Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.17.
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * phy-zynqmp.c - PHY driver for Xilinx ZynqMP GT.
  4 *
  5 * Copyright (C) 2018-2020 Xilinx Inc.
  6 *
  7 * Author: Anurag Kumar Vulisha <anuragku@xilinx.com>
  8 * Author: Subbaraya Sundeep <sundeep.lkml@gmail.com>
  9 * Author: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
 10 *
 11 * This driver is tested for USB, SATA and Display Port currently.
 12 * Other controllers PCIe and SGMII should also work but that is
 13 * experimental as of now.
 14 */
 15
 16#include <linux/clk.h>
 17#include <linux/delay.h>
 18#include <linux/io.h>
 19#include <linux/kernel.h>
 20#include <linux/module.h>
 21#include <linux/of.h>
 22#include <linux/phy/phy.h>
 23#include <linux/platform_device.h>
 24#include <linux/slab.h>
 25
 26#include <dt-bindings/phy/phy.h>
 27
 28/*
 29 * Lane Registers
 30 */
 31
 32/* TX De-emphasis parameters */
 33#define L0_TX_ANA_TM_18			0x0048
 34#define L0_TX_ANA_TM_118		0x01d8
 35#define L0_TX_ANA_TM_118_FORCE_17_0	BIT(0)
 36
 37/* DN Resistor calibration code parameters */
 38#define L0_TXPMA_ST_3			0x0b0c
 39#define L0_DN_CALIB_CODE		0x3f
 40
 41/* PMA control parameters */
 42#define L0_TXPMD_TM_45			0x0cb4
 43#define L0_TXPMD_TM_48			0x0cc0
 44#define L0_TXPMD_TM_45_OVER_DP_MAIN	BIT(0)
 45#define L0_TXPMD_TM_45_ENABLE_DP_MAIN	BIT(1)
 46#define L0_TXPMD_TM_45_OVER_DP_POST1	BIT(2)
 47#define L0_TXPMD_TM_45_ENABLE_DP_POST1	BIT(3)
 48#define L0_TXPMD_TM_45_OVER_DP_POST2	BIT(4)
 49#define L0_TXPMD_TM_45_ENABLE_DP_POST2	BIT(5)
 50
 51/* PCS control parameters */
 52#define L0_TM_DIG_6			0x106c
 53#define L0_TM_DIS_DESCRAMBLE_DECODER	0x0f
 54#define L0_TX_DIG_61			0x00f4
 55#define L0_TM_DISABLE_SCRAMBLE_ENCODER	0x0f
 56
 57/* PLL Test Mode register parameters */
 58#define L0_TM_PLL_DIG_37		0x2094
 59#define L0_TM_COARSE_CODE_LIMIT		0x10
 60
 61/* PLL SSC step size offsets */
 62#define L0_PLL_SS_STEPS_0_LSB		0x2368
 63#define L0_PLL_SS_STEPS_1_MSB		0x236c
 64#define L0_PLL_SS_STEP_SIZE_0_LSB	0x2370
 65#define L0_PLL_SS_STEP_SIZE_1		0x2374
 66#define L0_PLL_SS_STEP_SIZE_2		0x2378
 67#define L0_PLL_SS_STEP_SIZE_3_MSB	0x237c
 68#define L0_PLL_STATUS_READ_1		0x23e4
 69
 70/* SSC step size parameters */
 71#define STEP_SIZE_0_MASK		0xff
 72#define STEP_SIZE_1_MASK		0xff
 73#define STEP_SIZE_2_MASK		0xff
 74#define STEP_SIZE_3_MASK		0x3
 75#define STEP_SIZE_SHIFT			8
 76#define FORCE_STEP_SIZE			0x10
 77#define FORCE_STEPS			0x20
 78#define STEPS_0_MASK			0xff
 79#define STEPS_1_MASK			0x07
 80
 81/* Reference clock selection parameters */
 82#define L0_Ln_REF_CLK_SEL(n)		(0x2860 + (n) * 4)
 83#define L0_REF_CLK_SEL_MASK		0x8f
 84
 85/* Calibration digital logic parameters */
 86#define L3_TM_CALIB_DIG19		0xec4c
 87#define L3_CALIB_DONE_STATUS		0xef14
 88#define L3_TM_CALIB_DIG18		0xec48
 89#define L3_TM_CALIB_DIG19_NSW		0x07
 90#define L3_TM_CALIB_DIG18_NSW		0xe0
 91#define L3_TM_OVERRIDE_NSW_CODE         0x20
 92#define L3_CALIB_DONE			0x02
 93#define L3_NSW_SHIFT			5
 94#define L3_NSW_PIPE_SHIFT		4
 95#define L3_NSW_CALIB_SHIFT		3
 96
 97#define PHY_REG_OFFSET			0x4000
 98
 99/*
100 * Global Registers
101 */
102
103/* Refclk selection parameters */
104#define PLL_REF_SEL(n)			(0x10000 + (n) * 4)
105#define PLL_FREQ_MASK			0x1f
106#define PLL_STATUS_LOCKED		0x10
107
108/* Inter Connect Matrix parameters */
109#define ICM_CFG0			0x10010
110#define ICM_CFG1			0x10014
111#define ICM_CFG0_L0_MASK		0x07
112#define ICM_CFG0_L1_MASK		0x70
113#define ICM_CFG1_L2_MASK		0x07
114#define ICM_CFG2_L3_MASK		0x70
115#define ICM_CFG_SHIFT			4
116
117/* Inter Connect Matrix allowed protocols */
118#define ICM_PROTOCOL_PD			0x0
119#define ICM_PROTOCOL_PCIE		0x1
120#define ICM_PROTOCOL_SATA		0x2
121#define ICM_PROTOCOL_USB		0x3
122#define ICM_PROTOCOL_DP			0x4
123#define ICM_PROTOCOL_SGMII		0x5
124
125/* Test Mode common reset control  parameters */
