Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * lm85.c - Part of lm_sensors, Linux kernel modules for hardware
   4 *	    monitoring
   5 * Copyright (c) 1998, 1999  Frodo Looijaard <frodol@dds.nl>
   6 * Copyright (c) 2002, 2003  Philip Pokorny <ppokorny@penguincomputing.com>
   7 * Copyright (c) 2003        Margit Schubert-While <margitsw@t-online.de>
   8 * Copyright (c) 2004        Justin Thiessen <jthiessen@penguincomputing.com>
   9 * Copyright (C) 2007--2014  Jean Delvare <jdelvare@suse.de>
  10 *
  11 * Chip details at	      <http://www.national.com/ds/LM/LM85.pdf>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  12 */
  13
  14#include <linux/module.h>
  15#include <linux/of_device.h>
  16#include <linux/init.h>
  17#include <linux/slab.h>
  18#include <linux/jiffies.h>
  19#include <linux/i2c.h>
  20#include <linux/hwmon.h>
  21#include <linux/hwmon-vid.h>
  22#include <linux/hwmon-sysfs.h>
  23#include <linux/err.h>
  24#include <linux/mutex.h>
  25#include <linux/util_macros.h>
  26
  27/* Addresses to scan */
  28static const unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, I2C_CLIENT_END };
  29
  30enum chips {
  31	lm85, lm96000,
  32	adm1027, adt7463, adt7468,
  33	emc6d100, emc6d102, emc6d103, emc6d103s
  34};
  35
  36/* The LM85 registers */
  37
  38#define LM85_REG_IN(nr)			(0x20 + (nr))
  39#define LM85_REG_IN_MIN(nr)		(0x44 + (nr) * 2)
  40#define LM85_REG_IN_MAX(nr)		(0x45 + (nr) * 2)
  41
  42#define LM85_REG_TEMP(nr)		(0x25 + (nr))
  43#define LM85_REG_TEMP_MIN(nr)		(0x4e + (nr) * 2)
  44#define LM85_REG_TEMP_MAX(nr)		(0x4f + (nr) * 2)
  45
  46/* Fan speeds are LSB, MSB (2 bytes) */
  47#define LM85_REG_FAN(nr)		(0x28 + (nr) * 2)
  48#define LM85_REG_FAN_MIN(nr)		(0x54 + (nr) * 2)
  49
  50#define LM85_REG_PWM(nr)		(0x30 + (nr))
  51
  52#define LM85_REG_COMPANY		0x3e
  53#define LM85_REG_VERSTEP		0x3f
  54
  55#define ADT7468_REG_CFG5		0x7c
  56#define ADT7468_OFF64			(1 << 0)
  57#define ADT7468_HFPWM			(1 << 1)
  58#define IS_ADT7468_OFF64(data)		\
  59	((data)->type == adt7468 && !((data)->cfg5 & ADT7468_OFF64))
  60#define IS_ADT7468_HFPWM(data)		\
  61	((data)->type == adt7468 && !((data)->cfg5 & ADT7468_HFPWM))
  62
  63/* These are the recognized values for the above regs */
  64#define LM85_COMPANY_NATIONAL		0x01
  65#define LM85_COMPANY_ANALOG_DEV		0x41
  66#define LM85_COMPANY_SMSC		0x5c
  67#define LM85_VERSTEP_LM85C		0x60
  68#define LM85_VERSTEP_LM85B		0x62
  69#define LM85_VERSTEP_LM96000_1		0x68
  70#define LM85_VERSTEP_LM96000_2		0x69
  71#define LM85_VERSTEP_ADM1027		0x60
  72#define LM85_VERSTEP_ADT7463		0x62
  73#define LM85_VERSTEP_ADT7463C		0x6A
  74#define LM85_VERSTEP_ADT7468_1		0x71
  75#define LM85_VERSTEP_ADT7468_2		0x72
  76#define LM85_VERSTEP_EMC6D100_A0        0x60
  77#define LM85_VERSTEP_EMC6D100_A1        0x61
  78#define LM85_VERSTEP_EMC6D102		0x65
  79#define LM85_VERSTEP_EMC6D103_A0	0x68
  80#define LM85_VERSTEP_EMC6D103_A1	0x69
  81#define LM85_VERSTEP_EMC6D103S		0x6A	/* Also known as EMC6D103:A2 */
  82
  83#define LM85_REG_CONFIG			0x40
  84
  85#define LM85_REG_ALARM1			0x41
  86#define LM85_REG_ALARM2			0x42
  87
  88#define LM85_REG_VID			0x43
  89
  90/* Automated FAN control */
  91#define LM85_REG_AFAN_CONFIG(nr)	(0x5c + (nr))
  92#define LM85_REG_AFAN_RANGE(nr)		(0x5f + (nr))
  93#define LM85_REG_AFAN_SPIKE1		0x62
  94#define LM85_REG_AFAN_MINPWM(nr)	(0x64 + (nr))
  95#define LM85_REG_AFAN_LIMIT(nr)		(0x67 + (nr))
  96#define LM85_REG_AFAN_CRITICAL(nr)	(0x6a + (nr))
  97#define LM85_REG_AFAN_HYST1		0x6d
  98#define LM85_REG_AFAN_HYST2		0x6e
  99
 100#define ADM1027_REG_EXTEND_ADC1		0x76
 101#define ADM1027_REG_EXTEND_ADC2		0x77
 102
 103#define EMC6D100_REG_ALARM3             0x7d
 104/* IN5, IN6 and IN7 */
 105#define EMC6D100_REG_IN(nr)             (0x70 + ((nr) - 5))
 106#define EMC6D100_REG_IN_MIN(nr)         (0x73 + ((nr) - 5) * 2)
 107#define EMC6D100_REG_IN_MAX(nr)         (0x74 + ((nr) - 5) * 2)
 108#define EMC6D102_REG_EXTEND_ADC1	0x85
 109#define EMC6D102_REG_EXTEND_ADC2	0x86
 110#define EMC6D102_REG_EXTEND_ADC3	0x87
 111#define EMC6D102_REG_EXTEND_ADC4	0x88
 112
 113/*
 114 * Conversions. Rounding and limit checking is only done on the TO_REG
 115 * variants. Note that you should be a bit careful with which arguments
 116 * these macros are called: arguments may be evaluated more than once.
 117 */
 118
 119/* IN are scaled according to built-in resistors */
 120static const int lm85_scaling[] = {  /* .001 Volts */
 121	2500, 2250, 3300, 5000, 12000,
 122	3300, 1500, 1800 /*EMC6D100*/
 123};
 124#define SCALE(val, from, to)	(((val) * (to) + ((from) / 2)) / (from))
 125
 126#define INS_TO_REG(n, val)	\
 127		SCALE(clamp_val(val, 0, 255 * lm85_scaling[n] / 192), \
 128		      lm85_scaling[n], 192)
 129
 130#define INSEXT_FROM_REG(n, val, ext)	\
 131		SCALE(((val) << 4) + (ext), 192 << 4, lm85_scaling[n])
 132
 133#define INS_FROM_REG(n, val)	SCALE((val), 192, lm85_scaling[n])
 134
 135/* FAN speed is measured using 90kHz clock */
 136static inline u16 FAN_TO_REG(unsigned long val)
 137{
 138	if (!val)
 139		return 0xffff;
 140	return clamp_val(5400000 / val, 1, 0xfffe);
 141}
 142#define FAN_FROM_REG(val)	((val) == 0 ? -1 : (val) == 0xffff ? 0 : \
 143				 5400000 / (val))
 144
 145/* Temperature is reported in .001 degC increments */
 146#define TEMP_TO_REG(val)	\
 147		DIV_ROUND_CLOSEST(clamp_val((val), -127000, 127000), 1000)
 148#define TEMPEXT_FROM_REG(val, ext)	\
 149		SCALE(((val) << 4) + (ext), 16, 1000)
 150#define TEMP_FROM_REG(val)	((val) * 1000)
 151
 152#define PWM_TO_REG(val)			clamp_val(val, 0, 255)
 153#define PWM_FROM_REG(val)		(val)
 154
 
 155/*
 156 * ZONEs have the following parameters:
 157 *    Limit (low) temp,           1. degC
 158 *    Hysteresis (below limit),   1. degC (0-15)
 159 *    Range of speed control,     .1 degC (2-80)
 160 *    Critical (high) temp,       1. degC
 161 *
 162 * FAN PWMs have the following parameters:
 163 *    Reference Zone,                 1, 2, 3, etc.
 164 *    Spinup time,                    .05 sec
 165 *    PWM value at limit/low temp,    1 count
 166 *    PWM Frequency,                  1. Hz
 167 *    PWM is Min or OFF below limit,  flag
 168 *    Invert PWM output,              flag
 169 *
 170 * Some chips filter the temp, others the fan.
 171 *    Filter constant (or disabled)   .1 seconds
 172 */
 173
 174/* These are the zone temperature range encodings in .001 degree C */
 175static const int lm85_range_map[] = {
 176	2000, 2500, 3300, 4000, 5000, 6600, 8000, 10000,
 177	13300, 16000, 20000, 26600, 32000, 40000, 53300, 80000
 178};
 179
 180static int RANGE_TO_REG(long range)
 181{
 182	return find_closest(range, lm85_range_map, ARRAY_SIZE(lm85_range_map));
 183}
 184#define RANGE_FROM_REG(val)	lm85_range_map[(val) & 0x0f]
 185
 186/* These are the PWM frequency encodings */
 187static const int lm85_freq_map[] = { /* 1 Hz */
 188	10, 15, 23, 30, 38, 47, 61, 94
 189};
 190
 191static const int lm96000_freq_map[] = { /* 1 Hz */
 192	10, 15, 23, 30, 38, 47, 61, 94,
 193	22500, 24000, 25700, 25700, 27700, 27700, 30000, 30000
 194};
 195
 196static const int adm1027_freq_map[] = { /* 1 Hz */
 197	11, 15, 22, 29, 35, 44, 59, 88
 198};
 
 199
 200static int FREQ_TO_REG(const int *map,
 201		       unsigned int map_size, unsigned long freq)
 202{
 203	return find_closest(freq, map, map_size);
 204}
 205
 206static int FREQ_FROM_REG(const int *map, unsigned int map_size, u8 reg)
 207{
 208	return map[reg % map_size];
 209}
 210
 211/*
 212 * Since we can't use strings, I'm abusing these numbers
 213 *   to stand in for the following meanings:
 214 *      1 -- PWM responds to Zone 1
 215 *      2 -- PWM responds to Zone 2
 216 *      3 -- PWM responds to Zone 3
 217 *     23 -- PWM responds to the higher temp of Zone 2 or 3
 218 *    123 -- PWM responds to highest of Zone 1, 2, or 3
 219 *      0 -- PWM is always at 0% (ie, off)
 220 *     -1 -- PWM is always at 100%
 221 *     -2 -- PWM responds to manual control
 222 */
 223
 224static const int lm85_zone_map[] = { 1, 2, 3, -1, 0, 23, 123, -2 };
 225#define ZONE_FROM_REG(val)	lm85_zone_map[(val) >> 5]
 226
 227static int ZONE_TO_REG(int zone)
 228{
 229	int i;
 230
 231	for (i = 0; i <= 7; ++i)
 232		if (zone == lm85_zone_map[i])
 233			break;
 234	if (i > 7)   /* Not found. */
 235		i = 3;  /* Always 100% */
 236	return i << 5;
 237}
 238
 239#define HYST_TO_REG(val)	clamp_val(((val) + 500) / 1000, 0, 15)
 240#define HYST_FROM_REG(val)	((val) * 1000)
 241
 242/*
 243 * Chip sampling rates
 244 *
 245 * Some sensors are not updated more frequently than once per second
 246 *    so it doesn't make sense to read them more often than that.
 247 *    We cache the results and return the saved data if the driver
 248 *    is called again before a second has elapsed.
 249 *
 250 * Also, there is significant configuration data for this chip
 251 *    given the automatic PWM fan control that is possible.  There
 252 *    are about 47 bytes of config data to only 22 bytes of actual
 253 *    readings.  So, we keep the config data up to date in the cache
 254 *    when it is written and only sample it once every 1 *minute*
 255 */
 256#define LM85_DATA_INTERVAL  (HZ + HZ / 2)
 257#define LM85_CONFIG_INTERVAL  (1 * 60 * HZ)
 258
 259/*
 260 * LM85 can automatically adjust fan speeds based on temperature
 261 * This structure encapsulates an entire Zone config.  There are
 262 * three zones (one for each temperature input) on the lm85
 263 */
 264struct lm85_zone {
 265	s8 limit;	/* Low temp limit */
 266	u8 hyst;	/* Low limit hysteresis. (0-15) */
 267	u8 range;	/* Temp range, encoded */
 268	s8 critical;	/* "All fans ON" temp limit */
 269	u8 max_desired; /*
 270			 * Actual "max" temperature specified.  Preserved
 271			 * to prevent "drift" as other autofan control
 272			 * values change.
 273			 */
 274};
 275
 276struct lm85_autofan {
 277	u8 config;	/* Register value */
 278	u8 min_pwm;	/* Minimum PWM value, encoded */
 279	u8 min_off;	/* Min PWM or OFF below "limit", flag */
 280};
 281
 282/*
 283 * For each registered chip, we need to keep some data in memory.
 284 * The structure is dynamically allocated.
 285 */
 286struct lm85_data {
 287	struct i2c_client *client;
 288	const struct attribute_group *groups[6];
 289	const int *freq_map;
 290	unsigned int freq_map_size;
 291
 292	enum chips type;
 293
 294	bool has_vid5;	/* true if VID5 is configured for ADT7463 or ADT7468 */
 295
 296	struct mutex update_lock;
 297	int valid;		/* !=0 if following fields are valid */
 298	unsigned long last_reading;	/* In jiffies */
 299	unsigned long last_config;	/* In jiffies */
 300
 301	u8 in[8];		/* Register value */
 302	u8 in_max[8];		/* Register value */
 303	u8 in_min[8];		/* Register value */
 304	s8 temp[3];		/* Register value */
 305	s8 temp_min[3];		/* Register value */
 306	s8 temp_max[3];		/* Register value */
 307	u16 fan[4];		/* Register value */
 308	u16 fan_min[4];		/* Register value */
 309	u8 pwm[3];		/* Register value */
 310	u8 pwm_freq[3];		/* Register encoding */
 311	u8 temp_ext[3];		/* Decoded values */
 312	u8 in_ext[8];		/* Decoded values */
 313	u8 vid;			/* Register value */
 314	u8 vrm;			/* VRM version */
 315	u32 alarms;		/* Register encoding, combined */
 316	u8 cfg5;		/* Config Register 5 on ADT7468 */
 317	struct lm85_autofan autofan[3];
 318	struct lm85_zone zone[3];
 319};
 320
 321static int lm85_read_value(struct i2c_client *client, u8 reg)
 322{
 323	int res;
 324
 325	/* What size location is it? */
 326	switch (reg) {
 327	case LM85_REG_FAN(0):  /* Read WORD data */
 328	case LM85_REG_FAN(1):
 329	case LM85_REG_FAN(2):
 330	case LM85_REG_FAN(3):
 331	case LM85_REG_FAN_MIN(0):
 332	case LM85_REG_FAN_MIN(1):
 333	case LM85_REG_FAN_MIN(2):
 334	case LM85_REG_FAN_MIN(3):
 335	case LM85_REG_ALARM1:	/* Read both bytes at once */
 336		res = i2c_smbus_read_byte_data(client, reg) & 0xff;
 337		res |= i2c_smbus_read_byte_data(client, reg + 1) << 8;
 338		break;
 339	default:	/* Read BYTE data */
 340		res = i2c_smbus_read_byte_data(client, reg);
 341		break;
 342	}
 343
 344	return res;
 345}
 346
 347static void lm85_write_value(struct i2c_client *client, u8 reg, int value)
 348{
 349	switch (reg) {
 350	case LM85_REG_FAN(0):  /* Write WORD data */
 351	case LM85_REG_FAN(1):
 352	case LM85_REG_FAN(2):
 353	case LM85_REG_FAN(3):
 354	case LM85_REG_FAN_MIN(0):
 355	case LM85_REG_FAN_MIN(1):
 356	case LM85_REG_FAN_MIN(2):
 357	case LM85_REG_FAN_MIN(3):
 358	/* NOTE: ALARM is read only, so not included here */
 359		i2c_smbus_write_byte_data(client, reg, value & 0xff);
 360		i2c_smbus_write_byte_data(client, reg + 1, value >> 8);
 361		break;
 362	default:	/* Write BYTE data */
 363		i2c_smbus_write_byte_data(client, reg, value);
 364		break;
 365	}
 366}
 367
 368static struct lm85_data *lm85_update_device(struct device *dev)
 369{
 370	struct lm85_data *data = dev_get_drvdata(dev);
 371	struct i2c_client *client = data->client;
 372	int i;
 373
 374	mutex_lock(&data->update_lock);
 375
 376	if (!data->valid ||
 377	     time_after(jiffies, data->last_reading + LM85_DATA_INTERVAL)) {
 378		/* Things that change quickly */
 379		dev_dbg(&client->dev, "Reading sensor values\n");
 380
 381		/*
 382		 * Have to read extended bits first to "freeze" the
 383		 * more significant bits that are read later.
 384		 * There are 2 additional resolution bits per channel and we
 385		 * have room for 4, so we shift them to the left.
 386		 */
 387		if (data->type == adm1027 || data->type == adt7463 ||
 388		    data->type == adt7468) {
 389			int ext1 = lm85_read_value(client,
 390						   ADM1027_REG_EXTEND_ADC1);
 391			int ext2 =  lm85_read_value(client,
 392						    ADM1027_REG_EXTEND_ADC2);
 393			int val = (ext1 << 8) + ext2;
 394
 395			for (i = 0; i <= 4; i++)
 396				data->in_ext[i] =
 397					((val >> (i * 2)) & 0x03) << 2;
 398
 399			for (i = 0; i <= 2; i++)
 400				data->temp_ext[i] =
 401					(val >> ((i + 4) * 2)) & 0x0c;
 402		}
 403
 404		data->vid = lm85_read_value(client, LM85_REG_VID);
 405
 406		for (i = 0; i <= 3; ++i) {
 407			data->in[i] =
 408			    lm85_read_value(client, LM85_REG_IN(i));
 409			data->fan[i] =
 410			    lm85_read_value(client, LM85_REG_FAN(i));
 411		}
 412
 413		if (!data->has_vid5)
 414			data->in[4] = lm85_read_value(client, LM85_REG_IN(4));
 415
 416		if (data->type == adt7468)
 417			data->cfg5 = lm85_read_value(client, ADT7468_REG_CFG5);
 418
 419		for (i = 0; i <= 2; ++i) {
 420			data->temp[i] =
 421			    lm85_read_value(client, LM85_REG_TEMP(i));
 422			data->pwm[i] =
 423			    lm85_read_value(client, LM85_REG_PWM(i));
 424
 425			if (IS_ADT7468_OFF64(data))
 426				data->temp[i] -= 64;
 427		}
 428
 429		data->alarms = lm85_read_value(client, LM85_REG_ALARM1);
 430
 431		if (data->type == emc6d100) {
 432			/* Three more voltage sensors */
 433			for (i = 5; i <= 7; ++i) {
 434				data->in[i] = lm85_read_value(client,
 435							EMC6D100_REG_IN(i));
 436			}
 437			/* More alarm bits */
 438			data->alarms |= lm85_read_value(client,
 439						EMC6D100_REG_ALARM3) << 16;
 440		} else if (data->type == emc6d102 || data->type == emc6d103 ||
 441			   data->type == emc6d103s) {
 442			/*
 443			 * Have to read LSB bits after the MSB ones because
 444			 * the reading of the MSB bits has frozen the
 445			 * LSBs (backward from the ADM1027).
 446			 */
 447			int ext1 = lm85_read_value(client,
 448						   EMC6D102_REG_EXTEND_ADC1);
 449			int ext2 = lm85_read_value(client,
 450						   EMC6D102_REG_EXTEND_ADC2);
 451			int ext3 = lm85_read_value(client,
 452						   EMC6D102_REG_EXTEND_ADC3);
 453			int ext4 = lm85_read_value(client,
 454						   EMC6D102_REG_EXTEND_ADC4);
 455			data->in_ext[0] = ext3 & 0x0f;
 456			data->in_ext[1] = ext4 & 0x0f;
 457			data->in_ext[2] = ext4 >> 4;
 458			data->in_ext[3] = ext3 >> 4;
 459			data->in_ext[4] = ext2 >> 4;
 460
 461			data->temp_ext[0] = ext1 & 0x0f;
 462			data->temp_ext[1] = ext2 & 0x0f;
 463			data->temp_ext[2] = ext1 >> 4;
 464		}
 465
 466		data->last_reading = jiffies;
 467	}  /* last_reading */
 468
 469	if (!data->valid ||
 470	     time_after(jiffies, data->last_config + LM85_CONFIG_INTERVAL)) {
 471		/* Things that don't change often */
 472		dev_dbg(&client->dev, "Reading config values\n");
 473
 474		for (i = 0; i <= 3; ++i) {
 475			data->in_min[i] =
 476			    lm85_read_value(client, LM85_REG_IN_MIN(i));
 477			data->in_max[i] =
 478			    lm85_read_value(client, LM85_REG_IN_MAX(i));
 479			data->fan_min[i] =
 480			    lm85_read_value(client, LM85_REG_FAN_MIN(i));
 481		}
 482
 483		if (!data->has_vid5)  {
 484			data->in_min[4] = lm85_read_value(client,
 485					  LM85_REG_IN_MIN(4));
 486			data->in_max[4] = lm85_read_value(client,
 487					  LM85_REG_IN_MAX(4));
 488		}
 489
 490		if (data->type == emc6d100) {
 491			for (i = 5; i <= 7; ++i) {
 492				data->in_min[i] = lm85_read_value(client,
 493						EMC6D100_REG_IN_MIN(i));
 494				data->in_max[i] = lm85_read_value(client,
 495						EMC6D100_REG_IN_MAX(i));
 496			}
 497		}
 498
 499		for (i = 0; i <= 2; ++i) {
 500			int val;
 501
 502			data->temp_min[i] =
 503			    lm85_read_value(client, LM85_REG_TEMP_MIN(i));
 504			data->temp_max[i] =
 505			    lm85_read_value(client, LM85_REG_TEMP_MAX(i));
 506
 507			data->autofan[i].config =
 508			    lm85_read_value(client, LM85_REG_AFAN_CONFIG(i));
 509			val = lm85_read_value(client, LM85_REG_AFAN_RANGE(i));
 510			data->pwm_freq[i] = val % data->freq_map_size;
 511			data->zone[i].range = val >> 4;
 512			data->autofan[i].min_pwm =
 513			    lm85_read_value(client, LM85_REG_AFAN_MINPWM(i));
 514			data->zone[i].limit =
 515			    lm85_read_value(client, LM85_REG_AFAN_LIMIT(i));
 516			data->zone[i].critical =
 517			    lm85_read_value(client, LM85_REG_AFAN_CRITICAL(i));
 518
 519			if (IS_ADT7468_OFF64(data)) {
 520				data->temp_min[i] -= 64;
 521				data->temp_max[i] -= 64;
 522				data->zone[i].limit -= 64;
 523				data->zone[i].critical -= 64;
 524			}
 525		}
 526
 527		if (data->type != emc6d103s) {
 528			i = lm85_read_value(client, LM85_REG_AFAN_SPIKE1);
 529			data->autofan[0].min_off = (i & 0x20) != 0;
 530			data->autofan[1].min_off = (i & 0x40) != 0;
 531			data->autofan[2].min_off = (i & 0x80) != 0;
 532
 533			i = lm85_read_value(client, LM85_REG_AFAN_HYST1);
 534			data->zone[0].hyst = i >> 4;
 535			data->zone[1].hyst = i & 0x0f;
 536
 537			i = lm85_read_value(client, LM85_REG_AFAN_HYST2);
 538			data->zone[2].hyst = i >> 4;
 539		}
 540
 541		data->last_config = jiffies;
 542	}  /* last_config */
 543
 544	data->valid = 1;
 545
 546	mutex_unlock(&data->update_lock);
 547
 548	return data;
 549}
 550
 551/* 4 Fans */
 552static ssize_t fan_show(struct device *dev, struct device_attribute *attr,
 553			char *buf)
 554{
 555	int nr = to_sensor_dev_attr(attr)->index;
 556	struct lm85_data *data = lm85_update_device(dev);
 557	return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan[nr]));
 558}
 559
 560static ssize_t fan_min_show(struct device *dev, struct device_attribute *attr,
 561			    char *buf)
 562{
 563	int nr = to_sensor_dev_attr(attr)->index;
 564	struct lm85_data *data = lm85_update_device(dev);
 565	return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan_min[nr]));
 566}
 567
 568static ssize_t fan_min_store(struct device *dev,
 569			     struct device_attribute *attr, const char *buf,
 570			     size_t count)
 571{
 572	int nr = to_sensor_dev_attr(attr)->index;
 573	struct lm85_data *data = dev_get_drvdata(dev);
 574	struct i2c_client *client = data->client;
 575	unsigned long val;
 576	int err;
 577
 578	err = kstrtoul(buf, 10, &val);
 579	if (err)
 580		return err;
 581
 582	mutex_lock(&data->update_lock);
 583	data->fan_min[nr] = FAN_TO_REG(val);
 584	lm85_write_value(client, LM85_REG_FAN_MIN(nr), data->fan_min[nr]);
 585	mutex_unlock(&data->update_lock);
 586	return count;
 587}
 588
 589static SENSOR_DEVICE_ATTR_RO(fan1_input, fan, 0);
 590static SENSOR_DEVICE_ATTR_RW(fan1_min, fan_min, 0);
 591static SENSOR_DEVICE_ATTR_RO(fan2_input, fan, 1);
 592static SENSOR_DEVICE_ATTR_RW(fan2_min, fan_min, 1);
 593static SENSOR_DEVICE_ATTR_RO(fan3_input, fan, 2);
 594static SENSOR_DEVICE_ATTR_RW(fan3_min, fan_min, 2);
 595static SENSOR_DEVICE_ATTR_RO(fan4_input, fan, 3);
 596static SENSOR_DEVICE_ATTR_RW(fan4_min, fan_min, 3);
 
