Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Basic Node interface support
4 */
5
6#include <linux/module.h>
7#include <linux/init.h>
8#include <linux/mm.h>
9#include <linux/memory.h>
10#include <linux/vmstat.h>
11#include <linux/notifier.h>
12#include <linux/node.h>
13#include <linux/hugetlb.h>
14#include <linux/compaction.h>
15#include <linux/cpumask.h>
16#include <linux/topology.h>
17#include <linux/nodemask.h>
18#include <linux/cpu.h>
19#include <linux/device.h>
20#include <linux/pm_runtime.h>
21#include <linux/swap.h>
22#include <linux/slab.h>
23
24static struct bus_type node_subsys = {
25 .name = "node",
26 .dev_name = "node",
27};
28
29
30static ssize_t node_read_cpumap(struct device *dev, bool list, char *buf)
31{
32 ssize_t n;
33 cpumask_var_t mask;
34 struct node *node_dev = to_node(dev);
35
36 /* 2008/04/07: buf currently PAGE_SIZE, need 9 chars per 32 bits. */
37 BUILD_BUG_ON((NR_CPUS/32 * 9) > (PAGE_SIZE-1));
38
39 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
40 return 0;
41
42 cpumask_and(mask, cpumask_of_node(node_dev->dev.id), cpu_online_mask);
43 n = cpumap_print_to_pagebuf(list, buf, mask);
44 free_cpumask_var(mask);
45
46 return n;
47}
48
49static inline ssize_t node_read_cpumask(struct device *dev,
50 struct device_attribute *attr, char *buf)
51{
52 return node_read_cpumap(dev, false, buf);
53}
54static inline ssize_t node_read_cpulist(struct device *dev,
55 struct device_attribute *attr, char *buf)
56{
57 return node_read_cpumap(dev, true, buf);
58}
59
60static DEVICE_ATTR(cpumap, S_IRUGO, node_read_cpumask, NULL);
61static DEVICE_ATTR(cpulist, S_IRUGO, node_read_cpulist, NULL);
62
63/**
64 * struct node_access_nodes - Access class device to hold user visible
65 * relationships to other nodes.
66 * @dev: Device for this memory access class
67 * @list_node: List element in the node's access list
68 * @access: The access class rank
69 * @hmem_attrs: Heterogeneous memory performance attributes
70 */
71struct node_access_nodes {
72 struct device dev;
73 struct list_head list_node;
74 unsigned access;
75#ifdef CONFIG_HMEM_REPORTING
76 struct node_hmem_attrs hmem_attrs;
77#endif
78};
79#define to_access_nodes(dev) container_of(dev, struct node_access_nodes, dev)
80
81static struct attribute *node_init_access_node_attrs[] = {
82 NULL,
83};
84
85static struct attribute *node_targ_access_node_attrs[] = {
86 NULL,
87};
88
89static const struct attribute_group initiators = {
90 .name = "initiators",
91 .attrs = node_init_access_node_attrs,
92};
93
94static const struct attribute_group targets = {
95 .name = "targets",
96 .attrs = node_targ_access_node_attrs,
97};
98
99static const struct attribute_group *node_access_node_groups[] = {
100 &initiators,
101 &targets,
102 NULL,
103};
104
105static void node_remove_accesses(struct node *node)
106{
107 struct node_access_nodes *c, *cnext;
108
109 list_for_each_entry_safe(c, cnext, &node->access_list, list_node) {
110 list_del(&c->list_node);
111 device_unregister(&c->dev);
112 }
113}
114
115static void node_access_release(struct device *dev)
116{
117 kfree(to_access_nodes(dev));
118}
119
120static struct node_access_nodes *node_init_node_access(struct node *node,
121 unsigned access)
122{
123 struct node_access_nodes *access_node;
124 struct device *dev;
125
126 list_for_each_entry(access_node, &node->access_list, list_node)
127 if (access_node->access == access)
128 return access_node;
129
130 access_node = kzalloc(sizeof(*access_node), GFP_KERNEL);
131 if (!access_node)
132 return NULL;
133
134 access_node->access = access;
135 dev = &access_node->dev;
136 dev->parent = &node->dev;
137 dev->release = node_access_release;
138 dev->groups = node_access_node_groups;
139 if (dev_set_name(dev, "access%u", access))
140 goto free;
141
142 if (device_register(dev))
143 goto free_name;
144
145 pm_runtime_no_callbacks(dev);
146 list_add_tail(&access_node->list_node, &node->access_list);
147 return access_node;
148free_name:
149 kfree_const(dev->kobj.name);
150free:
151 kfree(access_node);
152 return NULL;
153}
154
155#ifdef CONFIG_HMEM_REPORTING
156#define ACCESS_ATTR(name) \
157static ssize_t name##_show(struct device *dev, \
158 struct device_attribute *attr, \
159 char *buf) \
160{ \
161 return sprintf(buf, "%u\n", to_access_nodes(dev)->hmem_attrs.name); \
162} \
163static DEVICE_ATTR_RO(name);
164
165ACCESS_ATTR(read_bandwidth)
166ACCESS_ATTR(read_latency)
167ACCESS_ATTR(write_bandwidth)
168ACCESS_ATTR(write_latency)
169
170static struct attribute *access_attrs[] = {
171 &dev_attr_read_bandwidth.attr,
172 &dev_attr_read_latency.attr,
173 &dev_attr_write_bandwidth.attr,
174 &dev_attr_write_latency.attr,
175 NULL,
176};
177
178/**
179 * node_set_perf_attrs - Set the performance values for given access class
180 * @nid: Node identifier to be set
181 * @hmem_attrs: Heterogeneous memory performance attributes
182 * @access: The access class the for the given attributes
183 */
184void node_set_perf_attrs(unsigned int nid, struct node_hmem_attrs *hmem_attrs,
185 unsigned access)
186{
187 struct node_access_nodes *c;
188 struct node *node;
189 int i;
190
191 if (WARN_ON_ONCE(!node_online(nid)))
192 return;
193
194 node = node_devices[nid];
195 c = node_init_node_access(node, access);
196 if (!c)
197 return;
198
199 c->hmem_attrs = *hmem_attrs;
200 for (i = 0; access_attrs[i] != NULL; i++) {
201 if (sysfs_add_file_to_group(&c->dev.kobj, access_attrs[i],
202 "initiators")) {
203 pr_info("failed to add performance attribute to node %d\n",
204 nid);
205 break;
206 }
207 }
208}
209
210/**
211 * struct node_cache_info - Internal tracking for memory node caches
212 * @dev: Device represeting the cache level
213 * @node: List element for tracking in the node
214 * @cache_attrs:Attributes for this cache level
215 */
216struct node_cache_info {
217 struct device dev;
218 struct list_head node;
219 struct node_cache_attrs cache_attrs;
220};
221#define to_cache_info(device) container_of(device, struct node_cache_info, dev)
222
223#define CACHE_ATTR(name, fmt) \
224static ssize_t name##_show(struct device *dev, \
225 struct device_attribute *attr, \
226 char *buf) \
227{ \
228 return sprintf(buf, fmt "\n", to_cache_info(dev)->cache_attrs.name);\
