Linux Audio

Check our new training course

In-person Linux kernel drivers training

Jun 16-20, 2025
Register
Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *  linux/drivers/mmc/core/mmc_ops.h
   4 *
   5 *  Copyright 2006-2007 Pierre Ossman
 
 
 
 
 
   6 */
   7
   8#include <linux/slab.h>
   9#include <linux/export.h>
  10#include <linux/types.h>
  11#include <linux/scatterlist.h>
  12
  13#include <linux/mmc/host.h>
  14#include <linux/mmc/card.h>
  15#include <linux/mmc/mmc.h>
  16
  17#include "core.h"
  18#include "card.h"
  19#include "host.h"
  20#include "mmc_ops.h"
  21
  22#define MMC_BKOPS_TIMEOUT_MS		(120 * 1000) /* 120s */
  23#define MMC_CACHE_FLUSH_TIMEOUT_MS	(30 * 1000) /* 30s */
  24#define MMC_SANITIZE_TIMEOUT_MS		(240 * 1000) /* 240s */
  25
  26static const u8 tuning_blk_pattern_4bit[] = {
  27	0xff, 0x0f, 0xff, 0x00, 0xff, 0xcc, 0xc3, 0xcc,
  28	0xc3, 0x3c, 0xcc, 0xff, 0xfe, 0xff, 0xfe, 0xef,
  29	0xff, 0xdf, 0xff, 0xdd, 0xff, 0xfb, 0xff, 0xfb,
  30	0xbf, 0xff, 0x7f, 0xff, 0x77, 0xf7, 0xbd, 0xef,
  31	0xff, 0xf0, 0xff, 0xf0, 0x0f, 0xfc, 0xcc, 0x3c,
  32	0xcc, 0x33, 0xcc, 0xcf, 0xff, 0xef, 0xff, 0xee,
  33	0xff, 0xfd, 0xff, 0xfd, 0xdf, 0xff, 0xbf, 0xff,
  34	0xbb, 0xff, 0xf7, 0xff, 0xf7, 0x7f, 0x7b, 0xde,
  35};
  36
  37static const u8 tuning_blk_pattern_8bit[] = {
  38	0xff, 0xff, 0x00, 0xff, 0xff, 0xff, 0x00, 0x00,
  39	0xff, 0xff, 0xcc, 0xcc, 0xcc, 0x33, 0xcc, 0xcc,
  40	0xcc, 0x33, 0x33, 0xcc, 0xcc, 0xcc, 0xff, 0xff,
  41	0xff, 0xee, 0xff, 0xff, 0xff, 0xee, 0xee, 0xff,
  42	0xff, 0xff, 0xdd, 0xff, 0xff, 0xff, 0xdd, 0xdd,
  43	0xff, 0xff, 0xff, 0xbb, 0xff, 0xff, 0xff, 0xbb,
  44	0xbb, 0xff, 0xff, 0xff, 0x77, 0xff, 0xff, 0xff,
  45	0x77, 0x77, 0xff, 0x77, 0xbb, 0xdd, 0xee, 0xff,
  46	0xff, 0xff, 0xff, 0x00, 0xff, 0xff, 0xff, 0x00,
  47	0x00, 0xff, 0xff, 0xcc, 0xcc, 0xcc, 0x33, 0xcc,
  48	0xcc, 0xcc, 0x33, 0x33, 0xcc, 0xcc, 0xcc, 0xff,
  49	0xff, 0xff, 0xee, 0xff, 0xff, 0xff, 0xee, 0xee,
  50	0xff, 0xff, 0xff, 0xdd, 0xff, 0xff, 0xff, 0xdd,
  51	0xdd, 0xff, 0xff, 0xff, 0xbb, 0xff, 0xff, 0xff,
  52	0xbb, 0xbb, 0xff, 0xff, 0xff, 0x77, 0xff, 0xff,
  53	0xff, 0x77, 0x77, 0xff, 0x77, 0xbb, 0xdd, 0xee,
  54};
  55
  56int __mmc_send_status(struct mmc_card *card, u32 *status, unsigned int retries)
  57{
  58	int err;
  59	struct mmc_command cmd = {};
  60
  61	cmd.opcode = MMC_SEND_STATUS;
  62	if (!mmc_host_is_spi(card->host))
  63		cmd.arg = card->rca << 16;
  64	cmd.flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC;
  65
  66	err = mmc_wait_for_cmd(card->host, &cmd, retries);
  67	if (err)
  68		return err;
  69
  70	/* NOTE: callers are required to understand the difference
  71	 * between "native" and SPI format status words!
  72	 */
  73	if (status)
  74		*status = cmd.resp[0];
  75
  76	return 0;
  77}
  78EXPORT_SYMBOL_GPL(__mmc_send_status);
  79
  80int mmc_send_status(struct mmc_card *card, u32 *status)
  81{
  82	return __mmc_send_status(card, status, MMC_CMD_RETRIES);
  83}
  84EXPORT_SYMBOL_GPL(mmc_send_status);
  85
  86static int _mmc_select_card(struct mmc_host *host, struct mmc_card *card)
  87{
  88	struct mmc_command cmd = {};
  89
  90	cmd.opcode = MMC_SELECT_CARD;
  91
  92	if (card) {
  93		cmd.arg = card->rca << 16;
  94		cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
  95	} else {
  96		cmd.arg = 0;
  97		cmd.flags = MMC_RSP_NONE | MMC_CMD_AC;
  98	}
  99
 100	return mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
 101}
 102
 103int mmc_select_card(struct mmc_card *card)
 104{
 105
 106	return _mmc_select_card(card->host, card);
 107}
 108
 109int mmc_deselect_cards(struct mmc_host *host)
 110{
 111	return _mmc_select_card(host, NULL);
 112}
 113
 114/*
 115 * Write the value specified in the device tree or board code into the optional
 116 * 16 bit Driver Stage Register. This can be used to tune raise/fall times and
 117 * drive strength of the DAT and CMD outputs. The actual meaning of a given
 118 * value is hardware dependant.
 119 * The presence of the DSR register can be determined from the CSD register,
 120 * bit 76.
 121 */
 122int mmc_set_dsr(struct mmc_host *host)
 123{
 124	struct mmc_command cmd = {};
 125
 126	cmd.opcode = MMC_SET_DSR;
 127
 128	cmd.arg = (host->dsr << 16) | 0xffff;
 129	cmd.flags = MMC_RSP_NONE | MMC_CMD_AC;
 130
 131	return mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
 132}
 133
 134int mmc_go_idle(struct mmc_host *host)
 135{
 136	int err;
 137	struct mmc_command cmd = {};
 138
 139	/*
 140	 * Non-SPI hosts need to prevent chipselect going active during
 141	 * GO_IDLE; that would put chips into SPI mode.  Remind them of
 142	 * that in case of hardware that won't pull up DAT3/nCS otherwise.
 143	 *
 144	 * SPI hosts ignore ios.chip_select; it's managed according to
 145	 * rules that must accommodate non-MMC slaves which this layer
 146	 * won't even know about.
 147	 */
 148	if (!mmc_host_is_spi(host)) {
 149		mmc_set_chip_select(host, MMC_CS_HIGH);
 150		mmc_delay(1);
 151	}
 152
 153	cmd.opcode = MMC_GO_IDLE_STATE;
 154	cmd.arg = 0;
 155	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_NONE | MMC_CMD_BC;
 156
 157	err = mmc_wait_for_cmd(host, &cmd, 0);
 158
 159	mmc_delay(1);
 160
 161	if (!mmc_host_is_spi(host)) {
 162		mmc_set_chip_select(host, MMC_CS_DONTCARE);
 163		mmc_delay(1);
 164	}
 165
 166	host->use_spi_crc = 0;
 167
 168	return err;
 169}
 170
 171int mmc_send_op_cond(struct mmc_host *host, u32 ocr, u32 *rocr)
 172{
 173	struct mmc_command cmd = {};
 174	int i, err = 0;
 175
 176	cmd.opcode = MMC_SEND_OP_COND;
 177	cmd.arg = mmc_host_is_spi(host) ? 0 : ocr;
 178	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R3 | MMC_CMD_BCR;
 179
 180	for (i = 100; i; i--) {
 181		err = mmc_wait_for_cmd(host, &cmd, 0);
 182		if (err)
 183			break;
 184
 185		/* wait until reset completes */
 
 
 