 
 597
 598/* vid, vrm, alarms */
 599
 600static ssize_t cpu0_vid_show(struct device *dev,
 601			     struct device_attribute *attr, char *buf)
 602{
 603	struct lm85_data *data = lm85_update_device(dev);
 604	int vid;
 605
 606	if (data->has_vid5) {
 607		/* 6-pin VID (VRM 10) */
 608		vid = vid_from_reg(data->vid & 0x3f, data->vrm);
 609	} else {
 610		/* 5-pin VID (VRM 9) */
 611		vid = vid_from_reg(data->vid & 0x1f, data->vrm);
 612	}
 613
 614	return sprintf(buf, "%d\n", vid);
 615}
 616
 617static DEVICE_ATTR_RO(cpu0_vid);
 618
 619static ssize_t vrm_show(struct device *dev, struct device_attribute *attr,
 620			char *buf)
 621{
 622	struct lm85_data *data = dev_get_drvdata(dev);
 623	return sprintf(buf, "%ld\n", (long) data->vrm);
 624}
 625
 626static ssize_t vrm_store(struct device *dev, struct device_attribute *attr,
 627			 const char *buf, size_t count)
 628{
 629	struct lm85_data *data = dev_get_drvdata(dev);
 630	unsigned long val;
 631	int err;
 632
 633	err = kstrtoul(buf, 10, &val);
 634	if (err)
 635		return err;
 636
 637	if (val > 255)
 638		return -EINVAL;
 639
 640	data->vrm = val;
 641	return count;
 642}
 643
 644static DEVICE_ATTR_RW(vrm);
 645
 646static ssize_t alarms_show(struct device *dev, struct device_attribute *attr,
 647			   char *buf)
 648{
 649	struct lm85_data *data = lm85_update_device(dev);
 650	return sprintf(buf, "%u\n", data->alarms);
 651}
 652
 653static DEVICE_ATTR_RO(alarms);
 654
 655static ssize_t alarm_show(struct device *dev, struct device_attribute *attr,
 656			  char *buf)
 657{
 658	int nr = to_sensor_dev_attr(attr)->index;
 659	struct lm85_data *data = lm85_update_device(dev);
 660	return sprintf(buf, "%u\n", (data->alarms >> nr) & 1);
 661}
 662
 663static SENSOR_DEVICE_ATTR_RO(in0_alarm, alarm, 0);
 664static SENSOR_DEVICE_ATTR_RO(in1_alarm, alarm, 1);
 665static SENSOR_DEVICE_ATTR_RO(in2_alarm, alarm, 2);
 666static SENSOR_DEVICE_ATTR_RO(in3_alarm, alarm, 3);
 667static SENSOR_DEVICE_ATTR_RO(in4_alarm, alarm, 8);
 668static SENSOR_DEVICE_ATTR_RO(in5_alarm, alarm, 18);
 669static SENSOR_DEVICE_ATTR_RO(in6_alarm, alarm, 16);
 670static SENSOR_DEVICE_ATTR_RO(in7_alarm, alarm, 17);
 671static SENSOR_DEVICE_ATTR_RO(temp1_alarm, alarm, 4);
 672static SENSOR_DEVICE_ATTR_RO(temp1_fault, alarm, 14);
 673static SENSOR_DEVICE_ATTR_RO(temp2_alarm, alarm, 5);
 674static SENSOR_DEVICE_ATTR_RO(temp3_alarm, alarm, 6);
 675static SENSOR_DEVICE_ATTR_RO(temp3_fault, alarm, 15);
 676static SENSOR_DEVICE_ATTR_RO(fan1_alarm, alarm, 10);
 677static SENSOR_DEVICE_ATTR_RO(fan2_alarm, alarm, 11);
 678static SENSOR_DEVICE_ATTR_RO(fan3_alarm, alarm, 12);
 679static SENSOR_DEVICE_ATTR_RO(fan4_alarm, alarm, 13);
 680
 681/* pwm */
 682
 683static ssize_t pwm_show(struct device *dev, struct device_attribute *attr,
 684			char *buf)
 685{
 686	int nr = to_sensor_dev_attr(attr)->index;
 687	struct lm85_data *data = lm85_update_device(dev);
 688	return sprintf(buf, "%d\n", PWM_FROM_REG(data->pwm[nr]));
 689}
 690
 691static ssize_t pwm_store(struct device *dev, struct device_attribute *attr,
 692			 const char *buf, size_t count)
 693{
 694	int nr = to_sensor_dev_attr(attr)->index;
 695	struct lm85_data *data = dev_get_drvdata(dev);
 696	struct i2c_client *client = data->client;
 697	unsigned long val;
 698	int err;
 699
 700	err = kstrtoul(buf, 10, &val);
 701	if (err)
 702		return err;
 703
 704	mutex_lock(&data->update_lock);
 705	data->pwm[nr] = PWM_TO_REG(val);
 706	lm85_write_value(client, LM85_REG_PWM(nr), data->pwm[nr]);
 707	mutex_unlock(&data->update_lock);
 708	return count;
 709}
 710
 711static ssize_t pwm_enable_show(struct device *dev,
 712			       struct device_attribute *attr, char *buf)
 713{
 714	int nr = to_sensor_dev_attr(attr)->index;
 715	struct lm85_data *data = lm85_update_device(dev);
 716	int pwm_zone, enable;
 717
 718	pwm_zone = ZONE_FROM_REG(data->autofan[nr].config);
 719	switch (pwm_zone) {
 720	case -1:	/* PWM is always at 100% */
 721		enable = 0;
 722		break;
 723	case 0:		/* PWM is always at 0% */
 724	case -2:	/* PWM responds to manual control */
 725		enable = 1;
 726		break;
 727	default:	/* PWM in automatic mode */
 728		enable = 2;
 729	}
 730	return sprintf(buf, "%d\n", enable);
 731}
 732
 733static ssize_t pwm_enable_store(struct device *dev,
 734				struct device_attribute *attr,
 735				const char *buf, size_t count)
 736{
 737	int nr = to_sensor_dev_attr(attr)->index;
 738	struct lm85_data *data = dev_get_drvdata(dev);
 739	struct i2c_client *client = data->client;
 740	u8 config;
 741	unsigned long val;
 742	int err;
 743
 744	err = kstrtoul(buf, 10, &val);
 745	if (err)
 746		return err;
 747
 748	switch (val) {
 749	case 0:
 750		config = 3;
 751		break;
 752	case 1:
 753		config = 7;
 754		break;
 755	case 2:
 756		/*
 757		 * Here we have to choose arbitrarily one of the 5 possible
 758		 * configurations; I go for the safest
 759		 */
 760		config = 6;
 761		break;
 762	default:
 763		return -EINVAL;
 764	}
 765
 766	mutex_lock(&data->update_lock);
 767	data->autofan[nr].config = lm85_read_value(client,
 768		LM85_REG_AFAN_CONFIG(nr));
 769	data->autofan[nr].config = (data->autofan[nr].config & ~0xe0)
 770		| (config << 5);
 771	lm85_write_value(client, LM85_REG_AFAN_CONFIG(nr),
 772		data->autofan[nr].config);
 773	mutex_unlock(&data->update_lock);
 774	return count;
 775}
 776
 777static ssize_t pwm_freq_show(struct device *dev,
 778			     struct device_attribute *attr, char *buf)
 779{
 780	int nr = to_sensor_dev_attr(attr)->index;
 781	struct lm85_data *data = lm85_update_device(dev);
 782	int freq;
 783
 784	if (IS_ADT7468_HFPWM(data))
 785		freq = 22500;
 786	else
 787		freq = FREQ_FROM_REG(data->freq_map, data->freq_map_size,
 788				     data->pwm_freq[nr]);
 789
 790	return sprintf(buf, "%d\n", freq);
 791}
 792
 793static ssize_t pwm_freq_store(struct device *dev,
 794			      struct device_attribute *attr, const char *buf,
 795			      size_t count)
 796{
 797	int nr = to_sensor_dev_attr(attr)->index;
 798	struct lm85_data *data = dev_get_drvdata(dev);
 799	struct i2c_client *client = data->client;
 800	unsigned long val;
 801	int err;
 802
 803	err = kstrtoul(buf, 10, &val);
 804	if (err)
 805		return err;
 806
 807	mutex_lock(&data->update_lock);
 808	/*
 809	 * The ADT7468 has a special high-frequency PWM output mode,
 810	 * where all PWM outputs are driven by a 22.5 kHz clock.
 811	 * This might confuse the user, but there's not much we can do.
 812	 */
 813	if (data->type == adt7468 && val >= 11300) {	/* High freq. mode */
 814		data->cfg5 &= ~ADT7468_HFPWM;
 815		lm85_write_value(client, ADT7468_REG_CFG5, data->cfg5);
 816	} else {					/* Low freq. mode */
 817		data->pwm_freq[nr] = FREQ_TO_REG(data->freq_map,
 818						 data->freq_map_size, val);
 819		lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
 820				 (data->zone[nr].range << 4)
 821				 | data->pwm_freq[nr]);
 822		if (data->type == adt7468) {
 823			data->cfg5 |= ADT7468_HFPWM;
 824			lm85_write_value(client, ADT7468_REG_CFG5, data->cfg5);
 825		}
 826	}
 827	mutex_unlock(&data->update_lock);
 828	return count;
 829}
 830
 831static SENSOR_DEVICE_ATTR_RW(pwm1, pwm, 0);
 832static SENSOR_DEVICE_ATTR_RW(pwm1_enable, pwm_enable, 0);
 833static SENSOR_DEVICE_ATTR_RW(pwm1_freq, pwm_freq, 0);
 834static SENSOR_DEVICE_ATTR_RW(pwm2, pwm, 1);
 835static SENSOR_DEVICE_ATTR_RW(pwm2_enable, pwm_enable, 1);
 836static SENSOR_DEVICE_ATTR_RW(pwm2_freq, pwm_freq, 1);
 837static SENSOR_DEVICE_ATTR_RW(pwm3, pwm, 2);
 838static SENSOR_DEVICE_ATTR_RW(pwm3_enable, pwm_enable, 2);
 839static SENSOR_DEVICE_ATTR_RW(pwm3_freq, pwm_freq, 2);
 
