Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2010 IBM Corporation
   4 * Copyright (C) 2010 Politecnico di Torino, Italy
   5 *                    TORSEC group -- https://security.polito.it
   6 *
   7 * Authors:
   8 * Mimi Zohar <zohar@us.ibm.com>
   9 * Roberto Sassu <roberto.sassu@polito.it>
  10 *
 
 
 
 
  11 * See Documentation/security/keys/trusted-encrypted.rst
  12 */
  13
  14#include <linux/uaccess.h>
  15#include <linux/module.h>
  16#include <linux/init.h>
  17#include <linux/slab.h>
  18#include <linux/parser.h>
  19#include <linux/string.h>
  20#include <linux/err.h>
  21#include <keys/user-type.h>
  22#include <keys/trusted-type.h>
  23#include <keys/encrypted-type.h>
  24#include <linux/key-type.h>
  25#include <linux/random.h>
  26#include <linux/rcupdate.h>
  27#include <linux/scatterlist.h>
  28#include <linux/ctype.h>
  29#include <crypto/aes.h>
  30#include <crypto/algapi.h>
  31#include <crypto/hash.h>
  32#include <crypto/sha.h>
  33#include <crypto/skcipher.h>
  34
  35#include "encrypted.h"
  36#include "ecryptfs_format.h"
  37
  38static const char KEY_TRUSTED_PREFIX[] = "trusted:";
  39static const char KEY_USER_PREFIX[] = "user:";
  40static const char hash_alg[] = "sha256";
  41static const char hmac_alg[] = "hmac(sha256)";
  42static const char blkcipher_alg[] = "cbc(aes)";
  43static const char key_format_default[] = "default";
  44static const char key_format_ecryptfs[] = "ecryptfs";
  45static const char key_format_enc32[] = "enc32";
  46static unsigned int ivsize;
  47static int blksize;
  48
  49#define KEY_TRUSTED_PREFIX_LEN (sizeof (KEY_TRUSTED_PREFIX) - 1)
  50#define KEY_USER_PREFIX_LEN (sizeof (KEY_USER_PREFIX) - 1)
  51#define KEY_ECRYPTFS_DESC_LEN 16
  52#define HASH_SIZE SHA256_DIGEST_SIZE
  53#define MAX_DATA_SIZE 4096
  54#define MIN_DATA_SIZE  20
  55#define KEY_ENC32_PAYLOAD_LEN 32
  56
  57static struct crypto_shash *hash_tfm;
  58
  59enum {
  60	Opt_new, Opt_load, Opt_update, Opt_err
  61};
  62
  63enum {
  64	Opt_default, Opt_ecryptfs, Opt_enc32, Opt_error
  65};
  66
  67static const match_table_t key_format_tokens = {
  68	{Opt_default, "default"},
  69	{Opt_ecryptfs, "ecryptfs"},
  70	{Opt_enc32, "enc32"},
  71	{Opt_error, NULL}
  72};
  73
  74static const match_table_t key_tokens = {
  75	{Opt_new, "new"},
  76	{Opt_load, "load"},
  77	{Opt_update, "update"},
  78	{Opt_err, NULL}
  79};
  80
  81static int aes_get_sizes(void)
  82{
  83	struct crypto_skcipher *tfm;
  84
  85	tfm = crypto_alloc_skcipher(blkcipher_alg, 0, CRYPTO_ALG_ASYNC);
  86	if (IS_ERR(tfm)) {
  87		pr_err("encrypted_key: failed to alloc_cipher (%ld)\n",
  88		       PTR_ERR(tfm));
  89		return PTR_ERR(tfm);
  90	}
  91	ivsize = crypto_skcipher_ivsize(tfm);
  92	blksize = crypto_skcipher_blocksize(tfm);
  93	crypto_free_skcipher(tfm);
  94	return 0;
  95}
  96
  97/*
  98 * valid_ecryptfs_desc - verify the description of a new/loaded encrypted key
  99 *
 100 * The description of a encrypted key with format 'ecryptfs' must contain
 101 * exactly 16 hexadecimal characters.
 102 *
 103 */
 104static int valid_ecryptfs_desc(const char *ecryptfs_desc)
 105{
 106	int i;
 107
 108	if (strlen(ecryptfs_desc) != KEY_ECRYPTFS_DESC_LEN) {
 109		pr_err("encrypted_key: key description must be %d hexadecimal "
 110		       "characters long\n", KEY_ECRYPTFS_DESC_LEN);
 111		return -EINVAL;
 112	}
 113
 114	for (i = 0; i < KEY_ECRYPTFS_DESC_LEN; i++) {
 115		if (!isxdigit(ecryptfs_desc[i])) {
 116			pr_err("encrypted_key: key description must contain "
 117			       "only hexadecimal characters\n");
 118			return -EINVAL;
 119		}
 120	}
 121
 122	return 0;
 123}
 124
 125/*
 126 * valid_master_desc - verify the 'key-type:desc' of a new/updated master-key
 127 *
 128 * key-type:= "trusted:" | "user:"
 129 * desc:= master-key description
 130 *
 131 * Verify that 'key-type' is valid and that 'desc' exists. On key update,
 132 * only the master key description is permitted to change, not the key-type.
 133 * The key-type remains constant.
 134 *
 135 * On success returns 0, otherwise -EINVAL.
 136 */
 137static int valid_master_desc(const char *new_desc, const char *orig_desc)
 138{
 139	int prefix_len;
 140
 141	if (!strncmp(new_desc, KEY_TRUSTED_PREFIX, KEY_TRUSTED_PREFIX_LEN))
 142		prefix_len = KEY_TRUSTED_PREFIX_LEN;
 143	else if (!strncmp(new_desc, KEY_USER_PREFIX, KEY_USER_PREFIX_LEN))
 144		prefix_len = KEY_USER_PREFIX_LEN;
 145	else
 146		return -EINVAL;
 147
 148	if (!new_desc[prefix_len])
 149		return -EINVAL;
 150
 151	if (orig_desc && strncmp(new_desc, orig_desc, prefix_len))
 152		return -EINVAL;
 153
 154	return 0;
 155}
 156
 157/*
 158 * datablob_parse - parse the keyctl data
 159 *
 160 * datablob format:
 161 * new [<format>] <master-key name> <decrypted data length>
 162 * load [<format>] <master-key name> <decrypted data length>
 163 *     <encrypted iv + data>
 164 * update <new-master-key name>
 165 *
 166 * Tokenizes a copy of the keyctl data, returning a pointer to each token,
 167 * which is null terminated.
 168 *
 169 * On success returns 0, otherwise -EINVAL.
 170 */
 171static int datablob_parse(char *datablob, const char **format,
 172			  char **master_desc, char **decrypted_datalen,
 173			  char **hex_encoded_iv)
 174{
 175	substring_t args[MAX_OPT_ARGS];
 176	int ret = -EINVAL;
 177	int key_cmd;
 178	int key_format;
 179	char *p, *keyword;
 180
 181	keyword = strsep(&datablob, " \t");
 182	if (!keyword) {
 183		pr_info("encrypted_key: insufficient parameters specified\n");
 184		return ret;
 185	}
 186	key_cmd = match_token(keyword, key_tokens, args);
 187
 188	/* Get optional format: default | ecryptfs */
 189	p = strsep(&datablob, " \t");
 190	if (!p) {
 191		pr_err("encrypted_key: insufficient parameters specified\n");
 192		return ret;
 193	}
 194
 195	key_format = match_token(p, key_format_tokens, args);
 196	switch (key_format) {
 197	case Opt_ecryptfs:
 198	case Opt_enc32:
 199	case Opt_default:
 200		*format = p;
 201		*master_desc = strsep(&datablob, " \t");
 202		break;
 203	case Opt_error:
 204		*master_desc = p;
 205		break;
 206	}
 207
 208	if (!*master_desc) {
 209		pr_info("encrypted_key: master key parameter is missing\n");
 210		goto out;
 211	}
 212
 213	if (valid_master_desc(*master_desc, NULL) < 0) {
 214		pr_info("encrypted_key: master key parameter \'%s\' "
 215			"is invalid\n", *master_desc);
 216		goto out;
 217	}
 218
 219	if (decrypted_datalen) {
 220		*decrypted_datalen = strsep(&datablob, " \t");
 221		if (!*decrypted_datalen) {
 222			pr_info("encrypted_key: keylen parameter is missing\n");
 223			goto out;
 224		}
 225	}
 226
 227	switch (key_cmd) {
 228	case Opt_new:
 229		if (!decrypted_datalen) {
 230			pr_info("encrypted_key: keyword \'%s\' not allowed "
 231				"when called from .update method\n", keyword);
 232			break;
 233		}
 234		ret = 0;
 235		break;
 236	case Opt_load:
 237		if (!decrypted_datalen) {
 238			pr_info("encrypted_key: keyword \'%s\' not allowed "
 239				"when called from .update method\n", keyword);
 240			break;
 241		}
 242		*hex_encoded_iv = strsep(&datablob, " \t");
 243		if (!*hex_encoded_iv) {
 244			pr_info("encrypted_key: hex blob is missing\n");
 245			break;
 246		}
 247		ret = 0;
 248		break;
 249	case Opt_update:
 250		if (decrypted_datalen) {
 251			pr_info("encrypted_key: keyword \'%s\' not allowed "
 252				"when called from .instantiate method\n",
 253				keyword);
 254			break;
 255		}
 256		ret = 0;
 257		break;
 258	case Opt_err:
 259		pr_info("encrypted_key: keyword \'%s\' not recognized\n",
 260			keyword);
 261		break;
 262	}
 263out:
 264	return ret;
 265}
 266
 267/*
 268 * datablob_format - format as an ascii string, before copying to userspace
 269 */
 270static char *datablob_format(struct encrypted_key_payload *epayload,
 271			     size_t asciiblob_len)
 272{
 273	char *ascii_buf, *bufp;
 274	u8 *iv = epayload->iv;
 275	int len;
 276	int i;
 277
 278	ascii_buf = kmalloc(asciiblob_len + 1, GFP_KERNEL);
 279	if (!ascii_buf)
 280		goto out;
 281
 282	ascii_buf[asciiblob_len] = '\0';
 283
 284	/* copy datablob master_desc and datalen strings */
 285	len = sprintf(ascii_buf, "%s %s %s ", epayload->format,
 286		      epayload->master_desc, epayload->datalen);
 287
 288	/* convert the hex encoded iv, encrypted-data and HMAC to ascii */
 289	bufp = &ascii_buf[len];
 290	for (i = 0; i < (asciiblob_len - len) / 2; i++)
 291		bufp = hex_byte_pack(bufp, iv[i]);
 292out:
 293	return ascii_buf;
 294}
 295
 296/*
 297 * request_user_key - request the user key
 298 *
 299 * Use a user provided key to encrypt/decrypt an encrypted-key.
 300 */
 301static struct key *request_user_key(const char *master_desc, const u8 **master_key,
 302				    size_t *master_keylen)
 303{
 304	const struct user_key_payload *upayload;
 305	struct key *ukey;
 306
 307	ukey = request_key(&key_type_user, master_desc, NULL);
 308	if (IS_ERR(ukey))
 309		goto error;
 310
 311	down_read(&ukey->sem);
 312	upayload = user_key_payload_locked(ukey);
 313	if (!upayload) {
 314		/* key was revoked before we acquired its semaphore */
 315		up_read(&ukey->sem);
 316		key_put(ukey);
 317		ukey = ERR_PTR(-EKEYREVOKED);
 318		goto error;
 319	}
 320	*master_key = upayload->data;
 321	*master_keylen = upayload->datalen;
 322error:
 323	return ukey;
 324}
 325
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 326static int calc_hmac(u8 *digest, const u8 *key, unsigned int keylen,
 327		     const u8 *buf, unsigned int buflen)
 328{
 329	struct crypto_shash *tfm;
