Loading...
1/*
2 * Block driver for media (i.e., flash cards)
3 *
4 * Copyright 2002 Hewlett-Packard Company
5 * Copyright 2005-2008 Pierre Ossman
6 *
7 * Use consistent with the GNU GPL is permitted,
8 * provided that this copyright notice is
9 * preserved in its entirety in all copies and derived works.
10 *
11 * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED,
12 * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS
13 * FITNESS FOR ANY PARTICULAR PURPOSE.
14 *
15 * Many thanks to Alessandro Rubini and Jonathan Corbet!
16 *
17 * Author: Andrew Christian
18 * 28 May 2002
19 */
20#include <linux/moduleparam.h>
21#include <linux/module.h>
22#include <linux/init.h>
23
24#include <linux/kernel.h>
25#include <linux/fs.h>
26#include <linux/slab.h>
27#include <linux/errno.h>
28#include <linux/hdreg.h>
29#include <linux/kdev_t.h>
30#include <linux/blkdev.h>
31#include <linux/cdev.h>
32#include <linux/mutex.h>
33#include <linux/scatterlist.h>
34#include <linux/string_helpers.h>
35#include <linux/delay.h>
36#include <linux/capability.h>
37#include <linux/compat.h>
38#include <linux/pm_runtime.h>
39#include <linux/idr.h>
40#include <linux/debugfs.h>
41
42#include <linux/mmc/ioctl.h>
43#include <linux/mmc/card.h>
44#include <linux/mmc/host.h>
45#include <linux/mmc/mmc.h>
46#include <linux/mmc/sd.h>
47
48#include <linux/uaccess.h>
49
50#include "queue.h"
51#include "block.h"
52#include "core.h"
53#include "card.h"
54#include "host.h"
55#include "bus.h"
56#include "mmc_ops.h"
57#include "quirks.h"
58#include "sd_ops.h"
59
60MODULE_ALIAS("mmc:block");
61#ifdef MODULE_PARAM_PREFIX
62#undef MODULE_PARAM_PREFIX
63#endif
64#define MODULE_PARAM_PREFIX "mmcblk."
65
66/*
67 * Set a 10 second timeout for polling write request busy state. Note, mmc core
68 * is setting a 3 second timeout for SD cards, and SDHCI has long had a 10
69 * second software timer to timeout the whole request, so 10 seconds should be
70 * ample.
71 */
72#define MMC_BLK_TIMEOUT_MS (10 * 1000)
73#define MMC_EXTRACT_INDEX_FROM_ARG(x) ((x & 0x00FF0000) >> 16)
74#define MMC_EXTRACT_VALUE_FROM_ARG(x) ((x & 0x0000FF00) >> 8)
75
76#define mmc_req_rel_wr(req) ((req->cmd_flags & REQ_FUA) && \
77 (rq_data_dir(req) == WRITE))
78static DEFINE_MUTEX(block_mutex);
79
80/*
81 * The defaults come from config options but can be overriden by module
82 * or bootarg options.
83 */
84static int perdev_minors = CONFIG_MMC_BLOCK_MINORS;
85
86/*
87 * We've only got one major, so number of mmcblk devices is
88 * limited to (1 << 20) / number of minors per device. It is also
89 * limited by the MAX_DEVICES below.
90 */
91static int max_devices;
92
93#define MAX_DEVICES 256
94
95static DEFINE_IDA(mmc_blk_ida);
96static DEFINE_IDA(mmc_rpmb_ida);
97
98/*
99 * There is one mmc_blk_data per slot.
100 */
101struct mmc_blk_data {
102 struct device *parent;
103 struct gendisk *disk;
104 struct mmc_queue queue;
105 struct list_head part;
106 struct list_head rpmbs;
107
108 unsigned int flags;
109#define MMC_BLK_CMD23 (1 << 0) /* Can do SET_BLOCK_COUNT for multiblock */
110#define MMC_BLK_REL_WR (1 << 1) /* MMC Reliable write support */
111
112 unsigned int usage;
113 unsigned int read_only;
114 unsigned int part_type;
115 unsigned int reset_done;
116#define MMC_BLK_READ BIT(0)
117#define MMC_BLK_WRITE BIT(1)
118#define MMC_BLK_DISCARD BIT(2)
119#define MMC_BLK_SECDISCARD BIT(3)
120#define MMC_BLK_CQE_RECOVERY BIT(4)
121
122 /*
123 * Only set in main mmc_blk_data associated
124 * with mmc_card with dev_set_drvdata, and keeps
125 * track of the current selected device partition.
126 */
127 unsigned int part_curr;
128 struct device_attribute force_ro;
129 struct device_attribute power_ro_lock;
130 int area_type;
131
132 /* debugfs files (only in main mmc_blk_data) */
133 struct dentry *status_dentry;
134 struct dentry *ext_csd_dentry;
135};
136
137/* Device type for RPMB character devices */
138static dev_t mmc_rpmb_devt;
139
140/* Bus type for RPMB character devices */
141static struct bus_type mmc_rpmb_bus_type = {
142 .name = "mmc_rpmb",
143};
144
145/**
146 * struct mmc_rpmb_data - special RPMB device type for these areas
147 * @dev: the device for the RPMB area
148 * @chrdev: character device for the RPMB area
149 * @id: unique device ID number
150 * @part_index: partition index (0 on first)
151 * @md: parent MMC block device
152 * @node: list item, so we can put this device on a list
153 */
154struct mmc_rpmb_data {
155 struct device dev;
156 struct cdev chrdev;
157 int id;
158 unsigned int part_index;
159 struct mmc_blk_data *md;
160 struct list_head node;
161};
162
163static DEFINE_MUTEX(open_lock);
164
165module_param(perdev_minors, int, 0444);
166MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device");
167
168static inline int mmc_blk_part_switch(struct mmc_card *card,
169 unsigned int part_type);
170static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
171 struct mmc_card *card,
172 int disable_multi,
173 struct mmc_queue *mq);
174static void mmc_blk_hsq_req_done(struct mmc_request *mrq);
175
176static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk)
177{
178 struct mmc_blk_data *md;
179
180 mutex_lock(&open_lock);
181 md = disk->private_data;
182 if (md && md->usage == 0)
183 md = NULL;
184 if (md)
185 md->usage++;
186 mutex_unlock(&open_lock);
187
188 return md;
189}
190
191static inline int mmc_get_devidx(struct gendisk *disk)
192{
193 int devidx = disk->first_minor / perdev_minors;
194 return devidx;
195}
196
197static void mmc_blk_put(struct mmc_blk_data *md)
198{
199 mutex_lock(&open_lock);
200 md->usage--;
201 if (md->usage == 0) {
202 int devidx = mmc_get_devidx(md->disk);
203 blk_put_queue(md->queue.queue);
204 ida_simple_remove(&mmc_blk_ida, devidx);
205 put_disk(md->disk);
206 kfree(md);
207 }
208 mutex_unlock(&open_lock);
209}
210
211static ssize_t power_ro_lock_show(struct device *dev,
212 struct device_attribute *attr, char *buf)
213{
214 int ret;
215 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
216 struct mmc_card *card = md->queue.card;
217 int locked = 0;
218
219 if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN)
220 locked = 2;
221 else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN)
222 locked = 1;
223
224 ret = snprintf(buf, PAGE_SIZE, "%d\n", locked);
225
226 mmc_blk_put(md);
227
228 return ret;
229}
230
231static ssize_t power_ro_lock_store(struct device *dev,
232 struct device_attribute *attr, const char *buf, size_t count)
233{
234 int ret;
235 struct mmc_blk_data *md, *part_md;
236 struct mmc_queue *mq;
237 struct request *req;
238 unsigned long set;
239
240 if (kstrtoul(buf, 0, &set))
241 return -EINVAL;
242
243 if (set != 1)
244 return count;
245
246 md = mmc_blk_get(dev_to_disk(dev));
247 mq = &md->queue;
248
249 /* Dispatch locking to the block layer */
250 req = blk_get_request(mq->queue, REQ_OP_DRV_OUT, 0);
251 if (IS_ERR(req)) {
252 count = PTR_ERR(req);
253 goto out_put;
254 }
255 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_BOOT_WP;
256 blk_execute_rq(mq->queue, NULL, req, 0);
257 ret = req_to_mmc_queue_req(req)->drv_op_result;
258 blk_put_request(req);
259
260 if (!ret) {
261 pr_info("%s: Locking boot partition ro until next power on\n",
262 md->disk->disk_name);
263 set_disk_ro(md->disk, 1);
264
265 list_for_each_entry(part_md, &md->part, part)
266 if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) {
267 pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name);
268 set_disk_ro(part_md->disk, 1);
269 }
270 }
271out_put:
272 mmc_blk_put(md);
273 return count;
274}
275
276static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr,
277 char *buf)
278{
279 int ret;
280 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
281
282 ret = snprintf(buf, PAGE_SIZE, "%d\n",
283 get_disk_ro(dev_to_disk(dev)) ^
284 md->read_only);
285 mmc_blk_put(md);
286 return ret;
287}
288
289static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr,
290 const char *buf, size_t count)
291{
292 int ret;
293 char *end;
294 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
295 unsigned long set = simple_strtoul(buf, &end, 0);
296 if (end == buf) {
297 ret = -EINVAL;
298 goto out;
299 }
300
301 set_disk_ro(dev_to_disk(dev), set || md->read_only);
302 ret = count;
303out:
304 mmc_blk_put(md);
305 return ret;
306}
307
308static int mmc_blk_open(struct block_device *bdev, fmode_t mode)
309{
310 struct mmc_blk_data *md = mmc_blk_get(bdev->bd_disk);
311 int ret = -ENXIO;
312
313 mutex_lock(&block_mutex);
314 if (md) {
315 ret = 0;
316 if ((mode & FMODE_WRITE) && md->read_only) {
317 mmc_blk_put(md);
318 ret = -EROFS;
319 }
320 }
321 mutex_unlock(&block_mutex);
322
323 return ret;
324}
325
326static void mmc_blk_release(struct gendisk *disk, fmode_t mode)
327{
328 struct mmc_blk_data *md = disk->private_data;
329
330 mutex_lock(&block_mutex);
331 mmc_blk_put(md);
332 mutex_unlock(&block_mutex);
333}
334
335static int
336mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
337{
338 geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16);
339 geo->heads = 4;
340 geo->sectors = 16;
341 return 0;
342}
343
344struct mmc_blk_ioc_data {
345 struct mmc_ioc_cmd ic;
346 unsigned char *buf;
347 u64 buf_bytes;
348 struct mmc_rpmb_data *rpmb;
349};
350
351static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user(
352 struct mmc_ioc_cmd __user *user)
353{
354 struct mmc_blk_ioc_data *idata;
355 int err;
356
357 idata = kmalloc(sizeof(*idata), GFP_KERNEL);
358 if (!idata) {
359 err = -ENOMEM;
360 goto out;
361 }
362
363 if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) {
364 err = -EFAULT;
365 goto idata_err;
366 }
367
368 idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks;
369 if (idata->buf_bytes > MMC_IOC_MAX_BYTES) {
370 err = -EOVERFLOW;
371 goto idata_err;
372 }
373
374 if (!idata->buf_bytes) {
375 idata->buf = NULL;
376 return idata;
377 }
378
379 idata->buf = memdup_user((void __user *)(unsigned long)
380 idata->ic.data_ptr, idata->buf_bytes);
381 if (IS_ERR(idata->buf)) {
382 err = PTR_ERR(idata->buf);
383 goto idata_err;
384 }
385
386 return idata;
387
388idata_err:
389 kfree(idata);
390out:
391 return ERR_PTR(err);
392}
393
394static int mmc_blk_ioctl_copy_to_user(struct mmc_ioc_cmd __user *ic_ptr,
395 struct mmc_blk_ioc_data *idata)
396{
397 struct mmc_ioc_cmd *ic = &idata->ic;
398
399 if (copy_to_user(&(ic_ptr->response), ic->response,
400 sizeof(ic->response)))
401 return -EFAULT;
402
403 if (!idata->ic.write_flag) {
404 if (copy_to_user((void __user *)(unsigned long)ic->data_ptr,
405 idata->buf, idata->buf_bytes))
406 return -EFAULT;
407 }
408
409 return 0;
410}
411
412static int card_busy_detect(struct mmc_card *card, unsigned int timeout_ms,
413 u32 *resp_errs)
414{
415 unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms);
416 int err = 0;
417 u32 status;
418
419 do {
420 bool done = time_after(jiffies, timeout);
421
422 err = __mmc_send_status(card, &status, 5);
423 if (err) {
424 dev_err(mmc_dev(card->host),
425 "error %d requesting status\n", err);
426 return err;
427 }
428
429 /* Accumulate any response error bits seen */
430 if (resp_errs)
431 *resp_errs |= status;
432
433 /*
434 * Timeout if the device never becomes ready for data and never
435 * leaves the program state.
436 */
437 if (done) {
438 dev_err(mmc_dev(card->host),
439 "Card stuck in wrong state! %s status: %#x\n",
440 __func__, status);
441 return -ETIMEDOUT;
442 }
443 } while (!mmc_ready_for_data(status));
444
445 return err;
446}
447
448static int __mmc_blk_ioctl_cmd(struct mmc_card *card, struct mmc_blk_data *md,
449 struct mmc_blk_ioc_data *idata)
450{
451 struct mmc_command cmd = {}, sbc = {};
452 struct mmc_data data = {};
453 struct mmc_request mrq = {};
454 struct scatterlist sg;
455 int err;
456 unsigned int target_part;
457
458 if (!card || !md || !idata)
459 return -EINVAL;
460
461 /*
462 * The RPMB accesses comes in from the character device, so we
463 * need to target these explicitly. Else we just target the
464 * partition type for the block device the ioctl() was issued
465 * on.
466 */
467 if (idata->rpmb) {
468 /* Support multiple RPMB partitions */
469 target_part = idata->rpmb->part_index;
470 target_part |= EXT_CSD_PART_CONFIG_ACC_RPMB;
471 } else {
472 target_part = md->part_type;
473 }
474
475 cmd.opcode = idata->ic.opcode;
476 cmd.arg = idata->ic.arg;
477 cmd.flags = idata->ic.flags;
478
479 if (idata->buf_bytes) {
480 data.sg = &sg;
481 data.sg_len = 1;
482 data.blksz = idata->ic.blksz;
483 data.blocks = idata->ic.blocks;
484
485 sg_init_one(data.sg, idata->buf, idata->buf_bytes);
486
487 if (idata->ic.write_flag)
488 data.flags = MMC_DATA_WRITE;
489 else
490 data.flags = MMC_DATA_READ;
491
492 /* data.flags must already be set before doing this. */
493 mmc_set_data_timeout(&data, card);
494
495 /* Allow overriding the timeout_ns for empirical tuning. */
496 if (idata->ic.data_timeout_ns)
497 data.timeout_ns = idata->ic.data_timeout_ns;
498
499 if ((cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) {
500 /*
501 * Pretend this is a data transfer and rely on the
502 * host driver to compute timeout. When all host
503 * drivers support cmd.cmd_timeout for R1B, this
504 * can be changed to:
505 *
506 * mrq.data = NULL;
507 * cmd.cmd_timeout = idata->ic.cmd_timeout_ms;
508 */
509 data.timeout_ns = idata->ic.cmd_timeout_ms * 1000000;
510 }
511
512 mrq.data = &data;
513 }
514
515 mrq.cmd = &cmd;
516
517 err = mmc_blk_part_switch(card, target_part);
518 if (err)
519 return err;
520
521 if (idata->ic.is_acmd) {
522 err = mmc_app_cmd(card->host, card);
523 if (err)
524 return err;
525 }
526
527 if (idata->rpmb) {
528 sbc.opcode = MMC_SET_BLOCK_COUNT;
529 /*
530 * We don't do any blockcount validation because the max size
531 * may be increased by a future standard. We just copy the
532 * 'Reliable Write' bit here.
533 */
534 sbc.arg = data.blocks | (idata->ic.write_flag & BIT(31));
535 sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
536 mrq.sbc = &sbc;
537 }
538
539 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_SANITIZE_START) &&
540 (cmd.opcode == MMC_SWITCH))
541 return mmc_sanitize(card);
542
543 mmc_wait_for_req(card->host, &mrq);
544
545 if (cmd.error) {
546 dev_err(mmc_dev(card->host), "%s: cmd error %d\n",
547 __func__, cmd.error);
548 return cmd.error;
549 }
550 if (data.error) {
551 dev_err(mmc_dev(card->host), "%s: data error %d\n",
552 __func__, data.error);
553 return data.error;
554 }
555
556 /*
557 * Make sure the cache of the PARTITION_CONFIG register and
558 * PARTITION_ACCESS bits is updated in case the ioctl ext_csd write
559 * changed it successfully.
560 */
561 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_PART_CONFIG) &&
562 (cmd.opcode == MMC_SWITCH)) {
563 struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
564 u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg);
565
566 /*
567 * Update cache so the next mmc_blk_part_switch call operates
568 * on up-to-date data.
569 */
570 card->ext_csd.part_config = value;
571 main_md->part_curr = value & EXT_CSD_PART_CONFIG_ACC_MASK;
572 }
573
574 /*
575 * According to the SD specs, some commands require a delay after
576 * issuing the command.
577 */
578 if (idata->ic.postsleep_min_us)
579 usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us);
580
581 memcpy(&(idata->ic.response), cmd.resp, sizeof(cmd.resp));
582
583 if (idata->rpmb || (cmd.flags & MMC_RSP_R1B)) {
584 /*
585 * Ensure RPMB/R1B command has completed by polling CMD13
586 * "Send Status".
587 */
588 err = card_busy_detect(card, MMC_BLK_TIMEOUT_MS, NULL);
589 }
590
591 return err;
592}
593
594static int mmc_blk_ioctl_cmd(struct mmc_blk_data *md,
595 struct mmc_ioc_cmd __user *ic_ptr,
596 struct mmc_rpmb_data *rpmb)
597{
598 struct mmc_blk_ioc_data *idata;
599 struct mmc_blk_ioc_data *idatas[1];
600 struct mmc_queue *mq;
601 struct mmc_card *card;
602 int err = 0, ioc_err = 0;
603 struct request *req;
604
605 idata = mmc_blk_ioctl_copy_from_user(ic_ptr);
606 if (IS_ERR(idata))
607 return PTR_ERR(idata);
608 /* This will be NULL on non-RPMB ioctl():s */
609 idata->rpmb = rpmb;
610
611 card = md->queue.card;
612 if (IS_ERR(card)) {
613 err = PTR_ERR(card);
614 goto cmd_done;
615 }
616
617 /*
618 * Dispatch the ioctl() into the block request queue.
619 */
620 mq = &md->queue;
621 req = blk_get_request(mq->queue,
622 idata->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
623 if (IS_ERR(req)) {
624 err = PTR_ERR(req);
625 goto cmd_done;
626 }
627 idatas[0] = idata;
628 req_to_mmc_queue_req(req)->drv_op =
629 rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
630 req_to_mmc_queue_req(req)->drv_op_data = idatas;
631 req_to_mmc_queue_req(req)->ioc_count = 1;
632 blk_execute_rq(mq->queue, NULL, req, 0);
633 ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
634 err = mmc_blk_ioctl_copy_to_user(ic_ptr, idata);
635 blk_put_request(req);
636
637cmd_done:
638 kfree(idata->buf);
639 kfree(idata);
640 return ioc_err ? ioc_err : err;
641}
642
643static int mmc_blk_ioctl_multi_cmd(struct mmc_blk_data *md,
644 struct mmc_ioc_multi_cmd __user *user,
645 struct mmc_rpmb_data *rpmb)
646{
647 struct mmc_blk_ioc_data **idata = NULL;
648 struct mmc_ioc_cmd __user *cmds = user->cmds;
649 struct mmc_card *card;
650 struct mmc_queue *mq;
651 int i, err = 0, ioc_err = 0;
652 __u64 num_of_cmds;
653 struct request *req;
654
655 if (copy_from_user(&num_of_cmds, &user->num_of_cmds,
656 sizeof(num_of_cmds)))
657 return -EFAULT;
658
659 if (!num_of_cmds)
660 return 0;
661
662 if (num_of_cmds > MMC_IOC_MAX_CMDS)
663 return -EINVAL;
664
665 idata = kcalloc(num_of_cmds, sizeof(*idata), GFP_KERNEL);
666 if (!idata)
667 return -ENOMEM;
668
669 for (i = 0; i < num_of_cmds; i++) {
670 idata[i] = mmc_blk_ioctl_copy_from_user(&cmds[i]);
671 if (IS_ERR(idata[i])) {
672 err = PTR_ERR(idata[i]);
673 num_of_cmds = i;
674 goto cmd_err;
675 }
676 /* This will be NULL on non-RPMB ioctl():s */
677 idata[i]->rpmb = rpmb;
678 }
679
680 card = md->queue.card;
681 if (IS_ERR(card)) {
682 err = PTR_ERR(card);
683 goto cmd_err;
684 }
685
686
687 /*
688 * Dispatch the ioctl()s into the block request queue.
689 */
690 mq = &md->queue;
691 req = blk_get_request(mq->queue,
692 idata[0]->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
693 if (IS_ERR(req)) {
694 err = PTR_ERR(req);
695 goto cmd_err;
696 }
697 req_to_mmc_queue_req(req)->drv_op =
698 rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
699 req_to_mmc_queue_req(req)->drv_op_data = idata;
700 req_to_mmc_queue_req(req)->ioc_count = num_of_cmds;
701 blk_execute_rq(mq->queue, NULL, req, 0);
702 ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
703
704 /* copy to user if data and response */
705 for (i = 0; i < num_of_cmds && !err; i++)
706 err = mmc_blk_ioctl_copy_to_user(&cmds[i], idata[i]);
707
708 blk_put_request(req);
709
710cmd_err:
711 for (i = 0; i < num_of_cmds; i++) {
712 kfree(idata[i]->buf);
713 kfree(idata[i]);
714 }
715 kfree(idata);
716 return ioc_err ? ioc_err : err;
717}
718
719static int mmc_blk_check_blkdev(struct block_device *bdev)
720{
721 /*
722 * The caller must have CAP_SYS_RAWIO, and must be calling this on the
723 * whole block device, not on a partition. This prevents overspray
724 * between sibling partitions.
725 */
726 if ((!capable(CAP_SYS_RAWIO)) || (bdev != bdev->bd_contains))
727 return -EPERM;
728 return 0;
729}
730
731static int mmc_blk_ioctl(struct block_device *bdev, fmode_t mode,
732 unsigned int cmd, unsigned long arg)
733{
734 struct mmc_blk_data *md;
735 int ret;
736
737 switch (cmd) {
738 case MMC_IOC_CMD:
739 ret = mmc_blk_check_blkdev(bdev);
740 if (ret)
741 return ret;
742 md = mmc_blk_get(bdev->bd_disk);
743 if (!md)
744 return -EINVAL;
745 ret = mmc_blk_ioctl_cmd(md,
746 (struct mmc_ioc_cmd __user *)arg,
747 NULL);
748 mmc_blk_put(md);
749 return ret;
750 case MMC_IOC_MULTI_CMD:
751 ret = mmc_blk_check_blkdev(bdev);
752 if (ret)
753 return ret;
754 md = mmc_blk_get(bdev->bd_disk);
755 if (!md)
756 return -EINVAL;
757 ret = mmc_blk_ioctl_multi_cmd(md,
758 (struct mmc_ioc_multi_cmd __user *)arg,
759 NULL);
760 mmc_blk_put(md);
761 return ret;
762 default:
763 return -EINVAL;
764 }
765}
766
767#ifdef CONFIG_COMPAT
768static int mmc_blk_compat_ioctl(struct block_device *bdev, fmode_t mode,
769 unsigned int cmd, unsigned long arg)
770{
771 return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg));
772}
773#endif
774
775static const struct block_device_operations mmc_bdops = {
776 .open = mmc_blk_open,
777 .release = mmc_blk_release,
778 .getgeo = mmc_blk_getgeo,
779 .owner = THIS_MODULE,
780 .ioctl = mmc_blk_ioctl,
781#ifdef CONFIG_COMPAT
782 .compat_ioctl = mmc_blk_compat_ioctl,
783#endif
784};
785
786static int mmc_blk_part_switch_pre(struct mmc_card *card,
787 unsigned int part_type)
788{
789 int ret = 0;
790
791 if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) {
792 if (card->ext_csd.cmdq_en) {
793 ret = mmc_cmdq_disable(card);
794 if (ret)
795 return ret;
796 }
797 mmc_retune_pause(card->host);
798 }
799
800 return ret;
801}
802
803static int mmc_blk_part_switch_post(struct mmc_card *card,
804 unsigned int part_type)
805{
806 int ret = 0;
807
808 if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) {
809 mmc_retune_unpause(card->host);
810 if (card->reenable_cmdq && !card->ext_csd.cmdq_en)
811 ret = mmc_cmdq_enable(card);
812 }
813
814 return ret;
815}
816
817static inline int mmc_blk_part_switch(struct mmc_card *card,
818 unsigned int part_type)
819{
820 int ret = 0;
821 struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
822
823 if (main_md->part_curr == part_type)
824 return 0;
825
826 if (mmc_card_mmc(card)) {
827 u8 part_config = card->ext_csd.part_config;
828
829 ret = mmc_blk_part_switch_pre(card, part_type);
830 if (ret)
831 return ret;
832
833 part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
834 part_config |= part_type;
835
836 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
837 EXT_CSD_PART_CONFIG, part_config,
838 card->ext_csd.part_time);
839 if (ret) {
840 mmc_blk_part_switch_post(card, part_type);
841 return ret;
842 }
843
844 card->ext_csd.part_config = part_config;
845
846 ret = mmc_blk_part_switch_post(card, main_md->part_curr);
847 }
848
849 main_md->part_curr = part_type;
850 return ret;
851}
852
853static int mmc_sd_num_wr_blocks(struct mmc_card *card, u32 *written_blocks)
854{
855 int err;
856 u32 result;
857 __be32 *blocks;
858
859 struct mmc_request mrq = {};
860 struct mmc_command cmd = {};
861 struct mmc_data data = {};
862
863 struct scatterlist sg;
864
865 cmd.opcode = MMC_APP_CMD;
866 cmd.arg = card->rca << 16;
867 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
868
869 err = mmc_wait_for_cmd(card->host, &cmd, 0);
870 if (err)
871 return err;
872 if (!mmc_host_is_spi(card->host) && !(cmd.resp[0] & R1_APP_CMD))
873 return -EIO;
874
875 memset(&cmd, 0, sizeof(struct mmc_command));
876
877 cmd.opcode = SD_APP_SEND_NUM_WR_BLKS;
878 cmd.arg = 0;
879 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
880
881 data.blksz = 4;
882 data.blocks = 1;
883 data.flags = MMC_DATA_READ;
884 data.sg = &sg;
885 data.sg_len = 1;
886 mmc_set_data_timeout(&data, card);
887
888 mrq.cmd = &cmd;
889 mrq.data = &data;
890
891 blocks = kmalloc(4, GFP_KERNEL);
892 if (!blocks)
893 return -ENOMEM;
894
895 sg_init_one(&sg, blocks, 4);
896
897 mmc_wait_for_req(card->host, &mrq);
898
899 result = ntohl(*blocks);
900 kfree(blocks);
901
902 if (cmd.error || data.error)
903 return -EIO;
904
905 *written_blocks = result;
906
907 return 0;
908}
909
910static unsigned int mmc_blk_clock_khz(struct mmc_host *host)
911{
912 if (host->actual_clock)
913 return host->actual_clock / 1000;
914
915 /* Clock may be subject to a divisor, fudge it by a factor of 2. */
916 if (host->ios.clock)
917 return host->ios.clock / 2000;
918
919 /* How can there be no clock */
920 WARN_ON_ONCE(1);
921 return 100; /* 100 kHz is minimum possible value */
922}
923
924static unsigned int mmc_blk_data_timeout_ms(struct mmc_host *host,
925 struct mmc_data *data)
926{
927 unsigned int ms = DIV_ROUND_UP(data->timeout_ns, 1000000);
928 unsigned int khz;
929
930 if (data->timeout_clks) {
931 khz = mmc_blk_clock_khz(host);
932 ms += DIV_ROUND_UP(data->timeout_clks, khz);
933 }
934
935 return ms;
936}
937
938static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host,
939 int type)
940{
941 int err;
942
943 if (md->reset_done & type)
944 return -EEXIST;
945
946 md->reset_done |= type;
947 err = mmc_hw_reset(host);
948 /* Ensure we switch back to the correct partition */
949 if (err != -EOPNOTSUPP) {
950 struct mmc_blk_data *main_md =
951 dev_get_drvdata(&host->card->dev);
952 int part_err;
953
954 main_md->part_curr = main_md->part_type;
955 part_err = mmc_blk_part_switch(host->card, md->part_type);
956 if (part_err) {
957 /*
958 * We have failed to get back into the correct
959 * partition, so we need to abort the whole request.
