Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * lm85.c - Part of lm_sensors, Linux kernel modules for hardware
4 * monitoring
5 * Copyright (c) 1998, 1999 Frodo Looijaard <frodol@dds.nl>
6 * Copyright (c) 2002, 2003 Philip Pokorny <ppokorny@penguincomputing.com>
7 * Copyright (c) 2003 Margit Schubert-While <margitsw@t-online.de>
8 * Copyright (c) 2004 Justin Thiessen <jthiessen@penguincomputing.com>
9 * Copyright (C) 2007--2014 Jean Delvare <jdelvare@suse.de>
10 *
11 * Chip details at <http://www.national.com/ds/LM/LM85.pdf>
12 */
13
14#include <linux/module.h>
15#include <linux/of_device.h>
16#include <linux/init.h>
17#include <linux/slab.h>
18#include <linux/jiffies.h>
19#include <linux/i2c.h>
20#include <linux/hwmon.h>
21#include <linux/hwmon-vid.h>
22#include <linux/hwmon-sysfs.h>
23#include <linux/err.h>
24#include <linux/mutex.h>
25#include <linux/util_macros.h>
26
27/* Addresses to scan */
28static const unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, I2C_CLIENT_END };
29
30enum chips {
31 lm85, lm96000,
32 adm1027, adt7463, adt7468,
33 emc6d100, emc6d102, emc6d103, emc6d103s
34};
35
36/* The LM85 registers */
37
38#define LM85_REG_IN(nr) (0x20 + (nr))
39#define LM85_REG_IN_MIN(nr) (0x44 + (nr) * 2)
40#define LM85_REG_IN_MAX(nr) (0x45 + (nr) * 2)
41
42#define LM85_REG_TEMP(nr) (0x25 + (nr))
43#define LM85_REG_TEMP_MIN(nr) (0x4e + (nr) * 2)
44#define LM85_REG_TEMP_MAX(nr) (0x4f + (nr) * 2)
45
46/* Fan speeds are LSB, MSB (2 bytes) */
47#define LM85_REG_FAN(nr) (0x28 + (nr) * 2)
48#define LM85_REG_FAN_MIN(nr) (0x54 + (nr) * 2)
49
50#define LM85_REG_PWM(nr) (0x30 + (nr))
51
52#define LM85_REG_COMPANY 0x3e
53#define LM85_REG_VERSTEP 0x3f
54
55#define ADT7468_REG_CFG5 0x7c
56#define ADT7468_OFF64 (1 << 0)
57#define ADT7468_HFPWM (1 << 1)
58#define IS_ADT7468_OFF64(data) \
59 ((data)->type == adt7468 && !((data)->cfg5 & ADT7468_OFF64))
60#define IS_ADT7468_HFPWM(data) \
61 ((data)->type == adt7468 && !((data)->cfg5 & ADT7468_HFPWM))
62
63/* These are the recognized values for the above regs */
64#define LM85_COMPANY_NATIONAL 0x01
65#define LM85_COMPANY_ANALOG_DEV 0x41
66#define LM85_COMPANY_SMSC 0x5c
67#define LM85_VERSTEP_LM85C 0x60
68#define LM85_VERSTEP_LM85B 0x62
69#define LM85_VERSTEP_LM96000_1 0x68
70#define LM85_VERSTEP_LM96000_2 0x69
71#define LM85_VERSTEP_ADM1027 0x60
72#define LM85_VERSTEP_ADT7463 0x62
73#define LM85_VERSTEP_ADT7463C 0x6A
74#define LM85_VERSTEP_ADT7468_1 0x71
75#define LM85_VERSTEP_ADT7468_2 0x72
76#define LM85_VERSTEP_EMC6D100_A0 0x60
77#define LM85_VERSTEP_EMC6D100_A1 0x61
78#define LM85_VERSTEP_EMC6D102 0x65
79#define LM85_VERSTEP_EMC6D103_A0 0x68
80#define LM85_VERSTEP_EMC6D103_A1 0x69
81#define LM85_VERSTEP_EMC6D103S 0x6A /* Also known as EMC6D103:A2 */
82
83#define LM85_REG_CONFIG 0x40
84
85#define LM85_REG_ALARM1 0x41
86#define LM85_REG_ALARM2 0x42
87
88#define LM85_REG_VID 0x43
89
90/* Automated FAN control */
91#define LM85_REG_AFAN_CONFIG(nr) (0x5c + (nr))
92#define LM85_REG_AFAN_RANGE(nr) (0x5f + (nr))
93#define LM85_REG_AFAN_SPIKE1 0x62
94#define LM85_REG_AFAN_MINPWM(nr) (0x64 + (nr))
95#define LM85_REG_AFAN_LIMIT(nr) (0x67 + (nr))
96#define LM85_REG_AFAN_CRITICAL(nr) (0x6a + (nr))
97#define LM85_REG_AFAN_HYST1 0x6d
98#define LM85_REG_AFAN_HYST2 0x6e
99
100#define ADM1027_REG_EXTEND_ADC1 0x76
101#define ADM1027_REG_EXTEND_ADC2 0x77
102
103#define EMC6D100_REG_ALARM3 0x7d
104/* IN5, IN6 and IN7 */
105#define EMC6D100_REG_IN(nr) (0x70 + ((nr) - 5))
106#define EMC6D100_REG_IN_MIN(nr) (0x73 + ((nr) - 5) * 2)
107#define EMC6D100_REG_IN_MAX(nr) (0x74 + ((nr) - 5) * 2)
108#define EMC6D102_REG_EXTEND_ADC1 0x85
109#define EMC6D102_REG_EXTEND_ADC2 0x86
110#define EMC6D102_REG_EXTEND_ADC3 0x87
111#define EMC6D102_REG_EXTEND_ADC4 0x88
112
113/*
114 * Conversions. Rounding and limit checking is only done on the TO_REG
115 * variants. Note that you should be a bit careful with which arguments
116 * these macros are called: arguments may be evaluated more than once.
117 */
118
119/* IN are scaled according to built-in resistors */
120static const int lm85_scaling[] = { /* .001 Volts */
121 2500, 2250, 3300, 5000, 12000,
122 3300, 1500, 1800 /*EMC6D100*/
123};
124#define SCALE(val, from, to) (((val) * (to) + ((from) / 2)) / (from))
125
126#define INS_TO_REG(n, val) \
127 SCALE(clamp_val(val, 0, 255 * lm85_scaling[n] / 192), \
128 lm85_scaling[n], 192)
129
130#define INSEXT_FROM_REG(n, val, ext) \
131 SCALE(((val) << 4) + (ext), 192 << 4, lm85_scaling[n])
132
133#define INS_FROM_REG(n, val) SCALE((val), 192, lm85_scaling[n])
134
135/* FAN speed is measured using 90kHz clock */
136static inline u16 FAN_TO_REG(unsigned long val)
137{
138 if (!val)
139 return 0xffff;
140 return clamp_val(5400000 / val, 1, 0xfffe);
141}
142#define FAN_FROM_REG(val) ((val) == 0 ? -1 : (val) == 0xffff ? 0 : \
143 5400000 / (val))
144
145/* Temperature is reported in .001 degC increments */
146#define TEMP_TO_REG(val) \
147 DIV_ROUND_CLOSEST(clamp_val((val), -127000, 127000), 1000)
148#define TEMPEXT_FROM_REG(val, ext) \
149 SCALE(((val) << 4) + (ext), 16, 1000)
150#define TEMP_FROM_REG(val) ((val) * 1000)
151
152#define PWM_TO_REG(val) clamp_val(val, 0, 255)
153#define PWM_FROM_REG(val) (val)
154
155/*
156 * ZONEs have the following parameters:
157 * Limit (low) temp, 1. degC
158 * Hysteresis (below limit), 1. degC (0-15)
159 * Range of speed control, .1 degC (2-80)
160 * Critical (high) temp, 1. degC
161 *
162 * FAN PWMs have the following parameters:
163 * Reference Zone, 1, 2, 3, etc.
164 * Spinup time, .05 sec
165 * PWM value at limit/low temp, 1 count
166 * PWM Frequency, 1. Hz
167 * PWM is Min or OFF below limit, flag
168 * Invert PWM output, flag
169 *
170 * Some chips filter the temp, others the fan.
171 * Filter constant (or disabled) .1 seconds
172 */
173
174/* These are the zone temperature range encodings in .001 degree C */
175static const int lm85_range_map[] = {
176 2000, 2500, 3300, 4000, 5000, 6600, 8000, 10000,
177 13300, 16000, 20000, 26600, 32000, 40000, 53300, 80000
178};
179
180static int RANGE_TO_REG(long range)
181{
182 return find_closest(range, lm85_range_map, ARRAY_SIZE(lm85_range_map));
183}
184#define RANGE_FROM_REG(val) lm85_range_map[(val) & 0x0f]
185
186/* These are the PWM frequency encodings */
187static const int lm85_freq_map[] = { /* 1 Hz */
188 10, 15, 23, 30, 38, 47, 61, 94
189};
190
191static const int lm96000_freq_map[] = { /* 1 Hz */
192 10, 15, 23, 30, 38, 47, 61, 94,
193 22500, 24000, 25700, 25700, 27700, 27700, 30000, 30000
194};
195
196static const int adm1027_freq_map[] = { /* 1 Hz */
197 11, 15, 22, 29, 35, 44, 59, 88
198};
199
200static int FREQ_TO_REG(const int *map,
201 unsigned int map_size, unsigned long freq)
202{
203 return find_closest(freq, map, map_size);
204}
205
206static int FREQ_FROM_REG(const int *map, unsigned int map_size, u8 reg)
207{
208 return map[reg % map_size];
209}
210
211/*
212 * Since we can't use strings, I'm abusing these numbers
213 * to stand in for the following meanings:
214 * 1 -- PWM responds to Zone 1
215 * 2 -- PWM responds to Zone 2
216 * 3 -- PWM responds to Zone 3
217 * 23 -- PWM responds to the higher temp of Zone 2 or 3
218 * 123 -- PWM responds to highest of Zone 1, 2, or 3
219 * 0 -- PWM is always at 0% (ie, off)
220 * -1 -- PWM is always at 100%
221 * -2 -- PWM responds to manual control
222 */
223
224static const int lm85_zone_map[] = { 1, 2, 3, -1, 0, 23, 123, -2 };
225#define ZONE_FROM_REG(val) lm85_zone_map[(val) >> 5]
226
227static int ZONE_TO_REG(int zone)
228{
229 int i;
230
231 for (i = 0; i <= 7; ++i)
232 if (zone == lm85_zone_map[i])
233 break;
234 if (i > 7) /* Not found. */
235 i = 3; /* Always 100% */
236 return i << 5;
237}
238
239#define HYST_TO_REG(val) clamp_val(((val) + 500) / 1000, 0, 15)
240#define HYST_FROM_REG(val) ((val) * 1000)
241
242/*
243 * Chip sampling rates
244 *
245 * Some sensors are not updated more frequently than once per second
246 * so it doesn't make sense to read them more often than that.
247 * We cache the results and return the saved data if the driver
248 * is called again before a second has elapsed.
249 *
250 * Also, there is significant configuration data for this chip
251 * given the automatic PWM fan control that is possible. There
252 * are about 47 bytes of config data to only 22 bytes of actual
253 * readings. So, we keep the config data up to date in the cache
254 * when it is written and only sample it once every 1 *minute*
255 */
256#define LM85_DATA_INTERVAL (HZ + HZ / 2)
257#define LM85_CONFIG_INTERVAL (1 * 60 * HZ)
258
259/*
260 * LM85 can automatically adjust fan speeds based on temperature
261 * This structure encapsulates an entire Zone config. There are
262 * three zones (one for each temperature input) on the lm85
263 */
264struct lm85_zone {
265 s8 limit; /* Low temp limit */
266 u8 hyst; /* Low limit hysteresis. (0-15) */
267 u8 range; /* Temp range, encoded */
268 s8 critical; /* "All fans ON" temp limit */
269 u8 max_desired; /*
270 * Actual "max" temperature specified. Preserved
271 * to prevent "drift" as other autofan control
272 * values change.
273 */
274};
275
276struct lm85_autofan {
277 u8 config; /* Register value */
278 u8 min_pwm; /* Minimum PWM value, encoded */
279 u8 min_off; /* Min PWM or OFF below "limit", flag */
280};
281
282/*
283 * For each registered chip, we need to keep some data in memory.
284 * The structure is dynamically allocated.
285 */
286struct lm85_data {
287 struct i2c_client *client;
288 const struct attribute_group *groups[6];
289 const int *freq_map;
290 unsigned int freq_map_size;
291
292 enum chips type;
293
294 bool has_vid5; /* true if VID5 is configured for ADT7463 or ADT7468 */
295
296 struct mutex update_lock;
297 int valid; /* !=0 if following fields are valid */
298 unsigned long last_reading; /* In jiffies */
299 unsigned long last_config; /* In jiffies */
300
301 u8 in[8]; /* Register value */
302 u8 in_max[8]; /* Register value */
303 u8 in_min[8]; /* Register value */
304 s8 temp[3]; /* Register value */
305 s8 temp_min[3]; /* Register value */
306 s8 temp_max[3]; /* Register value */
307 u16 fan[4]; /* Register value */
308 u16 fan_min[4]; /* Register value */
309 u8 pwm[3]; /* Register value */
310 u8 pwm_freq[3]; /* Register encoding */
311 u8 temp_ext[3]; /* Decoded values */
312 u8 in_ext[8]; /* Decoded values */
313 u8 vid; /* Register value */
314 u8 vrm; /* VRM version */
315 u32 alarms; /* Register encoding, combined */
316 u8 cfg5; /* Config Register 5 on ADT7468 */
317 struct lm85_autofan autofan[3];
318 struct lm85_zone zone[3];
319};
320
321static int lm85_read_value(struct i2c_client *client, u8 reg)
322{
323 int res;
324
325 /* What size location is it? */
326 switch (reg) {
327 case LM85_REG_FAN(0): /* Read WORD data */
328 case LM85_REG_FAN(1):
329 case LM85_REG_FAN(2):
330 case LM85_REG_FAN(3):
331 case LM85_REG_FAN_MIN(0):
332 case LM85_REG_FAN_MIN(1):
333 case LM85_REG_FAN_MIN(2):
334 case LM85_REG_FAN_MIN(3):
335 case LM85_REG_ALARM1: /* Read both bytes at once */
336 res = i2c_smbus_read_byte_data(client, reg) & 0xff;
337 res |= i2c_smbus_read_byte_data(client, reg + 1) << 8;
338 break;
339 default: /* Read BYTE data */
340 res = i2c_smbus_read_byte_data(client, reg);
341 break;
342 }
343
344 return res;
345}
346
347static void lm85_write_value(struct i2c_client *client, u8 reg, int value)
348{
349 switch (reg) {
350 case LM85_REG_FAN(0): /* Write WORD data */
351 case LM85_REG_FAN(1):
352 case LM85_REG_FAN(2):
353 case LM85_REG_FAN(3):
354 case LM85_REG_FAN_MIN(0):
355 case LM85_REG_FAN_MIN(1):
356 case LM85_REG_FAN_MIN(2):
357 case LM85_REG_FAN_MIN(3):
358 /* NOTE: ALARM is read only, so not included here */
359 i2c_smbus_write_byte_data(client, reg, value & 0xff);
360 i2c_smbus_write_byte_data(client, reg + 1, value >> 8);
361 break;
362 default: /* Write BYTE data */
363 i2c_smbus_write_byte_data(client, reg, value);
364 break;
365 }
366}
367
368static struct lm85_data *lm85_update_device(struct device *dev)
369{
370 struct lm85_data *data = dev_get_drvdata(dev);
371 struct i2c_client *client = data->client;
372 int i;
373
374 mutex_lock(&data->update_lock);
375
376 if (!data->valid ||
377 time_after(jiffies, data->last_reading + LM85_DATA_INTERVAL)) {
378 /* Things that change quickly */
379 dev_dbg(&client->dev, "Reading sensor values\n");
380
381 /*
382 * Have to read extended bits first to "freeze" the
383 * more significant bits that are read later.
384 * There are 2 additional resolution bits per channel and we
385 * have room for 4, so we shift them to the left.
386 */
387 if (data->type == adm1027 || data->type == adt7463 ||
388 data->type == adt7468) {
389 int ext1 = lm85_read_value(client,
390 ADM1027_REG_EXTEND_ADC1);
391 int ext2 = lm85_read_value(client,
392 ADM1027_REG_EXTEND_ADC2);
393 int val = (ext1 << 8) + ext2;
394
395 for (i = 0; i <= 4; i++)
396 data->in_ext[i] =
397 ((val >> (i * 2)) & 0x03) << 2;
398
399 for (i = 0; i <= 2; i++)
400 data->temp_ext[i] =
401 (val >> ((i + 4) * 2)) & 0x0c;
402 }
403
404 data->vid = lm85_read_value(client, LM85_REG_VID);
405
406 for (i = 0; i <= 3; ++i) {
407 data->in[i] =
408 lm85_read_value(client, LM85_REG_IN(i));
409 data->fan[i] =
410 lm85_read_value(client, LM85_REG_FAN(i));
411 }
412
413 if (!data->has_vid5)
414 data->in[4] = lm85_read_value(client, LM85_REG_IN(4));
415
416 if (data->type == adt7468)
417 data->cfg5 = lm85_read_value(client, ADT7468_REG_CFG5);
418
419 for (i = 0; i <= 2; ++i) {
420 data->temp[i] =
421 lm85_read_value(client, LM85_REG_TEMP(i));
422 data->pwm[i] =
423 lm85_read_value(client, LM85_REG_PWM(i));
424
425 if (IS_ADT7468_OFF64(data))
426 data->temp[i] -= 64;
427 }
428
429 data->alarms = lm85_read_value(client, LM85_REG_ALARM1);
430
431 if (data->type == emc6d100) {
432 /* Three more voltage sensors */
433 for (i = 5; i <= 7; ++i) {
434 data->in[i] = lm85_read_value(client,
435 EMC6D100_REG_IN(i));
436 }
437 /* More alarm bits */
438 data->alarms |= lm85_read_value(client,
439 EMC6D100_REG_ALARM3) << 16;
440 } else if (data->type == emc6d102 || data->type == emc6d103 ||
441 data->type == emc6d103s) {
442 /*
443 * Have to read LSB bits after the MSB ones because
444 * the reading of the MSB bits has frozen the
445 * LSBs (backward from the ADM1027).
