Linux Audio

Check our new training course

Loading...
v5.9
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/* XTS: as defined in IEEE1619/D16
  3 *	http://grouper.ieee.org/groups/1619/email/pdf00086.pdf
 
 
  4 *
  5 * Copyright (c) 2007 Rik Snel <rsnel@cube.dyndns.org>
  6 *
  7 * Based on ecb.c
  8 * Copyright (c) 2006 Herbert Xu <herbert@gondor.apana.org.au>
 
 
 
 
 
  9 */
 10#include <crypto/internal/skcipher.h>
 11#include <crypto/scatterwalk.h>
 12#include <linux/err.h>
 13#include <linux/init.h>
 14#include <linux/kernel.h>
 15#include <linux/module.h>
 16#include <linux/scatterlist.h>
 17#include <linux/slab.h>
 18
 19#include <crypto/xts.h>
 20#include <crypto/b128ops.h>
 21#include <crypto/gf128mul.h>
 22
 23struct xts_tfm_ctx {
 
 
 24	struct crypto_skcipher *child;
 25	struct crypto_cipher *tweak;
 26};
 27
 28struct xts_instance_ctx {
 29	struct crypto_skcipher_spawn spawn;
 30	char name[CRYPTO_MAX_ALG_NAME];
 31};
 32
 33struct xts_request_ctx {
 
 
 34	le128 t;
 35	struct scatterlist *tail;
 36	struct scatterlist sg[2];
 
 
 
 
 
 
 
 
 37	struct skcipher_request subreq;
 38};
 39
 40static int xts_setkey(struct crypto_skcipher *parent, const u8 *key,
 41		      unsigned int keylen)
 42{
 43	struct xts_tfm_ctx *ctx = crypto_skcipher_ctx(parent);
 44	struct crypto_skcipher *child;
 45	struct crypto_cipher *tweak;
 46	int err;
 47
 48	err = xts_verify_key(parent, key, keylen);
 49	if (err)
 50		return err;
 51
 52	keylen /= 2;
 53
 54	/* we need two cipher instances: one to compute the initial 'tweak'
 55	 * by encrypting the IV (usually the 'plain' iv) and the other
 56	 * one to encrypt and decrypt the data */
 57
 58	/* tweak cipher, uses Key2 i.e. the second half of *key */
 59	tweak = ctx->tweak;
 60	crypto_cipher_clear_flags(tweak, CRYPTO_TFM_REQ_MASK);
 61	crypto_cipher_set_flags(tweak, crypto_skcipher_get_flags(parent) &
 62				       CRYPTO_TFM_REQ_MASK);
 63	err = crypto_cipher_setkey(tweak, key + keylen, keylen);
 
 
 64	if (err)
 65		return err;
 66
 67	/* data cipher, uses Key1 i.e. the first half of *key */
 68	child = ctx->child;
 69	crypto_skcipher_clear_flags(child, CRYPTO_TFM_REQ_MASK);
 70	crypto_skcipher_set_flags(child, crypto_skcipher_get_flags(parent) &
 71					 CRYPTO_TFM_REQ_MASK);
 72	return crypto_skcipher_setkey(child, key, keylen);
 
 
 
 
 73}
 74
 75/*
 76 * We compute the tweak masks twice (both before and after the ECB encryption or
 77 * decryption) to avoid having to allocate a temporary buffer and/or make
 78 * mutliple calls to the 'ecb(..)' instance, which usually would be slower than
 79 * just doing the gf128mul_x_ble() calls again.
 80 */
 81static int xts_xor_tweak(struct skcipher_request *req, bool second_pass,
 82			 bool enc)
 83{
 84	struct xts_request_ctx *rctx = skcipher_request_ctx(req);
 85	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
 86	const bool cts = (req->cryptlen % XTS_BLOCK_SIZE);
 87	const int bs = XTS_BLOCK_SIZE;
 88	struct skcipher_walk w;
 89	le128 t = rctx->t;
 