960 */
961 return -ENODEV;
962 }
963 }
964 return err;
965}
966
967static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type)
968{
969 md->reset_done &= ~type;
970}
971
972/*
973 * The non-block commands come back from the block layer after it queued it and
974 * processed it with all other requests and then they get issued in this
975 * function.
976 */
977static void mmc_blk_issue_drv_op(struct mmc_queue *mq, struct request *req)
978{
979 struct mmc_queue_req *mq_rq;
980 struct mmc_card *card = mq->card;
981 struct mmc_blk_data *md = mq->blkdata;
982 struct mmc_blk_ioc_data **idata;
983 bool rpmb_ioctl;
984 u8 **ext_csd;
985 u32 status;
986 int ret;
987 int i;
988
989 mq_rq = req_to_mmc_queue_req(req);
990 rpmb_ioctl = (mq_rq->drv_op == MMC_DRV_OP_IOCTL_RPMB);
991
992 switch (mq_rq->drv_op) {
993 case MMC_DRV_OP_IOCTL:
994 case MMC_DRV_OP_IOCTL_RPMB:
995 idata = mq_rq->drv_op_data;
996 for (i = 0, ret = 0; i < mq_rq->ioc_count; i++) {
997 ret = __mmc_blk_ioctl_cmd(card, md, idata[i]);
998 if (ret)
999 break;
1000 }
1001 /* Always switch back to main area after RPMB access */
1002 if (rpmb_ioctl)
1003 mmc_blk_part_switch(card, 0);
1004 break;
1005 case MMC_DRV_OP_BOOT_WP:
1006 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP,
1007 card->ext_csd.boot_ro_lock |
1008 EXT_CSD_BOOT_WP_B_PWR_WP_EN,
1009 card->ext_csd.part_time);
1010 if (ret)
1011 pr_err("%s: Locking boot partition ro until next power on failed: %d\n",
1012 md->disk->disk_name, ret);
1013 else
1014 card->ext_csd.boot_ro_lock |=
1015 EXT_CSD_BOOT_WP_B_PWR_WP_EN;
1016 break;
1017 case MMC_DRV_OP_GET_CARD_STATUS:
1018 ret = mmc_send_status(card, &status);
1019 if (!ret)
1020 ret = status;
1021 break;
1022 case MMC_DRV_OP_GET_EXT_CSD:
1023 ext_csd = mq_rq->drv_op_data;
1024 ret = mmc_get_ext_csd(card, ext_csd);
1025 break;
1026 default:
1027 pr_err("%s: unknown driver specific operation\n",
1028 md->disk->disk_name);
1029 ret = -EINVAL;
1030 break;
1031 }
1032 mq_rq->drv_op_result = ret;
1033 blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1034}
1035
1036static void mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req)
1037{
1038 struct mmc_blk_data *md = mq->blkdata;
1039 struct mmc_card *card = md->queue.card;
1040 unsigned int from, nr;
1041 int err = 0, type = MMC_BLK_DISCARD;
1042 blk_status_t status = BLK_STS_OK;
1043
1044 if (!mmc_can_erase(card)) {
1045 status = BLK_STS_NOTSUPP;
1046 goto fail;
1047 }
1048
1049 from = blk_rq_pos(req);
1050 nr = blk_rq_sectors(req);
1051
1052 do {
1053 err = 0;
1054 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1055 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1056 INAND_CMD38_ARG_EXT_CSD,
1057 card->erase_arg == MMC_TRIM_ARG ?
1058 INAND_CMD38_ARG_TRIM :
1059 INAND_CMD38_ARG_ERASE,
1060 card->ext_csd.generic_cmd6_time);
1061 }
1062 if (!err)
1063 err = mmc_erase(card, from, nr, card->erase_arg);
1064 } while (err == -EIO && !mmc_blk_reset(md, card->host, type));
1065 if (err)
1066 status = BLK_STS_IOERR;
1067 else
1068 mmc_blk_reset_success(md, type);
1069fail:
1070 blk_mq_end_request(req, status);
1071}
1072
1073static void mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq,
1074 struct request *req)
1075{
1076 struct mmc_blk_data *md = mq->blkdata;
1077 struct mmc_card *card = md->queue.card;
1078 unsigned int from, nr, arg;
1079 int err = 0, type = MMC_BLK_SECDISCARD;
1080 blk_status_t status = BLK_STS_OK;
1081
1082 if (!(mmc_can_secure_erase_trim(card))) {
1083 status = BLK_STS_NOTSUPP;
1084 goto out;
1085 }
1086
1087 from = blk_rq_pos(req);
1088 nr = blk_rq_sectors(req);
1089
1090 if (mmc_can_trim(card) && !mmc_erase_group_aligned(card, from, nr))
1091 arg = MMC_SECURE_TRIM1_ARG;
1092 else
1093 arg = MMC_SECURE_ERASE_ARG;
1094
1095retry:
1096 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1097 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1098 INAND_CMD38_ARG_EXT_CSD,
1099 arg == MMC_SECURE_TRIM1_ARG ?
1100 INAND_CMD38_ARG_SECTRIM1 :
1101 INAND_CMD38_ARG_SECERASE,
1102 card->ext_csd.generic_cmd6_time);
1103 if (err)
1104 goto out_retry;
1105 }
1106
1107 err = mmc_erase(card, from, nr, arg);
1108 if (err == -EIO)
1109 goto out_retry;
1110 if (err) {
1111 status = BLK_STS_IOERR;
1112 goto out;
1113 }
1114
1115 if (arg == MMC_SECURE_TRIM1_ARG) {
1116 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1117 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1118 INAND_CMD38_ARG_EXT_CSD,
1119 INAND_CMD38_ARG_SECTRIM2,
1120 card->ext_csd.generic_cmd6_time);
1121 if (err)
1122 goto out_retry;
1123 }
1124
1125 err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG);
1126 if (err == -EIO)
1127 goto out_retry;
1128 if (err) {
1129 status = BLK_STS_IOERR;
1130 goto out;
1131 }
1132 }
1133
1134out_retry:
1135 if (err && !mmc_blk_reset(md, card->host, type))
1136 goto retry;
1137 if (!err)
1138 mmc_blk_reset_success(md, type);
1139out:
1140 blk_mq_end_request(req, status);
1141}
1142
1143static void mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req)
1144{
1145 struct mmc_blk_data *md = mq->blkdata;
1146 struct mmc_card *card = md->queue.card;
1147 int ret = 0;
1148
1149 ret = mmc_flush_cache(card);
1150 blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1151}
1152
1153/*
1154 * Reformat current write as a reliable write, supporting
1155 * both legacy and the enhanced reliable write MMC cards.
1156 * In each transfer we'll handle only as much as a single
1157 * reliable write can handle, thus finish the request in
1158 * partial completions.
1159 */
1160static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq,
1161 struct mmc_card *card,
1162 struct request *req)
1163{
1164 if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) {
1165 /* Legacy mode imposes restrictions on transfers. */
1166 if (!IS_ALIGNED(blk_rq_pos(req), card->ext_csd.rel_sectors))
1167 brq->data.blocks = 1;
1168
1169 if (brq->data.blocks > card->ext_csd.rel_sectors)
1170 brq->data.blocks = card->ext_csd.rel_sectors;
1171 else if (brq->data.blocks < card->ext_csd.rel_sectors)
1172 brq->data.blocks = 1;
1173 }
1174}
1175
1176#define CMD_ERRORS_EXCL_OOR \
1177 (R1_ADDRESS_ERROR | /* Misaligned address */ \
1178 R1_BLOCK_LEN_ERROR | /* Transferred block length incorrect */\
1179 R1_WP_VIOLATION | /* Tried to write to protected block */ \
1180 R1_CARD_ECC_FAILED | /* Card ECC failed */ \
1181 R1_CC_ERROR | /* Card controller error */ \
1182 R1_ERROR) /* General/unknown error */
1183
1184#define CMD_ERRORS \
1185 (CMD_ERRORS_EXCL_OOR | \
1186 R1_OUT_OF_RANGE) /* Command argument out of range */ \
1187
1188static void mmc_blk_eval_resp_error(struct mmc_blk_request *brq)
1189{
1190 u32 val;
1191
1192 /*
1193 * Per the SD specification(physical layer version 4.10)[1],
1194 * section 4.3.3, it explicitly states that "When the last
1195 * block of user area is read using CMD18, the host should
1196 * ignore OUT_OF_RANGE error that may occur even the sequence
1197 * is correct". And JESD84-B51 for eMMC also has a similar
1198 * statement on section 6.8.3.
1199 *
1200 * Multiple block read/write could be done by either predefined
1201 * method, namely CMD23, or open-ending mode. For open-ending mode,
1202 * we should ignore the OUT_OF_RANGE error as it's normal behaviour.
1203 *
1204 * However the spec[1] doesn't tell us whether we should also
1205 * ignore that for predefined method. But per the spec[1], section
1206 * 4.15 Set Block Count Command, it says"If illegal block count
1207 * is set, out of range error will be indicated during read/write
1208 * operation (For example, data transfer is stopped at user area
1209 * boundary)." In another word, we could expect a out of range error
1210 * in the response for the following CMD18/25. And if argument of
1211 * CMD23 + the argument of CMD18/25 exceed the max number of blocks,
1212 * we could also expect to get a -ETIMEDOUT or any error number from
1213 * the host drivers due to missing data response(for write)/data(for
1214 * read), as the cards will stop the data transfer by itself per the
1215 * spec. So we only need to check R1_OUT_OF_RANGE for open-ending mode.
1216 */
1217
1218 if (!brq->stop.error) {
1219 bool oor_with_open_end;
1220 /* If there is no error yet, check R1 response */
1221
1222 val = brq->stop.resp[0] & CMD_ERRORS;
1223 oor_with_open_end = val & R1_OUT_OF_RANGE && !brq->mrq.sbc;
1224
1225 if (val && !oor_with_open_end)
1226 brq->stop.error = -EIO;
1227 }
1228}
1229
1230static void mmc_blk_data_prep(struct mmc_queue *mq, struct mmc_queue_req *mqrq,
1231 int disable_multi, bool *do_rel_wr_p,
1232 bool *do_data_tag_p)
1233{
1234 struct mmc_blk_data *md = mq->blkdata;
1235 struct mmc_card *card = md->queue.card;
1236 struct mmc_blk_request *brq = &mqrq->brq;
1237 struct request *req = mmc_queue_req_to_req(mqrq);
1238 bool do_rel_wr, do_data_tag;
1239
1240 /*
1241 * Reliable writes are used to implement Forced Unit Access and
1242 * are supported only on MMCs.
1243 */
1244 do_rel_wr = (req->cmd_flags & REQ_FUA) &&
1245 rq_data_dir(req) == WRITE &&
1246 (md->flags & MMC_BLK_REL_WR);
1247
1248 memset(brq, 0, sizeof(struct mmc_blk_request));
1249
1250 brq->mrq.data = &brq->data;
1251 brq->mrq.tag = req->tag;
1252
1253 brq->stop.opcode = MMC_STOP_TRANSMISSION;
1254 brq->stop.arg = 0;
1255
1256 if (rq_data_dir(req) == READ) {
1257 brq->data.flags = MMC_DATA_READ;
1258 brq->stop.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1259 } else {
1260 brq->data.flags = MMC_DATA_WRITE;
1261 brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1262 }
1263
1264 brq->data.blksz = 512;
1265 brq->data.blocks = blk_rq_sectors(req);
1266 brq->data.blk_addr = blk_rq_pos(req);
1267
1268 /*
1269 * The command queue supports 2 priorities: "high" (1) and "simple" (0).
1270 * The eMMC will give "high" priority tasks priority over "simple"
1271 * priority tasks. Here we always set "simple" priority by not setting
1272 * MMC_DATA_PRIO.
1273 */
1274
1275 /*
1276 * The block layer doesn't support all sector count
1277 * restrictions, so we need to be prepared for too big
1278 * requests.
1279 */
1280 if (brq->data.blocks > card->host->max_blk_count)
1281 brq->data.blocks = card->host->max_blk_count;
1282
1283 if (brq->data.blocks > 1) {
1284 /*
1285 * Some SD cards in SPI mode return a CRC error or even lock up
1286 * completely when trying to read the last block using a
1287 * multiblock read command.
1288 */
1289 if (mmc_host_is_spi(card->host) && (rq_data_dir(req) == READ) &&
1290 (blk_rq_pos(req) + blk_rq_sectors(req) ==
1291 get_capacity(md->disk)))
1292 brq->data.blocks--;
1293
1294 /*
1295 * After a read error, we redo the request one sector
1296 * at a time in order to accurately determine which
1297 * sectors can be read successfully.
1298 */
1299 if (disable_multi)
1300 brq->data.blocks = 1;
1301
1302 /*
1303 * Some controllers have HW issues while operating
1304 * in multiple I/O mode
1305 */
1306 if (card->host->ops->multi_io_quirk)
1307 brq->data.blocks = card->host->ops->multi_io_quirk(card,
1308 (rq_data_dir(req) == READ) ?
1309 MMC_DATA_READ : MMC_DATA_WRITE,
1310 brq->data.blocks);
1311 }
1312
1313 if (do_rel_wr) {
1314 mmc_apply_rel_rw(brq, card, req);
1315 brq->data.flags |= MMC_DATA_REL_WR;
1316 }
1317
1318 /*
1319 * Data tag is used only during writing meta data to speed
1320 * up write and any subsequent read of this meta data
1321 */
1322 do_data_tag = card->ext_csd.data_tag_unit_size &&
1323 (req->cmd_flags & REQ_META) &&
1324 (rq_data_dir(req) == WRITE) &&
1325 ((brq->data.blocks * brq->data.blksz) >=
1326 card->ext_csd.data_tag_unit_size);
1327
1328 if (do_data_tag)
1329 brq->data.flags |= MMC_DATA_DAT_TAG;
1330
1331 mmc_set_data_timeout(&brq->data, card);
1332
1333 brq->data.sg = mqrq->sg;
1334 brq->data.sg_len = mmc_queue_map_sg(mq, mqrq);
1335
1336 /*
1337 * Adjust the sg list so it is the same size as the
1338 * request.
1339 */
1340 if (brq->data.blocks != blk_rq_sectors(req)) {
1341 int i, data_size = brq->data.blocks << 9;
1342 struct scatterlist *sg;
1343
1344 for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) {
1345 data_size -= sg->length;
1346 if (data_size <= 0) {
1347 sg->length += data_size;
1348 i++;
1349 break;
1350 }
1351 }
1352 brq->data.sg_len = i;
1353 }
1354
1355 if (do_rel_wr_p)
1356 *do_rel_wr_p = do_rel_wr;
1357
1358 if (do_data_tag_p)
1359 *do_data_tag_p = do_data_tag;
1360}
1361
1362#define MMC_CQE_RETRIES 2
1363
1364static void mmc_blk_cqe_complete_rq(struct mmc_queue *mq, struct request *req)
1365{
1366 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1367 struct mmc_request *mrq = &mqrq->brq.mrq;
1368 struct request_queue *q = req->q;
1369 struct mmc_host *host = mq->card->host;
1370 enum mmc_issue_type issue_type = mmc_issue_type(mq, req);
1371 unsigned long flags;
1372 bool put_card;
1373 int err;
1374
1375 mmc_cqe_post_req(host, mrq);
1376
1377 if (mrq->cmd && mrq->cmd->error)
1378 err = mrq->cmd->error;
1379 else if (mrq->data && mrq->data->error)
1380 err = mrq->data->error;
1381 else
1382 err = 0;
1383
1384 if (err) {
1385 if (mqrq->retries++ < MMC_CQE_RETRIES)
1386 blk_mq_requeue_request(req, true);
1387 else
1388 blk_mq_end_request(req, BLK_STS_IOERR);
1389 } else if (mrq->data) {
1390 if (blk_update_request(req, BLK_STS_OK, mrq->data->bytes_xfered))
1391 blk_mq_requeue_request(req, true);
1392 else
1393 __blk_mq_end_request(req, BLK_STS_OK);
1394 } else {
1395 blk_mq_end_request(req, BLK_STS_OK);
1396 }
1397
1398 spin_lock_irqsave(&mq->lock, flags);
1399
1400 mq->in_flight[issue_type] -= 1;
1401
1402 put_card = (mmc_tot_in_flight(mq) == 0);
1403
1404 mmc_cqe_check_busy(mq);
1405
1406 spin_unlock_irqrestore(&mq->lock, flags);
1407
1408 if (!mq->cqe_busy)
1409 blk_mq_run_hw_queues(q, true);
1410
1411 if (put_card)
1412 mmc_put_card(mq->card, &mq->ctx);
1413}
1414
1415void mmc_blk_cqe_recovery(struct mmc_queue *mq)
1416{
1417 struct mmc_card *card = mq->card;
1418 struct mmc_host *host = card->host;
1419 int err;
1420
1421 pr_debug("%s: CQE recovery start\n", mmc_hostname(host));
1422
1423 err = mmc_cqe_recovery(host);
1424 if (err)
1425 mmc_blk_reset(mq->blkdata, host, MMC_BLK_CQE_RECOVERY);
1426 else
1427 mmc_blk_reset_success(mq->blkdata, MMC_BLK_CQE_RECOVERY);
1428
1429 pr_debug("%s: CQE recovery done\n", mmc_hostname(host));
1430}
1431
1432static void mmc_blk_cqe_req_done(struct mmc_request *mrq)
1433{
1434 struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
1435 brq.mrq);
1436 struct request *req = mmc_queue_req_to_req(mqrq);
1437 struct request_queue *q = req->q;
1438 struct mmc_queue *mq = q->queuedata;
1439
1440 /*
1441 * Block layer timeouts race with completions which means the normal
1442 * completion path cannot be used during recovery.
1443 */
1444 if (mq->in_recovery)
1445 mmc_blk_cqe_complete_rq(mq, req);
1446 else if (likely(!blk_should_fake_timeout(req->q)))
1447 blk_mq_complete_request(req);
1448}
1449
1450static int mmc_blk_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
1451{
1452 mrq->done = mmc_blk_cqe_req_done;
1453 mrq->recovery_notifier = mmc_cqe_recovery_notifier;
1454
1455 return mmc_cqe_start_req(host, mrq);
1456}
1457
1458static struct mmc_request *mmc_blk_cqe_prep_dcmd(struct mmc_queue_req *mqrq,
1459 struct request *req)
1460{
1461 struct mmc_blk_request *brq = &mqrq->brq;
1462
1463 memset(brq, 0, sizeof(*brq));
1464
1465 brq->mrq.cmd = &brq->cmd;
1466 brq->mrq.tag = req->tag;
1467
1468 return &brq->mrq;
1469}
1470
1471static int mmc_blk_cqe_issue_flush(struct mmc_queue *mq, struct request *req)
1472{
1473 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1474 struct mmc_request *mrq = mmc_blk_cqe_prep_dcmd(mqrq, req);
1475
1476 mrq->cmd->opcode = MMC_SWITCH;
1477 mrq->cmd->arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) |
1478 (EXT_CSD_FLUSH_CACHE << 16) |
1479 (1 << 8) |
1480 EXT_CSD_CMD_SET_NORMAL;
1481 mrq->cmd->flags = MMC_CMD_AC | MMC_RSP_R1B;
1482
1483 return mmc_blk_cqe_start_req(mq->card->host, mrq);
1484}
1485
1486static int mmc_blk_hsq_issue_rw_rq(struct mmc_queue *mq, struct request *req)
1487{
1488 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1489 struct mmc_host *host = mq->card->host;
1490 int err;
1491
1492 mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq);
1493 mqrq->brq.mrq.done = mmc_blk_hsq_req_done;
1494 mmc_pre_req(host, &mqrq->brq.mrq);
1495
1496 err = mmc_cqe_start_req(host, &mqrq->brq.mrq);
1497 if (err)
1498 mmc_post_req(host, &mqrq->brq.mrq, err);
1499
1500 return err;
1501}
1502
1503static int mmc_blk_cqe_issue_rw_rq(struct mmc_queue *mq, struct request *req)
1504{
1505 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1506 struct mmc_host *host = mq->card->host;
1507
1508 if (host->hsq_enabled)
1509 return mmc_blk_hsq_issue_rw_rq(mq, req);
1510
1511 mmc_blk_data_prep(mq, mqrq, 0, NULL, NULL);
1512
1513 return mmc_blk_cqe_start_req(mq->card->host, &mqrq->brq.mrq);
1514}
1515
1516static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
1517 struct mmc_card *card,
1518 int disable_multi,
1519 struct mmc_queue *mq)
1520{
1521 u32 readcmd, writecmd;
1522 struct mmc_blk_request *brq = &mqrq->brq;
1523 struct request *req = mmc_queue_req_to_req(mqrq);
1524 struct mmc_blk_data *md = mq->blkdata;
1525 bool do_rel_wr, do_data_tag;
1526
1527 mmc_blk_data_prep(mq, mqrq, disable_multi, &do_rel_wr, &do_data_tag);
1528
1529 brq->mrq.cmd = &brq->cmd;
1530
1531 brq->cmd.arg = blk_rq_pos(req);
1532 if (!mmc_card_blockaddr(card))
1533 brq->cmd.arg <<= 9;
1534 brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
1535
1536 if (brq->data.blocks > 1 || do_rel_wr) {
1537 /* SPI multiblock writes terminate using a special
1538 * token, not a STOP_TRANSMISSION request.
1539 */
1540 if (!mmc_host_is_spi(card->host) ||
1541 rq_data_dir(req) == READ)
1542 brq->mrq.stop = &brq->stop;
1543 readcmd = MMC_READ_MULTIPLE_BLOCK;
1544 writecmd = MMC_WRITE_MULTIPLE_BLOCK;
1545 } else {
1546 brq->mrq.stop = NULL;
1547 readcmd = MMC_READ_SINGLE_BLOCK;
1548 writecmd = MMC_WRITE_BLOCK;
1549 }
1550 brq->cmd.opcode = rq_data_dir(req) == READ ? readcmd : writecmd;
1551
1552 /*
1553 * Pre-defined multi-block transfers are preferable to
1554 * open ended-ones (and necessary for reliable writes).
1555 * However, it is not sufficient to just send CMD23,
1556 * and avoid the final CMD12, as on an error condition
1557 * CMD12 (stop) needs to be sent anyway. This, coupled
1558 * with Auto-CMD23 enhancements provided by some
1559 * hosts, means that the complexity of dealing
1560 * with this is best left to the host. If CMD23 is
1561 * supported by card and host, we'll fill sbc in and let
1562 * the host deal with handling it correctly. This means
1563 * that for hosts that don't expose MMC_CAP_CMD23, no
1564 * change of behavior will be observed.
1565 *
1566 * N.B: Some MMC cards experience perf degradation.
1567 * We'll avoid using CMD23-bounded multiblock writes for
1568 * these, while retaining features like reliable writes.