229} \
230DEVICE_ATTR_RO(name);
231
232CACHE_ATTR(size, "%llu")
233CACHE_ATTR(line_size, "%u")
234CACHE_ATTR(indexing, "%u")
235CACHE_ATTR(write_policy, "%u")
236
237static struct attribute *cache_attrs[] = {
238 &dev_attr_indexing.attr,
239 &dev_attr_size.attr,
240 &dev_attr_line_size.attr,
241 &dev_attr_write_policy.attr,
242 NULL,
243};
244ATTRIBUTE_GROUPS(cache);
245
246static void node_cache_release(struct device *dev)
247{
248 kfree(dev);
249}
250
251static void node_cacheinfo_release(struct device *dev)
252{
253 struct node_cache_info *info = to_cache_info(dev);
254 kfree(info);
255}
256
257static void node_init_cache_dev(struct node *node)
258{
259 struct device *dev;
260
261 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
262 if (!dev)
263 return;
264
265 dev->parent = &node->dev;
266 dev->release = node_cache_release;
267 if (dev_set_name(dev, "memory_side_cache"))
268 goto free_dev;
269
270 if (device_register(dev))
271 goto free_name;
272
273 pm_runtime_no_callbacks(dev);
274 node->cache_dev = dev;
275 return;
276free_name:
277 kfree_const(dev->kobj.name);
278free_dev:
279 kfree(dev);
280}
281
282/**
283 * node_add_cache() - add cache attribute to a memory node
284 * @nid: Node identifier that has new cache attributes
285 * @cache_attrs: Attributes for the cache being added
286 */
287void node_add_cache(unsigned int nid, struct node_cache_attrs *cache_attrs)
288{
289 struct node_cache_info *info;
290 struct device *dev;
291 struct node *node;
292
293 if (!node_online(nid) || !node_devices[nid])
294 return;
295
296 node = node_devices[nid];
297 list_for_each_entry(info, &node->cache_attrs, node) {
298 if (info->cache_attrs.level == cache_attrs->level) {
299 dev_warn(&node->dev,
300 "attempt to add duplicate cache level:%d\n",
301 cache_attrs->level);
302 return;
303 }
304 }
305
306 if (!node->cache_dev)
307 node_init_cache_dev(node);
308 if (!node->cache_dev)
309 return;
310
311 info = kzalloc(sizeof(*info), GFP_KERNEL);
312 if (!info)
313 return;
314
315 dev = &info->dev;
316 dev->parent = node->cache_dev;
317 dev->release = node_cacheinfo_release;
318 dev->groups = cache_groups;
319 if (dev_set_name(dev, "index%d", cache_attrs->level))
320 goto free_cache;
321
322 info->cache_attrs = *cache_attrs;
323 if (device_register(dev)) {
324 dev_warn(&node->dev, "failed to add cache level:%d\n",
325 cache_attrs->level);
326 goto free_name;
327 }
328 pm_runtime_no_callbacks(dev);
329 list_add_tail(&info->node, &node->cache_attrs);
330 return;
331free_name:
332 kfree_const(dev->kobj.name);
333free_cache:
334 kfree(info);
335}
336
337static void node_remove_caches(struct node *node)
338{
339 struct node_cache_info *info, *next;
340
341 if (!node->cache_dev)
342 return;
343
344 list_for_each_entry_safe(info, next, &node->cache_attrs, node) {
345 list_del(&info->node);
346 device_unregister(&info->dev);
347 }
348 device_unregister(node->cache_dev);
349}
350
351static void node_init_caches(unsigned int nid)
352{
353 INIT_LIST_HEAD(&node_devices[nid]->cache_attrs);
354}
355#else
356static void node_init_caches(unsigned int nid) { }
357static void node_remove_caches(struct node *node) { }
358#endif
359
360#define K(x) ((x) << (PAGE_SHIFT - 10))
361static ssize_t node_read_meminfo(struct device *dev,
362 struct device_attribute *attr, char *buf)
363{
364 int n;
365 int nid = dev->id;
366 struct pglist_data *pgdat = NODE_DATA(nid);
367 struct sysinfo i;
368 unsigned long sreclaimable, sunreclaimable;
369
370 si_meminfo_node(&i, nid);
371 sreclaimable = node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B);
372 sunreclaimable = node_page_state_pages(pgdat, NR_SLAB_UNRECLAIMABLE_B);
373 n = sprintf(buf,
374 "Node %d MemTotal: %8lu kB\n"
375 "Node %d MemFree: %8lu kB\n"
376 "Node %d MemUsed: %8lu kB\n"
377 "Node %d Active: %8lu kB\n"
378 "Node %d Inactive: %8lu kB\n"
379 "Node %d Active(anon): %8lu kB\n"
380 "Node %d Inactive(anon): %8lu kB\n"
381 "Node %d Active(file): %8lu kB\n"
382 "Node %d Inactive(file): %8lu kB\n"
383 "Node %d Unevictable: %8lu kB\n"
384 "Node %d Mlocked: %8lu kB\n",
385 nid, K(i.totalram),
386 nid, K(i.freeram),
387 nid, K(i.totalram - i.freeram),
388 nid, K(node_page_state(pgdat, NR_ACTIVE_ANON) +
389 node_page_state(pgdat, NR_ACTIVE_FILE)),
390 nid, K(node_page_state(pgdat, NR_INACTIVE_ANON) +
391 node_page_state(pgdat, NR_INACTIVE_FILE)),
392 nid, K(node_page_state(pgdat, NR_ACTIVE_ANON)),
393 nid, K(node_page_state(pgdat, NR_INACTIVE_ANON)),
394 nid, K(node_page_state(pgdat, NR_ACTIVE_FILE)),
395 nid, K(node_page_state(pgdat, NR_INACTIVE_FILE)),
396 nid, K(node_page_state(pgdat, NR_UNEVICTABLE)),
397 nid, K(sum_zone_node_page_state(nid, NR_MLOCK)));
398
399#ifdef CONFIG_HIGHMEM
400 n += sprintf(buf + n,
401 "Node %d HighTotal: %8lu kB\n"
402 "Node %d HighFree: %8lu kB\n"
403 "Node %d LowTotal: %8lu kB\n"
404 "Node %d LowFree: %8lu kB\n",
405 nid, K(i.totalhigh),
406 nid, K(i.freehigh),
407 nid, K(i.totalram - i.totalhigh),
408 nid, K(i.freeram - i.freehigh));
409#endif
410 n += sprintf(buf + n,
411 "Node %d Dirty: %8lu kB\n"
412 "Node %d Writeback: %8lu kB\n"
413 "Node %d FilePages: %8lu kB\n"
414 "Node %d Mapped: %8lu kB\n"
415 "Node %d AnonPages: %8lu kB\n"
416 "Node %d Shmem: %8lu kB\n"
417 "Node %d KernelStack: %8lu kB\n"
418#ifdef CONFIG_SHADOW_CALL_STACK
419 "Node %d ShadowCallStack:%8lu kB\n"
420#endif
421 "Node %d PageTables: %8lu kB\n"
422 "Node %d NFS_Unstable: %8lu kB\n"
423 "Node %d Bounce: %8lu kB\n"
424 "Node %d WritebackTmp: %8lu kB\n"
425 "Node %d KReclaimable: %8lu kB\n"
426 "Node %d Slab: %8lu kB\n"
427 "Node %d SReclaimable: %8lu kB\n"
428 "Node %d SUnreclaim: %8lu kB\n"
429#ifdef CONFIG_TRANSPARENT_HUGEPAGE
430 "Node %d AnonHugePages: %8lu kB\n"
431 "Node %d ShmemHugePages: %8lu kB\n"
432 "Node %d ShmemPmdMapped: %8lu kB\n"
433 "Node %d FileHugePages: %8lu kB\n"
434 "Node %d FilePmdMapped: %8lu kB\n"
435#endif
436 ,
437 nid, K(node_page_state(pgdat, NR_FILE_DIRTY)),
438 nid, K(node_page_state(pgdat, NR_WRITEBACK)),
439 nid, K(node_page_state(pgdat, NR_FILE_PAGES)),
440 nid, K(node_page_state(pgdat, NR_FILE_MAPPED)),
441 nid, K(node_page_state(pgdat, NR_ANON_MAPPED)),
442 nid, K(i.sharedram),