 330	int err;
 331
 332	tfm = crypto_alloc_shash(hmac_alg, 0, 0);
 333	if (IS_ERR(tfm)) {
 334		pr_err("encrypted_key: can't alloc %s transform: %ld\n",
 335		       hmac_alg, PTR_ERR(tfm));
 336		return PTR_ERR(tfm);
 337	}
 338
 339	err = crypto_shash_setkey(tfm, key, keylen);
 340	if (!err)
 341		err = crypto_shash_tfm_digest(tfm, buf, buflen, digest);
 342	crypto_free_shash(tfm);
 343	return err;
 344}
 345
 346enum derived_key_type { ENC_KEY, AUTH_KEY };
 347
 348/* Derive authentication/encryption key from trusted key */
 349static int get_derived_key(u8 *derived_key, enum derived_key_type key_type,
 350			   const u8 *master_key, size_t master_keylen)
 351{
 352	u8 *derived_buf;
 353	unsigned int derived_buf_len;
 354	int ret;
 355
 356	derived_buf_len = strlen("AUTH_KEY") + 1 + master_keylen;
 357	if (derived_buf_len < HASH_SIZE)
 358		derived_buf_len = HASH_SIZE;
 359
 360	derived_buf = kzalloc(derived_buf_len, GFP_KERNEL);
 361	if (!derived_buf)
 362		return -ENOMEM;
 363
 364	if (key_type)
 365		strcpy(derived_buf, "AUTH_KEY");
 366	else
 367		strcpy(derived_buf, "ENC_KEY");
 368
 369	memcpy(derived_buf + strlen(derived_buf) + 1, master_key,
 370	       master_keylen);
 371	ret = crypto_shash_tfm_digest(hash_tfm, derived_buf, derived_buf_len,
 372				      derived_key);
 373	kfree_sensitive(derived_buf);
 374	return ret;
 375}
 376
 377static struct skcipher_request *init_skcipher_req(const u8 *key,
 378						  unsigned int key_len)
 379{
 380	struct skcipher_request *req;
 381	struct crypto_skcipher *tfm;
 382	int ret;
 383
 384	tfm = crypto_alloc_skcipher(blkcipher_alg, 0, CRYPTO_ALG_ASYNC);
 385	if (IS_ERR(tfm)) {
 386		pr_err("encrypted_key: failed to load %s transform (%ld)\n",
 387		       blkcipher_alg, PTR_ERR(tfm));
 388		return ERR_CAST(tfm);
 389	}
 390
 391	ret = crypto_skcipher_setkey(tfm, key, key_len);
 392	if (ret < 0) {
 393		pr_err("encrypted_key: failed to setkey (%d)\n", ret);
 394		crypto_free_skcipher(tfm);
 395		return ERR_PTR(ret);
 396	}
 397
 398	req = skcipher_request_alloc(tfm, GFP_KERNEL);
 399	if (!req) {
 400		pr_err("encrypted_key: failed to allocate request for %s\n",
 401		       blkcipher_alg);
 402		crypto_free_skcipher(tfm);
 403		return ERR_PTR(-ENOMEM);
 404	}
 405
 406	skcipher_request_set_callback(req, 0, NULL, NULL);
 407	return req;
 408}
 409
 410static struct key *request_master_key(struct encrypted_key_payload *epayload,
 411				      const u8 **master_key, size_t *master_keylen)
 412{
 413	struct key *mkey = ERR_PTR(-EINVAL);
 414
 415	if (!strncmp(epayload->master_desc, KEY_TRUSTED_PREFIX,
 416		     KEY_TRUSTED_PREFIX_LEN)) {
 417		mkey = request_trusted_key(epayload->master_desc +
 418					   KEY_TRUSTED_PREFIX_LEN,
 419					   master_key, master_keylen);
 420	} else if (!strncmp(epayload->master_desc, KEY_USER_PREFIX,
 421			    KEY_USER_PREFIX_LEN)) {
 422		mkey = request_user_key(epayload->master_desc +
 423					KEY_USER_PREFIX_LEN,
 424					master_key, master_keylen);
 425	} else
 426		goto out;
 427
 428	if (IS_ERR(mkey)) {
 429		int ret = PTR_ERR(mkey);
 430
 431		if (ret == -ENOTSUPP)
 432			pr_info("encrypted_key: key %s not supported",
 433				epayload->master_desc);
 434		else
 435			pr_info("encrypted_key: key %s not found",
 436				epayload->master_desc);
 437		goto out;
 438	}
 439
 440	dump_master_key(*master_key, *master_keylen);
 441out:
 442	return mkey;
 443}
 444
 445/* Before returning data to userspace, encrypt decrypted data. */
 446static int derived_key_encrypt(struct encrypted_key_payload *epayload,
 447			       const u8 *derived_key,
 448			       unsigned int derived_keylen)
 449{
 450	struct scatterlist sg_in[2];
 451	struct scatterlist sg_out[1];
 452	struct crypto_skcipher *tfm;
 453	struct skcipher_request *req;
 454	unsigned int encrypted_datalen;
 455	u8 iv[AES_BLOCK_SIZE];
 456	int ret;
 457
 458	encrypted_datalen = roundup(epayload->decrypted_datalen, blksize);
 459
 460	req = init_skcipher_req(derived_key, derived_keylen);
 461	ret = PTR_ERR(req);
 462	if (IS_ERR(req))
 463		goto out;
 464	dump_decrypted_data(epayload);
 465
 466	sg_init_table(sg_in, 2);
 467	sg_set_buf(&sg_in[0], epayload->decrypted_data,
 468		   epayload->decrypted_datalen);
 469	sg_set_page(&sg_in[1], ZERO_PAGE(0), AES_BLOCK_SIZE, 0);
 470
 471	sg_init_table(sg_out, 1);
 472	sg_set_buf(sg_out, epayload->encrypted_data, encrypted_datalen);
 473
 474	memcpy(iv, epayload->iv, sizeof(iv));
 475	skcipher_request_set_crypt(req, sg_in, sg_out, encrypted_datalen, iv);
 476	ret = crypto_skcipher_encrypt(req);
 477	tfm = crypto_skcipher_reqtfm(req);
 478	skcipher_request_free(req);
 479	crypto_free_skcipher(tfm);
 480	if (ret < 0)
 481		pr_err("encrypted_key: failed to encrypt (%d)\n", ret);
 482	else
 483		dump_encrypted_data(epayload, encrypted_datalen);
 484out:
 485	return ret;
 486}
 487
 488static int datablob_hmac_append(struct encrypted_key_payload *epayload,
 489				const u8 *master_key, size_t master_keylen)
 490{
 491	u8 derived_key[HASH_SIZE];
 492	u8 *digest;
 493	int ret;
 494
 495	ret = get_derived_key(derived_key, AUTH_KEY, master_key, master_keylen);
 496	if (ret < 0)
 497		goto out;
 498
 499	digest = epayload->format + epayload->datablob_len;
 500	ret = calc_hmac(digest, derived_key, sizeof derived_key,
 501			epayload->format, epayload->datablob_len);
 502	if (!ret)
 503		dump_hmac(NULL, digest, HASH_SIZE);
 504out:
 505	memzero_explicit(derived_key, sizeof(derived_key));
 506	return ret;
 507}
 508
 509/* verify HMAC before decrypting encrypted key */
 510static int datablob_hmac_verify(struct encrypted_key_payload *epayload,
 511				const u8 *format, const u8 *master_key,
 512				size_t master_keylen)
 513{
 514	u8 derived_key[HASH_SIZE];
 515	u8 digest[HASH_SIZE];
 516	int ret;
 517	char *p;
 518	unsigned short len;
 519
 520	ret = get_derived_key(derived_key, AUTH_KEY, master_key, master_keylen);
 521	if (ret < 0)
 522		goto out;
 523
 524	len = epayload->datablob_len;
 525	if (!format) {
 526		p = epayload->master_desc;
 527		len -= strlen(epayload->format) + 1;
 528	} else
 529		p = epayload->format;
 530
 531	ret = calc_hmac(digest, derived_key, sizeof derived_key, p, len);
 532	if (ret < 0)
 533		goto out;
 534	ret = crypto_memneq(digest, epayload->format + epayload->datablob_len,
 535			    sizeof(digest));
 536	if (ret) {
 537		ret = -EINVAL;
 538		dump_hmac("datablob",
 539			  epayload->format + epayload->datablob_len,
 540			  HASH_SIZE);
 541		dump_hmac("calc", digest, HASH_SIZE);
 542	}
 543out:
 544	memzero_explicit(derived_key, sizeof(derived_key));
 545	return ret;
 546}
 547
 548static int derived_key_decrypt(struct encrypted_key_payload *epayload,
 549			       const u8 *derived_key,
 550			       unsigned int derived_keylen)
 551{
 552	struct scatterlist sg_in[1];
 553	struct scatterlist sg_out[2];
 554	struct crypto_skcipher *tfm;
 555	struct skcipher_request *req;
 556	unsigned int encrypted_datalen;
 557	u8 iv[AES_BLOCK_SIZE];
 558	u8 *pad;
 559	int ret;
 560
 561	/* Throwaway buffer to hold the unused zero padding at the end */
 562	pad = kmalloc(AES_BLOCK_SIZE, GFP_KERNEL);
 563	if (!pad)
 564		return -ENOMEM;
 565
 566	encrypted_datalen = roundup(epayload->decrypted_datalen, blksize);
 567	req = init_skcipher_req(derived_key, derived_keylen);
 568	ret = PTR_ERR(req);
 569	if (IS_ERR(req))
 570		goto out;
 571	dump_encrypted_data(epayload, encrypted_datalen);
 572
 573	sg_init_table(sg_in, 1);
 574	sg_init_table(sg_out, 2);
 575	sg_set_buf(sg_in, epayload->encrypted_data, encrypted_datalen);
 576	sg_set_buf(&sg_out[0], epayload->decrypted_data,
 577		   epayload->decrypted_datalen);
 578	sg_set_buf(&sg_out[1], pad, AES_BLOCK_SIZE);
 579
 580	memcpy(iv, epayload->iv, sizeof(iv));
 581	skcipher_request_set_crypt(req, sg_in, sg_out, encrypted_datalen, iv);
 582	ret = crypto_skcipher_decrypt(req);
 583	tfm = crypto_skcipher_reqtfm(req);
 584	skcipher_request_free(req);
 585	crypto_free_skcipher(tfm);
 586	if (ret < 0)
 587		goto out;
 588	dump_decrypted_data(epayload);
 589out:
 590	kfree(pad);
 591	return ret;
 592}
 593
 594/* Allocate memory for decrypted key and datablob. */
 595static struct encrypted_key_payload *encrypted_key_alloc(struct key *key,
 596							 const char *format,
 597							 const char *master_desc,
 598							 const char *datalen)
 599{
 600	struct encrypted_key_payload *epayload = NULL;
 601	unsigned short datablob_len;
 602	unsigned short decrypted_datalen;
 603	unsigned short payload_datalen;
 604	unsigned int encrypted_datalen;
 605	unsigned int format_len;
 606	long dlen;
 607	int ret;
 608
 609	ret = kstrtol(datalen, 10, &dlen);
 610	if (ret < 0 || dlen < MIN_DATA_SIZE || dlen > MAX_DATA_SIZE)
 611		return ERR_PTR(-EINVAL);
 612
 613	format_len = (!format) ? strlen(key_format_default) : strlen(format);
 614	decrypted_datalen = dlen;
 615	payload_datalen = decrypted_datalen;
 616	if (format) {
 617		if (!strcmp(format, key_format_ecryptfs)) {
 618			if (dlen != ECRYPTFS_MAX_KEY_BYTES) {
 619				pr_err("encrypted_key: keylen for the ecryptfs format must be equal to %d bytes\n",
 620					ECRYPTFS_MAX_KEY_BYTES);
 621				return ERR_PTR(-EINVAL);
 622			}
 623			decrypted_datalen = ECRYPTFS_MAX_KEY_BYTES;
 624			payload_datalen = sizeof(struct ecryptfs_auth_tok);
 625		} else if (!strcmp(format, key_format_enc32)) {
 626			if (decrypted_datalen != KEY_ENC32_PAYLOAD_LEN) {
 627				pr_err("encrypted_key: enc32 key payload incorrect length: %d\n",
 628						decrypted_datalen);
 629				return ERR_PTR(-EINVAL);
 630			}
 631		}
 
