Linux Audio

Check our new training course

Loading...
v5.9
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (C) STMicroelectronics 2017
  4 * Author:  Amelie Delaunay <amelie.delaunay@st.com>
 
  5 */
  6
  7#include <linux/bcd.h>
  8#include <linux/clk.h>
  9#include <linux/iopoll.h>
 10#include <linux/ioport.h>
 11#include <linux/mfd/syscon.h>
 12#include <linux/module.h>
 13#include <linux/of_device.h>
 14#include <linux/pm_wakeirq.h>
 15#include <linux/regmap.h>
 16#include <linux/rtc.h>
 17
 18#define DRIVER_NAME "stm32_rtc"
 19
 
 
 
 
 
 
 
 
 
 20/* STM32_RTC_TR bit fields  */
 21#define STM32_RTC_TR_SEC_SHIFT		0
 22#define STM32_RTC_TR_SEC		GENMASK(6, 0)
 23#define STM32_RTC_TR_MIN_SHIFT		8
 24#define STM32_RTC_TR_MIN		GENMASK(14, 8)
 25#define STM32_RTC_TR_HOUR_SHIFT		16
 26#define STM32_RTC_TR_HOUR		GENMASK(21, 16)
 27
 28/* STM32_RTC_DR bit fields */
 29#define STM32_RTC_DR_DATE_SHIFT		0
 30#define STM32_RTC_DR_DATE		GENMASK(5, 0)
 31#define STM32_RTC_DR_MONTH_SHIFT	8
 32#define STM32_RTC_DR_MONTH		GENMASK(12, 8)
 33#define STM32_RTC_DR_WDAY_SHIFT		13
 34#define STM32_RTC_DR_WDAY		GENMASK(15, 13)
 35#define STM32_RTC_DR_YEAR_SHIFT		16
 36#define STM32_RTC_DR_YEAR		GENMASK(23, 16)
 37
 38/* STM32_RTC_CR bit fields */
 39#define STM32_RTC_CR_FMT		BIT(6)
 40#define STM32_RTC_CR_ALRAE		BIT(8)
 41#define STM32_RTC_CR_ALRAIE		BIT(12)
 42
 43/* STM32_RTC_ISR/STM32_RTC_ICSR bit fields */
 44#define STM32_RTC_ISR_ALRAWF		BIT(0)
 45#define STM32_RTC_ISR_INITS		BIT(4)
 46#define STM32_RTC_ISR_RSF		BIT(5)
 47#define STM32_RTC_ISR_INITF		BIT(6)
 48#define STM32_RTC_ISR_INIT		BIT(7)
 49#define STM32_RTC_ISR_ALRAF		BIT(8)
 50
 51/* STM32_RTC_PRER bit fields */
 52#define STM32_RTC_PRER_PRED_S_SHIFT	0
 53#define STM32_RTC_PRER_PRED_S		GENMASK(14, 0)
 54#define STM32_RTC_PRER_PRED_A_SHIFT	16
 55#define STM32_RTC_PRER_PRED_A		GENMASK(22, 16)
 56
 57/* STM32_RTC_ALRMAR and STM32_RTC_ALRMBR bit fields */
 58#define STM32_RTC_ALRMXR_SEC_SHIFT	0
 59#define STM32_RTC_ALRMXR_SEC		GENMASK(6, 0)
 60#define STM32_RTC_ALRMXR_SEC_MASK	BIT(7)
 61#define STM32_RTC_ALRMXR_MIN_SHIFT	8
 62#define STM32_RTC_ALRMXR_MIN		GENMASK(14, 8)
 63#define STM32_RTC_ALRMXR_MIN_MASK	BIT(15)
 64#define STM32_RTC_ALRMXR_HOUR_SHIFT	16
 65#define STM32_RTC_ALRMXR_HOUR		GENMASK(21, 16)
 66#define STM32_RTC_ALRMXR_PM		BIT(22)
 67#define STM32_RTC_ALRMXR_HOUR_MASK	BIT(23)
 68#define STM32_RTC_ALRMXR_DATE_SHIFT	24
 69#define STM32_RTC_ALRMXR_DATE		GENMASK(29, 24)
 70#define STM32_RTC_ALRMXR_WDSEL		BIT(30)
 71#define STM32_RTC_ALRMXR_WDAY_SHIFT	24
 72#define STM32_RTC_ALRMXR_WDAY		GENMASK(27, 24)
 73#define STM32_RTC_ALRMXR_DATE_MASK	BIT(31)
 74
 75/* STM32_RTC_SR/_SCR bit fields */
 76#define STM32_RTC_SR_ALRA		BIT(0)
 77
 78/* STM32_RTC_VERR bit fields */
 79#define STM32_RTC_VERR_MINREV_SHIFT	0
 80#define STM32_RTC_VERR_MINREV		GENMASK(3, 0)
 81#define STM32_RTC_VERR_MAJREV_SHIFT	4
 82#define STM32_RTC_VERR_MAJREV		GENMASK(7, 4)
 83
 84/* STM32_RTC_WPR key constants */
 85#define RTC_WPR_1ST_KEY			0xCA
 86#define RTC_WPR_2ND_KEY			0x53
 87#define RTC_WPR_WRONG_KEY		0xFF
 88
 89/* Max STM32 RTC register offset is 0x3FC */
 90#define UNDEF_REG			0xFFFF
 91
 92struct stm32_rtc;
 93
 94struct stm32_rtc_registers {
 95	u16 tr;
 96	u16 dr;
 97	u16 cr;
 98	u16 isr;
 99	u16 prer;
100	u16 alrmar;
101	u16 wpr;
102	u16 sr;
103	u16 scr;
104	u16 verr;
105};
106
107struct stm32_rtc_events {
108	u32 alra;
109};
110
111struct stm32_rtc_data {
112	const struct stm32_rtc_registers regs;
113	const struct stm32_rtc_events events;
114	void (*clear_events)(struct stm32_rtc *rtc, unsigned int flags);
115	bool has_pclk;
116	bool need_dbp;
117	bool has_wakeirq;
118};
119
120struct stm32_rtc {
121	struct rtc_device *rtc_dev;
122	void __iomem *base;
123	struct regmap *dbp;
124	unsigned int dbp_reg;
125	unsigned int dbp_mask;
126	struct clk *pclk;
127	struct clk *rtc_ck;
128	const struct stm32_rtc_data *data;
129	int irq_alarm;
130	int wakeirq_alarm;
131};
132
133static void stm32_rtc_wpr_unlock(struct stm32_rtc *rtc)
134{
135	const struct stm32_rtc_registers *regs = &rtc->data->regs;
136
137	writel_relaxed(RTC_WPR_1ST_KEY, rtc->base + regs->wpr);
138	writel_relaxed(RTC_WPR_2ND_KEY, rtc->base + regs->wpr);
139}
140
141static void stm32_rtc_wpr_lock(struct stm32_rtc *rtc)
142{
143	const struct stm32_rtc_registers *regs = &rtc->data->regs;
144
145	writel_relaxed(RTC_WPR_WRONG_KEY, rtc->base + regs->wpr);
146}
147
148static int stm32_rtc_enter_init_mode(struct stm32_rtc *rtc)
149{
150	const struct stm32_rtc_registers *regs = &rtc->data->regs;
151	unsigned int isr = readl_relaxed(rtc->base + regs->isr);
152
153	if (!(isr & STM32_RTC_ISR_INITF)) {
154		isr |= STM32_RTC_ISR_INIT;
155		writel_relaxed(isr, rtc->base + regs->isr);
156
157		/*
158		 * It takes around 2 rtc_ck clock cycles to enter in
159		 * initialization phase mode (and have INITF flag set). As
160		 * slowest rtc_ck frequency may be 32kHz and highest should be
161		 * 1MHz, we poll every 10 us with a timeout of 100ms.
162		 */
163		return readl_relaxed_poll_timeout_atomic(
164					rtc->base + regs->isr,
165					isr, (isr & STM32_RTC_ISR_INITF),
166					10, 100000);
167	}
168
169	return 0;
170}
171
172static void stm32_rtc_exit_init_mode(struct stm32_rtc *rtc)
173{
174	const struct stm32_rtc_registers *regs = &rtc->data->regs;
175	unsigned int isr = readl_relaxed(rtc->base + regs->isr);
176
177	isr &= ~STM32_RTC_ISR_INIT;
178	writel_relaxed(isr, rtc->base + regs->isr);
179}
180
181static int stm32_rtc_wait_sync(struct stm32_rtc *rtc)
182{
183	const struct stm32_rtc_registers *regs = &rtc->data->regs;
184	unsigned int isr = readl_relaxed(rtc->base + regs->isr);
185
186	isr &= ~STM32_RTC_ISR_RSF;
187	writel_relaxed(isr, rtc->base + regs->isr);
188
189	/*
190	 * Wait for RSF to be set to ensure the calendar registers are
191	 * synchronised, it takes around 2 rtc_ck clock cycles
192	 */
193	return readl_relaxed_poll_timeout_atomic(rtc->base + regs->isr,
194						 isr,
195						 (isr & STM32_RTC_ISR_RSF),
196						 10, 100000);
197}
198
199static void stm32_rtc_clear_event_flags(struct stm32_rtc *rtc,
200					unsigned int flags)
201{
202	rtc->data->clear_events(rtc, flags);
203}
204
205static irqreturn_t stm32_rtc_alarm_irq(int irq, void *dev_id)
206{
207	struct stm32_rtc *rtc = (struct stm32_rtc *)dev_id;
208	const struct stm32_rtc_registers *regs = &rtc->data->regs;
209	const struct stm32_rtc_events *evts = &rtc->data->events;
210	unsigned int status, cr;
211
212	mutex_lock(&rtc->rtc_dev->ops_lock);
213
214	status = readl_relaxed(rtc->base + regs->sr);
215	cr = readl_relaxed(rtc->base + regs->cr);
216
217	if ((status & evts->alra) &&
218	    (cr & STM32_RTC_CR_ALRAIE)) {
219		/* Alarm A flag - Alarm interrupt */
220		dev_dbg(&rtc->rtc_dev->dev, "Alarm occurred\n");
221
222		/* Pass event to the kernel */
223		rtc_update_irq(rtc->rtc_dev, 1, RTC_IRQF | RTC_AF);
224
225		/* Clear event flags, otherwise new events won't be received */
226		stm32_rtc_clear_event_flags(rtc, evts->alra);
 
