529		.synthesize = true				\
2530	}
2531
2532#define FEAT_OPN(n, func, __full_only) \
2533	[HEADER_##n] = {					\
2534		.name	    = __stringify(n),			\
2535		.write	    = write_##func,			\
2536		.print	    = print_##func,			\
2537		.full_only  = __full_only,			\
2538		.process    = process_##func			\
2539	}
2540
2541/* feature_ops not implemented: */
2542#define print_tracing_data	NULL
2543#define print_build_id		NULL
2544
2545#define process_branch_stack	NULL
2546#define process_stat		NULL
2547
 
 
2548
2549static const struct feature_ops feat_ops[HEADER_LAST_FEATURE] = {
2550	FEAT_OPN(TRACING_DATA,	tracing_data,	false),
2551	FEAT_OPN(BUILD_ID,	build_id,	false),
2552	FEAT_OPR(HOSTNAME,	hostname,	false),
2553	FEAT_OPR(OSRELEASE,	osrelease,	false),
2554	FEAT_OPR(VERSION,	version,	false),
2555	FEAT_OPR(ARCH,		arch,		false),
2556	FEAT_OPR(NRCPUS,	nrcpus,		false),
2557	FEAT_OPR(CPUDESC,	cpudesc,	false),
2558	FEAT_OPR(CPUID,		cpuid,		false),
2559	FEAT_OPR(TOTAL_MEM,	total_mem,	false),
2560	FEAT_OPR(EVENT_DESC,	event_desc,	false),
2561	FEAT_OPR(CMDLINE,	cmdline,	false),
2562	FEAT_OPR(CPU_TOPOLOGY,	cpu_topology,	true),
2563	FEAT_OPR(NUMA_TOPOLOGY,	numa_topology,	true),
2564	FEAT_OPN(BRANCH_STACK,	branch_stack,	false),
2565	FEAT_OPR(PMU_MAPPINGS,	pmu_mappings,	false),
2566	FEAT_OPN(GROUP_DESC,	group_desc,	false),
2567	FEAT_OPN(AUXTRACE,	auxtrace,	false),
2568	FEAT_OPN(STAT,		stat,		false),
2569	FEAT_OPN(CACHE,		cache,		true),
2570	FEAT_OPR(SAMPLE_TIME,	sample_time,	false),
2571	FEAT_OPR(MEM_TOPOLOGY,	mem_topology,	true),
 
 
 
 
 
 
 
2572};
2573
2574struct header_print_data {
2575	FILE *fp;
2576	bool full; /* extended list of headers */
2577};
2578
2579static int perf_file_section__fprintf_info(struct perf_file_section *section,
2580					   struct perf_header *ph,
2581					   int feat, int fd, void *data)
2582{
2583	struct header_print_data *hd = data;
2584	struct feat_fd ff;
2585
2586	if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
2587		pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
2588				"%d, continuing...\n", section->offset, feat);
2589		return 0;
2590	}
2591	if (feat >= HEADER_LAST_FEATURE) {
2592		pr_warning("unknown feature %d\n", feat);
2593		return 0;
2594	}
2595	if (!feat_ops[feat].print)
2596		return 0;
2597
2598	ff = (struct  feat_fd) {
2599		.fd = fd,
2600		.ph = ph,
2601	};
2602
2603	if (!feat_ops[feat].full_only || hd->full)
2604		feat_ops[feat].print(&ff, hd->fp);
2605	else
2606		fprintf(hd->fp, "# %s info available, use -I to display\n",
2607			feat_ops[feat].name);
2608
2609	return 0;
2610}
2611
2612int perf_header__fprintf_info(struct perf_session *session, FILE *fp, bool full)
2613{
2614	struct header_print_data hd;
2615	struct perf_header *header = &session->header;
2616	int fd = perf_data__fd(session->data);
2617	struct stat st;
 
2618	int ret, bit;
2619
2620	hd.fp = fp;
2621	hd.full = full;
2622
2623	ret = fstat(fd, &st);
2624	if (ret == -1)
2625		return -1;
2626
2627	fprintf(fp, "# captured on    : %s", ctime(&st.st_ctime));
 