1569 */
1570 if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) &&
1571 (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) ||
1572 do_data_tag)) {
1573 brq->sbc.opcode = MMC_SET_BLOCK_COUNT;
1574 brq->sbc.arg = brq->data.blocks |
1575 (do_rel_wr ? (1 << 31) : 0) |
1576 (do_data_tag ? (1 << 29) : 0);
1577 brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
1578 brq->mrq.sbc = &brq->sbc;
1579 }
1580}
1581
1582#define MMC_MAX_RETRIES 5
1583#define MMC_DATA_RETRIES 2
1584#define MMC_NO_RETRIES (MMC_MAX_RETRIES + 1)
1585
1586static int mmc_blk_send_stop(struct mmc_card *card, unsigned int timeout)
1587{
1588 struct mmc_command cmd = {
1589 .opcode = MMC_STOP_TRANSMISSION,
1590 .flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC,
1591 /* Some hosts wait for busy anyway, so provide a busy timeout */
1592 .busy_timeout = timeout,
1593 };
1594
1595 return mmc_wait_for_cmd(card->host, &cmd, 5);
1596}
1597
1598static int mmc_blk_fix_state(struct mmc_card *card, struct request *req)
1599{
1600 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1601 struct mmc_blk_request *brq = &mqrq->brq;
1602 unsigned int timeout = mmc_blk_data_timeout_ms(card->host, &brq->data);
1603 int err;
1604
1605 mmc_retune_hold_now(card->host);
1606
1607 mmc_blk_send_stop(card, timeout);
1608
1609 err = card_busy_detect(card, timeout, NULL);
1610
1611 mmc_retune_release(card->host);
1612
1613 return err;
1614}
1615
1616#define MMC_READ_SINGLE_RETRIES 2
1617
1618/* Single sector read during recovery */
1619static void mmc_blk_read_single(struct mmc_queue *mq, struct request *req)
1620{
1621 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1622 struct mmc_request *mrq = &mqrq->brq.mrq;
1623 struct mmc_card *card = mq->card;
1624 struct mmc_host *host = card->host;
1625 blk_status_t error = BLK_STS_OK;
1626 int retries = 0;
1627
1628 do {
1629 u32 status;
1630 int err;
1631
1632 mmc_blk_rw_rq_prep(mqrq, card, 1, mq);
1633
1634 mmc_wait_for_req(host, mrq);
1635
1636 err = mmc_send_status(card, &status);
1637 if (err)
1638 goto error_exit;
1639
1640 if (!mmc_host_is_spi(host) &&
1641 !mmc_ready_for_data(status)) {
1642 err = mmc_blk_fix_state(card, req);
1643 if (err)
1644 goto error_exit;
1645 }
1646
1647 if (mrq->cmd->error && retries++ < MMC_READ_SINGLE_RETRIES)
1648 continue;
1649
1650 retries = 0;
1651
1652 if (mrq->cmd->error ||
1653 mrq->data->error ||
1654 (!mmc_host_is_spi(host) &&
1655 (mrq->cmd->resp[0] & CMD_ERRORS || status & CMD_ERRORS)))
1656 error = BLK_STS_IOERR;
1657 else
1658 error = BLK_STS_OK;
1659
1660 } while (blk_update_request(req, error, 512));
1661
1662 return;
1663
1664error_exit:
1665 mrq->data->bytes_xfered = 0;
1666 blk_update_request(req, BLK_STS_IOERR, 512);
1667 /* Let it try the remaining request again */
1668 if (mqrq->retries > MMC_MAX_RETRIES - 1)
1669 mqrq->retries = MMC_MAX_RETRIES - 1;
1670}
1671
1672static inline bool mmc_blk_oor_valid(struct mmc_blk_request *brq)
1673{
1674 return !!brq->mrq.sbc;
1675}
1676
1677static inline u32 mmc_blk_stop_err_bits(struct mmc_blk_request *brq)
1678{
1679 return mmc_blk_oor_valid(brq) ? CMD_ERRORS : CMD_ERRORS_EXCL_OOR;
1680}
1681
1682/*
1683 * Check for errors the host controller driver might not have seen such as
1684 * response mode errors or invalid card state.
1685 */
1686static bool mmc_blk_status_error(struct request *req, u32 status)
1687{
1688 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1689 struct mmc_blk_request *brq = &mqrq->brq;
1690 struct mmc_queue *mq = req->q->queuedata;
1691 u32 stop_err_bits;
1692
1693 if (mmc_host_is_spi(mq->card->host))
1694 return false;
1695
1696 stop_err_bits = mmc_blk_stop_err_bits(brq);
1697
1698 return brq->cmd.resp[0] & CMD_ERRORS ||
1699 brq->stop.resp[0] & stop_err_bits ||
1700 status & stop_err_bits ||
1701 (rq_data_dir(req) == WRITE && !mmc_ready_for_data(status));
1702}
1703
1704static inline bool mmc_blk_cmd_started(struct mmc_blk_request *brq)
1705{
1706 return !brq->sbc.error && !brq->cmd.error &&
1707 !(brq->cmd.resp[0] & CMD_ERRORS);
1708}
1709
1710/*
1711 * Requests are completed by mmc_blk_mq_complete_rq() which sets simple
1712 * policy:
1713 * 1. A request that has transferred at least some data is considered
1714 * successful and will be requeued if there is remaining data to
1715 * transfer.
1716 * 2. Otherwise the number of retries is incremented and the request
1717 * will be requeued if there are remaining retries.
1718 * 3. Otherwise the request will be errored out.
1719 * That means mmc_blk_mq_complete_rq() is controlled by bytes_xfered and
1720 * mqrq->retries. So there are only 4 possible actions here:
1721 * 1. do not accept the bytes_xfered value i.e. set it to zero
1722 * 2. change mqrq->retries to determine the number of retries
1723 * 3. try to reset the card
1724 * 4. read one sector at a time
1725 */
1726static void mmc_blk_mq_rw_recovery(struct mmc_queue *mq, struct request *req)
1727{
1728 int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1729 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1730 struct mmc_blk_request *brq = &mqrq->brq;
1731 struct mmc_blk_data *md = mq->blkdata;
1732 struct mmc_card *card = mq->card;
1733 u32 status;
1734 u32 blocks;
1735 int err;
1736
1737 /*
1738 * Some errors the host driver might not have seen. Set the number of
1739 * bytes transferred to zero in that case.
1740 */
1741 err = __mmc_send_status(card, &status, 0);
1742 if (err || mmc_blk_status_error(req, status))
1743 brq->data.bytes_xfered = 0;
1744
1745 mmc_retune_release(card->host);
1746
1747 /*
1748 * Try again to get the status. This also provides an opportunity for
1749 * re-tuning.
1750 */
1751 if (err)
1752 err = __mmc_send_status(card, &status, 0);
1753
1754 /*
1755 * Nothing more to do after the number of bytes transferred has been
1756 * updated and there is no card.
1757 */
1758 if (err && mmc_detect_card_removed(card->host))
1759 return;
1760
1761 /* Try to get back to "tran" state */
1762 if (!mmc_host_is_spi(mq->card->host) &&
1763 (err || !mmc_ready_for_data(status)))
1764 err = mmc_blk_fix_state(mq->card, req);
1765
1766 /*
1767 * Special case for SD cards where the card might record the number of
1768 * blocks written.
1769 */
1770 if (!err && mmc_blk_cmd_started(brq) && mmc_card_sd(card) &&
1771 rq_data_dir(req) == WRITE) {
1772 if (mmc_sd_num_wr_blocks(card, &blocks))
1773 brq->data.bytes_xfered = 0;
1774 else
1775 brq->data.bytes_xfered = blocks << 9;
1776 }
1777
1778 /* Reset if the card is in a bad state */
1779 if (!mmc_host_is_spi(mq->card->host) &&
1780 err && mmc_blk_reset(md, card->host, type)) {
1781 pr_err("%s: recovery failed!\n", req->rq_disk->disk_name);
1782 mqrq->retries = MMC_NO_RETRIES;
1783 return;
1784 }
1785
1786 /*
1787 * If anything was done, just return and if there is anything remaining
1788 * on the request it will get requeued.
1789 */
1790 if (brq->data.bytes_xfered)
1791 return;
1792
1793 /* Reset before last retry */
1794 if (mqrq->retries + 1 == MMC_MAX_RETRIES)
1795 mmc_blk_reset(md, card->host, type);
1796
1797 /* Command errors fail fast, so use all MMC_MAX_RETRIES */
1798 if (brq->sbc.error || brq->cmd.error)
1799 return;
1800
1801 /* Reduce the remaining retries for data errors */
1802 if (mqrq->retries < MMC_MAX_RETRIES - MMC_DATA_RETRIES) {
1803 mqrq->retries = MMC_MAX_RETRIES - MMC_DATA_RETRIES;
1804 return;
1805 }
1806
1807 /* FIXME: Missing single sector read for large sector size */
1808 if (!mmc_large_sector(card) && rq_data_dir(req) == READ &&
1809 brq->data.blocks > 1) {
1810 /* Read one sector at a time */
1811 mmc_blk_read_single(mq, req);
1812 return;
1813 }
1814}
1815
1816static inline bool mmc_blk_rq_error(struct mmc_blk_request *brq)
1817{
1818 mmc_blk_eval_resp_error(brq);
1819
1820 return brq->sbc.error || brq->cmd.error || brq->stop.error ||
1821 brq->data.error || brq->cmd.resp[0] & CMD_ERRORS;
1822}
1823
1824static int mmc_blk_card_busy(struct mmc_card *card, struct request *req)
1825{
1826 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1827 u32 status = 0;
1828 int err;
1829
1830 if (mmc_host_is_spi(card->host) || rq_data_dir(req) == READ)
1831 return 0;
1832
1833 err = card_busy_detect(card, MMC_BLK_TIMEOUT_MS, &status);
1834
1835 /*
1836 * Do not assume data transferred correctly if there are any error bits
1837 * set.
1838 */
1839 if (status & mmc_blk_stop_err_bits(&mqrq->brq)) {
1840 mqrq->brq.data.bytes_xfered = 0;
1841 err = err ? err : -EIO;
1842 }
1843
1844 /* Copy the exception bit so it will be seen later on */
1845 if (mmc_card_mmc(card) && status & R1_EXCEPTION_EVENT)
1846 mqrq->brq.cmd.resp[0] |= R1_EXCEPTION_EVENT;
1847
1848 return err;
1849}
1850
1851static inline void mmc_blk_rw_reset_success(struct mmc_queue *mq,
1852 struct request *req)
1853{
1854 int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1855
1856 mmc_blk_reset_success(mq->blkdata, type);
1857}
1858
1859static void mmc_blk_mq_complete_rq(struct mmc_queue *mq, struct request *req)
1860{
1861 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1862 unsigned int nr_bytes = mqrq->brq.data.bytes_xfered;
1863
1864 if (nr_bytes) {
1865 if (blk_update_request(req, BLK_STS_OK, nr_bytes))
1866 blk_mq_requeue_request(req, true);
1867 else
1868 __blk_mq_end_request(req, BLK_STS_OK);
1869 } else if (!blk_rq_bytes(req)) {
1870 __blk_mq_end_request(req, BLK_STS_IOERR);
1871 } else if (mqrq->retries++ < MMC_MAX_RETRIES) {
1872 blk_mq_requeue_request(req, true);
1873 } else {
1874 if (mmc_card_removed(mq->card))
1875 req->rq_flags |= RQF_QUIET;
1876 blk_mq_end_request(req, BLK_STS_IOERR);
1877 }
1878}
1879
1880static bool mmc_blk_urgent_bkops_needed(struct mmc_queue *mq,
1881 struct mmc_queue_req *mqrq)
1882{
1883 return mmc_card_mmc(mq->card) && !mmc_host_is_spi(mq->card->host) &&
1884 (mqrq->brq.cmd.resp[0] & R1_EXCEPTION_EVENT ||
1885 mqrq->brq.stop.resp[0] & R1_EXCEPTION_EVENT);
1886}
1887
1888static void mmc_blk_urgent_bkops(struct mmc_queue *mq,
1889 struct mmc_queue_req *mqrq)
1890{
1891 if (mmc_blk_urgent_bkops_needed(mq, mqrq))
1892 mmc_run_bkops(mq->card);
1893}
1894
1895static void mmc_blk_hsq_req_done(struct mmc_request *mrq)
1896{
1897 struct mmc_queue_req *mqrq =
1898 container_of(mrq, struct mmc_queue_req, brq.mrq);
1899 struct request *req = mmc_queue_req_to_req(mqrq);
1900 struct request_queue *q = req->q;
1901 struct mmc_queue *mq = q->queuedata;
1902 struct mmc_host *host = mq->card->host;
1903 unsigned long flags;
1904
1905 if (mmc_blk_rq_error(&mqrq->brq) ||
1906 mmc_blk_urgent_bkops_needed(mq, mqrq)) {
1907 spin_lock_irqsave(&mq->lock, flags);
1908 mq->recovery_needed = true;
1909 mq->recovery_req = req;
1910 spin_unlock_irqrestore(&mq->lock, flags);
1911
1912 host->cqe_ops->cqe_recovery_start(host);
1913
1914 schedule_work(&mq->recovery_work);
1915 return;
1916 }
1917
1918 mmc_blk_rw_reset_success(mq, req);
1919
1920 /*
1921 * Block layer timeouts race with completions which means the normal
1922 * completion path cannot be used during recovery.
1923 */
1924 if (mq->in_recovery)
1925 mmc_blk_cqe_complete_rq(mq, req);
1926 else if (likely(!blk_should_fake_timeout(req->q)))
1927 blk_mq_complete_request(req);
1928}
1929
1930void mmc_blk_mq_complete(struct request *req)
1931{
1932 struct mmc_queue *mq = req->q->queuedata;
1933
1934 if (mq->use_cqe)
1935 mmc_blk_cqe_complete_rq(mq, req);
1936 else if (likely(!blk_should_fake_timeout(req->q)))
1937 mmc_blk_mq_complete_rq(mq, req);
1938}
1939
1940static void mmc_blk_mq_poll_completion(struct mmc_queue *mq,
1941 struct request *req)
1942{
1943 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1944 struct mmc_host *host = mq->card->host;
1945
1946 if (mmc_blk_rq_error(&mqrq->brq) ||
1947 mmc_blk_card_busy(mq->card, req)) {
1948 mmc_blk_mq_rw_recovery(mq, req);
1949 } else {
1950 mmc_blk_rw_reset_success(mq, req);
1951 mmc_retune_release(host);
1952 }
1953
1954 mmc_blk_urgent_bkops(mq, mqrq);
1955}
1956
1957static void mmc_blk_mq_dec_in_flight(struct mmc_queue *mq, struct request *req)
1958{
1959 unsigned long flags;
1960 bool put_card;
1961
1962 spin_lock_irqsave(&mq->lock, flags);
1963
1964 mq->in_flight[mmc_issue_type(mq, req)] -= 1;
1965
1966 put_card = (mmc_tot_in_flight(mq) == 0);
1967
1968 spin_unlock_irqrestore(&mq->lock, flags);
1969
1970 if (put_card)
1971 mmc_put_card(mq->card, &mq->ctx);
1972}
1973
1974static void mmc_blk_mq_post_req(struct mmc_queue *mq, struct request *req)
1975{
1976 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1977 struct mmc_request *mrq = &mqrq->brq.mrq;
1978 struct mmc_host *host = mq->card->host;
1979
1980 mmc_post_req(host, mrq, 0);
1981
1982 /*
1983 * Block layer timeouts race with completions which means the normal
1984 * completion path cannot be used during recovery.
1985 */
1986 if (mq->in_recovery)
1987 mmc_blk_mq_complete_rq(mq, req);
1988 else if (likely(!blk_should_fake_timeout(req->q)))
1989 blk_mq_complete_request(req);
1990
1991 mmc_blk_mq_dec_in_flight(mq, req);
1992}
1993
1994void mmc_blk_mq_recovery(struct mmc_queue *mq)
1995{
1996 struct request *req = mq->recovery_req;
1997 struct mmc_host *host = mq->card->host;
1998 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1999
2000 mq->recovery_req = NULL;
2001 mq->rw_wait = false;
2002
2003 if (mmc_blk_rq_error(&mqrq->brq)) {
2004 mmc_retune_hold_now(host);
2005 mmc_blk_mq_rw_recovery(mq, req);
2006 }
2007
2008 mmc_blk_urgent_bkops(mq, mqrq);
2009
2010 mmc_blk_mq_post_req(mq, req);
2011}
2012
2013static void mmc_blk_mq_complete_prev_req(struct mmc_queue *mq,
2014 struct request **prev_req)
2015{
2016 if (mmc_host_done_complete(mq->card->host))
2017 return;
2018
2019 mutex_lock(&mq->complete_lock);
2020
2021 if (!mq->complete_req)
2022 goto out_unlock;
2023
2024 mmc_blk_mq_poll_completion(mq, mq->complete_req);
2025
2026 if (prev_req)
2027 *prev_req = mq->complete_req;
2028 else
2029 mmc_blk_mq_post_req(mq, mq->complete_req);
2030
2031 mq->complete_req = NULL;
2032
2033out_unlock:
2034 mutex_unlock(&mq->complete_lock);
2035}
2036
2037void mmc_blk_mq_complete_work(struct work_struct *work)
2038{
2039 struct mmc_queue *mq = container_of(work, struct mmc_queue,
2040 complete_work);
2041
2042 mmc_blk_mq_complete_prev_req(mq, NULL);
2043}
2044
2045static void mmc_blk_mq_req_done(struct mmc_request *mrq)
2046{
2047 struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
2048 brq.mrq);
2049 struct request *req = mmc_queue_req_to_req(mqrq);
2050 struct request_queue *q = req->q;
2051 struct mmc_queue *mq = q->queuedata;
2052 struct mmc_host *host = mq->card->host;
2053 unsigned long flags;
2054
2055 if (!mmc_host_done_complete(host)) {
2056 bool waiting;
2057
2058 /*
2059 * We cannot complete the request in this context, so record
2060 * that there is a request to complete, and that a following
2061 * request does not need to wait (although it does need to
2062 * complete complete_req first).
2063 */
2064 spin_lock_irqsave(&mq->lock, flags);
2065 mq->complete_req = req;
2066 mq->rw_wait = false;
2067 waiting = mq->waiting;
2068 spin_unlock_irqrestore(&mq->lock, flags);
2069
2070 /*
2071 * If 'waiting' then the waiting task will complete this
2072 * request, otherwise queue a work to do it. Note that
2073 * complete_work may still race with the dispatch of a following
2074 * request.
2075 */
2076 if (waiting)
2077 wake_up(&mq->wait);
2078 else
2079 queue_work(mq->card->complete_wq, &mq->complete_work);
2080
2081 return;
2082 }
2083
2084 /* Take the recovery path for errors or urgent background operations */
2085 if (mmc_blk_rq_error(&mqrq->brq) ||
2086 mmc_blk_urgent_bkops_needed(mq, mqrq)) {
2087 spin_lock_irqsave(&mq->lock, flags);
2088 mq->recovery_needed = true;
2089 mq->recovery_req = req;
2090 spin_unlock_irqrestore(&mq->lock, flags);
2091 wake_up(&mq->wait);
2092 schedule_work(&mq->recovery_work);
2093 return;
2094 }
2095
2096 mmc_blk_rw_reset_success(mq, req);
2097
2098 mq->rw_wait = false;
2099 wake_up(&mq->wait);
2100
2101 mmc_blk_mq_post_req(mq, req);
2102}
2103
2104static bool mmc_blk_rw_wait_cond(struct mmc_queue *mq, int *err)
2105{
2106 unsigned long flags;
2107 bool done;
2108
2109 /*
2110 * Wait while there is another request in progress, but not if recovery
2111 * is needed. Also indicate whether there is a request waiting to start.
2112 */
2113 spin_lock_irqsave(&mq->lock, flags);
2114 if (mq->recovery_needed) {
2115 *err = -EBUSY;
2116 done = true;
2117 } else {
2118 done = !mq->rw_wait;
2119 }
2120 mq->waiting = !done;
2121 spin_unlock_irqrestore(&mq->lock, flags);
2122
2123 return done;
2124}
2125
2126static int mmc_blk_rw_wait(struct mmc_queue *mq, struct request **prev_req)
2127{
2128 int err = 0;
2129
2130 wait_event(mq->wait, mmc_blk_rw_wait_cond(mq, &err));
2131
2132 /* Always complete the previous request if there is one */
2133 mmc_blk_mq_complete_prev_req(mq, prev_req);
2134
2135 return err;
2136}
2137
2138static int mmc_blk_mq_issue_rw_rq(struct mmc_queue *mq,
2139 struct request *req)
2140{
2141 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2142 struct mmc_host *host = mq->card->host;
2143 struct request *prev_req = NULL;
2144 int err = 0;
2145
2146 mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq);
2147
2148 mqrq->brq.mrq.done = mmc_blk_mq_req_done;
2149
2150 mmc_pre_req(host, &mqrq->brq.mrq);
2151
2152 err = mmc_blk_rw_wait(mq, &prev_req);
2153 if (err)
2154 goto out_post_req;
2155
2156 mq->rw_wait = true;
2157
2158 err = mmc_start_request(host, &mqrq->brq.mrq);
2159
2160 if (prev_req)
2161 mmc_blk_mq_post_req(mq, prev_req);
2162
2163 if (err)
2164 mq->rw_wait = false;
2165
2166 /* Release re-tuning here where there is no synchronization required */
2167 if (err || mmc_host_done_complete(host))
2168 mmc_retune_release(host);
2169
2170out_post_req:
2171 if (err)
2172 mmc_post_req(host, &mqrq->brq.mrq, err);
2173
2174 return err;
2175}
2176
2177static int mmc_blk_wait_for_idle(struct mmc_queue *mq, struct mmc_host *host)
2178{
2179 if (mq->use_cqe)
2180 return host->cqe_ops->cqe_wait_for_idle(host);
2181
2182 return mmc_blk_rw_wait(mq, NULL);
2183}
2184
2185enum mmc_issued mmc_blk_mq_issue_rq(struct mmc_queue *mq, struct request *req)
2186{
2187 struct mmc_blk_data *md = mq->blkdata;
2188 struct mmc_card *card = md->queue.card;
2189 struct mmc_host *host = card->host;
2190 int ret;
2191
2192 ret = mmc_blk_part_switch(card, md->part_type);
2193 if (ret)
2194 return MMC_REQ_FAILED_TO_START;
2195
2196 switch (mmc_issue_type(mq, req)) {
2197 case MMC_ISSUE_SYNC:
2198 ret = mmc_blk_wait_for_idle(mq, host);
2199 if (ret)
2200 return MMC_REQ_BUSY;
2201 switch (req_op(req)) {
2202 case REQ_OP_DRV_IN:
2203 case REQ_OP_DRV_OUT:
2204 mmc_blk_issue_drv_op(mq, req);
2205 break;
2206 case REQ_OP_DISCARD:
2207 mmc_blk_issue_discard_rq(mq, req);
2208 break;
2209 case REQ_OP_SECURE_ERASE:
2210 mmc_blk_issue_secdiscard_rq(mq, req);
2211 break;
2212 case REQ_OP_FLUSH:
2213 mmc_blk_issue_flush(mq, req);
2214 break;
2215 default:
2216 WARN_ON_ONCE(1);
2217 return MMC_REQ_FAILED_TO_START;
2218 }
2219 return MMC_REQ_FINISHED;
2220 case MMC_ISSUE_DCMD:
2221 case MMC_ISSUE_ASYNC:
2222 switch (req_op(req)) {
2223 case REQ_OP_FLUSH:
2224 ret = mmc_blk_cqe_issue_flush(mq, req);
2225 break;
2226 case REQ_OP_READ:
2227 case REQ_OP_WRITE:
2228 if (mq->use_cqe)
2229 ret = mmc_blk_cqe_issue_rw_rq(mq, req);
2230 else
2231 ret = mmc_blk_mq_issue_rw_rq(mq, req);
2232 break;
2233 default:
2234 WARN_ON_ONCE(1);
2235 ret = -EINVAL;
2236 }
2237 if (!ret)
2238 return MMC_REQ_STARTED;
2239 return ret == -EBUSY ? MMC_REQ_BUSY : MMC_REQ_FAILED_TO_START;
2240 default:
2241 WARN_ON_ONCE(1);
2242 return MMC_REQ_FAILED_TO_START;
2243 }
2244}
2245
2246static inline int mmc_blk_readonly(struct mmc_card *card)
2247{
2248 return mmc_card_readonly(card) ||
2249 !(card->csd.cmdclass & CCC_BLOCK_WRITE);
2250}
2251
2252static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card,
2253 struct device *parent,
2254 sector_t size,
2255 bool default_ro,
2256 const char *subname,
2257 int area_type)
2258{
2259 struct mmc_blk_data *md;
2260 int devidx, ret;
2261
2262 devidx = ida_simple_get(&mmc_blk_ida, 0, max_devices, GFP_KERNEL);
2263 if (devidx < 0) {
2264 /*
2265 * We get -ENOSPC because there are no more any available
2266 * devidx. The reason may be that, either userspace haven't yet
2267 * unmounted the partitions, which postpones mmc_blk_release()
2268 * from being called, or the device has more partitions than
2269 * what we support.
2270 */
2271 if (devidx == -ENOSPC)
2272 dev_err(mmc_dev(card->host),
2273 "no more device IDs available\n");
2274
2275 return ERR_PTR(devidx);
2276 }
2277
2278 md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL);
2279 if (!md) {
2280 ret = -ENOMEM;
2281 goto out;
2282 }
2283
2284 md->area_type = area_type;
2285
2286 /*
2287 * Set the read-only status based on the supported commands
2288 * and the write protect switch.
2289 */
2290 md->read_only = mmc_blk_readonly(card);
2291
2292 md->disk = alloc_disk(perdev_minors);
2293 if (md->disk == NULL) {
2294 ret = -ENOMEM;
2295 goto err_kfree;
2296 }
2297
2298 INIT_LIST_HEAD(&md->part);
2299 INIT_LIST_HEAD(&md->rpmbs);
2300 md->usage = 1;
2301
2302 ret = mmc_init_queue(&md->queue, card);
2303 if (ret)
2304 goto err_putdisk;
2305
2306 md->queue.blkdata = md;
2307
2308 /*
2309 * Keep an extra reference to the queue so that we can shutdown the
2310 * queue (i.e. call blk_cleanup_queue()) while there are still
2311 * references to the 'md'. The corresponding blk_put_queue() is in
2312 * mmc_blk_put().