 
 840
 841/* Voltages */
 842
 843static ssize_t in_show(struct device *dev, struct device_attribute *attr,
 844		       char *buf)
 845{
 846	int nr = to_sensor_dev_attr(attr)->index;
 847	struct lm85_data *data = lm85_update_device(dev);
 848	return sprintf(buf, "%d\n", INSEXT_FROM_REG(nr, data->in[nr],
 849						    data->in_ext[nr]));
 850}
 851
 852static ssize_t in_min_show(struct device *dev, struct device_attribute *attr,
 853			   char *buf)
 854{
 855	int nr = to_sensor_dev_attr(attr)->index;
 856	struct lm85_data *data = lm85_update_device(dev);
 857	return sprintf(buf, "%d\n", INS_FROM_REG(nr, data->in_min[nr]));
 858}
 859
 860static ssize_t in_min_store(struct device *dev, struct device_attribute *attr,
 861			    const char *buf, size_t count)
 862{
 863	int nr = to_sensor_dev_attr(attr)->index;
 864	struct lm85_data *data = dev_get_drvdata(dev);
 865	struct i2c_client *client = data->client;
 866	long val;
 867	int err;
 868
 869	err = kstrtol(buf, 10, &val);
 870	if (err)
 871		return err;
 872
 873	mutex_lock(&data->update_lock);
 874	data->in_min[nr] = INS_TO_REG(nr, val);
 875	lm85_write_value(client, LM85_REG_IN_MIN(nr), data->in_min[nr]);
 876	mutex_unlock(&data->update_lock);
 877	return count;
 878}
 879
 880static ssize_t in_max_show(struct device *dev, struct device_attribute *attr,
 881			   char *buf)
 882{
 883	int nr = to_sensor_dev_attr(attr)->index;
 884	struct lm85_data *data = lm85_update_device(dev);
 885	return sprintf(buf, "%d\n", INS_FROM_REG(nr, data->in_max[nr]));
 886}
 887
 888static ssize_t in_max_store(struct device *dev, struct device_attribute *attr,
 889			    const char *buf, size_t count)
 890{
 891	int nr = to_sensor_dev_attr(attr)->index;
 892	struct lm85_data *data = dev_get_drvdata(dev);
 893	struct i2c_client *client = data->client;
 894	long val;
 895	int err;
 896
 897	err = kstrtol(buf, 10, &val);
 898	if (err)
 899		return err;
 900
 901	mutex_lock(&data->update_lock);
 902	data->in_max[nr] = INS_TO_REG(nr, val);
 903	lm85_write_value(client, LM85_REG_IN_MAX(nr), data->in_max[nr]);
 904	mutex_unlock(&data->update_lock);
 905	return count;
 906}
 907
 908static SENSOR_DEVICE_ATTR_RO(in0_input, in, 0);
 909static SENSOR_DEVICE_ATTR_RW(in0_min, in_min, 0);
 910static SENSOR_DEVICE_ATTR_RW(in0_max, in_max, 0);
 911static SENSOR_DEVICE_ATTR_RO(in1_input, in, 1);
 912static SENSOR_DEVICE_ATTR_RW(in1_min, in_min, 1);
 913static SENSOR_DEVICE_ATTR_RW(in1_max, in_max, 1);
 914static SENSOR_DEVICE_ATTR_RO(in2_input, in, 2);
 915static SENSOR_DEVICE_ATTR_RW(in2_min, in_min, 2);
 916static SENSOR_DEVICE_ATTR_RW(in2_max, in_max, 2);
 917static SENSOR_DEVICE_ATTR_RO(in3_input, in, 3);
 918static SENSOR_DEVICE_ATTR_RW(in3_min, in_min, 3);
 919static SENSOR_DEVICE_ATTR_RW(in3_max, in_max, 3);
 920static SENSOR_DEVICE_ATTR_RO(in4_input, in, 4);
 921static SENSOR_DEVICE_ATTR_RW(in4_min, in_min, 4);
 922static SENSOR_DEVICE_ATTR_RW(in4_max, in_max, 4);
 923static SENSOR_DEVICE_ATTR_RO(in5_input, in, 5);
 924static SENSOR_DEVICE_ATTR_RW(in5_min, in_min, 5);
 925static SENSOR_DEVICE_ATTR_RW(in5_max, in_max, 5);
 926static SENSOR_DEVICE_ATTR_RO(in6_input, in, 6);
 927static SENSOR_DEVICE_ATTR_RW(in6_min, in_min, 6);
 928static SENSOR_DEVICE_ATTR_RW(in6_max, in_max, 6);
 929static SENSOR_DEVICE_ATTR_RO(in7_input, in, 7);
 930static SENSOR_DEVICE_ATTR_RW(in7_min, in_min, 7);
 931static SENSOR_DEVICE_ATTR_RW(in7_max, in_max, 7);
 932
 933/* Temps */
 934
 935static ssize_t temp_show(struct device *dev, struct device_attribute *attr,
 936			 char *buf)
 937{
 938	int nr = to_sensor_dev_attr(attr)->index;
 939	struct lm85_data *data = lm85_update_device(dev);
 940	return sprintf(buf, "%d\n", TEMPEXT_FROM_REG(data->temp[nr],
 941						     data->temp_ext[nr]));
 942}
 943
 944static ssize_t temp_min_show(struct device *dev,
 945			     struct device_attribute *attr, char *buf)
 946{
 947	int nr = to_sensor_dev_attr(attr)->index;
 948	struct lm85_data *data = lm85_update_device(dev);
 949	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_min[nr]));
 950}
 951
 952static ssize_t temp_min_store(struct device *dev,
 953			      struct device_attribute *attr, const char *buf,
 954			      size_t count)
 955{
 956	int nr = to_sensor_dev_attr(attr)->index;
 957	struct lm85_data *data = dev_get_drvdata(dev);
 958	struct i2c_client *client = data->client;
 959	long val;
 960	int err;
 961
 962	err = kstrtol(buf, 10, &val);
 963	if (err)
 964		return err;
 965
 966	if (IS_ADT7468_OFF64(data))
 967		val += 64;
 968
 969	mutex_lock(&data->update_lock);
 970	data->temp_min[nr] = TEMP_TO_REG(val);
 971	lm85_write_value(client, LM85_REG_TEMP_MIN(nr), data->temp_min[nr]);
 972	mutex_unlock(&data->update_lock);
 973	return count;
 974}
 975
 976static ssize_t temp_max_show(struct device *dev,
 977			     struct device_attribute *attr, char *buf)
 978{
 979	int nr = to_sensor_dev_attr(attr)->index;
 980	struct lm85_data *data = lm85_update_device(dev);
 981	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_max[nr]));
 982}
 983
 984static ssize_t temp_max_store(struct device *dev,
 985			      struct device_attribute *attr, const char *buf,
 986			      size_t count)
 987{
 988	int nr = to_sensor_dev_attr(attr)->index;
 989	struct lm85_data *data = dev_get_drvdata(dev);
 990	struct i2c_client *client = data->client;
 991	long val;
 992	int err;
 993
 994	err = kstrtol(buf, 10, &val);
 995	if (err)
 996		return err;
 997
 998	if (IS_ADT7468_OFF64(data))
 999		val += 64;
1000
1001	mutex_lock(&data->update_lock);
1002	data->temp_max[nr] = TEMP_TO_REG(val);
1003	lm85_write_value(client, LM85_REG_TEMP_MAX(nr), data->temp_max[nr]);
1004	mutex_unlock(&data->update_lock);
1005	return count;
1006}
1007
1008static SENSOR_DEVICE_ATTR_RO(temp1_input, temp, 0);
1009static SENSOR_DEVICE_ATTR_RW(temp1_min, temp_min, 0);
1010static SENSOR_DEVICE_ATTR_RW(temp1_max, temp_max, 0);
1011static SENSOR_DEVICE_ATTR_RO(temp2_input, temp, 1);
1012static SENSOR_DEVICE_ATTR_RW(temp2_min, temp_min, 1);
1013static SENSOR_DEVICE_ATTR_RW(temp2_max, temp_max, 1);
1014static SENSOR_DEVICE_ATTR_RO(temp3_input, temp, 2);
1015static SENSOR_DEVICE_ATTR_RW(temp3_min, temp_min, 2);
1016static SENSOR_DEVICE_ATTR_RW(temp3_max, temp_max, 2);
 
 
 
1017
1018/* Automatic PWM control */
1019
1020static ssize_t pwm_auto_channels_show(struct device *dev,
1021				      struct device_attribute *attr,
1022				      char *buf)
1023{
1024	int nr = to_sensor_dev_attr(attr)->index;
1025	struct lm85_data *data = lm85_update_device(dev);
1026	return sprintf(buf, "%d\n", ZONE_FROM_REG(data->autofan[nr].config));
1027}
1028
1029static ssize_t pwm_auto_channels_store(struct device *dev,
1030				       struct device_attribute *attr,
1031				       const char *buf, size_t count)
1032{
1033	int nr = to_sensor_dev_attr(attr)->index;
1034	struct lm85_data *data = dev_get_drvdata(dev);
1035	struct i2c_client *client = data->client;
1036	long val;
1037	int err;
1038
1039	err = kstrtol(buf, 10, &val);
1040	if (err)
1041		return err;
1042
1043	mutex_lock(&data->update_lock);
1044	data->autofan[nr].config = (data->autofan[nr].config & (~0xe0))
1045		| ZONE_TO_REG(val);
1046	lm85_write_value(client, LM85_REG_AFAN_CONFIG(nr),
1047		data->autofan[nr].config);
1048	mutex_unlock(&data->update_lock);
1049	return count;
1050}
1051
1052static ssize_t pwm_auto_pwm_min_show(struct device *dev,
1053				     struct device_attribute *attr, char *buf)
1054{
1055	int nr = to_sensor_dev_attr(attr)->index;
1056	struct lm85_data *data = lm85_update_device(dev);
1057	return sprintf(buf, "%d\n", PWM_FROM_REG(data->autofan[nr].min_pwm));
1058}
1059
1060static ssize_t pwm_auto_pwm_min_store(struct device *dev,
1061				      struct device_attribute *attr,
1062				      const char *buf, size_t count)
1063{
1064	int nr = to_sensor_dev_attr(attr)->index;
1065	struct lm85_data *data = dev_get_drvdata(dev);
1066	struct i2c_client *client = data->client;
1067	unsigned long val;
1068	int err;
1069
1070	err = kstrtoul(buf, 10, &val);
1071	if (err)
1072		return err;
1073
1074	mutex_lock(&data->update_lock);
1075	data->autofan[nr].min_pwm = PWM_TO_REG(val);
1076	lm85_write_value(client, LM85_REG_AFAN_MINPWM(nr),
1077		data->autofan[nr].min_pwm);
1078	mutex_unlock(&data->update_lock);
1079	return count;
1080}
1081
1082static ssize_t pwm_auto_pwm_minctl_show(struct device *dev,
1083					struct device_attribute *attr,
1084					char *buf)
1085{
1086	int nr = to_sensor_dev_attr(attr)->index;
1087	struct lm85_data *data = lm85_update_device(dev);
1088	return sprintf(buf, "%d\n", data->autofan[nr].min_off);
1089}
1090
1091static ssize_t pwm_auto_pwm_minctl_store(struct device *dev,
1092					 struct device_attribute *attr,
1093					 const char *buf, size_t count)
1094{
1095	int nr = to_sensor_dev_attr(attr)->index;
1096	struct lm85_data *data = dev_get_drvdata(dev);
1097	struct i2c_client *client = data->client;
1098	u8 tmp;
1099	long val;
1100	int err;
1101
1102	err = kstrtol(buf, 10, &val);
1103	if (err)
1104		return err;
1105
1106	mutex_lock(&data->update_lock);
1107	data->autofan[nr].min_off = val;
1108	tmp = lm85_read_value(client, LM85_REG_AFAN_SPIKE1);
1109	tmp &= ~(0x20 << nr);
1110	if (data->autofan[nr].min_off)
1111		tmp |= 0x20 << nr;
1112	lm85_write_value(client, LM85_REG_AFAN_SPIKE1, tmp);
1113	mutex_unlock(&data->update_lock);
1114	return count;
1115}
1116
1117static SENSOR_DEVICE_ATTR_RW(pwm1_auto_channels, pwm_auto_channels, 0);
1118static SENSOR_DEVICE_ATTR_RW(pwm1_auto_pwm_min, pwm_auto_pwm_min, 0);
1119static SENSOR_DEVICE_ATTR_RW(pwm1_auto_pwm_minctl, pwm_auto_pwm_minctl, 0);
1120static SENSOR_DEVICE_ATTR_RW(pwm2_auto_channels, pwm_auto_channels, 1);
1121static SENSOR_DEVICE_ATTR_RW(pwm2_auto_pwm_min, pwm_auto_pwm_min, 1);
1122static SENSOR_DEVICE_ATTR_RW(pwm2_auto_pwm_minctl, pwm_auto_pwm_minctl, 1);
1123static SENSOR_DEVICE_ATTR_RW(pwm3_auto_channels, pwm_auto_channels, 2);
1124static SENSOR_DEVICE_ATTR_RW(pwm3_auto_pwm_min, pwm_auto_pwm_min, 2);
1125static SENSOR_DEVICE_ATTR_RW(pwm3_auto_pwm_minctl, pwm_auto_pwm_minctl, 2);
 
 
 
 
 
1126
1127/* Temperature settings for automatic PWM control */
1128
1129static ssize_t temp_auto_temp_off_show(struct device *dev,
1130				       struct device_attribute *attr,
1131				       char *buf)
1132{
1133	int nr = to_sensor_dev_attr(attr)->index;
1134	struct lm85_data *data = lm85_update_device(dev);
1135	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit) -
1136		HYST_FROM_REG(data->zone[nr].hyst));
1137}
1138
1139static ssize_t temp_auto_temp_off_store(struct device *dev,
1140					struct device_attribute *attr,
1141					const char *buf, size_t count)
1142{
1143	int nr = to_sensor_dev_attr(attr)->index;
1144	struct lm85_data *data = dev_get_drvdata(dev);
1145	struct i2c_client *client = data->client;
1146	int min;
1147	long val;
1148	int err;
1149
1150	err = kstrtol(buf, 10, &val);
1151	if (err)
1152		return err;
1153
1154	mutex_lock(&data->update_lock);
1155	min = TEMP_FROM_REG(data->zone[nr].limit);
1156	data->zone[nr].hyst = HYST_TO_REG(min - val);
1157	if (nr == 0 || nr == 1) {
1158		lm85_write_value(client, LM85_REG_AFAN_HYST1,
1159			(data->zone[0].hyst << 4)
1160			| data->zone[1].hyst);
1161	} else {
1162		lm85_write_value(client, LM85_REG_AFAN_HYST2,
1163			(data->zone[2].hyst << 4));
1164	}
1165	mutex_unlock(&data->update_lock);
1166	return count;
1167}
1168
1169static ssize_t temp_auto_temp_min_show(struct device *dev,
1170				       struct device_attribute *attr,
1171				       char *buf)
1172{
1173	int nr = to_sensor_dev_attr(attr)->index;
1174	struct lm85_data *data = lm85_update_device(dev);
1175	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit));
1176}
1177
1178static ssize_t temp_auto_temp_min_store(struct device *dev,
1179					struct device_attribute *attr,
1180					const char *buf, size_t count)
1181{
1182	int nr = to_sensor_dev_attr(attr)->index;
1183	struct lm85_data *data = dev_get_drvdata(dev);
1184	struct i2c_client *client = data->client;
1185	long val;
1186	int err;
1187
1188	err = kstrtol(buf, 10, &val);
1189	if (err)
1190		return err;
1191
1192	mutex_lock(&data->update_lock);
1193	data->zone[nr].limit = TEMP_TO_REG(val);
1194	lm85_write_value(client, LM85_REG_AFAN_LIMIT(nr),
1195		data->zone[nr].limit);
1196
1197/* Update temp_auto_max and temp_auto_range */
1198	data->zone[nr].range = RANGE_TO_REG(
1199		TEMP_FROM_REG(data->zone[nr].max_desired) -
1200		TEMP_FROM_REG(data->zone[nr].limit));
1201	lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
1202		((data->zone[nr].range & 0x0f) << 4)
1203		| data->pwm_freq[nr]);
1204
1205	mutex_unlock(&data->update_lock);
1206	return count;
1207}
1208
1209static ssize_t temp_auto_temp_max_show(struct device *dev,
1210				       struct device_attribute *attr,
1211				       char *buf)
1212{
1213	int nr = to_sensor_dev_attr(attr)->index;
1214	struct lm85_data *data = lm85_update_device(dev);
1215	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit) +
1216		RANGE_FROM_REG(data->zone[nr].range));
1217}
1218
1219static ssize_t temp_auto_temp_max_store(struct device *dev,
1220					struct device_attribute *attr,
1221					const char *buf, size_t count)
1222{
1223	int nr = to_sensor_dev_attr(attr)->index;
1224	struct lm85_data *data = dev_get_drvdata(dev);
1225	struct i2c_client *client = data->client;
1226	int min;
1227	long val;
1228	int err;
1229
1230	err = kstrtol(buf, 10, &val);
1231	if (err)
1232		return err;
1233
1234	mutex_lock(&data->update_lock);
1235	min = TEMP_FROM_REG(data->zone[nr].limit);
1236	data->zone[nr].max_desired = TEMP_TO_REG(val);
1237	data->zone[nr].range = RANGE_TO_REG(
1238		val - min);
1239	lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
1240		((data->zone[nr].range & 0x0f) << 4)
1241		| data->pwm_freq[nr]);
1242	mutex_unlock(&data->update_lock);
1243	return count;
1244}
1245
1246static ssize_t temp_auto_temp_crit_show(struct device *dev,
1247					struct device_attribute *attr,
1248					char *buf)
1249{
1250	int nr = to_sensor_dev_attr(attr)->index;
1251	struct lm85_data *data = lm85_update_device(dev);
1252	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].critical));
1253}
1254
1255static ssize_t temp_auto_temp_crit_store(struct device *dev,
1256					 struct device_attribute *attr,
1257					 const char *buf, size_t count)
1258{
1259	int nr = to_sensor_dev_attr(attr)->index;
1260	struct lm85_data *data = dev_get_drvdata(dev);
1261	struct i2c_client *client = data->client;
1262	long val;
1263	int err;
1264
1265	err = kstrtol(buf, 10, &val);
1266	if (err)
1267		return err;
1268
1269	mutex_lock(&data->update_lock);
1270	data->zone[nr].critical = TEMP_TO_REG(val);
1271	lm85_write_value(client, LM85_REG_AFAN_CRITICAL(nr),
1272		data->zone[nr].critical);
1273	mutex_unlock(&data->update_lock);
1274	return count;
1275}
1276
1277static SENSOR_DEVICE_ATTR_RW(temp1_auto_temp_off, temp_auto_temp_off, 0);
1278static SENSOR_DEVICE_ATTR_RW(temp1_auto_temp_min, temp_auto_temp_min, 0);
1279static SENSOR_DEVICE_ATTR_RW(temp1_auto_temp_max, temp_auto_temp_max, 0);
1280static SENSOR_DEVICE_ATTR_RW(temp1_auto_temp_crit, temp_auto_temp_crit, 0);
1281static SENSOR_DEVICE_ATTR_RW(temp2_auto_temp_off, temp_auto_temp_off, 1);
1282static SENSOR_DEVICE_ATTR_RW(temp2_auto_temp_min, temp_auto_temp_min, 1);
1283static SENSOR_DEVICE_ATTR_RW(temp2_auto_temp_max, temp_auto_temp_max, 1);
1284static SENSOR_DEVICE_ATTR_RW(temp2_auto_temp_crit, temp_auto_temp_crit, 1);
1285static SENSOR_DEVICE_ATTR_RW(temp3_auto_temp_off, temp_auto_temp_off, 2);
1286static SENSOR_DEVICE_ATTR_RW(temp3_auto_temp_min, temp_auto_temp_min, 2);
1287static SENSOR_DEVICE_ATTR_RW(temp3_auto_temp_max, temp_auto_temp_max, 2);
1288static SENSOR_DEVICE_ATTR_RW(temp3_auto_temp_crit, temp_auto_temp_crit, 2);
 