446 */
447 int ext1 = lm85_read_value(client,
448 EMC6D102_REG_EXTEND_ADC1);
449 int ext2 = lm85_read_value(client,
450 EMC6D102_REG_EXTEND_ADC2);
451 int ext3 = lm85_read_value(client,
452 EMC6D102_REG_EXTEND_ADC3);
453 int ext4 = lm85_read_value(client,
454 EMC6D102_REG_EXTEND_ADC4);
455 data->in_ext[0] = ext3 & 0x0f;
456 data->in_ext[1] = ext4 & 0x0f;
457 data->in_ext[2] = ext4 >> 4;
458 data->in_ext[3] = ext3 >> 4;
459 data->in_ext[4] = ext2 >> 4;
460
461 data->temp_ext[0] = ext1 & 0x0f;
462 data->temp_ext[1] = ext2 & 0x0f;
463 data->temp_ext[2] = ext1 >> 4;
464 }
465
466 data->last_reading = jiffies;
467 } /* last_reading */
468
469 if (!data->valid ||
470 time_after(jiffies, data->last_config + LM85_CONFIG_INTERVAL)) {
471 /* Things that don't change often */
472 dev_dbg(&client->dev, "Reading config values\n");
473
474 for (i = 0; i <= 3; ++i) {
475 data->in_min[i] =
476 lm85_read_value(client, LM85_REG_IN_MIN(i));
477 data->in_max[i] =
478 lm85_read_value(client, LM85_REG_IN_MAX(i));
479 data->fan_min[i] =
480 lm85_read_value(client, LM85_REG_FAN_MIN(i));
481 }
482
483 if (!data->has_vid5) {
484 data->in_min[4] = lm85_read_value(client,
485 LM85_REG_IN_MIN(4));
486 data->in_max[4] = lm85_read_value(client,
487 LM85_REG_IN_MAX(4));
488 }
489
490 if (data->type == emc6d100) {
491 for (i = 5; i <= 7; ++i) {
492 data->in_min[i] = lm85_read_value(client,
493 EMC6D100_REG_IN_MIN(i));
494 data->in_max[i] = lm85_read_value(client,
495 EMC6D100_REG_IN_MAX(i));
496 }
497 }
498
499 for (i = 0; i <= 2; ++i) {
500 int val;
501
502 data->temp_min[i] =
503 lm85_read_value(client, LM85_REG_TEMP_MIN(i));
504 data->temp_max[i] =
505 lm85_read_value(client, LM85_REG_TEMP_MAX(i));
506
507 data->autofan[i].config =
508 lm85_read_value(client, LM85_REG_AFAN_CONFIG(i));
509 val = lm85_read_value(client, LM85_REG_AFAN_RANGE(i));
510 data->pwm_freq[i] = val % data->freq_map_size;
511 data->zone[i].range = val >> 4;
512 data->autofan[i].min_pwm =
513 lm85_read_value(client, LM85_REG_AFAN_MINPWM(i));
514 data->zone[i].limit =
515 lm85_read_value(client, LM85_REG_AFAN_LIMIT(i));
516 data->zone[i].critical =
517 lm85_read_value(client, LM85_REG_AFAN_CRITICAL(i));
518
519 if (IS_ADT7468_OFF64(data)) {
520 data->temp_min[i] -= 64;
521 data->temp_max[i] -= 64;
522 data->zone[i].limit -= 64;
523 data->zone[i].critical -= 64;
524 }
525 }
526
527 if (data->type != emc6d103s) {
528 i = lm85_read_value(client, LM85_REG_AFAN_SPIKE1);
529 data->autofan[0].min_off = (i & 0x20) != 0;
530 data->autofan[1].min_off = (i & 0x40) != 0;
531 data->autofan[2].min_off = (i & 0x80) != 0;
532
533 i = lm85_read_value(client, LM85_REG_AFAN_HYST1);
534 data->zone[0].hyst = i >> 4;
535 data->zone[1].hyst = i & 0x0f;
536
537 i = lm85_read_value(client, LM85_REG_AFAN_HYST2);
538 data->zone[2].hyst = i >> 4;
539 }
540
541 data->last_config = jiffies;
542 } /* last_config */
543
544 data->valid = 1;
545
546 mutex_unlock(&data->update_lock);
547
548 return data;
549}
550
551/* 4 Fans */
552static ssize_t fan_show(struct device *dev, struct device_attribute *attr,
553 char *buf)
554{
555 int nr = to_sensor_dev_attr(attr)->index;
556 struct lm85_data *data = lm85_update_device(dev);
557 return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan[nr]));
558}
559
560static ssize_t fan_min_show(struct device *dev, struct device_attribute *attr,
561 char *buf)
562{
563 int nr = to_sensor_dev_attr(attr)->index;
564 struct lm85_data *data = lm85_update_device(dev);
565 return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan_min[nr]));
566}
567
568static ssize_t fan_min_store(struct device *dev,
569 struct device_attribute *attr, const char *buf,
570 size_t count)
571{
572 int nr = to_sensor_dev_attr(attr)->index;
573 struct lm85_data *data = dev_get_drvdata(dev);
574 struct i2c_client *client = data->client;
575 unsigned long val;
576 int err;
577
578 err = kstrtoul(buf, 10, &val);
579 if (err)
580 return err;
581
582 mutex_lock(&data->update_lock);
583 data->fan_min[nr] = FAN_TO_REG(val);
584 lm85_write_value(client, LM85_REG_FAN_MIN(nr), data->fan_min[nr]);
585 mutex_unlock(&data->update_lock);
586 return count;
587}
588
589static SENSOR_DEVICE_ATTR_RO(fan1_input, fan, 0);
590static SENSOR_DEVICE_ATTR_RW(fan1_min, fan_min, 0);
591static SENSOR_DEVICE_ATTR_RO(fan2_input, fan, 1);
592static SENSOR_DEVICE_ATTR_RW(fan2_min, fan_min, 1);
593static SENSOR_DEVICE_ATTR_RO(fan3_input, fan, 2);
594static SENSOR_DEVICE_ATTR_RW(fan3_min, fan_min, 2);
595static SENSOR_DEVICE_ATTR_RO(fan4_input, fan, 3);
596static SENSOR_DEVICE_ATTR_RW(fan4_min, fan_min, 3);
597
598/* vid, vrm, alarms */
599
600static ssize_t cpu0_vid_show(struct device *dev,
601 struct device_attribute *attr, char *buf)
602{
603 struct lm85_data *data = lm85_update_device(dev);
604 int vid;
605
606 if (data->has_vid5) {
607 /* 6-pin VID (VRM 10) */
608 vid = vid_from_reg(data->vid & 0x3f, data->vrm);
609 } else {
610 /* 5-pin VID (VRM 9) */
611 vid = vid_from_reg(data->vid & 0x1f, data->vrm);
612 }
613
614 return sprintf(buf, "%d\n", vid);
615}
616
617static DEVICE_ATTR_RO(cpu0_vid);
618
619static ssize_t vrm_show(struct device *dev, struct device_attribute *attr,
620 char *buf)
621{
622 struct lm85_data *data = dev_get_drvdata(dev);
623 return sprintf(buf, "%ld\n", (long) data->vrm);
624}
625
626static ssize_t vrm_store(struct device *dev, struct device_attribute *attr,
627 const char *buf, size_t count)
628{
629 struct lm85_data *data = dev_get_drvdata(dev);
630 unsigned long val;
631 int err;
632
633 err = kstrtoul(buf, 10, &val);
634 if (err)
635 return err;
636
637 if (val > 255)
638 return -EINVAL;
639
640 data->vrm = val;
641 return count;
642}
643
644static DEVICE_ATTR_RW(vrm);
645
646static ssize_t alarms_show(struct device *dev, struct device_attribute *attr,
647 char *buf)
648{
649 struct lm85_data *data = lm85_update_device(dev);
650 return sprintf(buf, "%u\n", data->alarms);
651}
652
653static DEVICE_ATTR_RO(alarms);
654
655static ssize_t alarm_show(struct device *dev, struct device_attribute *attr,
656 char *buf)
657{
658 int nr = to_sensor_dev_attr(attr)->index;
659 struct lm85_data *data = lm85_update_device(dev);
660 return sprintf(buf, "%u\n", (data->alarms >> nr) & 1);
661}
662
663static SENSOR_DEVICE_ATTR_RO(in0_alarm, alarm, 0);
664static SENSOR_DEVICE_ATTR_RO(in1_alarm, alarm, 1);
665static SENSOR_DEVICE_ATTR_RO(in2_alarm, alarm, 2);
666static SENSOR_DEVICE_ATTR_RO(in3_alarm, alarm, 3);
667static SENSOR_DEVICE_ATTR_RO(in4_alarm, alarm, 8);
668static SENSOR_DEVICE_ATTR_RO(in5_alarm, alarm, 18);
669static SENSOR_DEVICE_ATTR_RO(in6_alarm, alarm, 16);
670static SENSOR_DEVICE_ATTR_RO(in7_alarm, alarm, 17);
671static SENSOR_DEVICE_ATTR_RO(temp1_alarm, alarm, 4);
672static SENSOR_DEVICE_ATTR_RO(temp1_fault, alarm, 14);
673static SENSOR_DEVICE_ATTR_RO(temp2_alarm, alarm, 5);
674static SENSOR_DEVICE_ATTR_RO(temp3_alarm, alarm, 6);
675static SENSOR_DEVICE_ATTR_RO(temp3_fault, alarm, 15);
676static SENSOR_DEVICE_ATTR_RO(fan1_alarm, alarm, 10);
677static SENSOR_DEVICE_ATTR_RO(fan2_alarm, alarm, 11);
678static SENSOR_DEVICE_ATTR_RO(fan3_alarm, alarm, 12);
679static SENSOR_DEVICE_ATTR_RO(fan4_alarm, alarm, 13);
680
681/* pwm */
682
683static ssize_t pwm_show(struct device *dev, struct device_attribute *attr,
684 char *buf)
685{
686 int nr = to_sensor_dev_attr(attr)->index;
687 struct lm85_data *data = lm85_update_device(dev);
688 return sprintf(buf, "%d\n", PWM_FROM_REG(data->pwm[nr]));
689}
690
691static ssize_t pwm_store(struct device *dev, struct device_attribute *attr,
692 const char *buf, size_t count)
693{
694 int nr = to_sensor_dev_attr(attr)->index;
695 struct lm85_data *data = dev_get_drvdata(dev);
696 struct i2c_client *client = data->client;
697 unsigned long val;
698 int err;
699
700 err = kstrtoul(buf, 10, &val);
701 if (err)
702 return err;
703
704 mutex_lock(&data->update_lock);
705 data->pwm[nr] = PWM_TO_REG(val);
706 lm85_write_value(client, LM85_REG_PWM(nr), data->pwm[nr]);
707 mutex_unlock(&data->update_lock);
708 return count;
709}
710
711static ssize_t pwm_enable_show(struct device *dev,
712 struct device_attribute *attr, char *buf)
713{
714 int nr = to_sensor_dev_attr(attr)->index;
715 struct lm85_data *data = lm85_update_device(dev);
716 int pwm_zone, enable;
717
718 pwm_zone = ZONE_FROM_REG(data->autofan[nr].config);
719 switch (pwm_zone) {
720 case -1: /* PWM is always at 100% */
721 enable = 0;
722 break;
723 case 0: /* PWM is always at 0% */
724 case -2: /* PWM responds to manual control */
725 enable = 1;
726 break;
727 default: /* PWM in automatic mode */
728 enable = 2;
729 }
730 return sprintf(buf, "%d\n", enable);
731}
732
733static ssize_t pwm_enable_store(struct device *dev,
734 struct device_attribute *attr,
735 const char *buf, size_t count)
736{
737 int nr = to_sensor_dev_attr(attr)->index;
738 struct lm85_data *data = dev_get_drvdata(dev);
739 struct i2c_client *client = data->client;
740 u8 config;
741 unsigned long val;
742 int err;
743
744 err = kstrtoul(buf, 10, &val);
745 if (err)
746 return err;
747
748 switch (val) {
749 case 0:
750 config = 3;
751 break;
752 case 1:
753 config = 7;
754 break;
755 case 2:
756 /*
757 * Here we have to choose arbitrarily one of the 5 possible
758 * configurations; I go for the safest
759 */
760 config = 6;
761 break;
762 default:
763 return -EINVAL;
764 }
765
766 mutex_lock(&data->update_lock);
767 data->autofan[nr].config = lm85_read_value(client,
768 LM85_REG_AFAN_CONFIG(nr));
769 data->autofan[nr].config = (data->autofan[nr].config & ~0xe0)
770 | (config << 5);
771 lm85_write_value(client, LM85_REG_AFAN_CONFIG(nr),
772 data->autofan[nr].config);
773 mutex_unlock(&data->update_lock);
774 return count;
775}
776
777static ssize_t pwm_freq_show(struct device *dev,
778 struct device_attribute *attr, char *buf)
779{
780 int nr = to_sensor_dev_attr(attr)->index;
781 struct lm85_data *data = lm85_update_device(dev);
782 int freq;
783
784 if (IS_ADT7468_HFPWM(data))
785 freq = 22500;
786 else
787 freq = FREQ_FROM_REG(data->freq_map, data->freq_map_size,
788 data->pwm_freq[nr]);
789
790 return sprintf(buf, "%d\n", freq);
791}
792
793static ssize_t pwm_freq_store(struct device *dev,
794 struct device_attribute *attr, const char *buf,
795 size_t count)
796{
797 int nr = to_sensor_dev_attr(attr)->index;
798 struct lm85_data *data = dev_get_drvdata(dev);
799 struct i2c_client *client = data->client;
800 unsigned long val;
801 int err;
802
803 err = kstrtoul(buf, 10, &val);
804 if (err)
805 return err;
806
807 mutex_lock(&data->update_lock);
808 /*
809 * The ADT7468 has a special high-frequency PWM output mode,
810 * where all PWM outputs are driven by a 22.5 kHz clock.
811 * This might confuse the user, but there's not much we can do.