126#define TM_CMN_RST			0x10018
127#define TM_CMN_RST_EN			0x1
128#define TM_CMN_RST_SET			0x2
129#define TM_CMN_RST_MASK			0x3
130
131/* Bus width parameters */
132#define TX_PROT_BUS_WIDTH		0x10040
133#define RX_PROT_BUS_WIDTH		0x10044
134#define PROT_BUS_WIDTH_10		0x0
135#define PROT_BUS_WIDTH_20		0x1
136#define PROT_BUS_WIDTH_40		0x2
137#define PROT_BUS_WIDTH_SHIFT		2
138
139/* Number of GT lanes */
140#define NUM_LANES			4
141
142/* SIOU SATA control register */
143#define SATA_CONTROL_OFFSET		0x0100
144
145/* Total number of controllers */
146#define CONTROLLERS_PER_LANE		5
147
148/* Protocol Type parameters */
149#define XPSGTR_TYPE_USB0		0  /* USB controller 0 */
150#define XPSGTR_TYPE_USB1		1  /* USB controller 1 */
151#define XPSGTR_TYPE_SATA_0		2  /* SATA controller lane 0 */
152#define XPSGTR_TYPE_SATA_1		3  /* SATA controller lane 1 */
153#define XPSGTR_TYPE_PCIE_0		4  /* PCIe controller lane 0 */
154#define XPSGTR_TYPE_PCIE_1		5  /* PCIe controller lane 1 */
155#define XPSGTR_TYPE_PCIE_2		6  /* PCIe controller lane 2 */
156#define XPSGTR_TYPE_PCIE_3		7  /* PCIe controller lane 3 */
157#define XPSGTR_TYPE_DP_0		8  /* Display Port controller lane 0 */
158#define XPSGTR_TYPE_DP_1		9  /* Display Port controller lane 1 */
159#define XPSGTR_TYPE_SGMII0		10 /* Ethernet SGMII controller 0 */
160#define XPSGTR_TYPE_SGMII1		11 /* Ethernet SGMII controller 1 */
161#define XPSGTR_TYPE_SGMII2		12 /* Ethernet SGMII controller 2 */
162#define XPSGTR_TYPE_SGMII3		13 /* Ethernet SGMII controller 3 */
163
164/* Timeout values */
165#define TIMEOUT_US			1000
166
167struct xpsgtr_dev;
168
169/**
170 * struct xpsgtr_ssc - structure to hold SSC settings for a lane
171 * @refclk_rate: PLL reference clock frequency
172 * @pll_ref_clk: value to be written to register for corresponding ref clk rate
173 * @steps: number of steps of SSC (Spread Spectrum Clock)
174 * @step_size: step size of each step
175 */
176struct xpsgtr_ssc {
177	u32 refclk_rate;
178	u8  pll_ref_clk;
179	u32 steps;
180	u32 step_size;
181};
182
183/**
184 * struct xpsgtr_phy - representation of a lane
185 * @phy: pointer to the kernel PHY device
186 * @type: controller which uses this lane
187 * @lane: lane number
188 * @protocol: protocol in which the lane operates
189 * @skip_phy_init: skip phy_init() if true
190 * @dev: pointer to the xpsgtr_dev instance
191 * @refclk: reference clock index
192 */
193struct xpsgtr_phy {
194	struct phy *phy;
195	u8 type;
196	u8 lane;
197	u8 protocol;
198	bool skip_phy_init;
199	struct xpsgtr_dev *dev;
200	unsigned int refclk;
201};
202
203/**
204 * struct xpsgtr_dev - representation of a ZynMP GT device
205 * @dev: pointer to device
206 * @serdes: serdes base address
207 * @siou: siou base address
208 * @gtr_mutex: mutex for locking
209 * @phys: PHY lanes
210 * @refclk_sscs: spread spectrum settings for the reference clocks
211 * @tx_term_fix: fix for GT issue
212 * @saved_icm_cfg0: stored value of ICM CFG0 register
213 * @saved_icm_cfg1: stored value of ICM CFG1 register
214 */
215struct xpsgtr_dev {
216	struct device *dev;
217	void __iomem *serdes;
218	void __iomem *siou;
219	struct mutex gtr_mutex; /* mutex for locking */
220	struct xpsgtr_phy phys[NUM_LANES];
221	const struct xpsgtr_ssc *refclk_sscs[NUM_LANES];
222	bool tx_term_fix;
223	unsigned int saved_icm_cfg0;
224	unsigned int saved_icm_cfg1;
225};
226
227/*
228 * Configuration Data
229 */
230
231/* lookup table to hold all settings needed for a ref clock frequency */
232static const struct xpsgtr_ssc ssc_lookup[] = {
233	{  19200000, 0x05,  608, 264020 },
234	{  20000000, 0x06,  634, 243454 },
235	{  24000000, 0x07,  760, 168973 },
236	{  26000000, 0x08,  824, 143860 },
237	{  27000000, 0x09,  856,  86551 },
238	{  38400000, 0x0a, 1218,  65896 },
239	{  40000000, 0x0b,  634, 243454 },
240	{  52000000, 0x0c,  824, 143860 },
241	{ 100000000, 0x0d, 1058,  87533 },
242	{ 108000000, 0x0e,  856,  86551 },