2313 */
2314 if (!blk_get_queue(md->queue.queue)) {
2315 mmc_cleanup_queue(&md->queue);
2316 ret = -ENODEV;
2317 goto err_putdisk;
2318 }
2319
2320 md->disk->major = MMC_BLOCK_MAJOR;
2321 md->disk->first_minor = devidx * perdev_minors;
2322 md->disk->fops = &mmc_bdops;
2323 md->disk->private_data = md;
2324 md->disk->queue = md->queue.queue;
2325 md->parent = parent;
2326 set_disk_ro(md->disk, md->read_only || default_ro);
2327 md->disk->flags = GENHD_FL_EXT_DEVT;
2328 if (area_type & (MMC_BLK_DATA_AREA_RPMB | MMC_BLK_DATA_AREA_BOOT))
2329 md->disk->flags |= GENHD_FL_NO_PART_SCAN
2330 | GENHD_FL_SUPPRESS_PARTITION_INFO;
2331
2332 /*
2333 * As discussed on lkml, GENHD_FL_REMOVABLE should:
2334 *
2335 * - be set for removable media with permanent block devices
2336 * - be unset for removable block devices with permanent media
2337 *
2338 * Since MMC block devices clearly fall under the second
2339 * case, we do not set GENHD_FL_REMOVABLE. Userspace
2340 * should use the block device creation/destruction hotplug
2341 * messages to tell when the card is present.
2342 */
2343
2344 snprintf(md->disk->disk_name, sizeof(md->disk->disk_name),
2345 "mmcblk%u%s", card->host->index, subname ? subname : "");
2346
2347 set_capacity(md->disk, size);
2348
2349 if (mmc_host_cmd23(card->host)) {
2350 if ((mmc_card_mmc(card) &&
2351 card->csd.mmca_vsn >= CSD_SPEC_VER_3) ||
2352 (mmc_card_sd(card) &&
2353 card->scr.cmds & SD_SCR_CMD23_SUPPORT))
2354 md->flags |= MMC_BLK_CMD23;
2355 }
2356
2357 if (mmc_card_mmc(card) &&
2358 md->flags & MMC_BLK_CMD23 &&
2359 ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) ||
2360 card->ext_csd.rel_sectors)) {
2361 md->flags |= MMC_BLK_REL_WR;
2362 blk_queue_write_cache(md->queue.queue, true, true);
2363 }
2364
2365 return md;
2366
2367 err_putdisk:
2368 put_disk(md->disk);
2369 err_kfree:
2370 kfree(md);
2371 out:
2372 ida_simple_remove(&mmc_blk_ida, devidx);
2373 return ERR_PTR(ret);
2374}
2375
2376static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card)
2377{
2378 sector_t size;
2379
2380 if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) {
2381 /*
2382 * The EXT_CSD sector count is in number or 512 byte
2383 * sectors.
2384 */
2385 size = card->ext_csd.sectors;
2386 } else {
2387 /*
2388 * The CSD capacity field is in units of read_blkbits.
2389 * set_capacity takes units of 512 bytes.
2390 */
2391 size = (typeof(sector_t))card->csd.capacity
2392 << (card->csd.read_blkbits - 9);
2393 }
2394
2395 return mmc_blk_alloc_req(card, &card->dev, size, false, NULL,
2396 MMC_BLK_DATA_AREA_MAIN);
2397}
2398
2399static int mmc_blk_alloc_part(struct mmc_card *card,
2400 struct mmc_blk_data *md,
2401 unsigned int part_type,
2402 sector_t size,
2403 bool default_ro,
2404 const char *subname,
2405 int area_type)
2406{
2407 char cap_str[10];
2408 struct mmc_blk_data *part_md;
2409
2410 part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro,
2411 subname, area_type);
2412 if (IS_ERR(part_md))
2413 return PTR_ERR(part_md);
2414 part_md->part_type = part_type;
2415 list_add(&part_md->part, &md->part);
2416
2417 string_get_size((u64)get_capacity(part_md->disk), 512, STRING_UNITS_2,
2418 cap_str, sizeof(cap_str));
2419 pr_info("%s: %s %s partition %u %s\n",
2420 part_md->disk->disk_name, mmc_card_id(card),
2421 mmc_card_name(card), part_md->part_type, cap_str);
2422 return 0;
2423}
2424
2425/**
2426 * mmc_rpmb_ioctl() - ioctl handler for the RPMB chardev
2427 * @filp: the character device file
2428 * @cmd: the ioctl() command
2429 * @arg: the argument from userspace
2430 *
2431 * This will essentially just redirect the ioctl()s coming in over to
2432 * the main block device spawning the RPMB character device.
2433 */
2434static long mmc_rpmb_ioctl(struct file *filp, unsigned int cmd,
2435 unsigned long arg)
2436{
2437 struct mmc_rpmb_data *rpmb = filp->private_data;
2438 int ret;
2439
2440 switch (cmd) {
2441 case MMC_IOC_CMD:
2442 ret = mmc_blk_ioctl_cmd(rpmb->md,
2443 (struct mmc_ioc_cmd __user *)arg,
2444 rpmb);
2445 break;
2446 case MMC_IOC_MULTI_CMD:
2447 ret = mmc_blk_ioctl_multi_cmd(rpmb->md,
2448 (struct mmc_ioc_multi_cmd __user *)arg,
2449 rpmb);
2450 break;
2451 default:
2452 ret = -EINVAL;
2453 break;
2454 }
2455
2456 return ret;
2457}
2458
2459#ifdef CONFIG_COMPAT
2460static long mmc_rpmb_ioctl_compat(struct file *filp, unsigned int cmd,
2461 unsigned long arg)
2462{
2463 return mmc_rpmb_ioctl(filp, cmd, (unsigned long)compat_ptr(arg));
2464}
2465#endif
2466
2467static int mmc_rpmb_chrdev_open(struct inode *inode, struct file *filp)
2468{
2469 struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2470 struct mmc_rpmb_data, chrdev);
2471
2472 get_device(&rpmb->dev);
2473 filp->private_data = rpmb;
2474 mmc_blk_get(rpmb->md->disk);
2475
2476 return nonseekable_open(inode, filp);
2477}
2478
2479static int mmc_rpmb_chrdev_release(struct inode *inode, struct file *filp)
2480{
2481 struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2482 struct mmc_rpmb_data, chrdev);
2483
2484 mmc_blk_put(rpmb->md);
2485 put_device(&rpmb->dev);
2486
2487 return 0;
2488}
2489
2490static const struct file_operations mmc_rpmb_fileops = {
2491 .release = mmc_rpmb_chrdev_release,
2492 .open = mmc_rpmb_chrdev_open,
2493 .owner = THIS_MODULE,
2494 .llseek = no_llseek,
2495 .unlocked_ioctl = mmc_rpmb_ioctl,
2496#ifdef CONFIG_COMPAT
2497 .compat_ioctl = mmc_rpmb_ioctl_compat,
2498#endif
2499};
2500
2501static void mmc_blk_rpmb_device_release(struct device *dev)
2502{
2503 struct mmc_rpmb_data *rpmb = dev_get_drvdata(dev);
2504
2505 ida_simple_remove(&mmc_rpmb_ida, rpmb->id);
2506 kfree(rpmb);
2507}
2508
2509static int mmc_blk_alloc_rpmb_part(struct mmc_card *card,
2510 struct mmc_blk_data *md,
2511 unsigned int part_index,
2512 sector_t size,
2513 const char *subname)
2514{
2515 int devidx, ret;
2516 char rpmb_name[DISK_NAME_LEN];
2517 char cap_str[10];
2518 struct mmc_rpmb_data *rpmb;
2519
2520 /* This creates the minor number for the RPMB char device */
2521 devidx = ida_simple_get(&mmc_rpmb_ida, 0, max_devices, GFP_KERNEL);
2522 if (devidx < 0)
2523 return devidx;
2524
2525 rpmb = kzalloc(sizeof(*rpmb), GFP_KERNEL);
2526 if (!rpmb) {
2527 ida_simple_remove(&mmc_rpmb_ida, devidx);
2528 return -ENOMEM;
2529 }
2530
2531 snprintf(rpmb_name, sizeof(rpmb_name),
2532 "mmcblk%u%s", card->host->index, subname ? subname : "");
2533
2534 rpmb->id = devidx;
2535 rpmb->part_index = part_index;
2536 rpmb->dev.init_name = rpmb_name;
2537 rpmb->dev.bus = &mmc_rpmb_bus_type;
2538 rpmb->dev.devt = MKDEV(MAJOR(mmc_rpmb_devt), rpmb->id);
2539 rpmb->dev.parent = &card->dev;
2540 rpmb->dev.release = mmc_blk_rpmb_device_release;
2541 device_initialize(&rpmb->dev);
2542 dev_set_drvdata(&rpmb->dev, rpmb);
2543 rpmb->md = md;
2544
2545 cdev_init(&rpmb->chrdev, &mmc_rpmb_fileops);
2546 rpmb->chrdev.owner = THIS_MODULE;
2547 ret = cdev_device_add(&rpmb->chrdev, &rpmb->dev);
2548 if (ret) {
2549 pr_err("%s: could not add character device\n", rpmb_name);
2550 goto out_put_device;
2551 }
2552
2553 list_add(&rpmb->node, &md->rpmbs);
2554
2555 string_get_size((u64)size, 512, STRING_UNITS_2,
2556 cap_str, sizeof(cap_str));
2557
2558 pr_info("%s: %s %s partition %u %s, chardev (%d:%d)\n",
2559 rpmb_name, mmc_card_id(card),
2560 mmc_card_name(card), EXT_CSD_PART_CONFIG_ACC_RPMB, cap_str,
2561 MAJOR(mmc_rpmb_devt), rpmb->id);
2562
2563 return 0;
2564
2565out_put_device:
2566 put_device(&rpmb->dev);
2567 return ret;
2568}
2569
2570static void mmc_blk_remove_rpmb_part(struct mmc_rpmb_data *rpmb)
2571
2572{
2573 cdev_device_del(&rpmb->chrdev, &rpmb->dev);
2574 put_device(&rpmb->dev);
2575}
2576
2577/* MMC Physical partitions consist of two boot partitions and
2578 * up to four general purpose partitions.
2579 * For each partition enabled in EXT_CSD a block device will be allocatedi
2580 * to provide access to the partition.
2581 */
2582
2583static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md)
2584{
2585 int idx, ret;
2586
2587 if (!mmc_card_mmc(card))
2588 return 0;
2589
2590 for (idx = 0; idx < card->nr_parts; idx++) {
2591 if (card->part[idx].area_type & MMC_BLK_DATA_AREA_RPMB) {
2592 /*
2593 * RPMB partitions does not provide block access, they
2594 * are only accessed using ioctl():s. Thus create
2595 * special RPMB block devices that do not have a
2596 * backing block queue for these.
2597 */
2598 ret = mmc_blk_alloc_rpmb_part(card, md,
2599 card->part[idx].part_cfg,
2600 card->part[idx].size >> 9,
2601 card->part[idx].name);
2602 if (ret)
2603 return ret;
2604 } else if (card->part[idx].size) {
2605 ret = mmc_blk_alloc_part(card, md,
2606 card->part[idx].part_cfg,
2607 card->part[idx].size >> 9,
2608 card->part[idx].force_ro,
2609 card->part[idx].name,
2610 card->part[idx].area_type);
2611 if (ret)
2612 return ret;
2613 }
2614 }
2615
2616 return 0;
2617}
2618
2619static void mmc_blk_remove_req(struct mmc_blk_data *md)
2620{
2621 struct mmc_card *card;
2622
2623 if (md) {
2624 /*
2625 * Flush remaining requests and free queues. It
2626 * is freeing the queue that stops new requests
2627 * from being accepted.
2628 */
2629 card = md->queue.card;
2630 if (md->disk->flags & GENHD_FL_UP) {
2631 device_remove_file(disk_to_dev(md->disk), &md->force_ro);
2632 if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
2633 card->ext_csd.boot_ro_lockable)
2634 device_remove_file(disk_to_dev(md->disk),
2635 &md->power_ro_lock);
2636
2637 del_gendisk(md->disk);
2638 }
2639 mmc_cleanup_queue(&md->queue);
2640 mmc_blk_put(md);
2641 }
2642}
2643
2644static void mmc_blk_remove_parts(struct mmc_card *card,
2645 struct mmc_blk_data *md)
2646{
2647 struct list_head *pos, *q;
2648 struct mmc_blk_data *part_md;
2649 struct mmc_rpmb_data *rpmb;
2650
2651 /* Remove RPMB partitions */
2652 list_for_each_safe(pos, q, &md->rpmbs) {
2653 rpmb = list_entry(pos, struct mmc_rpmb_data, node);
2654 list_del(pos);
2655 mmc_blk_remove_rpmb_part(rpmb);
2656 }
2657 /* Remove block partitions */
2658 list_for_each_safe(pos, q, &md->part) {
2659 part_md = list_entry(pos, struct mmc_blk_data, part);
2660 list_del(pos);
2661 mmc_blk_remove_req(part_md);
2662 }
2663}
2664
2665static int mmc_add_disk(struct mmc_blk_data *md)
2666{
2667 int ret;
2668 struct mmc_card *card = md->queue.card;
2669
2670 device_add_disk(md->parent, md->disk, NULL);
2671 md->force_ro.show = force_ro_show;
2672 md->force_ro.store = force_ro_store;
2673 sysfs_attr_init(&md->force_ro.attr);
2674 md->force_ro.attr.name = "force_ro";
2675 md->force_ro.attr.mode = S_IRUGO | S_IWUSR;
2676 ret = device_create_file(disk_to_dev(md->disk), &md->force_ro);
2677 if (ret)
2678 goto force_ro_fail;
2679
2680 if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
2681 card->ext_csd.boot_ro_lockable) {
2682 umode_t mode;
2683
2684 if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_DIS)
2685 mode = S_IRUGO;
2686 else
2687 mode = S_IRUGO | S_IWUSR;
2688
2689 md->power_ro_lock.show = power_ro_lock_show;
2690 md->power_ro_lock.store = power_ro_lock_store;
2691 sysfs_attr_init(&md->power_ro_lock.attr);
2692 md->power_ro_lock.attr.mode = mode;
2693 md->power_ro_lock.attr.name =
2694 "ro_lock_until_next_power_on";
2695 ret = device_create_file(disk_to_dev(md->disk),
2696 &md->power_ro_lock);
2697 if (ret)
2698 goto power_ro_lock_fail;
2699 }
2700 return ret;
2701
2702power_ro_lock_fail:
2703 device_remove_file(disk_to_dev(md->disk), &md->force_ro);
2704force_ro_fail:
2705 del_gendisk(md->disk);
2706
2707 return ret;
2708}
2709
2710#ifdef CONFIG_DEBUG_FS
2711
2712static int mmc_dbg_card_status_get(void *data, u64 *val)
2713{
2714 struct mmc_card *card = data;
2715 struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2716 struct mmc_queue *mq = &md->queue;
2717 struct request *req;
2718 int ret;
2719
2720 /* Ask the block layer about the card status */
2721 req = blk_get_request(mq->queue, REQ_OP_DRV_IN, 0);
2722 if (IS_ERR(req))
2723 return PTR_ERR(req);
2724 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_CARD_STATUS;
2725 blk_execute_rq(mq->queue, NULL, req, 0);
2726 ret = req_to_mmc_queue_req(req)->drv_op_result;
2727 if (ret >= 0) {
2728 *val = ret;
2729 ret = 0;
2730 }
2731 blk_put_request(req);
2732
2733 return ret;
2734}
2735DEFINE_DEBUGFS_ATTRIBUTE(mmc_dbg_card_status_fops, mmc_dbg_card_status_get,
2736 NULL, "%08llx\n");
2737
2738/* That is two digits * 512 + 1 for newline */
2739#define EXT_CSD_STR_LEN 1025
2740
2741static int mmc_ext_csd_open(struct inode *inode, struct file *filp)
2742{
2743 struct mmc_card *card = inode->i_private;
2744 struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2745 struct mmc_queue *mq = &md->queue;
2746 struct request *req;
2747 char *buf;
2748 ssize_t n = 0;
2749 u8 *ext_csd;
2750 int err, i;
2751
2752 buf = kmalloc(EXT_CSD_STR_LEN + 1, GFP_KERNEL);
2753 if (!buf)
2754 return -ENOMEM;
2755
2756 /* Ask the block layer for the EXT CSD */
2757 req = blk_get_request(mq->queue, REQ_OP_DRV_IN, 0);
2758 if (IS_ERR(req)) {
2759 err = PTR_ERR(req);
2760 goto out_free;
2761 }
2762 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_EXT_CSD;
2763 req_to_mmc_queue_req(req)->drv_op_data = &ext_csd;
2764 blk_execute_rq(mq->queue, NULL, req, 0);
2765 err = req_to_mmc_queue_req(req)->drv_op_result;
2766 blk_put_request(req);
2767 if (err) {
2768 pr_err("FAILED %d\n", err);
2769 goto out_free;
2770 }
2771
2772 for (i = 0; i < 512; i++)
2773 n += sprintf(buf + n, "%02x", ext_csd[i]);
2774 n += sprintf(buf + n, "\n");
2775
2776 if (n != EXT_CSD_STR_LEN) {
2777 err = -EINVAL;
2778 kfree(ext_csd);
2779 goto out_free;
2780 }
2781
2782 filp->private_data = buf;
2783 kfree(ext_csd);
2784 return 0;
2785
2786out_free:
2787 kfree(buf);
2788 return err;
2789}
2790
2791static ssize_t mmc_ext_csd_read(struct file *filp, char __user *ubuf,
2792 size_t cnt, loff_t *ppos)
2793{
2794 char *buf = filp->private_data;
2795
2796 return simple_read_from_buffer(ubuf, cnt, ppos,
2797 buf, EXT_CSD_STR_LEN);
2798}
2799
2800static int mmc_ext_csd_release(struct inode *inode, struct file *file)
2801{
2802 kfree(file->private_data);
2803 return 0;
2804}
2805
2806static const struct file_operations mmc_dbg_ext_csd_fops = {
2807 .open = mmc_ext_csd_open,
2808 .read = mmc_ext_csd_read,
2809 .release = mmc_ext_csd_release,
2810 .llseek = default_llseek,
2811};
2812
2813static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
2814{
2815 struct dentry *root;
2816
2817 if (!card->debugfs_root)
2818 return 0;
2819
2820 root = card->debugfs_root;
2821
2822 if (mmc_card_mmc(card) || mmc_card_sd(card)) {
2823 md->status_dentry =
2824 debugfs_create_file_unsafe("status", 0400, root,
2825 card,
2826 &mmc_dbg_card_status_fops);
2827 if (!md->status_dentry)
2828 return -EIO;
2829 }
2830
2831 if (mmc_card_mmc(card)) {
2832 md->ext_csd_dentry =
2833 debugfs_create_file("ext_csd", S_IRUSR, root, card,
2834 &mmc_dbg_ext_csd_fops);
2835 if (!md->ext_csd_dentry)
2836 return -EIO;
2837 }
2838
2839 return 0;
2840}
2841
2842static void mmc_blk_remove_debugfs(struct mmc_card *card,
2843 struct mmc_blk_data *md)
2844{
2845 if (!card->debugfs_root)
2846 return;
2847
2848 if (!IS_ERR_OR_NULL(md->status_dentry)) {
2849 debugfs_remove(md->status_dentry);
2850 md->status_dentry = NULL;
2851 }
2852
2853 if (!IS_ERR_OR_NULL(md->ext_csd_dentry)) {
2854 debugfs_remove(md->ext_csd_dentry);
2855 md->ext_csd_dentry = NULL;
2856 }
2857}
2858
2859#else
2860
2861static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
2862{
2863 return 0;
2864}
2865
2866static void mmc_blk_remove_debugfs(struct mmc_card *card,
2867 struct mmc_blk_data *md)
2868{
2869}
2870
2871#endif /* CONFIG_DEBUG_FS */
2872
2873static int mmc_blk_probe(struct mmc_card *card)
2874{
2875 struct mmc_blk_data *md, *part_md;
2876 char cap_str[10];
2877
2878 /*
2879 * Check that the card supports the command class(es) we need.
2880 */
2881 if (!(card->csd.cmdclass & CCC_BLOCK_READ))
2882 return -ENODEV;
2883
2884 mmc_fixup_device(card, mmc_blk_fixups);
2885
2886 card->complete_wq = alloc_workqueue("mmc_complete",
2887 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
2888 if (unlikely(!card->complete_wq)) {
2889 pr_err("Failed to create mmc completion workqueue");
2890 return -ENOMEM;
2891 }
2892
2893 md = mmc_blk_alloc(card);
2894 if (IS_ERR(md))
2895 return PTR_ERR(md);
2896
2897 string_get_size((u64)get_capacity(md->disk), 512, STRING_UNITS_2,
2898 cap_str, sizeof(cap_str));
2899 pr_info("%s: %s %s %s %s\n",
2900 md->disk->disk_name, mmc_card_id(card), mmc_card_name(card),
2901 cap_str, md->read_only ? "(ro)" : "");
2902
2903 if (mmc_blk_alloc_parts(card, md))
2904 goto out;
2905
2906 dev_set_drvdata(&card->dev, md);
2907
2908 if (mmc_add_disk(md))
2909 goto out;
2910
2911 list_for_each_entry(part_md, &md->part, part) {
2912 if (mmc_add_disk(part_md))
2913 goto out;
2914 }
2915
2916 /* Add two debugfs entries */
2917 mmc_blk_add_debugfs(card, md);
2918
2919 pm_runtime_set_autosuspend_delay(&card->dev, 3000);
2920 pm_runtime_use_autosuspend(&card->dev);
2921
2922 /*
2923 * Don't enable runtime PM for SD-combo cards here. Leave that
2924 * decision to be taken during the SDIO init sequence instead.
2925 */
2926 if (card->type != MMC_TYPE_SD_COMBO) {
2927 pm_runtime_set_active(&card->dev);
2928 pm_runtime_enable(&card->dev);
2929 }
2930
2931 return 0;
2932
2933 out:
2934 mmc_blk_remove_parts(card, md);
2935 mmc_blk_remove_req(md);
2936 return 0;
2937}
2938
2939static void mmc_blk_remove(struct mmc_card *card)
2940{
2941 struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2942
2943 mmc_blk_remove_debugfs(card, md);
2944 mmc_blk_remove_parts(card, md);
2945 pm_runtime_get_sync(&card->dev);
2946 if (md->part_curr != md->part_type) {
2947 mmc_claim_host(card->host);
2948 mmc_blk_part_switch(card, md->part_type);
2949 mmc_release_host(card->host);
2950 }
2951 if (card->type != MMC_TYPE_SD_COMBO)
2952 pm_runtime_disable(&card->dev);
2953 pm_runtime_put_noidle(&card->dev);
2954 mmc_blk_remove_req(md);
2955 dev_set_drvdata(&card->dev, NULL);
2956 destroy_workqueue(card->complete_wq);
2957}
2958
2959static int _mmc_blk_suspend(struct mmc_card *card)
2960{
2961 struct mmc_blk_data *part_md;
2962 struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2963
2964 if (md) {
2965 mmc_queue_suspend(&md->queue);
2966 list_for_each_entry(part_md, &md->part, part) {
2967 mmc_queue_suspend(&part_md->queue);
2968 }
2969 }
2970 return 0;
2971}
2972
2973static void mmc_blk_shutdown(struct mmc_card *card)
2974{
2975 _mmc_blk_suspend(card);
2976}
2977
2978#ifdef CONFIG_PM_SLEEP
2979static int mmc_blk_suspend(struct device *dev)
2980{
2981 struct mmc_card *card = mmc_dev_to_card(dev);
2982
2983 return _mmc_blk_suspend(card);
2984}
2985
2986static int mmc_blk_resume(struct device *dev)
2987{
2988 struct mmc_blk_data *part_md;
2989 struct mmc_blk_data *md = dev_get_drvdata(dev);
2990
2991 if (md) {
2992 /*
2993 * Resume involves the card going into idle state,
2994 * so current partition is always the main one.
2995 */
2996 md->part_curr = md->part_type;
2997 mmc_queue_resume(&md->queue);
2998 list_for_each_entry(part_md, &md->part, part) {
2999 mmc_queue_resume(&part_md->queue);
3000 }
3001 }
3002 return 0;
3003}
3004#endif
3005
3006static SIMPLE_DEV_PM_OPS(mmc_blk_pm_ops, mmc_blk_suspend, mmc_blk_resume);
3007
3008static struct mmc_driver mmc_driver = {
3009 .drv = {
3010 .name = "mmcblk",
3011 .pm = &mmc_blk_pm_ops,
3012 },
3013 .probe = mmc_blk_probe,
3014 .remove = mmc_blk_remove,
3015 .shutdown = mmc_blk_shutdown,
3016};
3017
3018static int __init mmc_blk_init(void)
3019{
3020 int res;
3021
3022 res = bus_register(&mmc_rpmb_bus_type);
3023 if (res < 0) {
3024 pr_err("mmcblk: could not register RPMB bus type\n");
3025 return res;
3026 }
3027 res = alloc_chrdev_region(&mmc_rpmb_devt, 0, MAX_DEVICES, "rpmb");
3028 if (res < 0) {
3029 pr_err("mmcblk: failed to allocate rpmb chrdev region\n");
3030 goto out_bus_unreg;
3031 }
3032
3033 if (perdev_minors != CONFIG_MMC_BLOCK_MINORS)
3034 pr_info("mmcblk: using %d minors per device\n", perdev_minors);
3035
3036 max_devices = min(MAX_DEVICES, (1 << MINORBITS) / perdev_minors);
3037
3038 res = register_blkdev(MMC_BLOCK_MAJOR, "mmc");
3039 if (res)
3040 goto out_chrdev_unreg;
3041
3042 res = mmc_register_driver(&mmc_driver);
3043 if (res)
3044 goto out_blkdev_unreg;
3045
3046 return 0;
3047
3048out_blkdev_unreg:
3049 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
3050out_chrdev_unreg:
3051 unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
3052out_bus_unreg:
3053 bus_unregister(&mmc_rpmb_bus_type);
3054 return res;
3055}
3056
3057static void __exit mmc_blk_exit(void)
3058{
3059 mmc_unregister_driver(&mmc_driver);
3060 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
3061 unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
3062 bus_unregister(&mmc_rpmb_bus_type);
3063}
3064
3065module_init(mmc_blk_init);
3066module_exit(mmc_blk_exit);
3067
3068MODULE_LICENSE("GPL");
3069MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver");
3070
1/*
2 * Block driver for media (i.e., flash cards)
3 *
4 * Copyright 2002 Hewlett-Packard Company
5 * Copyright 2005-2008 Pierre Ossman
6 *
7 * Use consistent with the GNU GPL is permitted,
8 * provided that this copyright notice is
9 * preserved in its entirety in all copies and derived works.