812 */
813 if (data->type == adt7468 && val >= 11300) { /* High freq. mode */
814 data->cfg5 &= ~ADT7468_HFPWM;
815 lm85_write_value(client, ADT7468_REG_CFG5, data->cfg5);
816 } else { /* Low freq. mode */
817 data->pwm_freq[nr] = FREQ_TO_REG(data->freq_map,
818 data->freq_map_size, val);
819 lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
820 (data->zone[nr].range << 4)
821 | data->pwm_freq[nr]);
822 if (data->type == adt7468) {
823 data->cfg5 |= ADT7468_HFPWM;
824 lm85_write_value(client, ADT7468_REG_CFG5, data->cfg5);
825 }
826 }
827 mutex_unlock(&data->update_lock);
828 return count;
829}
830
831static SENSOR_DEVICE_ATTR_RW(pwm1, pwm, 0);
832static SENSOR_DEVICE_ATTR_RW(pwm1_enable, pwm_enable, 0);
833static SENSOR_DEVICE_ATTR_RW(pwm1_freq, pwm_freq, 0);
834static SENSOR_DEVICE_ATTR_RW(pwm2, pwm, 1);
835static SENSOR_DEVICE_ATTR_RW(pwm2_enable, pwm_enable, 1);
836static SENSOR_DEVICE_ATTR_RW(pwm2_freq, pwm_freq, 1);
837static SENSOR_DEVICE_ATTR_RW(pwm3, pwm, 2);
838static SENSOR_DEVICE_ATTR_RW(pwm3_enable, pwm_enable, 2);
839static SENSOR_DEVICE_ATTR_RW(pwm3_freq, pwm_freq, 2);
840
841/* Voltages */
842
843static ssize_t in_show(struct device *dev, struct device_attribute *attr,
844 char *buf)
845{
846 int nr = to_sensor_dev_attr(attr)->index;
847 struct lm85_data *data = lm85_update_device(dev);
848 return sprintf(buf, "%d\n", INSEXT_FROM_REG(nr, data->in[nr],
849 data->in_ext[nr]));
850}
851
852static ssize_t in_min_show(struct device *dev, struct device_attribute *attr,
853 char *buf)
854{
855 int nr = to_sensor_dev_attr(attr)->index;
856 struct lm85_data *data = lm85_update_device(dev);
857 return sprintf(buf, "%d\n", INS_FROM_REG(nr, data->in_min[nr]));
858}
859
860static ssize_t in_min_store(struct device *dev, struct device_attribute *attr,
861 const char *buf, size_t count)
862{
863 int nr = to_sensor_dev_attr(attr)->index;
864 struct lm85_data *data = dev_get_drvdata(dev);
865 struct i2c_client *client = data->client;
866 long val;
867 int err;
868
869 err = kstrtol(buf, 10, &val);
870 if (err)
871 return err;
872
873 mutex_lock(&data->update_lock);
874 data->in_min[nr] = INS_TO_REG(nr, val);
875 lm85_write_value(client, LM85_REG_IN_MIN(nr), data->in_min[nr]);
876 mutex_unlock(&data->update_lock);
877 return count;
878}
879
880static ssize_t in_max_show(struct device *dev, struct device_attribute *attr,
881 char *buf)
882{
883 int nr = to_sensor_dev_attr(attr)->index;
884 struct lm85_data *data = lm85_update_device(dev);
885 return sprintf(buf, "%d\n", INS_FROM_REG(nr, data->in_max[nr]));
886}
887
888static ssize_t in_max_store(struct device *dev, struct device_attribute *attr,
889 const char *buf, size_t count)
890{
891 int nr = to_sensor_dev_attr(attr)->index;
892 struct lm85_data *data = dev_get_drvdata(dev);
893 struct i2c_client *client = data->client;
894 long val;
895 int err;
896
897 err = kstrtol(buf, 10, &val);
898 if (err)
899 return err;
900
901 mutex_lock(&data->update_lock);
902 data->in_max[nr] = INS_TO_REG(nr, val);
903 lm85_write_value(client, LM85_REG_IN_MAX(nr), data->in_max[nr]);
904 mutex_unlock(&data->update_lock);
905 return count;
906}
907
908static SENSOR_DEVICE_ATTR_RO(in0_input, in, 0);
909static SENSOR_DEVICE_ATTR_RW(in0_min, in_min, 0);
910static SENSOR_DEVICE_ATTR_RW(in0_max, in_max, 0);
911static SENSOR_DEVICE_ATTR_RO(in1_input, in, 1);
912static SENSOR_DEVICE_ATTR_RW(in1_min, in_min, 1);
913static SENSOR_DEVICE_ATTR_RW(in1_max, in_max, 1);
914static SENSOR_DEVICE_ATTR_RO(in2_input, in, 2);
915static SENSOR_DEVICE_ATTR_RW(in2_min, in_min, 2);
916static SENSOR_DEVICE_ATTR_RW(in2_max, in_max, 2);
917static SENSOR_DEVICE_ATTR_RO(in3_input, in, 3);
918static SENSOR_DEVICE_ATTR_RW(in3_min, in_min, 3);
919static SENSOR_DEVICE_ATTR_RW(in3_max, in_max, 3);
920static SENSOR_DEVICE_ATTR_RO(in4_input, in, 4);
921static SENSOR_DEVICE_ATTR_RW(in4_min, in_min, 4);
922static SENSOR_DEVICE_ATTR_RW(in4_max, in_max, 4);
923static SENSOR_DEVICE_ATTR_RO(in5_input, in, 5);
924static SENSOR_DEVICE_ATTR_RW(in5_min, in_min, 5);
925static SENSOR_DEVICE_ATTR_RW(in5_max, in_max, 5);
926static SENSOR_DEVICE_ATTR_RO(in6_input, in, 6);
927static SENSOR_DEVICE_ATTR_RW(in6_min, in_min, 6);
928static SENSOR_DEVICE_ATTR_RW(in6_max, in_max, 6);
929static SENSOR_DEVICE_ATTR_RO(in7_input, in, 7);
930static SENSOR_DEVICE_ATTR_RW(in7_min, in_min, 7);
931static SENSOR_DEVICE_ATTR_RW(in7_max, in_max, 7);
932
933/* Temps */
934
935static ssize_t temp_show(struct device *dev, struct device_attribute *attr,
936 char *buf)
937{
938 int nr = to_sensor_dev_attr(attr)->index;
939 struct lm85_data *data = lm85_update_device(dev);
940 return sprintf(buf, "%d\n", TEMPEXT_FROM_REG(data->temp[nr],
941 data->temp_ext[nr]));
942}
943
944static ssize_t temp_min_show(struct device *dev,
945 struct device_attribute *attr, char *buf)
946{
947 int nr = to_sensor_dev_attr(attr)->index;
948 struct lm85_data *data = lm85_update_device(dev);
949 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_min[nr]));
950}
951
952static ssize_t temp_min_store(struct device *dev,
953 struct device_attribute *attr, const char *buf,
954 size_t count)
955{
956 int nr = to_sensor_dev_attr(attr)->index;
957 struct lm85_data *data = dev_get_drvdata(dev);
958 struct i2c_client *client = data->client;
959 long val;
960 int err;
961
962 err = kstrtol(buf, 10, &val);
963 if (err)
964 return err;
965
966 if (IS_ADT7468_OFF64(data))
967 val += 64;
968
969 mutex_lock(&data->update_lock);
970 data->temp_min[nr] = TEMP_TO_REG(val);
971 lm85_write_value(client, LM85_REG_TEMP_MIN(nr), data->temp_min[nr]);
972 mutex_unlock(&data->update_lock);
973 return count;
974}
975
976static ssize_t temp_max_show(struct device *dev,
977 struct device_attribute *attr, char *buf)
978{
979 int nr = to_sensor_dev_attr(attr)->index;
980 struct lm85_data *data = lm85_update_device(dev);
981 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_max[nr]));
982}
983
984static ssize_t temp_max_store(struct device *dev,
985 struct device_attribute *attr, const char *buf,
986 size_t count)
987{
988 int nr = to_sensor_dev_attr(attr)->index;
989 struct lm85_data *data = dev_get_drvdata(dev);
990 struct i2c_client *client = data->client;
991 long val;
992 int err;
993
994 err = kstrtol(buf, 10, &val);
995 if (err)
996 return err;
997
998 if (IS_ADT7468_OFF64(data))
999 val += 64;
1000
1001 mutex_lock(&data->update_lock);
1002 data->temp_max[nr] = TEMP_TO_REG(val);
1003 lm85_write_value(client, LM85_REG_TEMP_MAX(nr), data->temp_max[nr]);
1004 mutex_unlock(&data->update_lock);
1005 return count;
1006}
1007
1008static SENSOR_DEVICE_ATTR_RO(temp1_input, temp, 0);
1009static SENSOR_DEVICE_ATTR_RW(temp1_min, temp_min, 0);
1010static SENSOR_DEVICE_ATTR_RW(temp1_max, temp_max, 0);
1011static SENSOR_DEVICE_ATTR_RO(temp2_input, temp, 1);
1012static SENSOR_DEVICE_ATTR_RW(temp2_min, temp_min, 1);
1013static SENSOR_DEVICE_ATTR_RW(temp2_max, temp_max, 1);
1014static SENSOR_DEVICE_ATTR_RO(temp3_input, temp, 2);
1015static SENSOR_DEVICE_ATTR_RW(temp3_min, temp_min, 2);
1016static SENSOR_DEVICE_ATTR_RW(temp3_max, temp_max, 2);
1017
1018/* Automatic PWM control */
1019
1020static ssize_t pwm_auto_channels_show(struct device *dev,
1021 struct device_attribute *attr,
1022 char *buf)
1023{
1024 int nr = to_sensor_dev_attr(attr)->index;
1025 struct lm85_data *data = lm85_update_device(dev);
1026 return sprintf(buf, "%d\n", ZONE_FROM_REG(data->autofan[nr].config));
1027}
1028
1029static ssize_t pwm_auto_channels_store(struct device *dev,
1030 struct device_attribute *attr,
1031 const char *buf, size_t count)
1032{
1033 int nr = to_sensor_dev_attr(attr)->index;
1034 struct lm85_data *data = dev_get_drvdata(dev);
1035 struct i2c_client *client = data->client;
1036 long val;
1037 int err;
1038
1039 err = kstrtol(buf, 10, &val);
1040 if (err)
1041 return err;
1042
1043 mutex_lock(&data->update_lock);
1044 data->autofan[nr].config = (data->autofan[nr].config & (~0xe0))
1045 | ZONE_TO_REG(val);
1046 lm85_write_value(client, LM85_REG_AFAN_CONFIG(nr),
1047 data->autofan[nr].config);
1048 mutex_unlock(&data->update_lock);
1049 return count;
1050}
1051
1052static ssize_t pwm_auto_pwm_min_show(struct device *dev,
1053 struct device_attribute *attr, char *buf)
1054{
1055 int nr = to_sensor_dev_attr(attr)->index;
1056 struct lm85_data *data = lm85_update_device(dev);
1057 return sprintf(buf, "%d\n", PWM_FROM_REG(data->autofan[nr].min_pwm));
1058}
1059
1060static ssize_t pwm_auto_pwm_min_store(struct device *dev,
1061 struct device_attribute *attr,
1062 const char *buf, size_t count)
1063{
1064 int nr = to_sensor_dev_attr(attr)->index;
1065 struct lm85_data *data = dev_get_drvdata(dev);
1066 struct i2c_client *client = data->client;
1067 unsigned long val;
1068 int err;
1069
1070 err = kstrtoul(buf, 10, &val);
1071 if (err)
1072 return err;
1073
1074 mutex_lock(&data->update_lock);
1075 data->autofan[nr].min_pwm = PWM_TO_REG(val);
1076 lm85_write_value(client, LM85_REG_AFAN_MINPWM(nr),
1077 data->autofan[nr].min_pwm);
1078 mutex_unlock(&data->update_lock);
1079 return count;
1080}
1081
1082static ssize_t pwm_auto_pwm_minctl_show(struct device *dev,
1083 struct device_attribute *attr,
1084 char *buf)
1085{
1086 int nr = to_sensor_dev_attr(attr)->index;
1087 struct lm85_data *data = lm85_update_device(dev);
1088 return sprintf(buf, "%d\n", data->autofan[nr].min_off);
1089}
1090
1091static ssize_t pwm_auto_pwm_minctl_store(struct device *dev,
1092 struct device_attribute *attr,
1093 const char *buf, size_t count)
1094{
1095 int nr = to_sensor_dev_attr(attr)->index;
1096 struct lm85_data *data = dev_get_drvdata(dev);
1097 struct i2c_client *client = data->client;
1098 u8 tmp;
1099 long val;
1100 int err;
1101
1102 err = kstrtol(buf, 10, &val);
1103 if (err)
1104 return err;
1105
1106 mutex_lock(&data->update_lock);
1107 data->autofan[nr].min_off = val;
1108 tmp = lm85_read_value(client, LM85_REG_AFAN_SPIKE1);
1109 tmp &= ~(0x20 << nr);
1110 if (data->autofan[nr].min_off)
1111 tmp |= 0x20 << nr;
1112 lm85_write_value(client, LM85_REG_AFAN_SPIKE1, tmp);
1113 mutex_unlock(&data->update_lock);
1114 return count;
1115}
1116
1117static SENSOR_DEVICE_ATTR_RW(pwm1_auto_channels, pwm_auto_channels, 0);
1118static SENSOR_DEVICE_ATTR_RW(pwm1_auto_pwm_min, pwm_auto_pwm_min, 0);
1119static SENSOR_DEVICE_ATTR_RW(pwm1_auto_pwm_minctl, pwm_auto_pwm_minctl, 0);
1120static SENSOR_DEVICE_ATTR_RW(pwm2_auto_channels, pwm_auto_channels, 1);
1121static SENSOR_DEVICE_ATTR_RW(pwm2_auto_pwm_min, pwm_auto_pwm_min, 1);
1122static SENSOR_DEVICE_ATTR_RW(pwm2_auto_pwm_minctl, pwm_auto_pwm_minctl, 1);
1123static SENSOR_DEVICE_ATTR_RW(pwm3_auto_channels, pwm_auto_channels, 2);
1124static SENSOR_DEVICE_ATTR_RW(pwm3_auto_pwm_min, pwm_auto_pwm_min, 2);
1125static SENSOR_DEVICE_ATTR_RW(pwm3_auto_pwm_minctl, pwm_auto_pwm_minctl, 2);
1126
1127/* Temperature settings for automatic PWM control */
1128
1129static ssize_t temp_auto_temp_off_show(struct device *dev,
1130 struct device_attribute *attr,
1131 char *buf)
1132{
1133 int nr = to_sensor_dev_attr(attr)->index;
1134 struct lm85_data *data = lm85_update_device(dev);
1135 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit) -
1136 HYST_FROM_REG(data->zone[nr].hyst));
1137}
1138
1139static ssize_t temp_auto_temp_off_store(struct device *dev,
1140 struct device_attribute *attr,
1141 const char *buf, size_t count)
1142{
1143 int nr = to_sensor_dev_attr(attr)->index;
1144 struct lm85_data *data = dev_get_drvdata(dev);
1145 struct i2c_client *client = data->client;
1146 int min;
1147 long val;
1148 int err;
1149
1150 err = kstrtol(buf, 10, &val);
1151 if (err)
1152 return err;
1153
1154 mutex_lock(&data->update_lock);
1155 min = TEMP_FROM_REG(data->zone[nr].limit);
1156 data->zone[nr].hyst = HYST_TO_REG(min - val);
1157 if (nr == 0 || nr == 1) {
1158 lm85_write_value(client, LM85_REG_AFAN_HYST1,
1159 (data->zone[0].hyst << 4)
1160 | data->zone[1].hyst);
1161 } else {
1162 lm85_write_value(client, LM85_REG_AFAN_HYST2,
1163 (data->zone[2].hyst << 4));
1164 }
1165 mutex_unlock(&data->update_lock);
1166 return count;
1167}
1168
1169static ssize_t temp_auto_temp_min_show(struct device *dev,
1170 struct device_attribute *attr,
1171 char *buf)
1172{
1173 int nr = to_sensor_dev_attr(attr)->index;
1174 struct lm85_data *data = lm85_update_device(dev);
1175 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit));
1176}
1177
1178static ssize_t temp_auto_temp_min_store(struct device *dev,
1179 struct device_attribute *attr,
1180 const char *buf, size_t count)
1181{
1182 int nr = to_sensor_dev_attr(attr)->index;
1183 struct lm85_data *data = dev_get_drvdata(dev);
1184 struct i2c_client *client = data->client;
1185 long val;
1186 int err;
1187
1188 err = kstrtol(buf, 10, &val);
1189 if (err)
1190 return err;
1191
1192 mutex_lock(&data->update_lock);
1193 data->zone[nr].limit = TEMP_TO_REG(val);
1194 lm85_write_value(client, LM85_REG_AFAN_LIMIT(nr),
1195 data->zone[nr].limit);
1196
1197/* Update temp_auto_max and temp_auto_range */
1198 data->zone[nr].range = RANGE_TO_REG(
1199 TEMP_FROM_REG(data->zone[nr].max_desired) -
1200 TEMP_FROM_REG(data->zone[nr].limit));
1201 lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
1202 ((data->zone[nr].range & 0x0f) << 4)
1203 | data->pwm_freq[nr]);
1204
1205 mutex_unlock(&data->update_lock);
1206 return count;
1207}
1208
1209static ssize_t temp_auto_temp_max_show(struct device *dev,