443 nid, node_page_state(pgdat, NR_KERNEL_STACK_KB),
444#ifdef CONFIG_SHADOW_CALL_STACK
445 nid, node_page_state(pgdat, NR_KERNEL_SCS_KB),
446#endif
447 nid, K(sum_zone_node_page_state(nid, NR_PAGETABLE)),
448 nid, 0UL,
449 nid, K(sum_zone_node_page_state(nid, NR_BOUNCE)),
450 nid, K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
451 nid, K(sreclaimable +
452 node_page_state(pgdat, NR_KERNEL_MISC_RECLAIMABLE)),
453 nid, K(sreclaimable + sunreclaimable),
454 nid, K(sreclaimable),
455 nid, K(sunreclaimable)
456#ifdef CONFIG_TRANSPARENT_HUGEPAGE
457 ,
458 nid, K(node_page_state(pgdat, NR_ANON_THPS) *
459 HPAGE_PMD_NR),
460 nid, K(node_page_state(pgdat, NR_SHMEM_THPS) *
461 HPAGE_PMD_NR),
462 nid, K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED) *
463 HPAGE_PMD_NR),
464 nid, K(node_page_state(pgdat, NR_FILE_THPS) *
465 HPAGE_PMD_NR),
466 nid, K(node_page_state(pgdat, NR_FILE_PMDMAPPED) *
467 HPAGE_PMD_NR)
468#endif
469 );
470 n += hugetlb_report_node_meminfo(nid, buf + n);
471 return n;
472}
473
474#undef K
475static DEVICE_ATTR(meminfo, S_IRUGO, node_read_meminfo, NULL);
476
477static ssize_t node_read_numastat(struct device *dev,
478 struct device_attribute *attr, char *buf)
479{
480 return sprintf(buf,
481 "numa_hit %lu\n"
482 "numa_miss %lu\n"
483 "numa_foreign %lu\n"
484 "interleave_hit %lu\n"
485 "local_node %lu\n"
486 "other_node %lu\n",
487 sum_zone_numa_state(dev->id, NUMA_HIT),
488 sum_zone_numa_state(dev->id, NUMA_MISS),
489 sum_zone_numa_state(dev->id, NUMA_FOREIGN),
490 sum_zone_numa_state(dev->id, NUMA_INTERLEAVE_HIT),
491 sum_zone_numa_state(dev->id, NUMA_LOCAL),
492 sum_zone_numa_state(dev->id, NUMA_OTHER));
493}
494static DEVICE_ATTR(numastat, S_IRUGO, node_read_numastat, NULL);
495
496static ssize_t node_read_vmstat(struct device *dev,
497 struct device_attribute *attr, char *buf)
498{
499 int nid = dev->id;
500 struct pglist_data *pgdat = NODE_DATA(nid);
501 int i;
502 int n = 0;
503
504 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
505 n += sprintf(buf+n, "%s %lu\n", zone_stat_name(i),
506 sum_zone_node_page_state(nid, i));
507
508#ifdef CONFIG_NUMA
509 for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++)
510 n += sprintf(buf+n, "%s %lu\n", numa_stat_name(i),
511 sum_zone_numa_state(nid, i));
512#endif
513
514 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
515 n += sprintf(buf+n, "%s %lu\n", node_stat_name(i),
516 node_page_state_pages(pgdat, i));
517
518 return n;
519}
520static DEVICE_ATTR(vmstat, S_IRUGO, node_read_vmstat, NULL);
521
522static ssize_t node_read_distance(struct device *dev,
523 struct device_attribute *attr, char *buf)
524{
525 int nid = dev->id;
526 int len = 0;
527 int i;
528
529 /*
530 * buf is currently PAGE_SIZE in length and each node needs 4 chars
531 * at the most (distance + space or newline).
532 */
533 BUILD_BUG_ON(MAX_NUMNODES * 4 > PAGE_SIZE);
534
535 for_each_online_node(i)
536 len += sprintf(buf + len, "%s%d", i ? " " : "", node_distance(nid, i));
537
538 len += sprintf(buf + len, "\n");
539 return len;
540}
541static DEVICE_ATTR(distance, S_IRUGO, node_read_distance, NULL);
542
543static struct attribute *node_dev_attrs[] = {
544 &dev_attr_cpumap.attr,
545 &dev_attr_cpulist.attr,
546 &dev_attr_meminfo.attr,
547 &dev_attr_numastat.attr,
548 &dev_attr_distance.attr,
549 &dev_attr_vmstat.attr,
550 NULL
551};
552ATTRIBUTE_GROUPS(node_dev);
553
554#ifdef CONFIG_HUGETLBFS
555/*
556 * hugetlbfs per node attributes registration interface:
557 * When/if hugetlb[fs] subsystem initializes [sometime after this module],
558 * it will register its per node attributes for all online nodes with
559 * memory. It will also call register_hugetlbfs_with_node(), below, to
560 * register its attribute registration functions with this node driver.
561 * Once these hooks have been initialized, the node driver will call into
562 * the hugetlb module to [un]register attributes for hot-plugged nodes.
563 */
564static node_registration_func_t __hugetlb_register_node;
565static node_registration_func_t __hugetlb_unregister_node;
566
567static inline bool hugetlb_register_node(struct node *node)
568{
569 if (__hugetlb_register_node &&
570 node_state(node->dev.id, N_MEMORY)) {
571 __hugetlb_register_node(node);
572 return true;
573 }
574 return false;
575}
576
577static inline void hugetlb_unregister_node(struct node *node)
578{
579 if (__hugetlb_unregister_node)
580 __hugetlb_unregister_node(node);
581}
582
583void register_hugetlbfs_with_node(node_registration_func_t doregister,
584 node_registration_func_t unregister)
585{
586 __hugetlb_register_node = doregister;
587 __hugetlb_unregister_node = unregister;
588}
589#else
590static inline void hugetlb_register_node(struct node *node) {}
591
592static inline void hugetlb_unregister_node(struct node *node) {}
593#endif
594
595static void node_device_release(struct device *dev)
596{
597 struct node *node = to_node(dev);
598
599#if defined(CONFIG_MEMORY_HOTPLUG_SPARSE) && defined(CONFIG_HUGETLBFS)
600 /*
601 * We schedule the work only when a memory section is
602 * onlined/offlined on this node. When we come here,
603 * all the memory on this node has been offlined,
604 * so we won't enqueue new work to this work.
605 *
606 * The work is using node->node_work, so we should
607 * flush work before freeing the memory.
608 */
609 flush_work(&node->node_work);
610#endif
611 kfree(node);
612}
613
614/*
615 * register_node - Setup a sysfs device for a node.
616 * @num - Node number to use when creating the device.
617 *
618 * Initialize and register the node device.
619 */
620static int register_node(struct node *node, int num)
621{
622 int error;
623
624 node->dev.id = num;
625 node->dev.bus = &node_subsys;
626 node->dev.release = node_device_release;
627 node->dev.groups = node_dev_groups;
628 error = device_register(&node->dev);
629
630 if (error)
631 put_device(&node->dev);
632 else {
633 hugetlb_register_node(node);
634
635 compaction_register_node(node);
636 }
637 return error;
638}
639
640/**
641 * unregister_node - unregister a node device
642 * @node: node going away
643 *
644 * Unregisters a node device @node. All the devices on the node must be
645 * unregistered before calling this function.