10 *
11 * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED,
12 * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS
13 * FITNESS FOR ANY PARTICULAR PURPOSE.
14 *
15 * Many thanks to Alessandro Rubini and Jonathan Corbet!
16 *
17 * Author: Andrew Christian
18 * 28 May 2002
19 */
20#include <linux/moduleparam.h>
21#include <linux/module.h>
22#include <linux/init.h>
23
24#include <linux/kernel.h>
25#include <linux/fs.h>
26#include <linux/slab.h>
27#include <linux/errno.h>
28#include <linux/hdreg.h>
29#include <linux/kdev_t.h>
30#include <linux/blkdev.h>
31#include <linux/cdev.h>
32#include <linux/mutex.h>
33#include <linux/scatterlist.h>
34#include <linux/string_helpers.h>
35#include <linux/delay.h>
36#include <linux/capability.h>
37#include <linux/compat.h>
38#include <linux/pm_runtime.h>
39#include <linux/idr.h>
40#include <linux/debugfs.h>
41
42#include <linux/mmc/ioctl.h>
43#include <linux/mmc/card.h>
44#include <linux/mmc/host.h>
45#include <linux/mmc/mmc.h>
46#include <linux/mmc/sd.h>
47
48#include <linux/uaccess.h>
49
50#include "queue.h"
51#include "block.h"
52#include "core.h"
53#include "card.h"
54#include "host.h"
55#include "bus.h"
56#include "mmc_ops.h"
57#include "quirks.h"
58#include "sd_ops.h"
59
60MODULE_ALIAS("mmc:block");
61#ifdef MODULE_PARAM_PREFIX
62#undef MODULE_PARAM_PREFIX
63#endif
64#define MODULE_PARAM_PREFIX "mmcblk."
65
66/*
67 * Set a 10 second timeout for polling write request busy state. Note, mmc core
68 * is setting a 3 second timeout for SD cards, and SDHCI has long had a 10
69 * second software timer to timeout the whole request, so 10 seconds should be
70 * ample.
71 */
72#define MMC_BLK_TIMEOUT_MS (10 * 1000)
73#define MMC_SANITIZE_REQ_TIMEOUT 240000
74#define MMC_EXTRACT_INDEX_FROM_ARG(x) ((x & 0x00FF0000) >> 16)
75#define MMC_EXTRACT_VALUE_FROM_ARG(x) ((x & 0x0000FF00) >> 8)
76
77#define mmc_req_rel_wr(req) ((req->cmd_flags & REQ_FUA) && \
78 (rq_data_dir(req) == WRITE))
79static DEFINE_MUTEX(block_mutex);
80
81/*
82 * The defaults come from config options but can be overriden by module
83 * or bootarg options.
84 */
85static int perdev_minors = CONFIG_MMC_BLOCK_MINORS;
86
87/*
88 * We've only got one major, so number of mmcblk devices is
89 * limited to (1 << 20) / number of minors per device. It is also
90 * limited by the MAX_DEVICES below.
91 */
92static int max_devices;
93
94#define MAX_DEVICES 256
95
96static DEFINE_IDA(mmc_blk_ida);
97static DEFINE_IDA(mmc_rpmb_ida);
98
99/*
100 * There is one mmc_blk_data per slot.
101 */
102struct mmc_blk_data {
103 spinlock_t lock;
104 struct device *parent;
105 struct gendisk *disk;
106 struct mmc_queue queue;
107 struct list_head part;
108 struct list_head rpmbs;
109
110 unsigned int flags;
111#define MMC_BLK_CMD23 (1 << 0) /* Can do SET_BLOCK_COUNT for multiblock */
112#define MMC_BLK_REL_WR (1 << 1) /* MMC Reliable write support */
113
114 unsigned int usage;
115 unsigned int read_only;
116 unsigned int part_type;
117 unsigned int reset_done;
118#define MMC_BLK_READ BIT(0)
119#define MMC_BLK_WRITE BIT(1)
120#define MMC_BLK_DISCARD BIT(2)
121#define MMC_BLK_SECDISCARD BIT(3)
122#define MMC_BLK_CQE_RECOVERY BIT(4)
123
124 /*
125 * Only set in main mmc_blk_data associated
126 * with mmc_card with dev_set_drvdata, and keeps
127 * track of the current selected device partition.
128 */
129 unsigned int part_curr;
130 struct device_attribute force_ro;
131 struct device_attribute power_ro_lock;
132 int area_type;
133
134 /* debugfs files (only in main mmc_blk_data) */
135 struct dentry *status_dentry;
136 struct dentry *ext_csd_dentry;
137};
138
139/* Device type for RPMB character devices */
140static dev_t mmc_rpmb_devt;
141
142/* Bus type for RPMB character devices */
143static struct bus_type mmc_rpmb_bus_type = {
144 .name = "mmc_rpmb",
145};
146
147/**
148 * struct mmc_rpmb_data - special RPMB device type for these areas
149 * @dev: the device for the RPMB area
150 * @chrdev: character device for the RPMB area
151 * @id: unique device ID number
152 * @part_index: partition index (0 on first)
153 * @md: parent MMC block device
154 * @node: list item, so we can put this device on a list
155 */
156struct mmc_rpmb_data {
157 struct device dev;
158 struct cdev chrdev;
159 int id;
160 unsigned int part_index;
161 struct mmc_blk_data *md;
162 struct list_head node;
163};
164
165static DEFINE_MUTEX(open_lock);
166
167module_param(perdev_minors, int, 0444);
168MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device");
169
170static inline int mmc_blk_part_switch(struct mmc_card *card,
171 unsigned int part_type);
172
173static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk)
174{
175 struct mmc_blk_data *md;
176
177 mutex_lock(&open_lock);
178 md = disk->private_data;
179 if (md && md->usage == 0)
180 md = NULL;
181 if (md)
182 md->usage++;
183 mutex_unlock(&open_lock);
184
185 return md;
186}
187
188static inline int mmc_get_devidx(struct gendisk *disk)
189{
190 int devidx = disk->first_minor / perdev_minors;
191 return devidx;
192}
193
194static void mmc_blk_put(struct mmc_blk_data *md)
195{
196 mutex_lock(&open_lock);
197 md->usage--;
198 if (md->usage == 0) {
199 int devidx = mmc_get_devidx(md->disk);
200 blk_put_queue(md->queue.queue);
201 ida_simple_remove(&mmc_blk_ida, devidx);
202 put_disk(md->disk);
203 kfree(md);
204 }
205 mutex_unlock(&open_lock);
206}
207
208static ssize_t power_ro_lock_show(struct device *dev,
209 struct device_attribute *attr, char *buf)
210{
211 int ret;
212 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
213 struct mmc_card *card = md->queue.card;
214 int locked = 0;
215
216 if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN)
217 locked = 2;
218 else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN)
219 locked = 1;
220
221 ret = snprintf(buf, PAGE_SIZE, "%d\n", locked);
222
223 mmc_blk_put(md);
224
225 return ret;
226}
227
228static ssize_t power_ro_lock_store(struct device *dev,
229 struct device_attribute *attr, const char *buf, size_t count)
230{
231 int ret;
232 struct mmc_blk_data *md, *part_md;
233 struct mmc_queue *mq;
234 struct request *req;
235 unsigned long set;
236
237 if (kstrtoul(buf, 0, &set))
238 return -EINVAL;
239
240 if (set != 1)
241 return count;
242
243 md = mmc_blk_get(dev_to_disk(dev));
244 mq = &md->queue;
245
246 /* Dispatch locking to the block layer */
247 req = blk_get_request(mq->queue, REQ_OP_DRV_OUT, __GFP_RECLAIM);
248 if (IS_ERR(req)) {
249 count = PTR_ERR(req);
250 goto out_put;
251 }
252 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_BOOT_WP;
253 blk_execute_rq(mq->queue, NULL, req, 0);
254 ret = req_to_mmc_queue_req(req)->drv_op_result;
255 blk_put_request(req);
256
257 if (!ret) {
258 pr_info("%s: Locking boot partition ro until next power on\n",
259 md->disk->disk_name);
260 set_disk_ro(md->disk, 1);
261
262 list_for_each_entry(part_md, &md->part, part)
263 if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) {
264 pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name);
265 set_disk_ro(part_md->disk, 1);
266 }
267 }
268out_put:
269 mmc_blk_put(md);
270 return count;
271}
272
273static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr,
274 char *buf)
275{
276 int ret;
277 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
278
279 ret = snprintf(buf, PAGE_SIZE, "%d\n",
280 get_disk_ro(dev_to_disk(dev)) ^
281 md->read_only);
282 mmc_blk_put(md);
283 return ret;
284}
285
286static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr,
287 const char *buf, size_t count)
288{
289 int ret;
290 char *end;
291 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
292 unsigned long set = simple_strtoul(buf, &end, 0);
293 if (end == buf) {
294 ret = -EINVAL;
295 goto out;
296 }
297
298 set_disk_ro(dev_to_disk(dev), set || md->read_only);
299 ret = count;
300out:
301 mmc_blk_put(md);
302 return ret;
303}
304
305static int mmc_blk_open(struct block_device *bdev, fmode_t mode)
306{
307 struct mmc_blk_data *md = mmc_blk_get(bdev->bd_disk);
308 int ret = -ENXIO;
309
310 mutex_lock(&block_mutex);
311 if (md) {
312 if (md->usage == 2)
313 check_disk_change(bdev);
314 ret = 0;
315
316 if ((mode & FMODE_WRITE) && md->read_only) {
317 mmc_blk_put(md);
318 ret = -EROFS;
319 }
320 }
321 mutex_unlock(&block_mutex);
322
323 return ret;
324}
325
326static void mmc_blk_release(struct gendisk *disk, fmode_t mode)
327{
328 struct mmc_blk_data *md = disk->private_data;
329
330 mutex_lock(&block_mutex);
331 mmc_blk_put(md);
332 mutex_unlock(&block_mutex);
333}
334
335static int
336mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
337{
338 geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16);
339 geo->heads = 4;
340 geo->sectors = 16;
341 return 0;
342}
343
344struct mmc_blk_ioc_data {
345 struct mmc_ioc_cmd ic;
346 unsigned char *buf;
347 u64 buf_bytes;
348 struct mmc_rpmb_data *rpmb;
349};
350
351static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user(
352 struct mmc_ioc_cmd __user *user)
353{
354 struct mmc_blk_ioc_data *idata;
355 int err;
356
357 idata = kmalloc(sizeof(*idata), GFP_KERNEL);
358 if (!idata) {
359 err = -ENOMEM;
360 goto out;
361 }
362
363 if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) {
364 err = -EFAULT;
365 goto idata_err;
366 }
367
368 idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks;
369 if (idata->buf_bytes > MMC_IOC_MAX_BYTES) {
370 err = -EOVERFLOW;
371 goto idata_err;
372 }
373
374 if (!idata->buf_bytes) {
375 idata->buf = NULL;
376 return idata;
377 }
378
379 idata->buf = memdup_user((void __user *)(unsigned long)
380 idata->ic.data_ptr, idata->buf_bytes);
381 if (IS_ERR(idata->buf)) {
382 err = PTR_ERR(idata->buf);
383 goto idata_err;
384 }
385
386 return idata;
387
388idata_err:
389 kfree(idata);
390out:
391 return ERR_PTR(err);
392}
393
394static int mmc_blk_ioctl_copy_to_user(struct mmc_ioc_cmd __user *ic_ptr,
395 struct mmc_blk_ioc_data *idata)
396{
397 struct mmc_ioc_cmd *ic = &idata->ic;
398
399 if (copy_to_user(&(ic_ptr->response), ic->response,
400 sizeof(ic->response)))
401 return -EFAULT;
402
403 if (!idata->ic.write_flag) {
404 if (copy_to_user((void __user *)(unsigned long)ic->data_ptr,
405 idata->buf, idata->buf_bytes))
406 return -EFAULT;
407 }
408
409 return 0;
410}
411
412static int ioctl_rpmb_card_status_poll(struct mmc_card *card, u32 *status,
413 u32 retries_max)
414{
415 int err;
416 u32 retry_count = 0;
417
418 if (!status || !retries_max)
419 return -EINVAL;
420
421 do {
422 err = __mmc_send_status(card, status, 5);
423 if (err)
424 break;
425
426 if (!R1_STATUS(*status) &&
427 (R1_CURRENT_STATE(*status) != R1_STATE_PRG))
428 break; /* RPMB programming operation complete */
429
430 /*
431 * Rechedule to give the MMC device a chance to continue
432 * processing the previous command without being polled too
433 * frequently.
434 */
435 usleep_range(1000, 5000);
436 } while (++retry_count < retries_max);
437
438 if (retry_count == retries_max)
439 err = -EPERM;
440
441 return err;
442}
443
444static int ioctl_do_sanitize(struct mmc_card *card)
445{
446 int err;
447
448 if (!mmc_can_sanitize(card)) {
449 pr_warn("%s: %s - SANITIZE is not supported\n",
450 mmc_hostname(card->host), __func__);
451 err = -EOPNOTSUPP;
452 goto out;
453 }
454
455 pr_debug("%s: %s - SANITIZE IN PROGRESS...\n",
456 mmc_hostname(card->host), __func__);
457
458 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
459 EXT_CSD_SANITIZE_START, 1,
460 MMC_SANITIZE_REQ_TIMEOUT);
461
462 if (err)
463 pr_err("%s: %s - EXT_CSD_SANITIZE_START failed. err=%d\n",
464 mmc_hostname(card->host), __func__, err);
465
466 pr_debug("%s: %s - SANITIZE COMPLETED\n", mmc_hostname(card->host),
467 __func__);
468out:
469 return err;
470}
471
472static int __mmc_blk_ioctl_cmd(struct mmc_card *card, struct mmc_blk_data *md,
473 struct mmc_blk_ioc_data *idata)
474{
475 struct mmc_command cmd = {};
476 struct mmc_data data = {};
477 struct mmc_request mrq = {};
478 struct scatterlist sg;
479 int err;
480 unsigned int target_part;
481 u32 status = 0;
482
483 if (!card || !md || !idata)
484 return -EINVAL;
485
486 /*
487 * The RPMB accesses comes in from the character device, so we
488 * need to target these explicitly. Else we just target the
489 * partition type for the block device the ioctl() was issued
490 * on.
491 */
492 if (idata->rpmb) {
493 /* Support multiple RPMB partitions */
494 target_part = idata->rpmb->part_index;
495 target_part |= EXT_CSD_PART_CONFIG_ACC_RPMB;
496 } else {
497 target_part = md->part_type;
498 }
499
500 cmd.opcode = idata->ic.opcode;
501 cmd.arg = idata->ic.arg;
502 cmd.flags = idata->ic.flags;
503
504 if (idata->buf_bytes) {
505 data.sg = &sg;
506 data.sg_len = 1;
507 data.blksz = idata->ic.blksz;
508 data.blocks = idata->ic.blocks;
509
510 sg_init_one(data.sg, idata->buf, idata->buf_bytes);
511
512 if (idata->ic.write_flag)
513 data.flags = MMC_DATA_WRITE;
514 else
515 data.flags = MMC_DATA_READ;
516
517 /* data.flags must already be set before doing this. */
518 mmc_set_data_timeout(&data, card);
519
520 /* Allow overriding the timeout_ns for empirical tuning. */
521 if (idata->ic.data_timeout_ns)
522 data.timeout_ns = idata->ic.data_timeout_ns;
523
524 if ((cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) {
525 /*
526 * Pretend this is a data transfer and rely on the
527 * host driver to compute timeout. When all host
528 * drivers support cmd.cmd_timeout for R1B, this
529 * can be changed to:
530 *
531 * mrq.data = NULL;
532 * cmd.cmd_timeout = idata->ic.cmd_timeout_ms;
533 */
534 data.timeout_ns = idata->ic.cmd_timeout_ms * 1000000;
535 }
536
537 mrq.data = &data;
538 }
539
540 mrq.cmd = &cmd;
541
542 err = mmc_blk_part_switch(card, target_part);
543 if (err)
544 return err;
545
546 if (idata->ic.is_acmd) {
547 err = mmc_app_cmd(card->host, card);
548 if (err)
549 return err;
550 }
551
552 if (idata->rpmb) {
553 err = mmc_set_blockcount(card, data.blocks,
554 idata->ic.write_flag & (1 << 31));
555 if (err)
556 return err;
557 }
558
559 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_SANITIZE_START) &&
560 (cmd.opcode == MMC_SWITCH)) {
561 err = ioctl_do_sanitize(card);
562
563 if (err)
564 pr_err("%s: ioctl_do_sanitize() failed. err = %d",
565 __func__, err);
566
567 return err;
568 }
569
570 mmc_wait_for_req(card->host, &mrq);
571
572 if (cmd.error) {
573 dev_err(mmc_dev(card->host), "%s: cmd error %d\n",
574 __func__, cmd.error);
575 return cmd.error;
576 }
577 if (data.error) {
578 dev_err(mmc_dev(card->host), "%s: data error %d\n",
579 __func__, data.error);
580 return data.error;
581 }
582
583 /*
584 * Make sure the cache of the PARTITION_CONFIG register and
585 * PARTITION_ACCESS bits is updated in case the ioctl ext_csd write
586 * changed it successfully.
587 */
588 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_PART_CONFIG) &&
589 (cmd.opcode == MMC_SWITCH)) {
590 struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
591 u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg);
592
593 /*
594 * Update cache so the next mmc_blk_part_switch call operates
595 * on up-to-date data.
596 */
597 card->ext_csd.part_config = value;
598 main_md->part_curr = value & EXT_CSD_PART_CONFIG_ACC_MASK;
599 }
600
601 /*
602 * According to the SD specs, some commands require a delay after
603 * issuing the command.
604 */
605 if (idata->ic.postsleep_min_us)
606 usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us);
607
608 memcpy(&(idata->ic.response), cmd.resp, sizeof(cmd.resp));
609
610 if (idata->rpmb) {
611 /*
612 * Ensure RPMB command has completed by polling CMD13
613 * "Send Status".
614 */
615 err = ioctl_rpmb_card_status_poll(card, &status, 5);
616 if (err)
617 dev_err(mmc_dev(card->host),
618 "%s: Card Status=0x%08X, error %d\n",
619 __func__, status, err);
620 }
621
622 return err;
623}
624
625static int mmc_blk_ioctl_cmd(struct mmc_blk_data *md,
626 struct mmc_ioc_cmd __user *ic_ptr,
627 struct mmc_rpmb_data *rpmb)
628{
629 struct mmc_blk_ioc_data *idata;
630 struct mmc_blk_ioc_data *idatas[1];
631 struct mmc_queue *mq;
632 struct mmc_card *card;
633 int err = 0, ioc_err = 0;
634 struct request *req;
635
636 idata = mmc_blk_ioctl_copy_from_user(ic_ptr);
637 if (IS_ERR(idata))
638 return PTR_ERR(idata);
639 /* This will be NULL on non-RPMB ioctl():s */
640 idata->rpmb = rpmb;
641
642 card = md->queue.card;
643 if (IS_ERR(card)) {
644 err = PTR_ERR(card);
645 goto cmd_done;
646 }
647
648 /*
649 * Dispatch the ioctl() into the block request queue.
650 */
651 mq = &md->queue;
652 req = blk_get_request(mq->queue,
653 idata->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN,
654 __GFP_RECLAIM);
655 if (IS_ERR(req)) {
656 err = PTR_ERR(req);
657 goto cmd_done;
658 }
659 idatas[0] = idata;
660 req_to_mmc_queue_req(req)->drv_op =
661 rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
662 req_to_mmc_queue_req(req)->drv_op_data = idatas;
663 req_to_mmc_queue_req(req)->ioc_count = 1;
664 blk_execute_rq(mq->queue, NULL, req, 0);
665 ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
666 err = mmc_blk_ioctl_copy_to_user(ic_ptr, idata);
667 blk_put_request(req);
668
669cmd_done:
670 kfree(idata->buf);
671 kfree(idata);
672 return ioc_err ? ioc_err : err;
673}
674
675static int mmc_blk_ioctl_multi_cmd(struct mmc_blk_data *md,
676 struct mmc_ioc_multi_cmd __user *user,
677 struct mmc_rpmb_data *rpmb)
678{
679 struct mmc_blk_ioc_data **idata = NULL;
680 struct mmc_ioc_cmd __user *cmds = user->cmds;
681 struct mmc_card *card;
682 struct mmc_queue *mq;
683 int i, err = 0, ioc_err = 0;
684 __u64 num_of_cmds;
685 struct request *req;
686
687 if (copy_from_user(&num_of_cmds, &user->num_of_cmds,
688 sizeof(num_of_cmds)))
689 return -EFAULT;
690
691 if (!num_of_cmds)
692 return 0;
693
694 if (num_of_cmds > MMC_IOC_MAX_CMDS)
695 return -EINVAL;
696
697 idata = kcalloc(num_of_cmds, sizeof(*idata), GFP_KERNEL);
698 if (!idata)
699 return -ENOMEM;
700
701 for (i = 0; i < num_of_cmds; i++) {
702 idata[i] = mmc_blk_ioctl_copy_from_user(&cmds[i]);
703 if (IS_ERR(idata[i])) {
704 err = PTR_ERR(idata[i]);
705 num_of_cmds = i;
706 goto cmd_err;
707 }
708 /* This will be NULL on non-RPMB ioctl():s */
709 idata[i]->rpmb = rpmb;
710 }
711
712 card = md->queue.card;
713 if (IS_ERR(card)) {
714 err = PTR_ERR(card);
715 goto cmd_err;
716 }
717
718
719 /*
720 * Dispatch the ioctl()s into the block request queue.
721 */
722 mq = &md->queue;
723 req = blk_get_request(mq->queue,
724 idata[0]->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN,
725 __GFP_RECLAIM);
726 if (IS_ERR(req)) {
727 err = PTR_ERR(req);
728 goto cmd_err;
729 }
730 req_to_mmc_queue_req(req)->drv_op =
731 rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
732 req_to_mmc_queue_req(req)->drv_op_data = idata;
733 req_to_mmc_queue_req(req)->ioc_count = num_of_cmds;
734 blk_execute_rq(mq->queue, NULL, req, 0);
735 ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
736
737 /* copy to user if data and response */
738 for (i = 0; i < num_of_cmds && !err; i++)
739 err = mmc_blk_ioctl_copy_to_user(&cmds[i], idata[i]);
740
741 blk_put_request(req);
742
743cmd_err:
744 for (i = 0; i < num_of_cmds; i++) {
745 kfree(idata[i]->buf);
746 kfree(idata[i]);
747 }
748 kfree(idata);
749 return ioc_err ? ioc_err : err;
750}
751
752static int mmc_blk_check_blkdev(struct block_device *bdev)
753{
754 /*
755 * The caller must have CAP_SYS_RAWIO, and must be calling this on the
756 * whole block device, not on a partition. This prevents overspray
757 * between sibling partitions.