1210 struct device_attribute *attr,
1211 char *buf)
1212{
1213 int nr = to_sensor_dev_attr(attr)->index;
1214 struct lm85_data *data = lm85_update_device(dev);
1215 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit) +
1216 RANGE_FROM_REG(data->zone[nr].range));
1217}
1218
1219static ssize_t temp_auto_temp_max_store(struct device *dev,
1220 struct device_attribute *attr,
1221 const char *buf, size_t count)
1222{
1223 int nr = to_sensor_dev_attr(attr)->index;
1224 struct lm85_data *data = dev_get_drvdata(dev);
1225 struct i2c_client *client = data->client;
1226 int min;
1227 long val;
1228 int err;
1229
1230 err = kstrtol(buf, 10, &val);
1231 if (err)
1232 return err;
1233
1234 mutex_lock(&data->update_lock);
1235 min = TEMP_FROM_REG(data->zone[nr].limit);
1236 data->zone[nr].max_desired = TEMP_TO_REG(val);
1237 data->zone[nr].range = RANGE_TO_REG(
1238 val - min);
1239 lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
1240 ((data->zone[nr].range & 0x0f) << 4)
1241 | data->pwm_freq[nr]);
1242 mutex_unlock(&data->update_lock);
1243 return count;
1244}
1245
1246static ssize_t temp_auto_temp_crit_show(struct device *dev,
1247 struct device_attribute *attr,
1248 char *buf)
1249{
1250 int nr = to_sensor_dev_attr(attr)->index;
1251 struct lm85_data *data = lm85_update_device(dev);
1252 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].critical));
1253}
1254
1255static ssize_t temp_auto_temp_crit_store(struct device *dev,
1256 struct device_attribute *attr,
1257 const char *buf, size_t count)
1258{
1259 int nr = to_sensor_dev_attr(attr)->index;
1260 struct lm85_data *data = dev_get_drvdata(dev);
1261 struct i2c_client *client = data->client;
1262 long val;
1263 int err;
1264
1265 err = kstrtol(buf, 10, &val);
1266 if (err)
1267 return err;
1268
1269 mutex_lock(&data->update_lock);
1270 data->zone[nr].critical = TEMP_TO_REG(val);
1271 lm85_write_value(client, LM85_REG_AFAN_CRITICAL(nr),
1272 data->zone[nr].critical);
1273 mutex_unlock(&data->update_lock);
1274 return count;
1275}
1276
1277static SENSOR_DEVICE_ATTR_RW(temp1_auto_temp_off, temp_auto_temp_off, 0);
1278static SENSOR_DEVICE_ATTR_RW(temp1_auto_temp_min, temp_auto_temp_min, 0);
1279static SENSOR_DEVICE_ATTR_RW(temp1_auto_temp_max, temp_auto_temp_max, 0);
1280static SENSOR_DEVICE_ATTR_RW(temp1_auto_temp_crit, temp_auto_temp_crit, 0);
1281static SENSOR_DEVICE_ATTR_RW(temp2_auto_temp_off, temp_auto_temp_off, 1);
1282static SENSOR_DEVICE_ATTR_RW(temp2_auto_temp_min, temp_auto_temp_min, 1);
1283static SENSOR_DEVICE_ATTR_RW(temp2_auto_temp_max, temp_auto_temp_max, 1);
1284static SENSOR_DEVICE_ATTR_RW(temp2_auto_temp_crit, temp_auto_temp_crit, 1);
1285static SENSOR_DEVICE_ATTR_RW(temp3_auto_temp_off, temp_auto_temp_off, 2);
1286static SENSOR_DEVICE_ATTR_RW(temp3_auto_temp_min, temp_auto_temp_min, 2);
1287static SENSOR_DEVICE_ATTR_RW(temp3_auto_temp_max, temp_auto_temp_max, 2);
1288static SENSOR_DEVICE_ATTR_RW(temp3_auto_temp_crit, temp_auto_temp_crit, 2);
1289
1290static struct attribute *lm85_attributes[] = {
1291 &sensor_dev_attr_fan1_input.dev_attr.attr,
1292 &sensor_dev_attr_fan2_input.dev_attr.attr,
1293 &sensor_dev_attr_fan3_input.dev_attr.attr,
1294 &sensor_dev_attr_fan4_input.dev_attr.attr,
1295 &sensor_dev_attr_fan1_min.dev_attr.attr,
1296 &sensor_dev_attr_fan2_min.dev_attr.attr,
1297 &sensor_dev_attr_fan3_min.dev_attr.attr,
1298 &sensor_dev_attr_fan4_min.dev_attr.attr,
1299 &sensor_dev_attr_fan1_alarm.dev_attr.attr,
1300 &sensor_dev_attr_fan2_alarm.dev_attr.attr,
1301 &sensor_dev_attr_fan3_alarm.dev_attr.attr,
1302 &sensor_dev_attr_fan4_alarm.dev_attr.attr,
1303
1304 &sensor_dev_attr_pwm1.dev_attr.attr,
1305 &sensor_dev_attr_pwm2.dev_attr.attr,
1306 &sensor_dev_attr_pwm3.dev_attr.attr,
1307 &sensor_dev_attr_pwm1_enable.dev_attr.attr,
1308 &sensor_dev_attr_pwm2_enable.dev_attr.attr,
1309 &sensor_dev_attr_pwm3_enable.dev_attr.attr,
1310 &sensor_dev_attr_pwm1_freq.dev_attr.attr,
1311 &sensor_dev_attr_pwm2_freq.dev_attr.attr,
1312 &sensor_dev_attr_pwm3_freq.dev_attr.attr,
1313
1314 &sensor_dev_attr_in0_input.dev_attr.attr,
1315 &sensor_dev_attr_in1_input.dev_attr.attr,
1316 &sensor_dev_attr_in2_input.dev_attr.attr,
1317 &sensor_dev_attr_in3_input.dev_attr.attr,
1318 &sensor_dev_attr_in0_min.dev_attr.attr,
1319 &sensor_dev_attr_in1_min.dev_attr.attr,
1320 &sensor_dev_attr_in2_min.dev_attr.attr,
1321 &sensor_dev_attr_in3_min.dev_attr.attr,
1322 &sensor_dev_attr_in0_max.dev_attr.attr,
1323 &sensor_dev_attr_in1_max.dev_attr.attr,
1324 &sensor_dev_attr_in2_max.dev_attr.attr,
1325 &sensor_dev_attr_in3_max.dev_attr.attr,
1326 &sensor_dev_attr_in0_alarm.dev_attr.attr,
1327 &sensor_dev_attr_in1_alarm.dev_attr.attr,
1328 &sensor_dev_attr_in2_alarm.dev_attr.attr,
1329 &sensor_dev_attr_in3_alarm.dev_attr.attr,
1330
1331 &sensor_dev_attr_temp1_input.dev_attr.attr,
1332 &sensor_dev_attr_temp2_input.dev_attr.attr,
1333 &sensor_dev_attr_temp3_input.dev_attr.attr,
1334 &sensor_dev_attr_temp1_min.dev_attr.attr,
1335 &sensor_dev_attr_temp2_min.dev_attr.attr,
1336 &sensor_dev_attr_temp3_min.dev_attr.attr,
1337 &sensor_dev_attr_temp1_max.dev_attr.attr,
1338 &sensor_dev_attr_temp2_max.dev_attr.attr,
1339 &sensor_dev_attr_temp3_max.dev_attr.attr,
1340 &sensor_dev_attr_temp1_alarm.dev_attr.attr,
1341 &sensor_dev_attr_temp2_alarm.dev_attr.attr,
1342 &sensor_dev_attr_temp3_alarm.dev_attr.attr,
1343 &sensor_dev_attr_temp1_fault.dev_attr.attr,
1344 &sensor_dev_attr_temp3_fault.dev_attr.attr,
1345
1346 &sensor_dev_attr_pwm1_auto_channels.dev_attr.attr,
1347 &sensor_dev_attr_pwm2_auto_channels.dev_attr.attr,
1348 &sensor_dev_attr_pwm3_auto_channels.dev_attr.attr,
1349 &sensor_dev_attr_pwm1_auto_pwm_min.dev_attr.attr,
1350 &sensor_dev_attr_pwm2_auto_pwm_min.dev_attr.attr,
1351 &sensor_dev_attr_pwm3_auto_pwm_min.dev_attr.attr,
1352
1353 &sensor_dev_attr_temp1_auto_temp_min.dev_attr.attr,
1354 &sensor_dev_attr_temp2_auto_temp_min.dev_attr.attr,
1355 &sensor_dev_attr_temp3_auto_temp_min.dev_attr.attr,
1356 &sensor_dev_attr_temp1_auto_temp_max.dev_attr.attr,
1357 &sensor_dev_attr_temp2_auto_temp_max.dev_attr.attr,
1358 &sensor_dev_attr_temp3_auto_temp_max.dev_attr.attr,
1359 &sensor_dev_attr_temp1_auto_temp_crit.dev_attr.attr,
1360 &sensor_dev_attr_temp2_auto_temp_crit.dev_attr.attr,
1361 &sensor_dev_attr_temp3_auto_temp_crit.dev_attr.attr,
1362
1363 &dev_attr_vrm.attr,
1364 &dev_attr_cpu0_vid.attr,
1365 &dev_attr_alarms.attr,
1366 NULL
1367};
1368
1369static const struct attribute_group lm85_group = {
1370 .attrs = lm85_attributes,
1371};
1372
1373static struct attribute *lm85_attributes_minctl[] = {
1374 &sensor_dev_attr_pwm1_auto_pwm_minctl.dev_attr.attr,
1375 &sensor_dev_attr_pwm2_auto_pwm_minctl.dev_attr.attr,
1376 &sensor_dev_attr_pwm3_auto_pwm_minctl.dev_attr.attr,
1377 NULL
1378};
1379
1380static const struct attribute_group lm85_group_minctl = {
1381 .attrs = lm85_attributes_minctl,
1382};
1383
1384static struct attribute *lm85_attributes_temp_off[] = {
1385 &sensor_dev_attr_temp1_auto_temp_off.dev_attr.attr,
1386 &sensor_dev_attr_temp2_auto_temp_off.dev_attr.attr,
1387 &sensor_dev_attr_temp3_auto_temp_off.dev_attr.attr,
1388 NULL
1389};
1390
1391static const struct attribute_group lm85_group_temp_off = {
1392 .attrs = lm85_attributes_temp_off,
1393};
1394
1395static struct attribute *lm85_attributes_in4[] = {
1396 &sensor_dev_attr_in4_input.dev_attr.attr,
1397 &sensor_dev_attr_in4_min.dev_attr.attr,
1398 &sensor_dev_attr_in4_max.dev_attr.attr,
1399 &sensor_dev_attr_in4_alarm.dev_attr.attr,
1400 NULL
1401};
1402
1403static const struct attribute_group lm85_group_in4 = {
1404 .attrs = lm85_attributes_in4,
1405};
1406
1407static struct attribute *lm85_attributes_in567[] = {
1408 &sensor_dev_attr_in5_input.dev_attr.attr,
1409 &sensor_dev_attr_in6_input.dev_attr.attr,
1410 &sensor_dev_attr_in7_input.dev_attr.attr,
1411 &sensor_dev_attr_in5_min.dev_attr.attr,
1412 &sensor_dev_attr_in6_min.dev_attr.attr,
1413 &sensor_dev_attr_in7_min.dev_attr.attr,
1414 &sensor_dev_attr_in5_max.dev_attr.attr,
1415 &sensor_dev_attr_in6_max.dev_attr.attr,
1416 &sensor_dev_attr_in7_max.dev_attr.attr,
1417 &sensor_dev_attr_in5_alarm.dev_attr.attr,
1418 &sensor_dev_attr_in6_alarm.dev_attr.attr,
1419 &sensor_dev_attr_in7_alarm.dev_attr.attr,
1420 NULL
1421};
1422
1423static const struct attribute_group lm85_group_in567 = {
1424 .attrs = lm85_attributes_in567,
1425};
1426
1427static void lm85_init_client(struct i2c_client *client)
1428{
1429 int value;
1430
1431 /* Start monitoring if needed */
1432 value = lm85_read_value(client, LM85_REG_CONFIG);
1433 if (!(value & 0x01)) {
1434 dev_info(&client->dev, "Starting monitoring\n");
1435 lm85_write_value(client, LM85_REG_CONFIG, value | 0x01);
1436 }
1437
1438 /* Warn about unusual configuration bits */
1439 if (value & 0x02)
1440 dev_warn(&client->dev, "Device configuration is locked\n");
1441 if (!(value & 0x04))
1442 dev_warn(&client->dev, "Device is not ready\n");
1443}
1444
1445static int lm85_is_fake(struct i2c_client *client)
1446{
1447 /*
1448 * Differenciate between real LM96000 and Winbond WPCD377I. The latter
1449 * emulate the former except that it has no hardware monitoring function
1450 * so the readings are always 0.
1451 */
1452 int i;
1453 u8 in_temp, fan;
1454
1455 for (i = 0; i < 8; i++) {
1456 in_temp = i2c_smbus_read_byte_data(client, 0x20 + i);
1457 fan = i2c_smbus_read_byte_data(client, 0x28 + i);
1458 if (in_temp != 0x00 || fan != 0xff)
1459 return 0;
1460 }
1461
1462 return 1;
1463}
1464
1465/* Return 0 if detection is successful, -ENODEV otherwise */
1466static int lm85_detect(struct i2c_client *client, struct i2c_board_info *info)
1467{
1468 struct i2c_adapter *adapter = client->adapter;
1469 int address = client->addr;
1470 const char *type_name = NULL;
1471 int company, verstep;
1472
1473 if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) {
1474 /* We need to be able to do byte I/O */
1475 return -ENODEV;
1476 }
1477
1478 /* Determine the chip type */
1479 company = lm85_read_value(client, LM85_REG_COMPANY);
1480 verstep = lm85_read_value(client, LM85_REG_VERSTEP);
1481
1482 dev_dbg(&adapter->dev,
1483 "Detecting device at 0x%02x with COMPANY: 0x%02x and VERSTEP: 0x%02x\n",
1484 address, company, verstep);
1485
1486 if (company == LM85_COMPANY_NATIONAL) {
1487 switch (verstep) {
1488 case LM85_VERSTEP_LM85C:
1489 type_name = "lm85c";
1490 break;
1491 case LM85_VERSTEP_LM85B:
1492 type_name = "lm85b";
1493 break;
1494 case LM85_VERSTEP_LM96000_1:
1495 case LM85_VERSTEP_LM96000_2:
1496 /* Check for Winbond WPCD377I */
1497 if (lm85_is_fake(client)) {
1498 dev_dbg(&adapter->dev,
1499 "Found Winbond WPCD377I, ignoring\n");
1500 return -ENODEV;
1501 }
1502 type_name = "lm96000";
1503 break;
1504 }
1505 } else if (company == LM85_COMPANY_ANALOG_DEV) {
1506 switch (verstep) {
1507 case LM85_VERSTEP_ADM1027:
1508 type_name = "adm1027";
1509 break;
1510 case LM85_VERSTEP_ADT7463:
1511 case LM85_VERSTEP_ADT7463C:
1512 type_name = "adt7463";
1513 break;
1514 case LM85_VERSTEP_ADT7468_1:
1515 case LM85_VERSTEP_ADT7468_2:
1516 type_name = "adt7468";
1517 break;
1518 }
1519 } else if (company == LM85_COMPANY_SMSC) {
1520 switch (verstep) {
1521 case LM85_VERSTEP_EMC6D100_A0:
1522 case LM85_VERSTEP_EMC6D100_A1:
1523 /* Note: we can't tell a '100 from a '101 */
1524 type_name = "emc6d100";
1525 break;
1526 case LM85_VERSTEP_EMC6D102:
1527 type_name = "emc6d102";
1528 break;
1529 case LM85_VERSTEP_EMC6D103_A0:
1530 case LM85_VERSTEP_EMC6D103_A1:
1531 type_name = "emc6d103";
1532 break;
1533 case LM85_VERSTEP_EMC6D103S:
1534 type_name = "emc6d103s";
1535 break;
1536 }
1537 }
1538
1539 if (!type_name)
1540 return -ENODEV;
1541
1542 strlcpy(info->type, type_name, I2C_NAME_SIZE);
1543
1544 return 0;
1545}
1546
1547static int lm85_probe(struct i2c_client *client, const struct i2c_device_id *id)
1548{
1549 struct device *dev = &client->dev;
1550 struct device *hwmon_dev;
1551 struct lm85_data *data;
1552 int idx = 0;
1553
1554 data = devm_kzalloc(dev, sizeof(struct lm85_data), GFP_KERNEL);
1555 if (!data)
1556 return -ENOMEM;
1557
1558 data->client = client;
1559 if (client->dev.of_node)
1560 data->type = (enum chips)of_device_get_match_data(&client->dev);
1561 else
1562 data->type = id->driver_data;
1563 mutex_init(&data->update_lock);
1564
1565 /* Fill in the chip specific driver values */
1566 switch (data->type) {
1567 case adm1027:
1568 case adt7463:
1569 case adt7468:
1570 case emc6d100:
1571 case emc6d102:
1572 case emc6d103:
1573 case emc6d103s:
1574 data->freq_map = adm1027_freq_map;
1575 data->freq_map_size = ARRAY_SIZE(adm1027_freq_map);
1576 break;
1577 case lm96000:
1578 data->freq_map = lm96000_freq_map;
1579 data->freq_map_size = ARRAY_SIZE(lm96000_freq_map);
1580 break;
1581 default:
1582 data->freq_map = lm85_freq_map;
1583 data->freq_map_size = ARRAY_SIZE(lm85_freq_map);
1584 }
1585
1586 /* Set the VRM version */
1587 data->vrm = vid_which_vrm();
1588
1589 /* Initialize the LM85 chip */
1590 lm85_init_client(client);
1591
1592 /* sysfs hooks */
1593 data->groups[idx++] = &lm85_group;
1594
1595 /* minctl and temp_off exist on all chips except emc6d103s */
1596 if (data->type != emc6d103s) {
1597 data->groups[idx++] = &lm85_group_minctl;
1598 data->groups[idx++] = &lm85_group_temp_off;
1599 }
1600
1601 /*
1602 * The ADT7463/68 have an optional VRM 10 mode where pin 21 is used
1603 * as a sixth digital VID input rather than an analog input.