 
 632	}
 633
 634	encrypted_datalen = roundup(decrypted_datalen, blksize);
 635
 636	datablob_len = format_len + 1 + strlen(master_desc) + 1
 637	    + strlen(datalen) + 1 + ivsize + 1 + encrypted_datalen;
 638
 639	ret = key_payload_reserve(key, payload_datalen + datablob_len
 640				  + HASH_SIZE + 1);
 641	if (ret < 0)
 642		return ERR_PTR(ret);
 643
 644	epayload = kzalloc(sizeof(*epayload) + payload_datalen +
 645			   datablob_len + HASH_SIZE + 1, GFP_KERNEL);
 646	if (!epayload)
 647		return ERR_PTR(-ENOMEM);
 648
 649	epayload->payload_datalen = payload_datalen;
 650	epayload->decrypted_datalen = decrypted_datalen;
 651	epayload->datablob_len = datablob_len;
 652	return epayload;
 653}
 654
 655static int encrypted_key_decrypt(struct encrypted_key_payload *epayload,
 656				 const char *format, const char *hex_encoded_iv)
 657{
 658	struct key *mkey;
 659	u8 derived_key[HASH_SIZE];
 660	const u8 *master_key;
 661	u8 *hmac;
 662	const char *hex_encoded_data;
 663	unsigned int encrypted_datalen;
 664	size_t master_keylen;
 665	size_t asciilen;
 666	int ret;
 667
 668	encrypted_datalen = roundup(epayload->decrypted_datalen, blksize);
 669	asciilen = (ivsize + 1 + encrypted_datalen + HASH_SIZE) * 2;
 670	if (strlen(hex_encoded_iv) != asciilen)
 671		return -EINVAL;
 672
 673	hex_encoded_data = hex_encoded_iv + (2 * ivsize) + 2;
 674	ret = hex2bin(epayload->iv, hex_encoded_iv, ivsize);
 675	if (ret < 0)
 676		return -EINVAL;
 677	ret = hex2bin(epayload->encrypted_data, hex_encoded_data,
 678		      encrypted_datalen);
 679	if (ret < 0)
 680		return -EINVAL;
 681
 682	hmac = epayload->format + epayload->datablob_len;
 683	ret = hex2bin(hmac, hex_encoded_data + (encrypted_datalen * 2),
 684		      HASH_SIZE);
 685	if (ret < 0)
 686		return -EINVAL;
 687
 688	mkey = request_master_key(epayload, &master_key, &master_keylen);
 689	if (IS_ERR(mkey))
 690		return PTR_ERR(mkey);
 691
 692	ret = datablob_hmac_verify(epayload, format, master_key, master_keylen);
 693	if (ret < 0) {
 694		pr_err("encrypted_key: bad hmac (%d)\n", ret);
 695		goto out;
 696	}
 697
 698	ret = get_derived_key(derived_key, ENC_KEY, master_key, master_keylen);
 699	if (ret < 0)
 700		goto out;
 701
 702	ret = derived_key_decrypt(epayload, derived_key, sizeof derived_key);
 703	if (ret < 0)
 704		pr_err("encrypted_key: failed to decrypt key (%d)\n", ret);
 705out:
 706	up_read(&mkey->sem);
 707	key_put(mkey);
 708	memzero_explicit(derived_key, sizeof(derived_key));
 709	return ret;
 710}
 711
 712static void __ekey_init(struct encrypted_key_payload *epayload,
 713			const char *format, const char *master_desc,
 714			const char *datalen)
 715{
 716	unsigned int format_len;
 717
 718	format_len = (!format) ? strlen(key_format_default) : strlen(format);
 719	epayload->format = epayload->payload_data + epayload->payload_datalen;
 720	epayload->master_desc = epayload->format + format_len + 1;
 721	epayload->datalen = epayload->master_desc + strlen(master_desc) + 1;
 722	epayload->iv = epayload->datalen + strlen(datalen) + 1;
 723	epayload->encrypted_data = epayload->iv + ivsize + 1;
 724	epayload->decrypted_data = epayload->payload_data;
 725
 726	if (!format)
 727		memcpy(epayload->format, key_format_default, format_len);
 728	else {
 729		if (!strcmp(format, key_format_ecryptfs))
 730			epayload->decrypted_data =
 731				ecryptfs_get_auth_tok_key((struct ecryptfs_auth_tok *)epayload->payload_data);
 732
 733		memcpy(epayload->format, format, format_len);
 734	}
 735
 736	memcpy(epayload->master_desc, master_desc, strlen(master_desc));
 737	memcpy(epayload->datalen, datalen, strlen(datalen));
 738}
 739
 740/*
 741 * encrypted_init - initialize an encrypted key
 742 *
 743 * For a new key, use a random number for both the iv and data
 744 * itself.  For an old key, decrypt the hex encoded data.
 745 */
 746static int encrypted_init(struct encrypted_key_payload *epayload,
 747			  const char *key_desc, const char *format,
 748			  const char *master_desc, const char *datalen,
 749			  const char *hex_encoded_iv)
 750{
 751	int ret = 0;
 752
 753	if (format && !strcmp(format, key_format_ecryptfs)) {
 754		ret = valid_ecryptfs_desc(key_desc);
 755		if (ret < 0)
 756			return ret;
 757
 758		ecryptfs_fill_auth_tok((struct ecryptfs_auth_tok *)epayload->payload_data,
 759				       key_desc);
 760	}
 761
 762	__ekey_init(epayload, format, master_desc, datalen);
 763	if (!hex_encoded_iv) {
 764		get_random_bytes(epayload->iv, ivsize);
 765
 766		get_random_bytes(epayload->decrypted_data,
 767				 epayload->decrypted_datalen);
 768	} else
 769		ret = encrypted_key_decrypt(epayload, format, hex_encoded_iv);
 770	return ret;
 771}
 772
 773/*
 774 * encrypted_instantiate - instantiate an encrypted key
 775 *
 776 * Decrypt an existing encrypted datablob or create a new encrypted key
 777 * based on a kernel random number.
 778 *
 779 * On success, return 0. Otherwise return errno.
 780 */
 781static int encrypted_instantiate(struct key *key,
 782				 struct key_preparsed_payload *prep)
 783{
 784	struct encrypted_key_payload *epayload = NULL;
 785	char *datablob = NULL;
 786	const char *format = NULL;
 787	char *master_desc = NULL;
 788	char *decrypted_datalen = NULL;
 789	char *hex_encoded_iv = NULL;
 790	size_t datalen = prep->datalen;
 791	int ret;
 792
 793	if (datalen <= 0 || datalen > 32767 || !prep->data)
 794		return -EINVAL;
 795
 796	datablob = kmalloc(datalen + 1, GFP_KERNEL);
 797	if (!datablob)
 798		return -ENOMEM;
 799	datablob[datalen] = 0;
 800	memcpy(datablob, prep->data, datalen);
 801	ret = datablob_parse(datablob, &format, &master_desc,
 802			     &decrypted_datalen, &hex_encoded_iv);
 803	if (ret < 0)
 804		goto out;
 805
 806	epayload = encrypted_key_alloc(key, format, master_desc,
 807				       decrypted_datalen);
 808	if (IS_ERR(epayload)) {
 809		ret = PTR_ERR(epayload);
 810		goto out;
 811	}
 812	ret = encrypted_init(epayload, key->description, format, master_desc,
 813			     decrypted_datalen, hex_encoded_iv);
 814	if (ret < 0) {
 815		kfree_sensitive(epayload);
 816		goto out;
 817	}
 818
 819	rcu_assign_keypointer(key, epayload);
 820out:
 821	kfree_sensitive(datablob);
 822	return ret;
 823}
 824
 825static void encrypted_rcu_free(struct rcu_head *rcu)
 826{
 827	struct encrypted_key_payload *epayload;
 828
 829	epayload = container_of(rcu, struct encrypted_key_payload, rcu);
 830	kfree_sensitive(epayload);
 831}
 832
 833/*
 834 * encrypted_update - update the master key description
 835 *
 836 * Change the master key description for an existing encrypted key.
 837 * The next read will return an encrypted datablob using the new
 838 * master key description.
 839 *
 840 * On success, return 0. Otherwise return errno.
 841 */
 842static int encrypted_update(struct key *key, struct key_preparsed_payload *prep)
 843{
 844	struct encrypted_key_payload *epayload = key->payload.data[0];
 845	struct encrypted_key_payload *new_epayload;
 846	char *buf;
 847	char *new_master_desc = NULL;
 848	const char *format = NULL;
 849	size_t datalen = prep->datalen;
 850	int ret = 0;
 851
 852	if (key_is_negative(key))
 853		return -ENOKEY;
 854	if (datalen <= 0 || datalen > 32767 || !prep->data)
 855		return -EINVAL;
 856
 857	buf = kmalloc(datalen + 1, GFP_KERNEL);
 858	if (!buf)
 859		return -ENOMEM;
 860
 861	buf[datalen] = 0;
 862	memcpy(buf, prep->data, datalen);
 863	ret = datablob_parse(buf, &format, &new_master_desc, NULL, NULL);
 864	if (ret < 0)
 865		goto out;
 866
 867	ret = valid_master_desc(new_master_desc, epayload->master_desc);
 868	if (ret < 0)
 869		goto out;
 870
 871	new_epayload = encrypted_key_alloc(key, epayload->format,
 872					   new_master_desc, epayload->datalen);
 873	if (IS_ERR(new_epayload)) {
 874		ret = PTR_ERR(new_epayload);
 875		goto out;
 876	}
 877
 878	__ekey_init(new_epayload, epayload->format, new_master_desc,
 879		    epayload->datalen);
 880
 881	memcpy(new_epayload->iv, epayload->iv, ivsize);
 882	memcpy(new_epayload->payload_data, epayload->payload_data,
 883	       epayload->payload_datalen);
 884
 885	rcu_assign_keypointer(key, new_epayload);
 886	call_rcu(&epayload->rcu, encrypted_rcu_free);
 887out:
 888	kfree_sensitive(buf);
 889	return ret;
 890}
 891
 892/*
 893 * encrypted_read - format and copy out the encrypted data
 894 *
 895 * The resulting datablob format is:
 896 * <master-key name> <decrypted data length> <encrypted iv> <encrypted data>
 897 *
 898 * On success, return to userspace the encrypted key datablob size.
 899 */
 900static long encrypted_read(const struct key *key, char *buffer,
 901			   size_t buflen)
 902{
 903	struct encrypted_key_payload *epayload;
 904	struct key *mkey;
 905	const u8 *master_key;
 906	size_t master_keylen;
 907	char derived_key[HASH_SIZE];
 908	char *ascii_buf;
 909	size_t asciiblob_len;
 910	int ret;
 911
 912	epayload = dereference_key_locked(key);
 913
 914	/* returns the hex encoded iv, encrypted-data, and hmac as ascii */
 915	asciiblob_len = epayload->datablob_len + ivsize + 1
 916	    + roundup(epayload->decrypted_datalen, blksize)
 917	    + (HASH_SIZE * 2);
 918
 919	if (!buffer || buflen < asciiblob_len)
 920		return asciiblob_len;
 921
 922	mkey = request_master_key(epayload, &master_key, &master_keylen);
 923	if (IS_ERR(mkey))
 924		return PTR_ERR(mkey);
 925
 926	ret = get_derived_key(derived_key, ENC_KEY, master_key, master_keylen);
 927	if (ret < 0)
 928		goto out;
 929
 930	ret = derived_key_encrypt(epayload, derived_key, sizeof derived_key);
 931	if (ret < 0)
 932		goto out;
 933
 934	ret = datablob_hmac_append(epayload, master_key, master_keylen);
 935	if (ret < 0)
 936		goto out;
 937
 938	ascii_buf = datablob_format(epayload, asciiblob_len);
 939	if (!ascii_buf) {
 940		ret = -ENOMEM;
 941		goto out;
 942	}
 943
 944	up_read(&mkey->sem);
 945	key_put(mkey);
 946	memzero_explicit(derived_key, sizeof(derived_key));
 947
 948	memcpy(buffer, ascii_buf, asciiblob_len);
 949	kfree_sensitive(ascii_buf);
 