227	}
228
229	mutex_unlock(&rtc->rtc_dev->ops_lock);
230
231	return IRQ_HANDLED;
232}
233
234/* Convert rtc_time structure from bin to bcd format */
235static void tm2bcd(struct rtc_time *tm)
236{
237	tm->tm_sec = bin2bcd(tm->tm_sec);
238	tm->tm_min = bin2bcd(tm->tm_min);
239	tm->tm_hour = bin2bcd(tm->tm_hour);
240
241	tm->tm_mday = bin2bcd(tm->tm_mday);
242	tm->tm_mon = bin2bcd(tm->tm_mon + 1);
243	tm->tm_year = bin2bcd(tm->tm_year - 100);
244	/*
245	 * Number of days since Sunday
246	 * - on kernel side, 0=Sunday...6=Saturday
247	 * - on rtc side, 0=invalid,1=Monday...7=Sunday
248	 */
249	tm->tm_wday = (!tm->tm_wday) ? 7 : tm->tm_wday;
250}
251
252/* Convert rtc_time structure from bcd to bin format */
253static void bcd2tm(struct rtc_time *tm)
254{
255	tm->tm_sec = bcd2bin(tm->tm_sec);
256	tm->tm_min = bcd2bin(tm->tm_min);
257	tm->tm_hour = bcd2bin(tm->tm_hour);
258
259	tm->tm_mday = bcd2bin(tm->tm_mday);
260	tm->tm_mon = bcd2bin(tm->tm_mon) - 1;
261	tm->tm_year = bcd2bin(tm->tm_year) + 100;
262	/*
263	 * Number of days since Sunday
264	 * - on kernel side, 0=Sunday...6=Saturday
265	 * - on rtc side, 0=invalid,1=Monday...7=Sunday
266	 */
267	tm->tm_wday %= 7;
268}
269
270static int stm32_rtc_read_time(struct device *dev, struct rtc_time *tm)
271{
272	struct stm32_rtc *rtc = dev_get_drvdata(dev);
273	const struct stm32_rtc_registers *regs = &rtc->data->regs;
274	unsigned int tr, dr;
275
276	/* Time and Date in BCD format */
277	tr = readl_relaxed(rtc->base + regs->tr);
278	dr = readl_relaxed(rtc->base + regs->dr);
279
280	tm->tm_sec = (tr & STM32_RTC_TR_SEC) >> STM32_RTC_TR_SEC_SHIFT;
281	tm->tm_min = (tr & STM32_RTC_TR_MIN) >> STM32_RTC_TR_MIN_SHIFT;
282	tm->tm_hour = (tr & STM32_RTC_TR_HOUR) >> STM32_RTC_TR_HOUR_SHIFT;
283
284	tm->tm_mday = (dr & STM32_RTC_DR_DATE) >> STM32_RTC_DR_DATE_SHIFT;
285	tm->tm_mon = (dr & STM32_RTC_DR_MONTH) >> STM32_RTC_DR_MONTH_SHIFT;
286	tm->tm_year = (dr & STM32_RTC_DR_YEAR) >> STM32_RTC_DR_YEAR_SHIFT;
287	tm->tm_wday = (dr & STM32_RTC_DR_WDAY) >> STM32_RTC_DR_WDAY_SHIFT;
288
289	/* We don't report tm_yday and tm_isdst */
290
291	bcd2tm(tm);
292
293	return 0;
294}
295
296static int stm32_rtc_set_time(struct device *dev, struct rtc_time *tm)
297{
298	struct stm32_rtc *rtc = dev_get_drvdata(dev);
299	const struct stm32_rtc_registers *regs = &rtc->data->regs;
300	unsigned int tr, dr;
301	int ret = 0;
302
303	tm2bcd(tm);
304
305	/* Time in BCD format */
306	tr = ((tm->tm_sec << STM32_RTC_TR_SEC_SHIFT) & STM32_RTC_TR_SEC) |
307	     ((tm->tm_min << STM32_RTC_TR_MIN_SHIFT) & STM32_RTC_TR_MIN) |
308	     ((tm->tm_hour << STM32_RTC_TR_HOUR_SHIFT) & STM32_RTC_TR_HOUR);
309
310	/* Date in BCD format */
311	dr = ((tm->tm_mday << STM32_RTC_DR_DATE_SHIFT) & STM32_RTC_DR_DATE) |
312	     ((tm->tm_mon << STM32_RTC_DR_MONTH_SHIFT) & STM32_RTC_DR_MONTH) |
313	     ((tm->tm_year << STM32_RTC_DR_YEAR_SHIFT) & STM32_RTC_DR_YEAR) |
314	     ((tm->tm_wday << STM32_RTC_DR_WDAY_SHIFT) & STM32_RTC_DR_WDAY);
315
316	stm32_rtc_wpr_unlock(rtc);
317
318	ret = stm32_rtc_enter_init_mode(rtc);
319	if (ret) {
320		dev_err(dev, "Can't enter in init mode. Set time aborted.\n");
321		goto end;
322	}
323
324	writel_relaxed(tr, rtc->base + regs->tr);
325	writel_relaxed(dr, rtc->base + regs->dr);
326
327	stm32_rtc_exit_init_mode(rtc);
328
329	ret = stm32_rtc_wait_sync(rtc);
330end:
331	stm32_rtc_wpr_lock(rtc);
332
333	return ret;
334}
335
336static int stm32_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
337{
338	struct stm32_rtc *rtc = dev_get_drvdata(dev);
339	const struct stm32_rtc_registers *regs = &rtc->data->regs;
340	const struct stm32_rtc_events *evts = &rtc->data->events;
341	struct rtc_time *tm = &alrm->time;
342	unsigned int alrmar, cr, status;
343
344	alrmar = readl_relaxed(rtc->base + regs->alrmar);
345	cr = readl_relaxed(rtc->base + regs->cr);
346	status = readl_relaxed(rtc->base + regs->sr);
347
348	if (alrmar & STM32_RTC_ALRMXR_DATE_MASK) {
349		/*
350		 * Date/day doesn't matter in Alarm comparison so alarm
351		 * triggers every day
352		 */
353		tm->tm_mday = -1;
354		tm->tm_wday = -1;
355	} else {
356		if (alrmar & STM32_RTC_ALRMXR_WDSEL) {
357			/* Alarm is set to a day of week */
358			tm->tm_mday = -1;
359			tm->tm_wday = (alrmar & STM32_RTC_ALRMXR_WDAY) >>
360				      STM32_RTC_ALRMXR_WDAY_SHIFT;
361			tm->tm_wday %= 7;
362		} else {
363			/* Alarm is set to a day of month */
364			tm->tm_wday = -1;
365			tm->tm_mday = (alrmar & STM32_RTC_ALRMXR_DATE) >>
366				       STM32_RTC_ALRMXR_DATE_SHIFT;
367		}
368	}
369
370	if (alrmar & STM32_RTC_ALRMXR_HOUR_MASK) {
371		/* Hours don't matter in Alarm comparison */
372		tm->tm_hour = -1;
373	} else {
374		tm->tm_hour = (alrmar & STM32_RTC_ALRMXR_HOUR) >>
375			       STM32_RTC_ALRMXR_HOUR_SHIFT;
376		if (alrmar & STM32_RTC_ALRMXR_PM)
377			tm->tm_hour += 12;
378	}
379
380	if (alrmar & STM32_RTC_ALRMXR_MIN_MASK) {
381		/* Minutes don't matter in Alarm comparison */
382		tm->tm_min = -1;
383	} else {
384		tm->tm_min = (alrmar & STM32_RTC_ALRMXR_MIN) >>
385			      STM32_RTC_ALRMXR_MIN_SHIFT;
386	}
387
388	if (alrmar & STM32_RTC_ALRMXR_SEC_MASK) {
389		/* Seconds don't matter in Alarm comparison */
390		tm->tm_sec = -1;
391	} else {
392		tm->tm_sec = (alrmar & STM32_RTC_ALRMXR_SEC) >>
393			      STM32_RTC_ALRMXR_SEC_SHIFT;
394	}
395
396	bcd2tm(tm);
397
398	alrm->enabled = (cr & STM32_RTC_CR_ALRAE) ? 1 : 0;
399	alrm->pending = (status & evts->alra) ? 1 : 0;
400
401	return 0;
402}
403
404static int stm32_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
405{
406	struct stm32_rtc *rtc = dev_get_drvdata(dev);
407	const struct stm32_rtc_registers *regs = &rtc->data->regs;
408	const struct stm32_rtc_events *evts = &rtc->data->events;
409	unsigned int cr;
410
411	cr = readl_relaxed(rtc->base + regs->cr);
412
413	stm32_rtc_wpr_unlock(rtc);
414
415	/* We expose Alarm A to the kernel */
416	if (enabled)
417		cr |= (STM32_RTC_CR_ALRAIE | STM32_RTC_CR_ALRAE);
418	else
419		cr &= ~(STM32_RTC_CR_ALRAIE | STM32_RTC_CR_ALRAE);
420	writel_relaxed(cr, rtc->base + regs->cr);
421
422	/* Clear event flags, otherwise new events won't be received */
423	stm32_rtc_clear_event_flags(rtc, evts->alra);
 