2628
2629	fprintf(fp, "# header version : %u\n", header->version);
2630	fprintf(fp, "# data offset    : %" PRIu64 "\n", header->data_offset);
2631	fprintf(fp, "# data size      : %" PRIu64 "\n", header->data_size);
2632	fprintf(fp, "# feat offset    : %" PRIu64 "\n", header->feat_offset);
2633
2634	perf_header__process_sections(header, fd, &hd,
2635				      perf_file_section__fprintf_info);
2636
2637	if (session->data->is_pipe)
2638		return 0;
2639
2640	fprintf(fp, "# missing features: ");
2641	for_each_clear_bit(bit, header->adds_features, HEADER_LAST_FEATURE) {
2642		if (bit)
2643			fprintf(fp, "%s ", feat_ops[bit].name);
2644	}
2645
2646	fprintf(fp, "\n");
2647	return 0;
2648}
2649
2650static int do_write_feat(struct feat_fd *ff, int type,
2651			 struct perf_file_section **p,
2652			 struct perf_evlist *evlist)
2653{
2654	int err;
2655	int ret = 0;
2656
2657	if (perf_header__has_feat(ff->ph, type)) {
2658		if (!feat_ops[type].write)
2659			return -1;
2660
2661		if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
2662			return -1;
2663
2664		(*p)->offset = lseek(ff->fd, 0, SEEK_CUR);
2665
2666		err = feat_ops[type].write(ff, evlist);
2667		if (err < 0) {
2668			pr_debug("failed to write feature %s\n", feat_ops[type].name);
2669
2670			/* undo anything written */
2671			lseek(ff->fd, (*p)->offset, SEEK_SET);
2672
2673			return -1;
2674		}
2675		(*p)->size = lseek(ff->fd, 0, SEEK_CUR) - (*p)->offset;
2676		(*p)++;
2677	}
2678	return ret;
2679}
2680
2681static int perf_header__adds_write(struct perf_header *header,
2682				   struct perf_evlist *evlist, int fd)
2683{
2684	int nr_sections;
2685	struct feat_fd ff;
2686	struct perf_file_section *feat_sec, *p;
2687	int sec_size;
2688	u64 sec_start;
2689	int feat;
2690	int err;
2691
2692	ff = (struct feat_fd){
2693		.fd  = fd,
2694		.ph = header,
2695	};
2696
2697	nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
2698	if (!nr_sections)
2699		return 0;
2700
2701	feat_sec = p = calloc(nr_sections, sizeof(*feat_sec));
2702	if (feat_sec == NULL)
2703		return -ENOMEM;
2704
2705	sec_size = sizeof(*feat_sec) * nr_sections;
2706
2707	sec_start = header->feat_offset;
2708	lseek(fd, sec_start + sec_size, SEEK_SET);
2709
2710	for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) {
2711		if (do_write_feat(&ff, feat, &p, evlist))
2712			perf_header__clear_feat(header, feat);
2713	}
2714
2715	lseek(fd, sec_start, SEEK_SET);
2716	/*
2717	 * may write more than needed due to dropped feature, but
2718	 * this is okay, reader will skip the mising entries
2719	 */
2720	err = do_write(&ff, feat_sec, sec_size);
2721	if (err < 0)
2722		pr_debug("failed to write feature section\n");
2723	free(feat_sec);
2724	return err;
2725}
2726
2727int perf_header__write_pipe(int fd)
2728{
2729	struct perf_pipe_file_header f_header;
2730	struct feat_fd ff;
2731	int err;
2732
2733	ff = (struct feat_fd){ .fd = fd };
2734
2735	f_header = (struct perf_pipe_file_header){
2736		.magic	   = PERF_MAGIC,
2737		.size	   = sizeof(f_header),
2738	};
2739
2740	err = do_write(&ff, &f_header, sizeof(f_header));
2741	if (err < 0) {
2742		pr_debug("failed to write perf pipe header\n");
2743		return err;
2744	}
2745
2746	return 0;
2747}
2748
2749int perf_session__write_header(struct perf_session *session,
2750			       struct perf_evlist *evlist,
2751			       int fd, bool at_exit)
2752{
2753	struct perf_file_header f_header;
2754	struct perf_file_attr   f_attr;
2755	struct perf_header *header = &session->header;
2756	struct perf_evsel *evsel;
2757	struct feat_fd ff;
2758	u64 attr_offset;
2759	int err;
2760
2761	ff = (struct feat_fd){ .fd = fd};
2762	lseek(fd, sizeof(f_header), SEEK_SET);
2763
2764	evlist__for_each_entry(session->evlist, evsel) {
2765		evsel->id_offset = lseek(fd, 0, SEEK_CUR);
2766		err = do_write(&ff, evsel->id, evsel->ids * sizeof(u64));
2767		if (err < 0) {
2768			pr_debug("failed to write perf header\n");
2769			return err;
2770		}
2771	}
2772
2773	attr_offset = lseek(ff.fd, 0, SEEK_CUR);
2774
2775	evlist__for_each_entry(evlist, evsel) {
2776		f_attr = (struct perf_file_attr){
2777			.attr = evsel->attr,
2778			.ids  = {
2779				.offset = evsel->id_offset,
2780				.size   = evsel->ids * sizeof(u64),
2781			}
2782		};
2783		err = do_write(&ff, &f_attr, sizeof(f_attr));
2784		if (err < 0) {
2785			pr_debug("failed to write perf header attribute\n");
2786			return err;
2787		}
2788	}
2789
2790	if (!header->data_offset)
2791		header->data_offset = lseek(fd, 0, SEEK_CUR);
2792	header->feat_offset = header->data_offset + header->data_size;
2793
2794	if (at_exit) {
2795		err = perf_header__adds_write(header, evlist, fd);
2796		if (err < 0)
2797			return err;
2798	}
2799
2800	f_header = (struct perf_file_header){
2801		.magic	   = PERF_MAGIC,
2802		.size	   = sizeof(f_header),
2803		.attr_size = sizeof(f_attr),
2804		.attrs = {
2805			.offset = attr_offset,
2806			.size   = evlist->nr_entries * sizeof(f_attr),
2807		},
2808		.data = {
2809			.offset = header->data_offset,
2810			.size	= header->data_size,
2811		},
2812		/* event_types is ignored, store zeros */
2813	};
2814
2815	memcpy(&f_header.adds_features, &header->adds_features, sizeof(header->adds_features));
2816
2817	lseek(fd, 0, SEEK_SET);
2818	err = do_write(&ff, &f_header, sizeof(f_header));
2819	if (err < 0) {
2820		pr_debug("failed to write perf header\n");
2821		return err;
2822	}
2823	lseek(fd, header->data_offset + header->data_size, SEEK_SET);
2824
2825	return 0;
2826}
2827
2828static int perf_header__getbuffer64(struct perf_header *header,
2829				    int fd, void *buf, size_t size)
2830{
2831	if (readn(fd, buf, size) <= 0)
2832		return -1;
2833
2834	if (header->needs_swap)
2835		mem_bswap_64(buf, size);
2836
2837	return 0;
2838}
2839
2840int perf_header__process_sections(struct perf_header *header, int fd,
2841				  void *data,