 
 
 
 
1289
1290static struct attribute *lm85_attributes[] = {
1291	&sensor_dev_attr_fan1_input.dev_attr.attr,
1292	&sensor_dev_attr_fan2_input.dev_attr.attr,
1293	&sensor_dev_attr_fan3_input.dev_attr.attr,
1294	&sensor_dev_attr_fan4_input.dev_attr.attr,
1295	&sensor_dev_attr_fan1_min.dev_attr.attr,
1296	&sensor_dev_attr_fan2_min.dev_attr.attr,
1297	&sensor_dev_attr_fan3_min.dev_attr.attr,
1298	&sensor_dev_attr_fan4_min.dev_attr.attr,
1299	&sensor_dev_attr_fan1_alarm.dev_attr.attr,
1300	&sensor_dev_attr_fan2_alarm.dev_attr.attr,
1301	&sensor_dev_attr_fan3_alarm.dev_attr.attr,
1302	&sensor_dev_attr_fan4_alarm.dev_attr.attr,
1303
1304	&sensor_dev_attr_pwm1.dev_attr.attr,
1305	&sensor_dev_attr_pwm2.dev_attr.attr,
1306	&sensor_dev_attr_pwm3.dev_attr.attr,
1307	&sensor_dev_attr_pwm1_enable.dev_attr.attr,
1308	&sensor_dev_attr_pwm2_enable.dev_attr.attr,
1309	&sensor_dev_attr_pwm3_enable.dev_attr.attr,
1310	&sensor_dev_attr_pwm1_freq.dev_attr.attr,
1311	&sensor_dev_attr_pwm2_freq.dev_attr.attr,
1312	&sensor_dev_attr_pwm3_freq.dev_attr.attr,
1313
1314	&sensor_dev_attr_in0_input.dev_attr.attr,
1315	&sensor_dev_attr_in1_input.dev_attr.attr,
1316	&sensor_dev_attr_in2_input.dev_attr.attr,
1317	&sensor_dev_attr_in3_input.dev_attr.attr,
1318	&sensor_dev_attr_in0_min.dev_attr.attr,
1319	&sensor_dev_attr_in1_min.dev_attr.attr,
1320	&sensor_dev_attr_in2_min.dev_attr.attr,
1321	&sensor_dev_attr_in3_min.dev_attr.attr,
1322	&sensor_dev_attr_in0_max.dev_attr.attr,
1323	&sensor_dev_attr_in1_max.dev_attr.attr,
1324	&sensor_dev_attr_in2_max.dev_attr.attr,
1325	&sensor_dev_attr_in3_max.dev_attr.attr,
1326	&sensor_dev_attr_in0_alarm.dev_attr.attr,
1327	&sensor_dev_attr_in1_alarm.dev_attr.attr,
1328	&sensor_dev_attr_in2_alarm.dev_attr.attr,
1329	&sensor_dev_attr_in3_alarm.dev_attr.attr,
1330
1331	&sensor_dev_attr_temp1_input.dev_attr.attr,
1332	&sensor_dev_attr_temp2_input.dev_attr.attr,
1333	&sensor_dev_attr_temp3_input.dev_attr.attr,
1334	&sensor_dev_attr_temp1_min.dev_attr.attr,
1335	&sensor_dev_attr_temp2_min.dev_attr.attr,
1336	&sensor_dev_attr_temp3_min.dev_attr.attr,
1337	&sensor_dev_attr_temp1_max.dev_attr.attr,
1338	&sensor_dev_attr_temp2_max.dev_attr.attr,
1339	&sensor_dev_attr_temp3_max.dev_attr.attr,
1340	&sensor_dev_attr_temp1_alarm.dev_attr.attr,
1341	&sensor_dev_attr_temp2_alarm.dev_attr.attr,
1342	&sensor_dev_attr_temp3_alarm.dev_attr.attr,
1343	&sensor_dev_attr_temp1_fault.dev_attr.attr,
1344	&sensor_dev_attr_temp3_fault.dev_attr.attr,
1345
1346	&sensor_dev_attr_pwm1_auto_channels.dev_attr.attr,
1347	&sensor_dev_attr_pwm2_auto_channels.dev_attr.attr,
1348	&sensor_dev_attr_pwm3_auto_channels.dev_attr.attr,
1349	&sensor_dev_attr_pwm1_auto_pwm_min.dev_attr.attr,
1350	&sensor_dev_attr_pwm2_auto_pwm_min.dev_attr.attr,
1351	&sensor_dev_attr_pwm3_auto_pwm_min.dev_attr.attr,
1352
1353	&sensor_dev_attr_temp1_auto_temp_min.dev_attr.attr,
1354	&sensor_dev_attr_temp2_auto_temp_min.dev_attr.attr,
1355	&sensor_dev_attr_temp3_auto_temp_min.dev_attr.attr,
1356	&sensor_dev_attr_temp1_auto_temp_max.dev_attr.attr,
1357	&sensor_dev_attr_temp2_auto_temp_max.dev_attr.attr,
1358	&sensor_dev_attr_temp3_auto_temp_max.dev_attr.attr,
1359	&sensor_dev_attr_temp1_auto_temp_crit.dev_attr.attr,
1360	&sensor_dev_attr_temp2_auto_temp_crit.dev_attr.attr,
1361	&sensor_dev_attr_temp3_auto_temp_crit.dev_attr.attr,
1362
1363	&dev_attr_vrm.attr,
1364	&dev_attr_cpu0_vid.attr,
1365	&dev_attr_alarms.attr,
1366	NULL
1367};
1368
1369static const struct attribute_group lm85_group = {
1370	.attrs = lm85_attributes,
1371};
1372
1373static struct attribute *lm85_attributes_minctl[] = {
1374	&sensor_dev_attr_pwm1_auto_pwm_minctl.dev_attr.attr,
1375	&sensor_dev_attr_pwm2_auto_pwm_minctl.dev_attr.attr,
1376	&sensor_dev_attr_pwm3_auto_pwm_minctl.dev_attr.attr,
1377	NULL
1378};
1379
1380static const struct attribute_group lm85_group_minctl = {
1381	.attrs = lm85_attributes_minctl,
1382};
1383
1384static struct attribute *lm85_attributes_temp_off[] = {
1385	&sensor_dev_attr_temp1_auto_temp_off.dev_attr.attr,
1386	&sensor_dev_attr_temp2_auto_temp_off.dev_attr.attr,
1387	&sensor_dev_attr_temp3_auto_temp_off.dev_attr.attr,
1388	NULL
1389};
1390
1391static const struct attribute_group lm85_group_temp_off = {
1392	.attrs = lm85_attributes_temp_off,
1393};
1394
1395static struct attribute *lm85_attributes_in4[] = {
1396	&sensor_dev_attr_in4_input.dev_attr.attr,
1397	&sensor_dev_attr_in4_min.dev_attr.attr,
1398	&sensor_dev_attr_in4_max.dev_attr.attr,
1399	&sensor_dev_attr_in4_alarm.dev_attr.attr,
1400	NULL
1401};
1402
1403static const struct attribute_group lm85_group_in4 = {
1404	.attrs = lm85_attributes_in4,
1405};
1406
1407static struct attribute *lm85_attributes_in567[] = {
1408	&sensor_dev_attr_in5_input.dev_attr.attr,
1409	&sensor_dev_attr_in6_input.dev_attr.attr,
1410	&sensor_dev_attr_in7_input.dev_attr.attr,
1411	&sensor_dev_attr_in5_min.dev_attr.attr,
1412	&sensor_dev_attr_in6_min.dev_attr.attr,
1413	&sensor_dev_attr_in7_min.dev_attr.attr,
1414	&sensor_dev_attr_in5_max.dev_attr.attr,
1415	&sensor_dev_attr_in6_max.dev_attr.attr,
1416	&sensor_dev_attr_in7_max.dev_attr.attr,
1417	&sensor_dev_attr_in5_alarm.dev_attr.attr,
1418	&sensor_dev_attr_in6_alarm.dev_attr.attr,
1419	&sensor_dev_attr_in7_alarm.dev_attr.attr,
1420	NULL
1421};
1422
1423static const struct attribute_group lm85_group_in567 = {
1424	.attrs = lm85_attributes_in567,
1425};
1426
1427static void lm85_init_client(struct i2c_client *client)
1428{
1429	int value;
1430
1431	/* Start monitoring if needed */
1432	value = lm85_read_value(client, LM85_REG_CONFIG);
1433	if (!(value & 0x01)) {
1434		dev_info(&client->dev, "Starting monitoring\n");
1435		lm85_write_value(client, LM85_REG_CONFIG, value | 0x01);
1436	}
1437
1438	/* Warn about unusual configuration bits */
1439	if (value & 0x02)
1440		dev_warn(&client->dev, "Device configuration is locked\n");
1441	if (!(value & 0x04))
1442		dev_warn(&client->dev, "Device is not ready\n");
1443}
1444
1445static int lm85_is_fake(struct i2c_client *client)
1446{
1447	/*
1448	 * Differenciate between real LM96000 and Winbond WPCD377I. The latter
1449	 * emulate the former except that it has no hardware monitoring function
1450	 * so the readings are always 0.
1451	 */
1452	int i;
1453	u8 in_temp, fan;
1454
1455	for (i = 0; i < 8; i++) {
1456		in_temp = i2c_smbus_read_byte_data(client, 0x20 + i);
1457		fan = i2c_smbus_read_byte_data(client, 0x28 + i);
1458		if (in_temp != 0x00 || fan != 0xff)
1459			return 0;
1460	}
1461
1462	return 1;
1463}
1464
1465/* Return 0 if detection is successful, -ENODEV otherwise */
1466static int lm85_detect(struct i2c_client *client, struct i2c_board_info *info)
1467{
1468	struct i2c_adapter *adapter = client->adapter;
1469	int address = client->addr;
1470	const char *type_name = NULL;
1471	int company, verstep;
1472
1473	if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) {
1474		/* We need to be able to do byte I/O */
1475		return -ENODEV;
1476	}
1477
1478	/* Determine the chip type */
1479	company = lm85_read_value(client, LM85_REG_COMPANY);
1480	verstep = lm85_read_value(client, LM85_REG_VERSTEP);
1481
1482	dev_dbg(&adapter->dev,
1483		"Detecting device at 0x%02x with COMPANY: 0x%02x and VERSTEP: 0x%02x\n",
1484		address, company, verstep);
1485
1486	if (company == LM85_COMPANY_NATIONAL) {
1487		switch (verstep) {
1488		case LM85_VERSTEP_LM85C:
1489			type_name = "lm85c";
1490			break;
1491		case LM85_VERSTEP_LM85B:
1492			type_name = "lm85b";
1493			break;
1494		case LM85_VERSTEP_LM96000_1:
1495		case LM85_VERSTEP_LM96000_2:
1496			/* Check for Winbond WPCD377I */
1497			if (lm85_is_fake(client)) {
1498				dev_dbg(&adapter->dev,
1499					"Found Winbond WPCD377I, ignoring\n");
1500				return -ENODEV;
1501			}
1502			type_name = "lm96000";
1503			break;
1504		}
1505	} else if (company == LM85_COMPANY_ANALOG_DEV) {
1506		switch (verstep) {
1507		case LM85_VERSTEP_ADM1027:
1508			type_name = "adm1027";
1509			break;
1510		case LM85_VERSTEP_ADT7463:
1511		case LM85_VERSTEP_ADT7463C:
1512			type_name = "adt7463";
1513			break;
1514		case LM85_VERSTEP_ADT7468_1:
1515		case LM85_VERSTEP_ADT7468_2:
1516			type_name = "adt7468";
1517			break;
1518		}
1519	} else if (company == LM85_COMPANY_SMSC) {
1520		switch (verstep) {
1521		case LM85_VERSTEP_EMC6D100_A0:
1522		case LM85_VERSTEP_EMC6D100_A1:
1523			/* Note: we can't tell a '100 from a '101 */
1524			type_name = "emc6d100";
1525			break;
1526		case LM85_VERSTEP_EMC6D102:
1527			type_name = "emc6d102";
1528			break;
1529		case LM85_VERSTEP_EMC6D103_A0:
1530		case LM85_VERSTEP_EMC6D103_A1:
1531			type_name = "emc6d103";
1532			break;
1533		case LM85_VERSTEP_EMC6D103S:
1534			type_name = "emc6d103s";
1535			break;
1536		}
1537	}
1538
1539	if (!type_name)
1540		return -ENODEV;
1541
1542	strlcpy(info->type, type_name, I2C_NAME_SIZE);
1543
1544	return 0;
1545}
1546
1547static int lm85_probe(struct i2c_client *client, const struct i2c_device_id *id)
1548{
1549	struct device *dev = &client->dev;
1550	struct device *hwmon_dev;
1551	struct lm85_data *data;
1552	int idx = 0;
1553
1554	data = devm_kzalloc(dev, sizeof(struct lm85_data), GFP_KERNEL);
1555	if (!data)
1556		return -ENOMEM;
1557
1558	data->client = client;
1559	if (client->dev.of_node)
1560		data->type = (enum chips)of_device_get_match_data(&client->dev);
1561	else
1562		data->type = id->driver_data;
1563	mutex_init(&data->update_lock);
1564
1565	/* Fill in the chip specific driver values */
1566	switch (data->type) {
1567	case adm1027:
1568	case adt7463:
1569	case adt7468:
1570	case emc6d100:
1571	case emc6d102:
1572	case emc6d103:
1573	case emc6d103s:
1574		data->freq_map = adm1027_freq_map;
1575		data->freq_map_size = ARRAY_SIZE(adm1027_freq_map);
1576		break;
1577	case lm96000:
1578		data->freq_map = lm96000_freq_map;
1579		data->freq_map_size = ARRAY_SIZE(lm96000_freq_map);
1580		break;
1581	default:
1582		data->freq_map = lm85_freq_map;
1583		data->freq_map_size = ARRAY_SIZE(lm85_freq_map);
1584	}
1585
1586	/* Set the VRM version */
1587	data->vrm = vid_which_vrm();
1588
1589	/* Initialize the LM85 chip */
1590	lm85_init_client(client);
1591
1592	/* sysfs hooks */
1593	data->groups[idx++] = &lm85_group;
1594
1595	/* minctl and temp_off exist on all chips except emc6d103s */
1596	if (data->type != emc6d103s) {
1597		data->groups[idx++] = &lm85_group_minctl;
1598		data->groups[idx++] = &lm85_group_temp_off;
1599	}
1600
1601	/*
1602	 * The ADT7463/68 have an optional VRM 10 mode where pin 21 is used
1603	 * as a sixth digital VID input rather than an analog input.
1604	 */
1605	if (data->type == adt7463 || data->type == adt7468) {
1606		u8 vid = lm85_read_value(client, LM85_REG_VID);
1607		if (vid & 0x80)
1608			data->has_vid5 = true;
1609	}
1610
1611	if (!data->has_vid5)
1612		data->groups[idx++] = &lm85_group_in4;
1613
1614	/* The EMC6D100 has 3 additional voltage inputs */
1615	if (data->type == emc6d100)
1616		data->groups[idx++] = &lm85_group_in567;
1617
1618	hwmon_dev = devm_hwmon_device_register_with_groups(dev, client->name,
1619							   data, data->groups);
1620	return PTR_ERR_OR_ZERO(hwmon_dev);
1621}
1622
1623static const struct i2c_device_id lm85_id[] = {
1624	{ "adm1027", adm1027 },
1625	{ "adt7463", adt7463 },
1626	{ "adt7468", adt7468 },
1627	{ "lm85", lm85 },
1628	{ "lm85b", lm85 },
1629	{ "lm85c", lm85 },
1630	{ "lm96000", lm96000 },
1631	{ "emc6d100", emc6d100 },
1632	{ "emc6d101", emc6d100 },
1633	{ "emc6d102", emc6d102 },
1634	{ "emc6d103", emc6d103 },
1635	{ "emc6d103s", emc6d103s },
1636	{ }
1637};
1638MODULE_DEVICE_TABLE(i2c, lm85_id);
1639
1640static const struct of_device_id __maybe_unused lm85_of_match[] = {
1641	{
1642		.compatible = "adi,adm1027",
1643		.data = (void *)adm1027
1644	},
1645	{
1646		.compatible = "adi,adt7463",
1647		.data = (void *)adt7463
1648	},
1649	{
1650		.compatible = "adi,adt7468",
1651		.data = (void *)adt7468
1652	},
1653	{
1654		.compatible = "national,lm85",
1655		.data = (void *)lm85
1656	},
1657	{
1658		.compatible = "national,lm85b",
1659		.data = (void *)lm85
1660	},
1661	{
1662		.compatible = "national,lm85c",
1663		.data = (void *)lm85
1664	},
1665	{
1666		.compatible = "ti,lm96000",
1667		.data = (void *)lm96000
1668	},
1669	{
1670		.compatible = "smsc,emc6d100",
1671		.data = (void *)emc6d100
1672	},
1673	{
1674		.compatible = "smsc,emc6d101",
1675		.data = (void *)emc6d100
1676	},
1677	{
1678		.compatible = "smsc,emc6d102",
1679		.data = (void *)emc6d102
1680	},
1681	{
1682		.compatible = "smsc,emc6d103",
1683		.data = (void *)emc6d103
1684	},
1685	{
1686		.compatible = "smsc,emc6d103s",
1687		.data = (void *)emc6d103s
1688	},
1689	{ },
1690};
1691MODULE_DEVICE_TABLE(of, lm85_of_match);
1692
1693static struct i2c_driver lm85_driver = {
1694	.class		= I2C_CLASS_HWMON,
1695	.driver = {
1696		.name   = "lm85",
1697		.of_match_table = of_match_ptr(lm85_of_match),
1698	},
1699	.probe		= lm85_probe,
1700	.id_table	= lm85_id,
1701	.detect		= lm85_detect,
1702	.address_list	= normal_i2c,
1703};
1704
1705module_i2c_driver(lm85_driver);
1706
1707MODULE_LICENSE("GPL");
1708MODULE_AUTHOR("Philip Pokorny <ppokorny@penguincomputing.com>, "
1709	"Margit Schubert-While <margitsw@t-online.de>, "
1710	"Justin Thiessen <jthiessen@penguincomputing.com>");
1711MODULE_DESCRIPTION("LM85-B, LM85-C driver");
v4.17
 