 
424
425	stm32_rtc_wpr_lock(rtc);
426
427	return 0;
428}
429
430static int stm32_rtc_valid_alrm(struct stm32_rtc *rtc, struct rtc_time *tm)
431{
432	const struct stm32_rtc_registers *regs = &rtc->data->regs;
433	int cur_day, cur_mon, cur_year, cur_hour, cur_min, cur_sec;
434	unsigned int dr = readl_relaxed(rtc->base + regs->dr);
435	unsigned int tr = readl_relaxed(rtc->base + regs->tr);
436
437	cur_day = (dr & STM32_RTC_DR_DATE) >> STM32_RTC_DR_DATE_SHIFT;
438	cur_mon = (dr & STM32_RTC_DR_MONTH) >> STM32_RTC_DR_MONTH_SHIFT;
439	cur_year = (dr & STM32_RTC_DR_YEAR) >> STM32_RTC_DR_YEAR_SHIFT;
440	cur_sec = (tr & STM32_RTC_TR_SEC) >> STM32_RTC_TR_SEC_SHIFT;
441	cur_min = (tr & STM32_RTC_TR_MIN) >> STM32_RTC_TR_MIN_SHIFT;
442	cur_hour = (tr & STM32_RTC_TR_HOUR) >> STM32_RTC_TR_HOUR_SHIFT;
443
444	/*
445	 * Assuming current date is M-D-Y H:M:S.
446	 * RTC alarm can't be set on a specific month and year.
447	 * So the valid alarm range is:
448	 *	M-D-Y H:M:S < alarm <= (M+1)-D-Y H:M:S
449	 * with a specific case for December...
450	 */
451	if ((((tm->tm_year > cur_year) &&
452	      (tm->tm_mon == 0x1) && (cur_mon == 0x12)) ||
453	     ((tm->tm_year == cur_year) &&
454	      (tm->tm_mon <= cur_mon + 1))) &&
455	    ((tm->tm_mday > cur_day) ||
456	     ((tm->tm_mday == cur_day) &&
457	     ((tm->tm_hour > cur_hour) ||
458	      ((tm->tm_hour == cur_hour) && (tm->tm_min > cur_min)) ||
459	      ((tm->tm_hour == cur_hour) && (tm->tm_min == cur_min) &&
460	       (tm->tm_sec >= cur_sec))))))
461		return 0;
462
463	return -EINVAL;
464}
465
466static int stm32_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
467{
468	struct stm32_rtc *rtc = dev_get_drvdata(dev);
469	const struct stm32_rtc_registers *regs = &rtc->data->regs;
470	struct rtc_time *tm = &alrm->time;
471	unsigned int cr, isr, alrmar;
472	int ret = 0;
473
474	tm2bcd(tm);
475
476	/*
477	 * RTC alarm can't be set on a specific date, unless this date is
478	 * up to the same day of month next month.
479	 */
480	if (stm32_rtc_valid_alrm(rtc, tm) < 0) {
481		dev_err(dev, "Alarm can be set only on upcoming month.\n");
482		return -EINVAL;
483	}
484
485	alrmar = 0;
486	/* tm_year and tm_mon are not used because not supported by RTC */
487	alrmar |= (tm->tm_mday << STM32_RTC_ALRMXR_DATE_SHIFT) &
488		  STM32_RTC_ALRMXR_DATE;
489	/* 24-hour format */
490	alrmar &= ~STM32_RTC_ALRMXR_PM;
491	alrmar |= (tm->tm_hour << STM32_RTC_ALRMXR_HOUR_SHIFT) &
492		  STM32_RTC_ALRMXR_HOUR;
493	alrmar |= (tm->tm_min << STM32_RTC_ALRMXR_MIN_SHIFT) &
494		  STM32_RTC_ALRMXR_MIN;
495	alrmar |= (tm->tm_sec << STM32_RTC_ALRMXR_SEC_SHIFT) &
496		  STM32_RTC_ALRMXR_SEC;
497
498	stm32_rtc_wpr_unlock(rtc);
499
500	/* Disable Alarm */
501	cr = readl_relaxed(rtc->base + regs->cr);
502	cr &= ~STM32_RTC_CR_ALRAE;
503	writel_relaxed(cr, rtc->base + regs->cr);
504
505	/*
506	 * Poll Alarm write flag to be sure that Alarm update is allowed: it
507	 * takes around 2 rtc_ck clock cycles
508	 */
509	ret = readl_relaxed_poll_timeout_atomic(rtc->base + regs->isr,
510						isr,
511						(isr & STM32_RTC_ISR_ALRAWF),
512						10, 100000);
513
514	if (ret) {
515		dev_err(dev, "Alarm update not allowed\n");
516		goto end;
517	}
518
519	/* Write to Alarm register */
520	writel_relaxed(alrmar, rtc->base + regs->alrmar);
 
 
 
 
 
521
522	stm32_rtc_alarm_irq_enable(dev, alrm->enabled);
523end:
524	stm32_rtc_wpr_lock(rtc);
525
526	return ret;
527}
528
529static const struct rtc_class_ops stm32_rtc_ops = {
530	.read_time	= stm32_rtc_read_time,
531	.set_time	= stm32_rtc_set_time,
532	.read_alarm	= stm32_rtc_read_alarm,
533	.set_alarm	= stm32_rtc_set_alarm,
534	.alarm_irq_enable = stm32_rtc_alarm_irq_enable,
535};
536
537static void stm32_rtc_clear_events(struct stm32_rtc *rtc,
538				   unsigned int flags)
539{
540	const struct stm32_rtc_registers *regs = &rtc->data->regs;
541
542	/* Flags are cleared by writing 0 in RTC_ISR */
543	writel_relaxed(readl_relaxed(rtc->base + regs->isr) & ~flags,
544		       rtc->base + regs->isr);
545}
546
547static const struct stm32_rtc_data stm32_rtc_data = {
548	.has_pclk = false,
549	.need_dbp = true,
550	.has_wakeirq = false,
551	.regs = {
552		.tr = 0x00,
553		.dr = 0x04,
554		.cr = 0x08,
555		.isr = 0x0C,
556		.prer = 0x10,
557		.alrmar = 0x1C,
558		.wpr = 0x24,
559		.sr = 0x0C, /* set to ISR offset to ease alarm management */
560		.scr = UNDEF_REG,
561		.verr = UNDEF_REG,
562	},
563	.events = {
564		.alra = STM32_RTC_ISR_ALRAF,
565	},
566	.clear_events = stm32_rtc_clear_events,
567};
568
569static const struct stm32_rtc_data stm32h7_rtc_data = {
570	.has_pclk = true,
571	.need_dbp = true,
572	.has_wakeirq = false,
573	.regs = {
574		.tr = 0x00,
575		.dr = 0x04,
576		.cr = 0x08,
577		.isr = 0x0C,
578		.prer = 0x10,
579		.alrmar = 0x1C,
580		.wpr = 0x24,
581		.sr = 0x0C, /* set to ISR offset to ease alarm management */
582		.scr = UNDEF_REG,
583		.verr = UNDEF_REG,
584	},
585	.events = {
586		.alra = STM32_RTC_ISR_ALRAF,
587	},
588	.clear_events = stm32_rtc_clear_events,
589};
590
591static void stm32mp1_rtc_clear_events(struct stm32_rtc *rtc,
592				      unsigned int flags)
593{
594	struct stm32_rtc_registers regs = rtc->data->regs;
595
596	/* Flags are cleared by writing 1 in RTC_SCR */
597	writel_relaxed(flags, rtc->base + regs.scr);
598}
599
600static const struct stm32_rtc_data stm32mp1_data = {
601	.has_pclk = true,
602	.need_dbp = false,
603	.has_wakeirq = true,
604	.regs = {
605		.tr = 0x00,
606		.dr = 0x04,
607		.cr = 0x18,
608		.isr = 0x0C, /* named RTC_ICSR on stm32mp1 */
609		.prer = 0x10,
610		.alrmar = 0x40,
611		.wpr = 0x24,
612		.sr = 0x50,
613		.scr = 0x5C,
614		.verr = 0x3F4,
615	},
616	.events = {
617		.alra = STM32_RTC_SR_ALRA,
618	},
619	.clear_events = stm32mp1_rtc_clear_events,
620};
621
622static const struct of_device_id stm32_rtc_of_match[] = {
623	{ .compatible = "st,stm32-rtc", .data = &stm32_rtc_data },
624	{ .compatible = "st,stm32h7-rtc", .data = &stm32h7_rtc_data },
625	{ .compatible = "st,stm32mp1-rtc", .data = &stm32mp1_data },
626	{}
627};
628MODULE_DEVICE_TABLE(of, stm32_rtc_of_match);
629
630static int stm32_rtc_init(struct platform_device *pdev,
631			  struct stm32_rtc *rtc)
632{
633	const struct stm32_rtc_registers *regs = &rtc->data->regs;
634	unsigned int prer, pred_a, pred_s, pred_a_max, pred_s_max, cr;
635	unsigned int rate;
636	int ret = 0;
637
638	rate = clk_get_rate(rtc->rtc_ck);
639
640	/* Find prediv_a and prediv_s to obtain the 1Hz calendar clock */
641	pred_a_max = STM32_RTC_PRER_PRED_A >> STM32_RTC_PRER_PRED_A_SHIFT;
642	pred_s_max = STM32_RTC_PRER_PRED_S >> STM32_RTC_PRER_PRED_S_SHIFT;
643
644	for (pred_a = pred_a_max; pred_a + 1 > 0; pred_a--) {
645		pred_s = (rate / (pred_a + 1)) - 1;
646
647		if (((pred_s + 1) * (pred_a + 1)) == rate)
648			break;
649	}
650
651	/*
652	 * Can't find a 1Hz, so give priority to RTC power consumption
653	 * by choosing the higher possible value for prediv_a
654	 */
655	if ((pred_s > pred_s_max) || (pred_a > pred_a_max)) {
656		pred_a = pred_a_max;
657		pred_s = (rate / (pred_a + 1)) - 1;
658
659		dev_warn(&pdev->dev, "rtc_ck is %s\n",
660			 (rate < ((pred_a + 1) * (pred_s + 1))) ?
661			 "fast" : "slow");
662	}
663
664	stm32_rtc_wpr_unlock(rtc);
665
666	ret = stm32_rtc_enter_init_mode(rtc);
667	if (ret) {
668		dev_err(&pdev->dev,
669			"Can't enter in init mode. Prescaler config failed.\n");
670		goto end;
671	}
672
673	prer = (pred_s << STM32_RTC_PRER_PRED_S_SHIFT) & STM32_RTC_PRER_PRED_S;
674	writel_relaxed(prer, rtc->base + regs->prer);
675	prer |= (pred_a << STM32_RTC_PRER_PRED_A_SHIFT) & STM32_RTC_PRER_PRED_A;
676	writel_relaxed(prer, rtc->base + regs->prer);
677
678	/* Force 24h time format */
679	cr = readl_relaxed(rtc->base + regs->cr);
680	cr &= ~STM32_RTC_CR_FMT;
681	writel_relaxed(cr, rtc->base + regs->cr);
682
683	stm32_rtc_exit_init_mode(rtc);
684
685	ret = stm32_rtc_wait_sync(rtc);
686end:
687	stm32_rtc_wpr_lock(rtc);
688
689	return ret;
690}
691
692static int stm32_rtc_probe(struct platform_device *pdev)
693{
694	struct stm32_rtc *rtc;
695	const struct stm32_rtc_registers *regs;
 