 
 186		if (mmc_host_is_spi(host)) {
 187			if (!(cmd.resp[0] & R1_SPI_IDLE))
 188				break;
 189		} else {
 190			if (cmd.resp[0] & MMC_CARD_BUSY)
 191				break;
 192		}
 193
 194		err = -ETIMEDOUT;
 195
 196		mmc_delay(10);
 197
 198		/*
 199		 * According to eMMC specification v5.1 section 6.4.3, we
 200		 * should issue CMD1 repeatedly in the idle state until
 201		 * the eMMC is ready. Otherwise some eMMC devices seem to enter
 202		 * the inactive mode after mmc_init_card() issued CMD0 when
 203		 * the eMMC device is busy.
 204		 */
 205		if (!ocr && !mmc_host_is_spi(host))
 206			cmd.arg = cmd.resp[0] | BIT(30);
 207	}
 208
 209	if (rocr && !mmc_host_is_spi(host))
 210		*rocr = cmd.resp[0];
 211
 212	return err;
 213}
 214
 215int mmc_set_relative_addr(struct mmc_card *card)
 216{
 217	struct mmc_command cmd = {};
 218
 219	cmd.opcode = MMC_SET_RELATIVE_ADDR;
 220	cmd.arg = card->rca << 16;
 221	cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
 222
 223	return mmc_wait_for_cmd(card->host, &cmd, MMC_CMD_RETRIES);
 224}
 225
 226static int
 227mmc_send_cxd_native(struct mmc_host *host, u32 arg, u32 *cxd, int opcode)
 228{
 229	int err;
 230	struct mmc_command cmd = {};
 231
 232	cmd.opcode = opcode;
 233	cmd.arg = arg;
 234	cmd.flags = MMC_RSP_R2 | MMC_CMD_AC;
 235
 236	err = mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
 237	if (err)
 238		return err;
 239
 240	memcpy(cxd, cmd.resp, sizeof(u32) * 4);
 241
 242	return 0;
 243}
 244
 245/*
 246 * NOTE: void *buf, caller for the buf is required to use DMA-capable
 247 * buffer or on-stack buffer (with some overhead in callee).
 248 */
 249static int
 250mmc_send_cxd_data(struct mmc_card *card, struct mmc_host *host,
 251		u32 opcode, void *buf, unsigned len)
 252{
 253	struct mmc_request mrq = {};
 254	struct mmc_command cmd = {};
 255	struct mmc_data data = {};
 256	struct scatterlist sg;
 257
 258	mrq.cmd = &cmd;
 259	mrq.data = &data;
 260
 261	cmd.opcode = opcode;
 262	cmd.arg = 0;
 263
 264	/* NOTE HACK:  the MMC_RSP_SPI_R1 is always correct here, but we
 265	 * rely on callers to never use this with "native" calls for reading
 266	 * CSD or CID.  Native versions of those commands use the R2 type,
 267	 * not R1 plus a data block.
 268	 */
 269	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
 270
 271	data.blksz = len;
 272	data.blocks = 1;
 273	data.flags = MMC_DATA_READ;
 274	data.sg = &sg;
 275	data.sg_len = 1;
 276
 277	sg_init_one(&sg, buf, len);
 278
 279	if (opcode == MMC_SEND_CSD || opcode == MMC_SEND_CID) {
 280		/*
 281		 * The spec states that CSR and CID accesses have a timeout
 282		 * of 64 clock cycles.
 283		 */
 284		data.timeout_ns = 0;
 285		data.timeout_clks = 64;
 286	} else
 287		mmc_set_data_timeout(&data, card);
 288
 289	mmc_wait_for_req(host, &mrq);
 290
 291	if (cmd.error)
 292		return cmd.error;
 293	if (data.error)
 294		return data.error;
 295
 296	return 0;
 297}
 298
 299static int mmc_spi_send_csd(struct mmc_card *card, u32 *csd)
 300{
 301	int ret, i;
 302	__be32 *csd_tmp;
 303
 304	csd_tmp = kzalloc(16, GFP_KERNEL);
 305	if (!csd_tmp)
 306		return -ENOMEM;
 307
 308	ret = mmc_send_cxd_data(card, card->host, MMC_SEND_CSD, csd_tmp, 16);
 309	if (ret)
 310		goto err;
 311
 312	for (i = 0; i < 4; i++)
 313		csd[i] = be32_to_cpu(csd_tmp[i]);
 314
 315err:
 316	kfree(csd_tmp);
 317	return ret;
 318}
 319
 320int mmc_send_csd(struct mmc_card *card, u32 *csd)
 321{
 322	if (mmc_host_is_spi(card->host))
 323		return mmc_spi_send_csd(card, csd);
 324
 325	return mmc_send_cxd_native(card->host, card->rca << 16,	csd,
 326				MMC_SEND_CSD);
 327}
 328
 329static int mmc_spi_send_cid(struct mmc_host *host, u32 *cid)
 330{
 331	int ret, i;
 332	__be32 *cid_tmp;
 333
 334	cid_tmp = kzalloc(16, GFP_KERNEL);
 335	if (!cid_tmp)
 336		return -ENOMEM;
 337
 338	ret = mmc_send_cxd_data(NULL, host, MMC_SEND_CID, cid_tmp, 16);
 339	if (ret)
 340		goto err;
 341
 342	for (i = 0; i < 4; i++)
 343		cid[i] = be32_to_cpu(cid_tmp[i]);
 344
 345err:
 346	kfree(cid_tmp);
 347	return ret;
 348}
 349
 350int mmc_send_cid(struct mmc_host *host, u32 *cid)
 351{
 352	if (mmc_host_is_spi(host))
 353		return mmc_spi_send_cid(host, cid);
 354
 355	return mmc_send_cxd_native(host, 0, cid, MMC_ALL_SEND_CID);
 356}
 357
 358int mmc_get_ext_csd(struct mmc_card *card, u8 **new_ext_csd)
 359{
 360	int err;
 361	u8 *ext_csd;
 362
 363	if (!card || !new_ext_csd)
 364		return -EINVAL;
 365
 366	if (!mmc_can_ext_csd(card))
 367		return -EOPNOTSUPP;
 368
 369	/*
 370	 * As the ext_csd is so large and mostly unused, we don't store the
 371	 * raw block in mmc_card.
 372	 */
 373	ext_csd = kzalloc(512, GFP_KERNEL);
 374	if (!ext_csd)
 375		return -ENOMEM;
 376
 377	err = mmc_send_cxd_data(card, card->host, MMC_SEND_EXT_CSD, ext_csd,
 378				512);
 379	if (err)
 380		kfree(ext_csd);
 381	else
 382		*new_ext_csd = ext_csd;
 383
 384	return err;
 385}
 386EXPORT_SYMBOL_GPL(mmc_get_ext_csd);
 387
 388int mmc_spi_read_ocr(struct mmc_host *host, int highcap, u32 *ocrp)
 389{
 390	struct mmc_command cmd = {};
 391	int err;
 392
 393	cmd.opcode = MMC_SPI_READ_OCR;
 394	cmd.arg = highcap ? (1 << 30) : 0;
 395	cmd.flags = MMC_RSP_SPI_R3;
 396
 397	err = mmc_wait_for_cmd(host, &cmd, 0);
 398
 399	*ocrp = cmd.resp[1];
 400	return err;
 401}
 402
 403int mmc_spi_set_crc(struct mmc_host *host, int use_crc)
 404{
 405	struct mmc_command cmd = {};
 406	int err;
 407
 408	cmd.opcode = MMC_SPI_CRC_ON_OFF;
 409	cmd.flags = MMC_RSP_SPI_R1;
 410	cmd.arg = use_crc;
 411
 412	err = mmc_wait_for_cmd(host, &cmd, 0);
 413	if (!err)
 414		host->use_spi_crc = use_crc;
 415	return err;
 416}
 417
 418static int mmc_switch_status_error(struct mmc_host *host, u32 status)
 419{
 420	if (mmc_host_is_spi(host)) {
 421		if (status & R1_SPI_ILLEGAL_COMMAND)
 422			return -EBADMSG;
 423	} else {
 424		if (R1_STATUS(status))
 425			pr_warn("%s: unexpected status %#x after switch\n",
 426				mmc_hostname(host), status);
 427		if (status & R1_SWITCH_ERROR)
 428			return -EBADMSG;
 429	}
 430	return 0;
 431}
 432
 433/* Caller must hold re-tuning */
 434int mmc_switch_status(struct mmc_card *card, bool crc_err_fatal)
 435{
 436	u32 status;
 437	int err;
 438
 439	err = mmc_send_status(card, &status);
 440	if (!crc_err_fatal && err == -EILSEQ)
 441		return 0;
 442	if (err)
 443		return err;
 444
 445	return mmc_switch_status_error(card->host, status);
 446}
 447
 448static int mmc_busy_status(struct mmc_card *card, bool retry_crc_err,
 449			   enum mmc_busy_cmd busy_cmd, bool *busy)
 450{
 451	struct mmc_host *host = card->host;
 452	u32 status = 0;
 453	int err;
 454
 455	if (host->ops->card_busy) {
 456		*busy = host->ops->card_busy(host);
 457		return 0;
 458	}
 459
 460	err = mmc_send_status(card, &status);
 461	if (retry_crc_err && err == -EILSEQ) {
 462		*busy = true;
 463		return 0;
 464	}
 465	if (err)
 466		return err;
 467
 468	switch (busy_cmd) {
 469	case MMC_BUSY_CMD6:
 470		err = mmc_switch_status_error(card->host, status);
 471		break;
 472	case MMC_BUSY_ERASE:
 473		err = R1_STATUS(status) ? -EIO : 0;
 474		break;
 475	case MMC_BUSY_HPI:
 476		break;
 477	default:
 478		err = -EINVAL;
 479	}
 480
 481	if (err)
 482		return err;
 483
 484	*busy = !mmc_ready_for_data(status);
 485	return 0;
 486}
 487
 488static int __mmc_poll_for_busy(struct mmc_card *card, unsigned int timeout_ms,
 489			       bool send_status, bool retry_crc_err,
 490			       enum mmc_busy_cmd busy_cmd)
 491{
 492	struct mmc_host *host = card->host;
 493	int err;
 494	unsigned long timeout;
 495	unsigned int udelay = 32, udelay_max = 32768;
 496	bool expired = false;
 497	bool busy = false;
 498
 
 
 
 
 499	/*
 500	 * In cases when not allowed to poll by using CMD13 or because we aren't
 501	 * capable of polling by using ->card_busy(), then rely on waiting the
 502	 * stated timeout to be sufficient.
 503	 */
 504	if (!send_status && !host->ops->card_busy) {
 505		mmc_delay(timeout_ms);
 506		return 0;
 507	}
 508
 509	timeout = jiffies + msecs_to_jiffies(timeout_ms) + 1;
 510	do {
 511		/*
 512		 * Due to the possibility of being preempted while polling,
 513		 * check the expiration time first.
 514		 */
 515		expired = time_after(jiffies, timeout);
 516
 517		err = mmc_busy_status(card, retry_crc_err, busy_cmd, &busy);
 518		if (err)
 519			return err;
 
 
 
 
 
 
 
 
 
 
 