   1/*
   2 * lm85.c - Part of lm_sensors, Linux kernel modules for hardware
   3 *	    monitoring
   4 * Copyright (c) 1998, 1999  Frodo Looijaard <frodol@dds.nl>
   5 * Copyright (c) 2002, 2003  Philip Pokorny <ppokorny@penguincomputing.com>
   6 * Copyright (c) 2003        Margit Schubert-While <margitsw@t-online.de>
   7 * Copyright (c) 2004        Justin Thiessen <jthiessen@penguincomputing.com>
   8 * Copyright (C) 2007--2014  Jean Delvare <jdelvare@suse.de>
   9 *
  10 * Chip details at	      <http://www.national.com/ds/LM/LM85.pdf>
  11 *
  12 * This program is free software; you can redistribute it and/or modify
  13 * it under the terms of the GNU General Public License as published by
  14 * the Free Software Foundation; either version 2 of the License, or
  15 * (at your option) any later version.
  16 *
  17 * This program is distributed in the hope that it will be useful,
  18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  20 * GNU General Public License for more details.
  21 *
  22 * You should have received a copy of the GNU General Public License
  23 * along with this program; if not, write to the Free Software
  24 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  25 */
  26
  27#include <linux/module.h>
  28#include <linux/of_device.h>
  29#include <linux/init.h>
  30#include <linux/slab.h>
  31#include <linux/jiffies.h>
  32#include <linux/i2c.h>
  33#include <linux/hwmon.h>
  34#include <linux/hwmon-vid.h>
  35#include <linux/hwmon-sysfs.h>
  36#include <linux/err.h>
  37#include <linux/mutex.h>
  38#include <linux/util_macros.h>
  39
  40/* Addresses to scan */
  41static const unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, I2C_CLIENT_END };
  42
  43enum chips {
  44	lm85,
  45	adm1027, adt7463, adt7468,
  46	emc6d100, emc6d102, emc6d103, emc6d103s
  47};
  48
  49/* The LM85 registers */
  50
  51#define LM85_REG_IN(nr)			(0x20 + (nr))
  52#define LM85_REG_IN_MIN(nr)		(0x44 + (nr) * 2)
  53#define LM85_REG_IN_MAX(nr)		(0x45 + (nr) * 2)
  54
  55#define LM85_REG_TEMP(nr)		(0x25 + (nr))
  56#define LM85_REG_TEMP_MIN(nr)		(0x4e + (nr) * 2)
  57#define LM85_REG_TEMP_MAX(nr)		(0x4f + (nr) * 2)
  58
  59/* Fan speeds are LSB, MSB (2 bytes) */
  60#define LM85_REG_FAN(nr)		(0x28 + (nr) * 2)
  61#define LM85_REG_FAN_MIN(nr)		(0x54 + (nr) * 2)
  62
  63#define LM85_REG_PWM(nr)		(0x30 + (nr))
  64
  65#define LM85_REG_COMPANY		0x3e
  66#define LM85_REG_VERSTEP		0x3f
  67
  68#define ADT7468_REG_CFG5		0x7c
  69#define ADT7468_OFF64			(1 << 0)
  70#define ADT7468_HFPWM			(1 << 1)
  71#define IS_ADT7468_OFF64(data)		\
  72	((data)->type == adt7468 && !((data)->cfg5 & ADT7468_OFF64))
  73#define IS_ADT7468_HFPWM(data)		\
  74	((data)->type == adt7468 && !((data)->cfg5 & ADT7468_HFPWM))
  75
  76/* These are the recognized values for the above regs */
  77#define LM85_COMPANY_NATIONAL		0x01
  78#define LM85_COMPANY_ANALOG_DEV		0x41
  79#define LM85_COMPANY_SMSC		0x5c
  80#define LM85_VERSTEP_LM85C		0x60
  81#define LM85_VERSTEP_LM85B		0x62
  82#define LM85_VERSTEP_LM96000_1		0x68
  83#define LM85_VERSTEP_LM96000_2		0x69
  84#define LM85_VERSTEP_ADM1027		0x60
  85#define LM85_VERSTEP_ADT7463		0x62
  86#define LM85_VERSTEP_ADT7463C		0x6A
  87#define LM85_VERSTEP_ADT7468_1		0x71
  88#define LM85_VERSTEP_ADT7468_2		0x72
  89#define LM85_VERSTEP_EMC6D100_A0        0x60
  90#define LM85_VERSTEP_EMC6D100_A1        0x61
  91#define LM85_VERSTEP_EMC6D102		0x65
  92#define LM85_VERSTEP_EMC6D103_A0	0x68
  93#define LM85_VERSTEP_EMC6D103_A1	0x69
  94#define LM85_VERSTEP_EMC6D103S		0x6A	/* Also known as EMC6D103:A2 */
  95
  96#define LM85_REG_CONFIG			0x40
  97
  98#define LM85_REG_ALARM1			0x41
  99#define LM85_REG_ALARM2			0x42
 100
 101#define LM85_REG_VID			0x43
 102
 103/* Automated FAN control */
 104#define LM85_REG_AFAN_CONFIG(nr)	(0x5c + (nr))
 105#define LM85_REG_AFAN_RANGE(nr)		(0x5f + (nr))
 106#define LM85_REG_AFAN_SPIKE1		0x62
 107#define LM85_REG_AFAN_MINPWM(nr)	(0x64 + (nr))
 108#define LM85_REG_AFAN_LIMIT(nr)		(0x67 + (nr))
 109#define LM85_REG_AFAN_CRITICAL(nr)	(0x6a + (nr))
 110#define LM85_REG_AFAN_HYST1		0x6d
 111#define LM85_REG_AFAN_HYST2		0x6e
 112
 113#define ADM1027_REG_EXTEND_ADC1		0x76
 114#define ADM1027_REG_EXTEND_ADC2		0x77
 115
 116#define EMC6D100_REG_ALARM3             0x7d
 117/* IN5, IN6 and IN7 */
 118#define EMC6D100_REG_IN(nr)             (0x70 + ((nr) - 5))
 119#define EMC6D100_REG_IN_MIN(nr)         (0x73 + ((nr) - 5) * 2)
 120#define EMC6D100_REG_IN_MAX(nr)         (0x74 + ((nr) - 5) * 2)
 121#define EMC6D102_REG_EXTEND_ADC1	0x85
 122#define EMC6D102_REG_EXTEND_ADC2	0x86
 123#define EMC6D102_REG_EXTEND_ADC3	0x87
 124#define EMC6D102_REG_EXTEND_ADC4	0x88
 125
 126/*
 127 * Conversions. Rounding and limit checking is only done on the TO_REG
 128 * variants. Note that you should be a bit careful with which arguments
 129 * these macros are called: arguments may be evaluated more than once.
 130 */
 131
 132/* IN are scaled according to built-in resistors */
 133static const int lm85_scaling[] = {  /* .001 Volts */
 134	2500, 2250, 3300, 5000, 12000,
 135	3300, 1500, 1800 /*EMC6D100*/
 136};
 137#define SCALE(val, from, to)	(((val) * (to) + ((from) / 2)) / (from))
 138
 139#define INS_TO_REG(n, val)	\
 140		SCALE(clamp_val(val, 0, 255 * lm85_scaling[n] / 192), \
 141		      lm85_scaling[n], 192)
 142
 143#define INSEXT_FROM_REG(n, val, ext)	\
 144		SCALE(((val) << 4) + (ext), 192 << 4, lm85_scaling[n])
 145
 146#define INS_FROM_REG(n, val)	SCALE((val), 192, lm85_scaling[n])
 147
 148/* FAN speed is measured using 90kHz clock */
 149static inline u16 FAN_TO_REG(unsigned long val)
 150{
 151	if (!val)
 152		return 0xffff;
 153	return clamp_val(5400000 / val, 1, 0xfffe);
 154}
 155#define FAN_FROM_REG(val)	((val) == 0 ? -1 : (val) == 0xffff ? 0 : \
 156				 5400000 / (val))
 157
 158/* Temperature is reported in .001 degC increments */
 159#define TEMP_TO_REG(val)	\
 160		DIV_ROUND_CLOSEST(clamp_val((val), -127000, 127000), 1000)
 161#define TEMPEXT_FROM_REG(val, ext)	\
 162		SCALE(((val) << 4) + (ext), 16, 1000)
 163#define TEMP_FROM_REG(val)	((val) * 1000)
 164
 165#define PWM_TO_REG(val)			clamp_val(val, 0, 255)
 166#define PWM_FROM_REG(val)		(val)
 167
 168
 169/*
 170 * ZONEs have the following parameters:
 171 *    Limit (low) temp,           1. degC
 172 *    Hysteresis (below limit),   1. degC (0-15)
 173 *    Range of speed control,     .1 degC (2-80)
 174 *    Critical (high) temp,       1. degC
 175 *
 176 * FAN PWMs have the following parameters:
 177 *    Reference Zone,                 1, 2, 3, etc.
 178 *    Spinup time,                    .05 sec
 179 *    PWM value at limit/low temp,    1 count
 180 *    PWM Frequency,                  1. Hz
 181 *    PWM is Min or OFF below limit,  flag
 182 *    Invert PWM output,              flag
 183 *
 184 * Some chips filter the temp, others the fan.
 185 *    Filter constant (or disabled)   .1 seconds
 186 */
 187
 188/* These are the zone temperature range encodings in .001 degree C */
 189static const int lm85_range_map[] = {
 190	2000, 2500, 3300, 4000, 5000, 6600, 8000, 10000,
 191	13300, 16000, 20000, 26600, 32000, 40000, 53300, 80000
 192};
 193
 194static int RANGE_TO_REG(long range)
 195{
 196	return find_closest(range, lm85_range_map, ARRAY_SIZE(lm85_range_map));
 197}
 198#define RANGE_FROM_REG(val)	lm85_range_map[(val) & 0x0f]
 199
 200/* These are the PWM frequency encodings */
 201static const int lm85_freq_map[8] = { /* 1 Hz */
 202	10, 15, 23, 30, 38, 47, 61, 94
 203};
 204static const int adm1027_freq_map[8] = { /* 1 Hz */
 
 
 
 
 
 
 205	11, 15, 22, 29, 35, 44, 59, 88
 206};
 207#define FREQ_MAP_LEN	8
 208
 209static int FREQ_TO_REG(const int *map,
 210		       unsigned int map_size, unsigned long freq)
 211{
 212	return find_closest(freq, map, map_size);
 213}
 214
 215static int FREQ_FROM_REG(const int *map, u8 reg)
 216{
 217	return map[reg & 0x07];
 218}
 219
 220/*
 221 * Since we can't use strings, I'm abusing these numbers
 222 *   to stand in for the following meanings:
 223 *      1 -- PWM responds to Zone 1
 224 *      2 -- PWM responds to Zone 2
 225 *      3 -- PWM responds to Zone 3
 226 *     23 -- PWM responds to the higher temp of Zone 2 or 3
 227 *    123 -- PWM responds to highest of Zone 1, 2, or 3
 228 *      0 -- PWM is always at 0% (ie, off)
 229 *     -1 -- PWM is always at 100%
 230 *     -2 -- PWM responds to manual control
 231 */
 232
 233static const int lm85_zone_map[] = { 1, 2, 3, -1, 0, 23, 123, -2 };
 234#define ZONE_FROM_REG(val)	lm85_zone_map[(val) >> 5]
 235
 236static int ZONE_TO_REG(int zone)
 237{
 238	int i;
 239
 240	for (i = 0; i <= 7; ++i)
 241		if (zone == lm85_zone_map[i])
 242			break;
 243	if (i > 7)   /* Not found. */
 244		i = 3;  /* Always 100% */
 245	return i << 5;
 246}
 247
 248#define HYST_TO_REG(val)	clamp_val(((val) + 500) / 1000, 0, 15)
 249#define HYST_FROM_REG(val)	((val) * 1000)
 250
 251/*
 252 * Chip sampling rates
 253 *
 254 * Some sensors are not updated more frequently than once per second
 255 *    so it doesn't make sense to read them more often than that.
 256 *    We cache the results and return the saved data if the driver
 257 *    is called again before a second has elapsed.
 258 *
 259 * Also, there is significant configuration data for this chip
 260 *    given the automatic PWM fan control that is possible.  There
 261 *    are about 47 bytes of config data to only 22 bytes of actual
 262 *    readings.  So, we keep the config data up to date in the cache
 263 *    when it is written and only sample it once every 1 *minute*
 264 */
 265#define LM85_DATA_INTERVAL  (HZ + HZ / 2)
 266#define LM85_CONFIG_INTERVAL  (1 * 60 * HZ)
 267
 268/*
 269 * LM85 can automatically adjust fan speeds based on temperature
 270 * This structure encapsulates an entire Zone config.  There are
 271 * three zones (one for each temperature input) on the lm85
 272 */
 273struct lm85_zone {
 274	s8 limit;	/* Low temp limit */
 275	u8 hyst;	/* Low limit hysteresis. (0-15) */
 276	u8 range;	/* Temp range, encoded */
 277	s8 critical;	/* "All fans ON" temp limit */
 278	u8 max_desired; /*
 279			 * Actual "max" temperature specified.  Preserved
 280			 * to prevent "drift" as other autofan control
 281			 * values change.
 282			 */
 283};
 284
 285struct lm85_autofan {
 286	u8 config;	/* Register value */
 287	u8 min_pwm;	/* Minimum PWM value, encoded */
 288	u8 min_off;	/* Min PWM or OFF below "limit", flag */
 289};
 290
 291/*
 292 * For each registered chip, we need to keep some data in memory.
 293 * The structure is dynamically allocated.
 294 */
 295struct lm85_data {
 296	struct i2c_client *client;
 297	const struct attribute_group *groups[6];
 298	const int *freq_map;
 