2842				  int (*process)(struct perf_file_section *section,
2843						 struct perf_header *ph,
2844						 int feat, int fd, void *data))
2845{
2846	struct perf_file_section *feat_sec, *sec;
2847	int nr_sections;
2848	int sec_size;
2849	int feat;
2850	int err;
2851
2852	nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
2853	if (!nr_sections)
2854		return 0;
2855
2856	feat_sec = sec = calloc(nr_sections, sizeof(*feat_sec));
2857	if (!feat_sec)
2858		return -1;
2859
2860	sec_size = sizeof(*feat_sec) * nr_sections;
2861
2862	lseek(fd, header->feat_offset, SEEK_SET);
2863
2864	err = perf_header__getbuffer64(header, fd, feat_sec, sec_size);
2865	if (err < 0)
2866		goto out_free;
2867
2868	for_each_set_bit(feat, header->adds_features, HEADER_LAST_FEATURE) {
2869		err = process(sec++, header, feat, fd, data);
2870		if (err < 0)
2871			goto out_free;
2872	}
2873	err = 0;
2874out_free:
2875	free(feat_sec);
2876	return err;
2877}
2878
2879static const int attr_file_abi_sizes[] = {
2880	[0] = PERF_ATTR_SIZE_VER0,
2881	[1] = PERF_ATTR_SIZE_VER1,
2882	[2] = PERF_ATTR_SIZE_VER2,
2883	[3] = PERF_ATTR_SIZE_VER3,
2884	[4] = PERF_ATTR_SIZE_VER4,
2885	0,
2886};
2887
2888/*
2889 * In the legacy file format, the magic number is not used to encode endianness.
2890 * hdr_sz was used to encode endianness. But given that hdr_sz can vary based
2891 * on ABI revisions, we need to try all combinations for all endianness to
2892 * detect the endianness.
2893 */
2894static int try_all_file_abis(uint64_t hdr_sz, struct perf_header *ph)
2895{
2896	uint64_t ref_size, attr_size;
2897	int i;
2898
2899	for (i = 0 ; attr_file_abi_sizes[i]; i++) {
2900		ref_size = attr_file_abi_sizes[i]
2901			 + sizeof(struct perf_file_section);
2902		if (hdr_sz != ref_size) {
2903			attr_size = bswap_64(hdr_sz);
2904			if (attr_size != ref_size)
2905				continue;
2906
2907			ph->needs_swap = true;
2908		}
2909		pr_debug("ABI%d perf.data file detected, need_swap=%d\n",
2910			 i,
2911			 ph->needs_swap);
2912		return 0;
2913	}
2914	/* could not determine endianness */
2915	return -1;
2916}
2917
2918#define PERF_PIPE_HDR_VER0	16
2919
2920static const size_t attr_pipe_abi_sizes[] = {
2921	[0] = PERF_PIPE_HDR_VER0,
2922	0,
2923};
2924
2925/*
2926 * In the legacy pipe format, there is an implicit assumption that endiannesss
2927 * between host recording the samples, and host parsing the samples is the
2928 * same. This is not always the case given that the pipe output may always be
2929 * redirected into a file and analyzed on a different machine with possibly a
2930 * different endianness and perf_event ABI revsions in the perf tool itself.
2931 */
2932static int try_all_pipe_abis(uint64_t hdr_sz, struct perf_header *ph)
2933{
2934	u64 attr_size;
2935	int i;
2936
2937	for (i = 0 ; attr_pipe_abi_sizes[i]; i++) {
2938		if (hdr_sz != attr_pipe_abi_sizes[i]) {
2939			attr_size = bswap_64(hdr_sz);
2940			if (attr_size != hdr_sz)
2941				continue;
2942
2943			ph->needs_swap = true;
2944		}
2945		pr_debug("Pipe ABI%d perf.data file detected\n", i);
2946		return 0;
2947	}
2948	return -1;
2949}
2950
2951bool is_perf_magic(u64 magic)
2952{
2953	if (!memcmp(&magic, __perf_magic1, sizeof(magic))
2954		|| magic == __perf_magic2
2955		|| magic == __perf_magic2_sw)
2956		return true;
2957
2958	return false;
2959}
2960
2961static int check_magic_endian(u64 magic, uint64_t hdr_sz,
2962			      bool is_pipe, struct perf_header *ph)
2963{
2964	int ret;
2965
2966	/* check for legacy format */
2967	ret = memcmp(&magic, __perf_magic1, sizeof(magic));
2968	if (ret == 0) {
2969		ph->version = PERF_HEADER_VERSION_1;
2970		pr_debug("legacy perf.data format\n");
2971		if (is_pipe)
2972			return try_all_pipe_abis(hdr_sz, ph);
2973
2974		return try_all_file_abis(hdr_sz, ph);
2975	}
2976	/*
2977	 * the new magic number serves two purposes:
2978	 * - unique number to identify actual perf.data files
2979	 * - encode endianness of file
2980	 */
2981	ph->version = PERF_HEADER_VERSION_2;
2982
2983	/* check magic number with one endianness */
2984	if (magic == __perf_magic2)
2985		return 0;
2986
2987	/* check magic number with opposite endianness */
2988	if (magic != __perf_magic2_sw)
2989		return -1;
2990
2991	ph->needs_swap = true;
2992
2993	return 0;
2994}
2995
2996int perf_file_header__read(struct perf_file_header *header,
2997			   struct perf_header *ph, int fd)
2998{
2999	ssize_t ret;
3000
3001	lseek(fd, 0, SEEK_SET);
3002
3003	ret = readn(fd, header, sizeof(*header));
3004	if (ret <= 0)
3005		return -1;
3006
3007	if (check_magic_endian(header->magic,
3008			       header->attr_size, false, ph) < 0) {
3009		pr_debug("magic/endian check failed\n");
3010		return -1;
3011	}
3012
3013	if (ph->needs_swap) {
3014		mem_bswap_64(header, offsetof(struct perf_file_header,
3015			     adds_features));
3016	}
3017
3018	if (header->size != sizeof(*header)) {
3019		/* Support the previous format */
3020		if (header->size == offsetof(typeof(*header), adds_features))
3021			bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3022		else
3023			return -1;
3024	} else if (ph->needs_swap) {
3025		/*
3026		 * feature bitmap is declared as an array of unsigned longs --
3027		 * not good since its size can differ between the host that
3028		 * generated the data file and the host analyzing the file.
3029		 *
3030		 * We need to handle endianness, but we don't know the size of
3031		 * the unsigned long where the file was generated. Take a best
3032		 * guess at determining it: try 64-bit swap first (ie., file
3033		 * created on a 64-bit host), and check if the hostname feature
3034		 * bit is set (this feature bit is forced on as of fbe96f2).
3035		 * If the bit is not, undo the 64-bit swap and try a 32-bit
3036		 * swap. If the hostname bit is still not set (e.g., older data
3037		 * file), punt and fallback to the original behavior --