696	int ret;
697
698	rtc = devm_kzalloc(&pdev->dev, sizeof(*rtc), GFP_KERNEL);
699	if (!rtc)
700		return -ENOMEM;
701
702	rtc->base = devm_platform_ioremap_resource(pdev, 0);
 
703	if (IS_ERR(rtc->base))
704		return PTR_ERR(rtc->base);
705
706	rtc->data = (struct stm32_rtc_data *)
707		    of_device_get_match_data(&pdev->dev);
708	regs = &rtc->data->regs;
709
710	if (rtc->data->need_dbp) {
711		rtc->dbp = syscon_regmap_lookup_by_phandle(pdev->dev.of_node,
712							   "st,syscfg");
713		if (IS_ERR(rtc->dbp)) {
714			dev_err(&pdev->dev, "no st,syscfg\n");
715			return PTR_ERR(rtc->dbp);
716		}
717
718		ret = of_property_read_u32_index(pdev->dev.of_node, "st,syscfg",
719						 1, &rtc->dbp_reg);
720		if (ret) {
721			dev_err(&pdev->dev, "can't read DBP register offset\n");
722			return ret;
723		}
724
725		ret = of_property_read_u32_index(pdev->dev.of_node, "st,syscfg",
726						 2, &rtc->dbp_mask);
727		if (ret) {
728			dev_err(&pdev->dev, "can't read DBP register mask\n");
729			return ret;
730		}
731	}
732
 
 
 
733	if (!rtc->data->has_pclk) {
734		rtc->pclk = NULL;
735		rtc->rtc_ck = devm_clk_get(&pdev->dev, NULL);
736	} else {
737		rtc->pclk = devm_clk_get(&pdev->dev, "pclk");
738		if (IS_ERR(rtc->pclk)) {
739			dev_err(&pdev->dev, "no pclk clock");
740			return PTR_ERR(rtc->pclk);
741		}
742		rtc->rtc_ck = devm_clk_get(&pdev->dev, "rtc_ck");
743	}
744	if (IS_ERR(rtc->rtc_ck)) {
745		dev_err(&pdev->dev, "no rtc_ck clock");
746		return PTR_ERR(rtc->rtc_ck);
747	}
748
749	if (rtc->data->has_pclk) {
750		ret = clk_prepare_enable(rtc->pclk);
751		if (ret)
752			return ret;
753	}
754
755	ret = clk_prepare_enable(rtc->rtc_ck);
756	if (ret)
757		goto err;
758
759	if (rtc->data->need_dbp)
760		regmap_update_bits(rtc->dbp, rtc->dbp_reg,
761				   rtc->dbp_mask, rtc->dbp_mask);
762
763	/*
764	 * After a system reset, RTC_ISR.INITS flag can be read to check if
765	 * the calendar has been initialized or not. INITS flag is reset by a
766	 * power-on reset (no vbat, no power-supply). It is not reset if
767	 * rtc_ck parent clock has changed (so RTC prescalers need to be
768	 * changed). That's why we cannot rely on this flag to know if RTC
769	 * init has to be done.
770	 */
771	ret = stm32_rtc_init(pdev, rtc);
772	if (ret)
773		goto err;
774
775	rtc->irq_alarm = platform_get_irq(pdev, 0);
776	if (rtc->irq_alarm <= 0) {
 
777		ret = rtc->irq_alarm;
778		goto err;
779	}
780
 
 
781	ret = device_init_wakeup(&pdev->dev, true);
782	if (rtc->data->has_wakeirq) {
783		rtc->wakeirq_alarm = platform_get_irq(pdev, 1);
784		if (rtc->wakeirq_alarm > 0) {
785			ret = dev_pm_set_dedicated_wake_irq(&pdev->dev,
786							    rtc->wakeirq_alarm);
787		} else {
788			ret = rtc->wakeirq_alarm;
789			if (rtc->wakeirq_alarm == -EPROBE_DEFER)
790				goto err;
791		}
792	}
793	if (ret)
794		dev_warn(&pdev->dev, "alarm can't wake up the system: %d", ret);
795
796	platform_set_drvdata(pdev, rtc);
797
798	rtc->rtc_dev = devm_rtc_device_register(&pdev->dev, pdev->name,
799						&stm32_rtc_ops, THIS_MODULE);
800	if (IS_ERR(rtc->rtc_dev)) {
801		ret = PTR_ERR(rtc->rtc_dev);
802		dev_err(&pdev->dev, "rtc device registration failed, err=%d\n",
803			ret);
804		goto err;
805	}
806
807	/* Handle RTC alarm interrupts */
808	ret = devm_request_threaded_irq(&pdev->dev, rtc->irq_alarm, NULL,
809					stm32_rtc_alarm_irq, IRQF_ONESHOT,
 