 90	int err;
 91
 92	if (second_pass) {
 93		req = &rctx->subreq;
 94		/* set to our TFM to enforce correct alignment: */
 95		skcipher_request_set_tfm(req, tfm);
 96	}
 97	err = skcipher_walk_virt(&w, req, false);
 98
 99	while (w.nbytes) {
100		unsigned int avail = w.nbytes;
101		le128 *wsrc;
102		le128 *wdst;
103
104		wsrc = w.src.virt.addr;
105		wdst = w.dst.virt.addr;
106
107		do {
108			if (unlikely(cts) &&
109			    w.total - w.nbytes + avail < 2 * XTS_BLOCK_SIZE) {
110				if (!enc) {
111					if (second_pass)
112						rctx->t = t;
113					gf128mul_x_ble(&t, &t);
114				}
115				le128_xor(wdst, &t, wsrc);
116				if (enc && second_pass)
117					gf128mul_x_ble(&rctx->t, &t);
118				skcipher_walk_done(&w, avail - bs);
119				return 0;
120			}
121
122			le128_xor(wdst++, &t, wsrc++);
123			gf128mul_x_ble(&t, &t);
124		} while ((avail -= bs) >= bs);
125
126		err = skcipher_walk_done(&w, avail);
127	}
128
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
129	return err;
130}
131
132static int xts_xor_tweak_pre(struct skcipher_request *req, bool enc)
133{
134	return xts_xor_tweak(req, false, enc);
135}
 
 
 
 
 
 
 
 
136
137static int xts_xor_tweak_post(struct skcipher_request *req, bool enc)
138{
139	return xts_xor_tweak(req, true, enc);
140}
141
142static void xts_cts_done(struct crypto_async_request *areq, int err)
143{
144	struct skcipher_request *req = areq->data;
145	le128 b;
146
147	if (!err) {
148		struct xts_request_ctx *rctx = skcipher_request_ctx(req);
149
150		scatterwalk_map_and_copy(&b, rctx->tail, 0, XTS_BLOCK_SIZE, 0);
151		le128_xor(&b, &rctx->t, &b);
152		scatterwalk_map_and_copy(&b, rctx->tail, 0, XTS_BLOCK_SIZE, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
153	}
154
155	skcipher_request_complete(req, err);
156}
157
158static int xts_cts_final(struct skcipher_request *req,
159			 int (*crypt)(struct skcipher_request *req))
160{
161	const struct xts_tfm_ctx *ctx =
162		crypto_skcipher_ctx(crypto_skcipher_reqtfm(req));
163	int offset = req->cryptlen & ~(XTS_BLOCK_SIZE - 1);
164	struct xts_request_ctx *rctx = skcipher_request_ctx(req);
165	struct skcipher_request *subreq = &rctx->subreq;
166	int tail = req->cryptlen % XTS_BLOCK_SIZE;
167	le128 b[2];
168	int err;
169
170	rctx->tail = scatterwalk_ffwd(rctx->sg, req->dst,
171				      offset - XTS_BLOCK_SIZE);
172
173	scatterwalk_map_and_copy(b, rctx->tail, 0, XTS_BLOCK_SIZE, 0);
174	b[1] = b[0];
175	scatterwalk_map_and_copy(b, req->src, offset, tail, 0);
 
 
 
 
 
 
 
 
176
177	le128_xor(b, &rctx->t, b);
 
 
178
179	scatterwalk_map_and_copy(b, rctx->tail, 0, XTS_BLOCK_SIZE + tail, 1);
 
 
 
 
 
180
 
181	skcipher_request_set_tfm(subreq, ctx->child);
182	skcipher_request_set_callback(subreq, req->base.flags, xts_cts_done,
183				      req);
184	skcipher_request_set_crypt(subreq, rctx->tail, rctx->tail,
185				   XTS_BLOCK_SIZE, NULL);
186
187	err = crypt(subreq);
188	if (err)
189		return err;
 
 
 
 
 
 
 
 
 