3038		 * clearing all feature bits and setting buildid.
3039		 */
3040		mem_bswap_64(&header->adds_features,
3041			    BITS_TO_U64(HEADER_FEAT_BITS));
3042
3043		if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3044			/* unswap as u64 */
3045			mem_bswap_64(&header->adds_features,
3046				    BITS_TO_U64(HEADER_FEAT_BITS));
3047
3048			/* unswap as u32 */
3049			mem_bswap_32(&header->adds_features,
3050				    BITS_TO_U32(HEADER_FEAT_BITS));
3051		}
3052
3053		if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3054			bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3055			set_bit(HEADER_BUILD_ID, header->adds_features);
3056		}
3057	}
3058
3059	memcpy(&ph->adds_features, &header->adds_features,
3060	       sizeof(ph->adds_features));
3061
3062	ph->data_offset  = header->data.offset;
3063	ph->data_size	 = header->data.size;
3064	ph->feat_offset  = header->data.offset + header->data.size;
3065	return 0;
3066}
3067
3068static int perf_file_section__process(struct perf_file_section *section,
3069				      struct perf_header *ph,
3070				      int feat, int fd, void *data)
3071{
3072	struct feat_fd fdd = {
3073		.fd	= fd,
3074		.ph	= ph,
3075		.size	= section->size,
3076		.offset	= section->offset,
3077	};
3078
3079	if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
3080		pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
3081			  "%d, continuing...\n", section->offset, feat);
3082		return 0;
3083	}
3084
3085	if (feat >= HEADER_LAST_FEATURE) {
3086		pr_debug("unknown feature %d, continuing...\n", feat);
3087		return 0;
3088	}
3089
3090	if (!feat_ops[feat].process)
3091		return 0;
3092
3093	return feat_ops[feat].process(&fdd, data);
3094}
3095
3096static int perf_file_header__read_pipe(struct perf_pipe_file_header *header,
3097				       struct perf_header *ph, int fd,
3098				       bool repipe)
3099{
3100	struct feat_fd ff = {
3101		.fd = STDOUT_FILENO,
3102		.ph = ph,
3103	};
3104	ssize_t ret;
3105
3106	ret = readn(fd, header, sizeof(*header));
3107	if (ret <= 0)
3108		return -1;
3109
3110	if (check_magic_endian(header->magic, header->size, true, ph) < 0) {
3111		pr_debug("endian/magic failed\n");
3112		return -1;
3113	}
3114
3115	if (ph->needs_swap)
3116		header->size = bswap_64(header->size);
3117
3118	if (repipe && do_write(&ff, header, sizeof(*header)) < 0)
3119		return -1;
3120
3121	return 0;
3122}
3123
3124static int perf_header__read_pipe(struct perf_session *session)
3125{
3126	struct perf_header *header = &session->header;
3127	struct perf_pipe_file_header f_header;
3128
3129	if (perf_file_header__read_pipe(&f_header, header,
3130					perf_data__fd(session->data),
3131					session->repipe) < 0) {
3132		pr_debug("incompatible file format\n");
3133		return -EINVAL;
3134	}
3135
3136	return 0;
3137}
3138
3139static int read_attr(int fd, struct perf_header *ph,
3140		     struct perf_file_attr *f_attr)
3141{
3142	struct perf_event_attr *attr = &f_attr->attr;
3143	size_t sz, left;
3144	size_t our_sz = sizeof(f_attr->attr);
3145	ssize_t ret;
3146
3147	memset(f_attr, 0, sizeof(*f_attr));
3148
3149	/* read minimal guaranteed structure */
3150	ret = readn(fd, attr, PERF_ATTR_SIZE_VER0);
3151	if (ret <= 0) {
3152		pr_debug("cannot read %d bytes of header attr\n",
3153			 PERF_ATTR_SIZE_VER0);
3154		return -1;
3155	}
3156
3157	/* on file perf_event_attr size */
3158	sz = attr->size;
3159
3160	if (ph->needs_swap)
3161		sz = bswap_32(sz);
3162
3163	if (sz == 0) {
3164		/* assume ABI0 */
3165		sz =  PERF_ATTR_SIZE_VER0;
3166	} else if (sz > our_sz) {
3167		pr_debug("file uses a more recent and unsupported ABI"
3168			 " (%zu bytes extra)\n", sz - our_sz);
3169		return -1;
3170	}
3171	/* what we have not yet read and that we know about */
3172	left = sz - PERF_ATTR_SIZE_VER0;
3173	if (left) {
3174		void *ptr = attr;
3175		ptr += PERF_ATTR_SIZE_VER0;
3176
3177		ret = readn(fd, ptr, left);
3178	}
3179	/* read perf_file_section, ids are read in caller */
3180	ret = readn(fd, &f_attr->ids, sizeof(f_attr->ids));
3181
3182	return ret <= 0 ? -1 : 0;
3183}
3184
3185static int perf_evsel__prepare_tracepoint_event(struct perf_evsel *evsel,
3186						struct pevent *pevent)
3187{
3188	struct event_format *event;
3189	char bf[128];
3190
3191	/* already prepared */
3192	if (evsel->tp_format)
3193		return 0;
3194
3195	if (pevent == NULL) {
3196		pr_debug("broken or missing trace data\n");
3197		return -1;
3198	}
3199
3200	event = pevent_find_event(pevent, evsel->attr.config);
3201	if (event == NULL) {
3202		pr_debug("cannot find event format for %d\n", (int)evsel->attr.config);
3203		return -1;
3204	}
3205
3206	if (!evsel->name) {
3207		snprintf(bf, sizeof(bf), "%s:%s", event->system, event->name);
3208		evsel->name = strdup(bf);
3209		if (evsel->name == NULL)
3210			return -1;
3211	}
3212
3213	evsel->tp_format = event;
3214	return 0;
3215}
3216
3217static int perf_evlist__prepare_tracepoint_events(struct perf_evlist *evlist,
3218						  struct pevent *pevent)
3219{
3220	struct perf_evsel *pos;
3221
3222	evlist__for_each_entry(evlist, pos) {
3223		if (pos->attr.type == PERF_TYPE_TRACEPOINT &&
3224		    perf_evsel__prepare_tracepoint_event(pos, pevent))
3225			return -1;
3226	}
3227
3228	return 0;
3229}
3230
3231int perf_session__read_header(struct perf_session *session)
3232{
3233	struct perf_data *data = session->data;
3234	struct perf_header *header = &session->header;
3235	struct perf_file_header	f_header;
3236	struct perf_file_attr	f_attr;
3237	u64			f_id;
3238	int nr_attrs, nr_ids, i, j;
3239	int fd = perf_data__fd(data);
3240
3241	session->evlist = perf_evlist__new();
3242	if (session->evlist == NULL)
3243		return -ENOMEM;
3244
3245	session->evlist->env = &header->env;
3246	session->machines.host.env = &header->env;
3247	if (perf_data__is_pipe(data))
3248		return perf_header__read_pipe(session);
 