810					pdev->name, rtc);
811	if (ret) {
812		dev_err(&pdev->dev, "IRQ%d (alarm interrupt) already claimed\n",
813			rtc->irq_alarm);
814		goto err;
815	}
816
817	/*
818	 * If INITS flag is reset (calendar year field set to 0x00), calendar
819	 * must be initialized
820	 */
821	if (!(readl_relaxed(rtc->base + regs->isr) & STM32_RTC_ISR_INITS))
822		dev_warn(&pdev->dev, "Date/Time must be initialized\n");
823
824	if (regs->verr != UNDEF_REG) {
825		u32 ver = readl_relaxed(rtc->base + regs->verr);
826
827		dev_info(&pdev->dev, "registered rev:%d.%d\n",
828			 (ver >> STM32_RTC_VERR_MAJREV_SHIFT) & 0xF,
829			 (ver >> STM32_RTC_VERR_MINREV_SHIFT) & 0xF);
830	}
831
832	return 0;
833err:
834	if (rtc->data->has_pclk)
835		clk_disable_unprepare(rtc->pclk);
836	clk_disable_unprepare(rtc->rtc_ck);
837
838	if (rtc->data->need_dbp)
839		regmap_update_bits(rtc->dbp, rtc->dbp_reg, rtc->dbp_mask, 0);
840
841	dev_pm_clear_wake_irq(&pdev->dev);
842	device_init_wakeup(&pdev->dev, false);
843
844	return ret;
845}
846
847static int stm32_rtc_remove(struct platform_device *pdev)
848{
849	struct stm32_rtc *rtc = platform_get_drvdata(pdev);
850	const struct stm32_rtc_registers *regs = &rtc->data->regs;
851	unsigned int cr;
852
853	/* Disable interrupts */
854	stm32_rtc_wpr_unlock(rtc);
855	cr = readl_relaxed(rtc->base + regs->cr);
856	cr &= ~STM32_RTC_CR_ALRAIE;
857	writel_relaxed(cr, rtc->base + regs->cr);
858	stm32_rtc_wpr_lock(rtc);
859
860	clk_disable_unprepare(rtc->rtc_ck);
861	if (rtc->data->has_pclk)
862		clk_disable_unprepare(rtc->pclk);
863
864	/* Enable backup domain write protection if needed */
865	if (rtc->data->need_dbp)
866		regmap_update_bits(rtc->dbp, rtc->dbp_reg, rtc->dbp_mask, 0);
867
868	dev_pm_clear_wake_irq(&pdev->dev);
869	device_init_wakeup(&pdev->dev, false);
870
871	return 0;
872}
873
874#ifdef CONFIG_PM_SLEEP
875static int stm32_rtc_suspend(struct device *dev)
876{
877	struct stm32_rtc *rtc = dev_get_drvdata(dev);
878
879	if (rtc->data->has_pclk)
880		clk_disable_unprepare(rtc->pclk);
881
882	if (device_may_wakeup(dev))
883		return enable_irq_wake(rtc->irq_alarm);
884
885	return 0;
886}
887
888static int stm32_rtc_resume(struct device *dev)
889{
890	struct stm32_rtc *rtc = dev_get_drvdata(dev);
891	int ret = 0;
892
893	if (rtc->data->has_pclk) {
894		ret = clk_prepare_enable(rtc->pclk);
895		if (ret)
896			return ret;
897	}
898
899	ret = stm32_rtc_wait_sync(rtc);
900	if (ret < 0) {
901		if (rtc->data->has_pclk)
902			clk_disable_unprepare(rtc->pclk);
903		return ret;
904	}
905
906	if (device_may_wakeup(dev))
907		return disable_irq_wake(rtc->irq_alarm);
908
909	return ret;
910}
911#endif
912
913static SIMPLE_DEV_PM_OPS(stm32_rtc_pm_ops,
914			 stm32_rtc_suspend, stm32_rtc_resume);
915
916static struct platform_driver stm32_rtc_driver = {
917	.probe		= stm32_rtc_probe,
918	.remove		= stm32_rtc_remove,
919	.driver		= {
920		.name	= DRIVER_NAME,
921		.pm	= &stm32_rtc_pm_ops,
922		.of_match_table = stm32_rtc_of_match,
923	},
924};
925
926module_platform_driver(stm32_rtc_driver);
927
928MODULE_ALIAS("platform:" DRIVER_NAME);
929MODULE_AUTHOR("Amelie Delaunay <amelie.delaunay@st.com>");
930MODULE_DESCRIPTION("STMicroelectronics STM32 Real Time Clock driver");
931MODULE_LICENSE("GPL v2");
v4.17
 
  1/*
  2 * Copyright (C) STMicroelectronics SA 2017
  3 * Author:  Amelie Delaunay <amelie.delaunay@st.com> for STMicroelectronics.
  4 * License terms:  GNU General Public License (GPL), version 2
  5 */
  6
  7#include <linux/bcd.h>
  8#include <linux/clk.h>
  9#include <linux/iopoll.h>
 10#include <linux/ioport.h>
 11#include <linux/mfd/syscon.h>
 12#include <linux/module.h>
 13#include <linux/of_device.h>
 
 14#include <linux/regmap.h>
 15#include <linux/rtc.h>
 16
 17#define DRIVER_NAME "stm32_rtc"
 18
 19/* STM32 RTC registers */
 20#define STM32_RTC_TR		0x00
 21#define STM32_RTC_DR		0x04
 22#define STM32_RTC_CR		0x08
 23#define STM32_RTC_ISR		0x0C
 24#define STM32_RTC_PRER		0x10
 25#define STM32_RTC_ALRMAR	0x1C
 26#define STM32_RTC_WPR		0x24
 27
 28/* STM32_RTC_TR bit fields  */
 29#define STM32_RTC_TR_SEC_SHIFT		0
 30#define STM32_RTC_TR_SEC		GENMASK(6, 0)
 31#define STM32_RTC_TR_MIN_SHIFT		8
 32#define STM32_RTC_TR_MIN		GENMASK(14, 8)
 33#define STM32_RTC_TR_HOUR_SHIFT		16
 34#define STM32_RTC_TR_HOUR		GENMASK(21, 16)
 35
 36/* STM32_RTC_DR bit fields */
 37#define STM32_RTC_DR_DATE_SHIFT		0
 38#define STM32_RTC_DR_DATE		GENMASK(5, 0)
 39#define STM32_RTC_DR_MONTH_SHIFT	8
 40#define STM32_RTC_DR_MONTH		GENMASK(12, 8)
 41#define STM32_RTC_DR_WDAY_SHIFT		13
 42#define STM32_RTC_DR_WDAY		GENMASK(15, 13)
 43#define STM32_RTC_DR_YEAR_SHIFT		16
 44#define STM32_RTC_DR_YEAR		GENMASK(23, 16)
 45
 46/* STM32_RTC_CR bit fields */
 47#define STM32_RTC_CR_FMT		BIT(6)
 48#define STM32_RTC_CR_ALRAE		BIT(8)
 49#define STM32_RTC_CR_ALRAIE		BIT(12)
 50
 51/* STM32_RTC_ISR bit fields */
 52#define STM32_RTC_ISR_ALRAWF		BIT(0)
 53#define STM32_RTC_ISR_INITS		BIT(4)
 54#define STM32_RTC_ISR_RSF		BIT(5)
 55#define STM32_RTC_ISR_INITF		BIT(6)
 56#define STM32_RTC_ISR_INIT		BIT(7)
 57#define STM32_RTC_ISR_ALRAF		BIT(8)
 58
 59/* STM32_RTC_PRER bit fields */
 60#define STM32_RTC_PRER_PRED_S_SHIFT	0
 61#define STM32_RTC_PRER_PRED_S		GENMASK(14, 0)
 62#define STM32_RTC_PRER_PRED_A_SHIFT	16
 63#define STM32_RTC_PRER_PRED_A		GENMASK(22, 16)
 64
 65/* STM32_RTC_ALRMAR and STM32_RTC_ALRMBR bit fields */
 66#define STM32_RTC_ALRMXR_SEC_SHIFT	0
 67#define STM32_RTC_ALRMXR_SEC		GENMASK(6, 0)
 68#define STM32_RTC_ALRMXR_SEC_MASK	BIT(7)
 69#define STM32_RTC_ALRMXR_MIN_SHIFT	8
 70#define STM32_RTC_ALRMXR_MIN		GENMASK(14, 8)
 71#define STM32_RTC_ALRMXR_MIN_MASK	BIT(15)
 72#define STM32_RTC_ALRMXR_HOUR_SHIFT	16
 73#define STM32_RTC_ALRMXR_HOUR		GENMASK(21, 16)
 74#define STM32_RTC_ALRMXR_PM		BIT(22)
 75#define STM32_RTC_ALRMXR_HOUR_MASK	BIT(23)
 76#define STM32_RTC_ALRMXR_DATE_SHIFT	24
 77#define STM32_RTC_ALRMXR_DATE		GENMASK(29, 24)
 78#define STM32_RTC_ALRMXR_WDSEL		BIT(30)
 79#define STM32_RTC_ALRMXR_WDAY_SHIFT	24
 80#define STM32_RTC_ALRMXR_WDAY		GENMASK(27, 24)
 81#define STM32_RTC_ALRMXR_DATE_MASK	BIT(31)
 82
 
 
 
 
 
 
 
 
 
 83/* STM32_RTC_WPR key constants */
 84#define RTC_WPR_1ST_KEY			0xCA
 85#define RTC_WPR_2ND_KEY			0x53
 86#define RTC_WPR_WRONG_KEY		0xFF
 87
 88/*
 89 * RTC registers are protected against parasitic write access.
 90 * PWR_CR_DBP bit must be set to enable write access to RTC registers.
 91 */
 92/* STM32_PWR_CR */
 93#define PWR_CR				0x00
 94/* STM32_PWR_CR bit field */
 95#define PWR_CR_DBP			BIT(8)
 
 
 
 
 
 
 
 
 
 
 
 
 
 96
 97struct stm32_rtc_data {
 
 
 
 98	bool has_pclk;
 
 
 99};
100
101struct stm32_rtc {
102	struct rtc_device *rtc_dev;
103	void __iomem *base;
104	struct regmap *dbp;
105	struct stm32_rtc_data *data;
 
106	struct clk *pclk;
107	struct clk *rtc_ck;
 
108	int irq_alarm;
 
109};
110
111static void stm32_rtc_wpr_unlock(struct stm32_rtc *rtc)
112{
113	writel_relaxed(RTC_WPR_1ST_KEY, rtc->base + STM32_RTC_WPR);
114	writel_relaxed(RTC_WPR_2ND_KEY, rtc->base + STM32_RTC_WPR);
 
 
115}
116
117static void stm32_rtc_wpr_lock(struct stm32_rtc *rtc)
118{
119	writel_relaxed(RTC_WPR_WRONG_KEY, rtc->base + STM32_RTC_WPR);
 
 
120}
121
122static int stm32_rtc_enter_init_mode(struct stm32_rtc *rtc)
123{
124	unsigned int isr = readl_relaxed(rtc->base + STM32_RTC_ISR);
 