1604 */
1605 if (data->type == adt7463 || data->type == adt7468) {
1606 u8 vid = lm85_read_value(client, LM85_REG_VID);
1607 if (vid & 0x80)
1608 data->has_vid5 = true;
1609 }
1610
1611 if (!data->has_vid5)
1612 data->groups[idx++] = &lm85_group_in4;
1613
1614 /* The EMC6D100 has 3 additional voltage inputs */
1615 if (data->type == emc6d100)
1616 data->groups[idx++] = &lm85_group_in567;
1617
1618 hwmon_dev = devm_hwmon_device_register_with_groups(dev, client->name,
1619 data, data->groups);
1620 return PTR_ERR_OR_ZERO(hwmon_dev);
1621}
1622
1623static const struct i2c_device_id lm85_id[] = {
1624 { "adm1027", adm1027 },
1625 { "adt7463", adt7463 },
1626 { "adt7468", adt7468 },
1627 { "lm85", lm85 },
1628 { "lm85b", lm85 },
1629 { "lm85c", lm85 },
1630 { "lm96000", lm96000 },
1631 { "emc6d100", emc6d100 },
1632 { "emc6d101", emc6d100 },
1633 { "emc6d102", emc6d102 },
1634 { "emc6d103", emc6d103 },
1635 { "emc6d103s", emc6d103s },
1636 { }
1637};
1638MODULE_DEVICE_TABLE(i2c, lm85_id);
1639
1640static const struct of_device_id __maybe_unused lm85_of_match[] = {
1641 {
1642 .compatible = "adi,adm1027",
1643 .data = (void *)adm1027
1644 },
1645 {
1646 .compatible = "adi,adt7463",
1647 .data = (void *)adt7463
1648 },
1649 {
1650 .compatible = "adi,adt7468",
1651 .data = (void *)adt7468
1652 },
1653 {
1654 .compatible = "national,lm85",
1655 .data = (void *)lm85
1656 },
1657 {
1658 .compatible = "national,lm85b",
1659 .data = (void *)lm85
1660 },
1661 {
1662 .compatible = "national,lm85c",
1663 .data = (void *)lm85
1664 },
1665 {
1666 .compatible = "ti,lm96000",
1667 .data = (void *)lm96000
1668 },
1669 {
1670 .compatible = "smsc,emc6d100",
1671 .data = (void *)emc6d100
1672 },
1673 {
1674 .compatible = "smsc,emc6d101",
1675 .data = (void *)emc6d100
1676 },
1677 {
1678 .compatible = "smsc,emc6d102",
1679 .data = (void *)emc6d102
1680 },
1681 {
1682 .compatible = "smsc,emc6d103",
1683 .data = (void *)emc6d103
1684 },
1685 {
1686 .compatible = "smsc,emc6d103s",
1687 .data = (void *)emc6d103s
1688 },
1689 { },
1690};
1691MODULE_DEVICE_TABLE(of, lm85_of_match);
1692
1693static struct i2c_driver lm85_driver = {
1694 .class = I2C_CLASS_HWMON,
1695 .driver = {
1696 .name = "lm85",
1697 .of_match_table = of_match_ptr(lm85_of_match),
1698 },
1699 .probe = lm85_probe,
1700 .id_table = lm85_id,
1701 .detect = lm85_detect,
1702 .address_list = normal_i2c,
1703};
1704
1705module_i2c_driver(lm85_driver);
1706
1707MODULE_LICENSE("GPL");
1708MODULE_AUTHOR("Philip Pokorny <ppokorny@penguincomputing.com>, "
1709 "Margit Schubert-While <margitsw@t-online.de>, "
1710 "Justin Thiessen <jthiessen@penguincomputing.com>");
1711MODULE_DESCRIPTION("LM85-B, LM85-C driver");
1/*
2 * lm85.c - Part of lm_sensors, Linux kernel modules for hardware
3 * monitoring
4 * Copyright (c) 1998, 1999 Frodo Looijaard <frodol@dds.nl>
5 * Copyright (c) 2002, 2003 Philip Pokorny <ppokorny@penguincomputing.com>
6 * Copyright (c) 2003 Margit Schubert-While <margitsw@t-online.de>
7 * Copyright (c) 2004 Justin Thiessen <jthiessen@penguincomputing.com>
8 * Copyright (C) 2007--2014 Jean Delvare <jdelvare@suse.de>
9 *
10 * Chip details at <http://www.national.com/ds/LM/LM85.pdf>
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
25 */
26
27#include <linux/module.h>
28#include <linux/of_device.h>
29#include <linux/init.h>
30#include <linux/slab.h>
31#include <linux/jiffies.h>
32#include <linux/i2c.h>
33#include <linux/hwmon.h>
34#include <linux/hwmon-vid.h>
35#include <linux/hwmon-sysfs.h>
36#include <linux/err.h>
37#include <linux/mutex.h>
38#include <linux/util_macros.h>
39
40/* Addresses to scan */
41static const unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, I2C_CLIENT_END };
42
43enum chips {
44 lm85,
45 adm1027, adt7463, adt7468,
46 emc6d100, emc6d102, emc6d103, emc6d103s
47};
48
49/* The LM85 registers */
50
51#define LM85_REG_IN(nr) (0x20 + (nr))
52#define LM85_REG_IN_MIN(nr) (0x44 + (nr) * 2)
53#define LM85_REG_IN_MAX(nr) (0x45 + (nr) * 2)
54
55#define LM85_REG_TEMP(nr) (0x25 + (nr))
56#define LM85_REG_TEMP_MIN(nr) (0x4e + (nr) * 2)
57#define LM85_REG_TEMP_MAX(nr) (0x4f + (nr) * 2)
58
59/* Fan speeds are LSB, MSB (2 bytes) */
60#define LM85_REG_FAN(nr) (0x28 + (nr) * 2)
61#define LM85_REG_FAN_MIN(nr) (0x54 + (nr) * 2)
62
63#define LM85_REG_PWM(nr) (0x30 + (nr))
64
65#define LM85_REG_COMPANY 0x3e
66#define LM85_REG_VERSTEP 0x3f
67
68#define ADT7468_REG_CFG5 0x7c
69#define ADT7468_OFF64 (1 << 0)
70#define ADT7468_HFPWM (1 << 1)
71#define IS_ADT7468_OFF64(data) \
72 ((data)->type == adt7468 && !((data)->cfg5 & ADT7468_OFF64))
73#define IS_ADT7468_HFPWM(data) \
74 ((data)->type == adt7468 && !((data)->cfg5 & ADT7468_HFPWM))
75
76/* These are the recognized values for the above regs */
77#define LM85_COMPANY_NATIONAL 0x01
78#define LM85_COMPANY_ANALOG_DEV 0x41
79#define LM85_COMPANY_SMSC 0x5c
80#define LM85_VERSTEP_LM85C 0x60
81#define LM85_VERSTEP_LM85B 0x62
82#define LM85_VERSTEP_LM96000_1 0x68
83#define LM85_VERSTEP_LM96000_2 0x69
84#define LM85_VERSTEP_ADM1027 0x60
85#define LM85_VERSTEP_ADT7463 0x62
86#define LM85_VERSTEP_ADT7463C 0x6A
87#define LM85_VERSTEP_ADT7468_1 0x71
88#define LM85_VERSTEP_ADT7468_2 0x72
89#define LM85_VERSTEP_EMC6D100_A0 0x60
90#define LM85_VERSTEP_EMC6D100_A1 0x61
91#define LM85_VERSTEP_EMC6D102 0x65
92#define LM85_VERSTEP_EMC6D103_A0 0x68
93#define LM85_VERSTEP_EMC6D103_A1 0x69
94#define LM85_VERSTEP_EMC6D103S 0x6A /* Also known as EMC6D103:A2 */
95
96#define LM85_REG_CONFIG 0x40
97
98#define LM85_REG_ALARM1 0x41
99#define LM85_REG_ALARM2 0x42
100
101#define LM85_REG_VID 0x43
102
103/* Automated FAN control */
104#define LM85_REG_AFAN_CONFIG(nr) (0x5c + (nr))
105#define LM85_REG_AFAN_RANGE(nr) (0x5f + (nr))
106#define LM85_REG_AFAN_SPIKE1 0x62
107#define LM85_REG_AFAN_MINPWM(nr) (0x64 + (nr))
108#define LM85_REG_AFAN_LIMIT(nr) (0x67 + (nr))
109#define LM85_REG_AFAN_CRITICAL(nr) (0x6a + (nr))
110#define LM85_REG_AFAN_HYST1 0x6d
111#define LM85_REG_AFAN_HYST2 0x6e
112
113#define ADM1027_REG_EXTEND_ADC1 0x76
114#define ADM1027_REG_EXTEND_ADC2 0x77
115
116#define EMC6D100_REG_ALARM3 0x7d
117/* IN5, IN6 and IN7 */
118#define EMC6D100_REG_IN(nr) (0x70 + ((nr) - 5))
119#define EMC6D100_REG_IN_MIN(nr) (0x73 + ((nr) - 5) * 2)
120#define EMC6D100_REG_IN_MAX(nr) (0x74 + ((nr) - 5) * 2)
121#define EMC6D102_REG_EXTEND_ADC1 0x85
122#define EMC6D102_REG_EXTEND_ADC2 0x86
123#define EMC6D102_REG_EXTEND_ADC3 0x87
124#define EMC6D102_REG_EXTEND_ADC4 0x88
125
126/*
127 * Conversions. Rounding and limit checking is only done on the TO_REG
128 * variants. Note that you should be a bit careful with which arguments
129 * these macros are called: arguments may be evaluated more than once.
130 */
131
132/* IN are scaled according to built-in resistors */
133static const int lm85_scaling[] = { /* .001 Volts */
134 2500, 2250, 3300, 5000, 12000,
135 3300, 1500, 1800 /*EMC6D100*/
136};
137#define SCALE(val, from, to) (((val) * (to) + ((from) / 2)) / (from))
138
139#define INS_TO_REG(n, val) \
140 SCALE(clamp_val(val, 0, 255 * lm85_scaling[n] / 192), \
141 lm85_scaling[n], 192)
142
143#define INSEXT_FROM_REG(n, val, ext) \
144 SCALE(((val) << 4) + (ext), 192 << 4, lm85_scaling[n])
145
146#define INS_FROM_REG(n, val) SCALE((val), 192, lm85_scaling[n])
147
148/* FAN speed is measured using 90kHz clock */
149static inline u16 FAN_TO_REG(unsigned long val)
150{
151 if (!val)
152 return 0xffff;
153 return clamp_val(5400000 / val, 1, 0xfffe);
154}
155#define FAN_FROM_REG(val) ((val) == 0 ? -1 : (val) == 0xffff ? 0 : \
156 5400000 / (val))
157
158/* Temperature is reported in .001 degC increments */
159#define TEMP_TO_REG(val) \
160 DIV_ROUND_CLOSEST(clamp_val((val), -127000, 127000), 1000)
161#define TEMPEXT_FROM_REG(val, ext) \
162 SCALE(((val) << 4) + (ext), 16, 1000)
163#define TEMP_FROM_REG(val) ((val) * 1000)
164
165#define PWM_TO_REG(val) clamp_val(val, 0, 255)
166#define PWM_FROM_REG(val) (val)
167
168
169/*
170 * ZONEs have the following parameters:
171 * Limit (low) temp, 1. degC
172 * Hysteresis (below limit), 1. degC (0-15)
173 * Range of speed control, .1 degC (2-80)
174 * Critical (high) temp, 1. degC
175 *
176 * FAN PWMs have the following parameters:
177 * Reference Zone, 1, 2, 3, etc.
178 * Spinup time, .05 sec
179 * PWM value at limit/low temp, 1 count
180 * PWM Frequency, 1. Hz
181 * PWM is Min or OFF below limit, flag
182 * Invert PWM output, flag
183 *
184 * Some chips filter the temp, others the fan.
185 * Filter constant (or disabled) .1 seconds
186 */
187
188/* These are the zone temperature range encodings in .001 degree C */
189static const int lm85_range_map[] = {
190 2000, 2500, 3300, 4000, 5000, 6600, 8000, 10000,
191 13300, 16000, 20000, 26600, 32000, 40000, 53300, 80000
192};
193
194static int RANGE_TO_REG(long range)
195{
196 return find_closest(range, lm85_range_map, ARRAY_SIZE(lm85_range_map));
197}
198#define RANGE_FROM_REG(val) lm85_range_map[(val) & 0x0f]
199
200/* These are the PWM frequency encodings */
201static const int lm85_freq_map[8] = { /* 1 Hz */
202 10, 15, 23, 30, 38, 47, 61, 94
203};
204static const int adm1027_freq_map[8] = { /* 1 Hz */
205 11, 15, 22, 29, 35, 44, 59, 88
206};
207#define FREQ_MAP_LEN 8
208
209static int FREQ_TO_REG(const int *map,
210 unsigned int map_size, unsigned long freq)
211{
212 return find_closest(freq, map, map_size);
213}
214
215static int FREQ_FROM_REG(const int *map, u8 reg)
216{
217 return map[reg & 0x07];
218}
219
220/*
221 * Since we can't use strings, I'm abusing these numbers
222 * to stand in for the following meanings:
223 * 1 -- PWM responds to Zone 1
224 * 2 -- PWM responds to Zone 2
225 * 3 -- PWM responds to Zone 3
226 * 23 -- PWM responds to the higher temp of Zone 2 or 3
227 * 123 -- PWM responds to highest of Zone 1, 2, or 3
228 * 0 -- PWM is always at 0% (ie, off)
229 * -1 -- PWM is always at 100%
230 * -2 -- PWM responds to manual control
231 */
232
233static const int lm85_zone_map[] = { 1, 2, 3, -1, 0, 23, 123, -2 };
234#define ZONE_FROM_REG(val) lm85_zone_map[(val) >> 5]
235
236static int ZONE_TO_REG(int zone)
237{
238 int i;
239
240 for (i = 0; i <= 7; ++i)
241 if (zone == lm85_zone_map[i])
242 break;
243 if (i > 7) /* Not found. */
244 i = 3; /* Always 100% */
245 return i << 5;
246}
247
248#define HYST_TO_REG(val) clamp_val(((val) + 500) / 1000, 0, 15)
249#define HYST_FROM_REG(val) ((val) * 1000)
250
251/*
252 * Chip sampling rates
253 *
254 * Some sensors are not updated more frequently than once per second
255 * so it doesn't make sense to read them more often than that.
256 * We cache the results and return the saved data if the driver
257 * is called again before a second has elapsed.
258 *
259 * Also, there is significant configuration data for this chip
260 * given the automatic PWM fan control that is possible. There
261 * are about 47 bytes of config data to only 22 bytes of actual
262 * readings. So, we keep the config data up to date in the cache
263 * when it is written and only sample it once every 1 *minute*
264 */
265#define LM85_DATA_INTERVAL (HZ + HZ / 2)
266#define LM85_CONFIG_INTERVAL (1 * 60 * HZ)
267
268/*
269 * LM85 can automatically adjust fan speeds based on temperature
270 * This structure encapsulates an entire Zone config. There are
271 * three zones (one for each temperature input) on the lm85
272 */
273struct lm85_zone {
274 s8 limit; /* Low temp limit */
275 u8 hyst; /* Low limit hysteresis. (0-15) */
276 u8 range; /* Temp range, encoded */
277 s8 critical; /* "All fans ON" temp limit */
278 u8 max_desired; /*
279 * Actual "max" temperature specified. Preserved
280 * to prevent "drift" as other autofan control
281 * values change.
282 */
283};
284
285struct lm85_autofan {
286 u8 config; /* Register value */
287 u8 min_pwm; /* Minimum PWM value, encoded */
288 u8 min_off; /* Min PWM or OFF below "limit", flag */
289};
290
291/*
292 * For each registered chip, we need to keep some data in memory.
293 * The structure is dynamically allocated.
294 */
295struct lm85_data {
296 struct i2c_client *client;
297 const struct attribute_group *groups[6];
298 const int *freq_map;
299 enum chips type;
300
301 bool has_vid5; /* true if VID5 is configured for ADT7463 or ADT7468 */
302
303 struct mutex update_lock;
304 int valid; /* !=0 if following fields are valid */
305 unsigned long last_reading; /* In jiffies */
306 unsigned long last_config; /* In jiffies */
307
308 u8 in[8]; /* Register value */
309 u8 in_max[8]; /* Register value */
310 u8 in_min[8]; /* Register value */
311 s8 temp[3]; /* Register value */
312 s8 temp_min[3]; /* Register value */
313 s8 temp_max[3]; /* Register value */
314 u16 fan[4]; /* Register value */
315 u16 fan_min[4]; /* Register value */
316 u8 pwm[3]; /* Register value */
317 u8 pwm_freq[3]; /* Register encoding */
318 u8 temp_ext[3]; /* Decoded values */
319 u8 in_ext[8]; /* Decoded values */
320 u8 vid; /* Register value */
321 u8 vrm; /* VRM version */
322 u32 alarms; /* Register encoding, combined */
323 u8 cfg5; /* Config Register 5 on ADT7468 */
324 struct lm85_autofan autofan[3];
325 struct lm85_zone zone[3];
326};
327
328static int lm85_read_value(struct i2c_client *client, u8 reg)
329{
330 int res;
331
332 /* What size location is it? */
333 switch (reg) {
334 case LM85_REG_FAN(0): /* Read WORD data */
335 case LM85_REG_FAN(1):
336 case LM85_REG_FAN(2):
337 case LM85_REG_FAN(3):
338 case LM85_REG_FAN_MIN(0):
339 case LM85_REG_FAN_MIN(1):
340 case LM85_REG_FAN_MIN(2):
341 case LM85_REG_FAN_MIN(3):
342 case LM85_REG_ALARM1: /* Read both bytes at once */
343 res = i2c_smbus_read_byte_data(client, reg) & 0xff;
344 res |= i2c_smbus_read_byte_data(client, reg + 1) << 8;
345 break;
346 default: /* Read BYTE data */
347 res = i2c_smbus_read_byte_data(client, reg);
348 break;
349 }
350
351 return res;
352}
353
354static void lm85_write_value(struct i2c_client *client, u8 reg, int value)
355{
356 switch (reg) {
357 case LM85_REG_FAN(0): /* Write WORD data */
358 case LM85_REG_FAN(1):
359 case LM85_REG_FAN(2):
360 case LM85_REG_FAN(3):
361 case LM85_REG_FAN_MIN(0):
362 case LM85_REG_FAN_MIN(1):
363 case LM85_REG_FAN_MIN(2):
364 case LM85_REG_FAN_MIN(3):
365 /* NOTE: ALARM is read only, so not included here */
366 i2c_smbus_write_byte_data(client, reg, value & 0xff);
367 i2c_smbus_write_byte_data(client, reg + 1, value >> 8);
368 break;
369 default: /* Write BYTE data */
370 i2c_smbus_write_byte_data(client, reg, value);
371 break;
372 }
373}
374
375static struct lm85_data *lm85_update_device(struct device *dev)
376{
377 struct lm85_data *data = dev_get_drvdata(dev);
378 struct i2c_client *client = data->client;
379 int i;
380
381 mutex_lock(&data->update_lock);
382
383 if (!data->valid ||
384 time_after(jiffies, data->last_reading + LM85_DATA_INTERVAL)) {
385 /* Things that change quickly */
386 dev_dbg(&client->dev, "Reading sensor values\n");
387
388 /*
389 * Have to read extended bits first to "freeze" the
390 * more significant bits that are read later.