 
 520
 521		/* Timeout if the device still remains busy. */
 522		if (expired && busy) {
 523			pr_err("%s: Card stuck being busy! %s\n",
 524				mmc_hostname(host), __func__);
 525			return -ETIMEDOUT;
 526		}
 527
 528		/* Throttle the polling rate to avoid hogging the CPU. */
 529		if (busy) {
 530			usleep_range(udelay, udelay * 2);
 531			if (udelay < udelay_max)
 532				udelay *= 2;
 533		}
 534	} while (busy);
 535
 536	return 0;
 537}
 538
 539int mmc_poll_for_busy(struct mmc_card *card, unsigned int timeout_ms,
 540		      enum mmc_busy_cmd busy_cmd)
 541{
 542	return __mmc_poll_for_busy(card, timeout_ms, true, false, busy_cmd);
 543}
 544
 545/**
 546 *	__mmc_switch - modify EXT_CSD register
 547 *	@card: the MMC card associated with the data transfer
 548 *	@set: cmd set values
 549 *	@index: EXT_CSD register index
 550 *	@value: value to program into EXT_CSD register
 551 *	@timeout_ms: timeout (ms) for operation performed by register write,
 552 *                   timeout of zero implies maximum possible timeout
 553 *	@timing: new timing to change to
 
 554 *	@send_status: send status cmd to poll for busy
 555 *	@retry_crc_err: retry when CRC errors when polling with CMD13 for busy
 556 *
 557 *	Modifies the EXT_CSD register for selected card.
 558 */
 559int __mmc_switch(struct mmc_card *card, u8 set, u8 index, u8 value,
 560		unsigned int timeout_ms, unsigned char timing,
 561		bool send_status, bool retry_crc_err)
 562{
 563	struct mmc_host *host = card->host;
 564	int err;
 565	struct mmc_command cmd = {};
 566	bool use_r1b_resp = true;
 567	unsigned char old_timing = host->ios.timing;
 568
 569	mmc_retune_hold(host);
 570
 571	if (!timeout_ms) {
 572		pr_warn("%s: unspecified timeout for CMD6 - use generic\n",
 573			mmc_hostname(host));
 574		timeout_ms = card->ext_csd.generic_cmd6_time;
 575	}
 576
 577	/*
 578	 * If the max_busy_timeout of the host is specified, make sure it's
 579	 * enough to fit the used timeout_ms. In case it's not, let's instruct
 580	 * the host to avoid HW busy detection, by converting to a R1 response
 581	 * instead of a R1B. Note, some hosts requires R1B, which also means
 582	 * they are on their own when it comes to deal with the busy timeout.
 583	 */
 584	if (!(host->caps & MMC_CAP_NEED_RSP_BUSY) && host->max_busy_timeout &&
 585	    (timeout_ms > host->max_busy_timeout))
 586		use_r1b_resp = false;
 587
 588	cmd.opcode = MMC_SWITCH;
 589	cmd.arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) |
 590		  (index << 16) |
 591		  (value << 8) |
 592		  set;
 593	cmd.flags = MMC_CMD_AC;
 594	if (use_r1b_resp) {
 595		cmd.flags |= MMC_RSP_SPI_R1B | MMC_RSP_R1B;
 
 
 
 
 596		cmd.busy_timeout = timeout_ms;
 597	} else {
 598		cmd.flags |= MMC_RSP_SPI_R1 | MMC_RSP_R1;
 599	}
 600
 
 
 
 601	err = mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
 602	if (err)
 603		goto out;
 604
 
 
 
 
 605	/*If SPI or used HW busy detection above, then we don't need to poll. */
 606	if (((host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp) ||
 607		mmc_host_is_spi(host))
 608		goto out_tim;
 609
 610	/* Let's try to poll to find out when the command is completed. */
 611	err = __mmc_poll_for_busy(card, timeout_ms, send_status, retry_crc_err,
 612				  MMC_BUSY_CMD6);
 613	if (err)
 614		goto out;
 615
 616out_tim:
 617	/* Switch to new timing before check switch status. */
 618	if (timing)
 619		mmc_set_timing(host, timing);
 620
 621	if (send_status) {
 622		err = mmc_switch_status(card, true);
 623		if (err && timing)
 624			mmc_set_timing(host, old_timing);
 625	}
 626out:
 627	mmc_retune_release(host);
 628
 629	return err;
 630}
 631
 632int mmc_switch(struct mmc_card *card, u8 set, u8 index, u8 value,
 633		unsigned int timeout_ms)
 634{
 635	return __mmc_switch(card, set, index, value, timeout_ms, 0,
 636			    true, false);
 637}
 638EXPORT_SYMBOL_GPL(mmc_switch);
 639
 640int mmc_send_tuning(struct mmc_host *host, u32 opcode, int *cmd_error)
 641{
 642	struct mmc_request mrq = {};
 643	struct mmc_command cmd = {};
 644	struct mmc_data data = {};
 645	struct scatterlist sg;
 646	struct mmc_ios *ios = &host->ios;
 647	const u8 *tuning_block_pattern;
 648	int size, err = 0;
 649	u8 *data_buf;
 650
 651	if (ios->bus_width == MMC_BUS_WIDTH_8) {
 652		tuning_block_pattern = tuning_blk_pattern_8bit;
 653		size = sizeof(tuning_blk_pattern_8bit);
 654	} else if (ios->bus_width == MMC_BUS_WIDTH_4) {
 655		tuning_block_pattern = tuning_blk_pattern_4bit;
 656		size = sizeof(tuning_blk_pattern_4bit);
 657	} else
 658		return -EINVAL;
 659
 660	data_buf = kzalloc(size, GFP_KERNEL);
 661	if (!data_buf)
 662		return -ENOMEM;
 663
 664	mrq.cmd = &cmd;
 665	mrq.data = &data;
 666
 667	cmd.opcode = opcode;
 668	cmd.flags = MMC_RSP_R1 | MMC_CMD_ADTC;
 669
 670	data.blksz = size;
 671	data.blocks = 1;
 672	data.flags = MMC_DATA_READ;
 673
 674	/*
 675	 * According to the tuning specs, Tuning process
 676	 * is normally shorter 40 executions of CMD19,
 677	 * and timeout value should be shorter than 150 ms
 678	 */
 679	data.timeout_ns = 150 * NSEC_PER_MSEC;
 680
 681	data.sg = &sg;
 682	data.sg_len = 1;
 683	sg_init_one(&sg, data_buf, size);
 684
 685	mmc_wait_for_req(host, &mrq);
 686
 687	if (cmd_error)
 688		*cmd_error = cmd.error;
 689
 690	if (cmd.error) {
 691		err = cmd.error;
 692		goto out;
 693	}
 694
 695	if (data.error) {
 696		err = data.error;
 697		goto out;
 698	}
 699
 700	if (memcmp(data_buf, tuning_block_pattern, size))
 701		err = -EIO;
 702
 703out:
 704	kfree(data_buf);
 705	return err;
 706}
 707EXPORT_SYMBOL_GPL(mmc_send_tuning);
 708
 709int mmc_abort_tuning(struct mmc_host *host, u32 opcode)
 710{
 711	struct mmc_command cmd = {};
 712
 713	/*
 714	 * eMMC specification specifies that CMD12 can be used to stop a tuning
 715	 * command, but SD specification does not, so do nothing unless it is
 716	 * eMMC.
 717	 */
 718	if (opcode != MMC_SEND_TUNING_BLOCK_HS200)
 719		return 0;
 720
 721	cmd.opcode = MMC_STOP_TRANSMISSION;
 722	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
 723
 724	/*
 725	 * For drivers that override R1 to R1b, set an arbitrary timeout based
 726	 * on the tuning timeout i.e. 150ms.
 727	 */
 728	cmd.busy_timeout = 150;
 729
 730	return mmc_wait_for_cmd(host, &cmd, 0);
 731}
 732EXPORT_SYMBOL_GPL(mmc_abort_tuning);
 733
 734static int
 735mmc_send_bus_test(struct mmc_card *card, struct mmc_host *host, u8 opcode,
 736		  u8 len)
 737{
 738	struct mmc_request mrq = {};
 739	struct mmc_command cmd = {};
 740	struct mmc_data data = {};
 741	struct scatterlist sg;
 742	u8 *data_buf;
 743	u8 *test_buf;
 744	int i, err;
 745	static u8 testdata_8bit[8] = { 0x55, 0xaa, 0, 0, 0, 0, 0, 0 };
 746	static u8 testdata_4bit[4] = { 0x5a, 0, 0, 0 };
 747
 748	/* dma onto stack is unsafe/nonportable, but callers to this
 749	 * routine normally provide temporary on-stack buffers ...
 750	 */
 751	data_buf = kmalloc(len, GFP_KERNEL);
 752	if (!data_buf)
 753		return -ENOMEM;
 754
 755	if (len == 8)
 756		test_buf = testdata_8bit;
 757	else if (len == 4)
 758		test_buf = testdata_4bit;
 759	else {
 760		pr_err("%s: Invalid bus_width %d\n",
 761		       mmc_hostname(host), len);
 762		kfree(data_buf);
 763		return -EINVAL;
 764	}
 765
 766	if (opcode == MMC_BUS_TEST_W)
 767		memcpy(data_buf, test_buf, len);
 768
 769	mrq.cmd = &cmd;
 770	mrq.data = &data;
 771	cmd.opcode = opcode;
 772	cmd.arg = 0;
 773
 774	/* NOTE HACK:  the MMC_RSP_SPI_R1 is always correct here, but we
 775	 * rely on callers to never use this with "native" calls for reading
 776	 * CSD or CID.  Native versions of those commands use the R2 type,
 777	 * not R1 plus a data block.
 778	 */
 779	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
 780
 781	data.blksz = len;
 782	data.blocks = 1;
 783	if (opcode == MMC_BUS_TEST_R)
 784		data.flags = MMC_DATA_READ;
 785	else
 786		data.flags = MMC_DATA_WRITE;
 787
 788	data.sg = &sg;
 789	data.sg_len = 1;
 790	mmc_set_data_timeout(&data, card);
 791	sg_init_one(&sg, data_buf, len);
 792	mmc_wait_for_req(host, &mrq);
 793	err = 0;
 794	if (opcode == MMC_BUS_TEST_R) {
 795		for (i = 0; i < len / 4; i++)
 796			if ((test_buf[i] ^ data_buf[i]) != 0xff) {
 797				err = -EIO;
 798				break;
 799			}
 800	}
 801	kfree(data_buf);
 802
 803	if (cmd.error)
 804		return cmd.error;
 805	if (data.error)
 806		return data.error;
 807
 808	return err;
 809}
 810
 811int mmc_bus_test(struct mmc_card *card, u8 bus_width)
 812{
 813	int width;
 814
 815	if (bus_width == MMC_BUS_WIDTH_8)
 816		width = 8;
 817	else if (bus_width == MMC_BUS_WIDTH_4)
 818		width = 4;
 819	else if (bus_width == MMC_BUS_WIDTH_1)
 820		return 0; /* no need for test */
 821	else
 822		return -EINVAL;
 823
 824	/*
 825	 * Ignore errors from BUS_TEST_W.  BUS_TEST_R will fail if there
 826	 * is a problem.  This improves chances that the test will work.
 827	 */
 828	mmc_send_bus_test(card, card->host, MMC_BUS_TEST_W, width);
 829	return mmc_send_bus_test(card, card->host, MMC_BUS_TEST_R, width);
 830}
 831
 832static int mmc_send_hpi_cmd(struct mmc_card *card)
 833{
 834	unsigned int busy_timeout_ms = card->ext_csd.out_of_int_time;
 835	struct mmc_host *host = card->host;
 836	bool use_r1b_resp = true;
 837	struct mmc_command cmd = {};
 