243	{ 125000000, 0x0f,  992, 119497 },
244	{ 135000000, 0x10, 1070,  55393 },
245	{ 150000000, 0x11,  792, 187091 }
246};
247
248/*
249 * I/O Accessors
250 */
251
252static inline u32 xpsgtr_read(struct xpsgtr_dev *gtr_dev, u32 reg)
253{
254	return readl(gtr_dev->serdes + reg);
255}
256
257static inline void xpsgtr_write(struct xpsgtr_dev *gtr_dev, u32 reg, u32 value)
258{
259	writel(value, gtr_dev->serdes + reg);
260}
261
262static inline void xpsgtr_clr_set(struct xpsgtr_dev *gtr_dev, u32 reg,
263				  u32 clr, u32 set)
264{
265	u32 value = xpsgtr_read(gtr_dev, reg);
266
267	value &= ~clr;
268	value |= set;
269	xpsgtr_write(gtr_dev, reg, value);
270}
271
272static inline u32 xpsgtr_read_phy(struct xpsgtr_phy *gtr_phy, u32 reg)
273{
274	void __iomem *addr = gtr_phy->dev->serdes
275			   + gtr_phy->lane * PHY_REG_OFFSET + reg;
276
277	return readl(addr);
278}
279
280static inline void xpsgtr_write_phy(struct xpsgtr_phy *gtr_phy,
281				    u32 reg, u32 value)
282{
283	void __iomem *addr = gtr_phy->dev->serdes
284			   + gtr_phy->lane * PHY_REG_OFFSET + reg;
285
286	writel(value, addr);
287}
288
289static inline void xpsgtr_clr_set_phy(struct xpsgtr_phy *gtr_phy,
290				      u32 reg, u32 clr, u32 set)
291{
292	void __iomem *addr = gtr_phy->dev->serdes
293			   + gtr_phy->lane * PHY_REG_OFFSET + reg;
294
295	writel((readl(addr) & ~clr) | set, addr);
296}
297
298/*
299 * Hardware Configuration
300 */
301
302/* Wait for the PLL to lock (with a timeout). */
303static int xpsgtr_wait_pll_lock(struct phy *phy)
304{
305	struct xpsgtr_phy *gtr_phy = phy_get_drvdata(phy);
306	struct xpsgtr_dev *gtr_dev = gtr_phy->dev;
307	unsigned int timeout = TIMEOUT_US;
308	int ret;
309
310	dev_dbg(gtr_dev->dev, "Waiting for PLL lock\n");
311
312	while (1) {
313		u32 reg = xpsgtr_read_phy(gtr_phy, L0_PLL_STATUS_READ_1);
314
315		if ((reg & PLL_STATUS_LOCKED) == PLL_STATUS_LOCKED) {
316			ret = 0;
317			break;
318		}
319
320		if (--timeout == 0) {
321			ret = -ETIMEDOUT;
322			break;
323		}
324
325		udelay(1);
326	}
327
328	if (ret == -ETIMEDOUT)
329		dev_err(gtr_dev->dev,
330			"lane %u (type %u, protocol %u): PLL lock timeout\n",
331			gtr_phy->lane, gtr_phy->type, gtr_phy->protocol);
332
333	return ret;
334}
335
336/* Configure PLL and spread-sprectrum clock. */
337static void xpsgtr_configure_pll(struct xpsgtr_phy *gtr_phy)
338{
339	const struct xpsgtr_ssc *ssc;
340	u32 step_size;
341
342	ssc = gtr_phy->dev->refclk_sscs[gtr_phy->refclk];
343	step_size = ssc->step_size;
344
345	xpsgtr_clr_set(gtr_phy->dev, PLL_REF_SEL(gtr_phy->lane),
346		       PLL_FREQ_MASK, ssc->pll_ref_clk);
347
348	/* Enable lane clock sharing, if required */
349	if (gtr_phy->refclk != gtr_phy->lane) {
350		/* Lane3 Ref Clock Selection Register */
351		xpsgtr_clr_set(gtr_phy->dev, L0_Ln_REF_CLK_SEL(gtr_phy->lane),
352			       L0_REF_CLK_SEL_MASK, 1 << gtr_phy->refclk);
353	}
354
355	/* SSC step size [7:0] */
356	xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEP_SIZE_0_LSB,
357			   STEP_SIZE_0_MASK, step_size & STEP_SIZE_0_MASK);
358
359	/* SSC step size [15:8] */
360	step_size >>= STEP_SIZE_SHIFT;
361	xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEP_SIZE_1,
362			   STEP_SIZE_1_MASK, step_size & STEP_SIZE_1_MASK);
363
364	/* SSC step size [23:16] */
365	step_size >>= STEP_SIZE_SHIFT;
366	xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEP_SIZE_2,
367			   STEP_SIZE_2_MASK, step_size & STEP_SIZE_2_MASK);
368
369	/* SSC steps [7:0] */
370	xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEPS_0_LSB,
371			   STEPS_0_MASK, ssc->steps & STEPS_0_MASK);
372
373	/* SSC steps [10:8] */
374	xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEPS_1_MSB,
375			   STEPS_1_MASK,
376			   (ssc->steps >> STEP_SIZE_SHIFT) & STEPS_1_MASK);
377
378	/* SSC step size [24:25] */
379	step_size >>= STEP_SIZE_SHIFT;
380	xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEP_SIZE_3_MSB,