 950
 951	return asciiblob_len;
 952out:
 953	up_read(&mkey->sem);
 954	key_put(mkey);
 955	memzero_explicit(derived_key, sizeof(derived_key));
 956	return ret;
 957}
 958
 959/*
 960 * encrypted_destroy - clear and free the key's payload
 961 */
 962static void encrypted_destroy(struct key *key)
 963{
 964	kfree_sensitive(key->payload.data[0]);
 965}
 966
 967struct key_type key_type_encrypted = {
 968	.name = "encrypted",
 969	.instantiate = encrypted_instantiate,
 970	.update = encrypted_update,
 971	.destroy = encrypted_destroy,
 972	.describe = user_describe,
 973	.read = encrypted_read,
 974};
 975EXPORT_SYMBOL_GPL(key_type_encrypted);
 976
 977static int __init init_encrypted(void)
 978{
 979	int ret;
 980
 981	hash_tfm = crypto_alloc_shash(hash_alg, 0, 0);
 982	if (IS_ERR(hash_tfm)) {
 983		pr_err("encrypted_key: can't allocate %s transform: %ld\n",
 984		       hash_alg, PTR_ERR(hash_tfm));
 985		return PTR_ERR(hash_tfm);
 986	}
 987
 988	ret = aes_get_sizes();
 989	if (ret < 0)
 990		goto out;
 991	ret = register_key_type(&key_type_encrypted);
 992	if (ret < 0)
 993		goto out;
 994	return 0;
 995out:
 996	crypto_free_shash(hash_tfm);
 997	return ret;
 998
 999}
1000
1001static void __exit cleanup_encrypted(void)
1002{
1003	crypto_free_shash(hash_tfm);
1004	unregister_key_type(&key_type_encrypted);
1005}
1006
1007late_initcall(init_encrypted);
1008module_exit(cleanup_encrypted);
1009
1010MODULE_LICENSE("GPL");
v4.17
 