391 * There are 2 additional resolution bits per channel and we
392 * have room for 4, so we shift them to the left.
393 */
394 if (data->type == adm1027 || data->type == adt7463 ||
395 data->type == adt7468) {
396 int ext1 = lm85_read_value(client,
397 ADM1027_REG_EXTEND_ADC1);
398 int ext2 = lm85_read_value(client,
399 ADM1027_REG_EXTEND_ADC2);
400 int val = (ext1 << 8) + ext2;
401
402 for (i = 0; i <= 4; i++)
403 data->in_ext[i] =
404 ((val >> (i * 2)) & 0x03) << 2;
405
406 for (i = 0; i <= 2; i++)
407 data->temp_ext[i] =
408 (val >> ((i + 4) * 2)) & 0x0c;
409 }
410
411 data->vid = lm85_read_value(client, LM85_REG_VID);
412
413 for (i = 0; i <= 3; ++i) {
414 data->in[i] =
415 lm85_read_value(client, LM85_REG_IN(i));
416 data->fan[i] =
417 lm85_read_value(client, LM85_REG_FAN(i));
418 }
419
420 if (!data->has_vid5)
421 data->in[4] = lm85_read_value(client, LM85_REG_IN(4));
422
423 if (data->type == adt7468)
424 data->cfg5 = lm85_read_value(client, ADT7468_REG_CFG5);
425
426 for (i = 0; i <= 2; ++i) {
427 data->temp[i] =
428 lm85_read_value(client, LM85_REG_TEMP(i));
429 data->pwm[i] =
430 lm85_read_value(client, LM85_REG_PWM(i));
431
432 if (IS_ADT7468_OFF64(data))
433 data->temp[i] -= 64;
434 }
435
436 data->alarms = lm85_read_value(client, LM85_REG_ALARM1);
437
438 if (data->type == emc6d100) {
439 /* Three more voltage sensors */
440 for (i = 5; i <= 7; ++i) {
441 data->in[i] = lm85_read_value(client,
442 EMC6D100_REG_IN(i));
443 }
444 /* More alarm bits */
445 data->alarms |= lm85_read_value(client,
446 EMC6D100_REG_ALARM3) << 16;
447 } else if (data->type == emc6d102 || data->type == emc6d103 ||
448 data->type == emc6d103s) {
449 /*
450 * Have to read LSB bits after the MSB ones because
451 * the reading of the MSB bits has frozen the
452 * LSBs (backward from the ADM1027).
453 */
454 int ext1 = lm85_read_value(client,
455 EMC6D102_REG_EXTEND_ADC1);
456 int ext2 = lm85_read_value(client,
457 EMC6D102_REG_EXTEND_ADC2);
458 int ext3 = lm85_read_value(client,
459 EMC6D102_REG_EXTEND_ADC3);
460 int ext4 = lm85_read_value(client,
461 EMC6D102_REG_EXTEND_ADC4);
462 data->in_ext[0] = ext3 & 0x0f;
463 data->in_ext[1] = ext4 & 0x0f;
464 data->in_ext[2] = ext4 >> 4;
465 data->in_ext[3] = ext3 >> 4;
466 data->in_ext[4] = ext2 >> 4;
467
468 data->temp_ext[0] = ext1 & 0x0f;
469 data->temp_ext[1] = ext2 & 0x0f;
470 data->temp_ext[2] = ext1 >> 4;
471 }
472
473 data->last_reading = jiffies;
474 } /* last_reading */
475
476 if (!data->valid ||
477 time_after(jiffies, data->last_config + LM85_CONFIG_INTERVAL)) {
478 /* Things that don't change often */
479 dev_dbg(&client->dev, "Reading config values\n");
480
481 for (i = 0; i <= 3; ++i) {
482 data->in_min[i] =
483 lm85_read_value(client, LM85_REG_IN_MIN(i));
484 data->in_max[i] =
485 lm85_read_value(client, LM85_REG_IN_MAX(i));
486 data->fan_min[i] =
487 lm85_read_value(client, LM85_REG_FAN_MIN(i));
488 }
489
490 if (!data->has_vid5) {
491 data->in_min[4] = lm85_read_value(client,
492 LM85_REG_IN_MIN(4));
493 data->in_max[4] = lm85_read_value(client,
494 LM85_REG_IN_MAX(4));
495 }
496
497 if (data->type == emc6d100) {
498 for (i = 5; i <= 7; ++i) {
499 data->in_min[i] = lm85_read_value(client,
500 EMC6D100_REG_IN_MIN(i));
501 data->in_max[i] = lm85_read_value(client,
502 EMC6D100_REG_IN_MAX(i));
503 }
504 }
505
506 for (i = 0; i <= 2; ++i) {
507 int val;
508
509 data->temp_min[i] =
510 lm85_read_value(client, LM85_REG_TEMP_MIN(i));
511 data->temp_max[i] =
512 lm85_read_value(client, LM85_REG_TEMP_MAX(i));
513
514 data->autofan[i].config =
515 lm85_read_value(client, LM85_REG_AFAN_CONFIG(i));
516 val = lm85_read_value(client, LM85_REG_AFAN_RANGE(i));
517 data->pwm_freq[i] = val & 0x07;
518 data->zone[i].range = val >> 4;
519 data->autofan[i].min_pwm =
520 lm85_read_value(client, LM85_REG_AFAN_MINPWM(i));
521 data->zone[i].limit =
522 lm85_read_value(client, LM85_REG_AFAN_LIMIT(i));
523 data->zone[i].critical =
524 lm85_read_value(client, LM85_REG_AFAN_CRITICAL(i));
525
526 if (IS_ADT7468_OFF64(data)) {
527 data->temp_min[i] -= 64;
528 data->temp_max[i] -= 64;
529 data->zone[i].limit -= 64;
530 data->zone[i].critical -= 64;
531 }
532 }
533
534 if (data->type != emc6d103s) {
535 i = lm85_read_value(client, LM85_REG_AFAN_SPIKE1);
536 data->autofan[0].min_off = (i & 0x20) != 0;
537 data->autofan[1].min_off = (i & 0x40) != 0;
538 data->autofan[2].min_off = (i & 0x80) != 0;
539
540 i = lm85_read_value(client, LM85_REG_AFAN_HYST1);
541 data->zone[0].hyst = i >> 4;
542 data->zone[1].hyst = i & 0x0f;
543
544 i = lm85_read_value(client, LM85_REG_AFAN_HYST2);
545 data->zone[2].hyst = i >> 4;
546 }
547
548 data->last_config = jiffies;
549 } /* last_config */
550
551 data->valid = 1;
552
553 mutex_unlock(&data->update_lock);
554
555 return data;
556}
557
558/* 4 Fans */
559static ssize_t show_fan(struct device *dev, struct device_attribute *attr,
560 char *buf)
561{
562 int nr = to_sensor_dev_attr(attr)->index;
563 struct lm85_data *data = lm85_update_device(dev);
564 return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan[nr]));
565}
566
567static ssize_t show_fan_min(struct device *dev, struct device_attribute *attr,
568 char *buf)
569{
570 int nr = to_sensor_dev_attr(attr)->index;
571 struct lm85_data *data = lm85_update_device(dev);
572 return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan_min[nr]));
573}
574
575static ssize_t set_fan_min(struct device *dev, struct device_attribute *attr,
576 const char *buf, size_t count)
577{
578 int nr = to_sensor_dev_attr(attr)->index;
579 struct lm85_data *data = dev_get_drvdata(dev);
580 struct i2c_client *client = data->client;
581 unsigned long val;
582 int err;
583
584 err = kstrtoul(buf, 10, &val);
585 if (err)
586 return err;
587
588 mutex_lock(&data->update_lock);
589 data->fan_min[nr] = FAN_TO_REG(val);
590 lm85_write_value(client, LM85_REG_FAN_MIN(nr), data->fan_min[nr]);
591 mutex_unlock(&data->update_lock);
592 return count;
593}
594
595#define show_fan_offset(offset) \
596static SENSOR_DEVICE_ATTR(fan##offset##_input, S_IRUGO, \
597 show_fan, NULL, offset - 1); \
598static SENSOR_DEVICE_ATTR(fan##offset##_min, S_IRUGO | S_IWUSR, \
599 show_fan_min, set_fan_min, offset - 1)
600
601show_fan_offset(1);
602show_fan_offset(2);
603show_fan_offset(3);
604show_fan_offset(4);
605
606/* vid, vrm, alarms */
607
608static ssize_t cpu0_vid_show(struct device *dev,
609 struct device_attribute *attr, char *buf)
610{
611 struct lm85_data *data = lm85_update_device(dev);
612 int vid;
613
614 if (data->has_vid5) {
615 /* 6-pin VID (VRM 10) */
616 vid = vid_from_reg(data->vid & 0x3f, data->vrm);
617 } else {
618 /* 5-pin VID (VRM 9) */
619 vid = vid_from_reg(data->vid & 0x1f, data->vrm);
620 }
621
622 return sprintf(buf, "%d\n", vid);
623}
624
625static DEVICE_ATTR_RO(cpu0_vid);
626
627static ssize_t vrm_show(struct device *dev, struct device_attribute *attr,
628 char *buf)
629{
630 struct lm85_data *data = dev_get_drvdata(dev);
631 return sprintf(buf, "%ld\n", (long) data->vrm);
632}
633
634static ssize_t vrm_store(struct device *dev, struct device_attribute *attr,
635 const char *buf, size_t count)
636{
637 struct lm85_data *data = dev_get_drvdata(dev);
638 unsigned long val;
639 int err;
640
641 err = kstrtoul(buf, 10, &val);
642 if (err)
643 return err;
644
645 if (val > 255)
646 return -EINVAL;
647
648 data->vrm = val;
649 return count;
650}
651
652static DEVICE_ATTR_RW(vrm);
653
654static ssize_t alarms_show(struct device *dev, struct device_attribute *attr,
655 char *buf)
656{
657 struct lm85_data *data = lm85_update_device(dev);
658 return sprintf(buf, "%u\n", data->alarms);
659}
660
661static DEVICE_ATTR_RO(alarms);
662
663static ssize_t show_alarm(struct device *dev, struct device_attribute *attr,
664 char *buf)
665{
666 int nr = to_sensor_dev_attr(attr)->index;
667 struct lm85_data *data = lm85_update_device(dev);
668 return sprintf(buf, "%u\n", (data->alarms >> nr) & 1);
669}
670
671static SENSOR_DEVICE_ATTR(in0_alarm, S_IRUGO, show_alarm, NULL, 0);
672static SENSOR_DEVICE_ATTR(in1_alarm, S_IRUGO, show_alarm, NULL, 1);
673static SENSOR_DEVICE_ATTR(in2_alarm, S_IRUGO, show_alarm, NULL, 2);
674static SENSOR_DEVICE_ATTR(in3_alarm, S_IRUGO, show_alarm, NULL, 3);
675static SENSOR_DEVICE_ATTR(in4_alarm, S_IRUGO, show_alarm, NULL, 8);
676static SENSOR_DEVICE_ATTR(in5_alarm, S_IRUGO, show_alarm, NULL, 18);
677static SENSOR_DEVICE_ATTR(in6_alarm, S_IRUGO, show_alarm, NULL, 16);
678static SENSOR_DEVICE_ATTR(in7_alarm, S_IRUGO, show_alarm, NULL, 17);
679static SENSOR_DEVICE_ATTR(temp1_alarm, S_IRUGO, show_alarm, NULL, 4);
680static SENSOR_DEVICE_ATTR(temp1_fault, S_IRUGO, show_alarm, NULL, 14);
681static SENSOR_DEVICE_ATTR(temp2_alarm, S_IRUGO, show_alarm, NULL, 5);
682static SENSOR_DEVICE_ATTR(temp3_alarm, S_IRUGO, show_alarm, NULL, 6);
683static SENSOR_DEVICE_ATTR(temp3_fault, S_IRUGO, show_alarm, NULL, 15);
684static SENSOR_DEVICE_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL, 10);
685static SENSOR_DEVICE_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL, 11);
686static SENSOR_DEVICE_ATTR(fan3_alarm, S_IRUGO, show_alarm, NULL, 12);
687static SENSOR_DEVICE_ATTR(fan4_alarm, S_IRUGO, show_alarm, NULL, 13);
688
689/* pwm */
690
691static ssize_t show_pwm(struct device *dev, struct device_attribute *attr,
692 char *buf)
693{
694 int nr = to_sensor_dev_attr(attr)->index;
695 struct lm85_data *data = lm85_update_device(dev);
696 return sprintf(buf, "%d\n", PWM_FROM_REG(data->pwm[nr]));
697}
698
699static ssize_t set_pwm(struct device *dev, struct device_attribute *attr,
700 const char *buf, size_t count)
701{
702 int nr = to_sensor_dev_attr(attr)->index;
703 struct lm85_data *data = dev_get_drvdata(dev);
704 struct i2c_client *client = data->client;
705 unsigned long val;
706 int err;
707
708 err = kstrtoul(buf, 10, &val);
709 if (err)
710 return err;
711
712 mutex_lock(&data->update_lock);
713 data->pwm[nr] = PWM_TO_REG(val);
714 lm85_write_value(client, LM85_REG_PWM(nr), data->pwm[nr]);
715 mutex_unlock(&data->update_lock);
716 return count;
717}
718
719static ssize_t show_pwm_enable(struct device *dev, struct device_attribute
720 *attr, char *buf)
721{
722 int nr = to_sensor_dev_attr(attr)->index;
723 struct lm85_data *data = lm85_update_device(dev);
724 int pwm_zone, enable;
725
726 pwm_zone = ZONE_FROM_REG(data->autofan[nr].config);
727 switch (pwm_zone) {
728 case -1: /* PWM is always at 100% */
729 enable = 0;
730 break;
731 case 0: /* PWM is always at 0% */
732 case -2: /* PWM responds to manual control */
733 enable = 1;
734 break;
735 default: /* PWM in automatic mode */
736 enable = 2;
737 }
738 return sprintf(buf, "%d\n", enable);
739}
740
741static ssize_t set_pwm_enable(struct device *dev, struct device_attribute
742 *attr, const char *buf, size_t count)
743{
744 int nr = to_sensor_dev_attr(attr)->index;
745 struct lm85_data *data = dev_get_drvdata(dev);
746 struct i2c_client *client = data->client;
747 u8 config;
748 unsigned long val;
749 int err;
750
751 err = kstrtoul(buf, 10, &val);
752 if (err)
753 return err;
754
755 switch (val) {
756 case 0:
757 config = 3;
758 break;
759 case 1:
760 config = 7;
761 break;
762 case 2:
763 /*
764 * Here we have to choose arbitrarily one of the 5 possible
765 * configurations; I go for the safest
766 */
767 config = 6;
768 break;
769 default:
770 return -EINVAL;
771 }
772
773 mutex_lock(&data->update_lock);
774 data->autofan[nr].config = lm85_read_value(client,
775 LM85_REG_AFAN_CONFIG(nr));
776 data->autofan[nr].config = (data->autofan[nr].config & ~0xe0)
777 | (config << 5);
778 lm85_write_value(client, LM85_REG_AFAN_CONFIG(nr),
779 data->autofan[nr].config);
780 mutex_unlock(&data->update_lock);
781 return count;
782}
783
784static ssize_t show_pwm_freq(struct device *dev,
785 struct device_attribute *attr, char *buf)
786{
787 int nr = to_sensor_dev_attr(attr)->index;
788 struct lm85_data *data = lm85_update_device(dev);
789 int freq;
790
791 if (IS_ADT7468_HFPWM(data))
792 freq = 22500;
793 else
794 freq = FREQ_FROM_REG(data->freq_map, data->pwm_freq[nr]);
795
796 return sprintf(buf, "%d\n", freq);
797}
798
799static ssize_t set_pwm_freq(struct device *dev,
800 struct device_attribute *attr, const char *buf, size_t count)
801{
802 int nr = to_sensor_dev_attr(attr)->index;
803 struct lm85_data *data = dev_get_drvdata(dev);
804 struct i2c_client *client = data->client;
805 unsigned long val;
806 int err;
807
808 err = kstrtoul(buf, 10, &val);
809 if (err)
810 return err;
811
812 mutex_lock(&data->update_lock);
813 /*
814 * The ADT7468 has a special high-frequency PWM output mode,
815 * where all PWM outputs are driven by a 22.5 kHz clock.
816 * This might confuse the user, but there's not much we can do.