381			   STEP_SIZE_3_MASK, (step_size & STEP_SIZE_3_MASK) |
382			   FORCE_STEP_SIZE | FORCE_STEPS);
383}
384
385/* Configure the lane protocol. */
386static void xpsgtr_lane_set_protocol(struct xpsgtr_phy *gtr_phy)
387{
388	struct xpsgtr_dev *gtr_dev = gtr_phy->dev;
389	u8 protocol = gtr_phy->protocol;
390
391	switch (gtr_phy->lane) {
392	case 0:
393		xpsgtr_clr_set(gtr_dev, ICM_CFG0, ICM_CFG0_L0_MASK, protocol);
394		break;
395	case 1:
396		xpsgtr_clr_set(gtr_dev, ICM_CFG0, ICM_CFG0_L1_MASK,
397			       protocol << ICM_CFG_SHIFT);
398		break;
399	case 2:
400		xpsgtr_clr_set(gtr_dev, ICM_CFG1, ICM_CFG0_L0_MASK, protocol);
401		break;
402	case 3:
403		xpsgtr_clr_set(gtr_dev, ICM_CFG1, ICM_CFG0_L1_MASK,
404			       protocol << ICM_CFG_SHIFT);
405		break;
406	default:
407		/* We already checked 0 <= lane <= 3 */
408		break;
409	}
410}
411
412/* Bypass (de)scrambler and 8b/10b decoder and encoder. */
413static void xpsgtr_bypass_scrambler_8b10b(struct xpsgtr_phy *gtr_phy)
414{
415	xpsgtr_write_phy(gtr_phy, L0_TM_DIG_6, L0_TM_DIS_DESCRAMBLE_DECODER);
416	xpsgtr_write_phy(gtr_phy, L0_TX_DIG_61, L0_TM_DISABLE_SCRAMBLE_ENCODER);
417}
418
419/* DP-specific initialization. */
420static void xpsgtr_phy_init_dp(struct xpsgtr_phy *gtr_phy)
421{
422	xpsgtr_write_phy(gtr_phy, L0_TXPMD_TM_45,
423			 L0_TXPMD_TM_45_OVER_DP_MAIN |
424			 L0_TXPMD_TM_45_ENABLE_DP_MAIN |
425			 L0_TXPMD_TM_45_OVER_DP_POST1 |
426			 L0_TXPMD_TM_45_OVER_DP_POST2 |
427			 L0_TXPMD_TM_45_ENABLE_DP_POST2);
428	xpsgtr_write_phy(gtr_phy, L0_TX_ANA_TM_118,
429			 L0_TX_ANA_TM_118_FORCE_17_0);
430}
431
432/* SATA-specific initialization. */
433static void xpsgtr_phy_init_sata(struct xpsgtr_phy *gtr_phy)
434{
435	struct xpsgtr_dev *gtr_dev = gtr_phy->dev;
436
437	xpsgtr_bypass_scrambler_8b10b(gtr_phy);
438
439	writel(gtr_phy->lane, gtr_dev->siou + SATA_CONTROL_OFFSET);
440}
441
442/* SGMII-specific initialization. */
443static void xpsgtr_phy_init_sgmii(struct xpsgtr_phy *gtr_phy)
444{
445	struct xpsgtr_dev *gtr_dev = gtr_phy->dev;
446
447	/* Set SGMII protocol TX and RX bus width to 10 bits. */
448	xpsgtr_write(gtr_dev, TX_PROT_BUS_WIDTH,
449		     PROT_BUS_WIDTH_10 << (gtr_phy->lane * PROT_BUS_WIDTH_SHIFT));
450	xpsgtr_write(gtr_dev, RX_PROT_BUS_WIDTH,
451		     PROT_BUS_WIDTH_10 << (gtr_phy->lane * PROT_BUS_WIDTH_SHIFT));
452
453	xpsgtr_bypass_scrambler_8b10b(gtr_phy);
454}
455
456/* Configure TX de-emphasis and margining for DP. */
457static void xpsgtr_phy_configure_dp(struct xpsgtr_phy *gtr_phy, unsigned int pre,
458				    unsigned int voltage)
459{
460	static const u8 voltage_swing[4][4] = {
461		{ 0x2a, 0x27, 0x24, 0x20 },
462		{ 0x27, 0x23, 0x20, 0xff },
463		{ 0x24, 0x20, 0xff, 0xff },
464		{ 0xff, 0xff, 0xff, 0xff }
465	};
466	static const u8 pre_emphasis[4][4] = {
467		{ 0x02, 0x02, 0x02, 0x02 },
468		{ 0x01, 0x01, 0x01, 0xff },
469		{ 0x00, 0x00, 0xff, 0xff },
470		{ 0xff, 0xff, 0xff, 0xff }
471	};
472
473	xpsgtr_write_phy(gtr_phy, L0_TXPMD_TM_48, voltage_swing[pre][voltage]);
474	xpsgtr_write_phy(gtr_phy, L0_TX_ANA_TM_18, pre_emphasis[pre][voltage]);
475}
476
477/*
478 * PHY Operations
479 */
480
481static bool xpsgtr_phy_init_required(struct xpsgtr_phy *gtr_phy)
482{
483	/*
484	 * As USB may save the snapshot of the states during hibernation, doing
485	 * phy_init() will put the USB controller into reset, resulting in the
486	 * losing of the saved snapshot. So try to avoid phy_init() for USB
487	 * except when gtr_phy->skip_phy_init is false (this happens when FPD is
488	 * shutdown during suspend or when gt lane is changed from current one)
489	 */
490	if (gtr_phy->protocol == ICM_PROTOCOL_USB && gtr_phy->skip_phy_init)
491		return false;
492	else
493		return true;
494}
495
496/*
497 * There is a functional issue in the GT. The TX termination resistance can be
498 * out of spec due to a issue in the calibration logic. This is the workaround
499 * to fix it, required for XCZU9EG silicon.