 
 
 
 
 
 
 
3249
3250	if (perf_file_header__read(&f_header, header, fd) < 0)
3251		return -EINVAL;
3252
3253	/*
3254	 * Sanity check that perf.data was written cleanly; data size is
3255	 * initialized to 0 and updated only if the on_exit function is run.
3256	 * If data size is still 0 then the file contains only partial
3257	 * information.  Just warn user and process it as much as it can.
3258	 */
3259	if (f_header.data.size == 0) {
3260		pr_warning("WARNING: The %s file's data size field is 0 which is unexpected.\n"
3261			   "Was the 'perf record' command properly terminated?\n",
3262			   data->file.path);
3263	}
3264
 
 
 
 
 
 
 
3265	nr_attrs = f_header.attrs.size / f_header.attr_size;
3266	lseek(fd, f_header.attrs.offset, SEEK_SET);
3267
3268	for (i = 0; i < nr_attrs; i++) {
3269		struct perf_evsel *evsel;
3270		off_t tmp;
3271
3272		if (read_attr(fd, header, &f_attr) < 0)
3273			goto out_errno;
3274
3275		if (header->needs_swap) {
3276			f_attr.ids.size   = bswap_64(f_attr.ids.size);
3277			f_attr.ids.offset = bswap_64(f_attr.ids.offset);
3278			perf_event__attr_swap(&f_attr.attr);
3279		}
3280
3281		tmp = lseek(fd, 0, SEEK_CUR);
3282		evsel = perf_evsel__new(&f_attr.attr);
3283
3284		if (evsel == NULL)
3285			goto out_delete_evlist;
3286
3287		evsel->needs_swap = header->needs_swap;
3288		/*
3289		 * Do it before so that if perf_evsel__alloc_id fails, this
3290		 * entry gets purged too at perf_evlist__delete().
3291		 */
3292		perf_evlist__add(session->evlist, evsel);
3293
3294		nr_ids = f_attr.ids.size / sizeof(u64);
3295		/*
3296		 * We don't have the cpu and thread maps on the header, so
3297		 * for allocating the perf_sample_id table we fake 1 cpu and
3298		 * hattr->ids threads.
3299		 */
3300		if (perf_evsel__alloc_id(evsel, 1, nr_ids))
3301			goto out_delete_evlist;
3302
3303		lseek(fd, f_attr.ids.offset, SEEK_SET);
3304
3305		for (j = 0; j < nr_ids; j++) {
3306			if (perf_header__getbuffer64(header, fd, &f_id, sizeof(f_id)))
3307				goto out_errno;
3308
3309			perf_evlist__id_add(session->evlist, evsel, 0, j, f_id);
3310		}
3311
3312		lseek(fd, tmp, SEEK_SET);
3313	}
3314
3315	symbol_conf.nr_events = nr_attrs;
3316
3317	perf_header__process_sections(header, fd, &session->tevent,
3318				      perf_file_section__process);
3319
3320	if (perf_evlist__prepare_tracepoint_events(session->evlist,
3321						   session->tevent.pevent))
3322		goto out_delete_evlist;
3323
3324	return 0;
3325out_errno:
3326	return -errno;
3327
3328out_delete_evlist:
3329	perf_evlist__delete(session->evlist);
3330	session->evlist = NULL;
3331	return -ENOMEM;
3332}
3333
3334int perf_event__synthesize_attr(struct perf_tool *tool,
3335				struct perf_event_attr *attr, u32 ids, u64 *id,
3336				perf_event__handler_t process)
3337{
3338	union perf_event *ev;
3339	size_t size;
3340	int err;
3341
3342	size = sizeof(struct perf_event_attr);
3343	size = PERF_ALIGN(size, sizeof(u64));
3344	size += sizeof(struct perf_event_header);
3345	size += ids * sizeof(u64);
3346
3347	ev = malloc(size);
3348
3349	if (ev == NULL)
3350		return -ENOMEM;
3351
3352	ev->attr.attr = *attr;
3353	memcpy(ev->attr.id, id, ids * sizeof(u64));
3354
3355	ev->attr.header.type = PERF_RECORD_HEADER_ATTR;
3356	ev->attr.header.size = (u16)size;
3357
3358	if (ev->attr.header.size == size)
3359		err = process(tool, ev, NULL, NULL);
3360	else
3361		err = -E2BIG;
3362
3363	free(ev);
3364
3365	return err;
3366}
3367
3368int perf_event__synthesize_features(struct perf_tool *tool,
3369				    struct perf_session *session,
3370				    struct perf_evlist *evlist,
3371				    perf_event__handler_t process)
3372{
3373	struct perf_header *header = &session->header;
3374	struct feat_fd ff;
3375	struct feature_event *fe;
3376	size_t sz, sz_hdr;
3377	int feat, ret;
3378
3379	sz_hdr = sizeof(fe->header);
3380	sz = sizeof(union perf_event);
3381	/* get a nice alignment */
3382	sz = PERF_ALIGN(sz, page_size);
3383
3384	memset(&ff, 0, sizeof(ff));
3385
3386	ff.buf = malloc(sz);
3387	if (!ff.buf)
3388		return -ENOMEM;
3389
3390	ff.size = sz - sz_hdr;
3391
3392	for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) {
3393		if (!feat_ops[feat].synthesize) {
3394			pr_debug("No record header feature for header :%d\n", feat);
3395			continue;
3396		}
3397
3398		ff.offset = sizeof(*fe);
3399
3400		ret = feat_ops[feat].write(&ff, evlist);
3401		if (ret || ff.offset <= (ssize_t)sizeof(*fe)) {
3402			pr_debug("Error writing feature\n");
3403			continue;
3404		}
3405		/* ff.buf may have changed due to realloc in do_write() */
3406		fe = ff.buf;
3407		memset(fe, 0, sizeof(*fe));
3408
3409		fe->feat_id = feat;
3410		fe->header.type = PERF_RECORD_HEADER_FEATURE;
3411		fe->header.size = ff.offset;
3412
3413		ret = process(tool, ff.buf, NULL, NULL);
3414		if (ret) {
3415			free(ff.buf);
3416			return ret;
3417		}
3418	}
3419
3420	/* Send HEADER_LAST_FEATURE mark. */
3421	fe = ff.buf;
3422	fe->feat_id     = HEADER_LAST_FEATURE;
3423	fe->header.type = PERF_RECORD_HEADER_FEATURE;
3424	fe->header.size = sizeof(*fe);
3425
3426	ret = process(tool, ff.buf, NULL, NULL);
3427
3428	free(ff.buf);
3429	return ret;
3430}
3431
3432int perf_event__process_feature(struct perf_tool *tool,
3433				union perf_event *event,
3434				struct perf_session *session __maybe_unused)
3435{
 