   1/*
   2 * Copyright (C) 2010 IBM Corporation
   3 * Copyright (C) 2010 Politecnico di Torino, Italy
   4 *                    TORSEC group -- http://security.polito.it
   5 *
   6 * Authors:
   7 * Mimi Zohar <zohar@us.ibm.com>
   8 * Roberto Sassu <roberto.sassu@polito.it>
   9 *
  10 * This program is free software; you can redistribute it and/or modify
  11 * it under the terms of the GNU General Public License as published by
  12 * the Free Software Foundation, version 2 of the License.
  13 *
  14 * See Documentation/security/keys/trusted-encrypted.rst
  15 */
  16
  17#include <linux/uaccess.h>
  18#include <linux/module.h>
  19#include <linux/init.h>
  20#include <linux/slab.h>
  21#include <linux/parser.h>
  22#include <linux/string.h>
  23#include <linux/err.h>
  24#include <keys/user-type.h>
  25#include <keys/trusted-type.h>
  26#include <keys/encrypted-type.h>
  27#include <linux/key-type.h>
  28#include <linux/random.h>
  29#include <linux/rcupdate.h>
  30#include <linux/scatterlist.h>
  31#include <linux/ctype.h>
  32#include <crypto/aes.h>
  33#include <crypto/algapi.h>
  34#include <crypto/hash.h>
  35#include <crypto/sha.h>
  36#include <crypto/skcipher.h>
  37
  38#include "encrypted.h"
  39#include "ecryptfs_format.h"
  40
  41static const char KEY_TRUSTED_PREFIX[] = "trusted:";
  42static const char KEY_USER_PREFIX[] = "user:";
  43static const char hash_alg[] = "sha256";
  44static const char hmac_alg[] = "hmac(sha256)";
  45static const char blkcipher_alg[] = "cbc(aes)";
  46static const char key_format_default[] = "default";
  47static const char key_format_ecryptfs[] = "ecryptfs";
 
  48static unsigned int ivsize;
  49static int blksize;
  50
  51#define KEY_TRUSTED_PREFIX_LEN (sizeof (KEY_TRUSTED_PREFIX) - 1)
  52#define KEY_USER_PREFIX_LEN (sizeof (KEY_USER_PREFIX) - 1)
  53#define KEY_ECRYPTFS_DESC_LEN 16
  54#define HASH_SIZE SHA256_DIGEST_SIZE
  55#define MAX_DATA_SIZE 4096
  56#define MIN_DATA_SIZE  20
 
  57
  58static struct crypto_shash *hash_tfm;
  59
  60enum {
  61	Opt_err = -1, Opt_new, Opt_load, Opt_update
  62};
  63
  64enum {
  65	Opt_error = -1, Opt_default, Opt_ecryptfs
  66};
  67
  68static const match_table_t key_format_tokens = {
  69	{Opt_default, "default"},
  70	{Opt_ecryptfs, "ecryptfs"},
 
  71	{Opt_error, NULL}
  72};
  73
  74static const match_table_t key_tokens = {
  75	{Opt_new, "new"},
  76	{Opt_load, "load"},
  77	{Opt_update, "update"},
  78	{Opt_err, NULL}
  79};
  80
  81static int aes_get_sizes(void)
  82{
  83	struct crypto_skcipher *tfm;
  84
  85	tfm = crypto_alloc_skcipher(blkcipher_alg, 0, CRYPTO_ALG_ASYNC);
  86	if (IS_ERR(tfm)) {
  87		pr_err("encrypted_key: failed to alloc_cipher (%ld)\n",
  88		       PTR_ERR(tfm));
  89		return PTR_ERR(tfm);
  90	}
  91	ivsize = crypto_skcipher_ivsize(tfm);
  92	blksize = crypto_skcipher_blocksize(tfm);
  93	crypto_free_skcipher(tfm);
  94	return 0;
  95}
  96
  97/*
  98 * valid_ecryptfs_desc - verify the description of a new/loaded encrypted key
  99 *
 100 * The description of a encrypted key with format 'ecryptfs' must contain
 101 * exactly 16 hexadecimal characters.
 102 *
 103 */
 104static int valid_ecryptfs_desc(const char *ecryptfs_desc)
 105{
 106	int i;
 107
 108	if (strlen(ecryptfs_desc) != KEY_ECRYPTFS_DESC_LEN) {
 109		pr_err("encrypted_key: key description must be %d hexadecimal "
 110		       "characters long\n", KEY_ECRYPTFS_DESC_LEN);
 111		return -EINVAL;
 112	}
 113
 114	for (i = 0; i < KEY_ECRYPTFS_DESC_LEN; i++) {
 115		if (!isxdigit(ecryptfs_desc[i])) {
 116			pr_err("encrypted_key: key description must contain "
 117			       "only hexadecimal characters\n");
 118			return -EINVAL;
 119		}
 120	}
 121
 122	return 0;
 123}
 124
 125/*
 126 * valid_master_desc - verify the 'key-type:desc' of a new/updated master-key
 127 *
 128 * key-type:= "trusted:" | "user:"
 129 * desc:= master-key description
 130 *
 131 * Verify that 'key-type' is valid and that 'desc' exists. On key update,
 132 * only the master key description is permitted to change, not the key-type.
 133 * The key-type remains constant.
 134 *
 135 * On success returns 0, otherwise -EINVAL.
 136 */
 137static int valid_master_desc(const char *new_desc, const char *orig_desc)
 138{
 139	int prefix_len;
 140
 141	if (!strncmp(new_desc, KEY_TRUSTED_PREFIX, KEY_TRUSTED_PREFIX_LEN))
 142		prefix_len = KEY_TRUSTED_PREFIX_LEN;
 143	else if (!strncmp(new_desc, KEY_USER_PREFIX, KEY_USER_PREFIX_LEN))
 144		prefix_len = KEY_USER_PREFIX_LEN;
 145	else
 146		return -EINVAL;
 147
 148	if (!new_desc[prefix_len])
 149		return -EINVAL;
 150
 151	if (orig_desc && strncmp(new_desc, orig_desc, prefix_len))
 152		return -EINVAL;
 153
 154	return 0;
 155}
 156
 157/*
 158 * datablob_parse - parse the keyctl data
 159 *
 160 * datablob format:
 161 * new [<format>] <master-key name> <decrypted data length>
 162 * load [<format>] <master-key name> <decrypted data length>
 163 *     <encrypted iv + data>
 164 * update <new-master-key name>
 165 *
 166 * Tokenizes a copy of the keyctl data, returning a pointer to each token,
 167 * which is null terminated.
 168 *
 169 * On success returns 0, otherwise -EINVAL.
 170 */
 171static int datablob_parse(char *datablob, const char **format,
 172			  char **master_desc, char **decrypted_datalen,
 173			  char **hex_encoded_iv)
 174{
 175	substring_t args[MAX_OPT_ARGS];
 176	int ret = -EINVAL;
 177	int key_cmd;
 178	int key_format;
 179	char *p, *keyword;
 180
 181	keyword = strsep(&datablob, " \t");
 182	if (!keyword) {
 183		pr_info("encrypted_key: insufficient parameters specified\n");
 184		return ret;
 185	}
 186	key_cmd = match_token(keyword, key_tokens, args);
 187
 188	/* Get optional format: default | ecryptfs */
 189	p = strsep(&datablob, " \t");
 190	if (!p) {
 191		pr_err("encrypted_key: insufficient parameters specified\n");
 192		return ret;
 193	}
 194
 195	key_format = match_token(p, key_format_tokens, args);
 196	switch (key_format) {
 197	case Opt_ecryptfs:
 