500 */
501static int xpsgtr_phy_tx_term_fix(struct xpsgtr_phy *gtr_phy)
502{
503	struct xpsgtr_dev *gtr_dev = gtr_phy->dev;
504	u32 timeout = TIMEOUT_US;
505	u32 nsw;
506
507	/* Enabling Test Mode control for CMN Rest */
508	xpsgtr_clr_set(gtr_dev, TM_CMN_RST, TM_CMN_RST_MASK, TM_CMN_RST_SET);
509
510	/* Set Test Mode reset */
511	xpsgtr_clr_set(gtr_dev, TM_CMN_RST, TM_CMN_RST_MASK, TM_CMN_RST_EN);
512
513	xpsgtr_write(gtr_dev, L3_TM_CALIB_DIG18, 0x00);
514	xpsgtr_write(gtr_dev, L3_TM_CALIB_DIG19, L3_TM_OVERRIDE_NSW_CODE);
515
516	/*
517	 * As a part of work around sequence for PMOS calibration fix,
518	 * we need to configure any lane ICM_CFG to valid protocol. This
519	 * will deassert the CMN_Resetn signal.
520	 */
521	xpsgtr_lane_set_protocol(gtr_phy);
522
523	/* Clear Test Mode reset */
524	xpsgtr_clr_set(gtr_dev, TM_CMN_RST, TM_CMN_RST_MASK, TM_CMN_RST_SET);
525
526	dev_dbg(gtr_dev->dev, "calibrating...\n");
527
528	do {
529		u32 reg = xpsgtr_read(gtr_dev, L3_CALIB_DONE_STATUS);
530
531		if ((reg & L3_CALIB_DONE) == L3_CALIB_DONE)
532			break;
533
534		if (!--timeout) {
535			dev_err(gtr_dev->dev, "calibration time out\n");
536			return -ETIMEDOUT;
537		}
538
539		udelay(1);
540	} while (timeout > 0);
541
542	dev_dbg(gtr_dev->dev, "calibration done\n");
543
544	/* Reading NMOS Register Code */
545	nsw = xpsgtr_read(gtr_dev, L0_TXPMA_ST_3) & L0_DN_CALIB_CODE;
546
547	/* Set Test Mode reset */
548	xpsgtr_clr_set(gtr_dev, TM_CMN_RST, TM_CMN_RST_MASK, TM_CMN_RST_EN);
549
550	/* Writing NMOS register values back [5:3] */
551	xpsgtr_write(gtr_dev, L3_TM_CALIB_DIG19, nsw >> L3_NSW_CALIB_SHIFT);
552
553	/* Writing NMOS register value [2:0] */
554	xpsgtr_write(gtr_dev, L3_TM_CALIB_DIG18,
555		     ((nsw & L3_TM_CALIB_DIG19_NSW) << L3_NSW_SHIFT) |
556		     (1 << L3_NSW_PIPE_SHIFT));
557
558	/* Clear Test Mode reset */
559	xpsgtr_clr_set(gtr_dev, TM_CMN_RST, TM_CMN_RST_MASK, TM_CMN_RST_SET);
560
561	return 0;
562}
563
564static int xpsgtr_phy_init(struct phy *phy)
565{
566	struct xpsgtr_phy *gtr_phy = phy_get_drvdata(phy);
567	struct xpsgtr_dev *gtr_dev = gtr_phy->dev;
568	int ret = 0;
569
570	mutex_lock(&gtr_dev->gtr_mutex);
571
572	/* Skip initialization if not required. */
573	if (!xpsgtr_phy_init_required(gtr_phy))
574		goto out;
575
576	if (gtr_dev->tx_term_fix) {
577		ret = xpsgtr_phy_tx_term_fix(gtr_phy);
578		if (ret < 0)
579			goto out;
580
581		gtr_dev->tx_term_fix = false;
582	}
583
584	/* Enable coarse code saturation limiting logic. */
585	xpsgtr_write_phy(gtr_phy, L0_TM_PLL_DIG_37, L0_TM_COARSE_CODE_LIMIT);
586
587	/*
588	 * Configure the PLL, the lane protocol, and perform protocol-specific
589	 * initialization.