817 */
818 if (data->type == adt7468 && val >= 11300) { /* High freq. mode */
819 data->cfg5 &= ~ADT7468_HFPWM;
820 lm85_write_value(client, ADT7468_REG_CFG5, data->cfg5);
821 } else { /* Low freq. mode */
822 data->pwm_freq[nr] = FREQ_TO_REG(data->freq_map,
823 FREQ_MAP_LEN, val);
824 lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
825 (data->zone[nr].range << 4)
826 | data->pwm_freq[nr]);
827 if (data->type == adt7468) {
828 data->cfg5 |= ADT7468_HFPWM;
829 lm85_write_value(client, ADT7468_REG_CFG5, data->cfg5);
830 }
831 }
832 mutex_unlock(&data->update_lock);
833 return count;
834}
835
836#define show_pwm_reg(offset) \
837static SENSOR_DEVICE_ATTR(pwm##offset, S_IRUGO | S_IWUSR, \
838 show_pwm, set_pwm, offset - 1); \
839static SENSOR_DEVICE_ATTR(pwm##offset##_enable, S_IRUGO | S_IWUSR, \
840 show_pwm_enable, set_pwm_enable, offset - 1); \
841static SENSOR_DEVICE_ATTR(pwm##offset##_freq, S_IRUGO | S_IWUSR, \
842 show_pwm_freq, set_pwm_freq, offset - 1)
843
844show_pwm_reg(1);
845show_pwm_reg(2);
846show_pwm_reg(3);
847
848/* Voltages */
849
850static ssize_t show_in(struct device *dev, struct device_attribute *attr,
851 char *buf)
852{
853 int nr = to_sensor_dev_attr(attr)->index;
854 struct lm85_data *data = lm85_update_device(dev);
855 return sprintf(buf, "%d\n", INSEXT_FROM_REG(nr, data->in[nr],
856 data->in_ext[nr]));
857}
858
859static ssize_t show_in_min(struct device *dev, struct device_attribute *attr,
860 char *buf)
861{
862 int nr = to_sensor_dev_attr(attr)->index;
863 struct lm85_data *data = lm85_update_device(dev);
864 return sprintf(buf, "%d\n", INS_FROM_REG(nr, data->in_min[nr]));
865}
866
867static ssize_t set_in_min(struct device *dev, struct device_attribute *attr,
868 const char *buf, size_t count)
869{
870 int nr = to_sensor_dev_attr(attr)->index;
871 struct lm85_data *data = dev_get_drvdata(dev);
872 struct i2c_client *client = data->client;
873 long val;
874 int err;
875
876 err = kstrtol(buf, 10, &val);
877 if (err)
878 return err;
879
880 mutex_lock(&data->update_lock);
881 data->in_min[nr] = INS_TO_REG(nr, val);
882 lm85_write_value(client, LM85_REG_IN_MIN(nr), data->in_min[nr]);
883 mutex_unlock(&data->update_lock);
884 return count;
885}
886
887static ssize_t show_in_max(struct device *dev, struct device_attribute *attr,
888 char *buf)
889{
890 int nr = to_sensor_dev_attr(attr)->index;
891 struct lm85_data *data = lm85_update_device(dev);
892 return sprintf(buf, "%d\n", INS_FROM_REG(nr, data->in_max[nr]));
893}
894
895static ssize_t set_in_max(struct device *dev, struct device_attribute *attr,
896 const char *buf, size_t count)
897{
898 int nr = to_sensor_dev_attr(attr)->index;
899 struct lm85_data *data = dev_get_drvdata(dev);
900 struct i2c_client *client = data->client;
901 long val;
902 int err;
903
904 err = kstrtol(buf, 10, &val);
905 if (err)
906 return err;
907
908 mutex_lock(&data->update_lock);
909 data->in_max[nr] = INS_TO_REG(nr, val);
910 lm85_write_value(client, LM85_REG_IN_MAX(nr), data->in_max[nr]);
911 mutex_unlock(&data->update_lock);
912 return count;
913}
914
915#define show_in_reg(offset) \
916static SENSOR_DEVICE_ATTR(in##offset##_input, S_IRUGO, \
917 show_in, NULL, offset); \
918static SENSOR_DEVICE_ATTR(in##offset##_min, S_IRUGO | S_IWUSR, \
919 show_in_min, set_in_min, offset); \
920static SENSOR_DEVICE_ATTR(in##offset##_max, S_IRUGO | S_IWUSR, \
921 show_in_max, set_in_max, offset)
922
923show_in_reg(0);
924show_in_reg(1);
925show_in_reg(2);
926show_in_reg(3);
927show_in_reg(4);
928show_in_reg(5);
929show_in_reg(6);
930show_in_reg(7);
931
932/* Temps */
933
934static ssize_t show_temp(struct device *dev, struct device_attribute *attr,
935 char *buf)
936{
937 int nr = to_sensor_dev_attr(attr)->index;
938 struct lm85_data *data = lm85_update_device(dev);
939 return sprintf(buf, "%d\n", TEMPEXT_FROM_REG(data->temp[nr],
940 data->temp_ext[nr]));
941}
942
943static ssize_t show_temp_min(struct device *dev, struct device_attribute *attr,
944 char *buf)
945{
946 int nr = to_sensor_dev_attr(attr)->index;
947 struct lm85_data *data = lm85_update_device(dev);
948 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_min[nr]));
949}
950
951static ssize_t set_temp_min(struct device *dev, struct device_attribute *attr,
952 const char *buf, size_t count)
953{
954 int nr = to_sensor_dev_attr(attr)->index;
955 struct lm85_data *data = dev_get_drvdata(dev);
956 struct i2c_client *client = data->client;
957 long val;
958 int err;
959
960 err = kstrtol(buf, 10, &val);
961 if (err)
962 return err;
963
964 if (IS_ADT7468_OFF64(data))
965 val += 64;
966
967 mutex_lock(&data->update_lock);
968 data->temp_min[nr] = TEMP_TO_REG(val);
969 lm85_write_value(client, LM85_REG_TEMP_MIN(nr), data->temp_min[nr]);
970 mutex_unlock(&data->update_lock);
971 return count;
972}
973
974static ssize_t show_temp_max(struct device *dev, struct device_attribute *attr,
975 char *buf)
976{
977 int nr = to_sensor_dev_attr(attr)->index;
978 struct lm85_data *data = lm85_update_device(dev);
979 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_max[nr]));
980}
981
982static ssize_t set_temp_max(struct device *dev, struct device_attribute *attr,
983 const char *buf, size_t count)
984{
985 int nr = to_sensor_dev_attr(attr)->index;
986 struct lm85_data *data = dev_get_drvdata(dev);
987 struct i2c_client *client = data->client;
988 long val;
989 int err;
990
991 err = kstrtol(buf, 10, &val);
992 if (err)
993 return err;
994
995 if (IS_ADT7468_OFF64(data))
996 val += 64;
997
998 mutex_lock(&data->update_lock);
999 data->temp_max[nr] = TEMP_TO_REG(val);
1000 lm85_write_value(client, LM85_REG_TEMP_MAX(nr), data->temp_max[nr]);
1001 mutex_unlock(&data->update_lock);
1002 return count;
1003}
1004
1005#define show_temp_reg(offset) \
1006static SENSOR_DEVICE_ATTR(temp##offset##_input, S_IRUGO, \
1007 show_temp, NULL, offset - 1); \
1008static SENSOR_DEVICE_ATTR(temp##offset##_min, S_IRUGO | S_IWUSR, \
1009 show_temp_min, set_temp_min, offset - 1); \
1010static SENSOR_DEVICE_ATTR(temp##offset##_max, S_IRUGO | S_IWUSR, \
1011 show_temp_max, set_temp_max, offset - 1);
1012
1013show_temp_reg(1);
1014show_temp_reg(2);
1015show_temp_reg(3);
1016
1017
1018/* Automatic PWM control */
1019
1020static ssize_t show_pwm_auto_channels(struct device *dev,
1021 struct device_attribute *attr, char *buf)
1022{
1023 int nr = to_sensor_dev_attr(attr)->index;
1024 struct lm85_data *data = lm85_update_device(dev);
1025 return sprintf(buf, "%d\n", ZONE_FROM_REG(data->autofan[nr].config));
1026}
1027
1028static ssize_t set_pwm_auto_channels(struct device *dev,
1029 struct device_attribute *attr, const char *buf, size_t count)
1030{
1031 int nr = to_sensor_dev_attr(attr)->index;
1032 struct lm85_data *data = dev_get_drvdata(dev);
1033 struct i2c_client *client = data->client;
1034 long val;
1035 int err;
1036
1037 err = kstrtol(buf, 10, &val);
1038 if (err)
1039 return err;
1040
1041 mutex_lock(&data->update_lock);
1042 data->autofan[nr].config = (data->autofan[nr].config & (~0xe0))
1043 | ZONE_TO_REG(val);
1044 lm85_write_value(client, LM85_REG_AFAN_CONFIG(nr),
1045 data->autofan[nr].config);
1046 mutex_unlock(&data->update_lock);
1047 return count;
1048}
1049
1050static ssize_t show_pwm_auto_pwm_min(struct device *dev,
1051 struct device_attribute *attr, char *buf)
1052{
1053 int nr = to_sensor_dev_attr(attr)->index;
1054 struct lm85_data *data = lm85_update_device(dev);
1055 return sprintf(buf, "%d\n", PWM_FROM_REG(data->autofan[nr].min_pwm));
1056}
1057
1058static ssize_t set_pwm_auto_pwm_min(struct device *dev,
1059 struct device_attribute *attr, const char *buf, size_t count)
1060{
1061 int nr = to_sensor_dev_attr(attr)->index;
1062 struct lm85_data *data = dev_get_drvdata(dev);
1063 struct i2c_client *client = data->client;
1064 unsigned long val;
1065 int err;
1066
1067 err = kstrtoul(buf, 10, &val);
1068 if (err)
1069 return err;
1070
1071 mutex_lock(&data->update_lock);
1072 data->autofan[nr].min_pwm = PWM_TO_REG(val);
1073 lm85_write_value(client, LM85_REG_AFAN_MINPWM(nr),
1074 data->autofan[nr].min_pwm);
1075 mutex_unlock(&data->update_lock);
1076 return count;
1077}
1078
1079static ssize_t show_pwm_auto_pwm_minctl(struct device *dev,
1080 struct device_attribute *attr, char *buf)
1081{
1082 int nr = to_sensor_dev_attr(attr)->index;
1083 struct lm85_data *data = lm85_update_device(dev);
1084 return sprintf(buf, "%d\n", data->autofan[nr].min_off);
1085}
1086
1087static ssize_t set_pwm_auto_pwm_minctl(struct device *dev,
1088 struct device_attribute *attr, const char *buf, size_t count)
1089{
1090 int nr = to_sensor_dev_attr(attr)->index;
1091 struct lm85_data *data = dev_get_drvdata(dev);
1092 struct i2c_client *client = data->client;
1093 u8 tmp;
1094 long val;
1095 int err;
1096
1097 err = kstrtol(buf, 10, &val);
1098 if (err)
1099 return err;
1100
1101 mutex_lock(&data->update_lock);
1102 data->autofan[nr].min_off = val;
1103 tmp = lm85_read_value(client, LM85_REG_AFAN_SPIKE1);
1104 tmp &= ~(0x20 << nr);
1105 if (data->autofan[nr].min_off)
1106 tmp |= 0x20 << nr;
1107 lm85_write_value(client, LM85_REG_AFAN_SPIKE1, tmp);
1108 mutex_unlock(&data->update_lock);
1109 return count;
1110}
1111
1112#define pwm_auto(offset) \
1113static SENSOR_DEVICE_ATTR(pwm##offset##_auto_channels, \
1114 S_IRUGO | S_IWUSR, show_pwm_auto_channels, \
1115 set_pwm_auto_channels, offset - 1); \
1116static SENSOR_DEVICE_ATTR(pwm##offset##_auto_pwm_min, \
1117 S_IRUGO | S_IWUSR, show_pwm_auto_pwm_min, \
1118 set_pwm_auto_pwm_min, offset - 1); \
1119static SENSOR_DEVICE_ATTR(pwm##offset##_auto_pwm_minctl, \
1120 S_IRUGO | S_IWUSR, show_pwm_auto_pwm_minctl, \
1121 set_pwm_auto_pwm_minctl, offset - 1)
1122
1123pwm_auto(1);
1124pwm_auto(2);
1125pwm_auto(3);
1126
1127/* Temperature settings for automatic PWM control */
1128
1129static ssize_t show_temp_auto_temp_off(struct device *dev,
1130 struct device_attribute *attr, char *buf)
1131{
1132 int nr = to_sensor_dev_attr(attr)->index;
1133 struct lm85_data *data = lm85_update_device(dev);
1134 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit) -
1135 HYST_FROM_REG(data->zone[nr].hyst));
1136}
1137
1138static ssize_t set_temp_auto_temp_off(struct device *dev,
1139 struct device_attribute *attr, const char *buf, size_t count)
1140{
1141 int nr = to_sensor_dev_attr(attr)->index;
1142 struct lm85_data *data = dev_get_drvdata(dev);
1143 struct i2c_client *client = data->client;
1144 int min;
1145 long val;
1146 int err;
1147
1148 err = kstrtol(buf, 10, &val);
1149 if (err)
1150 return err;
1151
1152 mutex_lock(&data->update_lock);
1153 min = TEMP_FROM_REG(data->zone[nr].limit);
1154 data->zone[nr].hyst = HYST_TO_REG(min - val);
1155 if (nr == 0 || nr == 1) {
1156 lm85_write_value(client, LM85_REG_AFAN_HYST1,
1157 (data->zone[0].hyst << 4)
1158 | data->zone[1].hyst);
1159 } else {
1160 lm85_write_value(client, LM85_REG_AFAN_HYST2,
1161 (data->zone[2].hyst << 4));
1162 }
1163 mutex_unlock(&data->update_lock);
1164 return count;
1165}
1166
1167static ssize_t show_temp_auto_temp_min(struct device *dev,
1168 struct device_attribute *attr, char *buf)
1169{
1170 int nr = to_sensor_dev_attr(attr)->index;
1171 struct lm85_data *data = lm85_update_device(dev);
1172 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit));
1173}
1174
1175static ssize_t set_temp_auto_temp_min(struct device *dev,
1176 struct device_attribute *attr, const char *buf, size_t count)
1177{
1178 int nr = to_sensor_dev_attr(attr)->index;
1179 struct lm85_data *data = dev_get_drvdata(dev);
1180 struct i2c_client *client = data->client;
1181 long val;
1182 int err;
1183
1184 err = kstrtol(buf, 10, &val);
1185 if (err)
1186 return err;
1187
1188 mutex_lock(&data->update_lock);
1189 data->zone[nr].limit = TEMP_TO_REG(val);
1190 lm85_write_value(client, LM85_REG_AFAN_LIMIT(nr),
1191 data->zone[nr].limit);
1192
1193/* Update temp_auto_max and temp_auto_range */
1194 data->zone[nr].range = RANGE_TO_REG(
1195 TEMP_FROM_REG(data->zone[nr].max_desired) -
1196 TEMP_FROM_REG(data->zone[nr].limit));
1197 lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
1198 ((data->zone[nr].range & 0x0f) << 4)
1199 | (data->pwm_freq[nr] & 0x07));
1200
1201 mutex_unlock(&data->update_lock);
1202 return count;
1203}
1204
1205static ssize_t show_temp_auto_temp_max(struct device *dev,
1206 struct device_attribute *attr, char *buf)
1207{
1208 int nr = to_sensor_dev_attr(attr)->index;
1209 struct lm85_data *data = lm85_update_device(dev);
1210 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit) +
1211 RANGE_FROM_REG(data->zone[nr].range));
1212}
1213
1214static ssize_t set_temp_auto_temp_max(struct device *dev,
1215 struct device_attribute *attr, const char *buf, size_t count)
1216{
1217 int nr = to_sensor_dev_attr(attr)->index;
1218 struct lm85_data *data = dev_get_drvdata(dev);
1219 struct i2c_client *client = data->client;
1220 int min;
1221 long val;
1222 int err;
1223
1224 err = kstrtol(buf, 10, &val);
1225 if (err)
1226 return err;
1227
1228 mutex_lock(&data->update_lock);
1229 min = TEMP_FROM_REG(data->zone[nr].limit);
1230 data->zone[nr].max_desired = TEMP_TO_REG(val);
1231 data->zone[nr].range = RANGE_TO_REG(
1232 val - min);
1233 lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
1234 ((data->zone[nr].range & 0x0f) << 4)
1235 | (data->pwm_freq[nr] & 0x07));
1236 mutex_unlock(&data->update_lock);
1237 return count;
1238}
1239
1240static ssize_t show_temp_auto_temp_crit(struct device *dev,
1241 struct device_attribute *attr, char *buf)
1242{
1243 int nr = to_sensor_dev_attr(attr)->index;
1244 struct lm85_data *data = lm85_update_device(dev);
1245 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].critical));
1246}
1247
1248static ssize_t set_temp_auto_temp_crit(struct device *dev,
1249 struct device_attribute *attr, const char *buf, size_t count)
1250{
1251 int nr = to_sensor_dev_attr(attr)->index;
1252 struct lm85_data *data = dev_get_drvdata(dev);