758 */
759 if ((!capable(CAP_SYS_RAWIO)) || (bdev != bdev->bd_contains))
760 return -EPERM;
761 return 0;
762}
763
764static int mmc_blk_ioctl(struct block_device *bdev, fmode_t mode,
765 unsigned int cmd, unsigned long arg)
766{
767 struct mmc_blk_data *md;
768 int ret;
769
770 switch (cmd) {
771 case MMC_IOC_CMD:
772 ret = mmc_blk_check_blkdev(bdev);
773 if (ret)
774 return ret;
775 md = mmc_blk_get(bdev->bd_disk);
776 if (!md)
777 return -EINVAL;
778 ret = mmc_blk_ioctl_cmd(md,
779 (struct mmc_ioc_cmd __user *)arg,
780 NULL);
781 mmc_blk_put(md);
782 return ret;
783 case MMC_IOC_MULTI_CMD:
784 ret = mmc_blk_check_blkdev(bdev);
785 if (ret)
786 return ret;
787 md = mmc_blk_get(bdev->bd_disk);
788 if (!md)
789 return -EINVAL;
790 ret = mmc_blk_ioctl_multi_cmd(md,
791 (struct mmc_ioc_multi_cmd __user *)arg,
792 NULL);
793 mmc_blk_put(md);
794 return ret;
795 default:
796 return -EINVAL;
797 }
798}
799
800#ifdef CONFIG_COMPAT
801static int mmc_blk_compat_ioctl(struct block_device *bdev, fmode_t mode,
802 unsigned int cmd, unsigned long arg)
803{
804 return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg));
805}
806#endif
807
808static const struct block_device_operations mmc_bdops = {
809 .open = mmc_blk_open,
810 .release = mmc_blk_release,
811 .getgeo = mmc_blk_getgeo,
812 .owner = THIS_MODULE,
813 .ioctl = mmc_blk_ioctl,
814#ifdef CONFIG_COMPAT
815 .compat_ioctl = mmc_blk_compat_ioctl,
816#endif
817};
818
819static int mmc_blk_part_switch_pre(struct mmc_card *card,
820 unsigned int part_type)
821{
822 int ret = 0;
823
824 if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) {
825 if (card->ext_csd.cmdq_en) {
826 ret = mmc_cmdq_disable(card);
827 if (ret)
828 return ret;
829 }
830 mmc_retune_pause(card->host);
831 }
832
833 return ret;
834}
835
836static int mmc_blk_part_switch_post(struct mmc_card *card,
837 unsigned int part_type)
838{
839 int ret = 0;
840
841 if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) {
842 mmc_retune_unpause(card->host);
843 if (card->reenable_cmdq && !card->ext_csd.cmdq_en)
844 ret = mmc_cmdq_enable(card);
845 }
846
847 return ret;
848}
849
850static inline int mmc_blk_part_switch(struct mmc_card *card,
851 unsigned int part_type)
852{
853 int ret = 0;
854 struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
855
856 if (main_md->part_curr == part_type)
857 return 0;
858
859 if (mmc_card_mmc(card)) {
860 u8 part_config = card->ext_csd.part_config;
861
862 ret = mmc_blk_part_switch_pre(card, part_type);
863 if (ret)
864 return ret;
865
866 part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
867 part_config |= part_type;
868
869 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
870 EXT_CSD_PART_CONFIG, part_config,
871 card->ext_csd.part_time);
872 if (ret) {
873 mmc_blk_part_switch_post(card, part_type);
874 return ret;
875 }
876
877 card->ext_csd.part_config = part_config;
878
879 ret = mmc_blk_part_switch_post(card, main_md->part_curr);
880 }
881
882 main_md->part_curr = part_type;
883 return ret;
884}
885
886static int mmc_sd_num_wr_blocks(struct mmc_card *card, u32 *written_blocks)
887{
888 int err;
889 u32 result;
890 __be32 *blocks;
891
892 struct mmc_request mrq = {};
893 struct mmc_command cmd = {};
894 struct mmc_data data = {};
895
896 struct scatterlist sg;
897
898 cmd.opcode = MMC_APP_CMD;
899 cmd.arg = card->rca << 16;
900 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
901
902 err = mmc_wait_for_cmd(card->host, &cmd, 0);
903 if (err)
904 return err;
905 if (!mmc_host_is_spi(card->host) && !(cmd.resp[0] & R1_APP_CMD))
906 return -EIO;
907
908 memset(&cmd, 0, sizeof(struct mmc_command));
909
910 cmd.opcode = SD_APP_SEND_NUM_WR_BLKS;
911 cmd.arg = 0;
912 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
913
914 data.blksz = 4;
915 data.blocks = 1;
916 data.flags = MMC_DATA_READ;
917 data.sg = &sg;
918 data.sg_len = 1;
919 mmc_set_data_timeout(&data, card);
920
921 mrq.cmd = &cmd;
922 mrq.data = &data;
923
924 blocks = kmalloc(4, GFP_KERNEL);
925 if (!blocks)
926 return -ENOMEM;
927
928 sg_init_one(&sg, blocks, 4);
929
930 mmc_wait_for_req(card->host, &mrq);
931
932 result = ntohl(*blocks);
933 kfree(blocks);
934
935 if (cmd.error || data.error)
936 return -EIO;
937
938 *written_blocks = result;
939
940 return 0;
941}
942
943static unsigned int mmc_blk_clock_khz(struct mmc_host *host)
944{
945 if (host->actual_clock)
946 return host->actual_clock / 1000;
947
948 /* Clock may be subject to a divisor, fudge it by a factor of 2. */
949 if (host->ios.clock)
950 return host->ios.clock / 2000;
951
952 /* How can there be no clock */
953 WARN_ON_ONCE(1);
954 return 100; /* 100 kHz is minimum possible value */
955}
956
957static unsigned int mmc_blk_data_timeout_ms(struct mmc_host *host,
958 struct mmc_data *data)
959{
960 unsigned int ms = DIV_ROUND_UP(data->timeout_ns, 1000000);
961 unsigned int khz;
962
963 if (data->timeout_clks) {
964 khz = mmc_blk_clock_khz(host);
965 ms += DIV_ROUND_UP(data->timeout_clks, khz);
966 }
967
968 return ms;
969}
970
971static inline bool mmc_blk_in_tran_state(u32 status)
972{
973 /*
974 * Some cards mishandle the status bits, so make sure to check both the
975 * busy indication and the card state.
976 */
977 return status & R1_READY_FOR_DATA &&
978 (R1_CURRENT_STATE(status) == R1_STATE_TRAN);
979}
980
981static int card_busy_detect(struct mmc_card *card, unsigned int timeout_ms,
982 struct request *req, u32 *resp_errs)
983{
984 unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms);
985 int err = 0;
986 u32 status;
987
988 do {
989 bool done = time_after(jiffies, timeout);
990
991 err = __mmc_send_status(card, &status, 5);
992 if (err) {
993 pr_err("%s: error %d requesting status\n",
994 req->rq_disk->disk_name, err);
995 return err;
996 }
997
998 /* Accumulate any response error bits seen */
999 if (resp_errs)
1000 *resp_errs |= status;
1001
1002 /*
1003 * Timeout if the device never becomes ready for data and never
1004 * leaves the program state.
1005 */
1006 if (done) {
1007 pr_err("%s: Card stuck in wrong state! %s %s status: %#x\n",
1008 mmc_hostname(card->host),
1009 req->rq_disk->disk_name, __func__, status);
1010 return -ETIMEDOUT;
1011 }
1012
1013 /*
1014 * Some cards mishandle the status bits,
1015 * so make sure to check both the busy
1016 * indication and the card state.
1017 */
1018 } while (!mmc_blk_in_tran_state(status));
1019
1020 return err;
1021}
1022
1023static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host,
1024 int type)
1025{
1026 int err;
1027
1028 if (md->reset_done & type)
1029 return -EEXIST;
1030
1031 md->reset_done |= type;
1032 err = mmc_hw_reset(host);
1033 /* Ensure we switch back to the correct partition */
1034 if (err != -EOPNOTSUPP) {
1035 struct mmc_blk_data *main_md =
1036 dev_get_drvdata(&host->card->dev);
1037 int part_err;
1038
1039 main_md->part_curr = main_md->part_type;
1040 part_err = mmc_blk_part_switch(host->card, md->part_type);
1041 if (part_err) {
1042 /*
1043 * We have failed to get back into the correct
1044 * partition, so we need to abort the whole request.
1045 */
1046 return -ENODEV;
1047 }
1048 }
1049 return err;
1050}
1051
1052static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type)
1053{
1054 md->reset_done &= ~type;
1055}
1056
1057/*
1058 * The non-block commands come back from the block layer after it queued it and
1059 * processed it with all other requests and then they get issued in this
1060 * function.
1061 */
1062static void mmc_blk_issue_drv_op(struct mmc_queue *mq, struct request *req)
1063{
1064 struct mmc_queue_req *mq_rq;
1065 struct mmc_card *card = mq->card;
1066 struct mmc_blk_data *md = mq->blkdata;
1067 struct mmc_blk_ioc_data **idata;
1068 bool rpmb_ioctl;
1069 u8 **ext_csd;
1070 u32 status;
1071 int ret;
1072 int i;
1073
1074 mq_rq = req_to_mmc_queue_req(req);
1075 rpmb_ioctl = (mq_rq->drv_op == MMC_DRV_OP_IOCTL_RPMB);
1076
1077 switch (mq_rq->drv_op) {
1078 case MMC_DRV_OP_IOCTL:
1079 case MMC_DRV_OP_IOCTL_RPMB:
1080 idata = mq_rq->drv_op_data;
1081 for (i = 0, ret = 0; i < mq_rq->ioc_count; i++) {
1082 ret = __mmc_blk_ioctl_cmd(card, md, idata[i]);
1083 if (ret)
1084 break;
1085 }
1086 /* Always switch back to main area after RPMB access */
1087 if (rpmb_ioctl)
1088 mmc_blk_part_switch(card, 0);
1089 break;
1090 case MMC_DRV_OP_BOOT_WP:
1091 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP,
1092 card->ext_csd.boot_ro_lock |
1093 EXT_CSD_BOOT_WP_B_PWR_WP_EN,
1094 card->ext_csd.part_time);
1095 if (ret)
1096 pr_err("%s: Locking boot partition ro until next power on failed: %d\n",
1097 md->disk->disk_name, ret);
1098 else
1099 card->ext_csd.boot_ro_lock |=
1100 EXT_CSD_BOOT_WP_B_PWR_WP_EN;
1101 break;
1102 case MMC_DRV_OP_GET_CARD_STATUS:
1103 ret = mmc_send_status(card, &status);
1104 if (!ret)
1105 ret = status;
1106 break;
1107 case MMC_DRV_OP_GET_EXT_CSD:
1108 ext_csd = mq_rq->drv_op_data;
1109 ret = mmc_get_ext_csd(card, ext_csd);
1110 break;
1111 default:
1112 pr_err("%s: unknown driver specific operation\n",
1113 md->disk->disk_name);
1114 ret = -EINVAL;
1115 break;
1116 }
1117 mq_rq->drv_op_result = ret;
1118 blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1119}
1120
1121static void mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req)
1122{
1123 struct mmc_blk_data *md = mq->blkdata;
1124 struct mmc_card *card = md->queue.card;
1125 unsigned int from, nr, arg;
1126 int err = 0, type = MMC_BLK_DISCARD;
1127 blk_status_t status = BLK_STS_OK;
1128
1129 if (!mmc_can_erase(card)) {
1130 status = BLK_STS_NOTSUPP;
1131 goto fail;
1132 }
1133
1134 from = blk_rq_pos(req);
1135 nr = blk_rq_sectors(req);
1136
1137 if (mmc_can_discard(card))
1138 arg = MMC_DISCARD_ARG;
1139 else if (mmc_can_trim(card))
1140 arg = MMC_TRIM_ARG;
1141 else
1142 arg = MMC_ERASE_ARG;
1143 do {
1144 err = 0;
1145 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1146 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1147 INAND_CMD38_ARG_EXT_CSD,
1148 arg == MMC_TRIM_ARG ?
1149 INAND_CMD38_ARG_TRIM :
1150 INAND_CMD38_ARG_ERASE,
1151 0);
1152 }
1153 if (!err)
1154 err = mmc_erase(card, from, nr, arg);
1155 } while (err == -EIO && !mmc_blk_reset(md, card->host, type));
1156 if (err)
1157 status = BLK_STS_IOERR;
1158 else
1159 mmc_blk_reset_success(md, type);
1160fail:
1161 blk_mq_end_request(req, status);
1162}
1163
1164static void mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq,
1165 struct request *req)
1166{
1167 struct mmc_blk_data *md = mq->blkdata;
1168 struct mmc_card *card = md->queue.card;
1169 unsigned int from, nr, arg;
1170 int err = 0, type = MMC_BLK_SECDISCARD;
1171 blk_status_t status = BLK_STS_OK;
1172
1173 if (!(mmc_can_secure_erase_trim(card))) {
1174 status = BLK_STS_NOTSUPP;
1175 goto out;
1176 }
1177
1178 from = blk_rq_pos(req);
1179 nr = blk_rq_sectors(req);
1180
1181 if (mmc_can_trim(card) && !mmc_erase_group_aligned(card, from, nr))
1182 arg = MMC_SECURE_TRIM1_ARG;
1183 else
1184 arg = MMC_SECURE_ERASE_ARG;
1185
1186retry:
1187 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1188 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1189 INAND_CMD38_ARG_EXT_CSD,
1190 arg == MMC_SECURE_TRIM1_ARG ?
1191 INAND_CMD38_ARG_SECTRIM1 :
1192 INAND_CMD38_ARG_SECERASE,
1193 0);
1194 if (err)
1195 goto out_retry;
1196 }
1197
1198 err = mmc_erase(card, from, nr, arg);
1199 if (err == -EIO)
1200 goto out_retry;
1201 if (err) {
1202 status = BLK_STS_IOERR;
1203 goto out;
1204 }
1205
1206 if (arg == MMC_SECURE_TRIM1_ARG) {
1207 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1208 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1209 INAND_CMD38_ARG_EXT_CSD,
1210 INAND_CMD38_ARG_SECTRIM2,
1211 0);
1212 if (err)
1213 goto out_retry;
1214 }
1215
1216 err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG);
1217 if (err == -EIO)
1218 goto out_retry;
1219 if (err) {
1220 status = BLK_STS_IOERR;
1221 goto out;
1222 }
1223 }
1224
1225out_retry:
1226 if (err && !mmc_blk_reset(md, card->host, type))
1227 goto retry;
1228 if (!err)
1229 mmc_blk_reset_success(md, type);
1230out:
1231 blk_mq_end_request(req, status);
1232}
1233
1234static void mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req)
1235{
1236 struct mmc_blk_data *md = mq->blkdata;
1237 struct mmc_card *card = md->queue.card;
1238 int ret = 0;
1239
1240 ret = mmc_flush_cache(card);
1241 blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1242}
1243
1244/*
1245 * Reformat current write as a reliable write, supporting
1246 * both legacy and the enhanced reliable write MMC cards.
1247 * In each transfer we'll handle only as much as a single
1248 * reliable write can handle, thus finish the request in
1249 * partial completions.
1250 */
1251static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq,
1252 struct mmc_card *card,
1253 struct request *req)
1254{
1255 if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) {
1256 /* Legacy mode imposes restrictions on transfers. */
1257 if (!IS_ALIGNED(blk_rq_pos(req), card->ext_csd.rel_sectors))
1258 brq->data.blocks = 1;
1259
1260 if (brq->data.blocks > card->ext_csd.rel_sectors)
1261 brq->data.blocks = card->ext_csd.rel_sectors;
1262 else if (brq->data.blocks < card->ext_csd.rel_sectors)
1263 brq->data.blocks = 1;
1264 }
1265}
1266
1267#define CMD_ERRORS_EXCL_OOR \
1268 (R1_ADDRESS_ERROR | /* Misaligned address */ \
1269 R1_BLOCK_LEN_ERROR | /* Transferred block length incorrect */\
1270 R1_WP_VIOLATION | /* Tried to write to protected block */ \
1271 R1_CARD_ECC_FAILED | /* Card ECC failed */ \
1272 R1_CC_ERROR | /* Card controller error */ \
1273 R1_ERROR) /* General/unknown error */
1274
1275#define CMD_ERRORS \
1276 (CMD_ERRORS_EXCL_OOR | \
1277 R1_OUT_OF_RANGE) /* Command argument out of range */ \
1278
1279static void mmc_blk_eval_resp_error(struct mmc_blk_request *brq)
1280{
1281 u32 val;
1282
1283 /*
1284 * Per the SD specification(physical layer version 4.10)[1],
1285 * section 4.3.3, it explicitly states that "When the last
1286 * block of user area is read using CMD18, the host should
1287 * ignore OUT_OF_RANGE error that may occur even the sequence
1288 * is correct". And JESD84-B51 for eMMC also has a similar
1289 * statement on section 6.8.3.
1290 *
1291 * Multiple block read/write could be done by either predefined
1292 * method, namely CMD23, or open-ending mode. For open-ending mode,
1293 * we should ignore the OUT_OF_RANGE error as it's normal behaviour.
1294 *
1295 * However the spec[1] doesn't tell us whether we should also
1296 * ignore that for predefined method. But per the spec[1], section
1297 * 4.15 Set Block Count Command, it says"If illegal block count
1298 * is set, out of range error will be indicated during read/write
1299 * operation (For example, data transfer is stopped at user area
1300 * boundary)." In another word, we could expect a out of range error
1301 * in the response for the following CMD18/25. And if argument of
1302 * CMD23 + the argument of CMD18/25 exceed the max number of blocks,
1303 * we could also expect to get a -ETIMEDOUT or any error number from
1304 * the host drivers due to missing data response(for write)/data(for
1305 * read), as the cards will stop the data transfer by itself per the
1306 * spec. So we only need to check R1_OUT_OF_RANGE for open-ending mode.
1307 */
1308
1309 if (!brq->stop.error) {
1310 bool oor_with_open_end;
1311 /* If there is no error yet, check R1 response */
1312
1313 val = brq->stop.resp[0] & CMD_ERRORS;
1314 oor_with_open_end = val & R1_OUT_OF_RANGE && !brq->mrq.sbc;
1315
1316 if (val && !oor_with_open_end)
1317 brq->stop.error = -EIO;
1318 }
1319}
1320
1321static void mmc_blk_data_prep(struct mmc_queue *mq, struct mmc_queue_req *mqrq,
1322 int disable_multi, bool *do_rel_wr_p,
1323 bool *do_data_tag_p)
1324{
1325 struct mmc_blk_data *md = mq->blkdata;
1326 struct mmc_card *card = md->queue.card;
1327 struct mmc_blk_request *brq = &mqrq->brq;
1328 struct request *req = mmc_queue_req_to_req(mqrq);
1329 bool do_rel_wr, do_data_tag;
1330
1331 /*
1332 * Reliable writes are used to implement Forced Unit Access and
1333 * are supported only on MMCs.
1334 */
1335 do_rel_wr = (req->cmd_flags & REQ_FUA) &&
1336 rq_data_dir(req) == WRITE &&
1337 (md->flags & MMC_BLK_REL_WR);
1338
1339 memset(brq, 0, sizeof(struct mmc_blk_request));
1340
1341 brq->mrq.data = &brq->data;
1342 brq->mrq.tag = req->tag;
1343
1344 brq->stop.opcode = MMC_STOP_TRANSMISSION;
1345 brq->stop.arg = 0;
1346
1347 if (rq_data_dir(req) == READ) {
1348 brq->data.flags = MMC_DATA_READ;
1349 brq->stop.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1350 } else {
1351 brq->data.flags = MMC_DATA_WRITE;
1352 brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1353 }
1354
1355 brq->data.blksz = 512;
1356 brq->data.blocks = blk_rq_sectors(req);
1357 brq->data.blk_addr = blk_rq_pos(req);
1358
1359 /*
1360 * The command queue supports 2 priorities: "high" (1) and "simple" (0).
1361 * The eMMC will give "high" priority tasks priority over "simple"
1362 * priority tasks. Here we always set "simple" priority by not setting
1363 * MMC_DATA_PRIO.
1364 */
1365
1366 /*
1367 * The block layer doesn't support all sector count
1368 * restrictions, so we need to be prepared for too big
1369 * requests.
1370 */
1371 if (brq->data.blocks > card->host->max_blk_count)
1372 brq->data.blocks = card->host->max_blk_count;
1373
1374 if (brq->data.blocks > 1) {
1375 /*
1376 * After a read error, we redo the request one sector
1377 * at a time in order to accurately determine which
1378 * sectors can be read successfully.
1379 */
1380 if (disable_multi)
1381 brq->data.blocks = 1;
1382
1383 /*
1384 * Some controllers have HW issues while operating
1385 * in multiple I/O mode
1386 */
1387 if (card->host->ops->multi_io_quirk)
1388 brq->data.blocks = card->host->ops->multi_io_quirk(card,
1389 (rq_data_dir(req) == READ) ?
1390 MMC_DATA_READ : MMC_DATA_WRITE,
1391 brq->data.blocks);
1392 }
1393
1394 if (do_rel_wr) {
1395 mmc_apply_rel_rw(brq, card, req);
1396 brq->data.flags |= MMC_DATA_REL_WR;
1397 }
1398
1399 /*
1400 * Data tag is used only during writing meta data to speed
1401 * up write and any subsequent read of this meta data
1402 */
1403 do_data_tag = card->ext_csd.data_tag_unit_size &&
1404 (req->cmd_flags & REQ_META) &&
1405 (rq_data_dir(req) == WRITE) &&
1406 ((brq->data.blocks * brq->data.blksz) >=
1407 card->ext_csd.data_tag_unit_size);
1408
1409 if (do_data_tag)
1410 brq->data.flags |= MMC_DATA_DAT_TAG;
1411
1412 mmc_set_data_timeout(&brq->data, card);
1413
1414 brq->data.sg = mqrq->sg;
1415 brq->data.sg_len = mmc_queue_map_sg(mq, mqrq);
1416
1417 /*
1418 * Adjust the sg list so it is the same size as the
1419 * request.
1420 */
1421 if (brq->data.blocks != blk_rq_sectors(req)) {
1422 int i, data_size = brq->data.blocks << 9;
1423 struct scatterlist *sg;
1424
1425 for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) {
1426 data_size -= sg->length;
1427 if (data_size <= 0) {
1428 sg->length += data_size;
1429 i++;
1430 break;
1431 }
1432 }
1433 brq->data.sg_len = i;
1434 }
1435
1436 if (do_rel_wr_p)
1437 *do_rel_wr_p = do_rel_wr;
1438
1439 if (do_data_tag_p)
1440 *do_data_tag_p = do_data_tag;
1441}
1442
1443#define MMC_CQE_RETRIES 2
1444
1445static void mmc_blk_cqe_complete_rq(struct mmc_queue *mq, struct request *req)
1446{
1447 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1448 struct mmc_request *mrq = &mqrq->brq.mrq;
1449 struct request_queue *q = req->q;
1450 struct mmc_host *host = mq->card->host;
1451 unsigned long flags;
1452 bool put_card;
1453 int err;
1454
1455 mmc_cqe_post_req(host, mrq);
1456
1457 if (mrq->cmd && mrq->cmd->error)
1458 err = mrq->cmd->error;
1459 else if (mrq->data && mrq->data->error)
1460 err = mrq->data->error;
1461 else
1462 err = 0;
1463
1464 if (err) {
1465 if (mqrq->retries++ < MMC_CQE_RETRIES)
1466 blk_mq_requeue_request(req, true);
1467 else
1468 blk_mq_end_request(req, BLK_STS_IOERR);
1469 } else if (mrq->data) {
1470 if (blk_update_request(req, BLK_STS_OK, mrq->data->bytes_xfered))
1471 blk_mq_requeue_request(req, true);
1472 else
1473 __blk_mq_end_request(req, BLK_STS_OK);
1474 } else {
1475 blk_mq_end_request(req, BLK_STS_OK);
1476 }
1477
1478 spin_lock_irqsave(q->queue_lock, flags);
1479
1480 mq->in_flight[mmc_issue_type(mq, req)] -= 1;
1481
1482 put_card = (mmc_tot_in_flight(mq) == 0);
1483
1484 mmc_cqe_check_busy(mq);
1485
1486 spin_unlock_irqrestore(q->queue_lock, flags);
1487
1488 if (!mq->cqe_busy)
1489 blk_mq_run_hw_queues(q, true);
1490
1491 if (put_card)
1492 mmc_put_card(mq->card, &mq->ctx);
1493}
1494
1495void mmc_blk_cqe_recovery(struct mmc_queue *mq)
1496{
1497 struct mmc_card *card = mq->card;
1498 struct mmc_host *host = card->host;
1499 int err;
1500
1501 pr_debug("%s: CQE recovery start\n", mmc_hostname(host));
1502
1503 err = mmc_cqe_recovery(host);
1504 if (err)
1505 mmc_blk_reset(mq->blkdata, host, MMC_BLK_CQE_RECOVERY);
1506 else
1507 mmc_blk_reset_success(mq->blkdata, MMC_BLK_CQE_RECOVERY);
1508
1509 pr_debug("%s: CQE recovery done\n", mmc_hostname(host));
1510}
1511
1512static void mmc_blk_cqe_req_done(struct mmc_request *mrq)
1513{
1514 struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
1515 brq.mrq);
1516 struct request *req = mmc_queue_req_to_req(mqrq);
1517 struct request_queue *q = req->q;
1518 struct mmc_queue *mq = q->queuedata;
1519
1520 /*
1521 * Block layer timeouts race with completions which means the normal
1522 * completion path cannot be used during recovery.
1523 */
1524 if (mq->in_recovery)
1525 mmc_blk_cqe_complete_rq(mq, req);
1526 else
1527 blk_mq_complete_request(req);
1528}
1529
1530static int mmc_blk_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
1531{
1532 mrq->done = mmc_blk_cqe_req_done;
1533 mrq->recovery_notifier = mmc_cqe_recovery_notifier;
1534
1535 return mmc_cqe_start_req(host, mrq);
1536}
1537
1538static struct mmc_request *mmc_blk_cqe_prep_dcmd(struct mmc_queue_req *mqrq,
1539 struct request *req)
1540{
1541 struct mmc_blk_request *brq = &mqrq->brq;
1542
1543 memset(brq, 0, sizeof(*brq));
1544
1545 brq->mrq.cmd = &brq->cmd;
1546 brq->mrq.tag = req->tag;
1547
1548 return &brq->mrq;
1549}
1550
1551static int mmc_blk_cqe_issue_flush(struct mmc_queue *mq, struct request *req)
1552{
1553 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1554 struct mmc_request *mrq = mmc_blk_cqe_prep_dcmd(mqrq, req);
1555
1556 mrq->cmd->opcode = MMC_SWITCH;
1557 mrq->cmd->arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) |
1558 (EXT_CSD_FLUSH_CACHE << 16) |
1559 (1 << 8) |
1560 EXT_CSD_CMD_SET_NORMAL;
1561 mrq->cmd->flags = MMC_CMD_AC | MMC_RSP_R1B;
1562
1563 return mmc_blk_cqe_start_req(mq->card->host, mrq);
1564}
1565
1566static int mmc_blk_cqe_issue_rw_rq(struct mmc_queue *mq, struct request *req)
1567{
1568 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1569
1570 mmc_blk_data_prep(mq, mqrq, 0, NULL, NULL);
1571
1572 return mmc_blk_cqe_start_req(mq->card->host, &mqrq->brq.mrq);
1573}
1574
1575static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
1576 struct mmc_card *card,
1577 int disable_multi,
1578 struct mmc_queue *mq)
1579{
1580 u32 readcmd, writecmd;
1581 struct mmc_blk_request *brq = &mqrq->brq;
1582 struct request *req = mmc_queue_req_to_req(mqrq);
1583 struct mmc_blk_data *md = mq->blkdata;
1584 bool do_rel_wr, do_data_tag;
1585
1586 mmc_blk_data_prep(mq, mqrq, disable_multi, &do_rel_wr, &do_data_tag);
1587
1588 brq->mrq.cmd = &brq->cmd;
1589
1590 brq->cmd.arg = blk_rq_pos(req);
1591 if (!mmc_card_blockaddr(card))
1592 brq->cmd.arg <<= 9;
1593 brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
1594
1595 if (brq->data.blocks > 1 || do_rel_wr) {
1596 /* SPI multiblock writes terminate using a special
1597 * token, not a STOP_TRANSMISSION request.
1598 */
1599 if (!mmc_host_is_spi(card->host) ||
1600 rq_data_dir(req) == READ)
1601 brq->mrq.stop = &brq->stop;
1602 readcmd = MMC_READ_MULTIPLE_BLOCK;
1603 writecmd = MMC_WRITE_MULTIPLE_BLOCK;
1604 } else {
1605 brq->mrq.stop = NULL;
1606 readcmd = MMC_READ_SINGLE_BLOCK;
1607 writecmd = MMC_WRITE_BLOCK;
1608 }
1609 brq->cmd.opcode = rq_data_dir(req) == READ ? readcmd : writecmd;
1610
1611 /*
1612 * Pre-defined multi-block transfers are preferable to
1613 * open ended-ones (and necessary for reliable writes).