3436	struct feat_fd ff = { .fd = 0 };
3437	struct feature_event *fe = (struct feature_event *)event;
3438	int type = fe->header.type;
3439	u64 feat = fe->feat_id;
3440
3441	if (type < 0 || type >= PERF_RECORD_HEADER_MAX) {
3442		pr_warning("invalid record type %d in pipe-mode\n", type);
3443		return 0;
3444	}
3445	if (feat == HEADER_RESERVED || feat > HEADER_LAST_FEATURE) {
3446		pr_warning("invalid record type %d in pipe-mode\n", type);
3447		return -1;
3448	}
3449
3450	if (!feat_ops[feat].process)
3451		return 0;
3452
3453	ff.buf  = (void *)fe->data;
3454	ff.size = event->header.size - sizeof(event->header);
3455	ff.ph = &session->header;
3456
3457	if (feat_ops[feat].process(&ff, NULL))
3458		return -1;
3459
3460	if (!feat_ops[feat].print || !tool->show_feat_hdr)
3461		return 0;
3462
3463	if (!feat_ops[feat].full_only ||
3464	    tool->show_feat_hdr >= SHOW_FEAT_HEADER_FULL_INFO) {
3465		feat_ops[feat].print(&ff, stdout);
3466	} else {
3467		fprintf(stdout, "# %s info available, use -I to display\n",
3468			feat_ops[feat].name);
3469	}
3470
3471	return 0;
3472}
3473
3474static struct event_update_event *
3475event_update_event__new(size_t size, u64 type, u64 id)
3476{
3477	struct event_update_event *ev;
3478
3479	size += sizeof(*ev);
3480	size  = PERF_ALIGN(size, sizeof(u64));
3481
3482	ev = zalloc(size);
3483	if (ev) {
3484		ev->header.type = PERF_RECORD_EVENT_UPDATE;
3485		ev->header.size = (u16)size;
3486		ev->type = type;
3487		ev->id = id;
3488	}
3489	return ev;
3490}
3491
3492int
3493perf_event__synthesize_event_update_unit(struct perf_tool *tool,
3494					 struct perf_evsel *evsel,
3495					 perf_event__handler_t process)
3496{
3497	struct event_update_event *ev;
3498	size_t size = strlen(evsel->unit);
3499	int err;
3500
3501	ev = event_update_event__new(size + 1, PERF_EVENT_UPDATE__UNIT, evsel->id[0]);
3502	if (ev == NULL)
3503		return -ENOMEM;
3504
3505	strncpy(ev->data, evsel->unit, size);
3506	err = process(tool, (union perf_event *)ev, NULL, NULL);
3507	free(ev);
3508	return err;
3509}
3510
3511int
3512perf_event__synthesize_event_update_scale(struct perf_tool *tool,
3513					  struct perf_evsel *evsel,
3514					  perf_event__handler_t process)
3515{
3516	struct event_update_event *ev;
3517	struct event_update_event_scale *ev_data;
3518	int err;
3519
3520	ev = event_update_event__new(sizeof(*ev_data), PERF_EVENT_UPDATE__SCALE, evsel->id[0]);
3521	if (ev == NULL)
3522		return -ENOMEM;
3523
3524	ev_data = (struct event_update_event_scale *) ev->data;
3525	ev_data->scale = evsel->scale;
3526	err = process(tool, (union perf_event*) ev, NULL, NULL);
3527	free(ev);
3528	return err;
3529}
3530
3531int
3532perf_event__synthesize_event_update_name(struct perf_tool *tool,
3533					 struct perf_evsel *evsel,
3534					 perf_event__handler_t process)
3535{
3536	struct event_update_event *ev;
3537	size_t len = strlen(evsel->name);
3538	int err;
3539
3540	ev = event_update_event__new(len + 1, PERF_EVENT_UPDATE__NAME, evsel->id[0]);
3541	if (ev == NULL)
3542		return -ENOMEM;
3543
3544	strncpy(ev->data, evsel->name, len);
3545	err = process(tool, (union perf_event*) ev, NULL, NULL);
3546	free(ev);
3547	return err;
3548}
3549
3550int
3551perf_event__synthesize_event_update_cpus(struct perf_tool *tool,
3552					struct perf_evsel *evsel,
3553					perf_event__handler_t process)
3554{
3555	size_t size = sizeof(struct event_update_event);
3556	struct event_update_event *ev;
3557	int max, err;
3558	u16 type;
3559
3560	if (!evsel->own_cpus)
3561		return 0;
3562
3563	ev = cpu_map_data__alloc(evsel->own_cpus, &size, &type, &max);
3564	if (!ev)
3565		return -ENOMEM;
3566
3567	ev->header.type = PERF_RECORD_EVENT_UPDATE;
3568	ev->header.size = (u16)size;
3569	ev->type = PERF_EVENT_UPDATE__CPUS;
3570	ev->id   = evsel->id[0];
3571
3572	cpu_map_data__synthesize((struct cpu_map_data *) ev->data,
3573				 evsel->own_cpus,
3574				 type, max);
3575
3576	err = process(tool, (union perf_event*) ev, NULL, NULL);
3577	free(ev);
3578	return err;
3579}
3580
3581size_t perf_event__fprintf_event_update(union perf_event *event, FILE *fp)
3582{
3583	struct event_update_event *ev = &event->event_update;
3584	struct event_update_event_scale *ev_scale;
3585	struct event_update_event_cpus *ev_cpus;
3586	struct cpu_map *map;
3587	size_t ret;
3588
3589	ret = fprintf(fp, "\n... id:    %" PRIu64 "\n", ev->id);
3590
3591	switch (ev->type) {
3592	case PERF_EVENT_UPDATE__SCALE:
3593		ev_scale = (struct event_update_event_scale *) ev->data;
3594		ret += fprintf(fp, "... scale: %f\n", ev_scale->scale);
3595		break;
3596	case PERF_EVENT_UPDATE__UNIT:
3597		ret += fprintf(fp, "... unit:  %s\n", ev->data);
3598		break;
3599	case PERF_EVENT_UPDATE__NAME:
3600		ret += fprintf(fp, "... name:  %s\n", ev->data);
3601		break;
3602	case PERF_EVENT_UPDATE__CPUS:
3603		ev_cpus = (struct event_update_event_cpus *) ev->data;
3604		ret += fprintf(fp, "... ");
3605
3606		map = cpu_map__new_data(&ev_cpus->cpus);
3607		if (map)
3608			ret += cpu_map__fprintf(map, fp);
3609		else
3610			ret += fprintf(fp, "failed to get cpus\n");
3611		break;
3612	default:
3613		ret += fprintf(fp, "... unknown type\n");
3614		break;
3615	}
3616
3617	return ret;
3618}
3619
3620int perf_event__synthesize_attrs(struct perf_tool *tool,
3621				   struct perf_session *session,
3622				   perf_event__handler_t process)
3623{
3624	struct perf_evsel *evsel;
3625	int err = 0;
3626
3627	evlist__for_each_entry(session->evlist, evsel) {
3628		err = perf_event__synthesize_attr(tool, &evsel->attr, evsel->ids,
3629						  evsel->id, process);
3630		if (err) {
3631			pr_debug("failed to create perf header attribute\n");
3632			return err;
3633		}
3634	}
3635
3636	return err;
3637}
3638
3639static bool has_unit(struct perf_evsel *counter)
3640{
3641	return counter->unit && *counter->unit;
3642}
3643
3644static bool has_scale(struct perf_evsel *counter)
3645{
3646	return counter->scale != 1;
3647}
3648