1253 struct i2c_client *client = data->client;
1254 long val;
1255 int err;
1256
1257 err = kstrtol(buf, 10, &val);
1258 if (err)
1259 return err;
1260
1261 mutex_lock(&data->update_lock);
1262 data->zone[nr].critical = TEMP_TO_REG(val);
1263 lm85_write_value(client, LM85_REG_AFAN_CRITICAL(nr),
1264 data->zone[nr].critical);
1265 mutex_unlock(&data->update_lock);
1266 return count;
1267}
1268
1269#define temp_auto(offset) \
1270static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_off, \
1271 S_IRUGO | S_IWUSR, show_temp_auto_temp_off, \
1272 set_temp_auto_temp_off, offset - 1); \
1273static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_min, \
1274 S_IRUGO | S_IWUSR, show_temp_auto_temp_min, \
1275 set_temp_auto_temp_min, offset - 1); \
1276static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_max, \
1277 S_IRUGO | S_IWUSR, show_temp_auto_temp_max, \
1278 set_temp_auto_temp_max, offset - 1); \
1279static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_crit, \
1280 S_IRUGO | S_IWUSR, show_temp_auto_temp_crit, \
1281 set_temp_auto_temp_crit, offset - 1);
1282
1283temp_auto(1);
1284temp_auto(2);
1285temp_auto(3);
1286
1287static struct attribute *lm85_attributes[] = {
1288 &sensor_dev_attr_fan1_input.dev_attr.attr,
1289 &sensor_dev_attr_fan2_input.dev_attr.attr,
1290 &sensor_dev_attr_fan3_input.dev_attr.attr,
1291 &sensor_dev_attr_fan4_input.dev_attr.attr,
1292 &sensor_dev_attr_fan1_min.dev_attr.attr,
1293 &sensor_dev_attr_fan2_min.dev_attr.attr,
1294 &sensor_dev_attr_fan3_min.dev_attr.attr,
1295 &sensor_dev_attr_fan4_min.dev_attr.attr,
1296 &sensor_dev_attr_fan1_alarm.dev_attr.attr,
1297 &sensor_dev_attr_fan2_alarm.dev_attr.attr,
1298 &sensor_dev_attr_fan3_alarm.dev_attr.attr,
1299 &sensor_dev_attr_fan4_alarm.dev_attr.attr,
1300
1301 &sensor_dev_attr_pwm1.dev_attr.attr,
1302 &sensor_dev_attr_pwm2.dev_attr.attr,
1303 &sensor_dev_attr_pwm3.dev_attr.attr,
1304 &sensor_dev_attr_pwm1_enable.dev_attr.attr,
1305 &sensor_dev_attr_pwm2_enable.dev_attr.attr,
1306 &sensor_dev_attr_pwm3_enable.dev_attr.attr,
1307 &sensor_dev_attr_pwm1_freq.dev_attr.attr,
1308 &sensor_dev_attr_pwm2_freq.dev_attr.attr,
1309 &sensor_dev_attr_pwm3_freq.dev_attr.attr,
1310
1311 &sensor_dev_attr_in0_input.dev_attr.attr,
1312 &sensor_dev_attr_in1_input.dev_attr.attr,
1313 &sensor_dev_attr_in2_input.dev_attr.attr,
1314 &sensor_dev_attr_in3_input.dev_attr.attr,
1315 &sensor_dev_attr_in0_min.dev_attr.attr,
1316 &sensor_dev_attr_in1_min.dev_attr.attr,
1317 &sensor_dev_attr_in2_min.dev_attr.attr,
1318 &sensor_dev_attr_in3_min.dev_attr.attr,
1319 &sensor_dev_attr_in0_max.dev_attr.attr,
1320 &sensor_dev_attr_in1_max.dev_attr.attr,
1321 &sensor_dev_attr_in2_max.dev_attr.attr,
1322 &sensor_dev_attr_in3_max.dev_attr.attr,
1323 &sensor_dev_attr_in0_alarm.dev_attr.attr,
1324 &sensor_dev_attr_in1_alarm.dev_attr.attr,
1325 &sensor_dev_attr_in2_alarm.dev_attr.attr,
1326 &sensor_dev_attr_in3_alarm.dev_attr.attr,
1327
1328 &sensor_dev_attr_temp1_input.dev_attr.attr,
1329 &sensor_dev_attr_temp2_input.dev_attr.attr,
1330 &sensor_dev_attr_temp3_input.dev_attr.attr,
1331 &sensor_dev_attr_temp1_min.dev_attr.attr,
1332 &sensor_dev_attr_temp2_min.dev_attr.attr,
1333 &sensor_dev_attr_temp3_min.dev_attr.attr,
1334 &sensor_dev_attr_temp1_max.dev_attr.attr,
1335 &sensor_dev_attr_temp2_max.dev_attr.attr,
1336 &sensor_dev_attr_temp3_max.dev_attr.attr,
1337 &sensor_dev_attr_temp1_alarm.dev_attr.attr,
1338 &sensor_dev_attr_temp2_alarm.dev_attr.attr,
1339 &sensor_dev_attr_temp3_alarm.dev_attr.attr,
1340 &sensor_dev_attr_temp1_fault.dev_attr.attr,
1341 &sensor_dev_attr_temp3_fault.dev_attr.attr,
1342
1343 &sensor_dev_attr_pwm1_auto_channels.dev_attr.attr,
1344 &sensor_dev_attr_pwm2_auto_channels.dev_attr.attr,
1345 &sensor_dev_attr_pwm3_auto_channels.dev_attr.attr,
1346 &sensor_dev_attr_pwm1_auto_pwm_min.dev_attr.attr,
1347 &sensor_dev_attr_pwm2_auto_pwm_min.dev_attr.attr,
1348 &sensor_dev_attr_pwm3_auto_pwm_min.dev_attr.attr,
1349
1350 &sensor_dev_attr_temp1_auto_temp_min.dev_attr.attr,
1351 &sensor_dev_attr_temp2_auto_temp_min.dev_attr.attr,
1352 &sensor_dev_attr_temp3_auto_temp_min.dev_attr.attr,
1353 &sensor_dev_attr_temp1_auto_temp_max.dev_attr.attr,
1354 &sensor_dev_attr_temp2_auto_temp_max.dev_attr.attr,
1355 &sensor_dev_attr_temp3_auto_temp_max.dev_attr.attr,
1356 &sensor_dev_attr_temp1_auto_temp_crit.dev_attr.attr,
1357 &sensor_dev_attr_temp2_auto_temp_crit.dev_attr.attr,
1358 &sensor_dev_attr_temp3_auto_temp_crit.dev_attr.attr,
1359
1360 &dev_attr_vrm.attr,
1361 &dev_attr_cpu0_vid.attr,
1362 &dev_attr_alarms.attr,
1363 NULL
1364};
1365
1366static const struct attribute_group lm85_group = {
1367 .attrs = lm85_attributes,
1368};
1369
1370static struct attribute *lm85_attributes_minctl[] = {
1371 &sensor_dev_attr_pwm1_auto_pwm_minctl.dev_attr.attr,
1372 &sensor_dev_attr_pwm2_auto_pwm_minctl.dev_attr.attr,
1373 &sensor_dev_attr_pwm3_auto_pwm_minctl.dev_attr.attr,
1374 NULL
1375};
1376
1377static const struct attribute_group lm85_group_minctl = {
1378 .attrs = lm85_attributes_minctl,
1379};
1380
1381static struct attribute *lm85_attributes_temp_off[] = {
1382 &sensor_dev_attr_temp1_auto_temp_off.dev_attr.attr,
1383 &sensor_dev_attr_temp2_auto_temp_off.dev_attr.attr,
1384 &sensor_dev_attr_temp3_auto_temp_off.dev_attr.attr,
1385 NULL
1386};
1387
1388static const struct attribute_group lm85_group_temp_off = {
1389 .attrs = lm85_attributes_temp_off,
1390};
1391
1392static struct attribute *lm85_attributes_in4[] = {
1393 &sensor_dev_attr_in4_input.dev_attr.attr,
1394 &sensor_dev_attr_in4_min.dev_attr.attr,
1395 &sensor_dev_attr_in4_max.dev_attr.attr,
1396 &sensor_dev_attr_in4_alarm.dev_attr.attr,
1397 NULL
1398};
1399
1400static const struct attribute_group lm85_group_in4 = {
1401 .attrs = lm85_attributes_in4,
1402};
1403
1404static struct attribute *lm85_attributes_in567[] = {
1405 &sensor_dev_attr_in5_input.dev_attr.attr,
1406 &sensor_dev_attr_in6_input.dev_attr.attr,
1407 &sensor_dev_attr_in7_input.dev_attr.attr,
1408 &sensor_dev_attr_in5_min.dev_attr.attr,
1409 &sensor_dev_attr_in6_min.dev_attr.attr,
1410 &sensor_dev_attr_in7_min.dev_attr.attr,
1411 &sensor_dev_attr_in5_max.dev_attr.attr,
1412 &sensor_dev_attr_in6_max.dev_attr.attr,
1413 &sensor_dev_attr_in7_max.dev_attr.attr,
1414 &sensor_dev_attr_in5_alarm.dev_attr.attr,
1415 &sensor_dev_attr_in6_alarm.dev_attr.attr,
1416 &sensor_dev_attr_in7_alarm.dev_attr.attr,
1417 NULL
1418};
1419
1420static const struct attribute_group lm85_group_in567 = {
1421 .attrs = lm85_attributes_in567,
1422};
1423
1424static void lm85_init_client(struct i2c_client *client)
1425{
1426 int value;
1427
1428 /* Start monitoring if needed */
1429 value = lm85_read_value(client, LM85_REG_CONFIG);
1430 if (!(value & 0x01)) {
1431 dev_info(&client->dev, "Starting monitoring\n");
1432 lm85_write_value(client, LM85_REG_CONFIG, value | 0x01);
1433 }
1434
1435 /* Warn about unusual configuration bits */
1436 if (value & 0x02)
1437 dev_warn(&client->dev, "Device configuration is locked\n");
1438 if (!(value & 0x04))
1439 dev_warn(&client->dev, "Device is not ready\n");
1440}
1441
1442static int lm85_is_fake(struct i2c_client *client)
1443{
1444 /*
1445 * Differenciate between real LM96000 and Winbond WPCD377I. The latter
1446 * emulate the former except that it has no hardware monitoring function
1447 * so the readings are always 0.
1448 */
1449 int i;
1450 u8 in_temp, fan;
1451
1452 for (i = 0; i < 8; i++) {
1453 in_temp = i2c_smbus_read_byte_data(client, 0x20 + i);
1454 fan = i2c_smbus_read_byte_data(client, 0x28 + i);
1455 if (in_temp != 0x00 || fan != 0xff)
1456 return 0;
1457 }
1458
1459 return 1;
1460}
1461
1462/* Return 0 if detection is successful, -ENODEV otherwise */
1463static int lm85_detect(struct i2c_client *client, struct i2c_board_info *info)
1464{
1465 struct i2c_adapter *adapter = client->adapter;
1466 int address = client->addr;
1467 const char *type_name = NULL;
1468 int company, verstep;
1469
1470 if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) {
1471 /* We need to be able to do byte I/O */
1472 return -ENODEV;
1473 }
1474
1475 /* Determine the chip type */
1476 company = lm85_read_value(client, LM85_REG_COMPANY);
1477 verstep = lm85_read_value(client, LM85_REG_VERSTEP);
1478
1479 dev_dbg(&adapter->dev,
1480 "Detecting device at 0x%02x with COMPANY: 0x%02x and VERSTEP: 0x%02x\n",
1481 address, company, verstep);
1482
1483 if (company == LM85_COMPANY_NATIONAL) {
1484 switch (verstep) {
1485 case LM85_VERSTEP_LM85C:
1486 type_name = "lm85c";
1487 break;
1488 case LM85_VERSTEP_LM85B:
1489 type_name = "lm85b";
1490 break;
1491 case LM85_VERSTEP_LM96000_1:
1492 case LM85_VERSTEP_LM96000_2:
1493 /* Check for Winbond WPCD377I */
1494 if (lm85_is_fake(client)) {
1495 dev_dbg(&adapter->dev,
1496 "Found Winbond WPCD377I, ignoring\n");
1497 return -ENODEV;
1498 }
1499 type_name = "lm85";
1500 break;
1501 }
1502 } else if (company == LM85_COMPANY_ANALOG_DEV) {
1503 switch (verstep) {
1504 case LM85_VERSTEP_ADM1027:
1505 type_name = "adm1027";
1506 break;
1507 case LM85_VERSTEP_ADT7463:
1508 case LM85_VERSTEP_ADT7463C:
1509 type_name = "adt7463";
1510 break;
1511 case LM85_VERSTEP_ADT7468_1:
1512 case LM85_VERSTEP_ADT7468_2:
1513 type_name = "adt7468";
1514 break;
1515 }
1516 } else if (company == LM85_COMPANY_SMSC) {
1517 switch (verstep) {
1518 case LM85_VERSTEP_EMC6D100_A0:
1519 case LM85_VERSTEP_EMC6D100_A1:
1520 /* Note: we can't tell a '100 from a '101 */
1521 type_name = "emc6d100";
1522 break;
1523 case LM85_VERSTEP_EMC6D102:
1524 type_name = "emc6d102";
1525 break;
1526 case LM85_VERSTEP_EMC6D103_A0:
1527 case LM85_VERSTEP_EMC6D103_A1:
1528 type_name = "emc6d103";
1529 break;
1530 case LM85_VERSTEP_EMC6D103S:
1531 type_name = "emc6d103s";
1532 break;
1533 }
1534 }
1535
1536 if (!type_name)
1537 return -ENODEV;
1538
1539 strlcpy(info->type, type_name, I2C_NAME_SIZE);
1540
1541 return 0;
1542}
1543
1544static int lm85_probe(struct i2c_client *client, const struct i2c_device_id *id)
1545{
1546 struct device *dev = &client->dev;
1547 struct device *hwmon_dev;
1548 struct lm85_data *data;
1549 int idx = 0;
1550
1551 data = devm_kzalloc(dev, sizeof(struct lm85_data), GFP_KERNEL);
1552 if (!data)
1553 return -ENOMEM;
1554
1555 data->client = client;
1556 if (client->dev.of_node)
1557 data->type = (enum chips)of_device_get_match_data(&client->dev);
1558 else
1559 data->type = id->driver_data;
1560 mutex_init(&data->update_lock);
1561
1562 /* Fill in the chip specific driver values */
1563 switch (data->type) {
1564 case adm1027:
1565 case adt7463:
1566 case adt7468:
1567 case emc6d100:
1568 case emc6d102:
1569 case emc6d103:
1570 case emc6d103s:
1571 data->freq_map = adm1027_freq_map;
1572 break;
1573 default:
1574 data->freq_map = lm85_freq_map;
1575 }
1576
1577 /* Set the VRM version */
1578 data->vrm = vid_which_vrm();
1579
1580 /* Initialize the LM85 chip */
1581 lm85_init_client(client);
1582
1583 /* sysfs hooks */
1584 data->groups[idx++] = &lm85_group;
1585
1586 /* minctl and temp_off exist on all chips except emc6d103s */
1587 if (data->type != emc6d103s) {
1588 data->groups[idx++] = &lm85_group_minctl;
1589 data->groups[idx++] = &lm85_group_temp_off;
1590 }
1591
1592 /*
1593 * The ADT7463/68 have an optional VRM 10 mode where pin 21 is used
1594 * as a sixth digital VID input rather than an analog input.
1595 */
1596 if (data->type == adt7463 || data->type == adt7468) {
1597 u8 vid = lm85_read_value(client, LM85_REG_VID);
1598 if (vid & 0x80)
1599 data->has_vid5 = true;
1600 }
1601
1602 if (!data->has_vid5)
1603 data->groups[idx++] = &lm85_group_in4;
1604
1605 /* The EMC6D100 has 3 additional voltage inputs */
1606 if (data->type == emc6d100)
1607 data->groups[idx++] = &lm85_group_in567;
1608
1609 hwmon_dev = devm_hwmon_device_register_with_groups(dev, client->name,
1610 data, data->groups);
1611 return PTR_ERR_OR_ZERO(hwmon_dev);
1612}
1613
1614static const struct i2c_device_id lm85_id[] = {
1615 { "adm1027", adm1027 },
1616 { "adt7463", adt7463 },
1617 { "adt7468", adt7468 },
1618 { "lm85", lm85 },
1619 { "lm85b", lm85 },
1620 { "lm85c", lm85 },
1621 { "emc6d100", emc6d100 },
1622 { "emc6d101", emc6d100 },
1623 { "emc6d102", emc6d102 },
1624 { "emc6d103", emc6d103 },
1625 { "emc6d103s", emc6d103s },
1626 { }
1627};
1628MODULE_DEVICE_TABLE(i2c, lm85_id);
1629
1630static const struct of_device_id lm85_of_match[] = {
1631 {
1632 .compatible = "adi,adm1027",
1633 .data = (void *)adm1027
1634 },
1635 {
1636 .compatible = "adi,adt7463",
1637 .data = (void *)adt7463
1638 },
1639 {
1640 .compatible = "adi,adt7468",
1641 .data = (void *)adt7468
1642 },
1643 {
1644 .compatible = "national,lm85",
1645 .data = (void *)lm85
1646 },
1647 {
1648 .compatible = "national,lm85b",
1649 .data = (void *)lm85
1650 },
1651 {
1652 .compatible = "national,lm85c",
1653 .data = (void *)lm85
1654 },
1655 {
1656 .compatible = "smsc,emc6d100",
1657 .data = (void *)emc6d100
1658 },
1659 {
1660 .compatible = "smsc,emc6d101",
1661 .data = (void *)emc6d100
1662 },
1663 {
1664 .compatible = "smsc,emc6d102",
1665 .data = (void *)emc6d102
1666 },
1667 {
1668 .compatible = "smsc,emc6d103",
1669 .data = (void *)emc6d103
1670 },
1671 {
1672 .compatible = "smsc,emc6d103s",
1673 .data = (void *)emc6d103s
1674 },
1675 { },
1676};
1677MODULE_DEVICE_TABLE(of, lm85_of_match);
1678
1679static struct i2c_driver lm85_driver = {
1680 .class = I2C_CLASS_HWMON,
1681 .driver = {
1682 .name = "lm85",
1683 .of_match_table = of_match_ptr(lm85_of_match),
1684 },
1685 .probe = lm85_probe,
1686 .id_table = lm85_id,
1687 .detect = lm85_detect,
1688 .address_list = normal_i2c,
1689};
1690
1691module_i2c_driver(lm85_driver);
1692
1693MODULE_LICENSE("GPL");
1694MODULE_AUTHOR("Philip Pokorny <ppokorny@penguincomputing.com>, "
1695 "Margit Schubert-While <margitsw@t-online.de>, "
1696 "Justin Thiessen <jthiessen@penguincomputing.com>");
1697MODULE_DESCRIPTION("LM85-B, LM85-C driver");