1614 * However, it is not sufficient to just send CMD23,
1615 * and avoid the final CMD12, as on an error condition
1616 * CMD12 (stop) needs to be sent anyway. This, coupled
1617 * with Auto-CMD23 enhancements provided by some
1618 * hosts, means that the complexity of dealing
1619 * with this is best left to the host. If CMD23 is
1620 * supported by card and host, we'll fill sbc in and let
1621 * the host deal with handling it correctly. This means
1622 * that for hosts that don't expose MMC_CAP_CMD23, no
1623 * change of behavior will be observed.
1624 *
1625 * N.B: Some MMC cards experience perf degradation.
1626 * We'll avoid using CMD23-bounded multiblock writes for
1627 * these, while retaining features like reliable writes.
1628 */
1629 if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) &&
1630 (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) ||
1631 do_data_tag)) {
1632 brq->sbc.opcode = MMC_SET_BLOCK_COUNT;
1633 brq->sbc.arg = brq->data.blocks |
1634 (do_rel_wr ? (1 << 31) : 0) |
1635 (do_data_tag ? (1 << 29) : 0);
1636 brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
1637 brq->mrq.sbc = &brq->sbc;
1638 }
1639}
1640
1641#define MMC_MAX_RETRIES 5
1642#define MMC_DATA_RETRIES 2
1643#define MMC_NO_RETRIES (MMC_MAX_RETRIES + 1)
1644
1645static int mmc_blk_send_stop(struct mmc_card *card, unsigned int timeout)
1646{
1647 struct mmc_command cmd = {
1648 .opcode = MMC_STOP_TRANSMISSION,
1649 .flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC,
1650 /* Some hosts wait for busy anyway, so provide a busy timeout */
1651 .busy_timeout = timeout,
1652 };
1653
1654 return mmc_wait_for_cmd(card->host, &cmd, 5);
1655}
1656
1657static int mmc_blk_fix_state(struct mmc_card *card, struct request *req)
1658{
1659 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1660 struct mmc_blk_request *brq = &mqrq->brq;
1661 unsigned int timeout = mmc_blk_data_timeout_ms(card->host, &brq->data);
1662 int err;
1663
1664 mmc_retune_hold_now(card->host);
1665
1666 mmc_blk_send_stop(card, timeout);
1667
1668 err = card_busy_detect(card, timeout, req, NULL);
1669
1670 mmc_retune_release(card->host);
1671
1672 return err;
1673}
1674
1675#define MMC_READ_SINGLE_RETRIES 2
1676
1677/* Single sector read during recovery */
1678static void mmc_blk_read_single(struct mmc_queue *mq, struct request *req)
1679{
1680 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1681 struct mmc_request *mrq = &mqrq->brq.mrq;
1682 struct mmc_card *card = mq->card;
1683 struct mmc_host *host = card->host;
1684 blk_status_t error = BLK_STS_OK;
1685 int retries = 0;
1686
1687 do {
1688 u32 status;
1689 int err;
1690
1691 mmc_blk_rw_rq_prep(mqrq, card, 1, mq);
1692
1693 mmc_wait_for_req(host, mrq);
1694
1695 err = mmc_send_status(card, &status);
1696 if (err)
1697 goto error_exit;
1698
1699 if (!mmc_host_is_spi(host) &&
1700 !mmc_blk_in_tran_state(status)) {
1701 err = mmc_blk_fix_state(card, req);
1702 if (err)
1703 goto error_exit;
1704 }
1705
1706 if (mrq->cmd->error && retries++ < MMC_READ_SINGLE_RETRIES)
1707 continue;
1708
1709 retries = 0;
1710
1711 if (mrq->cmd->error ||
1712 mrq->data->error ||
1713 (!mmc_host_is_spi(host) &&
1714 (mrq->cmd->resp[0] & CMD_ERRORS || status & CMD_ERRORS)))
1715 error = BLK_STS_IOERR;
1716 else
1717 error = BLK_STS_OK;
1718
1719 } while (blk_update_request(req, error, 512));
1720
1721 return;
1722
1723error_exit:
1724 mrq->data->bytes_xfered = 0;
1725 blk_update_request(req, BLK_STS_IOERR, 512);
1726 /* Let it try the remaining request again */
1727 if (mqrq->retries > MMC_MAX_RETRIES - 1)
1728 mqrq->retries = MMC_MAX_RETRIES - 1;
1729}
1730
1731static inline bool mmc_blk_oor_valid(struct mmc_blk_request *brq)
1732{
1733 return !!brq->mrq.sbc;
1734}
1735
1736static inline u32 mmc_blk_stop_err_bits(struct mmc_blk_request *brq)
1737{
1738 return mmc_blk_oor_valid(brq) ? CMD_ERRORS : CMD_ERRORS_EXCL_OOR;
1739}
1740
1741/*
1742 * Check for errors the host controller driver might not have seen such as
1743 * response mode errors or invalid card state.
1744 */
1745static bool mmc_blk_status_error(struct request *req, u32 status)
1746{
1747 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1748 struct mmc_blk_request *brq = &mqrq->brq;
1749 struct mmc_queue *mq = req->q->queuedata;
1750 u32 stop_err_bits;
1751
1752 if (mmc_host_is_spi(mq->card->host))
1753 return false;
1754
1755 stop_err_bits = mmc_blk_stop_err_bits(brq);
1756
1757 return brq->cmd.resp[0] & CMD_ERRORS ||
1758 brq->stop.resp[0] & stop_err_bits ||
1759 status & stop_err_bits ||
1760 (rq_data_dir(req) == WRITE && !mmc_blk_in_tran_state(status));
1761}
1762
1763static inline bool mmc_blk_cmd_started(struct mmc_blk_request *brq)
1764{
1765 return !brq->sbc.error && !brq->cmd.error &&
1766 !(brq->cmd.resp[0] & CMD_ERRORS);
1767}
1768
1769/*
1770 * Requests are completed by mmc_blk_mq_complete_rq() which sets simple
1771 * policy:
1772 * 1. A request that has transferred at least some data is considered
1773 * successful and will be requeued if there is remaining data to
1774 * transfer.
1775 * 2. Otherwise the number of retries is incremented and the request
1776 * will be requeued if there are remaining retries.
1777 * 3. Otherwise the request will be errored out.
1778 * That means mmc_blk_mq_complete_rq() is controlled by bytes_xfered and
1779 * mqrq->retries. So there are only 4 possible actions here:
1780 * 1. do not accept the bytes_xfered value i.e. set it to zero
1781 * 2. change mqrq->retries to determine the number of retries
1782 * 3. try to reset the card
1783 * 4. read one sector at a time
1784 */
1785static void mmc_blk_mq_rw_recovery(struct mmc_queue *mq, struct request *req)
1786{
1787 int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1788 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1789 struct mmc_blk_request *brq = &mqrq->brq;
1790 struct mmc_blk_data *md = mq->blkdata;
1791 struct mmc_card *card = mq->card;
1792 u32 status;
1793 u32 blocks;
1794 int err;
1795
1796 /*
1797 * Some errors the host driver might not have seen. Set the number of
1798 * bytes transferred to zero in that case.
1799 */
1800 err = __mmc_send_status(card, &status, 0);
1801 if (err || mmc_blk_status_error(req, status))
1802 brq->data.bytes_xfered = 0;
1803
1804 mmc_retune_release(card->host);
1805
1806 /*
1807 * Try again to get the status. This also provides an opportunity for
1808 * re-tuning.
1809 */
1810 if (err)
1811 err = __mmc_send_status(card, &status, 0);
1812
1813 /*
1814 * Nothing more to do after the number of bytes transferred has been
1815 * updated and there is no card.
1816 */
1817 if (err && mmc_detect_card_removed(card->host))
1818 return;
1819
1820 /* Try to get back to "tran" state */
1821 if (!mmc_host_is_spi(mq->card->host) &&
1822 (err || !mmc_blk_in_tran_state(status)))
1823 err = mmc_blk_fix_state(mq->card, req);
1824
1825 /*
1826 * Special case for SD cards where the card might record the number of
1827 * blocks written.
1828 */
1829 if (!err && mmc_blk_cmd_started(brq) && mmc_card_sd(card) &&
1830 rq_data_dir(req) == WRITE) {
1831 if (mmc_sd_num_wr_blocks(card, &blocks))
1832 brq->data.bytes_xfered = 0;
1833 else
1834 brq->data.bytes_xfered = blocks << 9;
1835 }
1836
1837 /* Reset if the card is in a bad state */
1838 if (!mmc_host_is_spi(mq->card->host) &&
1839 err && mmc_blk_reset(md, card->host, type)) {
1840 pr_err("%s: recovery failed!\n", req->rq_disk->disk_name);
1841 mqrq->retries = MMC_NO_RETRIES;
1842 return;
1843 }
1844
1845 /*
1846 * If anything was done, just return and if there is anything remaining
1847 * on the request it will get requeued.
1848 */
1849 if (brq->data.bytes_xfered)
1850 return;
1851
1852 /* Reset before last retry */
1853 if (mqrq->retries + 1 == MMC_MAX_RETRIES)
1854 mmc_blk_reset(md, card->host, type);
1855
1856 /* Command errors fail fast, so use all MMC_MAX_RETRIES */
1857 if (brq->sbc.error || brq->cmd.error)
1858 return;
1859
1860 /* Reduce the remaining retries for data errors */
1861 if (mqrq->retries < MMC_MAX_RETRIES - MMC_DATA_RETRIES) {
1862 mqrq->retries = MMC_MAX_RETRIES - MMC_DATA_RETRIES;
1863 return;
1864 }
1865
1866 /* FIXME: Missing single sector read for large sector size */
1867 if (!mmc_large_sector(card) && rq_data_dir(req) == READ &&
1868 brq->data.blocks > 1) {
1869 /* Read one sector at a time */
1870 mmc_blk_read_single(mq, req);
1871 return;
1872 }
1873}
1874
1875static inline bool mmc_blk_rq_error(struct mmc_blk_request *brq)
1876{
1877 mmc_blk_eval_resp_error(brq);
1878
1879 return brq->sbc.error || brq->cmd.error || brq->stop.error ||
1880 brq->data.error || brq->cmd.resp[0] & CMD_ERRORS;
1881}
1882
1883static int mmc_blk_card_busy(struct mmc_card *card, struct request *req)
1884{
1885 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1886 u32 status = 0;
1887 int err;
1888
1889 if (mmc_host_is_spi(card->host) || rq_data_dir(req) == READ)
1890 return 0;
1891
1892 err = card_busy_detect(card, MMC_BLK_TIMEOUT_MS, req, &status);
1893
1894 /*
1895 * Do not assume data transferred correctly if there are any error bits
1896 * set.
1897 */
1898 if (status & mmc_blk_stop_err_bits(&mqrq->brq)) {
1899 mqrq->brq.data.bytes_xfered = 0;
1900 err = err ? err : -EIO;
1901 }
1902
1903 /* Copy the exception bit so it will be seen later on */
1904 if (mmc_card_mmc(card) && status & R1_EXCEPTION_EVENT)
1905 mqrq->brq.cmd.resp[0] |= R1_EXCEPTION_EVENT;
1906
1907 return err;
1908}
1909
1910static inline void mmc_blk_rw_reset_success(struct mmc_queue *mq,
1911 struct request *req)
1912{
1913 int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1914
1915 mmc_blk_reset_success(mq->blkdata, type);
1916}
1917
1918static void mmc_blk_mq_complete_rq(struct mmc_queue *mq, struct request *req)
1919{
1920 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1921 unsigned int nr_bytes = mqrq->brq.data.bytes_xfered;
1922
1923 if (nr_bytes) {
1924 if (blk_update_request(req, BLK_STS_OK, nr_bytes))
1925 blk_mq_requeue_request(req, true);
1926 else
1927 __blk_mq_end_request(req, BLK_STS_OK);
1928 } else if (!blk_rq_bytes(req)) {
1929 __blk_mq_end_request(req, BLK_STS_IOERR);
1930 } else if (mqrq->retries++ < MMC_MAX_RETRIES) {
1931 blk_mq_requeue_request(req, true);
1932 } else {
1933 if (mmc_card_removed(mq->card))
1934 req->rq_flags |= RQF_QUIET;
1935 blk_mq_end_request(req, BLK_STS_IOERR);
1936 }
1937}
1938
1939static bool mmc_blk_urgent_bkops_needed(struct mmc_queue *mq,
1940 struct mmc_queue_req *mqrq)
1941{
1942 return mmc_card_mmc(mq->card) && !mmc_host_is_spi(mq->card->host) &&
1943 (mqrq->brq.cmd.resp[0] & R1_EXCEPTION_EVENT ||
1944 mqrq->brq.stop.resp[0] & R1_EXCEPTION_EVENT);
1945}
1946
1947static void mmc_blk_urgent_bkops(struct mmc_queue *mq,
1948 struct mmc_queue_req *mqrq)
1949{
1950 if (mmc_blk_urgent_bkops_needed(mq, mqrq))
1951 mmc_start_bkops(mq->card, true);
1952}
1953
1954void mmc_blk_mq_complete(struct request *req)
1955{
1956 struct mmc_queue *mq = req->q->queuedata;
1957
1958 if (mq->use_cqe)
1959 mmc_blk_cqe_complete_rq(mq, req);
1960 else
1961 mmc_blk_mq_complete_rq(mq, req);
1962}
1963
1964static void mmc_blk_mq_poll_completion(struct mmc_queue *mq,
1965 struct request *req)
1966{
1967 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1968 struct mmc_host *host = mq->card->host;
1969
1970 if (mmc_blk_rq_error(&mqrq->brq) ||
1971 mmc_blk_card_busy(mq->card, req)) {
1972 mmc_blk_mq_rw_recovery(mq, req);
1973 } else {
1974 mmc_blk_rw_reset_success(mq, req);
1975 mmc_retune_release(host);
1976 }
1977
1978 mmc_blk_urgent_bkops(mq, mqrq);
1979}
1980
1981static void mmc_blk_mq_dec_in_flight(struct mmc_queue *mq, struct request *req)
1982{
1983 struct request_queue *q = req->q;
1984 unsigned long flags;
1985 bool put_card;
1986
1987 spin_lock_irqsave(q->queue_lock, flags);
1988
1989 mq->in_flight[mmc_issue_type(mq, req)] -= 1;
1990
1991 put_card = (mmc_tot_in_flight(mq) == 0);
1992
1993 spin_unlock_irqrestore(q->queue_lock, flags);
1994
1995 if (put_card)
1996 mmc_put_card(mq->card, &mq->ctx);
1997}
1998
1999static void mmc_blk_mq_post_req(struct mmc_queue *mq, struct request *req)
2000{
2001 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2002 struct mmc_request *mrq = &mqrq->brq.mrq;
2003 struct mmc_host *host = mq->card->host;
2004
2005 mmc_post_req(host, mrq, 0);
2006
2007 /*
2008 * Block layer timeouts race with completions which means the normal
2009 * completion path cannot be used during recovery.
2010 */
2011 if (mq->in_recovery)
2012 mmc_blk_mq_complete_rq(mq, req);
2013 else
2014 blk_mq_complete_request(req);
2015
2016 mmc_blk_mq_dec_in_flight(mq, req);
2017}
2018
2019void mmc_blk_mq_recovery(struct mmc_queue *mq)
2020{
2021 struct request *req = mq->recovery_req;
2022 struct mmc_host *host = mq->card->host;
2023 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2024
2025 mq->recovery_req = NULL;
2026 mq->rw_wait = false;
2027
2028 if (mmc_blk_rq_error(&mqrq->brq)) {
2029 mmc_retune_hold_now(host);
2030 mmc_blk_mq_rw_recovery(mq, req);
2031 }
2032
2033 mmc_blk_urgent_bkops(mq, mqrq);
2034
2035 mmc_blk_mq_post_req(mq, req);
2036}
2037
2038static void mmc_blk_mq_complete_prev_req(struct mmc_queue *mq,
2039 struct request **prev_req)
2040{
2041 if (mmc_host_done_complete(mq->card->host))
2042 return;
2043
2044 mutex_lock(&mq->complete_lock);
2045
2046 if (!mq->complete_req)
2047 goto out_unlock;
2048
2049 mmc_blk_mq_poll_completion(mq, mq->complete_req);
2050
2051 if (prev_req)
2052 *prev_req = mq->complete_req;
2053 else
2054 mmc_blk_mq_post_req(mq, mq->complete_req);
2055
2056 mq->complete_req = NULL;
2057
2058out_unlock:
2059 mutex_unlock(&mq->complete_lock);
2060}
2061
2062void mmc_blk_mq_complete_work(struct work_struct *work)
2063{
2064 struct mmc_queue *mq = container_of(work, struct mmc_queue,
2065 complete_work);
2066
2067 mmc_blk_mq_complete_prev_req(mq, NULL);
2068}
2069
2070static void mmc_blk_mq_req_done(struct mmc_request *mrq)
2071{
2072 struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
2073 brq.mrq);
2074 struct request *req = mmc_queue_req_to_req(mqrq);
2075 struct request_queue *q = req->q;
2076 struct mmc_queue *mq = q->queuedata;
2077 struct mmc_host *host = mq->card->host;
2078 unsigned long flags;
2079
2080 if (!mmc_host_done_complete(host)) {
2081 bool waiting;
2082
2083 /*
2084 * We cannot complete the request in this context, so record
2085 * that there is a request to complete, and that a following
2086 * request does not need to wait (although it does need to
2087 * complete complete_req first).
2088 */
2089 spin_lock_irqsave(q->queue_lock, flags);
2090 mq->complete_req = req;
2091 mq->rw_wait = false;
2092 waiting = mq->waiting;
2093 spin_unlock_irqrestore(q->queue_lock, flags);
2094
2095 /*
2096 * If 'waiting' then the waiting task will complete this
2097 * request, otherwise queue a work to do it. Note that
2098 * complete_work may still race with the dispatch of a following
2099 * request.
2100 */
2101 if (waiting)
2102 wake_up(&mq->wait);
2103 else
2104 kblockd_schedule_work(&mq->complete_work);
2105
2106 return;
2107 }
2108
2109 /* Take the recovery path for errors or urgent background operations */
2110 if (mmc_blk_rq_error(&mqrq->brq) ||
2111 mmc_blk_urgent_bkops_needed(mq, mqrq)) {
2112 spin_lock_irqsave(q->queue_lock, flags);
2113 mq->recovery_needed = true;
2114 mq->recovery_req = req;
2115 spin_unlock_irqrestore(q->queue_lock, flags);
2116 wake_up(&mq->wait);
2117 schedule_work(&mq->recovery_work);
2118 return;
2119 }
2120
2121 mmc_blk_rw_reset_success(mq, req);
2122
2123 mq->rw_wait = false;
2124 wake_up(&mq->wait);
2125
2126 mmc_blk_mq_post_req(mq, req);
2127}
2128
2129static bool mmc_blk_rw_wait_cond(struct mmc_queue *mq, int *err)
2130{
2131 struct request_queue *q = mq->queue;
2132 unsigned long flags;
2133 bool done;
2134
2135 /*
2136 * Wait while there is another request in progress, but not if recovery
2137 * is needed. Also indicate whether there is a request waiting to start.
2138 */
2139 spin_lock_irqsave(q->queue_lock, flags);
2140 if (mq->recovery_needed) {
2141 *err = -EBUSY;
2142 done = true;
2143 } else {
2144 done = !mq->rw_wait;
2145 }
2146 mq->waiting = !done;
2147 spin_unlock_irqrestore(q->queue_lock, flags);
2148
2149 return done;
2150}
2151
2152static int mmc_blk_rw_wait(struct mmc_queue *mq, struct request **prev_req)
2153{
2154 int err = 0;
2155
2156 wait_event(mq->wait, mmc_blk_rw_wait_cond(mq, &err));
2157
2158 /* Always complete the previous request if there is one */
2159 mmc_blk_mq_complete_prev_req(mq, prev_req);
2160
2161 return err;
2162}
2163
2164static int mmc_blk_mq_issue_rw_rq(struct mmc_queue *mq,
2165 struct request *req)
2166{
2167 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2168 struct mmc_host *host = mq->card->host;
2169 struct request *prev_req = NULL;
2170 int err = 0;
2171
2172 mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq);
2173
2174 mqrq->brq.mrq.done = mmc_blk_mq_req_done;
2175
2176 mmc_pre_req(host, &mqrq->brq.mrq);
2177
2178 err = mmc_blk_rw_wait(mq, &prev_req);
2179 if (err)
2180 goto out_post_req;
2181
2182 mq->rw_wait = true;
2183
2184 err = mmc_start_request(host, &mqrq->brq.mrq);
2185
2186 if (prev_req)
2187 mmc_blk_mq_post_req(mq, prev_req);
2188
2189 if (err)
2190 mq->rw_wait = false;
2191
2192 /* Release re-tuning here where there is no synchronization required */
2193 if (err || mmc_host_done_complete(host))
2194 mmc_retune_release(host);
2195
2196out_post_req:
2197 if (err)
2198 mmc_post_req(host, &mqrq->brq.mrq, err);
2199
2200 return err;
2201}
2202
2203static int mmc_blk_wait_for_idle(struct mmc_queue *mq, struct mmc_host *host)
2204{
2205 if (mq->use_cqe)
2206 return host->cqe_ops->cqe_wait_for_idle(host);
2207
2208 return mmc_blk_rw_wait(mq, NULL);
2209}
2210
2211enum mmc_issued mmc_blk_mq_issue_rq(struct mmc_queue *mq, struct request *req)
2212{
2213 struct mmc_blk_data *md = mq->blkdata;
2214 struct mmc_card *card = md->queue.card;
2215 struct mmc_host *host = card->host;
2216 int ret;
2217
2218 ret = mmc_blk_part_switch(card, md->part_type);
2219 if (ret)
2220 return MMC_REQ_FAILED_TO_START;
2221
2222 switch (mmc_issue_type(mq, req)) {
2223 case MMC_ISSUE_SYNC:
2224 ret = mmc_blk_wait_for_idle(mq, host);
2225 if (ret)
2226 return MMC_REQ_BUSY;
2227 switch (req_op(req)) {
2228 case REQ_OP_DRV_IN:
2229 case REQ_OP_DRV_OUT:
2230 mmc_blk_issue_drv_op(mq, req);
2231 break;
2232 case REQ_OP_DISCARD:
2233 mmc_blk_issue_discard_rq(mq, req);
2234 break;
2235 case REQ_OP_SECURE_ERASE:
2236 mmc_blk_issue_secdiscard_rq(mq, req);
2237 break;
2238 case REQ_OP_FLUSH:
2239 mmc_blk_issue_flush(mq, req);
2240 break;
2241 default:
2242 WARN_ON_ONCE(1);
2243 return MMC_REQ_FAILED_TO_START;
2244 }
2245 return MMC_REQ_FINISHED;
2246 case MMC_ISSUE_DCMD:
2247 case MMC_ISSUE_ASYNC:
2248 switch (req_op(req)) {
2249 case REQ_OP_FLUSH:
2250 ret = mmc_blk_cqe_issue_flush(mq, req);
2251 break;
2252 case REQ_OP_READ:
2253 case REQ_OP_WRITE:
2254 if (mq->use_cqe)
2255 ret = mmc_blk_cqe_issue_rw_rq(mq, req);
2256 else
2257 ret = mmc_blk_mq_issue_rw_rq(mq, req);
2258 break;
2259 default:
2260 WARN_ON_ONCE(1);
2261 ret = -EINVAL;
2262 }
2263 if (!ret)
2264 return MMC_REQ_STARTED;
2265 return ret == -EBUSY ? MMC_REQ_BUSY : MMC_REQ_FAILED_TO_START;
2266 default:
2267 WARN_ON_ONCE(1);
2268 return MMC_REQ_FAILED_TO_START;
2269 }
2270}
2271
2272static inline int mmc_blk_readonly(struct mmc_card *card)
2273{
2274 return mmc_card_readonly(card) ||
2275 !(card->csd.cmdclass & CCC_BLOCK_WRITE);
2276}
2277
2278static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card,
2279 struct device *parent,
2280 sector_t size,
2281 bool default_ro,
2282 const char *subname,
2283 int area_type)
2284{
2285 struct mmc_blk_data *md;
2286 int devidx, ret;
2287
2288 devidx = ida_simple_get(&mmc_blk_ida, 0, max_devices, GFP_KERNEL);
2289 if (devidx < 0) {
2290 /*
2291 * We get -ENOSPC because there are no more any available
2292 * devidx. The reason may be that, either userspace haven't yet
2293 * unmounted the partitions, which postpones mmc_blk_release()
2294 * from being called, or the device has more partitions than
2295 * what we support.
2296 */
2297 if (devidx == -ENOSPC)
2298 dev_err(mmc_dev(card->host),
2299 "no more device IDs available\n");
2300
2301 return ERR_PTR(devidx);
2302 }
2303
2304 md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL);
2305 if (!md) {
2306 ret = -ENOMEM;
2307 goto out;
2308 }
2309
2310 md->area_type = area_type;
2311
2312 /*
2313 * Set the read-only status based on the supported commands
2314 * and the write protect switch.
2315 */
2316 md->read_only = mmc_blk_readonly(card);
2317
2318 md->disk = alloc_disk(perdev_minors);
2319 if (md->disk == NULL) {
2320 ret = -ENOMEM;
2321 goto err_kfree;
2322 }
2323
2324 spin_lock_init(&md->lock);
2325 INIT_LIST_HEAD(&md->part);
2326 INIT_LIST_HEAD(&md->rpmbs);
2327 md->usage = 1;
2328
2329 ret = mmc_init_queue(&md->queue, card, &md->lock, subname);
2330 if (ret)
2331 goto err_putdisk;
2332
2333 md->queue.blkdata = md;
2334
2335 /*
2336 * Keep an extra reference to the queue so that we can shutdown the
2337 * queue (i.e. call blk_cleanup_queue()) while there are still
2338 * references to the 'md'. The corresponding blk_put_queue() is in
2339 * mmc_blk_put().