590	 */
591	xpsgtr_configure_pll(gtr_phy);
592	xpsgtr_lane_set_protocol(gtr_phy);
593
594	switch (gtr_phy->protocol) {
595	case ICM_PROTOCOL_DP:
596		xpsgtr_phy_init_dp(gtr_phy);
597		break;
598
599	case ICM_PROTOCOL_SATA:
600		xpsgtr_phy_init_sata(gtr_phy);
601		break;
602
603	case ICM_PROTOCOL_SGMII:
604		xpsgtr_phy_init_sgmii(gtr_phy);
605		break;
606	}
607
608out:
609	mutex_unlock(&gtr_dev->gtr_mutex);
610	return ret;
611}
612
613static int xpsgtr_phy_exit(struct phy *phy)
614{
615	struct xpsgtr_phy *gtr_phy = phy_get_drvdata(phy);
616
617	gtr_phy->skip_phy_init = false;
618
619	return 0;
620}
621
622static int xpsgtr_phy_power_on(struct phy *phy)
623{
624	struct xpsgtr_phy *gtr_phy = phy_get_drvdata(phy);
625	int ret = 0;
626
627	/*
628	 * Wait for the PLL to lock. For DP, only wait on DP0 to avoid
629	 * cumulating waits for both lanes. The user is expected to initialize
630	 * lane 0 last.
631	 */
632	if (gtr_phy->protocol != ICM_PROTOCOL_DP ||
633	    gtr_phy->type == XPSGTR_TYPE_DP_0)
634		ret = xpsgtr_wait_pll_lock(phy);
635
636	return ret;
637}
638
639static int xpsgtr_phy_configure(struct phy *phy, union phy_configure_opts *opts)
640{
641	struct xpsgtr_phy *gtr_phy = phy_get_drvdata(phy);
642
643	if (gtr_phy->protocol != ICM_PROTOCOL_DP)
644		return 0;
645
646	xpsgtr_phy_configure_dp(gtr_phy, opts->dp.pre[0], opts->dp.voltage[0]);
647
648	return 0;
649}
650
651static const struct phy_ops xpsgtr_phyops = {
652	.init		= xpsgtr_phy_init,
653	.exit		= xpsgtr_phy_exit,
654	.power_on	= xpsgtr_phy_power_on,
655	.configure	= xpsgtr_phy_configure,
656	.owner		= THIS_MODULE,
657};
658
659/*
660 * OF Xlate Support
661 */
662
663/* Set the lane type and protocol based on the PHY type and instance number. */
664static int xpsgtr_set_lane_type(struct xpsgtr_phy *gtr_phy, u8 phy_type,
665				unsigned int phy_instance)
666{
667	unsigned int num_phy_types;
668	const int *phy_types;
669
670	switch (phy_type) {
671	case PHY_TYPE_SATA: {
672		static const int types[] = {
673			XPSGTR_TYPE_SATA_0,
674			XPSGTR_TYPE_SATA_1,
675		};
676
677		phy_types = types;
678		num_phy_types = ARRAY_SIZE(types);
679		gtr_phy->protocol = ICM_PROTOCOL_SATA;
680		break;
681	}
682	case PHY_TYPE_USB3: {
683		static const int types[] = {
684			XPSGTR_TYPE_USB0,
685			XPSGTR_TYPE_USB1,
686		};
687
688		phy_types = types;
689		num_phy_types = ARRAY_SIZE(types);
690		gtr_phy->protocol = ICM_PROTOCOL_USB;
691		break;
692	}
693	case PHY_TYPE_DP: {
694		static const int types[] = {
695			XPSGTR_TYPE_DP_0,
696			XPSGTR_TYPE_DP_1,
697		};
698
699		phy_types = types;
700		num_phy_types = ARRAY_SIZE(types);
701		gtr_phy->protocol = ICM_PROTOCOL_DP;
702		break;
703	}
704	case PHY_TYPE_PCIE: {
705		static const int types[] = {
706			XPSGTR_TYPE_PCIE_0,
707			XPSGTR_TYPE_PCIE_1,
708			XPSGTR_TYPE_PCIE_2,
709			XPSGTR_TYPE_PCIE_3,
710		};
711
712		phy_types = types;
713		num_phy_types = ARRAY_SIZE(types);
714		gtr_phy->protocol = ICM_PROTOCOL_PCIE;
715		break;
716	}
717	case PHY_TYPE_SGMII: {
718		static const int types[] = {
719			XPSGTR_TYPE_SGMII0,
720			XPSGTR_TYPE_SGMII1,
721			XPSGTR_TYPE_SGMII2,
722			XPSGTR_TYPE_SGMII3,
723		};
724
725		phy_types = types;
726		num_phy_types = ARRAY_SIZE(types);
727		gtr_phy->protocol = ICM_PROTOCOL_SGMII;
728		break;
729	}
730	default:
731		return -EINVAL;
732	}
733
734	if (phy_instance >= num_phy_types)
735		return -EINVAL;
736
737	gtr_phy->type = phy_types[phy_instance];
738	return 0;
739}
740
741/*
742 * Valid combinations of controllers and lanes (Interconnect Matrix).