 198	case Opt_default:
 199		*format = p;
 200		*master_desc = strsep(&datablob, " \t");
 201		break;
 202	case Opt_error:
 203		*master_desc = p;
 204		break;
 205	}
 206
 207	if (!*master_desc) {
 208		pr_info("encrypted_key: master key parameter is missing\n");
 209		goto out;
 210	}
 211
 212	if (valid_master_desc(*master_desc, NULL) < 0) {
 213		pr_info("encrypted_key: master key parameter \'%s\' "
 214			"is invalid\n", *master_desc);
 215		goto out;
 216	}
 217
 218	if (decrypted_datalen) {
 219		*decrypted_datalen = strsep(&datablob, " \t");
 220		if (!*decrypted_datalen) {
 221			pr_info("encrypted_key: keylen parameter is missing\n");
 222			goto out;
 223		}
 224	}
 225
 226	switch (key_cmd) {
 227	case Opt_new:
 228		if (!decrypted_datalen) {
 229			pr_info("encrypted_key: keyword \'%s\' not allowed "
 230				"when called from .update method\n", keyword);
 231			break;
 232		}
 233		ret = 0;
 234		break;
 235	case Opt_load:
 236		if (!decrypted_datalen) {
 237			pr_info("encrypted_key: keyword \'%s\' not allowed "
 238				"when called from .update method\n", keyword);
 239			break;
 240		}
 241		*hex_encoded_iv = strsep(&datablob, " \t");
 242		if (!*hex_encoded_iv) {
 243			pr_info("encrypted_key: hex blob is missing\n");
 244			break;
 245		}
 246		ret = 0;
 247		break;
 248	case Opt_update:
 249		if (decrypted_datalen) {
 250			pr_info("encrypted_key: keyword \'%s\' not allowed "
 251				"when called from .instantiate method\n",
 252				keyword);
 253			break;
 254		}
 255		ret = 0;
 256		break;
 257	case Opt_err:
 258		pr_info("encrypted_key: keyword \'%s\' not recognized\n",
 259			keyword);
 260		break;
 261	}
 262out:
 263	return ret;
 264}
 265
 266/*
 267 * datablob_format - format as an ascii string, before copying to userspace
 268 */
 269static char *datablob_format(struct encrypted_key_payload *epayload,
 270			     size_t asciiblob_len)
 271{
 272	char *ascii_buf, *bufp;
 273	u8 *iv = epayload->iv;
 274	int len;
 275	int i;
 276
 277	ascii_buf = kmalloc(asciiblob_len + 1, GFP_KERNEL);
 278	if (!ascii_buf)
 279		goto out;
 280
 281	ascii_buf[asciiblob_len] = '\0';
 282
 283	/* copy datablob master_desc and datalen strings */
 284	len = sprintf(ascii_buf, "%s %s %s ", epayload->format,
 285		      epayload->master_desc, epayload->datalen);
 286
 287	/* convert the hex encoded iv, encrypted-data and HMAC to ascii */
 288	bufp = &ascii_buf[len];
 289	for (i = 0; i < (asciiblob_len - len) / 2; i++)
 290		bufp = hex_byte_pack(bufp, iv[i]);
 291out:
 292	return ascii_buf;
 293}
 294
 295/*
 296 * request_user_key - request the user key
 297 *
 298 * Use a user provided key to encrypt/decrypt an encrypted-key.
 299 */
 300static struct key *request_user_key(const char *master_desc, const u8 **master_key,
 301				    size_t *master_keylen)
 302{
 303	const struct user_key_payload *upayload;
 304	struct key *ukey;
 305
 306	ukey = request_key(&key_type_user, master_desc, NULL);
 307	if (IS_ERR(ukey))
 308		goto error;
 309
 310	down_read(&ukey->sem);
 311	upayload = user_key_payload_locked(ukey);
 312	if (!upayload) {
 313		/* key was revoked before we acquired its semaphore */
 314		up_read(&ukey->sem);
 315		key_put(ukey);
 316		ukey = ERR_PTR(-EKEYREVOKED);
 317		goto error;
 318	}
 319	*master_key = upayload->data;
 320	*master_keylen = upayload->datalen;
 321error:
 322	return ukey;
 323}
 324
 325static int calc_hash(struct crypto_shash *tfm, u8 *digest,
 326		     const u8 *buf, unsigned int buflen)
 327{
 328	SHASH_DESC_ON_STACK(desc, tfm);
 329	int err;
 330
 331	desc->tfm = tfm;
 332	desc->flags = 0;
 333
 334	err = crypto_shash_digest(desc, buf, buflen, digest);
 335	shash_desc_zero(desc);
 336	return err;
 337}
 338
 339static int calc_hmac(u8 *digest, const u8 *key, unsigned int keylen,
 340		     const u8 *buf, unsigned int buflen)
 341{
 342	struct crypto_shash *tfm;
 343	int err;
 344
 345	tfm = crypto_alloc_shash(hmac_alg, 0, CRYPTO_ALG_ASYNC);
 346	if (IS_ERR(tfm)) {
 347		pr_err("encrypted_key: can't alloc %s transform: %ld\n",
 348		       hmac_alg, PTR_ERR(tfm));
 349		return PTR_ERR(tfm);
 350	}
 351
 352	err = crypto_shash_setkey(tfm, key, keylen);
 353	if (!err)
 354		err = calc_hash(tfm, digest, buf, buflen);
 355	crypto_free_shash(tfm);
 356	return err;
 357}
 358
 359enum derived_key_type { ENC_KEY, AUTH_KEY };
 360
 361/* Derive authentication/encryption key from trusted key */
 362static int get_derived_key(u8 *derived_key, enum derived_key_type key_type,
 363			   const u8 *master_key, size_t master_keylen)
 364{
 365	u8 *derived_buf;
 366	unsigned int derived_buf_len;
 367	int ret;
 368
 369	derived_buf_len = strlen("AUTH_KEY") + 1 + master_keylen;
 370	if (derived_buf_len < HASH_SIZE)
 371		derived_buf_len = HASH_SIZE;
 372
 373	derived_buf = kzalloc(derived_buf_len, GFP_KERNEL);
 374	if (!derived_buf)
 375		return -ENOMEM;
 376
 377	if (key_type)
 378		strcpy(derived_buf, "AUTH_KEY");
 379	else
 380		strcpy(derived_buf, "ENC_KEY");
 381
 382	memcpy(derived_buf + strlen(derived_buf) + 1, master_key,
 383	       master_keylen);
 384	ret = calc_hash(hash_tfm, derived_key, derived_buf, derived_buf_len);
 385	kzfree(derived_buf);
 
 386	return ret;
 387}
 388
 389static struct skcipher_request *init_skcipher_req(const u8 *key,
 390						  unsigned int key_len)
 391{
 392	struct skcipher_request *req;
 393	struct crypto_skcipher *tfm;
 394	int ret;
 395
 396	tfm = crypto_alloc_skcipher(blkcipher_alg, 0, CRYPTO_ALG_ASYNC);
 397	if (IS_ERR(tfm)) {
 398		pr_err("encrypted_key: failed to load %s transform (%ld)\n",
 399		       blkcipher_alg, PTR_ERR(tfm));
 400		return ERR_CAST(tfm);
 401	}
 402
 403	ret = crypto_skcipher_setkey(tfm, key, key_len);
 404	if (ret < 0) {
 405		pr_err("encrypted_key: failed to setkey (%d)\n", ret);
 406		crypto_free_skcipher(tfm);
 407		return ERR_PTR(ret);
 408	}
 409
 410	req = skcipher_request_alloc(tfm, GFP_KERNEL);
 411	if (!req) {
 412		pr_err("encrypted_key: failed to allocate request for %s\n",
 413		       blkcipher_alg);
 414		crypto_free_skcipher(tfm);
 415		return ERR_PTR(-ENOMEM);
 416	}
 417
 418	skcipher_request_set_callback(req, 0, NULL, NULL);
 419	return req;
 420}
 421
 422static struct key *request_master_key(struct encrypted_key_payload *epayload,
 423				      const u8 **master_key, size_t *master_keylen)
 424{
 425	struct key *mkey = ERR_PTR(-EINVAL);
 426
 427	if (!strncmp(epayload->master_desc, KEY_TRUSTED_PREFIX,
 428		     KEY_TRUSTED_PREFIX_LEN)) {