2340 */
2341 if (!blk_get_queue(md->queue.queue)) {
2342 mmc_cleanup_queue(&md->queue);
2343 ret = -ENODEV;
2344 goto err_putdisk;
2345 }
2346
2347 md->disk->major = MMC_BLOCK_MAJOR;
2348 md->disk->first_minor = devidx * perdev_minors;
2349 md->disk->fops = &mmc_bdops;
2350 md->disk->private_data = md;
2351 md->disk->queue = md->queue.queue;
2352 md->parent = parent;
2353 set_disk_ro(md->disk, md->read_only || default_ro);
2354 md->disk->flags = GENHD_FL_EXT_DEVT;
2355 if (area_type & (MMC_BLK_DATA_AREA_RPMB | MMC_BLK_DATA_AREA_BOOT))
2356 md->disk->flags |= GENHD_FL_NO_PART_SCAN;
2357
2358 /*
2359 * As discussed on lkml, GENHD_FL_REMOVABLE should:
2360 *
2361 * - be set for removable media with permanent block devices
2362 * - be unset for removable block devices with permanent media
2363 *
2364 * Since MMC block devices clearly fall under the second
2365 * case, we do not set GENHD_FL_REMOVABLE. Userspace
2366 * should use the block device creation/destruction hotplug
2367 * messages to tell when the card is present.
2368 */
2369
2370 snprintf(md->disk->disk_name, sizeof(md->disk->disk_name),
2371 "mmcblk%u%s", card->host->index, subname ? subname : "");
2372
2373 if (mmc_card_mmc(card))
2374 blk_queue_logical_block_size(md->queue.queue,
2375 card->ext_csd.data_sector_size);
2376 else
2377 blk_queue_logical_block_size(md->queue.queue, 512);
2378
2379 set_capacity(md->disk, size);
2380
2381 if (mmc_host_cmd23(card->host)) {
2382 if ((mmc_card_mmc(card) &&
2383 card->csd.mmca_vsn >= CSD_SPEC_VER_3) ||
2384 (mmc_card_sd(card) &&
2385 card->scr.cmds & SD_SCR_CMD23_SUPPORT))
2386 md->flags |= MMC_BLK_CMD23;
2387 }
2388
2389 if (mmc_card_mmc(card) &&
2390 md->flags & MMC_BLK_CMD23 &&
2391 ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) ||
2392 card->ext_csd.rel_sectors)) {
2393 md->flags |= MMC_BLK_REL_WR;
2394 blk_queue_write_cache(md->queue.queue, true, true);
2395 }
2396
2397 return md;
2398
2399 err_putdisk:
2400 put_disk(md->disk);
2401 err_kfree:
2402 kfree(md);
2403 out:
2404 ida_simple_remove(&mmc_blk_ida, devidx);
2405 return ERR_PTR(ret);
2406}
2407
2408static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card)
2409{
2410 sector_t size;
2411
2412 if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) {
2413 /*
2414 * The EXT_CSD sector count is in number or 512 byte
2415 * sectors.
2416 */
2417 size = card->ext_csd.sectors;
2418 } else {
2419 /*
2420 * The CSD capacity field is in units of read_blkbits.
2421 * set_capacity takes units of 512 bytes.
2422 */
2423 size = (typeof(sector_t))card->csd.capacity
2424 << (card->csd.read_blkbits - 9);
2425 }
2426
2427 return mmc_blk_alloc_req(card, &card->dev, size, false, NULL,
2428 MMC_BLK_DATA_AREA_MAIN);
2429}
2430
2431static int mmc_blk_alloc_part(struct mmc_card *card,
2432 struct mmc_blk_data *md,
2433 unsigned int part_type,
2434 sector_t size,
2435 bool default_ro,
2436 const char *subname,
2437 int area_type)
2438{
2439 char cap_str[10];
2440 struct mmc_blk_data *part_md;
2441
2442 part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro,
2443 subname, area_type);
2444 if (IS_ERR(part_md))
2445 return PTR_ERR(part_md);
2446 part_md->part_type = part_type;
2447 list_add(&part_md->part, &md->part);
2448
2449 string_get_size((u64)get_capacity(part_md->disk), 512, STRING_UNITS_2,
2450 cap_str, sizeof(cap_str));
2451 pr_info("%s: %s %s partition %u %s\n",
2452 part_md->disk->disk_name, mmc_card_id(card),
2453 mmc_card_name(card), part_md->part_type, cap_str);
2454 return 0;
2455}
2456
2457/**
2458 * mmc_rpmb_ioctl() - ioctl handler for the RPMB chardev
2459 * @filp: the character device file
2460 * @cmd: the ioctl() command
2461 * @arg: the argument from userspace
2462 *
2463 * This will essentially just redirect the ioctl()s coming in over to
2464 * the main block device spawning the RPMB character device.
2465 */
2466static long mmc_rpmb_ioctl(struct file *filp, unsigned int cmd,
2467 unsigned long arg)
2468{
2469 struct mmc_rpmb_data *rpmb = filp->private_data;
2470 int ret;
2471
2472 switch (cmd) {
2473 case MMC_IOC_CMD:
2474 ret = mmc_blk_ioctl_cmd(rpmb->md,
2475 (struct mmc_ioc_cmd __user *)arg,
2476 rpmb);
2477 break;
2478 case MMC_IOC_MULTI_CMD:
2479 ret = mmc_blk_ioctl_multi_cmd(rpmb->md,
2480 (struct mmc_ioc_multi_cmd __user *)arg,
2481 rpmb);
2482 break;
2483 default:
2484 ret = -EINVAL;
2485 break;
2486 }
2487
2488 return ret;
2489}
2490
2491#ifdef CONFIG_COMPAT
2492static long mmc_rpmb_ioctl_compat(struct file *filp, unsigned int cmd,
2493 unsigned long arg)
2494{
2495 return mmc_rpmb_ioctl(filp, cmd, (unsigned long)compat_ptr(arg));
2496}
2497#endif
2498
2499static int mmc_rpmb_chrdev_open(struct inode *inode, struct file *filp)
2500{
2501 struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2502 struct mmc_rpmb_data, chrdev);
2503
2504 get_device(&rpmb->dev);
2505 filp->private_data = rpmb;
2506 mmc_blk_get(rpmb->md->disk);
2507
2508 return nonseekable_open(inode, filp);
2509}
2510
2511static int mmc_rpmb_chrdev_release(struct inode *inode, struct file *filp)
2512{
2513 struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2514 struct mmc_rpmb_data, chrdev);
2515
2516 put_device(&rpmb->dev);
2517 mmc_blk_put(rpmb->md);
2518
2519 return 0;
2520}
2521
2522static const struct file_operations mmc_rpmb_fileops = {
2523 .release = mmc_rpmb_chrdev_release,
2524 .open = mmc_rpmb_chrdev_open,
2525 .owner = THIS_MODULE,
2526 .llseek = no_llseek,
2527 .unlocked_ioctl = mmc_rpmb_ioctl,
2528#ifdef CONFIG_COMPAT
2529 .compat_ioctl = mmc_rpmb_ioctl_compat,
2530#endif
2531};
2532
2533static void mmc_blk_rpmb_device_release(struct device *dev)
2534{
2535 struct mmc_rpmb_data *rpmb = dev_get_drvdata(dev);
2536
2537 ida_simple_remove(&mmc_rpmb_ida, rpmb->id);
2538 kfree(rpmb);
2539}
2540
2541static int mmc_blk_alloc_rpmb_part(struct mmc_card *card,
2542 struct mmc_blk_data *md,
2543 unsigned int part_index,
2544 sector_t size,
2545 const char *subname)
2546{
2547 int devidx, ret;
2548 char rpmb_name[DISK_NAME_LEN];
2549 char cap_str[10];
2550 struct mmc_rpmb_data *rpmb;
2551
2552 /* This creates the minor number for the RPMB char device */
2553 devidx = ida_simple_get(&mmc_rpmb_ida, 0, max_devices, GFP_KERNEL);
2554 if (devidx < 0)
2555 return devidx;
2556
2557 rpmb = kzalloc(sizeof(*rpmb), GFP_KERNEL);
2558 if (!rpmb) {
2559 ida_simple_remove(&mmc_rpmb_ida, devidx);
2560 return -ENOMEM;
2561 }
2562
2563 snprintf(rpmb_name, sizeof(rpmb_name),
2564 "mmcblk%u%s", card->host->index, subname ? subname : "");
2565
2566 rpmb->id = devidx;
2567 rpmb->part_index = part_index;
2568 rpmb->dev.init_name = rpmb_name;
2569 rpmb->dev.bus = &mmc_rpmb_bus_type;
2570 rpmb->dev.devt = MKDEV(MAJOR(mmc_rpmb_devt), rpmb->id);
2571 rpmb->dev.parent = &card->dev;
2572 rpmb->dev.release = mmc_blk_rpmb_device_release;
2573 device_initialize(&rpmb->dev);
2574 dev_set_drvdata(&rpmb->dev, rpmb);
2575 rpmb->md = md;
2576
2577 cdev_init(&rpmb->chrdev, &mmc_rpmb_fileops);
2578 rpmb->chrdev.owner = THIS_MODULE;
2579 ret = cdev_device_add(&rpmb->chrdev, &rpmb->dev);
2580 if (ret) {
2581 pr_err("%s: could not add character device\n", rpmb_name);
2582 goto out_put_device;
2583 }
2584
2585 list_add(&rpmb->node, &md->rpmbs);
2586
2587 string_get_size((u64)size, 512, STRING_UNITS_2,
2588 cap_str, sizeof(cap_str));
2589
2590 pr_info("%s: %s %s partition %u %s, chardev (%d:%d)\n",
2591 rpmb_name, mmc_card_id(card),
2592 mmc_card_name(card), EXT_CSD_PART_CONFIG_ACC_RPMB, cap_str,
2593 MAJOR(mmc_rpmb_devt), rpmb->id);
2594
2595 return 0;
2596
2597out_put_device:
2598 put_device(&rpmb->dev);
2599 return ret;
2600}
2601
2602static void mmc_blk_remove_rpmb_part(struct mmc_rpmb_data *rpmb)
2603
2604{
2605 cdev_device_del(&rpmb->chrdev, &rpmb->dev);
2606 put_device(&rpmb->dev);
2607}
2608
2609/* MMC Physical partitions consist of two boot partitions and
2610 * up to four general purpose partitions.
2611 * For each partition enabled in EXT_CSD a block device will be allocatedi
2612 * to provide access to the partition.
2613 */
2614
2615static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md)
2616{
2617 int idx, ret;
2618
2619 if (!mmc_card_mmc(card))
2620 return 0;
2621
2622 for (idx = 0; idx < card->nr_parts; idx++) {
2623 if (card->part[idx].area_type & MMC_BLK_DATA_AREA_RPMB) {
2624 /*
2625 * RPMB partitions does not provide block access, they
2626 * are only accessed using ioctl():s. Thus create
2627 * special RPMB block devices that do not have a
2628 * backing block queue for these.
2629 */
2630 ret = mmc_blk_alloc_rpmb_part(card, md,
2631 card->part[idx].part_cfg,
2632 card->part[idx].size >> 9,
2633 card->part[idx].name);
2634 if (ret)
2635 return ret;
2636 } else if (card->part[idx].size) {
2637 ret = mmc_blk_alloc_part(card, md,
2638 card->part[idx].part_cfg,
2639 card->part[idx].size >> 9,
2640 card->part[idx].force_ro,
2641 card->part[idx].name,
2642 card->part[idx].area_type);
2643 if (ret)
2644 return ret;
2645 }
2646 }
2647
2648 return 0;
2649}
2650
2651static void mmc_blk_remove_req(struct mmc_blk_data *md)
2652{
2653 struct mmc_card *card;
2654
2655 if (md) {
2656 /*
2657 * Flush remaining requests and free queues. It
2658 * is freeing the queue that stops new requests
2659 * from being accepted.
2660 */
2661 card = md->queue.card;
2662 if (md->disk->flags & GENHD_FL_UP) {
2663 device_remove_file(disk_to_dev(md->disk), &md->force_ro);
2664 if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
2665 card->ext_csd.boot_ro_lockable)
2666 device_remove_file(disk_to_dev(md->disk),
2667 &md->power_ro_lock);
2668
2669 del_gendisk(md->disk);
2670 }
2671 mmc_cleanup_queue(&md->queue);
2672 mmc_blk_put(md);
2673 }
2674}
2675
2676static void mmc_blk_remove_parts(struct mmc_card *card,
2677 struct mmc_blk_data *md)
2678{
2679 struct list_head *pos, *q;
2680 struct mmc_blk_data *part_md;
2681 struct mmc_rpmb_data *rpmb;
2682
2683 /* Remove RPMB partitions */
2684 list_for_each_safe(pos, q, &md->rpmbs) {
2685 rpmb = list_entry(pos, struct mmc_rpmb_data, node);
2686 list_del(pos);
2687 mmc_blk_remove_rpmb_part(rpmb);
2688 }
2689 /* Remove block partitions */
2690 list_for_each_safe(pos, q, &md->part) {
2691 part_md = list_entry(pos, struct mmc_blk_data, part);
2692 list_del(pos);
2693 mmc_blk_remove_req(part_md);
2694 }
2695}
2696
2697static int mmc_add_disk(struct mmc_blk_data *md)
2698{
2699 int ret;
2700 struct mmc_card *card = md->queue.card;
2701
2702 device_add_disk(md->parent, md->disk);
2703 md->force_ro.show = force_ro_show;
2704 md->force_ro.store = force_ro_store;
2705 sysfs_attr_init(&md->force_ro.attr);
2706 md->force_ro.attr.name = "force_ro";
2707 md->force_ro.attr.mode = S_IRUGO | S_IWUSR;
2708 ret = device_create_file(disk_to_dev(md->disk), &md->force_ro);
2709 if (ret)
2710 goto force_ro_fail;
2711
2712 if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
2713 card->ext_csd.boot_ro_lockable) {
2714 umode_t mode;
2715
2716 if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_DIS)
2717 mode = S_IRUGO;
2718 else
2719 mode = S_IRUGO | S_IWUSR;
2720
2721 md->power_ro_lock.show = power_ro_lock_show;
2722 md->power_ro_lock.store = power_ro_lock_store;
2723 sysfs_attr_init(&md->power_ro_lock.attr);
2724 md->power_ro_lock.attr.mode = mode;
2725 md->power_ro_lock.attr.name =
2726 "ro_lock_until_next_power_on";
2727 ret = device_create_file(disk_to_dev(md->disk),
2728 &md->power_ro_lock);
2729 if (ret)
2730 goto power_ro_lock_fail;
2731 }
2732 return ret;
2733
2734power_ro_lock_fail:
2735 device_remove_file(disk_to_dev(md->disk), &md->force_ro);
2736force_ro_fail:
2737 del_gendisk(md->disk);
2738
2739 return ret;
2740}
2741
2742#ifdef CONFIG_DEBUG_FS
2743
2744static int mmc_dbg_card_status_get(void *data, u64 *val)
2745{
2746 struct mmc_card *card = data;
2747 struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2748 struct mmc_queue *mq = &md->queue;
2749 struct request *req;
2750 int ret;
2751
2752 /* Ask the block layer about the card status */
2753 req = blk_get_request(mq->queue, REQ_OP_DRV_IN, __GFP_RECLAIM);
2754 if (IS_ERR(req))
2755 return PTR_ERR(req);
2756 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_CARD_STATUS;
2757 blk_execute_rq(mq->queue, NULL, req, 0);
2758 ret = req_to_mmc_queue_req(req)->drv_op_result;
2759 if (ret >= 0) {
2760 *val = ret;
2761 ret = 0;
2762 }
2763 blk_put_request(req);
2764
2765 return ret;
2766}
2767DEFINE_SIMPLE_ATTRIBUTE(mmc_dbg_card_status_fops, mmc_dbg_card_status_get,
2768 NULL, "%08llx\n");
2769
2770/* That is two digits * 512 + 1 for newline */
2771#define EXT_CSD_STR_LEN 1025
2772
2773static int mmc_ext_csd_open(struct inode *inode, struct file *filp)
2774{
2775 struct mmc_card *card = inode->i_private;
2776 struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2777 struct mmc_queue *mq = &md->queue;
2778 struct request *req;
2779 char *buf;
2780 ssize_t n = 0;
2781 u8 *ext_csd;
2782 int err, i;
2783
2784 buf = kmalloc(EXT_CSD_STR_LEN + 1, GFP_KERNEL);
2785 if (!buf)
2786 return -ENOMEM;
2787
2788 /* Ask the block layer for the EXT CSD */
2789 req = blk_get_request(mq->queue, REQ_OP_DRV_IN, __GFP_RECLAIM);
2790 if (IS_ERR(req)) {
2791 err = PTR_ERR(req);
2792 goto out_free;
2793 }
2794 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_EXT_CSD;
2795 req_to_mmc_queue_req(req)->drv_op_data = &ext_csd;
2796 blk_execute_rq(mq->queue, NULL, req, 0);
2797 err = req_to_mmc_queue_req(req)->drv_op_result;
2798 blk_put_request(req);
2799 if (err) {
2800 pr_err("FAILED %d\n", err);
2801 goto out_free;
2802 }
2803
2804 for (i = 0; i < 512; i++)
2805 n += sprintf(buf + n, "%02x", ext_csd[i]);
2806 n += sprintf(buf + n, "\n");
2807
2808 if (n != EXT_CSD_STR_LEN) {
2809 err = -EINVAL;
2810 kfree(ext_csd);
2811 goto out_free;
2812 }
2813
2814 filp->private_data = buf;
2815 kfree(ext_csd);
2816 return 0;
2817
2818out_free:
2819 kfree(buf);
2820 return err;
2821}
2822
2823static ssize_t mmc_ext_csd_read(struct file *filp, char __user *ubuf,
2824 size_t cnt, loff_t *ppos)
2825{
2826 char *buf = filp->private_data;
2827
2828 return simple_read_from_buffer(ubuf, cnt, ppos,
2829 buf, EXT_CSD_STR_LEN);
2830}
2831
2832static int mmc_ext_csd_release(struct inode *inode, struct file *file)
2833{
2834 kfree(file->private_data);
2835 return 0;
2836}
2837
2838static const struct file_operations mmc_dbg_ext_csd_fops = {
2839 .open = mmc_ext_csd_open,
2840 .read = mmc_ext_csd_read,
2841 .release = mmc_ext_csd_release,
2842 .llseek = default_llseek,
2843};
2844
2845static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
2846{
2847 struct dentry *root;
2848
2849 if (!card->debugfs_root)
2850 return 0;
2851
2852 root = card->debugfs_root;
2853
2854 if (mmc_card_mmc(card) || mmc_card_sd(card)) {
2855 md->status_dentry =
2856 debugfs_create_file("status", S_IRUSR, root, card,
2857 &mmc_dbg_card_status_fops);
2858 if (!md->status_dentry)
2859 return -EIO;
2860 }
2861
2862 if (mmc_card_mmc(card)) {
2863 md->ext_csd_dentry =
2864 debugfs_create_file("ext_csd", S_IRUSR, root, card,
2865 &mmc_dbg_ext_csd_fops);
2866 if (!md->ext_csd_dentry)
2867 return -EIO;
2868 }
2869
2870 return 0;
2871}
2872
2873static void mmc_blk_remove_debugfs(struct mmc_card *card,
2874 struct mmc_blk_data *md)
2875{
2876 if (!card->debugfs_root)
2877 return;
2878
2879 if (!IS_ERR_OR_NULL(md->status_dentry)) {
2880 debugfs_remove(md->status_dentry);
2881 md->status_dentry = NULL;
2882 }
2883
2884 if (!IS_ERR_OR_NULL(md->ext_csd_dentry)) {
2885 debugfs_remove(md->ext_csd_dentry);
2886 md->ext_csd_dentry = NULL;
2887 }
2888}
2889
2890#else
2891
2892static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
2893{
2894 return 0;
2895}
2896
2897static void mmc_blk_remove_debugfs(struct mmc_card *card,
2898 struct mmc_blk_data *md)
2899{
2900}
2901
2902#endif /* CONFIG_DEBUG_FS */
2903
2904static int mmc_blk_probe(struct mmc_card *card)
2905{
2906 struct mmc_blk_data *md, *part_md;
2907 char cap_str[10];
2908
2909 /*
2910 * Check that the card supports the command class(es) we need.
2911 */
2912 if (!(card->csd.cmdclass & CCC_BLOCK_READ))
2913 return -ENODEV;
2914
2915 mmc_fixup_device(card, mmc_blk_fixups);
2916
2917 md = mmc_blk_alloc(card);
2918 if (IS_ERR(md))
2919 return PTR_ERR(md);
2920
2921 string_get_size((u64)get_capacity(md->disk), 512, STRING_UNITS_2,
2922 cap_str, sizeof(cap_str));
2923 pr_info("%s: %s %s %s %s\n",
2924 md->disk->disk_name, mmc_card_id(card), mmc_card_name(card),
2925 cap_str, md->read_only ? "(ro)" : "");
2926
2927 if (mmc_blk_alloc_parts(card, md))
2928 goto out;
2929
2930 dev_set_drvdata(&card->dev, md);
2931
2932 if (mmc_add_disk(md))
2933 goto out;
2934
2935 list_for_each_entry(part_md, &md->part, part) {
2936 if (mmc_add_disk(part_md))
2937 goto out;
2938 }
2939
2940 /* Add two debugfs entries */
2941 mmc_blk_add_debugfs(card, md);
2942
2943 pm_runtime_set_autosuspend_delay(&card->dev, 3000);
2944 pm_runtime_use_autosuspend(&card->dev);
2945
2946 /*
2947 * Don't enable runtime PM for SD-combo cards here. Leave that
2948 * decision to be taken during the SDIO init sequence instead.
2949 */
2950 if (card->type != MMC_TYPE_SD_COMBO) {
2951 pm_runtime_set_active(&card->dev);
2952 pm_runtime_enable(&card->dev);
2953 }
2954
2955 return 0;
2956
2957 out:
2958 mmc_blk_remove_parts(card, md);
2959 mmc_blk_remove_req(md);
2960 return 0;
2961}
2962
2963static void mmc_blk_remove(struct mmc_card *card)
2964{
2965 struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2966
2967 mmc_blk_remove_debugfs(card, md);
2968 mmc_blk_remove_parts(card, md);
2969 pm_runtime_get_sync(&card->dev);
2970 mmc_claim_host(card->host);
2971 mmc_blk_part_switch(card, md->part_type);
2972 mmc_release_host(card->host);
2973 if (card->type != MMC_TYPE_SD_COMBO)
2974 pm_runtime_disable(&card->dev);
2975 pm_runtime_put_noidle(&card->dev);
2976 mmc_blk_remove_req(md);
2977 dev_set_drvdata(&card->dev, NULL);
2978}
2979
2980static int _mmc_blk_suspend(struct mmc_card *card)
2981{
2982 struct mmc_blk_data *part_md;
2983 struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2984
2985 if (md) {
2986 mmc_queue_suspend(&md->queue);
2987 list_for_each_entry(part_md, &md->part, part) {
2988 mmc_queue_suspend(&part_md->queue);
2989 }
2990 }
2991 return 0;
2992}
2993
2994static void mmc_blk_shutdown(struct mmc_card *card)
2995{
2996 _mmc_blk_suspend(card);
2997}
2998
2999#ifdef CONFIG_PM_SLEEP
3000static int mmc_blk_suspend(struct device *dev)
3001{
3002 struct mmc_card *card = mmc_dev_to_card(dev);
3003
3004 return _mmc_blk_suspend(card);
3005}
3006
3007static int mmc_blk_resume(struct device *dev)
3008{
3009 struct mmc_blk_data *part_md;
3010 struct mmc_blk_data *md = dev_get_drvdata(dev);
3011
3012 if (md) {
3013 /*
3014 * Resume involves the card going into idle state,
3015 * so current partition is always the main one.
3016 */
3017 md->part_curr = md->part_type;
3018 mmc_queue_resume(&md->queue);
3019 list_for_each_entry(part_md, &md->part, part) {
3020 mmc_queue_resume(&part_md->queue);
3021 }
3022 }
3023 return 0;
3024}
3025#endif
3026
3027static SIMPLE_DEV_PM_OPS(mmc_blk_pm_ops, mmc_blk_suspend, mmc_blk_resume);
3028
3029static struct mmc_driver mmc_driver = {
3030 .drv = {
3031 .name = "mmcblk",
3032 .pm = &mmc_blk_pm_ops,
3033 },
3034 .probe = mmc_blk_probe,
3035 .remove = mmc_blk_remove,
3036 .shutdown = mmc_blk_shutdown,
3037};
3038
3039static int __init mmc_blk_init(void)
3040{
3041 int res;
3042
3043 res = bus_register(&mmc_rpmb_bus_type);
3044 if (res < 0) {
3045 pr_err("mmcblk: could not register RPMB bus type\n");
3046 return res;
3047 }
3048 res = alloc_chrdev_region(&mmc_rpmb_devt, 0, MAX_DEVICES, "rpmb");
3049 if (res < 0) {
3050 pr_err("mmcblk: failed to allocate rpmb chrdev region\n");
3051 goto out_bus_unreg;
3052 }
3053
3054 if (perdev_minors != CONFIG_MMC_BLOCK_MINORS)
3055 pr_info("mmcblk: using %d minors per device\n", perdev_minors);
3056
3057 max_devices = min(MAX_DEVICES, (1 << MINORBITS) / perdev_minors);
3058
3059 res = register_blkdev(MMC_BLOCK_MAJOR, "mmc");
3060 if (res)
3061 goto out_chrdev_unreg;
3062
3063 res = mmc_register_driver(&mmc_driver);
3064 if (res)
3065 goto out_blkdev_unreg;
3066
3067 return 0;
3068
3069out_blkdev_unreg:
3070 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
3071out_chrdev_unreg:
3072 unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
3073out_bus_unreg:
3074 bus_unregister(&mmc_rpmb_bus_type);
3075 return res;
3076}
3077
3078static void __exit mmc_blk_exit(void)
3079{
3080 mmc_unregister_driver(&mmc_driver);
3081 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
3082 unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
3083 bus_unregister(&mmc_rpmb_bus_type);
3084}
3085
3086module_init(mmc_blk_init);
3087module_exit(mmc_blk_exit);
3088
3089MODULE_LICENSE("GPL");
3090MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver");
3091