190
191	scatterwalk_map_and_copy(b, rctx->tail, 0, XTS_BLOCK_SIZE, 0);
192	le128_xor(b, &rctx->t, b);
193	scatterwalk_map_and_copy(b, rctx->tail, 0, XTS_BLOCK_SIZE, 1);
 
 
 
194
195	return 0;
196}
197
198static void xts_encrypt_done(struct crypto_async_request *areq, int err)
199{
200	struct skcipher_request *req = areq->data;
201
202	if (!err) {
203		struct xts_request_ctx *rctx = skcipher_request_ctx(req);
204
205		rctx->subreq.base.flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
206		err = xts_xor_tweak_post(req, true);
 
207
208		if (!err && unlikely(req->cryptlen % XTS_BLOCK_SIZE)) {
209			err = xts_cts_final(req, crypto_skcipher_encrypt);
210			if (err == -EINPROGRESS)
211				return;
212		}
 
 
 
 
 
 
 
 
 
213	}
214
215	skcipher_request_complete(req, err);
 
216}
217
218static void xts_decrypt_done(struct crypto_async_request *areq, int err)
219{
220	struct skcipher_request *req = areq->data;
 
 
221
222	if (!err) {
223		struct xts_request_ctx *rctx = skcipher_request_ctx(req);
224
225		rctx->subreq.base.flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
226		err = xts_xor_tweak_post(req, false);
227
228		if (!err && unlikely(req->cryptlen % XTS_BLOCK_SIZE)) {
229			err = xts_cts_final(req, crypto_skcipher_decrypt);
230			if (err == -EINPROGRESS)
231				return;
232		}
233	}
234
 
 
 
 
 
 
 
 
235	skcipher_request_complete(req, err);
236}
237
238static int xts_init_crypt(struct skcipher_request *req,
239			  crypto_completion_t compl)
240{
241	const struct xts_tfm_ctx *ctx =
242		crypto_skcipher_ctx(crypto_skcipher_reqtfm(req));
243	struct xts_request_ctx *rctx = skcipher_request_ctx(req);
244	struct skcipher_request *subreq = &rctx->subreq;
245
246	if (req->cryptlen < XTS_BLOCK_SIZE)
247		return -EINVAL;
 
 
248
249	skcipher_request_set_tfm(subreq, ctx->child);
250	skcipher_request_set_callback(subreq, req->base.flags, compl, req);
251	skcipher_request_set_crypt(subreq, req->dst, req->dst,
252				   req->cryptlen & ~(XTS_BLOCK_SIZE - 1), NULL);
253
254	/* calculate first value of T */
255	crypto_cipher_encrypt_one(ctx->tweak, (u8 *)&rctx->t, req->iv);
 
 
256
257	return 0;
 
 
 
 
 
258}
259
260static int xts_encrypt(struct skcipher_request *req)
261{
262	struct xts_request_ctx *rctx = skcipher_request_ctx(req);
263	struct skcipher_request *subreq = &rctx->subreq;
264	int err;
265
266	err = xts_init_crypt(req, xts_encrypt_done) ?:
267	      xts_xor_tweak_pre(req, true) ?:
268	      crypto_skcipher_encrypt(subreq) ?:
269	      xts_xor_tweak_post(req, true);
270
271	if (err || likely((req->cryptlen % XTS_BLOCK_SIZE) == 0))
272		return err;
273
274	return xts_cts_final(req, crypto_skcipher_encrypt);
275}
276
277static int xts_decrypt(struct skcipher_request *req)
278{
279	struct xts_request_ctx *rctx = skcipher_request_ctx(req);
280	struct skcipher_request *subreq = &rctx->subreq;
281	int err;
282
283	err = xts_init_crypt(req, xts_decrypt_done) ?:
284	      xts_xor_tweak_pre(req, false) ?:
285	      crypto_skcipher_decrypt(subreq) ?:
286	      xts_xor_tweak_post(req, false);
287
288	if (err || likely((req->cryptlen % XTS_BLOCK_SIZE) == 0))
289		return err;
 