646 */
647void unregister_node(struct node *node)
648{
649 hugetlb_unregister_node(node); /* no-op, if memoryless node */
650 node_remove_accesses(node);
651 node_remove_caches(node);
652 device_unregister(&node->dev);
653}
654
655struct node *node_devices[MAX_NUMNODES];
656
657/*
658 * register cpu under node
659 */
660int register_cpu_under_node(unsigned int cpu, unsigned int nid)
661{
662 int ret;
663 struct device *obj;
664
665 if (!node_online(nid))
666 return 0;
667
668 obj = get_cpu_device(cpu);
669 if (!obj)
670 return 0;
671
672 ret = sysfs_create_link(&node_devices[nid]->dev.kobj,
673 &obj->kobj,
674 kobject_name(&obj->kobj));
675 if (ret)
676 return ret;
677
678 return sysfs_create_link(&obj->kobj,
679 &node_devices[nid]->dev.kobj,
680 kobject_name(&node_devices[nid]->dev.kobj));
681}
682
683/**
684 * register_memory_node_under_compute_node - link memory node to its compute
685 * node for a given access class.
686 * @mem_nid: Memory node number
687 * @cpu_nid: Cpu node number
688 * @access: Access class to register
689 *
690 * Description:
691 * For use with platforms that may have separate memory and compute nodes.
692 * This function will export node relationships linking which memory
693 * initiator nodes can access memory targets at a given ranked access
694 * class.
695 */
696int register_memory_node_under_compute_node(unsigned int mem_nid,
697 unsigned int cpu_nid,
698 unsigned access)
699{
700 struct node *init_node, *targ_node;
701 struct node_access_nodes *initiator, *target;
702 int ret;
703
704 if (!node_online(cpu_nid) || !node_online(mem_nid))
705 return -ENODEV;
706
707 init_node = node_devices[cpu_nid];
708 targ_node = node_devices[mem_nid];
709 initiator = node_init_node_access(init_node, access);
710 target = node_init_node_access(targ_node, access);
711 if (!initiator || !target)
712 return -ENOMEM;
713
714 ret = sysfs_add_link_to_group(&initiator->dev.kobj, "targets",
715 &targ_node->dev.kobj,
716 dev_name(&targ_node->dev));
717 if (ret)
718 return ret;
719
720 ret = sysfs_add_link_to_group(&target->dev.kobj, "initiators",
721 &init_node->dev.kobj,
722 dev_name(&init_node->dev));
723 if (ret)
724 goto err;
725
726 return 0;
727 err:
728 sysfs_remove_link_from_group(&initiator->dev.kobj, "targets",
729 dev_name(&targ_node->dev));
730 return ret;
731}
732
733int unregister_cpu_under_node(unsigned int cpu, unsigned int nid)
734{
735 struct device *obj;
736
737 if (!node_online(nid))
738 return 0;
739
740 obj = get_cpu_device(cpu);
741 if (!obj)
742 return 0;
743
744 sysfs_remove_link(&node_devices[nid]->dev.kobj,
745 kobject_name(&obj->kobj));
746 sysfs_remove_link(&obj->kobj,
747 kobject_name(&node_devices[nid]->dev.kobj));
748
749 return 0;
750}
751
752#ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
753static int __ref get_nid_for_pfn(unsigned long pfn)
754{
755 if (!pfn_valid_within(pfn))
756 return -1;
757#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
758 if (system_state < SYSTEM_RUNNING)
759 return early_pfn_to_nid(pfn);
760#endif
761 return pfn_to_nid(pfn);
762}
763
764static int do_register_memory_block_under_node(int nid,
765 struct memory_block *mem_blk)
766{
767 int ret;
768
769 /*
770 * If this memory block spans multiple nodes, we only indicate
771 * the last processed node.
772 */
773 mem_blk->nid = nid;
774
775 ret = sysfs_create_link_nowarn(&node_devices[nid]->dev.kobj,
776 &mem_blk->dev.kobj,
777 kobject_name(&mem_blk->dev.kobj));
778 if (ret)
779 return ret;
780
781 return sysfs_create_link_nowarn(&mem_blk->dev.kobj,
782 &node_devices[nid]->dev.kobj,
783 kobject_name(&node_devices[nid]->dev.kobj));
784}
785
786/* register memory section under specified node if it spans that node */
787static int register_mem_block_under_node_early(struct memory_block *mem_blk,
788 void *arg)
789{
790 unsigned long memory_block_pfns = memory_block_size_bytes() / PAGE_SIZE;
791 unsigned long start_pfn = section_nr_to_pfn(mem_blk->start_section_nr);
792 unsigned long end_pfn = start_pfn + memory_block_pfns - 1;
793 int nid = *(int *)arg;
794 unsigned long pfn;
795
796 for (pfn = start_pfn; pfn <= end_pfn; pfn++) {
797 int page_nid;
798
799 /*
800 * memory block could have several absent sections from start.
801 * skip pfn range from absent section
802 */
803 if (!pfn_in_present_section(pfn)) {
804 pfn = round_down(pfn + PAGES_PER_SECTION,
805 PAGES_PER_SECTION) - 1;
806 continue;
807 }
808
809 /*
810 * We need to check if page belongs to nid only at the boot
811 * case because node's ranges can be interleaved.
812 */
813 page_nid = get_nid_for_pfn(pfn);
814 if (page_nid < 0)
815 continue;
816 if (page_nid != nid)
817 continue;
818
819 return do_register_memory_block_under_node(nid, mem_blk);
820 }
821 /* mem section does not span the specified node */
822 return 0;
823}
824
825/*
826 * During hotplug we know that all pages in the memory block belong to the same
827 * node.
828 */
829static int register_mem_block_under_node_hotplug(struct memory_block *mem_blk,
830 void *arg)
831{
832 int nid = *(int *)arg;
833
834 return do_register_memory_block_under_node(nid, mem_blk);
835}
836
837/*
838 * Unregister a memory block device under the node it spans. Memory blocks
839 * with multiple nodes cannot be offlined and therefore also never be removed.
840 */
841void unregister_memory_block_under_nodes(struct memory_block *mem_blk)
842{
843 if (mem_blk->nid == NUMA_NO_NODE)
844 return;
845
846 sysfs_remove_link(&node_devices[mem_blk->nid]->dev.kobj,
847 kobject_name(&mem_blk->dev.kobj));
848 sysfs_remove_link(&mem_blk->dev.kobj,
849 kobject_name(&node_devices[mem_blk->nid]->dev.kobj));
850}
851
852int link_mem_sections(int nid, unsigned long start_pfn, unsigned long end_pfn,
853 enum meminit_context context)
854{
855 walk_memory_blocks_func_t func;
856
857 if (context == MEMINIT_HOTPLUG)
858 func = register_mem_block_under_node_hotplug;
859 else
860 func = register_mem_block_under_node_early;
861
862 return walk_memory_blocks(PFN_PHYS(start_pfn),
863 PFN_PHYS(end_pfn - start_pfn), (void *)&nid,
864 func);
865}
866
867#ifdef CONFIG_HUGETLBFS
868/*
869 * Handle per node hstate attribute [un]registration on transistions
870 * to/from memoryless state.
871 */
872static void node_hugetlb_work(struct work_struct *work)
873{
874 struct node *node = container_of(work, struct node, node_work);
875
876 /*
877 * We only get here when a node transitions to/from memoryless state.
878 * We can detect which transition occurred by examining whether the
879 * node has memory now. hugetlb_register_node() already check this
880 * so we try to register the attributes. If that fails, then the
881 * node has transitioned to memoryless, try to unregister the
882 * attributes.
883 */
884 if (!hugetlb_register_node(node))
885 hugetlb_unregister_node(node);
886}
887
888static void init_node_hugetlb_work(int nid)
889{
890 INIT_WORK(&node_devices[nid]->node_work, node_hugetlb_work);
891}
892
893static int node_memory_callback(struct notifier_block *self,
894 unsigned long action, void *arg)
895{
896 struct memory_notify *mnb = arg;
897 int nid = mnb->status_change_nid;
898
899 switch (action) {
900 case MEM_ONLINE:
901 case MEM_OFFLINE:
902 /*
903 * offload per node hstate [un]registration to a work thread
904 * when transitioning to/from memoryless state.