125
126	if (!(isr & STM32_RTC_ISR_INITF)) {
127		isr |= STM32_RTC_ISR_INIT;
128		writel_relaxed(isr, rtc->base + STM32_RTC_ISR);
129
130		/*
131		 * It takes around 2 rtc_ck clock cycles to enter in
132		 * initialization phase mode (and have INITF flag set). As
133		 * slowest rtc_ck frequency may be 32kHz and highest should be
134		 * 1MHz, we poll every 10 us with a timeout of 100ms.
135		 */
136		return readl_relaxed_poll_timeout_atomic(
137					rtc->base + STM32_RTC_ISR,
138					isr, (isr & STM32_RTC_ISR_INITF),
139					10, 100000);
140	}
141
142	return 0;
143}
144
145static void stm32_rtc_exit_init_mode(struct stm32_rtc *rtc)
146{
147	unsigned int isr = readl_relaxed(rtc->base + STM32_RTC_ISR);
 
148
149	isr &= ~STM32_RTC_ISR_INIT;
150	writel_relaxed(isr, rtc->base + STM32_RTC_ISR);
151}
152
153static int stm32_rtc_wait_sync(struct stm32_rtc *rtc)
154{
155	unsigned int isr = readl_relaxed(rtc->base + STM32_RTC_ISR);
 
156
157	isr &= ~STM32_RTC_ISR_RSF;
158	writel_relaxed(isr, rtc->base + STM32_RTC_ISR);
159
160	/*
161	 * Wait for RSF to be set to ensure the calendar registers are
162	 * synchronised, it takes around 2 rtc_ck clock cycles
163	 */
164	return readl_relaxed_poll_timeout_atomic(rtc->base + STM32_RTC_ISR,
165						 isr,
166						 (isr & STM32_RTC_ISR_RSF),
167						 10, 100000);
168}
169
 
 
 
 
 
 
170static irqreturn_t stm32_rtc_alarm_irq(int irq, void *dev_id)
171{
172	struct stm32_rtc *rtc = (struct stm32_rtc *)dev_id;
173	unsigned int isr, cr;
 
 
174
175	mutex_lock(&rtc->rtc_dev->ops_lock);
176
177	isr = readl_relaxed(rtc->base + STM32_RTC_ISR);
178	cr = readl_relaxed(rtc->base + STM32_RTC_CR);
179
180	if ((isr & STM32_RTC_ISR_ALRAF) &&
181	    (cr & STM32_RTC_CR_ALRAIE)) {
182		/* Alarm A flag - Alarm interrupt */
183		dev_dbg(&rtc->rtc_dev->dev, "Alarm occurred\n");
184
185		/* Pass event to the kernel */
186		rtc_update_irq(rtc->rtc_dev, 1, RTC_IRQF | RTC_AF);
187
188		/* Clear event flag, otherwise new events won't be received */
189		writel_relaxed(isr & ~STM32_RTC_ISR_ALRAF,
190			       rtc->base + STM32_RTC_ISR);
191	}
192
193	mutex_unlock(&rtc->rtc_dev->ops_lock);
194
195	return IRQ_HANDLED;
196}
197
198/* Convert rtc_time structure from bin to bcd format */
199static void tm2bcd(struct rtc_time *tm)
200{
201	tm->tm_sec = bin2bcd(tm->tm_sec);
202	tm->tm_min = bin2bcd(tm->tm_min);
203	tm->tm_hour = bin2bcd(tm->tm_hour);
204
205	tm->tm_mday = bin2bcd(tm->tm_mday);
206	tm->tm_mon = bin2bcd(tm->tm_mon + 1);
207	tm->tm_year = bin2bcd(tm->tm_year - 100);
208	/*
209	 * Number of days since Sunday
210	 * - on kernel side, 0=Sunday...6=Saturday
211	 * - on rtc side, 0=invalid,1=Monday...7=Sunday
212	 */
213	tm->tm_wday = (!tm->tm_wday) ? 7 : tm->tm_wday;
214}
215
216/* Convert rtc_time structure from bcd to bin format */
217static void bcd2tm(struct rtc_time *tm)
218{
219	tm->tm_sec = bcd2bin(tm->tm_sec);
220	tm->tm_min = bcd2bin(tm->tm_min);
221	tm->tm_hour = bcd2bin(tm->tm_hour);
222
223	tm->tm_mday = bcd2bin(tm->tm_mday);
224	tm->tm_mon = bcd2bin(tm->tm_mon) - 1;
225	tm->tm_year = bcd2bin(tm->tm_year) + 100;
226	/*
227	 * Number of days since Sunday
228	 * - on kernel side, 0=Sunday...6=Saturday
229	 * - on rtc side, 0=invalid,1=Monday...7=Sunday
230	 */
231	tm->tm_wday %= 7;
232}
233
234static int stm32_rtc_read_time(struct device *dev, struct rtc_time *tm)
235{
236	struct stm32_rtc *rtc = dev_get_drvdata(dev);
 
237	unsigned int tr, dr;
238
239	/* Time and Date in BCD format */
240	tr = readl_relaxed(rtc->base + STM32_RTC_TR);
241	dr = readl_relaxed(rtc->base + STM32_RTC_DR);
242
243	tm->tm_sec = (tr & STM32_RTC_TR_SEC) >> STM32_RTC_TR_SEC_SHIFT;
244	tm->tm_min = (tr & STM32_RTC_TR_MIN) >> STM32_RTC_TR_MIN_SHIFT;
245	tm->tm_hour = (tr & STM32_RTC_TR_HOUR) >> STM32_RTC_TR_HOUR_SHIFT;
246
247	tm->tm_mday = (dr & STM32_RTC_DR_DATE) >> STM32_RTC_DR_DATE_SHIFT;
248	tm->tm_mon = (dr & STM32_RTC_DR_MONTH) >> STM32_RTC_DR_MONTH_SHIFT;
249	tm->tm_year = (dr & STM32_RTC_DR_YEAR) >> STM32_RTC_DR_YEAR_SHIFT;
250	tm->tm_wday = (dr & STM32_RTC_DR_WDAY) >> STM32_RTC_DR_WDAY_SHIFT;
251
252	/* We don't report tm_yday and tm_isdst */
253
254	bcd2tm(tm);
255
256	return 0;
257}
258
259static int stm32_rtc_set_time(struct device *dev, struct rtc_time *tm)
260{
261	struct stm32_rtc *rtc = dev_get_drvdata(dev);
 
262	unsigned int tr, dr;
263	int ret = 0;
264
265	tm2bcd(tm);
266
267	/* Time in BCD format */
268	tr = ((tm->tm_sec << STM32_RTC_TR_SEC_SHIFT) & STM32_RTC_TR_SEC) |
269	     ((tm->tm_min << STM32_RTC_TR_MIN_SHIFT) & STM32_RTC_TR_MIN) |
270	     ((tm->tm_hour << STM32_RTC_TR_HOUR_SHIFT) & STM32_RTC_TR_HOUR);
271
272	/* Date in BCD format */
273	dr = ((tm->tm_mday << STM32_RTC_DR_DATE_SHIFT) & STM32_RTC_DR_DATE) |
274	     ((tm->tm_mon << STM32_RTC_DR_MONTH_SHIFT) & STM32_RTC_DR_MONTH) |
275	     ((tm->tm_year << STM32_RTC_DR_YEAR_SHIFT) & STM32_RTC_DR_YEAR) |
276	     ((tm->tm_wday << STM32_RTC_DR_WDAY_SHIFT) & STM32_RTC_DR_WDAY);
277
278	stm32_rtc_wpr_unlock(rtc);
279
280	ret = stm32_rtc_enter_init_mode(rtc);
281	if (ret) {
282		dev_err(dev, "Can't enter in init mode. Set time aborted.\n");
283		goto end;
284	}
285
286	writel_relaxed(tr, rtc->base + STM32_RTC_TR);
287	writel_relaxed(dr, rtc->base + STM32_RTC_DR);
288
289	stm32_rtc_exit_init_mode(rtc);
290
291	ret = stm32_rtc_wait_sync(rtc);
292end:
293	stm32_rtc_wpr_lock(rtc);
294
295	return ret;
296}
297
298static int stm32_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
299{
300	struct stm32_rtc *rtc = dev_get_drvdata(dev);
 