290
291	return xts_cts_final(req, crypto_skcipher_decrypt);
 
 
292}
293
294static int xts_init_tfm(struct crypto_skcipher *tfm)
295{
296	struct skcipher_instance *inst = skcipher_alg_instance(tfm);
297	struct xts_instance_ctx *ictx = skcipher_instance_ctx(inst);
298	struct xts_tfm_ctx *ctx = crypto_skcipher_ctx(tfm);
299	struct crypto_skcipher *child;
300	struct crypto_cipher *tweak;
301
302	child = crypto_spawn_skcipher(&ictx->spawn);
303	if (IS_ERR(child))
304		return PTR_ERR(child);
305
306	ctx->child = child;
307
308	tweak = crypto_alloc_cipher(ictx->name, 0, 0);
309	if (IS_ERR(tweak)) {
310		crypto_free_skcipher(ctx->child);
311		return PTR_ERR(tweak);
312	}
313
314	ctx->tweak = tweak;
315
316	crypto_skcipher_set_reqsize(tfm, crypto_skcipher_reqsize(child) +
317					 sizeof(struct xts_request_ctx));
318
319	return 0;
320}
321
322static void xts_exit_tfm(struct crypto_skcipher *tfm)
323{
324	struct xts_tfm_ctx *ctx = crypto_skcipher_ctx(tfm);
325
326	crypto_free_skcipher(ctx->child);
327	crypto_free_cipher(ctx->tweak);
328}
329
330static void xts_free_instance(struct skcipher_instance *inst)
331{
332	struct xts_instance_ctx *ictx = skcipher_instance_ctx(inst);
333
334	crypto_drop_skcipher(&ictx->spawn);
335	kfree(inst);
336}
337
338static int xts_create(struct crypto_template *tmpl, struct rtattr **tb)
339{
340	struct skcipher_instance *inst;
 
341	struct xts_instance_ctx *ctx;
342	struct skcipher_alg *alg;
343	const char *cipher_name;
344	u32 mask;
345	int err;
346
347	err = crypto_check_attr_type(tb, CRYPTO_ALG_TYPE_SKCIPHER, &mask);
348	if (err)
349		return err;
 
 
 
350
351	cipher_name = crypto_attr_alg_name(tb[1]);
352	if (IS_ERR(cipher_name))
353		return PTR_ERR(cipher_name);
354
355	inst = kzalloc(sizeof(*inst) + sizeof(*ctx), GFP_KERNEL);
356	if (!inst)
357		return -ENOMEM;
358
359	ctx = skcipher_instance_ctx(inst);
360
361	err = crypto_grab_skcipher(&ctx->spawn, skcipher_crypto_instance(inst),
362				   cipher_name, 0, mask);
 
 
 
 
 
363	if (err == -ENOENT) {
364		err = -ENAMETOOLONG;
365		if (snprintf(ctx->name, CRYPTO_MAX_ALG_NAME, "ecb(%s)",
366			     cipher_name) >= CRYPTO_MAX_ALG_NAME)
367			goto err_free_inst;
368
369		err = crypto_grab_skcipher(&ctx->spawn,
370					   skcipher_crypto_instance(inst),
371					   ctx->name, 0, mask);
372	}
373
374	if (err)
375		goto err_free_inst;
376
377	alg = crypto_skcipher_spawn_alg(&ctx->spawn);
378
379	err = -EINVAL;
380	if (alg->base.cra_blocksize != XTS_BLOCK_SIZE)
381		goto err_free_inst;
382
383	if (crypto_skcipher_alg_ivsize(alg))
384		goto err_free_inst;
385
386	err = crypto_inst_setname(skcipher_crypto_instance(inst), "xts",
387				  &alg->base);
388	if (err)
389		goto err_free_inst;
390
391	err = -EINVAL;
392	cipher_name = alg->base.cra_name;
393
394	/* Alas we screwed up the naming so we have to mangle the
395	 * cipher name.
396	 */
397	if (!strncmp(cipher_name, "ecb(", 4)) {
398		unsigned len;
399
400		len = strlcpy(ctx->name, cipher_name + 4, sizeof(ctx->name));
401		if (len < 2 || len >= sizeof(ctx->name))
402			goto err_free_inst;
403
404		if (ctx->name[len - 1] != ')')
405			goto err_free_inst;
406
407		ctx->name[len - 1] = 0;
408
409		if (snprintf(inst->alg.base.cra_name, CRYPTO_MAX_ALG_NAME,
410			     "xts(%s)", ctx->name) >= CRYPTO_MAX_ALG_NAME) {
411			err = -ENAMETOOLONG;
412			goto err_free_inst;
413		}
414	} else
415		goto err_free_inst;
416
 