 429		mkey = request_trusted_key(epayload->master_desc +
 430					   KEY_TRUSTED_PREFIX_LEN,
 431					   master_key, master_keylen);
 432	} else if (!strncmp(epayload->master_desc, KEY_USER_PREFIX,
 433			    KEY_USER_PREFIX_LEN)) {
 434		mkey = request_user_key(epayload->master_desc +
 435					KEY_USER_PREFIX_LEN,
 436					master_key, master_keylen);
 437	} else
 438		goto out;
 439
 440	if (IS_ERR(mkey)) {
 441		int ret = PTR_ERR(mkey);
 442
 443		if (ret == -ENOTSUPP)
 444			pr_info("encrypted_key: key %s not supported",
 445				epayload->master_desc);
 446		else
 447			pr_info("encrypted_key: key %s not found",
 448				epayload->master_desc);
 449		goto out;
 450	}
 451
 452	dump_master_key(*master_key, *master_keylen);
 453out:
 454	return mkey;
 455}
 456
 457/* Before returning data to userspace, encrypt decrypted data. */
 458static int derived_key_encrypt(struct encrypted_key_payload *epayload,
 459			       const u8 *derived_key,
 460			       unsigned int derived_keylen)
 461{
 462	struct scatterlist sg_in[2];
 463	struct scatterlist sg_out[1];
 464	struct crypto_skcipher *tfm;
 465	struct skcipher_request *req;
 466	unsigned int encrypted_datalen;
 467	u8 iv[AES_BLOCK_SIZE];
 468	int ret;
 469
 470	encrypted_datalen = roundup(epayload->decrypted_datalen, blksize);
 471
 472	req = init_skcipher_req(derived_key, derived_keylen);
 473	ret = PTR_ERR(req);
 474	if (IS_ERR(req))
 475		goto out;
 476	dump_decrypted_data(epayload);
 477
 478	sg_init_table(sg_in, 2);
 479	sg_set_buf(&sg_in[0], epayload->decrypted_data,
 480		   epayload->decrypted_datalen);
 481	sg_set_page(&sg_in[1], ZERO_PAGE(0), AES_BLOCK_SIZE, 0);
 482
 483	sg_init_table(sg_out, 1);
 484	sg_set_buf(sg_out, epayload->encrypted_data, encrypted_datalen);
 485
 486	memcpy(iv, epayload->iv, sizeof(iv));
 487	skcipher_request_set_crypt(req, sg_in, sg_out, encrypted_datalen, iv);
 488	ret = crypto_skcipher_encrypt(req);
 489	tfm = crypto_skcipher_reqtfm(req);
 490	skcipher_request_free(req);
 491	crypto_free_skcipher(tfm);
 492	if (ret < 0)
 493		pr_err("encrypted_key: failed to encrypt (%d)\n", ret);
 494	else
 495		dump_encrypted_data(epayload, encrypted_datalen);
 496out:
 497	return ret;
 498}
 499
 500static int datablob_hmac_append(struct encrypted_key_payload *epayload,
 501				const u8 *master_key, size_t master_keylen)
 502{
 503	u8 derived_key[HASH_SIZE];
 504	u8 *digest;
 505	int ret;
 506
 507	ret = get_derived_key(derived_key, AUTH_KEY, master_key, master_keylen);
 508	if (ret < 0)
 509		goto out;
 510
 511	digest = epayload->format + epayload->datablob_len;
 512	ret = calc_hmac(digest, derived_key, sizeof derived_key,
 513			epayload->format, epayload->datablob_len);
 514	if (!ret)
 515		dump_hmac(NULL, digest, HASH_SIZE);
 516out:
 517	memzero_explicit(derived_key, sizeof(derived_key));
 518	return ret;
 519}
 520
 521/* verify HMAC before decrypting encrypted key */
 522static int datablob_hmac_verify(struct encrypted_key_payload *epayload,
 523				const u8 *format, const u8 *master_key,
 524				size_t master_keylen)
 525{
 526	u8 derived_key[HASH_SIZE];
 527	u8 digest[HASH_SIZE];
 528	int ret;
 529	char *p;
 530	unsigned short len;
 531
 532	ret = get_derived_key(derived_key, AUTH_KEY, master_key, master_keylen);
 533	if (ret < 0)
 534		goto out;
 535
 536	len = epayload->datablob_len;
 537	if (!format) {
 538		p = epayload->master_desc;
 539		len -= strlen(epayload->format) + 1;
 540	} else
 541		p = epayload->format;
 542
 543	ret = calc_hmac(digest, derived_key, sizeof derived_key, p, len);
 544	if (ret < 0)
 545		goto out;
 546	ret = crypto_memneq(digest, epayload->format + epayload->datablob_len,
 547			    sizeof(digest));
 548	if (ret) {
 549		ret = -EINVAL;
 550		dump_hmac("datablob",
 551			  epayload->format + epayload->datablob_len,
 552			  HASH_SIZE);
 553		dump_hmac("calc", digest, HASH_SIZE);
 554	}
 555out:
 556	memzero_explicit(derived_key, sizeof(derived_key));
 557	return ret;
 558}
 559
 560static int derived_key_decrypt(struct encrypted_key_payload *epayload,
 561			       const u8 *derived_key,
 562			       unsigned int derived_keylen)
 563{
 564	struct scatterlist sg_in[1];
 565	struct scatterlist sg_out[2];
 566	struct crypto_skcipher *tfm;
 567	struct skcipher_request *req;
 568	unsigned int encrypted_datalen;
 569	u8 iv[AES_BLOCK_SIZE];
 570	u8 *pad;
 571	int ret;
 572
 573	/* Throwaway buffer to hold the unused zero padding at the end */
 574	pad = kmalloc(AES_BLOCK_SIZE, GFP_KERNEL);
 575	if (!pad)
 576		return -ENOMEM;
 577
 578	encrypted_datalen = roundup(epayload->decrypted_datalen, blksize);
 579	req = init_skcipher_req(derived_key, derived_keylen);
 580	ret = PTR_ERR(req);
 581	if (IS_ERR(req))
 582		goto out;
 583	dump_encrypted_data(epayload, encrypted_datalen);
 584
 585	sg_init_table(sg_in, 1);
 586	sg_init_table(sg_out, 2);
 587	sg_set_buf(sg_in, epayload->encrypted_data, encrypted_datalen);
 588	sg_set_buf(&sg_out[0], epayload->decrypted_data,
 589		   epayload->decrypted_datalen);
 590	sg_set_buf(&sg_out[1], pad, AES_BLOCK_SIZE);
 591
 592	memcpy(iv, epayload->iv, sizeof(iv));
 593	skcipher_request_set_crypt(req, sg_in, sg_out, encrypted_datalen, iv);
 594	ret = crypto_skcipher_decrypt(req);
 595	tfm = crypto_skcipher_reqtfm(req);
 596	skcipher_request_free(req);
 597	crypto_free_skcipher(tfm);
 598	if (ret < 0)
 599		goto out;
 600	dump_decrypted_data(epayload);
 601out:
 602	kfree(pad);
 603	return ret;
 604}
 605
 606/* Allocate memory for decrypted key and datablob. */
 607static struct encrypted_key_payload *encrypted_key_alloc(struct key *key,
 608							 const char *format,
 609							 const char *master_desc,
 610							 const char *datalen)
 611{
 612	struct encrypted_key_payload *epayload = NULL;
 613	unsigned short datablob_len;
 614	unsigned short decrypted_datalen;
 615	unsigned short payload_datalen;
 616	unsigned int encrypted_datalen;
 617	unsigned int format_len;
 618	long dlen;
 619	int ret;
 620
 621	ret = kstrtol(datalen, 10, &dlen);
 622	if (ret < 0 || dlen < MIN_DATA_SIZE || dlen > MAX_DATA_SIZE)
 623		return ERR_PTR(-EINVAL);
 624
 625	format_len = (!format) ? strlen(key_format_default) : strlen(format);
 626	decrypted_datalen = dlen;
 627	payload_datalen = decrypted_datalen;
 628	if (format && !strcmp(format, key_format_ecryptfs)) {
 629		if (dlen != ECRYPTFS_MAX_KEY_BYTES) {
 630			pr_err("encrypted_key: keylen for the ecryptfs format "
 631			       "must be equal to %d bytes\n",
 632			       ECRYPTFS_MAX_KEY_BYTES);
 633			return ERR_PTR(-EINVAL);
 