 838	int err;
 839
 840	cmd.opcode = card->ext_csd.hpi_cmd;
 841	cmd.arg = card->rca << 16 | 1;
 842
 843	/*
 844	 * Make sure the host's max_busy_timeout fit the needed timeout for HPI.
 845	 * In case it doesn't, let's instruct the host to avoid HW busy
 846	 * detection, by using a R1 response instead of R1B.
 847	 */
 848	if (host->max_busy_timeout && busy_timeout_ms > host->max_busy_timeout)
 849		use_r1b_resp = false;
 850
 851	if (cmd.opcode == MMC_STOP_TRANSMISSION && use_r1b_resp) {
 
 852		cmd.flags = MMC_RSP_R1B | MMC_CMD_AC;
 853		cmd.busy_timeout = busy_timeout_ms;
 854	} else {
 855		cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
 856		use_r1b_resp = false;
 857	}
 858
 859	err = mmc_wait_for_cmd(host, &cmd, 0);
 
 
 
 860	if (err) {
 861		pr_warn("%s: HPI error %d. Command response %#x\n",
 862			mmc_hostname(host), err, cmd.resp[0]);
 
 863		return err;
 864	}
 
 
 865
 866	/* No need to poll when using HW busy detection. */
 867	if (host->caps & MMC_CAP_WAIT_WHILE_BUSY && use_r1b_resp)
 868		return 0;
 869
 870	/* Let's poll to find out when the HPI request completes. */
 871	return mmc_poll_for_busy(card, busy_timeout_ms, MMC_BUSY_HPI);
 872}
 873
 874/**
 875 *	mmc_interrupt_hpi - Issue for High priority Interrupt
 876 *	@card: the MMC card associated with the HPI transfer
 877 *
 878 *	Issued High Priority Interrupt, and check for card status
 879 *	until out-of prg-state.
 880 */
 881static int mmc_interrupt_hpi(struct mmc_card *card)
 882{
 883	int err;
 884	u32 status;
 
 885
 886	if (!card->ext_csd.hpi_en) {
 887		pr_info("%s: HPI enable bit unset\n", mmc_hostname(card->host));
 888		return 1;
 889	}
 890
 891	err = mmc_send_status(card, &status);
 892	if (err) {
 893		pr_err("%s: Get card status fail\n", mmc_hostname(card->host));
 894		goto out;
 895	}
 896
 897	switch (R1_CURRENT_STATE(status)) {
 898	case R1_STATE_IDLE:
 899	case R1_STATE_READY:
 900	case R1_STATE_STBY:
 901	case R1_STATE_TRAN:
 902		/*
 903		 * In idle and transfer states, HPI is not needed and the caller
 904		 * can issue the next intended command immediately
 905		 */
 906		goto out;
 907	case R1_STATE_PRG:
 908		break;
 909	default:
 910		/* In all other states, it's illegal to issue HPI */
 911		pr_debug("%s: HPI cannot be sent. Card state=%d\n",
 912			mmc_hostname(card->host), R1_CURRENT_STATE(status));
 913		err = -EINVAL;
 914		goto out;
 915	}
 916
 917	err = mmc_send_hpi_cmd(card);
 
 
 
 
 
 
 
 
 
 
 
 
 
 918out:
 919	return err;
 920}
 921
 922int mmc_can_ext_csd(struct mmc_card *card)
 923{
 924	return (card && card->csd.mmca_vsn > CSD_SPEC_VER_3);
 925}
 926
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 927static int mmc_read_bkops_status(struct mmc_card *card)
 928{
 929	int err;
 930	u8 *ext_csd;
 931
 932	err = mmc_get_ext_csd(card, &ext_csd);
 933	if (err)
 934		return err;
 935
 936	card->ext_csd.raw_bkops_status = ext_csd[EXT_CSD_BKOPS_STATUS];
 937	card->ext_csd.raw_exception_status = ext_csd[EXT_CSD_EXP_EVENTS_STATUS];
 938	kfree(ext_csd);
 939	return 0;
 940}
 941
 942/**
 943 *	mmc_run_bkops - Run BKOPS for supported cards
 944 *	@card: MMC card to run BKOPS for
 
 
 945 *
 946 *	Run background operations synchronously for cards having manual BKOPS
 947 *	enabled and in case it reports urgent BKOPS level.
 
 948*/
 949void mmc_run_bkops(struct mmc_card *card)
 950{
 951	int err;
 
 
 952
 953	if (!card->ext_csd.man_bkops_en)
 954		return;
 955
 956	err = mmc_read_bkops_status(card);
 957	if (err) {
 958		pr_err("%s: Failed to read bkops status: %d\n",
 959		       mmc_hostname(card->host), err);
 960		return;
 961	}
 962
 963	if (!card->ext_csd.raw_bkops_status ||
 964	    card->ext_csd.raw_bkops_status < EXT_CSD_BKOPS_LEVEL_2)
 965		return;
 966
 
 
 
 
 
 
 
 
 
 
 
 
 967	mmc_retune_hold(card->host);
 968
 969	/*
 970	 * For urgent BKOPS status, LEVEL_2 and higher, let's execute
 971	 * synchronously. Future wise, we may consider to start BKOPS, for less
 972	 * urgent levels by using an asynchronous background task, when idle.
 973	 */
 974	err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
 975			 EXT_CSD_BKOPS_START, 1, MMC_BKOPS_TIMEOUT_MS);
 976	if (err)
 977		pr_warn("%s: Error %d starting bkops\n",
 978			mmc_hostname(card->host), err);
 
 
 
 979
 980	mmc_retune_release(card->host);
 
 
 
 
 
 
 
 
 981}
 982EXPORT_SYMBOL(mmc_run_bkops);
 983
 984/*
 985 * Flush the cache to the non-volatile storage.
 986 */
 987int mmc_flush_cache(struct mmc_card *card)
 988{
 989	int err = 0;
 990
 991	if (mmc_card_mmc(card) &&
 992			(card->ext_csd.cache_size > 0) &&
 993			(card->ext_csd.cache_ctrl & 1)) {
 994		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
 995				 EXT_CSD_FLUSH_CACHE, 1,
 996				 MMC_CACHE_FLUSH_TIMEOUT_MS);
 997		if (err)
 998			pr_err("%s: cache flush error %d\n",
 999					mmc_hostname(card->host), err);
1000	}
1001
1002	return err;
1003}
1004EXPORT_SYMBOL(mmc_flush_cache);
1005
1006static int mmc_cmdq_switch(struct mmc_card *card, bool enable)
1007{
1008	u8 val = enable ? EXT_CSD_CMDQ_MODE_ENABLED : 0;
1009	int err;
1010
1011	if (!card->ext_csd.cmdq_support)
1012		return -EOPNOTSUPP;
1013
1014	err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_CMDQ_MODE_EN,
1015			 val, card->ext_csd.generic_cmd6_time);
1016	if (!err)
1017		card->ext_csd.cmdq_en = enable;
1018
1019	return err;
1020}
1021
1022int mmc_cmdq_enable(struct mmc_card *card)
1023{
1024	return mmc_cmdq_switch(card, true);
1025}
1026EXPORT_SYMBOL_GPL(mmc_cmdq_enable);
1027
1028int mmc_cmdq_disable(struct mmc_card *card)
1029{
1030	return mmc_cmdq_switch(card, false);
1031}
1032EXPORT_SYMBOL_GPL(mmc_cmdq_disable);
1033
1034int mmc_sanitize(struct mmc_card *card)
1035{
1036	struct mmc_host *host = card->host;
1037	int err;
1038
1039	if (!mmc_can_sanitize(card)) {
1040		pr_warn("%s: Sanitize not supported\n", mmc_hostname(host));
1041		return -EOPNOTSUPP;
1042	}
1043
1044	pr_debug("%s: Sanitize in progress...\n", mmc_hostname(host));
1045
1046	mmc_retune_hold(host);
1047
1048	err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_SANITIZE_START,
1049			 1, MMC_SANITIZE_TIMEOUT_MS);
1050	if (err)
1051		pr_err("%s: Sanitize failed err=%d\n", mmc_hostname(host), err);
1052
1053	/*
1054	 * If the sanitize operation timed out, the card is probably still busy
1055	 * in the R1_STATE_PRG. Rather than continue to wait, let's try to abort
1056	 * it with a HPI command to get back into R1_STATE_TRAN.
1057	 */
1058	if (err == -ETIMEDOUT && !mmc_interrupt_hpi(card))
1059		pr_warn("%s: Sanitize aborted\n", mmc_hostname(host));
1060
1061	mmc_retune_release(host);
1062
1063	pr_debug("%s: Sanitize completed\n", mmc_hostname(host));
1064	return err;
1065}
1066EXPORT_SYMBOL_GPL(mmc_sanitize);
v4.17
 