 
 299	enum chips type;
 300
 301	bool has_vid5;	/* true if VID5 is configured for ADT7463 or ADT7468 */
 302
 303	struct mutex update_lock;
 304	int valid;		/* !=0 if following fields are valid */
 305	unsigned long last_reading;	/* In jiffies */
 306	unsigned long last_config;	/* In jiffies */
 307
 308	u8 in[8];		/* Register value */
 309	u8 in_max[8];		/* Register value */
 310	u8 in_min[8];		/* Register value */
 311	s8 temp[3];		/* Register value */
 312	s8 temp_min[3];		/* Register value */
 313	s8 temp_max[3];		/* Register value */
 314	u16 fan[4];		/* Register value */
 315	u16 fan_min[4];		/* Register value */
 316	u8 pwm[3];		/* Register value */
 317	u8 pwm_freq[3];		/* Register encoding */
 318	u8 temp_ext[3];		/* Decoded values */
 319	u8 in_ext[8];		/* Decoded values */
 320	u8 vid;			/* Register value */
 321	u8 vrm;			/* VRM version */
 322	u32 alarms;		/* Register encoding, combined */
 323	u8 cfg5;		/* Config Register 5 on ADT7468 */
 324	struct lm85_autofan autofan[3];
 325	struct lm85_zone zone[3];
 326};
 327
 328static int lm85_read_value(struct i2c_client *client, u8 reg)
 329{
 330	int res;
 331
 332	/* What size location is it? */
 333	switch (reg) {
 334	case LM85_REG_FAN(0):  /* Read WORD data */
 335	case LM85_REG_FAN(1):
 336	case LM85_REG_FAN(2):
 337	case LM85_REG_FAN(3):
 338	case LM85_REG_FAN_MIN(0):
 339	case LM85_REG_FAN_MIN(1):
 340	case LM85_REG_FAN_MIN(2):
 341	case LM85_REG_FAN_MIN(3):
 342	case LM85_REG_ALARM1:	/* Read both bytes at once */
 343		res = i2c_smbus_read_byte_data(client, reg) & 0xff;
 344		res |= i2c_smbus_read_byte_data(client, reg + 1) << 8;
 345		break;
 346	default:	/* Read BYTE data */
 347		res = i2c_smbus_read_byte_data(client, reg);
 348		break;
 349	}
 350
 351	return res;
 352}
 353
 354static void lm85_write_value(struct i2c_client *client, u8 reg, int value)
 355{
 356	switch (reg) {
 357	case LM85_REG_FAN(0):  /* Write WORD data */
 358	case LM85_REG_FAN(1):
 359	case LM85_REG_FAN(2):
 360	case LM85_REG_FAN(3):
 361	case LM85_REG_FAN_MIN(0):
 362	case LM85_REG_FAN_MIN(1):
 363	case LM85_REG_FAN_MIN(2):
 364	case LM85_REG_FAN_MIN(3):
 365	/* NOTE: ALARM is read only, so not included here */
 366		i2c_smbus_write_byte_data(client, reg, value & 0xff);
 367		i2c_smbus_write_byte_data(client, reg + 1, value >> 8);
 368		break;
 369	default:	/* Write BYTE data */
 370		i2c_smbus_write_byte_data(client, reg, value);
 371		break;
 372	}
 373}
 374
 375static struct lm85_data *lm85_update_device(struct device *dev)
 376{
 377	struct lm85_data *data = dev_get_drvdata(dev);
 378	struct i2c_client *client = data->client;
 379	int i;
 380
 381	mutex_lock(&data->update_lock);
 382
 383	if (!data->valid ||
 384	     time_after(jiffies, data->last_reading + LM85_DATA_INTERVAL)) {
 385		/* Things that change quickly */
 386		dev_dbg(&client->dev, "Reading sensor values\n");
 387
 388		/*
 389		 * Have to read extended bits first to "freeze" the
 390		 * more significant bits that are read later.
 391		 * There are 2 additional resolution bits per channel and we
 392		 * have room for 4, so we shift them to the left.
 393		 */
 394		if (data->type == adm1027 || data->type == adt7463 ||
 395		    data->type == adt7468) {
 396			int ext1 = lm85_read_value(client,
 397						   ADM1027_REG_EXTEND_ADC1);
 398			int ext2 =  lm85_read_value(client,
 399						    ADM1027_REG_EXTEND_ADC2);
 400			int val = (ext1 << 8) + ext2;
 401
 402			for (i = 0; i <= 4; i++)
 403				data->in_ext[i] =
 404					((val >> (i * 2)) & 0x03) << 2;
 405
 406			for (i = 0; i <= 2; i++)
 407				data->temp_ext[i] =
 408					(val >> ((i + 4) * 2)) & 0x0c;
 409		}
 410
 411		data->vid = lm85_read_value(client, LM85_REG_VID);
 412
 413		for (i = 0; i <= 3; ++i) {
 414			data->in[i] =
 415			    lm85_read_value(client, LM85_REG_IN(i));
 416			data->fan[i] =
 417			    lm85_read_value(client, LM85_REG_FAN(i));
 418		}
 419
 420		if (!data->has_vid5)
 421			data->in[4] = lm85_read_value(client, LM85_REG_IN(4));
 422
 423		if (data->type == adt7468)
 424			data->cfg5 = lm85_read_value(client, ADT7468_REG_CFG5);
 425
 426		for (i = 0; i <= 2; ++i) {
 427			data->temp[i] =
 428			    lm85_read_value(client, LM85_REG_TEMP(i));
 429			data->pwm[i] =
 430			    lm85_read_value(client, LM85_REG_PWM(i));
 431
 432			if (IS_ADT7468_OFF64(data))
 433				data->temp[i] -= 64;
 434		}
 435
 436		data->alarms = lm85_read_value(client, LM85_REG_ALARM1);
 437
 438		if (data->type == emc6d100) {
 439			/* Three more voltage sensors */
 440			for (i = 5; i <= 7; ++i) {
 441				data->in[i] = lm85_read_value(client,
 442							EMC6D100_REG_IN(i));
 443			}
 444			/* More alarm bits */
 445			data->alarms |= lm85_read_value(client,
 446						EMC6D100_REG_ALARM3) << 16;
 447		} else if (data->type == emc6d102 || data->type == emc6d103 ||
 448			   data->type == emc6d103s) {
 449			/*
 450			 * Have to read LSB bits after the MSB ones because
 451			 * the reading of the MSB bits has frozen the
 452			 * LSBs (backward from the ADM1027).
 453			 */
 454			int ext1 = lm85_read_value(client,
 455						   EMC6D102_REG_EXTEND_ADC1);
 456			int ext2 = lm85_read_value(client,
 457						   EMC6D102_REG_EXTEND_ADC2);
 458			int ext3 = lm85_read_value(client,
 459						   EMC6D102_REG_EXTEND_ADC3);
 460			int ext4 = lm85_read_value(client,
 461						   EMC6D102_REG_EXTEND_ADC4);
 462			data->in_ext[0] = ext3 & 0x0f;
 463			data->in_ext[1] = ext4 & 0x0f;
 464			data->in_ext[2] = ext4 >> 4;
 465			data->in_ext[3] = ext3 >> 4;
 466			data->in_ext[4] = ext2 >> 4;
 467
 468			data->temp_ext[0] = ext1 & 0x0f;
 469			data->temp_ext[1] = ext2 & 0x0f;
 470			data->temp_ext[2] = ext1 >> 4;
 471		}
 472
 473		data->last_reading = jiffies;
 474	}  /* last_reading */
 475
 476	if (!data->valid ||
 477	     time_after(jiffies, data->last_config + LM85_CONFIG_INTERVAL)) {
 478		/* Things that don't change often */
 479		dev_dbg(&client->dev, "Reading config values\n");
 480
 481		for (i = 0; i <= 3; ++i) {
 482			data->in_min[i] =
 483			    lm85_read_value(client, LM85_REG_IN_MIN(i));
 484			data->in_max[i] =
 485			    lm85_read_value(client, LM85_REG_IN_MAX(i));
 486			data->fan_min[i] =
 487			    lm85_read_value(client, LM85_REG_FAN_MIN(i));
 488		}
 489
 490		if (!data->has_vid5)  {
 491			data->in_min[4] = lm85_read_value(client,
 492					  LM85_REG_IN_MIN(4));
 493			data->in_max[4] = lm85_read_value(client,
 494					  LM85_REG_IN_MAX(4));
 495		}
 496
 497		if (data->type == emc6d100) {
 498			for (i = 5; i <= 7; ++i) {
 499				data->in_min[i] = lm85_read_value(client,
 500						EMC6D100_REG_IN_MIN(i));
 501				data->in_max[i] = lm85_read_value(client,
 502						EMC6D100_REG_IN_MAX(i));
 503			}
 504		}
 505
 506		for (i = 0; i <= 2; ++i) {
 507			int val;
 508
 509			data->temp_min[i] =
 510			    lm85_read_value(client, LM85_REG_TEMP_MIN(i));
 511			data->temp_max[i] =
 512			    lm85_read_value(client, LM85_REG_TEMP_MAX(i));
 513
 514			data->autofan[i].config =
 515			    lm85_read_value(client, LM85_REG_AFAN_CONFIG(i));
 516			val = lm85_read_value(client, LM85_REG_AFAN_RANGE(i));
 517			data->pwm_freq[i] = val & 0x07;
 518			data->zone[i].range = val >> 4;
 519			data->autofan[i].min_pwm =
 520			    lm85_read_value(client, LM85_REG_AFAN_MINPWM(i));
 521			data->zone[i].limit =
 522			    lm85_read_value(client, LM85_REG_AFAN_LIMIT(i));
 523			data->zone[i].critical =
 524			    lm85_read_value(client, LM85_REG_AFAN_CRITICAL(i));
 525
 526			if (IS_ADT7468_OFF64(data)) {
 527				data->temp_min[i] -= 64;
 528				data->temp_max[i] -= 64;
 529				data->zone[i].limit -= 64;
 530				data->zone[i].critical -= 64;
 531			}
 532		}
 533
 534		if (data->type != emc6d103s) {
 535			i = lm85_read_value(client, LM85_REG_AFAN_SPIKE1);
 536			data->autofan[0].min_off = (i & 0x20) != 0;
 537			data->autofan[1].min_off = (i & 0x40) != 0;
 538			data->autofan[2].min_off = (i & 0x80) != 0;
 539
 540			i = lm85_read_value(client, LM85_REG_AFAN_HYST1);
 541			data->zone[0].hyst = i >> 4;
 542			data->zone[1].hyst = i & 0x0f;
 543
 544			i = lm85_read_value(client, LM85_REG_AFAN_HYST2);
 545			data->zone[2].hyst = i >> 4;
 546		}
 547
 548		data->last_config = jiffies;
 549	}  /* last_config */
 550
 551	data->valid = 1;
 552
 553	mutex_unlock(&data->update_lock);
 554
 555	return data;
 556}
 557
 558/* 4 Fans */
 559static ssize_t show_fan(struct device *dev, struct device_attribute *attr,
 560		char *buf)
 561{
 562	int nr = to_sensor_dev_attr(attr)->index;
 563	struct lm85_data *data = lm85_update_device(dev);
 564	return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan[nr]));
 565}
 566
 567static ssize_t show_fan_min(struct device *dev, struct device_attribute *attr,
 568		char *buf)
 569{
 570	int nr = to_sensor_dev_attr(attr)->index;
 571	struct lm85_data *data = lm85_update_device(dev);
 572	return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan_min[nr]));
 573}
 574
 575static ssize_t set_fan_min(struct device *dev, struct device_attribute *attr,
 576		const char *buf, size_t count)
 
 577{
 578	int nr = to_sensor_dev_attr(attr)->index;
 579	struct lm85_data *data = dev_get_drvdata(dev);
 580	struct i2c_client *client = data->client;
 581	unsigned long val;
 582	int err;
 583
 584	err = kstrtoul(buf, 10, &val);
 585	if (err)
 586		return err;
 587
 588	mutex_lock(&data->update_lock);
 589	data->fan_min[nr] = FAN_TO_REG(val);
 590	lm85_write_value(client, LM85_REG_FAN_MIN(nr), data->fan_min[nr]);
 591	mutex_unlock(&data->update_lock);
 592	return count;
 593}
 594
 595#define show_fan_offset(offset)						\
 596static SENSOR_DEVICE_ATTR(fan##offset##_input, S_IRUGO,			\
 597		show_fan, NULL, offset - 1);				\
 598static SENSOR_DEVICE_ATTR(fan##offset##_min, S_IRUGO | S_IWUSR,		\
 599		show_fan_min, set_fan_min, offset - 1)
 600
 601show_fan_offset(1);
 602show_fan_offset(2);
 603show_fan_offset(3);
 604show_fan_offset(4);
 605
 606/* vid, vrm, alarms */
 607
 608static ssize_t cpu0_vid_show(struct device *dev,
 609			     struct device_attribute *attr, char *buf)
 610{
 611	struct lm85_data *data = lm85_update_device(dev);
 612	int vid;
 613
 614	if (data->has_vid5) {
 615		/* 6-pin VID (VRM 10) */
 616		vid = vid_from_reg(data->vid & 0x3f, data->vrm);
 617	} else {
 618		/* 5-pin VID (VRM 9) */
 619		vid = vid_from_reg(data->vid & 0x1f, data->vrm);
 620	}
 621
 622	return sprintf(buf, "%d\n", vid);
 623}
 624
 625static DEVICE_ATTR_RO(cpu0_vid);
 626
 627static ssize_t vrm_show(struct device *dev, struct device_attribute *attr,
 628			char *buf)
 629{
 630	struct lm85_data *data = dev_get_drvdata(dev);
 631	return sprintf(buf, "%ld\n", (long) data->vrm);
 632}
 633
 634static ssize_t vrm_store(struct device *dev, struct device_attribute *attr,
 635			 const char *buf, size_t count)
 636{
 637	struct lm85_data *data = dev_get_drvdata(dev);
 638	unsigned long val;
 639	int err;
 640
 641	err = kstrtoul(buf, 10, &val);
 642	if (err)
 643		return err;
 644
 645	if (val > 255)
 646		return -EINVAL;
 647
 648	data->vrm = val;
 649	return count;
 650}
 651
 652static DEVICE_ATTR_RW(vrm);
 653
 654static ssize_t alarms_show(struct device *dev, struct device_attribute *attr,
 655			   char *buf)
 656{
 657	struct lm85_data *data = lm85_update_device(dev);
 658	return sprintf(buf, "%u\n", data->alarms);
 659}
 660
 661static DEVICE_ATTR_RO(alarms);
 662
 663static ssize_t show_alarm(struct device *dev, struct device_attribute *attr,
 664		char *buf)
 665{
 666	int nr = to_sensor_dev_attr(attr)->index;
 667	struct lm85_data *data = lm85_update_device(dev);
 668	return sprintf(buf, "%u\n", (data->alarms >> nr) & 1);
 669}
 670
 671static SENSOR_DEVICE_ATTR(in0_alarm, S_IRUGO, show_alarm, NULL, 0);
 672static SENSOR_DEVICE_ATTR(in1_alarm, S_IRUGO, show_alarm, NULL, 1);
 673static SENSOR_DEVICE_ATTR(in2_alarm, S_IRUGO, show_alarm, NULL, 2);
 674static SENSOR_DEVICE_ATTR(in3_alarm, S_IRUGO, show_alarm, NULL, 3);
 675static SENSOR_DEVICE_ATTR(in4_alarm, S_IRUGO, show_alarm, NULL, 8);
 676static SENSOR_DEVICE_ATTR(in5_alarm, S_IRUGO, show_alarm, NULL, 18);
 677static SENSOR_DEVICE_ATTR(in6_alarm, S_IRUGO, show_alarm, NULL, 16);
 678static SENSOR_DEVICE_ATTR(in7_alarm, S_IRUGO, show_alarm, NULL, 17);
 679static SENSOR_DEVICE_ATTR(temp1_alarm, S_IRUGO, show_alarm, NULL, 4);
 680static SENSOR_DEVICE_ATTR(temp1_fault, S_IRUGO, show_alarm, NULL, 14);
 681static SENSOR_DEVICE_ATTR(temp2_alarm, S_IRUGO, show_alarm, NULL, 5);
 682static SENSOR_DEVICE_ATTR(temp3_alarm, S_IRUGO, show_alarm, NULL, 6);
 683static SENSOR_DEVICE_ATTR(temp3_fault, S_IRUGO, show_alarm, NULL, 15);
 684static SENSOR_DEVICE_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL, 10);
 685static SENSOR_DEVICE_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL, 11);
 686static SENSOR_DEVICE_ATTR(fan3_alarm, S_IRUGO, show_alarm, NULL, 12);
 687static SENSOR_DEVICE_ATTR(fan4_alarm, S_IRUGO, show_alarm, NULL, 13);
 688
 689/* pwm */
 690
 691static ssize_t show_pwm(struct device *dev, struct device_attribute *attr,
 692		char *buf)
 693{
 694	int nr = to_sensor_dev_attr(attr)->index;
 695	struct lm85_data *data = lm85_update_device(dev);
 696	return sprintf(buf, "%d\n", PWM_FROM_REG(data->pwm[nr]));
 697}
 698
 699static ssize_t set_pwm(struct device *dev, struct device_attribute *attr,
 700		const char *buf, size_t count)
 701{
 702	int nr = to_sensor_dev_attr(attr)->index;
 703	struct lm85_data *data = dev_get_drvdata(dev);
 704	struct i2c_client *client = data->client;
 705	unsigned long val;
 706	int err;
 707
 708	err = kstrtoul(buf, 10, &val);
 709	if (err)
 710		return err;
 711
 712	mutex_lock(&data->update_lock);
 713	data->pwm[nr] = PWM_TO_REG(val);
 714	lm85_write_value(client, LM85_REG_PWM(nr), data->pwm[nr]);
 715	mutex_unlock(&data->update_lock);
 716	return count;
 717}
 718
 719static ssize_t show_pwm_enable(struct device *dev, struct device_attribute
 720		*attr, char *buf)
 721{
 722	int nr = to_sensor_dev_attr(attr)->index;
 723	struct lm85_data *data = lm85_update_device(dev);
 724	int pwm_zone, enable;
 725
 726	pwm_zone = ZONE_FROM_REG(data->autofan[nr].config);
 727	switch (pwm_zone) {
 728	case -1:	/* PWM is always at 100% */
 729		enable = 0;
 730		break;
 731	case 0:		/* PWM is always at 0% */
 732	case -2:	/* PWM responds to manual control */
 733		enable = 1;
 734		break;
 735	default:	/* PWM in automatic mode */
 736		enable = 2;
 737	}
 738	return sprintf(buf, "%d\n", enable);
 739}
 740
 741static ssize_t set_pwm_enable(struct device *dev, struct device_attribute
 742		*attr, const char *buf, size_t count)
 
 743{
 744	int nr = to_sensor_dev_attr(attr)->index;
 745	struct lm85_data *data = dev_get_drvdata(dev);
 746	struct i2c_client *client = data->client;
 747	u8 config;
 748	unsigned long val;
 749	int err;
 750
 751	err = kstrtoul(buf, 10, &val);
 752	if (err)
 753		return err;
 754
 755	switch (val) {
 756	case 0:
 757		config = 3;
 758		break;
 759	case 1:
 760		config = 7;
 761		break;
 762	case 2:
 763		/*
 764		 * Here we have to choose arbitrarily one of the 5 possible
 765		 * configurations; I go for the safest
 766		 */
 767		config = 6;
 768		break;
 769	default:
 770		return -EINVAL;
 771	}
 772
 773	mutex_lock(&data->update_lock);
 774	data->autofan[nr].config = lm85_read_value(client,
 775		LM85_REG_AFAN_CONFIG(nr));
 776	data->autofan[nr].config = (data->autofan[nr].config & ~0xe0)
 777		| (config << 5);
 778	lm85_write_value(client, LM85_REG_AFAN_CONFIG(nr),
 779		data->autofan[nr].config);
 780	mutex_unlock(&data->update_lock);
 781	return count;
 782}
 783
 784static ssize_t show_pwm_freq(struct device *dev,
 785		struct device_attribute *attr, char *buf)
 786{
 787	int nr = to_sensor_dev_attr(attr)->index;
 788	struct lm85_data *data = lm85_update_device(dev);
 789	int freq;
 790
 791	if (IS_ADT7468_HFPWM(data))
 792		freq = 22500;
 793	else
 794		freq = FREQ_FROM_REG(data->freq_map, data->pwm_freq[nr]);
 
 795
 796	return sprintf(buf, "%d\n", freq);
 797}
 798
 799static ssize_t set_pwm_freq(struct device *dev,
 800		struct device_attribute *attr, const char *buf, size_t count)
 