 
 
 
 
 
 
 
 
 634		}
 635		decrypted_datalen = ECRYPTFS_MAX_KEY_BYTES;
 636		payload_datalen = sizeof(struct ecryptfs_auth_tok);
 637	}
 638
 639	encrypted_datalen = roundup(decrypted_datalen, blksize);
 640
 641	datablob_len = format_len + 1 + strlen(master_desc) + 1
 642	    + strlen(datalen) + 1 + ivsize + 1 + encrypted_datalen;
 643
 644	ret = key_payload_reserve(key, payload_datalen + datablob_len
 645				  + HASH_SIZE + 1);
 646	if (ret < 0)
 647		return ERR_PTR(ret);
 648
 649	epayload = kzalloc(sizeof(*epayload) + payload_datalen +
 650			   datablob_len + HASH_SIZE + 1, GFP_KERNEL);
 651	if (!epayload)
 652		return ERR_PTR(-ENOMEM);
 653
 654	epayload->payload_datalen = payload_datalen;
 655	epayload->decrypted_datalen = decrypted_datalen;
 656	epayload->datablob_len = datablob_len;
 657	return epayload;
 658}
 659
 660static int encrypted_key_decrypt(struct encrypted_key_payload *epayload,
 661				 const char *format, const char *hex_encoded_iv)
 662{
 663	struct key *mkey;
 664	u8 derived_key[HASH_SIZE];
 665	const u8 *master_key;
 666	u8 *hmac;
 667	const char *hex_encoded_data;
 668	unsigned int encrypted_datalen;
 669	size_t master_keylen;
 670	size_t asciilen;
 671	int ret;
 672
 673	encrypted_datalen = roundup(epayload->decrypted_datalen, blksize);
 674	asciilen = (ivsize + 1 + encrypted_datalen + HASH_SIZE) * 2;
 675	if (strlen(hex_encoded_iv) != asciilen)
 676		return -EINVAL;
 677
 678	hex_encoded_data = hex_encoded_iv + (2 * ivsize) + 2;
 679	ret = hex2bin(epayload->iv, hex_encoded_iv, ivsize);
 680	if (ret < 0)
 681		return -EINVAL;
 682	ret = hex2bin(epayload->encrypted_data, hex_encoded_data,
 683		      encrypted_datalen);
 684	if (ret < 0)
 685		return -EINVAL;
 686
 687	hmac = epayload->format + epayload->datablob_len;
 688	ret = hex2bin(hmac, hex_encoded_data + (encrypted_datalen * 2),
 689		      HASH_SIZE);
 690	if (ret < 0)
 691		return -EINVAL;
 692
 693	mkey = request_master_key(epayload, &master_key, &master_keylen);
 694	if (IS_ERR(mkey))
 695		return PTR_ERR(mkey);
 696
 697	ret = datablob_hmac_verify(epayload, format, master_key, master_keylen);
 698	if (ret < 0) {
 699		pr_err("encrypted_key: bad hmac (%d)\n", ret);
 700		goto out;
 701	}
 702
 703	ret = get_derived_key(derived_key, ENC_KEY, master_key, master_keylen);
 704	if (ret < 0)
 705		goto out;
 706
 707	ret = derived_key_decrypt(epayload, derived_key, sizeof derived_key);
 708	if (ret < 0)
 709		pr_err("encrypted_key: failed to decrypt key (%d)\n", ret);
 710out:
 711	up_read(&mkey->sem);
 712	key_put(mkey);
 713	memzero_explicit(derived_key, sizeof(derived_key));
 714	return ret;
 715}
 716
 717static void __ekey_init(struct encrypted_key_payload *epayload,
 718			const char *format, const char *master_desc,
 719			const char *datalen)
 720{
 721	unsigned int format_len;
 722
 723	format_len = (!format) ? strlen(key_format_default) : strlen(format);
 724	epayload->format = epayload->payload_data + epayload->payload_datalen;
 725	epayload->master_desc = epayload->format + format_len + 1;
 726	epayload->datalen = epayload->master_desc + strlen(master_desc) + 1;
 727	epayload->iv = epayload->datalen + strlen(datalen) + 1;
 728	epayload->encrypted_data = epayload->iv + ivsize + 1;
 729	epayload->decrypted_data = epayload->payload_data;
 730
 731	if (!format)
 732		memcpy(epayload->format, key_format_default, format_len);
 733	else {
 734		if (!strcmp(format, key_format_ecryptfs))
 735			epayload->decrypted_data =
 736				ecryptfs_get_auth_tok_key((struct ecryptfs_auth_tok *)epayload->payload_data);
 737
 738		memcpy(epayload->format, format, format_len);
 739	}
 740
 741	memcpy(epayload->master_desc, master_desc, strlen(master_desc));
 742	memcpy(epayload->datalen, datalen, strlen(datalen));
 743}
 744
 745/*
 746 * encrypted_init - initialize an encrypted key
 747 *
 748 * For a new key, use a random number for both the iv and data
 749 * itself.  For an old key, decrypt the hex encoded data.
 750 */
 751static int encrypted_init(struct encrypted_key_payload *epayload,
 752			  const char *key_desc, const char *format,
 753			  const char *master_desc, const char *datalen,
 754			  const char *hex_encoded_iv)
 755{
 756	int ret = 0;
 757
 758	if (format && !strcmp(format, key_format_ecryptfs)) {
 759		ret = valid_ecryptfs_desc(key_desc);
 760		if (ret < 0)
 761			return ret;
 762
 763		ecryptfs_fill_auth_tok((struct ecryptfs_auth_tok *)epayload->payload_data,
 764				       key_desc);
 765	}
 766
 767	__ekey_init(epayload, format, master_desc, datalen);
 768	if (!hex_encoded_iv) {
 769		get_random_bytes(epayload->iv, ivsize);
 770
 771		get_random_bytes(epayload->decrypted_data,
 772				 epayload->decrypted_datalen);
 773	} else
 774		ret = encrypted_key_decrypt(epayload, format, hex_encoded_iv);
 775	return ret;
 776}
 777
 778/*
 779 * encrypted_instantiate - instantiate an encrypted key
 780 *
 781 * Decrypt an existing encrypted datablob or create a new encrypted key
 782 * based on a kernel random number.
 783 *
 784 * On success, return 0. Otherwise return errno.
 785 */
 786static int encrypted_instantiate(struct key *key,
 787				 struct key_preparsed_payload *prep)
 788{
 789	struct encrypted_key_payload *epayload = NULL;
 790	char *datablob = NULL;
 791	const char *format = NULL;
 792	char *master_desc = NULL;
 793	char *decrypted_datalen = NULL;
 794	char *hex_encoded_iv = NULL;
 795	size_t datalen = prep->datalen;
 796	int ret;
 797
 798	if (datalen <= 0 || datalen > 32767 || !prep->data)
 799		return -EINVAL;
 800
 801	datablob = kmalloc(datalen + 1, GFP_KERNEL);
 802	if (!datablob)
 803		return -ENOMEM;
 804	datablob[datalen] = 0;
 805	memcpy(datablob, prep->data, datalen);
 806	ret = datablob_parse(datablob, &format, &master_desc,
 807			     &decrypted_datalen, &hex_encoded_iv);
 808	if (ret < 0)
 809		goto out;
 810
 811	epayload = encrypted_key_alloc(key, format, master_desc,
 812				       decrypted_datalen);
 813	if (IS_ERR(epayload)) {
 814		ret = PTR_ERR(epayload);
 815		goto out;
 816	}
 817	ret = encrypted_init(epayload, key->description, format, master_desc,
 818			     decrypted_datalen, hex_encoded_iv);
 819	if (ret < 0) {
 820		kzfree(epayload);
 821		goto out;
 822	}
 823
 824	rcu_assign_keypointer(key, epayload);
 825out:
 826	kzfree(datablob);
 827	return ret;
 828}
 829
 830static void encrypted_rcu_free(struct rcu_head *rcu)
 831{
 832	struct encrypted_key_payload *epayload;
 833
 834	epayload = container_of(rcu, struct encrypted_key_payload, rcu);
 835	kzfree(epayload);
 836}
 837
 838/*
 839 * encrypted_update - update the master key description
 840 *
 841 * Change the master key description for an existing encrypted key.
 842 * The next read will return an encrypted datablob using the new
 843 * master key description.
 844 *
 845 * On success, return 0. Otherwise return errno.
 846 */
 847static int encrypted_update(struct key *key, struct key_preparsed_payload *prep)
 848{
 849	struct encrypted_key_payload *epayload = key->payload.data[0];
 850	struct encrypted_key_payload *new_epayload;
 851	char *buf;
 852	char *new_master_desc = NULL;
 853	const char *format = NULL;
 854	size_t datalen = prep->datalen;
 855	int ret = 0;
 856
 857	if (key_is_negative(key))
 858		return -ENOKEY;
 859	if (datalen <= 0 || datalen > 32767 || !prep->data)
 860		return -EINVAL;
 861
 862	buf = kmalloc(datalen + 1, GFP_KERNEL);
 863	if (!buf)
 864		return -ENOMEM;
 865
 866	buf[datalen] = 0;
 867	memcpy(buf, prep->data, datalen);
 868	ret = datablob_parse(buf, &format, &new_master_desc, NULL, NULL);
 869	if (ret < 0)
 870		goto out;
 871
 872	ret = valid_master_desc(new_master_desc, epayload->master_desc);
 873	if (ret < 0)
 874		goto out;
 875
 876	new_epayload = encrypted_key_alloc(key, epayload->format,
 877					   new_master_desc, epayload->datalen);
 878	if (IS_ERR(new_epayload)) {
 879		ret = PTR_ERR(new_epayload);
 880		goto out;
 881	}
 882
 883	__ekey_init(new_epayload, epayload->format, new_master_desc,
 884		    epayload->datalen);
 885
 886	memcpy(new_epayload->iv, epayload->iv, ivsize);
 887	memcpy(new_epayload->payload_data, epayload->payload_data,
 888	       epayload->payload_datalen);
 889
 890	rcu_assign_keypointer(key, new_epayload);
 891	call_rcu(&epayload->rcu, encrypted_rcu_free);
 892out:
 893	kzfree(buf);
 894	return ret;
 895}
 896
 897/*
 898 * encrypted_read - format and copy the encrypted data to userspace
 899 *
 900 * The resulting datablob format is:
 901 * <master-key name> <decrypted data length> <encrypted iv> <encrypted data>
 902 *
 903 * On success, return to userspace the encrypted key datablob size.
 904 */
 905static long encrypted_read(const struct key *key, char __user *buffer,
 906			   size_t buflen)
 907{
 908	struct encrypted_key_payload *epayload;
 909	struct key *mkey;
 910	const u8 *master_key;
 911	size_t master_keylen;
 912	char derived_key[HASH_SIZE];
 913	char *ascii_buf;
 914	size_t asciiblob_len;
 915	int ret;
 916
 917	epayload = dereference_key_locked(key);
 918
 919	/* returns the hex encoded iv, encrypted-data, and hmac as ascii */
 920	asciiblob_len = epayload->datablob_len + ivsize + 1
 921	    + roundup(epayload->decrypted_datalen, blksize)
 922	    + (HASH_SIZE * 2);
 923
 924	if (!buffer || buflen < asciiblob_len)
 925		return asciiblob_len;
 926
 927	mkey = request_master_key(epayload, &master_key, &master_keylen);
 928	if (IS_ERR(mkey))
 929		return PTR_ERR(mkey);
 930
 931	ret = get_derived_key(derived_key, ENC_KEY, master_key, master_keylen);
 932	if (ret < 0)
 933		goto out;
 934
 935	ret = derived_key_encrypt(epayload, derived_key, sizeof derived_key);
 936	if (ret < 0)
 937		goto out;
 938
 939	ret = datablob_hmac_append(epayload, master_key, master_keylen);
 940	if (ret < 0)
 941		goto out;
 942
 943	ascii_buf = datablob_format(epayload, asciiblob_len);
 944	if (!ascii_buf) {
 945		ret = -ENOMEM;
 946		goto out;
 947	}
 948
 949	up_read(&mkey->sem);
 950	key_put(mkey);
 951	memzero_explicit(derived_key, sizeof(derived_key));
 952
 953	if (copy_to_user(buffer, ascii_buf, asciiblob_len) != 0)
 954		ret = -EFAULT;
 955	kzfree(ascii_buf);
 956
 957	return asciiblob_len;
 958out:
 959	up_read(&mkey->sem);
 960	key_put(mkey);
 961	memzero_explicit(derived_key, sizeof(derived_key));
 962	return ret;
 963}
 964
 965/*
 966 * encrypted_destroy - clear and free the key's payload
 967 */
 968static void encrypted_destroy(struct key *key)
 969{
 970	kzfree(key->payload.data[0]);
 971}
 972
 973struct key_type key_type_encrypted = {
 974	.name = "encrypted",
 975	.instantiate = encrypted_instantiate,
 976	.update = encrypted_update,
 977	.destroy = encrypted_destroy,
 978	.describe = user_describe,
 979	.read = encrypted_read,
 980};
 981EXPORT_SYMBOL_GPL(key_type_encrypted);
 982
 983static int __init init_encrypted(void)
 984{
 985	int ret;
 986
 987	hash_tfm = crypto_alloc_shash(hash_alg, 0, CRYPTO_ALG_ASYNC);
 988	if (IS_ERR(hash_tfm)) {
 989		pr_err("encrypted_key: can't allocate %s transform: %ld\n",
 990		       hash_alg, PTR_ERR(hash_tfm));
 991		return PTR_ERR(hash_tfm);
 992	}
 993
 994	ret = aes_get_sizes();
 995	if (ret < 0)
 996		goto out;
 997	ret = register_key_type(&key_type_encrypted);
 998	if (ret < 0)
 999		goto out;
1000	return 0;
1001out:
1002	crypto_free_shash(hash_tfm);
1003	return ret;
1004
1005}
1006
1007static void __exit cleanup_encrypted(void)
1008{
1009	crypto_free_shash(hash_tfm);
1010	unregister_key_type(&key_type_encrypted);
1011}
1012
1013late_initcall(init_encrypted);
1014module_exit(cleanup_encrypted);
1015
1016MODULE_LICENSE("GPL");