   1/*
   2 *  linux/drivers/mmc/core/mmc_ops.h
   3 *
   4 *  Copyright 2006-2007 Pierre Ossman
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License as published by
   8 * the Free Software Foundation; either version 2 of the License, or (at
   9 * your option) any later version.
  10 */
  11
  12#include <linux/slab.h>
  13#include <linux/export.h>
  14#include <linux/types.h>
  15#include <linux/scatterlist.h>
  16
  17#include <linux/mmc/host.h>
  18#include <linux/mmc/card.h>
  19#include <linux/mmc/mmc.h>
  20
  21#include "core.h"
  22#include "card.h"
  23#include "host.h"
  24#include "mmc_ops.h"
  25
  26#define MMC_OPS_TIMEOUT_MS	(10 * 60 * 1000) /* 10 minute timeout */
 
 
  27
  28static const u8 tuning_blk_pattern_4bit[] = {
  29	0xff, 0x0f, 0xff, 0x00, 0xff, 0xcc, 0xc3, 0xcc,
  30	0xc3, 0x3c, 0xcc, 0xff, 0xfe, 0xff, 0xfe, 0xef,
  31	0xff, 0xdf, 0xff, 0xdd, 0xff, 0xfb, 0xff, 0xfb,
  32	0xbf, 0xff, 0x7f, 0xff, 0x77, 0xf7, 0xbd, 0xef,
  33	0xff, 0xf0, 0xff, 0xf0, 0x0f, 0xfc, 0xcc, 0x3c,
  34	0xcc, 0x33, 0xcc, 0xcf, 0xff, 0xef, 0xff, 0xee,
  35	0xff, 0xfd, 0xff, 0xfd, 0xdf, 0xff, 0xbf, 0xff,
  36	0xbb, 0xff, 0xf7, 0xff, 0xf7, 0x7f, 0x7b, 0xde,
  37};
  38
  39static const u8 tuning_blk_pattern_8bit[] = {
  40	0xff, 0xff, 0x00, 0xff, 0xff, 0xff, 0x00, 0x00,
  41	0xff, 0xff, 0xcc, 0xcc, 0xcc, 0x33, 0xcc, 0xcc,
  42	0xcc, 0x33, 0x33, 0xcc, 0xcc, 0xcc, 0xff, 0xff,
  43	0xff, 0xee, 0xff, 0xff, 0xff, 0xee, 0xee, 0xff,
  44	0xff, 0xff, 0xdd, 0xff, 0xff, 0xff, 0xdd, 0xdd,
  45	0xff, 0xff, 0xff, 0xbb, 0xff, 0xff, 0xff, 0xbb,
  46	0xbb, 0xff, 0xff, 0xff, 0x77, 0xff, 0xff, 0xff,
  47	0x77, 0x77, 0xff, 0x77, 0xbb, 0xdd, 0xee, 0xff,
  48	0xff, 0xff, 0xff, 0x00, 0xff, 0xff, 0xff, 0x00,
  49	0x00, 0xff, 0xff, 0xcc, 0xcc, 0xcc, 0x33, 0xcc,
  50	0xcc, 0xcc, 0x33, 0x33, 0xcc, 0xcc, 0xcc, 0xff,
  51	0xff, 0xff, 0xee, 0xff, 0xff, 0xff, 0xee, 0xee,
  52	0xff, 0xff, 0xff, 0xdd, 0xff, 0xff, 0xff, 0xdd,
  53	0xdd, 0xff, 0xff, 0xff, 0xbb, 0xff, 0xff, 0xff,
  54	0xbb, 0xbb, 0xff, 0xff, 0xff, 0x77, 0xff, 0xff,
  55	0xff, 0x77, 0x77, 0xff, 0x77, 0xbb, 0xdd, 0xee,
  56};
  57
  58int __mmc_send_status(struct mmc_card *card, u32 *status, unsigned int retries)
  59{
  60	int err;
  61	struct mmc_command cmd = {};
  62
  63	cmd.opcode = MMC_SEND_STATUS;
  64	if (!mmc_host_is_spi(card->host))
  65		cmd.arg = card->rca << 16;
  66	cmd.flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC;
  67
  68	err = mmc_wait_for_cmd(card->host, &cmd, retries);
  69	if (err)
  70		return err;
  71
  72	/* NOTE: callers are required to understand the difference
  73	 * between "native" and SPI format status words!
  74	 */
  75	if (status)
  76		*status = cmd.resp[0];
  77
  78	return 0;
  79}
  80EXPORT_SYMBOL_GPL(__mmc_send_status);
  81
  82int mmc_send_status(struct mmc_card *card, u32 *status)
  83{
  84	return __mmc_send_status(card, status, MMC_CMD_RETRIES);
  85}
  86EXPORT_SYMBOL_GPL(mmc_send_status);
  87
  88static int _mmc_select_card(struct mmc_host *host, struct mmc_card *card)
  89{
  90	struct mmc_command cmd = {};
  91
  92	cmd.opcode = MMC_SELECT_CARD;
  93
  94	if (card) {
  95		cmd.arg = card->rca << 16;
  96		cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
  97	} else {
  98		cmd.arg = 0;
  99		cmd.flags = MMC_RSP_NONE | MMC_CMD_AC;
 100	}
 101
 102	return mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
 103}
 104
 105int mmc_select_card(struct mmc_card *card)
 106{
 107
 108	return _mmc_select_card(card->host, card);
 109}
 110
 111int mmc_deselect_cards(struct mmc_host *host)
 112{
 113	return _mmc_select_card(host, NULL);
 114}
 115
 116/*
 117 * Write the value specified in the device tree or board code into the optional
 118 * 16 bit Driver Stage Register. This can be used to tune raise/fall times and
 119 * drive strength of the DAT and CMD outputs. The actual meaning of a given
 120 * value is hardware dependant.
 121 * The presence of the DSR register can be determined from the CSD register,
 122 * bit 76.
 123 */
 124int mmc_set_dsr(struct mmc_host *host)
 125{
 126	struct mmc_command cmd = {};
 127
 128	cmd.opcode = MMC_SET_DSR;
 129
 130	cmd.arg = (host->dsr << 16) | 0xffff;
 131	cmd.flags = MMC_RSP_NONE | MMC_CMD_AC;
 132
 133	return mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
 134}
 135
 136int mmc_go_idle(struct mmc_host *host)
 137{
 138	int err;
 139	struct mmc_command cmd = {};
 140
 141	/*
 142	 * Non-SPI hosts need to prevent chipselect going active during
 143	 * GO_IDLE; that would put chips into SPI mode.  Remind them of
 144	 * that in case of hardware that won't pull up DAT3/nCS otherwise.
 145	 *
 146	 * SPI hosts ignore ios.chip_select; it's managed according to
 147	 * rules that must accommodate non-MMC slaves which this layer
 148	 * won't even know about.
 149	 */
 150	if (!mmc_host_is_spi(host)) {
 151		mmc_set_chip_select(host, MMC_CS_HIGH);
 152		mmc_delay(1);
 153	}
 154
 155	cmd.opcode = MMC_GO_IDLE_STATE;
 156	cmd.arg = 0;
 157	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_NONE | MMC_CMD_BC;
 158
 159	err = mmc_wait_for_cmd(host, &cmd, 0);
 160
 161	mmc_delay(1);
 162
 163	if (!mmc_host_is_spi(host)) {
 164		mmc_set_chip_select(host, MMC_CS_DONTCARE);
 165		mmc_delay(1);
 166	}
 167
 168	host->use_spi_crc = 0;
 169
 170	return err;
 171}
 172
 173int mmc_send_op_cond(struct mmc_host *host, u32 ocr, u32 *rocr)
 174{
 175	struct mmc_command cmd = {};
 176	int i, err = 0;
 177
 178	cmd.opcode = MMC_SEND_OP_COND;
 179	cmd.arg = mmc_host_is_spi(host) ? 0 : ocr;
 180	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R3 | MMC_CMD_BCR;
 181
 182	for (i = 100; i; i--) {
 183		err = mmc_wait_for_cmd(host, &cmd, 0);
 184		if (err)
 185			break;
 186
 187		/* if we're just probing, do a single pass */
 188		if (ocr == 0)
 189			break;
 190
 191		/* otherwise wait until reset completes */
 192		if (mmc_host_is_spi(host)) {
 193			if (!(cmd.resp[0] & R1_SPI_IDLE))
 194				break;
 195		} else {
 196			if (cmd.resp[0] & MMC_CARD_BUSY)
 197				break;
 198		}
 199
 200		err = -ETIMEDOUT;
 201
 202		mmc_delay(10);
 
 
 
 
 
 
 
 
 