417	inst->alg.base.cra_priority = alg->base.cra_priority;
418	inst->alg.base.cra_blocksize = XTS_BLOCK_SIZE;
419	inst->alg.base.cra_alignmask = alg->base.cra_alignmask |
420				       (__alignof__(u64) - 1);
421
422	inst->alg.ivsize = XTS_BLOCK_SIZE;
423	inst->alg.min_keysize = crypto_skcipher_alg_min_keysize(alg) * 2;
424	inst->alg.max_keysize = crypto_skcipher_alg_max_keysize(alg) * 2;
425
426	inst->alg.base.cra_ctxsize = sizeof(struct xts_tfm_ctx);
427
428	inst->alg.init = xts_init_tfm;
429	inst->alg.exit = xts_exit_tfm;
430
431	inst->alg.setkey = xts_setkey;
432	inst->alg.encrypt = xts_encrypt;
433	inst->alg.decrypt = xts_decrypt;
434
435	inst->free = xts_free_instance;
436
437	err = skcipher_register_instance(tmpl, inst);
438	if (err) {
439err_free_inst:
440		xts_free_instance(inst);
441	}
442	return err;
 
 
 
 
 
 
443}
444
445static struct crypto_template xts_tmpl = {
446	.name = "xts",
447	.create = xts_create,
448	.module = THIS_MODULE,
449};
450
451static int __init xts_module_init(void)
452{
453	return crypto_register_template(&xts_tmpl);
454}
455
456static void __exit xts_module_exit(void)
457{
458	crypto_unregister_template(&xts_tmpl);
459}
460
461subsys_initcall(xts_module_init);
462module_exit(xts_module_exit);
463
464MODULE_LICENSE("GPL");
465MODULE_DESCRIPTION("XTS block cipher mode");
466MODULE_ALIAS_CRYPTO("xts");
v4.17
 