905 */
906 if (nid != NUMA_NO_NODE)
907 schedule_work(&node_devices[nid]->node_work);
908 break;
909
910 case MEM_GOING_ONLINE:
911 case MEM_GOING_OFFLINE:
912 case MEM_CANCEL_ONLINE:
913 case MEM_CANCEL_OFFLINE:
914 default:
915 break;
916 }
917
918 return NOTIFY_OK;
919}
920#endif /* CONFIG_HUGETLBFS */
921#endif /* CONFIG_MEMORY_HOTPLUG_SPARSE */
922
923#if !defined(CONFIG_MEMORY_HOTPLUG_SPARSE) || \
924 !defined(CONFIG_HUGETLBFS)
925static inline int node_memory_callback(struct notifier_block *self,
926 unsigned long action, void *arg)
927{
928 return NOTIFY_OK;
929}
930
931static void init_node_hugetlb_work(int nid) { }
932
933#endif
934
935int __register_one_node(int nid)
936{
937 int error;
938 int cpu;
939
940 node_devices[nid] = kzalloc(sizeof(struct node), GFP_KERNEL);
941 if (!node_devices[nid])
942 return -ENOMEM;
943
944 error = register_node(node_devices[nid], nid);
945
946 /* link cpu under this node */
947 for_each_present_cpu(cpu) {
948 if (cpu_to_node(cpu) == nid)
949 register_cpu_under_node(cpu, nid);
950 }
951
952 INIT_LIST_HEAD(&node_devices[nid]->access_list);
953 /* initialize work queue for memory hot plug */
954 init_node_hugetlb_work(nid);
955 node_init_caches(nid);
956
957 return error;
958}
959
960void unregister_one_node(int nid)
961{
962 if (!node_devices[nid])
963 return;
964
965 unregister_node(node_devices[nid]);
966 node_devices[nid] = NULL;
967}
968
969/*
970 * node states attributes
971 */
972
973static ssize_t print_nodes_state(enum node_states state, char *buf)
974{
975 int n;
976
977 n = scnprintf(buf, PAGE_SIZE - 1, "%*pbl",
978 nodemask_pr_args(&node_states[state]));
979 buf[n++] = '\n';
980 buf[n] = '\0';
981 return n;
982}
983
984struct node_attr {
985 struct device_attribute attr;
986 enum node_states state;
987};
988
989static ssize_t show_node_state(struct device *dev,
990 struct device_attribute *attr, char *buf)
991{
992 struct node_attr *na = container_of(attr, struct node_attr, attr);
993 return print_nodes_state(na->state, buf);
994}
995
996#define _NODE_ATTR(name, state) \
997 { __ATTR(name, 0444, show_node_state, NULL), state }
998
999static struct node_attr node_state_attr[] = {
1000 [N_POSSIBLE] = _NODE_ATTR(possible, N_POSSIBLE),
1001 [N_ONLINE] = _NODE_ATTR(online, N_ONLINE),
1002 [N_NORMAL_MEMORY] = _NODE_ATTR(has_normal_memory, N_NORMAL_MEMORY),
1003#ifdef CONFIG_HIGHMEM
1004 [N_HIGH_MEMORY] = _NODE_ATTR(has_high_memory, N_HIGH_MEMORY),
1005#endif
1006 [N_MEMORY] = _NODE_ATTR(has_memory, N_MEMORY),
1007 [N_CPU] = _NODE_ATTR(has_cpu, N_CPU),
1008};
1009
1010static struct attribute *node_state_attrs[] = {
1011 &node_state_attr[N_POSSIBLE].attr.attr,
1012 &node_state_attr[N_ONLINE].attr.attr,
1013 &node_state_attr[N_NORMAL_MEMORY].attr.attr,
1014#ifdef CONFIG_HIGHMEM
1015 &node_state_attr[N_HIGH_MEMORY].attr.attr,
1016#endif
1017 &node_state_attr[N_MEMORY].attr.attr,
1018 &node_state_attr[N_CPU].attr.attr,
1019 NULL
1020};
1021
1022static struct attribute_group memory_root_attr_group = {
1023 .attrs = node_state_attrs,
1024};
1025
1026static const struct attribute_group *cpu_root_attr_groups[] = {
1027 &memory_root_attr_group,
1028 NULL,
1029};
1030
1031#define NODE_CALLBACK_PRI 2 /* lower than SLAB */
1032static int __init register_node_type(void)
1033{
1034 int ret;
1035
1036 BUILD_BUG_ON(ARRAY_SIZE(node_state_attr) != NR_NODE_STATES);
1037 BUILD_BUG_ON(ARRAY_SIZE(node_state_attrs)-1 != NR_NODE_STATES);
1038
1039 ret = subsys_system_register(&node_subsys, cpu_root_attr_groups);
1040 if (!ret) {
1041 static struct notifier_block node_memory_callback_nb = {
1042 .notifier_call = node_memory_callback,
1043 .priority = NODE_CALLBACK_PRI,
1044 };
1045 register_hotmemory_notifier(&node_memory_callback_nb);
1046 }
1047
1048 /*
1049 * Note: we're not going to unregister the node class if we fail
1050 * to register the node state class attribute files.
1051 */
1052 return ret;
1053}
1054postcore_initcall(register_node_type);
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Basic Node interface support
4 */
5
6#include <linux/module.h>
7#include <linux/init.h>
8#include <linux/mm.h>
9#include <linux/memory.h>
10#include <linux/vmstat.h>
11#include <linux/notifier.h>
12#include <linux/node.h>
13#include <linux/hugetlb.h>
14#include <linux/compaction.h>
15#include <linux/cpumask.h>
16#include <linux/topology.h>
17#include <linux/nodemask.h>
18#include <linux/cpu.h>
19#include <linux/device.h>
20#include <linux/swap.h>
21#include <linux/slab.h>
22
23static struct bus_type node_subsys = {
24 .name = "node",
25 .dev_name = "node",
26};
27
28
29static ssize_t node_read_cpumap(struct device *dev, bool list, char *buf)
30{
31 ssize_t n;
32 cpumask_var_t mask;
33 struct node *node_dev = to_node(dev);
34
35 /* 2008/04/07: buf currently PAGE_SIZE, need 9 chars per 32 bits. */
36 BUILD_BUG_ON((NR_CPUS/32 * 9) > (PAGE_SIZE-1));
37
38 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
39 return 0;
40
41 cpumask_and(mask, cpumask_of_node(node_dev->dev.id), cpu_online_mask);
42 n = cpumap_print_to_pagebuf(list, buf, mask);
43 free_cpumask_var(mask);
44
45 return n;
46}
47
48static inline ssize_t node_read_cpumask(struct device *dev,
49 struct device_attribute *attr, char *buf)
50{
51 return node_read_cpumap(dev, false, buf);
52}
53static inline ssize_t node_read_cpulist(struct device *dev,
54 struct device_attribute *attr, char *buf)
55{
56 return node_read_cpumap(dev, true, buf);
57}
58
59static DEVICE_ATTR(cpumap, S_IRUGO, node_read_cpumask, NULL);
60static DEVICE_ATTR(cpulist, S_IRUGO, node_read_cpulist, NULL);
61
62#define K(x) ((x) << (PAGE_SHIFT - 10))
63static ssize_t node_read_meminfo(struct device *dev,
64 struct device_attribute *attr, char *buf)
65{
66 int n;
67 int nid = dev->id;
68 struct pglist_data *pgdat = NODE_DATA(nid);
69 struct sysinfo i;
70
71 si_meminfo_node(&i, nid);
72 n = sprintf(buf,
73 "Node %d MemTotal: %8lu kB\n"
74 "Node %d MemFree: %8lu kB\n"
75 "Node %d MemUsed: %8lu kB\n"