 
301	struct rtc_time *tm = &alrm->time;
302	unsigned int alrmar, cr, isr;
303
304	alrmar = readl_relaxed(rtc->base + STM32_RTC_ALRMAR);
305	cr = readl_relaxed(rtc->base + STM32_RTC_CR);
306	isr = readl_relaxed(rtc->base + STM32_RTC_ISR);
307
308	if (alrmar & STM32_RTC_ALRMXR_DATE_MASK) {
309		/*
310		 * Date/day doesn't matter in Alarm comparison so alarm
311		 * triggers every day
312		 */
313		tm->tm_mday = -1;
314		tm->tm_wday = -1;
315	} else {
316		if (alrmar & STM32_RTC_ALRMXR_WDSEL) {
317			/* Alarm is set to a day of week */
318			tm->tm_mday = -1;
319			tm->tm_wday = (alrmar & STM32_RTC_ALRMXR_WDAY) >>
320				      STM32_RTC_ALRMXR_WDAY_SHIFT;
321			tm->tm_wday %= 7;
322		} else {
323			/* Alarm is set to a day of month */
324			tm->tm_wday = -1;
325			tm->tm_mday = (alrmar & STM32_RTC_ALRMXR_DATE) >>
326				       STM32_RTC_ALRMXR_DATE_SHIFT;
327		}
328	}
329
330	if (alrmar & STM32_RTC_ALRMXR_HOUR_MASK) {
331		/* Hours don't matter in Alarm comparison */
332		tm->tm_hour = -1;
333	} else {
334		tm->tm_hour = (alrmar & STM32_RTC_ALRMXR_HOUR) >>
335			       STM32_RTC_ALRMXR_HOUR_SHIFT;
336		if (alrmar & STM32_RTC_ALRMXR_PM)
337			tm->tm_hour += 12;
338	}
339
340	if (alrmar & STM32_RTC_ALRMXR_MIN_MASK) {
341		/* Minutes don't matter in Alarm comparison */
342		tm->tm_min = -1;
343	} else {
344		tm->tm_min = (alrmar & STM32_RTC_ALRMXR_MIN) >>
345			      STM32_RTC_ALRMXR_MIN_SHIFT;
346	}
347
348	if (alrmar & STM32_RTC_ALRMXR_SEC_MASK) {
349		/* Seconds don't matter in Alarm comparison */
350		tm->tm_sec = -1;
351	} else {
352		tm->tm_sec = (alrmar & STM32_RTC_ALRMXR_SEC) >>
353			      STM32_RTC_ALRMXR_SEC_SHIFT;
354	}
355
356	bcd2tm(tm);
357
358	alrm->enabled = (cr & STM32_RTC_CR_ALRAE) ? 1 : 0;
359	alrm->pending = (isr & STM32_RTC_ISR_ALRAF) ? 1 : 0;
360
361	return 0;
362}
363
364static int stm32_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
365{
366	struct stm32_rtc *rtc = dev_get_drvdata(dev);
367	unsigned int isr, cr;
 
 
368
369	cr = readl_relaxed(rtc->base + STM32_RTC_CR);
370
371	stm32_rtc_wpr_unlock(rtc);
372
373	/* We expose Alarm A to the kernel */
374	if (enabled)
375		cr |= (STM32_RTC_CR_ALRAIE | STM32_RTC_CR_ALRAE);
376	else
377		cr &= ~(STM32_RTC_CR_ALRAIE | STM32_RTC_CR_ALRAE);
378	writel_relaxed(cr, rtc->base + STM32_RTC_CR);
379
380	/* Clear event flag, otherwise new events won't be received */
381	isr = readl_relaxed(rtc->base + STM32_RTC_ISR);
382	isr &= ~STM32_RTC_ISR_ALRAF;
383	writel_relaxed(isr, rtc->base + STM32_RTC_ISR);
384
385	stm32_rtc_wpr_lock(rtc);
386
387	return 0;
388}
389
390static int stm32_rtc_valid_alrm(struct stm32_rtc *rtc, struct rtc_time *tm)
391{
 
392	int cur_day, cur_mon, cur_year, cur_hour, cur_min, cur_sec;
393	unsigned int dr = readl_relaxed(rtc->base + STM32_RTC_DR);
394	unsigned int tr = readl_relaxed(rtc->base + STM32_RTC_TR);
395
396	cur_day = (dr & STM32_RTC_DR_DATE) >> STM32_RTC_DR_DATE_SHIFT;
397	cur_mon = (dr & STM32_RTC_DR_MONTH) >> STM32_RTC_DR_MONTH_SHIFT;
398	cur_year = (dr & STM32_RTC_DR_YEAR) >> STM32_RTC_DR_YEAR_SHIFT;
399	cur_sec = (tr & STM32_RTC_TR_SEC) >> STM32_RTC_TR_SEC_SHIFT;
400	cur_min = (tr & STM32_RTC_TR_MIN) >> STM32_RTC_TR_MIN_SHIFT;
401	cur_hour = (tr & STM32_RTC_TR_HOUR) >> STM32_RTC_TR_HOUR_SHIFT;
402
403	/*
404	 * Assuming current date is M-D-Y H:M:S.
405	 * RTC alarm can't be set on a specific month and year.
406	 * So the valid alarm range is:
407	 *	M-D-Y H:M:S < alarm <= (M+1)-D-Y H:M:S
408	 * with a specific case for December...
409	 */
410	if ((((tm->tm_year > cur_year) &&
411	      (tm->tm_mon == 0x1) && (cur_mon == 0x12)) ||
412	     ((tm->tm_year == cur_year) &&
413	      (tm->tm_mon <= cur_mon + 1))) &&
414	    ((tm->tm_mday > cur_day) ||
415	     ((tm->tm_mday == cur_day) &&
416	     ((tm->tm_hour > cur_hour) ||
417	      ((tm->tm_hour == cur_hour) && (tm->tm_min > cur_min)) ||
418	      ((tm->tm_hour == cur_hour) && (tm->tm_min == cur_min) &&
419	       (tm->tm_sec >= cur_sec))))))
420		return 0;
421
422	return -EINVAL;
423}
424
425static int stm32_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
426{
427	struct stm32_rtc *rtc = dev_get_drvdata(dev);
 
428	struct rtc_time *tm = &alrm->time;
429	unsigned int cr, isr, alrmar;
430	int ret = 0;
431
432	tm2bcd(tm);
433
434	/*
435	 * RTC alarm can't be set on a specific date, unless this date is
436	 * up to the same day of month next month.
437	 */
438	if (stm32_rtc_valid_alrm(rtc, tm) < 0) {
439		dev_err(dev, "Alarm can be set only on upcoming month.\n");
440		return -EINVAL;
441	}
442
443	alrmar = 0;
444	/* tm_year and tm_mon are not used because not supported by RTC */
445	alrmar |= (tm->tm_mday << STM32_RTC_ALRMXR_DATE_SHIFT) &
446		  STM32_RTC_ALRMXR_DATE;
447	/* 24-hour format */
448	alrmar &= ~STM32_RTC_ALRMXR_PM;
449	alrmar |= (tm->tm_hour << STM32_RTC_ALRMXR_HOUR_SHIFT) &
450		  STM32_RTC_ALRMXR_HOUR;
451	alrmar |= (tm->tm_min << STM32_RTC_ALRMXR_MIN_SHIFT) &
452		  STM32_RTC_ALRMXR_MIN;
453	alrmar |= (tm->tm_sec << STM32_RTC_ALRMXR_SEC_SHIFT) &
454		  STM32_RTC_ALRMXR_SEC;
455
456	stm32_rtc_wpr_unlock(rtc);
457
458	/* Disable Alarm */
459	cr = readl_relaxed(rtc->base + STM32_RTC_CR);
460	cr &= ~STM32_RTC_CR_ALRAE;
461	writel_relaxed(cr, rtc->base + STM32_RTC_CR);
462
463	/*
464	 * Poll Alarm write flag to be sure that Alarm update is allowed: it
465	 * takes around 2 rtc_ck clock cycles
466	 */
467	ret = readl_relaxed_poll_timeout_atomic(rtc->base + STM32_RTC_ISR,
468						isr,
469						(isr & STM32_RTC_ISR_ALRAWF),
470						10, 100000);
471
472	if (ret) {
473		dev_err(dev, "Alarm update not allowed\n");
474		goto end;
475	}
476
477	/* Write to Alarm register */
478	writel_relaxed(alrmar, rtc->base + STM32_RTC_ALRMAR);
479
480	if (alrm->enabled)
481		stm32_rtc_alarm_irq_enable(dev, 1);
482	else
483		stm32_rtc_alarm_irq_enable(dev, 0);
484
 
485end:
486	stm32_rtc_wpr_lock(rtc);
487
488	return ret;
489}
490
491static const struct rtc_class_ops stm32_rtc_ops = {
492	.read_time	= stm32_rtc_read_time,
493	.set_time	= stm32_rtc_set_time,
494	.read_alarm	= stm32_rtc_read_alarm,
495	.set_alarm	= stm32_rtc_set_alarm,
496	.alarm_irq_enable = stm32_rtc_alarm_irq_enable,
497};
498
 
 
 
 
 
 
 
 
 
 
499static const struct stm32_rtc_data stm32_rtc_data = {
500	.has_pclk = false,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
501};
502
503static const struct stm32_rtc_data stm32h7_rtc_data = {
504	.has_pclk = true,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
505};
506
507static const struct of_device_id stm32_rtc_of_match[] = {
508	{ .compatible = "st,stm32-rtc", .data = &stm32_rtc_data },
509	{ .compatible = "st,stm32h7-rtc", .data = &stm32h7_rtc_data },
 
510	{}
511};
512MODULE_DEVICE_TABLE(of, stm32_rtc_of_match);
513
514static int stm32_rtc_init(struct platform_device *pdev,
515			  struct stm32_rtc *rtc)
516{
 