743 */
744static const unsigned int icm_matrix[NUM_LANES][CONTROLLERS_PER_LANE] = {
745	{ XPSGTR_TYPE_PCIE_0, XPSGTR_TYPE_SATA_0, XPSGTR_TYPE_USB0,
746		XPSGTR_TYPE_DP_1, XPSGTR_TYPE_SGMII0 },
747	{ XPSGTR_TYPE_PCIE_1, XPSGTR_TYPE_SATA_1, XPSGTR_TYPE_USB0,
748		XPSGTR_TYPE_DP_0, XPSGTR_TYPE_SGMII1 },
749	{ XPSGTR_TYPE_PCIE_2, XPSGTR_TYPE_SATA_0, XPSGTR_TYPE_USB0,
750		XPSGTR_TYPE_DP_1, XPSGTR_TYPE_SGMII2 },
751	{ XPSGTR_TYPE_PCIE_3, XPSGTR_TYPE_SATA_1, XPSGTR_TYPE_USB1,
752		XPSGTR_TYPE_DP_0, XPSGTR_TYPE_SGMII3 }
753};
754
755/* Translate OF phandle and args to PHY instance. */
756static struct phy *xpsgtr_xlate(struct device *dev,
757				struct of_phandle_args *args)
758{
759	struct xpsgtr_dev *gtr_dev = dev_get_drvdata(dev);
760	struct xpsgtr_phy *gtr_phy;
761	unsigned int phy_instance;
762	unsigned int phy_lane;
763	unsigned int phy_type;
764	unsigned int refclk;
765	unsigned int i;
766	int ret;
767
768	if (args->args_count != 4) {
769		dev_err(dev, "Invalid number of cells in 'phy' property\n");
770		return ERR_PTR(-EINVAL);
771	}
772
773	/*
774	 * Get the PHY parameters from the OF arguments and derive the lane
775	 * type.
776	 */
777	phy_lane = args->args[0];
778	if (phy_lane >= ARRAY_SIZE(gtr_dev->phys)) {
779		dev_err(dev, "Invalid lane number %u\n", phy_lane);
780		return ERR_PTR(-ENODEV);
781	}
782
783	gtr_phy = &gtr_dev->phys[phy_lane];
784	phy_type = args->args[1];
785	phy_instance = args->args[2];
786
787	ret = xpsgtr_set_lane_type(gtr_phy, phy_type, phy_instance);
788	if (ret < 0) {
789		dev_err(gtr_dev->dev, "Invalid PHY type and/or instance\n");
790		return ERR_PTR(ret);
791	}
792
793	refclk = args->args[3];
794	if (refclk >= ARRAY_SIZE(gtr_dev->refclk_sscs) ||
795	    !gtr_dev->refclk_sscs[refclk]) {
796		dev_err(dev, "Invalid reference clock number %u\n", refclk);
797		return ERR_PTR(-EINVAL);
798	}
799
800	gtr_phy->refclk = refclk;
801
802	/*
803	 * Ensure that the Interconnect Matrix is obeyed, i.e a given lane type
804	 * is allowed to operate on the lane.
805	 */
806	for (i = 0; i < CONTROLLERS_PER_LANE; i++) {
807		if (icm_matrix[phy_lane][i] == gtr_phy->type)
808			return gtr_phy->phy;
809	}
810
811	return ERR_PTR(-EINVAL);
812}
813
814/*
815 * Power Management
816 */
817
818static int __maybe_unused xpsgtr_suspend(struct device *dev)
819{
820	struct xpsgtr_dev *gtr_dev = dev_get_drvdata(dev);
821
822	/* Save the snapshot ICM_CFG registers. */
823	gtr_dev->saved_icm_cfg0 = xpsgtr_read(gtr_dev, ICM_CFG0);
824	gtr_dev->saved_icm_cfg1 = xpsgtr_read(gtr_dev, ICM_CFG1);
825
826	return 0;
827}
828
829static int __maybe_unused xpsgtr_resume(struct device *dev)
830{
831	struct xpsgtr_dev *gtr_dev = dev_get_drvdata(dev);
832	unsigned int icm_cfg0, icm_cfg1;
833	unsigned int i;
834	bool skip_phy_init;
835
836	icm_cfg0 = xpsgtr_read(gtr_dev, ICM_CFG0);
837	icm_cfg1 = xpsgtr_read(gtr_dev, ICM_CFG1);
838
839	/* Return if no GT lanes got configured before suspend. */
840	if (!gtr_dev->saved_icm_cfg0 && !gtr_dev->saved_icm_cfg1)
841		return 0;
842
843	/* Check if the ICM configurations changed after suspend. */
844	if (icm_cfg0 == gtr_dev->saved_icm_cfg0 &&
845	    icm_cfg1 == gtr_dev->saved_icm_cfg1)
846		skip_phy_init = true;
847	else
848		skip_phy_init = false;
849
850	/* Update the skip_phy_init for all gtr_phy instances. */
851	for (i = 0; i < ARRAY_SIZE(gtr_dev->phys); i++)
852		gtr_dev->phys[i].skip_phy_init = skip_phy_init;
853
854	return 0;
855}
856
857static const struct dev_pm_ops xpsgtr_pm_ops = {
858	SET_SYSTEM_SLEEP_PM_OPS(xpsgtr_suspend, xpsgtr_resume)
859};
860
861/*
862 * Probe & Platform Driver
863 */
864
865static int xpsgtr_get_ref_clocks(struct xpsgtr_dev *gtr_dev)
866{
867	unsigned int refclk;
868
869	for (refclk = 0; refclk < ARRAY_SIZE(gtr_dev->refclk_sscs); ++refclk) {
870		unsigned long rate;
871		unsigned int i;
872		struct clk *clk;
873		char name[8];
874
875		snprintf(name, sizeof(name), "ref%u", refclk);
876		clk = devm_clk_get_optional(gtr_dev->dev, name);
877		if (IS_ERR(clk)) {
878			if (PTR_ERR(clk) != -EPROBE_DEFER)
879				dev_err(gtr_dev->dev,
880					"Failed to get reference clock %u: %ld\n",
881					refclk, PTR_ERR(clk));
882			return PTR_ERR(clk);
883		}
884
885		if (!clk)
886			continue;
887
888		/*
889		 * Get the spread spectrum (SSC) settings for the reference
890		 * clock rate.