76 "Node %d Active: %8lu kB\n"
77 "Node %d Inactive: %8lu kB\n"
78 "Node %d Active(anon): %8lu kB\n"
79 "Node %d Inactive(anon): %8lu kB\n"
80 "Node %d Active(file): %8lu kB\n"
81 "Node %d Inactive(file): %8lu kB\n"
82 "Node %d Unevictable: %8lu kB\n"
83 "Node %d Mlocked: %8lu kB\n",
84 nid, K(i.totalram),
85 nid, K(i.freeram),
86 nid, K(i.totalram - i.freeram),
87 nid, K(node_page_state(pgdat, NR_ACTIVE_ANON) +
88 node_page_state(pgdat, NR_ACTIVE_FILE)),
89 nid, K(node_page_state(pgdat, NR_INACTIVE_ANON) +
90 node_page_state(pgdat, NR_INACTIVE_FILE)),
91 nid, K(node_page_state(pgdat, NR_ACTIVE_ANON)),
92 nid, K(node_page_state(pgdat, NR_INACTIVE_ANON)),
93 nid, K(node_page_state(pgdat, NR_ACTIVE_FILE)),
94 nid, K(node_page_state(pgdat, NR_INACTIVE_FILE)),
95 nid, K(node_page_state(pgdat, NR_UNEVICTABLE)),
96 nid, K(sum_zone_node_page_state(nid, NR_MLOCK)));
97
98#ifdef CONFIG_HIGHMEM
99 n += sprintf(buf + n,
100 "Node %d HighTotal: %8lu kB\n"
101 "Node %d HighFree: %8lu kB\n"
102 "Node %d LowTotal: %8lu kB\n"
103 "Node %d LowFree: %8lu kB\n",
104 nid, K(i.totalhigh),
105 nid, K(i.freehigh),
106 nid, K(i.totalram - i.totalhigh),
107 nid, K(i.freeram - i.freehigh));
108#endif
109 n += sprintf(buf + n,
110 "Node %d Dirty: %8lu kB\n"
111 "Node %d Writeback: %8lu kB\n"
112 "Node %d FilePages: %8lu kB\n"
113 "Node %d Mapped: %8lu kB\n"
114 "Node %d AnonPages: %8lu kB\n"
115 "Node %d Shmem: %8lu kB\n"
116 "Node %d KernelStack: %8lu kB\n"
117 "Node %d PageTables: %8lu kB\n"
118 "Node %d NFS_Unstable: %8lu kB\n"
119 "Node %d Bounce: %8lu kB\n"
120 "Node %d WritebackTmp: %8lu kB\n"
121 "Node %d Slab: %8lu kB\n"
122 "Node %d SReclaimable: %8lu kB\n"
123 "Node %d SUnreclaim: %8lu kB\n"
124#ifdef CONFIG_TRANSPARENT_HUGEPAGE
125 "Node %d AnonHugePages: %8lu kB\n"
126 "Node %d ShmemHugePages: %8lu kB\n"
127 "Node %d ShmemPmdMapped: %8lu kB\n"
128#endif
129 ,
130 nid, K(node_page_state(pgdat, NR_FILE_DIRTY)),
131 nid, K(node_page_state(pgdat, NR_WRITEBACK)),
132 nid, K(node_page_state(pgdat, NR_FILE_PAGES)),
133 nid, K(node_page_state(pgdat, NR_FILE_MAPPED)),
134 nid, K(node_page_state(pgdat, NR_ANON_MAPPED)),
135 nid, K(i.sharedram),
136 nid, sum_zone_node_page_state(nid, NR_KERNEL_STACK_KB),
137 nid, K(sum_zone_node_page_state(nid, NR_PAGETABLE)),
138 nid, K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
139 nid, K(sum_zone_node_page_state(nid, NR_BOUNCE)),
140 nid, K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
141 nid, K(node_page_state(pgdat, NR_SLAB_RECLAIMABLE) +
142 node_page_state(pgdat, NR_SLAB_UNRECLAIMABLE)),
143 nid, K(node_page_state(pgdat, NR_SLAB_RECLAIMABLE)),
144#ifdef CONFIG_TRANSPARENT_HUGEPAGE
145 nid, K(node_page_state(pgdat, NR_SLAB_UNRECLAIMABLE)),
146 nid, K(node_page_state(pgdat, NR_ANON_THPS) *
147 HPAGE_PMD_NR),
148 nid, K(node_page_state(pgdat, NR_SHMEM_THPS) *
149 HPAGE_PMD_NR),
150 nid, K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED) *
151 HPAGE_PMD_NR));
152#else
153 nid, K(node_page_state(pgdat, NR_SLAB_UNRECLAIMABLE)));
154#endif
155 n += hugetlb_report_node_meminfo(nid, buf + n);
156 return n;
157}
158
159#undef K
160static DEVICE_ATTR(meminfo, S_IRUGO, node_read_meminfo, NULL);
161
162static ssize_t node_read_numastat(struct device *dev,
163 struct device_attribute *attr, char *buf)
164{
165 return sprintf(buf,
166 "numa_hit %lu\n"
167 "numa_miss %lu\n"
168 "numa_foreign %lu\n"
169 "interleave_hit %lu\n"
170 "local_node %lu\n"
171 "other_node %lu\n",
172 sum_zone_numa_state(dev->id, NUMA_HIT),
173 sum_zone_numa_state(dev->id, NUMA_MISS),
174 sum_zone_numa_state(dev->id, NUMA_FOREIGN),
175 sum_zone_numa_state(dev->id, NUMA_INTERLEAVE_HIT),
176 sum_zone_numa_state(dev->id, NUMA_LOCAL),
177 sum_zone_numa_state(dev->id, NUMA_OTHER));
178}
179static DEVICE_ATTR(numastat, S_IRUGO, node_read_numastat, NULL);
180
181static ssize_t node_read_vmstat(struct device *dev,
182 struct device_attribute *attr, char *buf)
183{
184 int nid = dev->id;
185 struct pglist_data *pgdat = NODE_DATA(nid);
186 int i;
187 int n = 0;
188
189 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
190 n += sprintf(buf+n, "%s %lu\n", vmstat_text[i],
191 sum_zone_node_page_state(nid, i));
192
193#ifdef CONFIG_NUMA
194 for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++)
195 n += sprintf(buf+n, "%s %lu\n",
196 vmstat_text[i + NR_VM_ZONE_STAT_ITEMS],
197 sum_zone_numa_state(nid, i));
198#endif
199
200 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
201 n += sprintf(buf+n, "%s %lu\n",
202 vmstat_text[i + NR_VM_ZONE_STAT_ITEMS +
203 NR_VM_NUMA_STAT_ITEMS],
204 node_page_state(pgdat, i));
205
206 return n;
207}
208static DEVICE_ATTR(vmstat, S_IRUGO, node_read_vmstat, NULL);
209
210static ssize_t node_read_distance(struct device *dev,
211 struct device_attribute *attr, char *buf)
212{
213 int nid = dev->id;
214 int len = 0;
215 int i;
216
217 /*
218 * buf is currently PAGE_SIZE in length and each node needs 4 chars
219 * at the most (distance + space or newline).
220 */
221 BUILD_BUG_ON(MAX_NUMNODES * 4 > PAGE_SIZE);
222
223 for_each_online_node(i)
224 len += sprintf(buf + len, "%s%d", i ? " " : "", node_distance(nid, i));
225
226 len += sprintf(buf + len, "\n");
227 return len;
228}
229static DEVICE_ATTR(distance, S_IRUGO, node_read_distance, NULL);
230
231static struct attribute *node_dev_attrs[] = {
232 &dev_attr_cpumap.attr,
233 &dev_attr_cpulist.attr,
234 &dev_attr_meminfo.attr,
235 &dev_attr_numastat.attr,
236 &dev_attr_distance.attr,
237 &dev_attr_vmstat.attr,
238 NULL
239};
240ATTRIBUTE_GROUPS(node_dev);
241
242#ifdef CONFIG_HUGETLBFS
243/*
244 * hugetlbfs per node attributes registration interface:
245 * When/if hugetlb[fs] subsystem initializes [sometime after this module],
246 * it will register its per node attributes for all online nodes with
247 * memory. It will also call register_hugetlbfs_with_node(), below, to
248 * register its attribute registration functions with this node driver.