517	unsigned int prer, pred_a, pred_s, pred_a_max, pred_s_max, cr;
518	unsigned int rate;
519	int ret = 0;
520
521	rate = clk_get_rate(rtc->rtc_ck);
522
523	/* Find prediv_a and prediv_s to obtain the 1Hz calendar clock */
524	pred_a_max = STM32_RTC_PRER_PRED_A >> STM32_RTC_PRER_PRED_A_SHIFT;
525	pred_s_max = STM32_RTC_PRER_PRED_S >> STM32_RTC_PRER_PRED_S_SHIFT;
526
527	for (pred_a = pred_a_max; pred_a + 1 > 0; pred_a--) {
528		pred_s = (rate / (pred_a + 1)) - 1;
529
530		if (((pred_s + 1) * (pred_a + 1)) == rate)
531			break;
532	}
533
534	/*
535	 * Can't find a 1Hz, so give priority to RTC power consumption
536	 * by choosing the higher possible value for prediv_a
537	 */
538	if ((pred_s > pred_s_max) || (pred_a > pred_a_max)) {
539		pred_a = pred_a_max;
540		pred_s = (rate / (pred_a + 1)) - 1;
541
542		dev_warn(&pdev->dev, "rtc_ck is %s\n",
543			 (rate < ((pred_a + 1) * (pred_s + 1))) ?
544			 "fast" : "slow");
545	}
546
547	stm32_rtc_wpr_unlock(rtc);
548
549	ret = stm32_rtc_enter_init_mode(rtc);
550	if (ret) {
551		dev_err(&pdev->dev,
552			"Can't enter in init mode. Prescaler config failed.\n");
553		goto end;
554	}
555
556	prer = (pred_s << STM32_RTC_PRER_PRED_S_SHIFT) & STM32_RTC_PRER_PRED_S;
557	writel_relaxed(prer, rtc->base + STM32_RTC_PRER);
558	prer |= (pred_a << STM32_RTC_PRER_PRED_A_SHIFT) & STM32_RTC_PRER_PRED_A;
559	writel_relaxed(prer, rtc->base + STM32_RTC_PRER);
560
561	/* Force 24h time format */
562	cr = readl_relaxed(rtc->base + STM32_RTC_CR);
563	cr &= ~STM32_RTC_CR_FMT;
564	writel_relaxed(cr, rtc->base + STM32_RTC_CR);
565
566	stm32_rtc_exit_init_mode(rtc);
567
568	ret = stm32_rtc_wait_sync(rtc);
569end:
570	stm32_rtc_wpr_lock(rtc);
571
572	return ret;
573}
574
575static int stm32_rtc_probe(struct platform_device *pdev)
576{
577	struct stm32_rtc *rtc;
578	struct resource *res;
579	const struct of_device_id *match;
580	int ret;
581
582	rtc = devm_kzalloc(&pdev->dev, sizeof(*rtc), GFP_KERNEL);
583	if (!rtc)
584		return -ENOMEM;
585
586	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
587	rtc->base = devm_ioremap_resource(&pdev->dev, res);
588	if (IS_ERR(rtc->base))
589		return PTR_ERR(rtc->base);
590
591	rtc->dbp = syscon_regmap_lookup_by_phandle(pdev->dev.of_node,
592						   "st,syscfg");
593	if (IS_ERR(rtc->dbp)) {
594		dev_err(&pdev->dev, "no st,syscfg\n");
595		return PTR_ERR(rtc->dbp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
596	}
597
598	match = of_match_device(stm32_rtc_of_match, &pdev->dev);
599	rtc->data = (struct stm32_rtc_data *)match->data;
600
601	if (!rtc->data->has_pclk) {
602		rtc->pclk = NULL;
603		rtc->rtc_ck = devm_clk_get(&pdev->dev, NULL);
604	} else {
605		rtc->pclk = devm_clk_get(&pdev->dev, "pclk");
606		if (IS_ERR(rtc->pclk)) {
607			dev_err(&pdev->dev, "no pclk clock");
608			return PTR_ERR(rtc->pclk);
609		}
610		rtc->rtc_ck = devm_clk_get(&pdev->dev, "rtc_ck");
611	}
612	if (IS_ERR(rtc->rtc_ck)) {
613		dev_err(&pdev->dev, "no rtc_ck clock");
614		return PTR_ERR(rtc->rtc_ck);
615	}
616
617	if (rtc->data->has_pclk) {
618		ret = clk_prepare_enable(rtc->pclk);
619		if (ret)
620			return ret;
621	}
622
623	ret = clk_prepare_enable(rtc->rtc_ck);
624	if (ret)
625		goto err;
626
627	regmap_update_bits(rtc->dbp, PWR_CR, PWR_CR_DBP, PWR_CR_DBP);
 
 
628
629	/*
630	 * After a system reset, RTC_ISR.INITS flag can be read to check if
631	 * the calendar has been initalized or not. INITS flag is reset by a
632	 * power-on reset (no vbat, no power-supply). It is not reset if
633	 * rtc_ck parent clock has changed (so RTC prescalers need to be
634	 * changed). That's why we cannot rely on this flag to know if RTC
635	 * init has to be done.
636	 */
637	ret = stm32_rtc_init(pdev, rtc);
638	if (ret)
639		goto err;
640
641	rtc->irq_alarm = platform_get_irq(pdev, 0);
642	if (rtc->irq_alarm <= 0) {
643		dev_err(&pdev->dev, "no alarm irq\n");
644		ret = rtc->irq_alarm;
645		goto err;
646	}
647
648	platform_set_drvdata(pdev, rtc);
649
650	ret = device_init_wakeup(&pdev->dev, true);
 
 
 
 
 
 
 
 
 
 
 
651	if (ret)
652		dev_warn(&pdev->dev,
653			 "alarm won't be able to wake up the system");
 
654
655	rtc->rtc_dev = devm_rtc_device_register(&pdev->dev, pdev->name,
656			&stm32_rtc_ops, THIS_MODULE);
657	if (IS_ERR(rtc->rtc_dev)) {
658		ret = PTR_ERR(rtc->rtc_dev);
659		dev_err(&pdev->dev, "rtc device registration failed, err=%d\n",
660			ret);
661		goto err;
662	}
663
664	/* Handle RTC alarm interrupts */
665	ret = devm_request_threaded_irq(&pdev->dev, rtc->irq_alarm, NULL,
666					stm32_rtc_alarm_irq,
667					IRQF_TRIGGER_RISING | IRQF_ONESHOT,
668					pdev->name, rtc);
669	if (ret) {
670		dev_err(&pdev->dev, "IRQ%d (alarm interrupt) already claimed\n",
671			rtc->irq_alarm);
672		goto err;
673	}
674
675	/*
676	 * If INITS flag is reset (calendar year field set to 0x00), calendar
677	 * must be initialized
678	 */
679	if (!(readl_relaxed(rtc->base + STM32_RTC_ISR) & STM32_RTC_ISR_INITS))
680		dev_warn(&pdev->dev, "Date/Time must be initialized\n");
681
 
 
 
 
 
 
 
 
682	return 0;
683err:
684	if (rtc->data->has_pclk)
685		clk_disable_unprepare(rtc->pclk);
686	clk_disable_unprepare(rtc->rtc_ck);
687
688	regmap_update_bits(rtc->dbp, PWR_CR, PWR_CR_DBP, 0);
 
689
 
690	device_init_wakeup(&pdev->dev, false);
691
692	return ret;
693}
694
695static int stm32_rtc_remove(struct platform_device *pdev)
696{
697	struct stm32_rtc *rtc = platform_get_drvdata(pdev);
 
698	unsigned int cr;
699
700	/* Disable interrupts */
701	stm32_rtc_wpr_unlock(rtc);
702	cr = readl_relaxed(rtc->base + STM32_RTC_CR);
703	cr &= ~STM32_RTC_CR_ALRAIE;
704	writel_relaxed(cr, rtc->base + STM32_RTC_CR);
705	stm32_rtc_wpr_lock(rtc);
706
707	clk_disable_unprepare(rtc->rtc_ck);
708	if (rtc->data->has_pclk)
709		clk_disable_unprepare(rtc->pclk);
710
711	/* Enable backup domain write protection */
712	regmap_update_bits(rtc->dbp, PWR_CR, PWR_CR_DBP, 0);
 
713
 
714	device_init_wakeup(&pdev->dev, false);
715
716	return 0;
717}
718
719#ifdef CONFIG_PM_SLEEP
720static int stm32_rtc_suspend(struct device *dev)
721{
722	struct stm32_rtc *rtc = dev_get_drvdata(dev);
723
724	if (rtc->data->has_pclk)
725		clk_disable_unprepare(rtc->pclk);
726
727	if (device_may_wakeup(dev))
728		return enable_irq_wake(rtc->irq_alarm);
729
730	return 0;
731}
732
733static int stm32_rtc_resume(struct device *dev)
734{
735	struct stm32_rtc *rtc = dev_get_drvdata(dev);
736	int ret = 0;
737
738	if (rtc->data->has_pclk) {
739		ret = clk_prepare_enable(rtc->pclk);
740		if (ret)
741			return ret;
742	}
743
744	ret = stm32_rtc_wait_sync(rtc);
745	if (ret < 0)
 
 
746		return ret;
 
747
748	if (device_may_wakeup(dev))
749		return disable_irq_wake(rtc->irq_alarm);
750
751	return ret;
752}
753#endif
754
755static SIMPLE_DEV_PM_OPS(stm32_rtc_pm_ops,
756			 stm32_rtc_suspend, stm32_rtc_resume);
757
758static struct platform_driver stm32_rtc_driver = {
759	.probe		= stm32_rtc_probe,
760	.remove		= stm32_rtc_remove,
761	.driver		= {
762		.name	= DRIVER_NAME,
763		.pm	= &stm32_rtc_pm_ops,
764		.of_match_table = stm32_rtc_of_match,
765	},
766};
767
768module_platform_driver(stm32_rtc_driver);
769
770MODULE_ALIAS("platform:" DRIVER_NAME);
771MODULE_AUTHOR("Amelie Delaunay <amelie.delaunay@st.com>");
772MODULE_DESCRIPTION("STMicroelectronics STM32 Real Time Clock driver");
773MODULE_LICENSE("GPL v2");