 801{
 802	int nr = to_sensor_dev_attr(attr)->index;
 803	struct lm85_data *data = dev_get_drvdata(dev);
 804	struct i2c_client *client = data->client;
 805	unsigned long val;
 806	int err;
 807
 808	err = kstrtoul(buf, 10, &val);
 809	if (err)
 810		return err;
 811
 812	mutex_lock(&data->update_lock);
 813	/*
 814	 * The ADT7468 has a special high-frequency PWM output mode,
 815	 * where all PWM outputs are driven by a 22.5 kHz clock.
 816	 * This might confuse the user, but there's not much we can do.
 817	 */
 818	if (data->type == adt7468 && val >= 11300) {	/* High freq. mode */
 819		data->cfg5 &= ~ADT7468_HFPWM;
 820		lm85_write_value(client, ADT7468_REG_CFG5, data->cfg5);
 821	} else {					/* Low freq. mode */
 822		data->pwm_freq[nr] = FREQ_TO_REG(data->freq_map,
 823						 FREQ_MAP_LEN, val);
 824		lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
 825				 (data->zone[nr].range << 4)
 826				 | data->pwm_freq[nr]);
 827		if (data->type == adt7468) {
 828			data->cfg5 |= ADT7468_HFPWM;
 829			lm85_write_value(client, ADT7468_REG_CFG5, data->cfg5);
 830		}
 831	}
 832	mutex_unlock(&data->update_lock);
 833	return count;
 834}
 835
 836#define show_pwm_reg(offset)						\
 837static SENSOR_DEVICE_ATTR(pwm##offset, S_IRUGO | S_IWUSR,		\
 838		show_pwm, set_pwm, offset - 1);				\
 839static SENSOR_DEVICE_ATTR(pwm##offset##_enable, S_IRUGO | S_IWUSR,	\
 840		show_pwm_enable, set_pwm_enable, offset - 1);		\
 841static SENSOR_DEVICE_ATTR(pwm##offset##_freq, S_IRUGO | S_IWUSR,	\
 842		show_pwm_freq, set_pwm_freq, offset - 1)
 843
 844show_pwm_reg(1);
 845show_pwm_reg(2);
 846show_pwm_reg(3);
 847
 848/* Voltages */
 849
 850static ssize_t show_in(struct device *dev, struct device_attribute *attr,
 851		char *buf)
 852{
 853	int nr = to_sensor_dev_attr(attr)->index;
 854	struct lm85_data *data = lm85_update_device(dev);
 855	return sprintf(buf, "%d\n", INSEXT_FROM_REG(nr, data->in[nr],
 856						    data->in_ext[nr]));
 857}
 858
 859static ssize_t show_in_min(struct device *dev, struct device_attribute *attr,
 860		char *buf)
 861{
 862	int nr = to_sensor_dev_attr(attr)->index;
 863	struct lm85_data *data = lm85_update_device(dev);
 864	return sprintf(buf, "%d\n", INS_FROM_REG(nr, data->in_min[nr]));
 865}
 866
 867static ssize_t set_in_min(struct device *dev, struct device_attribute *attr,
 868		const char *buf, size_t count)
 869{
 870	int nr = to_sensor_dev_attr(attr)->index;
 871	struct lm85_data *data = dev_get_drvdata(dev);
 872	struct i2c_client *client = data->client;
 873	long val;
 874	int err;
 875
 876	err = kstrtol(buf, 10, &val);
 877	if (err)
 878		return err;
 879
 880	mutex_lock(&data->update_lock);
 881	data->in_min[nr] = INS_TO_REG(nr, val);
 882	lm85_write_value(client, LM85_REG_IN_MIN(nr), data->in_min[nr]);
 883	mutex_unlock(&data->update_lock);
 884	return count;
 885}
 886
 887static ssize_t show_in_max(struct device *dev, struct device_attribute *attr,
 888		char *buf)
 889{
 890	int nr = to_sensor_dev_attr(attr)->index;
 891	struct lm85_data *data = lm85_update_device(dev);
 892	return sprintf(buf, "%d\n", INS_FROM_REG(nr, data->in_max[nr]));
 893}
 894
 895static ssize_t set_in_max(struct device *dev, struct device_attribute *attr,
 896		const char *buf, size_t count)
 897{
 898	int nr = to_sensor_dev_attr(attr)->index;
 899	struct lm85_data *data = dev_get_drvdata(dev);
 900	struct i2c_client *client = data->client;
 901	long val;
 902	int err;
 903
 904	err = kstrtol(buf, 10, &val);
 905	if (err)
 906		return err;
 907
 908	mutex_lock(&data->update_lock);
 909	data->in_max[nr] = INS_TO_REG(nr, val);
 910	lm85_write_value(client, LM85_REG_IN_MAX(nr), data->in_max[nr]);
 911	mutex_unlock(&data->update_lock);
 912	return count;
 913}
 914
 915#define show_in_reg(offset)						\
 916static SENSOR_DEVICE_ATTR(in##offset##_input, S_IRUGO,			\
 917		show_in, NULL, offset);					\
 918static SENSOR_DEVICE_ATTR(in##offset##_min, S_IRUGO | S_IWUSR,		\
 919		show_in_min, set_in_min, offset);			\
 920static SENSOR_DEVICE_ATTR(in##offset##_max, S_IRUGO | S_IWUSR,		\
 921		show_in_max, set_in_max, offset)
 922
 923show_in_reg(0);
 924show_in_reg(1);
 925show_in_reg(2);
 926show_in_reg(3);
 927show_in_reg(4);
 928show_in_reg(5);
 929show_in_reg(6);
 930show_in_reg(7);
 
 
 
 
 
 
 
 
 931
 932/* Temps */
 933
 934static ssize_t show_temp(struct device *dev, struct device_attribute *attr,
 935		char *buf)
 936{
 937	int nr = to_sensor_dev_attr(attr)->index;
 938	struct lm85_data *data = lm85_update_device(dev);
 939	return sprintf(buf, "%d\n", TEMPEXT_FROM_REG(data->temp[nr],
 940						     data->temp_ext[nr]));
 941}
 942
 943static ssize_t show_temp_min(struct device *dev, struct device_attribute *attr,
 944		char *buf)
 945{
 946	int nr = to_sensor_dev_attr(attr)->index;
 947	struct lm85_data *data = lm85_update_device(dev);
 948	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_min[nr]));
 949}
 950
 951static ssize_t set_temp_min(struct device *dev, struct device_attribute *attr,
 952		const char *buf, size_t count)
 
 953{
 954	int nr = to_sensor_dev_attr(attr)->index;
 955	struct lm85_data *data = dev_get_drvdata(dev);
 956	struct i2c_client *client = data->client;
 957	long val;
 958	int err;
 959
 960	err = kstrtol(buf, 10, &val);
 961	if (err)
 962		return err;
 963
 964	if (IS_ADT7468_OFF64(data))
 965		val += 64;
 966
 967	mutex_lock(&data->update_lock);
 968	data->temp_min[nr] = TEMP_TO_REG(val);
 969	lm85_write_value(client, LM85_REG_TEMP_MIN(nr), data->temp_min[nr]);
 970	mutex_unlock(&data->update_lock);
 971	return count;
 972}
 973
 974static ssize_t show_temp_max(struct device *dev, struct device_attribute *attr,
 975		char *buf)
 976{
 977	int nr = to_sensor_dev_attr(attr)->index;
 978	struct lm85_data *data = lm85_update_device(dev);
 979	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_max[nr]));
 980}
 981
 982static ssize_t set_temp_max(struct device *dev, struct device_attribute *attr,
 983		const char *buf, size_t count)
 
 984{
 985	int nr = to_sensor_dev_attr(attr)->index;
 986	struct lm85_data *data = dev_get_drvdata(dev);
 987	struct i2c_client *client = data->client;
 988	long val;
 989	int err;
 990
 991	err = kstrtol(buf, 10, &val);
 992	if (err)
 993		return err;
 994
 995	if (IS_ADT7468_OFF64(data))
 996		val += 64;
 997
 998	mutex_lock(&data->update_lock);
 999	data->temp_max[nr] = TEMP_TO_REG(val);
1000	lm85_write_value(client, LM85_REG_TEMP_MAX(nr), data->temp_max[nr]);
1001	mutex_unlock(&data->update_lock);
1002	return count;
1003}
1004
1005#define show_temp_reg(offset)						\
1006static SENSOR_DEVICE_ATTR(temp##offset##_input, S_IRUGO,		\
1007		show_temp, NULL, offset - 1);				\
1008static SENSOR_DEVICE_ATTR(temp##offset##_min, S_IRUGO | S_IWUSR,	\
1009		show_temp_min, set_temp_min, offset - 1);		\
1010static SENSOR_DEVICE_ATTR(temp##offset##_max, S_IRUGO | S_IWUSR,	\
1011		show_temp_max, set_temp_max, offset - 1);
1012
1013show_temp_reg(1);
1014show_temp_reg(2);
1015show_temp_reg(3);
1016
1017
1018/* Automatic PWM control */
1019
1020static ssize_t show_pwm_auto_channels(struct device *dev,
1021		struct device_attribute *attr, char *buf)
 
1022{
1023	int nr = to_sensor_dev_attr(attr)->index;
1024	struct lm85_data *data = lm85_update_device(dev);
1025	return sprintf(buf, "%d\n", ZONE_FROM_REG(data->autofan[nr].config));
1026}
1027
1028static ssize_t set_pwm_auto_channels(struct device *dev,
1029		struct device_attribute *attr, const char *buf, size_t count)
 
1030{
1031	int nr = to_sensor_dev_attr(attr)->index;
1032	struct lm85_data *data = dev_get_drvdata(dev);
1033	struct i2c_client *client = data->client;
1034	long val;
1035	int err;
1036
1037	err = kstrtol(buf, 10, &val);
1038	if (err)
1039		return err;
1040
1041	mutex_lock(&data->update_lock);
1042	data->autofan[nr].config = (data->autofan[nr].config & (~0xe0))
1043		| ZONE_TO_REG(val);
1044	lm85_write_value(client, LM85_REG_AFAN_CONFIG(nr),
1045		data->autofan[nr].config);
1046	mutex_unlock(&data->update_lock);
1047	return count;
1048}
1049
1050static ssize_t show_pwm_auto_pwm_min(struct device *dev,
1051		struct device_attribute *attr, char *buf)
1052{
1053	int nr = to_sensor_dev_attr(attr)->index;
1054	struct lm85_data *data = lm85_update_device(dev);
1055	return sprintf(buf, "%d\n", PWM_FROM_REG(data->autofan[nr].min_pwm));
1056}
1057
1058static ssize_t set_pwm_auto_pwm_min(struct device *dev,
1059		struct device_attribute *attr, const char *buf, size_t count)
 
1060{
1061	int nr = to_sensor_dev_attr(attr)->index;
1062	struct lm85_data *data = dev_get_drvdata(dev);
1063	struct i2c_client *client = data->client;
1064	unsigned long val;
1065	int err;
1066
1067	err = kstrtoul(buf, 10, &val);
1068	if (err)
1069		return err;
1070
1071	mutex_lock(&data->update_lock);
1072	data->autofan[nr].min_pwm = PWM_TO_REG(val);
1073	lm85_write_value(client, LM85_REG_AFAN_MINPWM(nr),
1074		data->autofan[nr].min_pwm);
1075	mutex_unlock(&data->update_lock);
1076	return count;
1077}
1078
1079static ssize_t show_pwm_auto_pwm_minctl(struct device *dev,
1080		struct device_attribute *attr, char *buf)
 
1081{
1082	int nr = to_sensor_dev_attr(attr)->index;
1083	struct lm85_data *data = lm85_update_device(dev);
1084	return sprintf(buf, "%d\n", data->autofan[nr].min_off);
1085}
1086
1087static ssize_t set_pwm_auto_pwm_minctl(struct device *dev,
1088		struct device_attribute *attr, const char *buf, size_t count)
 
1089{
1090	int nr = to_sensor_dev_attr(attr)->index;
1091	struct lm85_data *data = dev_get_drvdata(dev);
1092	struct i2c_client *client = data->client;
1093	u8 tmp;
1094	long val;
1095	int err;
1096
1097	err = kstrtol(buf, 10, &val);
1098	if (err)
1099		return err;
1100
1101	mutex_lock(&data->update_lock);
1102	data->autofan[nr].min_off = val;
1103	tmp = lm85_read_value(client, LM85_REG_AFAN_SPIKE1);
1104	tmp &= ~(0x20 << nr);
1105	if (data->autofan[nr].min_off)
1106		tmp |= 0x20 << nr;
1107	lm85_write_value(client, LM85_REG_AFAN_SPIKE1, tmp);
1108	mutex_unlock(&data->update_lock);
1109	return count;
1110}
1111
1112#define pwm_auto(offset)						\
1113static SENSOR_DEVICE_ATTR(pwm##offset##_auto_channels,			\
1114		S_IRUGO | S_IWUSR, show_pwm_auto_channels,		\
1115		set_pwm_auto_channels, offset - 1);			\
1116static SENSOR_DEVICE_ATTR(pwm##offset##_auto_pwm_min,			\
1117		S_IRUGO | S_IWUSR, show_pwm_auto_pwm_min,		\
1118		set_pwm_auto_pwm_min, offset - 1);			\
1119static SENSOR_DEVICE_ATTR(pwm##offset##_auto_pwm_minctl,		\
1120		S_IRUGO | S_IWUSR, show_pwm_auto_pwm_minctl,		\
1121		set_pwm_auto_pwm_minctl, offset - 1)
1122
1123pwm_auto(1);
1124pwm_auto(2);
1125pwm_auto(3);
1126
1127/* Temperature settings for automatic PWM control */
1128
1129static ssize_t show_temp_auto_temp_off(struct device *dev,
1130		struct device_attribute *attr, char *buf)
 
1131{
1132	int nr = to_sensor_dev_attr(attr)->index;
1133	struct lm85_data *data = lm85_update_device(dev);
1134	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit) -
1135		HYST_FROM_REG(data->zone[nr].hyst));
1136}
1137
1138static ssize_t set_temp_auto_temp_off(struct device *dev,
1139		struct device_attribute *attr, const char *buf, size_t count)
 
1140{
1141	int nr = to_sensor_dev_attr(attr)->index;
1142	struct lm85_data *data = dev_get_drvdata(dev);
1143	struct i2c_client *client = data->client;
1144	int min;
1145	long val;
1146	int err;
1147
1148	err = kstrtol(buf, 10, &val);
1149	if (err)
1150		return err;
1151
1152	mutex_lock(&data->update_lock);
1153	min = TEMP_FROM_REG(data->zone[nr].limit);
1154	data->zone[nr].hyst = HYST_TO_REG(min - val);
1155	if (nr == 0 || nr == 1) {
1156		lm85_write_value(client, LM85_REG_AFAN_HYST1,
1157			(data->zone[0].hyst << 4)
1158			| data->zone[1].hyst);
1159	} else {
1160		lm85_write_value(client, LM85_REG_AFAN_HYST2,
1161			(data->zone[2].hyst << 4));
1162	}
1163	mutex_unlock(&data->update_lock);
1164	return count;
1165}
1166
1167static ssize_t show_temp_auto_temp_min(struct device *dev,
1168		struct device_attribute *attr, char *buf)
 
1169{
1170	int nr = to_sensor_dev_attr(attr)->index;
1171	struct lm85_data *data = lm85_update_device(dev);
1172	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit));
1173}
1174
1175static ssize_t set_temp_auto_temp_min(struct device *dev,
1176		struct device_attribute *attr, const char *buf, size_t count)
 
1177{
1178	int nr = to_sensor_dev_attr(attr)->index;
1179	struct lm85_data *data = dev_get_drvdata(dev);
1180	struct i2c_client *client = data->client;
1181	long val;
1182	int err;
1183
1184	err = kstrtol(buf, 10, &val);
1185	if (err)
1186		return err;
1187
1188	mutex_lock(&data->update_lock);
1189	data->zone[nr].limit = TEMP_TO_REG(val);
1190	lm85_write_value(client, LM85_REG_AFAN_LIMIT(nr),
1191		data->zone[nr].limit);
1192
1193/* Update temp_auto_max and temp_auto_range */
1194	data->zone[nr].range = RANGE_TO_REG(
1195		TEMP_FROM_REG(data->zone[nr].max_desired) -
1196		TEMP_FROM_REG(data->zone[nr].limit));
1197	lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
1198		((data->zone[nr].range & 0x0f) << 4)
1199		| (data->pwm_freq[nr] & 0x07));
1200
1201	mutex_unlock(&data->update_lock);
1202	return count;
1203}
1204
1205static ssize_t show_temp_auto_temp_max(struct device *dev,
1206		struct device_attribute *attr, char *buf)
 
1207{
1208	int nr = to_sensor_dev_attr(attr)->index;
1209	struct lm85_data *data = lm85_update_device(dev);
1210	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit) +
1211		RANGE_FROM_REG(data->zone[nr].range));
1212}
1213
1214static ssize_t set_temp_auto_temp_max(struct device *dev,
1215		struct device_attribute *attr, const char *buf, size_t count)
 
1216{
1217	int nr = to_sensor_dev_attr(attr)->index;
1218	struct lm85_data *data = dev_get_drvdata(dev);
1219	struct i2c_client *client = data->client;
1220	int min;
1221	long val;
1222	int err;
1223
1224	err = kstrtol(buf, 10, &val);
1225	if (err)
1226		return err;
1227
1228	mutex_lock(&data->update_lock);
1229	min = TEMP_FROM_REG(data->zone[nr].limit);
1230	data->zone[nr].max_desired = TEMP_TO_REG(val);
1231	data->zone[nr].range = RANGE_TO_REG(
1232		val - min);
1233	lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
1234		((data->zone[nr].range & 0x0f) << 4)
1235		| (data->pwm_freq[nr] & 0x07));
1236	mutex_unlock(&data->update_lock);
1237	return count;
1238}
1239
1240static ssize_t show_temp_auto_temp_crit(struct device *dev,
1241		struct device_attribute *attr, char *buf)
 
1242{
1243	int nr = to_sensor_dev_attr(attr)->index;
1244	struct lm85_data *data = lm85_update_device(dev);
1245	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].critical));
1246}
1247
1248static ssize_t set_temp_auto_temp_crit(struct device *dev,
1249		struct device_attribute *attr, const char *buf, size_t count)
 