3649int perf_event__synthesize_extra_attr(struct perf_tool *tool,
3650				      struct perf_evlist *evsel_list,
3651				      perf_event__handler_t process,
3652				      bool is_pipe)
3653{
3654	struct perf_evsel *counter;
3655	int err;
3656
3657	/*
3658	 * Synthesize other events stuff not carried within
3659	 * attr event - unit, scale, name
3660	 */
3661	evlist__for_each_entry(evsel_list, counter) {
3662		if (!counter->supported)
3663			continue;
3664
3665		/*
3666		 * Synthesize unit and scale only if it's defined.
3667		 */
3668		if (has_unit(counter)) {
3669			err = perf_event__synthesize_event_update_unit(tool, counter, process);
3670			if (err < 0) {
3671				pr_err("Couldn't synthesize evsel unit.\n");
3672				return err;
3673			}
3674		}
3675
3676		if (has_scale(counter)) {
3677			err = perf_event__synthesize_event_update_scale(tool, counter, process);
3678			if (err < 0) {
3679				pr_err("Couldn't synthesize evsel counter.\n");
3680				return err;
3681			}
3682		}
3683
3684		if (counter->own_cpus) {
3685			err = perf_event__synthesize_event_update_cpus(tool, counter, process);
3686			if (err < 0) {
3687				pr_err("Couldn't synthesize evsel cpus.\n");
3688				return err;
3689			}
3690		}
3691
3692		/*
3693		 * Name is needed only for pipe output,
3694		 * perf.data carries event names.
3695		 */
3696		if (is_pipe) {
3697			err = perf_event__synthesize_event_update_name(tool, counter, process);
3698			if (err < 0) {
3699				pr_err("Couldn't synthesize evsel name.\n");
3700				return err;
3701			}
3702		}
3703	}
3704	return 0;
3705}
3706
3707int perf_event__process_attr(struct perf_tool *tool __maybe_unused,
3708			     union perf_event *event,
3709			     struct perf_evlist **pevlist)
3710{
3711	u32 i, ids, n_ids;
3712	struct perf_evsel *evsel;
3713	struct perf_evlist *evlist = *pevlist;
3714
3715	if (evlist == NULL) {
3716		*pevlist = evlist = perf_evlist__new();
3717		if (evlist == NULL)
3718			return -ENOMEM;
3719	}
3720
3721	evsel = perf_evsel__new(&event->attr.attr);
3722	if (evsel == NULL)
3723		return -ENOMEM;
3724
3725	perf_evlist__add(evlist, evsel);
3726
3727	ids = event->header.size;
3728	ids -= (void *)&event->attr.id - (void *)event;
3729	n_ids = ids / sizeof(u64);
3730	/*
3731	 * We don't have the cpu and thread maps on the header, so
3732	 * for allocating the perf_sample_id table we fake 1 cpu and
3733	 * hattr->ids threads.
3734	 */
3735	if (perf_evsel__alloc_id(evsel, 1, n_ids))
3736		return -ENOMEM;
3737
3738	for (i = 0; i < n_ids; i++) {
3739		perf_evlist__id_add(evlist, evsel, 0, i, event->attr.id[i]);
3740	}
3741
3742	symbol_conf.nr_events = evlist->nr_entries;
3743
3744	return 0;
3745}
3746
3747int perf_event__process_event_update(struct perf_tool *tool __maybe_unused,
3748				     union perf_event *event,
3749				     struct perf_evlist **pevlist)
3750{
3751	struct event_update_event *ev = &event->event_update;
3752	struct event_update_event_scale *ev_scale;
3753	struct event_update_event_cpus *ev_cpus;
3754	struct perf_evlist *evlist;
3755	struct perf_evsel *evsel;
3756	struct cpu_map *map;
3757
3758	if (!pevlist || *pevlist == NULL)
3759		return -EINVAL;
3760
3761	evlist = *pevlist;
3762
3763	evsel = perf_evlist__id2evsel(evlist, ev->id);
3764	if (evsel == NULL)
3765		return -EINVAL;
3766
3767	switch (ev->type) {
3768	case PERF_EVENT_UPDATE__UNIT:
3769		evsel->unit = strdup(ev->data);
3770		break;
3771	case PERF_EVENT_UPDATE__NAME:
3772		evsel->name = strdup(ev->data);
3773		break;
3774	case PERF_EVENT_UPDATE__SCALE:
3775		ev_scale = (struct event_update_event_scale *) ev->data;
3776		evsel->scale = ev_scale->scale;
3777		break;
3778	case PERF_EVENT_UPDATE__CPUS:
3779		ev_cpus = (struct event_update_event_cpus *) ev->data;
3780
3781		map = cpu_map__new_data(&ev_cpus->cpus);
3782		if (map)
3783			evsel->own_cpus = map;
3784		else
3785			pr_err("failed to get event_update cpus\n");
3786	default:
3787		break;
3788	}
3789
3790	return 0;
3791}
3792
3793int perf_event__synthesize_tracing_data(struct perf_tool *tool, int fd,
3794					struct perf_evlist *evlist,
3795					perf_event__handler_t process)
3796{
3797	union perf_event ev;
3798	struct tracing_data *tdata;
3799	ssize_t size = 0, aligned_size = 0, padding;
3800	struct feat_fd ff;
3801	int err __maybe_unused = 0;
3802
3803	/*
3804	 * We are going to store the size of the data followed
3805	 * by the data contents. Since the fd descriptor is a pipe,
3806	 * we cannot seek back to store the size of the data once
3807	 * we know it. Instead we:
3808	 *
3809	 * - write the tracing data to the temp file
3810	 * - get/write the data size to pipe
3811	 * - write the tracing data from the temp file
3812	 *   to the pipe
3813	 */
3814	tdata = tracing_data_get(&evlist->entries, fd, true);
3815	if (!tdata)
3816		return -1;
3817
3818	memset(&ev, 0, sizeof(ev));
3819
3820	ev.tracing_data.header.type = PERF_RECORD_HEADER_TRACING_DATA;
3821	size = tdata->size;
3822	aligned_size = PERF_ALIGN(size, sizeof(u64));
3823	padding = aligned_size - size;
3824	ev.tracing_data.header.size = sizeof(ev.tracing_data);
3825	ev.tracing_data.size = aligned_size;
3826
3827	process(tool, &ev, NULL, NULL);
3828
3829	/*
3830	 * The put function will copy all the tracing data
3831	 * stored in temp file to the pipe.
3832	 */
3833	tracing_data_put(tdata);
3834
3835	ff = (struct feat_fd){ .fd = fd };
3836	if (write_padded(&ff, NULL, 0, padding))
3837		return -1;
3838
3839	return aligned_size;
3840}
3841
3842int perf_event__process_tracing_data(struct perf_tool *tool __maybe_unused,
3843				     union perf_event *event,
3844				     struct perf_session *session)
3845{
3846	ssize_t size_read, padding, size = event->tracing_data.size;
3847	int fd = perf_data__fd(session->data);
3848	off_t offset = lseek(fd, 0, SEEK_CUR);
3849	char buf[BUFSIZ];
3850
3851	/* setup for reading amidst mmap */
3852	lseek(fd, offset + sizeof(struct tracing_data_event),
3853	      SEEK_SET);
 