 
 203	}
 204
 205	if (rocr && !mmc_host_is_spi(host))
 206		*rocr = cmd.resp[0];
 207
 208	return err;
 209}
 210
 211int mmc_set_relative_addr(struct mmc_card *card)
 212{
 213	struct mmc_command cmd = {};
 214
 215	cmd.opcode = MMC_SET_RELATIVE_ADDR;
 216	cmd.arg = card->rca << 16;
 217	cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
 218
 219	return mmc_wait_for_cmd(card->host, &cmd, MMC_CMD_RETRIES);
 220}
 221
 222static int
 223mmc_send_cxd_native(struct mmc_host *host, u32 arg, u32 *cxd, int opcode)
 224{
 225	int err;
 226	struct mmc_command cmd = {};
 227
 228	cmd.opcode = opcode;
 229	cmd.arg = arg;
 230	cmd.flags = MMC_RSP_R2 | MMC_CMD_AC;
 231
 232	err = mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
 233	if (err)
 234		return err;
 235
 236	memcpy(cxd, cmd.resp, sizeof(u32) * 4);
 237
 238	return 0;
 239}
 240
 241/*
 242 * NOTE: void *buf, caller for the buf is required to use DMA-capable
 243 * buffer or on-stack buffer (with some overhead in callee).
 244 */
 245static int
 246mmc_send_cxd_data(struct mmc_card *card, struct mmc_host *host,
 247		u32 opcode, void *buf, unsigned len)
 248{
 249	struct mmc_request mrq = {};
 250	struct mmc_command cmd = {};
 251	struct mmc_data data = {};
 252	struct scatterlist sg;
 253
 254	mrq.cmd = &cmd;
 255	mrq.data = &data;
 256
 257	cmd.opcode = opcode;
 258	cmd.arg = 0;
 259
 260	/* NOTE HACK:  the MMC_RSP_SPI_R1 is always correct here, but we
 261	 * rely on callers to never use this with "native" calls for reading
 262	 * CSD or CID.  Native versions of those commands use the R2 type,
 263	 * not R1 plus a data block.
 264	 */
 265	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
 266
 267	data.blksz = len;
 268	data.blocks = 1;
 269	data.flags = MMC_DATA_READ;
 270	data.sg = &sg;
 271	data.sg_len = 1;
 272
 273	sg_init_one(&sg, buf, len);
 274
 275	if (opcode == MMC_SEND_CSD || opcode == MMC_SEND_CID) {
 276		/*
 277		 * The spec states that CSR and CID accesses have a timeout
 278		 * of 64 clock cycles.
 279		 */
 280		data.timeout_ns = 0;
 281		data.timeout_clks = 64;
 282	} else
 283		mmc_set_data_timeout(&data, card);
 284
 285	mmc_wait_for_req(host, &mrq);
 286
 287	if (cmd.error)
 288		return cmd.error;
 289	if (data.error)
 290		return data.error;
 291
 292	return 0;
 293}
 294
 295static int mmc_spi_send_csd(struct mmc_card *card, u32 *csd)
 296{
 297	int ret, i;
 298	__be32 *csd_tmp;
 299
 300	csd_tmp = kzalloc(16, GFP_KERNEL);
 301	if (!csd_tmp)
 302		return -ENOMEM;
 303
 304	ret = mmc_send_cxd_data(card, card->host, MMC_SEND_CSD, csd_tmp, 16);
 305	if (ret)
 306		goto err;
 307
 308	for (i = 0; i < 4; i++)
 309		csd[i] = be32_to_cpu(csd_tmp[i]);
 310
 311err:
 312	kfree(csd_tmp);
 313	return ret;
 314}
 315
 316int mmc_send_csd(struct mmc_card *card, u32 *csd)
 317{
 318	if (mmc_host_is_spi(card->host))
 319		return mmc_spi_send_csd(card, csd);
 320
 321	return mmc_send_cxd_native(card->host, card->rca << 16,	csd,
 322				MMC_SEND_CSD);
 323}
 324
 325static int mmc_spi_send_cid(struct mmc_host *host, u32 *cid)
 326{
 327	int ret, i;
 328	__be32 *cid_tmp;
 329
 330	cid_tmp = kzalloc(16, GFP_KERNEL);
 331	if (!cid_tmp)
 332		return -ENOMEM;
 333
 334	ret = mmc_send_cxd_data(NULL, host, MMC_SEND_CID, cid_tmp, 16);
 335	if (ret)
 336		goto err;
 337
 338	for (i = 0; i < 4; i++)
 339		cid[i] = be32_to_cpu(cid_tmp[i]);
 340
 341err:
 342	kfree(cid_tmp);
 343	return ret;
 344}
 345
 346int mmc_send_cid(struct mmc_host *host, u32 *cid)
 347{
 348	if (mmc_host_is_spi(host))
 349		return mmc_spi_send_cid(host, cid);
 350
 351	return mmc_send_cxd_native(host, 0, cid, MMC_ALL_SEND_CID);
 352}
 353
 354int mmc_get_ext_csd(struct mmc_card *card, u8 **new_ext_csd)
 355{
 356	int err;
 357	u8 *ext_csd;
 358
 359	if (!card || !new_ext_csd)
 360		return -EINVAL;
 361
 362	if (!mmc_can_ext_csd(card))
 363		return -EOPNOTSUPP;
 364
 365	/*
 366	 * As the ext_csd is so large and mostly unused, we don't store the
 367	 * raw block in mmc_card.
 368	 */
 369	ext_csd = kzalloc(512, GFP_KERNEL);
 370	if (!ext_csd)
 371		return -ENOMEM;
 372
 373	err = mmc_send_cxd_data(card, card->host, MMC_SEND_EXT_CSD, ext_csd,
 374				512);
 375	if (err)
 376		kfree(ext_csd);
 377	else
 378		*new_ext_csd = ext_csd;
 379
 380	return err;
 381}
 382EXPORT_SYMBOL_GPL(mmc_get_ext_csd);
 383
 384int mmc_spi_read_ocr(struct mmc_host *host, int highcap, u32 *ocrp)
 385{
 386	struct mmc_command cmd = {};
 387	int err;
 388
 389	cmd.opcode = MMC_SPI_READ_OCR;
 390	cmd.arg = highcap ? (1 << 30) : 0;
 391	cmd.flags = MMC_RSP_SPI_R3;
 392
 393	err = mmc_wait_for_cmd(host, &cmd, 0);
 394
 395	*ocrp = cmd.resp[1];
 396	return err;
 397}
 398
 399int mmc_spi_set_crc(struct mmc_host *host, int use_crc)
 400{
 401	struct mmc_command cmd = {};
 402	int err;
 403
 404	cmd.opcode = MMC_SPI_CRC_ON_OFF;
 405	cmd.flags = MMC_RSP_SPI_R1;
 406	cmd.arg = use_crc;
 407
 408	err = mmc_wait_for_cmd(host, &cmd, 0);
 409	if (!err)
 410		host->use_spi_crc = use_crc;
 411	return err;
 412}
 413
 414static int mmc_switch_status_error(struct mmc_host *host, u32 status)
 415{
 416	if (mmc_host_is_spi(host)) {
 417		if (status & R1_SPI_ILLEGAL_COMMAND)
 418			return -EBADMSG;
 419	} else {
 420		if (status & 0xFDFFA000)
 421			pr_warn("%s: unexpected status %#x after switch\n",
 422				mmc_hostname(host), status);
 423		if (status & R1_SWITCH_ERROR)
 424			return -EBADMSG;
 425	}
 426	return 0;
 427}
 428
 429/* Caller must hold re-tuning */
 430int __mmc_switch_status(struct mmc_card *card, bool crc_err_fatal)
 431{
 432	u32 status;
 433	int err;
 434
 435	err = mmc_send_status(card, &status);
 436	if (!crc_err_fatal && err == -EILSEQ)
 437		return 0;
 438	if (err)
 439		return err;
 440
 441	return mmc_switch_status_error(card->host, status);
 442}
 443
 444int mmc_switch_status(struct mmc_card *card)
 
 445{
 446	return __mmc_switch_status(card, true);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 447}
 448
 449static int mmc_poll_for_busy(struct mmc_card *card, unsigned int timeout_ms,
 450			bool send_status, bool retry_crc_err)
 
 451{
 452	struct mmc_host *host = card->host;
 453	int err;
 454	unsigned long timeout;
 455	u32 status = 0;
 456	bool expired = false;
 457	bool busy = false;
 458
 459	/* We have an unspecified cmd timeout, use the fallback value. */
 460	if (!timeout_ms)
 461		timeout_ms = MMC_OPS_TIMEOUT_MS;
 462
 463	/*
 464	 * In cases when not allowed to poll by using CMD13 or because we aren't
 465	 * capable of polling by using ->card_busy(), then rely on waiting the
 466	 * stated timeout to be sufficient.
 467	 */
 468	if (!send_status && !host->ops->card_busy) {
 469		mmc_delay(timeout_ms);
 470		return 0;
 471	}
 472
 473	timeout = jiffies + msecs_to_jiffies(timeout_ms) + 1;
 474	do {
 475		/*
 476		 * Due to the possibility of being preempted while polling,
 477		 * check the expiration time first.
 478		 */
 479		expired = time_after(jiffies, timeout);
 480
 481		if (host->ops->card_busy) {
 482			busy = host->ops->card_busy(host);
 483		} else {
 484			err = mmc_send_status(card, &status);
 485			if (retry_crc_err && err == -EILSEQ) {
 486				busy = true;
 487			} else if (err) {
 488				return err;
 489			} else {
 490				err = mmc_switch_status_error(host, status);
 491				if (err)
 492					return err;
 493				busy = R1_CURRENT_STATE(status) == R1_STATE_PRG;
 494			}
 495		}
 496
 497		/* Timeout if the device still remains busy. */
 498		if (expired && busy) {
 499			pr_err("%s: Card stuck being busy! %s\n",
 500				mmc_hostname(host), __func__);
 501			return -ETIMEDOUT;
 502		}
 
 
 
 
 
 
 
 503	} while (busy);
 504
 505	return 0;
 506}
 507
 
 
 