1250{
1251	int nr = to_sensor_dev_attr(attr)->index;
1252	struct lm85_data *data = dev_get_drvdata(dev);
1253	struct i2c_client *client = data->client;
1254	long val;
1255	int err;
1256
1257	err = kstrtol(buf, 10, &val);
1258	if (err)
1259		return err;
1260
1261	mutex_lock(&data->update_lock);
1262	data->zone[nr].critical = TEMP_TO_REG(val);
1263	lm85_write_value(client, LM85_REG_AFAN_CRITICAL(nr),
1264		data->zone[nr].critical);
1265	mutex_unlock(&data->update_lock);
1266	return count;
1267}
1268
1269#define temp_auto(offset)						\
1270static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_off,			\
1271		S_IRUGO | S_IWUSR, show_temp_auto_temp_off,		\
1272		set_temp_auto_temp_off, offset - 1);			\
1273static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_min,			\
1274		S_IRUGO | S_IWUSR, show_temp_auto_temp_min,		\
1275		set_temp_auto_temp_min, offset - 1);			\
1276static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_max,			\
1277		S_IRUGO | S_IWUSR, show_temp_auto_temp_max,		\
1278		set_temp_auto_temp_max, offset - 1);			\
1279static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_crit,		\
1280		S_IRUGO | S_IWUSR, show_temp_auto_temp_crit,		\
1281		set_temp_auto_temp_crit, offset - 1);
1282
1283temp_auto(1);
1284temp_auto(2);
1285temp_auto(3);
1286
1287static struct attribute *lm85_attributes[] = {
1288	&sensor_dev_attr_fan1_input.dev_attr.attr,
1289	&sensor_dev_attr_fan2_input.dev_attr.attr,
1290	&sensor_dev_attr_fan3_input.dev_attr.attr,
1291	&sensor_dev_attr_fan4_input.dev_attr.attr,
1292	&sensor_dev_attr_fan1_min.dev_attr.attr,
1293	&sensor_dev_attr_fan2_min.dev_attr.attr,
1294	&sensor_dev_attr_fan3_min.dev_attr.attr,
1295	&sensor_dev_attr_fan4_min.dev_attr.attr,
1296	&sensor_dev_attr_fan1_alarm.dev_attr.attr,
1297	&sensor_dev_attr_fan2_alarm.dev_attr.attr,
1298	&sensor_dev_attr_fan3_alarm.dev_attr.attr,
1299	&sensor_dev_attr_fan4_alarm.dev_attr.attr,
1300
1301	&sensor_dev_attr_pwm1.dev_attr.attr,
1302	&sensor_dev_attr_pwm2.dev_attr.attr,
1303	&sensor_dev_attr_pwm3.dev_attr.attr,
1304	&sensor_dev_attr_pwm1_enable.dev_attr.attr,
1305	&sensor_dev_attr_pwm2_enable.dev_attr.attr,
1306	&sensor_dev_attr_pwm3_enable.dev_attr.attr,
1307	&sensor_dev_attr_pwm1_freq.dev_attr.attr,
1308	&sensor_dev_attr_pwm2_freq.dev_attr.attr,
1309	&sensor_dev_attr_pwm3_freq.dev_attr.attr,
1310
1311	&sensor_dev_attr_in0_input.dev_attr.attr,
1312	&sensor_dev_attr_in1_input.dev_attr.attr,
1313	&sensor_dev_attr_in2_input.dev_attr.attr,
1314	&sensor_dev_attr_in3_input.dev_attr.attr,
1315	&sensor_dev_attr_in0_min.dev_attr.attr,
1316	&sensor_dev_attr_in1_min.dev_attr.attr,
1317	&sensor_dev_attr_in2_min.dev_attr.attr,
1318	&sensor_dev_attr_in3_min.dev_attr.attr,
1319	&sensor_dev_attr_in0_max.dev_attr.attr,
1320	&sensor_dev_attr_in1_max.dev_attr.attr,
1321	&sensor_dev_attr_in2_max.dev_attr.attr,
1322	&sensor_dev_attr_in3_max.dev_attr.attr,
1323	&sensor_dev_attr_in0_alarm.dev_attr.attr,
1324	&sensor_dev_attr_in1_alarm.dev_attr.attr,
1325	&sensor_dev_attr_in2_alarm.dev_attr.attr,
1326	&sensor_dev_attr_in3_alarm.dev_attr.attr,
1327
1328	&sensor_dev_attr_temp1_input.dev_attr.attr,
1329	&sensor_dev_attr_temp2_input.dev_attr.attr,
1330	&sensor_dev_attr_temp3_input.dev_attr.attr,
1331	&sensor_dev_attr_temp1_min.dev_attr.attr,
1332	&sensor_dev_attr_temp2_min.dev_attr.attr,
1333	&sensor_dev_attr_temp3_min.dev_attr.attr,
1334	&sensor_dev_attr_temp1_max.dev_attr.attr,
1335	&sensor_dev_attr_temp2_max.dev_attr.attr,
1336	&sensor_dev_attr_temp3_max.dev_attr.attr,
1337	&sensor_dev_attr_temp1_alarm.dev_attr.attr,
1338	&sensor_dev_attr_temp2_alarm.dev_attr.attr,
1339	&sensor_dev_attr_temp3_alarm.dev_attr.attr,
1340	&sensor_dev_attr_temp1_fault.dev_attr.attr,
1341	&sensor_dev_attr_temp3_fault.dev_attr.attr,
1342
1343	&sensor_dev_attr_pwm1_auto_channels.dev_attr.attr,
1344	&sensor_dev_attr_pwm2_auto_channels.dev_attr.attr,
1345	&sensor_dev_attr_pwm3_auto_channels.dev_attr.attr,
1346	&sensor_dev_attr_pwm1_auto_pwm_min.dev_attr.attr,
1347	&sensor_dev_attr_pwm2_auto_pwm_min.dev_attr.attr,
1348	&sensor_dev_attr_pwm3_auto_pwm_min.dev_attr.attr,
1349
1350	&sensor_dev_attr_temp1_auto_temp_min.dev_attr.attr,
1351	&sensor_dev_attr_temp2_auto_temp_min.dev_attr.attr,
1352	&sensor_dev_attr_temp3_auto_temp_min.dev_attr.attr,
1353	&sensor_dev_attr_temp1_auto_temp_max.dev_attr.attr,
1354	&sensor_dev_attr_temp2_auto_temp_max.dev_attr.attr,
1355	&sensor_dev_attr_temp3_auto_temp_max.dev_attr.attr,
1356	&sensor_dev_attr_temp1_auto_temp_crit.dev_attr.attr,
1357	&sensor_dev_attr_temp2_auto_temp_crit.dev_attr.attr,
1358	&sensor_dev_attr_temp3_auto_temp_crit.dev_attr.attr,
1359
1360	&dev_attr_vrm.attr,
1361	&dev_attr_cpu0_vid.attr,
1362	&dev_attr_alarms.attr,
1363	NULL
1364};
1365
1366static const struct attribute_group lm85_group = {
1367	.attrs = lm85_attributes,
1368};
1369
1370static struct attribute *lm85_attributes_minctl[] = {
1371	&sensor_dev_attr_pwm1_auto_pwm_minctl.dev_attr.attr,
1372	&sensor_dev_attr_pwm2_auto_pwm_minctl.dev_attr.attr,
1373	&sensor_dev_attr_pwm3_auto_pwm_minctl.dev_attr.attr,
1374	NULL
1375};
1376
1377static const struct attribute_group lm85_group_minctl = {
1378	.attrs = lm85_attributes_minctl,
1379};
1380
1381static struct attribute *lm85_attributes_temp_off[] = {
1382	&sensor_dev_attr_temp1_auto_temp_off.dev_attr.attr,
1383	&sensor_dev_attr_temp2_auto_temp_off.dev_attr.attr,
1384	&sensor_dev_attr_temp3_auto_temp_off.dev_attr.attr,
1385	NULL
1386};
1387
1388static const struct attribute_group lm85_group_temp_off = {
1389	.attrs = lm85_attributes_temp_off,
1390};
1391
1392static struct attribute *lm85_attributes_in4[] = {
1393	&sensor_dev_attr_in4_input.dev_attr.attr,
1394	&sensor_dev_attr_in4_min.dev_attr.attr,
1395	&sensor_dev_attr_in4_max.dev_attr.attr,
1396	&sensor_dev_attr_in4_alarm.dev_attr.attr,
1397	NULL
1398};
1399
1400static const struct attribute_group lm85_group_in4 = {
1401	.attrs = lm85_attributes_in4,
1402};
1403
1404static struct attribute *lm85_attributes_in567[] = {
1405	&sensor_dev_attr_in5_input.dev_attr.attr,
1406	&sensor_dev_attr_in6_input.dev_attr.attr,
1407	&sensor_dev_attr_in7_input.dev_attr.attr,
1408	&sensor_dev_attr_in5_min.dev_attr.attr,
1409	&sensor_dev_attr_in6_min.dev_attr.attr,
1410	&sensor_dev_attr_in7_min.dev_attr.attr,
1411	&sensor_dev_attr_in5_max.dev_attr.attr,
1412	&sensor_dev_attr_in6_max.dev_attr.attr,
1413	&sensor_dev_attr_in7_max.dev_attr.attr,
1414	&sensor_dev_attr_in5_alarm.dev_attr.attr,
1415	&sensor_dev_attr_in6_alarm.dev_attr.attr,
1416	&sensor_dev_attr_in7_alarm.dev_attr.attr,
1417	NULL
1418};
1419
1420static const struct attribute_group lm85_group_in567 = {
1421	.attrs = lm85_attributes_in567,
1422};
1423
1424static void lm85_init_client(struct i2c_client *client)
1425{
1426	int value;
1427
1428	/* Start monitoring if needed */
1429	value = lm85_read_value(client, LM85_REG_CONFIG);
1430	if (!(value & 0x01)) {
1431		dev_info(&client->dev, "Starting monitoring\n");
1432		lm85_write_value(client, LM85_REG_CONFIG, value | 0x01);
1433	}
1434
1435	/* Warn about unusual configuration bits */
1436	if (value & 0x02)
1437		dev_warn(&client->dev, "Device configuration is locked\n");
1438	if (!(value & 0x04))
1439		dev_warn(&client->dev, "Device is not ready\n");
1440}
1441
1442static int lm85_is_fake(struct i2c_client *client)
1443{
1444	/*
1445	 * Differenciate between real LM96000 and Winbond WPCD377I. The latter
1446	 * emulate the former except that it has no hardware monitoring function
1447	 * so the readings are always 0.
1448	 */
1449	int i;
1450	u8 in_temp, fan;
1451
1452	for (i = 0; i < 8; i++) {
1453		in_temp = i2c_smbus_read_byte_data(client, 0x20 + i);
1454		fan = i2c_smbus_read_byte_data(client, 0x28 + i);
1455		if (in_temp != 0x00 || fan != 0xff)
1456			return 0;
1457	}
1458
1459	return 1;
1460}
1461
1462/* Return 0 if detection is successful, -ENODEV otherwise */
1463static int lm85_detect(struct i2c_client *client, struct i2c_board_info *info)
1464{
1465	struct i2c_adapter *adapter = client->adapter;
1466	int address = client->addr;
1467	const char *type_name = NULL;
1468	int company, verstep;
1469
1470	if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) {
1471		/* We need to be able to do byte I/O */
1472		return -ENODEV;
1473	}
1474
1475	/* Determine the chip type */
1476	company = lm85_read_value(client, LM85_REG_COMPANY);
1477	verstep = lm85_read_value(client, LM85_REG_VERSTEP);
1478
1479	dev_dbg(&adapter->dev,
1480		"Detecting device at 0x%02x with COMPANY: 0x%02x and VERSTEP: 0x%02x\n",
1481		address, company, verstep);
1482
1483	if (company == LM85_COMPANY_NATIONAL) {
1484		switch (verstep) {
1485		case LM85_VERSTEP_LM85C:
1486			type_name = "lm85c";
1487			break;
1488		case LM85_VERSTEP_LM85B:
1489			type_name = "lm85b";
1490			break;
1491		case LM85_VERSTEP_LM96000_1:
1492		case LM85_VERSTEP_LM96000_2:
1493			/* Check for Winbond WPCD377I */
1494			if (lm85_is_fake(client)) {
1495				dev_dbg(&adapter->dev,
1496					"Found Winbond WPCD377I, ignoring\n");
1497				return -ENODEV;
1498			}
1499			type_name = "lm85";
1500			break;
1501		}
1502	} else if (company == LM85_COMPANY_ANALOG_DEV) {
1503		switch (verstep) {
1504		case LM85_VERSTEP_ADM1027:
1505			type_name = "adm1027";
1506			break;
1507		case LM85_VERSTEP_ADT7463:
1508		case LM85_VERSTEP_ADT7463C:
1509			type_name = "adt7463";
1510			break;
1511		case LM85_VERSTEP_ADT7468_1:
1512		case LM85_VERSTEP_ADT7468_2:
1513			type_name = "adt7468";
1514			break;
1515		}
1516	} else if (company == LM85_COMPANY_SMSC) {
1517		switch (verstep) {
1518		case LM85_VERSTEP_EMC6D100_A0:
1519		case LM85_VERSTEP_EMC6D100_A1:
1520			/* Note: we can't tell a '100 from a '101 */
1521			type_name = "emc6d100";
1522			break;
1523		case LM85_VERSTEP_EMC6D102:
1524			type_name = "emc6d102";
1525			break;
1526		case LM85_VERSTEP_EMC6D103_A0:
1527		case LM85_VERSTEP_EMC6D103_A1:
1528			type_name = "emc6d103";
1529			break;
1530		case LM85_VERSTEP_EMC6D103S:
1531			type_name = "emc6d103s";
1532			break;
1533		}
1534	}
1535
1536	if (!type_name)
1537		return -ENODEV;
1538
1539	strlcpy(info->type, type_name, I2C_NAME_SIZE);
1540
1541	return 0;
1542}
1543
1544static int lm85_probe(struct i2c_client *client, const struct i2c_device_id *id)
1545{
1546	struct device *dev = &client->dev;
1547	struct device *hwmon_dev;
1548	struct lm85_data *data;
1549	int idx = 0;
1550
1551	data = devm_kzalloc(dev, sizeof(struct lm85_data), GFP_KERNEL);
1552	if (!data)
1553		return -ENOMEM;
1554
1555	data->client = client;
1556	if (client->dev.of_node)
1557		data->type = (enum chips)of_device_get_match_data(&client->dev);
1558	else
1559		data->type = id->driver_data;
1560	mutex_init(&data->update_lock);
1561
1562	/* Fill in the chip specific driver values */
1563	switch (data->type) {
1564	case adm1027:
1565	case adt7463:
1566	case adt7468:
1567	case emc6d100:
1568	case emc6d102:
1569	case emc6d103:
1570	case emc6d103s:
1571		data->freq_map = adm1027_freq_map;
 
 
 
 
 
1572		break;
1573	default:
1574		data->freq_map = lm85_freq_map;
 
1575	}
1576
1577	/* Set the VRM version */
1578	data->vrm = vid_which_vrm();
1579
1580	/* Initialize the LM85 chip */
1581	lm85_init_client(client);
1582
1583	/* sysfs hooks */
1584	data->groups[idx++] = &lm85_group;
1585
1586	/* minctl and temp_off exist on all chips except emc6d103s */
1587	if (data->type != emc6d103s) {
1588		data->groups[idx++] = &lm85_group_minctl;
1589		data->groups[idx++] = &lm85_group_temp_off;
1590	}
1591
1592	/*
1593	 * The ADT7463/68 have an optional VRM 10 mode where pin 21 is used
1594	 * as a sixth digital VID input rather than an analog input.
1595	 */
1596	if (data->type == adt7463 || data->type == adt7468) {
1597		u8 vid = lm85_read_value(client, LM85_REG_VID);
1598		if (vid & 0x80)
1599			data->has_vid5 = true;
1600	}
1601
1602	if (!data->has_vid5)
1603		data->groups[idx++] = &lm85_group_in4;
1604
1605	/* The EMC6D100 has 3 additional voltage inputs */
1606	if (data->type == emc6d100)
1607		data->groups[idx++] = &lm85_group_in567;
1608
1609	hwmon_dev = devm_hwmon_device_register_with_groups(dev, client->name,
1610							   data, data->groups);
1611	return PTR_ERR_OR_ZERO(hwmon_dev);
1612}
1613
1614static const struct i2c_device_id lm85_id[] = {
1615	{ "adm1027", adm1027 },
1616	{ "adt7463", adt7463 },
1617	{ "adt7468", adt7468 },
1618	{ "lm85", lm85 },
1619	{ "lm85b", lm85 },
1620	{ "lm85c", lm85 },
 
1621	{ "emc6d100", emc6d100 },
1622	{ "emc6d101", emc6d100 },
1623	{ "emc6d102", emc6d102 },
1624	{ "emc6d103", emc6d103 },
1625	{ "emc6d103s", emc6d103s },
1626	{ }
1627};
1628MODULE_DEVICE_TABLE(i2c, lm85_id);
1629
1630static const struct of_device_id lm85_of_match[] = {
1631	{
1632		.compatible = "adi,adm1027",
1633		.data = (void *)adm1027
1634	},
1635	{
1636		.compatible = "adi,adt7463",
1637		.data = (void *)adt7463
1638	},
1639	{
1640		.compatible = "adi,adt7468",
1641		.data = (void *)adt7468
1642	},
1643	{
1644		.compatible = "national,lm85",
1645		.data = (void *)lm85
1646	},
1647	{
1648		.compatible = "national,lm85b",
1649		.data = (void *)lm85
1650	},
1651	{
1652		.compatible = "national,lm85c",
1653		.data = (void *)lm85
 
 
 
 
1654	},
1655	{
1656		.compatible = "smsc,emc6d100",
1657		.data = (void *)emc6d100
1658	},
1659	{
1660		.compatible = "smsc,emc6d101",
1661		.data = (void *)emc6d100
1662	},
1663	{
1664		.compatible = "smsc,emc6d102",
1665		.data = (void *)emc6d102
1666	},
1667	{
1668		.compatible = "smsc,emc6d103",
1669		.data = (void *)emc6d103
1670	},
1671	{
1672		.compatible = "smsc,emc6d103s",
1673		.data = (void *)emc6d103s
1674	},
1675	{ },
1676};
1677MODULE_DEVICE_TABLE(of, lm85_of_match);
1678
1679static struct i2c_driver lm85_driver = {
1680	.class		= I2C_CLASS_HWMON,
1681	.driver = {
1682		.name   = "lm85",
1683		.of_match_table = of_match_ptr(lm85_of_match),
1684	},
1685	.probe		= lm85_probe,
1686	.id_table	= lm85_id,
1687	.detect		= lm85_detect,
1688	.address_list	= normal_i2c,
1689};
1690
1691module_i2c_driver(lm85_driver);
1692
1693MODULE_LICENSE("GPL");
1694MODULE_AUTHOR("Philip Pokorny <ppokorny@penguincomputing.com>, "
1695	"Margit Schubert-While <margitsw@t-online.de>, "
1696	"Justin Thiessen <jthiessen@penguincomputing.com>");
1697MODULE_DESCRIPTION("LM85-B, LM85-C driver");