 
 
 
 
 
 
 
 
 
 
3854
3855	size_read = trace_report(fd, &session->tevent,
3856				 session->repipe);
3857	padding = PERF_ALIGN(size_read, sizeof(u64)) - size_read;
3858
3859	if (readn(fd, buf, padding) < 0) {
3860		pr_err("%s: reading input file", __func__);
3861		return -1;
3862	}
3863	if (session->repipe) {
3864		int retw = write(STDOUT_FILENO, buf, padding);
3865		if (retw <= 0 || retw != padding) {
3866			pr_err("%s: repiping tracing data padding", __func__);
3867			return -1;
3868		}
3869	}
3870
3871	if (size_read + padding != size) {
3872		pr_err("%s: tracing data size mismatch", __func__);
3873		return -1;
3874	}
3875
3876	perf_evlist__prepare_tracepoint_events(session->evlist,
3877					       session->tevent.pevent);
3878
3879	return size_read + padding;
3880}
3881
3882int perf_event__synthesize_build_id(struct perf_tool *tool,
3883				    struct dso *pos, u16 misc,
3884				    perf_event__handler_t process,
3885				    struct machine *machine)
3886{
3887	union perf_event ev;
3888	size_t len;
3889	int err = 0;
3890
3891	if (!pos->hit)
3892		return err;
3893
3894	memset(&ev, 0, sizeof(ev));
3895
3896	len = pos->long_name_len + 1;
3897	len = PERF_ALIGN(len, NAME_ALIGN);
3898	memcpy(&ev.build_id.build_id, pos->build_id, sizeof(pos->build_id));
3899	ev.build_id.header.type = PERF_RECORD_HEADER_BUILD_ID;
3900	ev.build_id.header.misc = misc;
3901	ev.build_id.pid = machine->pid;
3902	ev.build_id.header.size = sizeof(ev.build_id) + len;
3903	memcpy(&ev.build_id.filename, pos->long_name, pos->long_name_len);
3904
3905	err = process(tool, &ev, NULL, machine);
3906
3907	return err;
3908}
3909
3910int perf_event__process_build_id(struct perf_tool *tool __maybe_unused,
3911				 union perf_event *event,
3912				 struct perf_session *session)
3913{
3914	__event_process_build_id(&event->build_id,
3915				 event->build_id.filename,
3916				 session);
3917	return 0;
3918}