249 * Once these hooks have been initialized, the node driver will call into
250 * the hugetlb module to [un]register attributes for hot-plugged nodes.
251 */
252static node_registration_func_t __hugetlb_register_node;
253static node_registration_func_t __hugetlb_unregister_node;
254
255static inline bool hugetlb_register_node(struct node *node)
256{
257 if (__hugetlb_register_node &&
258 node_state(node->dev.id, N_MEMORY)) {
259 __hugetlb_register_node(node);
260 return true;
261 }
262 return false;
263}
264
265static inline void hugetlb_unregister_node(struct node *node)
266{
267 if (__hugetlb_unregister_node)
268 __hugetlb_unregister_node(node);
269}
270
271void register_hugetlbfs_with_node(node_registration_func_t doregister,
272 node_registration_func_t unregister)
273{
274 __hugetlb_register_node = doregister;
275 __hugetlb_unregister_node = unregister;
276}
277#else
278static inline void hugetlb_register_node(struct node *node) {}
279
280static inline void hugetlb_unregister_node(struct node *node) {}
281#endif
282
283static void node_device_release(struct device *dev)
284{
285 struct node *node = to_node(dev);
286
287#if defined(CONFIG_MEMORY_HOTPLUG_SPARSE) && defined(CONFIG_HUGETLBFS)
288 /*
289 * We schedule the work only when a memory section is
290 * onlined/offlined on this node. When we come here,
291 * all the memory on this node has been offlined,
292 * so we won't enqueue new work to this work.
293 *
294 * The work is using node->node_work, so we should
295 * flush work before freeing the memory.
296 */
297 flush_work(&node->node_work);
298#endif
299 kfree(node);
300}
301
302/*
303 * register_node - Setup a sysfs device for a node.
304 * @num - Node number to use when creating the device.
305 *
306 * Initialize and register the node device.
307 */
308static int register_node(struct node *node, int num)
309{
310 int error;
311
312 node->dev.id = num;
313 node->dev.bus = &node_subsys;
314 node->dev.release = node_device_release;
315 node->dev.groups = node_dev_groups;
316 error = device_register(&node->dev);
317
318 if (error)
319 put_device(&node->dev);
320 else {
321 hugetlb_register_node(node);
322
323 compaction_register_node(node);
324 }
325 return error;
326}
327
328/**
329 * unregister_node - unregister a node device
330 * @node: node going away
331 *
332 * Unregisters a node device @node. All the devices on the node must be
333 * unregistered before calling this function.
334 */
335void unregister_node(struct node *node)
336{
337 hugetlb_unregister_node(node); /* no-op, if memoryless node */
338
339 device_unregister(&node->dev);
340}
341
342struct node *node_devices[MAX_NUMNODES];
343
344/*
345 * register cpu under node
346 */
347int register_cpu_under_node(unsigned int cpu, unsigned int nid)
348{
349 int ret;
350 struct device *obj;
351
352 if (!node_online(nid))
353 return 0;
354
355 obj = get_cpu_device(cpu);
356 if (!obj)
357 return 0;
358
359 ret = sysfs_create_link(&node_devices[nid]->dev.kobj,
360 &obj->kobj,
361 kobject_name(&obj->kobj));
362 if (ret)
363 return ret;
364
365 return sysfs_create_link(&obj->kobj,
366 &node_devices[nid]->dev.kobj,
367 kobject_name(&node_devices[nid]->dev.kobj));
368}
369
370int unregister_cpu_under_node(unsigned int cpu, unsigned int nid)
371{
372 struct device *obj;
373
374 if (!node_online(nid))
375 return 0;
376
377 obj = get_cpu_device(cpu);
378 if (!obj)
379 return 0;
380
381 sysfs_remove_link(&node_devices[nid]->dev.kobj,
382 kobject_name(&obj->kobj));
383 sysfs_remove_link(&obj->kobj,
384 kobject_name(&node_devices[nid]->dev.kobj));
385
386 return 0;
387}
388
389#ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
390static int __ref get_nid_for_pfn(unsigned long pfn)
391{
392 if (!pfn_valid_within(pfn))
393 return -1;
394#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
395 if (system_state < SYSTEM_RUNNING)
396 return early_pfn_to_nid(pfn);
397#endif
398 return pfn_to_nid(pfn);
399}
400
401/* register memory section under specified node if it spans that node */
402int register_mem_sect_under_node(struct memory_block *mem_blk, int nid,
403 bool check_nid)
404{
405 int ret;
406 unsigned long pfn, sect_start_pfn, sect_end_pfn;
407
408 if (!mem_blk)
409 return -EFAULT;
410
411 mem_blk->nid = nid;
412 if (!node_online(nid))
413 return 0;
414
415 sect_start_pfn = section_nr_to_pfn(mem_blk->start_section_nr);
416 sect_end_pfn = section_nr_to_pfn(mem_blk->end_section_nr);
417 sect_end_pfn += PAGES_PER_SECTION - 1;
418 for (pfn = sect_start_pfn; pfn <= sect_end_pfn; pfn++) {
419 int page_nid;
420
421 /*
422 * memory block could have several absent sections from start.
423 * skip pfn range from absent section
424 */
425 if (!pfn_present(pfn)) {
426 pfn = round_down(pfn + PAGES_PER_SECTION,
427 PAGES_PER_SECTION) - 1;
428 continue;
429 }
430
431 /*
432 * We need to check if page belongs to nid only for the boot
433 * case, during hotplug we know that all pages in the memory
434 * block belong to the same node.
435 */
436 if (check_nid) {
437 page_nid = get_nid_for_pfn(pfn);
438 if (page_nid < 0)
439 continue;
440 if (page_nid != nid)
441 continue;
442 }
443 ret = sysfs_create_link_nowarn(&node_devices[nid]->dev.kobj,
444 &mem_blk->dev.kobj,
445 kobject_name(&mem_blk->dev.kobj));
446 if (ret)
447 return ret;
448
449 return sysfs_create_link_nowarn(&mem_blk->dev.kobj,
450 &node_devices[nid]->dev.kobj,
451 kobject_name(&node_devices[nid]->dev.kobj));
452 }
453 /* mem section does not span the specified node */
454 return 0;
455}
456
457/* unregister memory section under all nodes that it spans */
458int unregister_mem_sect_under_nodes(struct memory_block *mem_blk,
459 unsigned long phys_index)
460{
461 NODEMASK_ALLOC(nodemask_t, unlinked_nodes, GFP_KERNEL);
462 unsigned long pfn, sect_start_pfn, sect_end_pfn;
463
464 if (!mem_blk) {
465 NODEMASK_FREE(unlinked_nodes);
466 return -EFAULT;
467 }
468 if (!unlinked_nodes)
469 return -ENOMEM;
470 nodes_clear(*unlinked_nodes);
471
472 sect_start_pfn = section_nr_to_pfn(phys_index);
473 sect_end_pfn = sect_start_pfn + PAGES_PER_SECTION - 1;
474 for (pfn = sect_start_pfn; pfn <= sect_end_pfn; pfn++) {
475 int nid;
476
477 nid = get_nid_for_pfn(pfn);
478 if (nid < 0)
479 continue;
480 if (!node_online(nid))
481 continue;
482 if (node_test_and_set(nid, *unlinked_nodes))
483 continue;
484 sysfs_remove_link(&node_devices[nid]->dev.kobj,
485 kobject_name(&mem_blk->dev.kobj));
486 sysfs_remove_link(&mem_blk->dev.kobj,
487 kobject_name(&node_devices[nid]->dev.kobj));
488 }
489 NODEMASK_FREE(unlinked_nodes);
490 return 0;
491}
492
493int link_mem_sections(int nid, unsigned long start_pfn, unsigned long nr_pages,
494 bool check_nid)
495{
496 unsigned long end_pfn = start_pfn + nr_pages;
497 unsigned long pfn;
498 struct memory_block *mem_blk = NULL;
499 int err = 0;
500
501 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
502 unsigned long section_nr = pfn_to_section_nr(pfn);
503 struct mem_section *mem_sect;
504 int ret;
505
506 if (!present_section_nr(section_nr))
507 continue;
508 mem_sect = __nr_to_section(section_nr);
509
510 /* same memblock ? */
511 if (mem_blk)
512 if ((section_nr >= mem_blk->start_section_nr) &&
513 (section_nr <= mem_blk->end_section_nr))
514 continue;
515
516 mem_blk = find_memory_block_hinted(mem_sect, mem_blk);
517
518 ret = register_mem_sect_under_node(mem_blk, nid, check_nid);
519 if (!err)
520 err = ret;
521
522 /* discard ref obtained in find_memory_block() */
523 }
524
525 if (mem_blk)
526 kobject_put(&mem_blk->dev.kobj);
527 return err;
528}
529
530#ifdef CONFIG_HUGETLBFS
531/*
532 * Handle per node hstate attribute [un]registration on transistions
533 * to/from memoryless state.