891		 */
892		rate = clk_get_rate(clk);
893
894		for (i = 0 ; i < ARRAY_SIZE(ssc_lookup); i++) {
895			if (rate == ssc_lookup[i].refclk_rate) {
896				gtr_dev->refclk_sscs[refclk] = &ssc_lookup[i];
897				break;
898			}
899		}
900
901		if (i == ARRAY_SIZE(ssc_lookup)) {
902			dev_err(gtr_dev->dev,
903				"Invalid rate %lu for reference clock %u\n",
904				rate, refclk);
905			return -EINVAL;
906		}
907	}
908
909	return 0;
910}
911
912static int xpsgtr_probe(struct platform_device *pdev)
913{
914	struct device_node *np = pdev->dev.of_node;
915	struct xpsgtr_dev *gtr_dev;
916	struct phy_provider *provider;
917	unsigned int port;
918	int ret;
919
920	gtr_dev = devm_kzalloc(&pdev->dev, sizeof(*gtr_dev), GFP_KERNEL);
921	if (!gtr_dev)
922		return -ENOMEM;
923
924	gtr_dev->dev = &pdev->dev;
925	platform_set_drvdata(pdev, gtr_dev);
926
927	mutex_init(&gtr_dev->gtr_mutex);
928
929	if (of_device_is_compatible(np, "xlnx,zynqmp-psgtr"))
930		gtr_dev->tx_term_fix =
931			of_property_read_bool(np, "xlnx,tx-termination-fix");
932
933	/* Acquire resources. */
934	gtr_dev->serdes = devm_platform_ioremap_resource_byname(pdev, "serdes");
935	if (IS_ERR(gtr_dev->serdes))
936		return PTR_ERR(gtr_dev->serdes);
937
938	gtr_dev->siou = devm_platform_ioremap_resource_byname(pdev, "siou");
939	if (IS_ERR(gtr_dev->siou))
940		return PTR_ERR(gtr_dev->siou);
941
942	ret = xpsgtr_get_ref_clocks(gtr_dev);
943	if (ret)
944		return ret;
945
946	/* Create PHYs. */
947	for (port = 0; port < ARRAY_SIZE(gtr_dev->phys); ++port) {
948		struct xpsgtr_phy *gtr_phy = &gtr_dev->phys[port];
949		struct phy *phy;
950
951		gtr_phy->lane = port;
952		gtr_phy->dev = gtr_dev;
953
954		phy = devm_phy_create(&pdev->dev, np, &xpsgtr_phyops);
955		if (IS_ERR(phy)) {
956			dev_err(&pdev->dev, "failed to create PHY\n");
957			return PTR_ERR(phy);
958		}
959
960		gtr_phy->phy = phy;
961		phy_set_drvdata(phy, gtr_phy);
962	}
963
964	/* Register the PHY provider. */
965	provider = devm_of_phy_provider_register(&pdev->dev, xpsgtr_xlate);
966	if (IS_ERR(provider)) {
967		dev_err(&pdev->dev, "registering provider failed\n");
968		return PTR_ERR(provider);
969	}
970	return 0;
971}
972
973static const struct of_device_id xpsgtr_of_match[] = {
974	{ .compatible = "xlnx,zynqmp-psgtr", },
975	{ .compatible = "xlnx,zynqmp-psgtr-v1.1", },
976	{},
977};
978MODULE_DEVICE_TABLE(of, xpsgtr_of_match);
979
980static struct platform_driver xpsgtr_driver = {
981	.probe = xpsgtr_probe,
982	.driver = {
983		.name = "xilinx-psgtr",
984		.of_match_table	= xpsgtr_of_match,
985		.pm =  &xpsgtr_pm_ops,
986	},
987};
988
989module_platform_driver(xpsgtr_driver);
990
991MODULE_AUTHOR("Xilinx Inc.");
992MODULE_LICENSE("GPL v2");
993MODULE_DESCRIPTION("Xilinx ZynqMP High speed Gigabit Transceiver");