 
 
 
 508/**
 509 *	__mmc_switch - modify EXT_CSD register
 510 *	@card: the MMC card associated with the data transfer
 511 *	@set: cmd set values
 512 *	@index: EXT_CSD register index
 513 *	@value: value to program into EXT_CSD register
 514 *	@timeout_ms: timeout (ms) for operation performed by register write,
 515 *                   timeout of zero implies maximum possible timeout
 516 *	@timing: new timing to change to
 517 *	@use_busy_signal: use the busy signal as response type
 518 *	@send_status: send status cmd to poll for busy
 519 *	@retry_crc_err: retry when CRC errors when polling with CMD13 for busy
 520 *
 521 *	Modifies the EXT_CSD register for selected card.
 522 */
 523int __mmc_switch(struct mmc_card *card, u8 set, u8 index, u8 value,
 524		unsigned int timeout_ms, unsigned char timing,
 525		bool use_busy_signal, bool send_status,	bool retry_crc_err)
 526{
 527	struct mmc_host *host = card->host;
 528	int err;
 529	struct mmc_command cmd = {};
 530	bool use_r1b_resp = use_busy_signal;
 531	unsigned char old_timing = host->ios.timing;
 532
 533	mmc_retune_hold(host);
 534
 
 
 
 
 
 
 535	/*
 536	 * If the cmd timeout and the max_busy_timeout of the host are both
 537	 * specified, let's validate them. A failure means we need to prevent
 538	 * the host from doing hw busy detection, which is done by converting
 539	 * to a R1 response instead of a R1B.
 
 540	 */
 541	if (timeout_ms && host->max_busy_timeout &&
 542		(timeout_ms > host->max_busy_timeout))
 543		use_r1b_resp = false;
 544
 545	cmd.opcode = MMC_SWITCH;
 546	cmd.arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) |
 547		  (index << 16) |
 548		  (value << 8) |
 549		  set;
 550	cmd.flags = MMC_CMD_AC;
 551	if (use_r1b_resp) {
 552		cmd.flags |= MMC_RSP_SPI_R1B | MMC_RSP_R1B;
 553		/*
 554		 * A busy_timeout of zero means the host can decide to use
 555		 * whatever value it finds suitable.
 556		 */
 557		cmd.busy_timeout = timeout_ms;
 558	} else {
 559		cmd.flags |= MMC_RSP_SPI_R1 | MMC_RSP_R1;
 560	}
 561
 562	if (index == EXT_CSD_SANITIZE_START)
 563		cmd.sanitize_busy = true;
 564
 565	err = mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES);
 566	if (err)
 567		goto out;
 568
 569	/* No need to check card status in case of unblocking command */
 570	if (!use_busy_signal)
 571		goto out;
 572
 573	/*If SPI or used HW busy detection above, then we don't need to poll. */
 574	if (((host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp) ||
 575		mmc_host_is_spi(host))
 576		goto out_tim;
 577
 578	/* Let's try to poll to find out when the command is completed. */
 579	err = mmc_poll_for_busy(card, timeout_ms, send_status, retry_crc_err);
 
 580	if (err)
 581		goto out;
 582
 583out_tim:
 584	/* Switch to new timing before check switch status. */
 585	if (timing)
 586		mmc_set_timing(host, timing);
 587
 588	if (send_status) {
 589		err = mmc_switch_status(card);
 590		if (err && timing)
 591			mmc_set_timing(host, old_timing);
 592	}
 593out:
 594	mmc_retune_release(host);
 595
 596	return err;
 597}
 598
 599int mmc_switch(struct mmc_card *card, u8 set, u8 index, u8 value,
 600		unsigned int timeout_ms)
 601{
 602	return __mmc_switch(card, set, index, value, timeout_ms, 0,
 603			true, true, false);
 604}
 605EXPORT_SYMBOL_GPL(mmc_switch);
 606
 607int mmc_send_tuning(struct mmc_host *host, u32 opcode, int *cmd_error)
 608{
 609	struct mmc_request mrq = {};
 610	struct mmc_command cmd = {};
 611	struct mmc_data data = {};
 612	struct scatterlist sg;
 613	struct mmc_ios *ios = &host->ios;
 614	const u8 *tuning_block_pattern;
 615	int size, err = 0;
 616	u8 *data_buf;
 617
 618	if (ios->bus_width == MMC_BUS_WIDTH_8) {
 619		tuning_block_pattern = tuning_blk_pattern_8bit;
 620		size = sizeof(tuning_blk_pattern_8bit);
 621	} else if (ios->bus_width == MMC_BUS_WIDTH_4) {
 622		tuning_block_pattern = tuning_blk_pattern_4bit;
 623		size = sizeof(tuning_blk_pattern_4bit);
 624	} else
 625		return -EINVAL;
 626
 627	data_buf = kzalloc(size, GFP_KERNEL);
 628	if (!data_buf)
 629		return -ENOMEM;
 630
 631	mrq.cmd = &cmd;
 632	mrq.data = &data;
 633
 634	cmd.opcode = opcode;
 635	cmd.flags = MMC_RSP_R1 | MMC_CMD_ADTC;
 636
 637	data.blksz = size;
 638	data.blocks = 1;
 639	data.flags = MMC_DATA_READ;
 640
 641	/*
 642	 * According to the tuning specs, Tuning process
 643	 * is normally shorter 40 executions of CMD19,
 644	 * and timeout value should be shorter than 150 ms
 645	 */
 646	data.timeout_ns = 150 * NSEC_PER_MSEC;
 647
 648	data.sg = &sg;
 649	data.sg_len = 1;
 650	sg_init_one(&sg, data_buf, size);
 651
 652	mmc_wait_for_req(host, &mrq);
 653
 654	if (cmd_error)
 655		*cmd_error = cmd.error;
 656
 657	if (cmd.error) {
 658		err = cmd.error;
 659		goto out;
 660	}
 661
 662	if (data.error) {
 663		err = data.error;
 664		goto out;
 665	}
 666
 667	if (memcmp(data_buf, tuning_block_pattern, size))
 668		err = -EIO;
 669
 670out:
 671	kfree(data_buf);
 672	return err;
 673}
 674EXPORT_SYMBOL_GPL(mmc_send_tuning);
 675
 676int mmc_abort_tuning(struct mmc_host *host, u32 opcode)
 677{
 678	struct mmc_command cmd = {};
 679
 680	/*
 681	 * eMMC specification specifies that CMD12 can be used to stop a tuning
 682	 * command, but SD specification does not, so do nothing unless it is
 683	 * eMMC.
 684	 */
 685	if (opcode != MMC_SEND_TUNING_BLOCK_HS200)
 686		return 0;
 687
 688	cmd.opcode = MMC_STOP_TRANSMISSION;
 689	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
 690
 691	/*
 692	 * For drivers that override R1 to R1b, set an arbitrary timeout based
 693	 * on the tuning timeout i.e. 150ms.
 694	 */
 695	cmd.busy_timeout = 150;
 696
 697	return mmc_wait_for_cmd(host, &cmd, 0);
 698}
 699EXPORT_SYMBOL_GPL(mmc_abort_tuning);
 700
 701static int
 702mmc_send_bus_test(struct mmc_card *card, struct mmc_host *host, u8 opcode,
 703		  u8 len)
 704{
 705	struct mmc_request mrq = {};
 706	struct mmc_command cmd = {};
 707	struct mmc_data data = {};
 708	struct scatterlist sg;
 709	u8 *data_buf;
 710	u8 *test_buf;
 711	int i, err;
 712	static u8 testdata_8bit[8] = { 0x55, 0xaa, 0, 0, 0, 0, 0, 0 };
 713	static u8 testdata_4bit[4] = { 0x5a, 0, 0, 0 };
 714
 715	/* dma onto stack is unsafe/nonportable, but callers to this
 716	 * routine normally provide temporary on-stack buffers ...
 717	 */
 718	data_buf = kmalloc(len, GFP_KERNEL);
 719	if (!data_buf)
 720		return -ENOMEM;
 721
 722	if (len == 8)
 723		test_buf = testdata_8bit;
 724	else if (len == 4)
 725		test_buf = testdata_4bit;
 726	else {
 727		pr_err("%s: Invalid bus_width %d\n",
 728		       mmc_hostname(host), len);
 729		kfree(data_buf);
 730		return -EINVAL;
 731	}
 732
 733	if (opcode == MMC_BUS_TEST_W)
 734		memcpy(data_buf, test_buf, len);
 735
 736	mrq.cmd = &cmd;
 737	mrq.data = &data;
 738	cmd.opcode = opcode;
 739	cmd.arg = 0;
 740
 741	/* NOTE HACK:  the MMC_RSP_SPI_R1 is always correct here, but we
 742	 * rely on callers to never use this with "native" calls for reading
 743	 * CSD or CID.  Native versions of those commands use the R2 type,
 744	 * not R1 plus a data block.
 745	 */
 746	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
 747
 748	data.blksz = len;
 749	data.blocks = 1;
 750	if (opcode == MMC_BUS_TEST_R)
 751		data.flags = MMC_DATA_READ;
 752	else
 753		data.flags = MMC_DATA_WRITE;
 754
 755	data.sg = &sg;
 756	data.sg_len = 1;
 757	mmc_set_data_timeout(&data, card);
 758	sg_init_one(&sg, data_buf, len);
 759	mmc_wait_for_req(host, &mrq);
 760	err = 0;
 761	if (opcode == MMC_BUS_TEST_R) {
 762		for (i = 0; i < len / 4; i++)
 763			if ((test_buf[i] ^ data_buf[i]) != 0xff) {
 764				err = -EIO;
 765				break;
 766			}
 767	}
 768	kfree(data_buf);
 769
 770	if (cmd.error)
 771		return cmd.error;
 772	if (data.error)
 773		return data.error;
 774
 775	return err;
 776}
 777
 778int mmc_bus_test(struct mmc_card *card, u8 bus_width)
 779{
 780	int width;
 781
 782	if (bus_width == MMC_BUS_WIDTH_8)
 783		width = 8;
 784	else if (bus_width == MMC_BUS_WIDTH_4)
 785		width = 4;
 786	else if (bus_width == MMC_BUS_WIDTH_1)
 787		return 0; /* no need for test */
 788	else
 789		return -EINVAL;
 790
 791	/*
 792	 * Ignore errors from BUS_TEST_W.  BUS_TEST_R will fail if there
 793	 * is a problem.  This improves chances that the test will work.
 794	 */
 795	mmc_send_bus_test(card, card->host, MMC_BUS_TEST_W, width);
 796	return mmc_send_bus_test(card, card->host, MMC_BUS_TEST_R, width);
 797}
 798
 799static int mmc_send_hpi_cmd(struct mmc_card *card, u32 *status)
 800{
 