534 */
535static void node_hugetlb_work(struct work_struct *work)
536{
537 struct node *node = container_of(work, struct node, node_work);
538
539 /*
540 * We only get here when a node transitions to/from memoryless state.
541 * We can detect which transition occurred by examining whether the
542 * node has memory now. hugetlb_register_node() already check this
543 * so we try to register the attributes. If that fails, then the
544 * node has transitioned to memoryless, try to unregister the
545 * attributes.
546 */
547 if (!hugetlb_register_node(node))
548 hugetlb_unregister_node(node);
549}
550
551static void init_node_hugetlb_work(int nid)
552{
553 INIT_WORK(&node_devices[nid]->node_work, node_hugetlb_work);
554}
555
556static int node_memory_callback(struct notifier_block *self,
557 unsigned long action, void *arg)
558{
559 struct memory_notify *mnb = arg;
560 int nid = mnb->status_change_nid;
561
562 switch (action) {
563 case MEM_ONLINE:
564 case MEM_OFFLINE:
565 /*
566 * offload per node hstate [un]registration to a work thread
567 * when transitioning to/from memoryless state.
568 */
569 if (nid != NUMA_NO_NODE)
570 schedule_work(&node_devices[nid]->node_work);
571 break;
572
573 case MEM_GOING_ONLINE:
574 case MEM_GOING_OFFLINE:
575 case MEM_CANCEL_ONLINE:
576 case MEM_CANCEL_OFFLINE:
577 default:
578 break;
579 }
580
581 return NOTIFY_OK;
582}
583#endif /* CONFIG_HUGETLBFS */
584#endif /* CONFIG_MEMORY_HOTPLUG_SPARSE */
585
586#if !defined(CONFIG_MEMORY_HOTPLUG_SPARSE) || \
587 !defined(CONFIG_HUGETLBFS)
588static inline int node_memory_callback(struct notifier_block *self,
589 unsigned long action, void *arg)
590{
591 return NOTIFY_OK;
592}
593
594static void init_node_hugetlb_work(int nid) { }
595
596#endif
597
598int __register_one_node(int nid)
599{
600 int error;
601 int cpu;
602
603 node_devices[nid] = kzalloc(sizeof(struct node), GFP_KERNEL);
604 if (!node_devices[nid])
605 return -ENOMEM;
606
607 error = register_node(node_devices[nid], nid);
608
609 /* link cpu under this node */
610 for_each_present_cpu(cpu) {
611 if (cpu_to_node(cpu) == nid)
612 register_cpu_under_node(cpu, nid);
613 }
614
615 /* initialize work queue for memory hot plug */
616 init_node_hugetlb_work(nid);
617
618 return error;
619}
620
621void unregister_one_node(int nid)
622{
623 if (!node_devices[nid])
624 return;
625
626 unregister_node(node_devices[nid]);
627 node_devices[nid] = NULL;
628}
629
630/*
631 * node states attributes
632 */
633
634static ssize_t print_nodes_state(enum node_states state, char *buf)
635{
636 int n;
637
638 n = scnprintf(buf, PAGE_SIZE - 1, "%*pbl",
639 nodemask_pr_args(&node_states[state]));
640 buf[n++] = '\n';
641 buf[n] = '\0';
642 return n;
643}
644
645struct node_attr {
646 struct device_attribute attr;
647 enum node_states state;
648};
649
650static ssize_t show_node_state(struct device *dev,
651 struct device_attribute *attr, char *buf)
652{
653 struct node_attr *na = container_of(attr, struct node_attr, attr);
654 return print_nodes_state(na->state, buf);
655}
656
657#define _NODE_ATTR(name, state) \
658 { __ATTR(name, 0444, show_node_state, NULL), state }
659
660static struct node_attr node_state_attr[] = {
661 [N_POSSIBLE] = _NODE_ATTR(possible, N_POSSIBLE),
662 [N_ONLINE] = _NODE_ATTR(online, N_ONLINE),
663 [N_NORMAL_MEMORY] = _NODE_ATTR(has_normal_memory, N_NORMAL_MEMORY),
664#ifdef CONFIG_HIGHMEM
665 [N_HIGH_MEMORY] = _NODE_ATTR(has_high_memory, N_HIGH_MEMORY),
666#endif
667 [N_MEMORY] = _NODE_ATTR(has_memory, N_MEMORY),
668 [N_CPU] = _NODE_ATTR(has_cpu, N_CPU),
669};
670
671static struct attribute *node_state_attrs[] = {
672 &node_state_attr[N_POSSIBLE].attr.attr,
673 &node_state_attr[N_ONLINE].attr.attr,
674 &node_state_attr[N_NORMAL_MEMORY].attr.attr,
675#ifdef CONFIG_HIGHMEM
676 &node_state_attr[N_HIGH_MEMORY].attr.attr,
677#endif
678 &node_state_attr[N_MEMORY].attr.attr,
679 &node_state_attr[N_CPU].attr.attr,
680 NULL
681};
682
683static struct attribute_group memory_root_attr_group = {
684 .attrs = node_state_attrs,
685};
686
687static const struct attribute_group *cpu_root_attr_groups[] = {
688 &memory_root_attr_group,
689 NULL,
690};
691
692#define NODE_CALLBACK_PRI 2 /* lower than SLAB */
693static int __init register_node_type(void)
694{
695 int ret;
696
697 BUILD_BUG_ON(ARRAY_SIZE(node_state_attr) != NR_NODE_STATES);
698 BUILD_BUG_ON(ARRAY_SIZE(node_state_attrs)-1 != NR_NODE_STATES);
699
700 ret = subsys_system_register(&node_subsys, cpu_root_attr_groups);
701 if (!ret) {
702 static struct notifier_block node_memory_callback_nb = {
703 .notifier_call = node_memory_callback,
704 .priority = NODE_CALLBACK_PRI,
705 };
706 register_hotmemory_notifier(&node_memory_callback_nb);
707 }
708
709 /*
710 * Note: we're not going to unregister the node class if we fail
711 * to register the node state class attribute files.
712 */
713 return ret;
714}
715postcore_initcall(register_node_type);