 
 
 801	struct mmc_command cmd = {};
 802	unsigned int opcode;
 803	int err;
 804
 805	if (!card->ext_csd.hpi) {
 806		pr_warn("%s: Card didn't support HPI command\n",
 807			mmc_hostname(card->host));
 808		return -EINVAL;
 809	}
 
 
 
 
 
 810
 811	opcode = card->ext_csd.hpi_cmd;
 812	if (opcode == MMC_STOP_TRANSMISSION)
 813		cmd.flags = MMC_RSP_R1B | MMC_CMD_AC;
 814	else if (opcode == MMC_SEND_STATUS)
 
 815		cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
 
 
 816
 817	cmd.opcode = opcode;
 818	cmd.arg = card->rca << 16 | 1;
 819
 820	err = mmc_wait_for_cmd(card->host, &cmd, 0);
 821	if (err) {
 822		pr_warn("%s: error %d interrupting operation. "
 823			"HPI command response %#x\n", mmc_hostname(card->host),
 824			err, cmd.resp[0]);
 825		return err;
 826	}
 827	if (status)
 828		*status = cmd.resp[0];
 829
 830	return 0;
 
 
 
 
 
 831}
 832
 833/**
 834 *	mmc_interrupt_hpi - Issue for High priority Interrupt
 835 *	@card: the MMC card associated with the HPI transfer
 836 *
 837 *	Issued High Priority Interrupt, and check for card status
 838 *	until out-of prg-state.
 839 */
 840int mmc_interrupt_hpi(struct mmc_card *card)
 841{
 842	int err;
 843	u32 status;
 844	unsigned long prg_wait;
 845
 846	if (!card->ext_csd.hpi_en) {
 847		pr_info("%s: HPI enable bit unset\n", mmc_hostname(card->host));
 848		return 1;
 849	}
 850
 851	err = mmc_send_status(card, &status);
 852	if (err) {
 853		pr_err("%s: Get card status fail\n", mmc_hostname(card->host));
 854		goto out;
 855	}
 856
 857	switch (R1_CURRENT_STATE(status)) {
 858	case R1_STATE_IDLE:
 859	case R1_STATE_READY:
 860	case R1_STATE_STBY:
 861	case R1_STATE_TRAN:
 862		/*
 863		 * In idle and transfer states, HPI is not needed and the caller
 864		 * can issue the next intended command immediately
 865		 */
 866		goto out;
 867	case R1_STATE_PRG:
 868		break;
 869	default:
 870		/* In all other states, it's illegal to issue HPI */
 871		pr_debug("%s: HPI cannot be sent. Card state=%d\n",
 872			mmc_hostname(card->host), R1_CURRENT_STATE(status));
 873		err = -EINVAL;
 874		goto out;
 875	}
 876
 877	err = mmc_send_hpi_cmd(card, &status);
 878	if (err)
 879		goto out;
 880
 881	prg_wait = jiffies + msecs_to_jiffies(card->ext_csd.out_of_int_time);
 882	do {
 883		err = mmc_send_status(card, &status);
 884
 885		if (!err && R1_CURRENT_STATE(status) == R1_STATE_TRAN)
 886			break;
 887		if (time_after(jiffies, prg_wait))
 888			err = -ETIMEDOUT;
 889	} while (!err);
 890
 891out:
 892	return err;
 893}
 894
 895int mmc_can_ext_csd(struct mmc_card *card)
 896{
 897	return (card && card->csd.mmca_vsn > CSD_SPEC_VER_3);
 898}
 899
 900/**
 901 *	mmc_stop_bkops - stop ongoing BKOPS
 902 *	@card: MMC card to check BKOPS
 903 *
 904 *	Send HPI command to stop ongoing background operations to
 905 *	allow rapid servicing of foreground operations, e.g. read/
 906 *	writes. Wait until the card comes out of the programming state
 907 *	to avoid errors in servicing read/write requests.
 908 */
 909int mmc_stop_bkops(struct mmc_card *card)
 910{
 911	int err = 0;
 912
 913	err = mmc_interrupt_hpi(card);
 914
 915	/*
 916	 * If err is EINVAL, we can't issue an HPI.
 917	 * It should complete the BKOPS.
 918	 */
 919	if (!err || (err == -EINVAL)) {
 920		mmc_card_clr_doing_bkops(card);
 921		mmc_retune_release(card->host);
 922		err = 0;
 923	}
 924
 925	return err;
 926}
 927
 928static int mmc_read_bkops_status(struct mmc_card *card)
 929{
 930	int err;
 931	u8 *ext_csd;
 932
 933	err = mmc_get_ext_csd(card, &ext_csd);
 934	if (err)
 935		return err;
 936
 937	card->ext_csd.raw_bkops_status = ext_csd[EXT_CSD_BKOPS_STATUS];
 938	card->ext_csd.raw_exception_status = ext_csd[EXT_CSD_EXP_EVENTS_STATUS];
 939	kfree(ext_csd);
 940	return 0;
 941}
 942
 943/**
 944 *	mmc_start_bkops - start BKOPS for supported cards
 945 *	@card: MMC card to start BKOPS
 946 *	@from_exception: A flag to indicate if this function was
 947 *			 called due to an exception raised by the card
 948 *
 949 *	Start background operations whenever requested.
 950 *	When the urgent BKOPS bit is set in a R1 command response
 951 *	then background operations should be started immediately.
 952*/
 953void mmc_start_bkops(struct mmc_card *card, bool from_exception)
 954{
 955	int err;
 956	int timeout;
 957	bool use_busy_signal;
 958
 959	if (!card->ext_csd.man_bkops_en || mmc_card_doing_bkops(card))
 960		return;
 961
 962	err = mmc_read_bkops_status(card);
 963	if (err) {
 964		pr_err("%s: Failed to read bkops status: %d\n",
 965		       mmc_hostname(card->host), err);
 966		return;
 967	}
 968
 969	if (!card->ext_csd.raw_bkops_status)
 
 970		return;
 971
 972	if (card->ext_csd.raw_bkops_status < EXT_CSD_BKOPS_LEVEL_2 &&
 973	    from_exception)
 974		return;
 975
 976	if (card->ext_csd.raw_bkops_status >= EXT_CSD_BKOPS_LEVEL_2) {
 977		timeout = MMC_OPS_TIMEOUT_MS;
 978		use_busy_signal = true;
 979	} else {
 980		timeout = 0;
 981		use_busy_signal = false;
 982	}
 983
 984	mmc_retune_hold(card->host);
 985
 986	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
 987			EXT_CSD_BKOPS_START, 1, timeout, 0,
 988			use_busy_signal, true, false);
 989	if (err) {
 
 
 
 
 990		pr_warn("%s: Error %d starting bkops\n",
 991			mmc_hostname(card->host), err);
 992		mmc_retune_release(card->host);
 993		return;
 994	}
 995
 996	/*
 997	 * For urgent bkops status (LEVEL_2 and more)
 998	 * bkops executed synchronously, otherwise
 999	 * the operation is in progress
1000	 */
1001	if (!use_busy_signal)
1002		mmc_card_set_doing_bkops(card);
1003	else
1004		mmc_retune_release(card->host);
1005}
1006EXPORT_SYMBOL(mmc_start_bkops);
1007
1008/*
1009 * Flush the cache to the non-volatile storage.
1010 */
1011int mmc_flush_cache(struct mmc_card *card)
1012{
1013	int err = 0;
1014
1015	if (mmc_card_mmc(card) &&
1016			(card->ext_csd.cache_size > 0) &&
1017			(card->ext_csd.cache_ctrl & 1)) {
1018		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1019				EXT_CSD_FLUSH_CACHE, 1, 0);
 
1020		if (err)
1021			pr_err("%s: cache flush error %d\n",
1022					mmc_hostname(card->host), err);
1023	}
1024
1025	return err;
1026}
1027EXPORT_SYMBOL(mmc_flush_cache);
1028
1029static int mmc_cmdq_switch(struct mmc_card *card, bool enable)
1030{
1031	u8 val = enable ? EXT_CSD_CMDQ_MODE_ENABLED : 0;
1032	int err;
1033
1034	if (!card->ext_csd.cmdq_support)
1035		return -EOPNOTSUPP;
1036
1037	err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_CMDQ_MODE_EN,
1038			 val, card->ext_csd.generic_cmd6_time);
1039	if (!err)
1040		card->ext_csd.cmdq_en = enable;
1041
1042	return err;
1043}
1044
1045int mmc_cmdq_enable(struct mmc_card *card)
1046{
1047	return mmc_cmdq_switch(card, true);
1048}
1049EXPORT_SYMBOL_GPL(mmc_cmdq_enable);
1050
1051int mmc_cmdq_disable(struct mmc_card *card)
1052{
1053	return mmc_cmdq_switch(card, false);
1054}
1055EXPORT_SYMBOL_GPL(mmc_cmdq_disable);