  1/* XTS: as defined in IEEE1619/D16
  2 *	http://grouper.ieee.org/groups/1619/email/pdf00086.pdf
  3 *	(sector sizes which are not a multiple of 16 bytes are,
  4 *	however currently unsupported)
  5 *
  6 * Copyright (c) 2007 Rik Snel <rsnel@cube.dyndns.org>
  7 *
  8 * Based on ecb.c
  9 * Copyright (c) 2006 Herbert Xu <herbert@gondor.apana.org.au>
 10 *
 11 * This program is free software; you can redistribute it and/or modify it
 12 * under the terms of the GNU General Public License as published by the Free
 13 * Software Foundation; either version 2 of the License, or (at your option)
 14 * any later version.
 15 */
 16#include <crypto/internal/skcipher.h>
 17#include <crypto/scatterwalk.h>
 18#include <linux/err.h>
 19#include <linux/init.h>
 20#include <linux/kernel.h>
 21#include <linux/module.h>
 22#include <linux/scatterlist.h>
 23#include <linux/slab.h>
 24
 25#include <crypto/xts.h>
 26#include <crypto/b128ops.h>
 27#include <crypto/gf128mul.h>
 28
 29#define XTS_BUFFER_SIZE 128u
 30
 31struct priv {
 32	struct crypto_skcipher *child;
 33	struct crypto_cipher *tweak;
 34};
 35
 36struct xts_instance_ctx {
 37	struct crypto_skcipher_spawn spawn;
 38	char name[CRYPTO_MAX_ALG_NAME];
 39};
 40
 41struct rctx {
 42	le128 buf[XTS_BUFFER_SIZE / sizeof(le128)];
 43
 44	le128 t;
 45
 46	le128 *ext;
 47
 48	struct scatterlist srcbuf[2];
 49	struct scatterlist dstbuf[2];
 50	struct scatterlist *src;
 51	struct scatterlist *dst;
 52
 53	unsigned int left;
 54
 55	struct skcipher_request subreq;
 56};
 57
 58static int setkey(struct crypto_skcipher *parent, const u8 *key,
 59		  unsigned int keylen)
 60{
 61	struct priv *ctx = crypto_skcipher_ctx(parent);
 62	struct crypto_skcipher *child;
 63	struct crypto_cipher *tweak;
 64	int err;
 65
 66	err = xts_verify_key(parent, key, keylen);
 67	if (err)
 68		return err;
 69
 70	keylen /= 2;
 71
 72	/* we need two cipher instances: one to compute the initial 'tweak'
 73	 * by encrypting the IV (usually the 'plain' iv) and the other
 74	 * one to encrypt and decrypt the data */
 75
 76	/* tweak cipher, uses Key2 i.e. the second half of *key */
 77	tweak = ctx->tweak;
 78	crypto_cipher_clear_flags(tweak, CRYPTO_TFM_REQ_MASK);
 79	crypto_cipher_set_flags(tweak, crypto_skcipher_get_flags(parent) &
 80				       CRYPTO_TFM_REQ_MASK);
 81	err = crypto_cipher_setkey(tweak, key + keylen, keylen);
 82	crypto_skcipher_set_flags(parent, crypto_cipher_get_flags(tweak) &
 83					  CRYPTO_TFM_RES_MASK);
 84	if (err)
 85		return err;
 86
 87	/* data cipher, uses Key1 i.e. the first half of *key */
 88	child = ctx->child;
 89	crypto_skcipher_clear_flags(child, CRYPTO_TFM_REQ_MASK);
 90	crypto_skcipher_set_flags(child, crypto_skcipher_get_flags(parent) &
 91					 CRYPTO_TFM_REQ_MASK);
 92	err = crypto_skcipher_setkey(child, key, keylen);
 93	crypto_skcipher_set_flags(parent, crypto_skcipher_get_flags(child) &
 94					  CRYPTO_TFM_RES_MASK);
 95
 96	return err;
 97}
 98
 99static int post_crypt(struct skcipher_request *req)
 
 
 
 
 
 
 
100{
101	struct rctx *rctx = skcipher_request_ctx(req);
102	le128 *buf = rctx->ext ?: rctx->buf;
103	struct skcipher_request *subreq;
104	const int bs = XTS_BLOCK_SIZE;
105	struct skcipher_walk w;
106	struct scatterlist *sg;
107	unsigned offset;
108	int err;
109
110	subreq = &rctx->subreq;
111	err = skcipher_walk_virt(&w, subreq, false);
 
 
 
 
112
113	while (w.nbytes) {
114		unsigned int avail = w.nbytes;
 
115		le128 *wdst;
116
 
117		wdst = w.dst.virt.addr;
118
119		do {
120			le128_xor(wdst, buf++, wdst);
121			wdst++;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
122		} while ((avail -= bs) >= bs);
123
124		err = skcipher_walk_done(&w, avail);
125	}
126
127	rctx->left -= subreq->cryptlen;
128
129	if (err || !rctx->left)
130		goto out;
131
132	rctx->dst = rctx->dstbuf;
133
134	scatterwalk_done(&w.out, 0, 1);
135	sg = w.out.sg;
136	offset = w.out.offset;
137
138	if (rctx->dst != sg) {
139		rctx->dst[0] = *sg;
140		sg_unmark_end(rctx->dst);
141		scatterwalk_crypto_chain(rctx->dst, sg_next(sg), 0, 2);
142	}
143	rctx->dst[0].length -= offset - sg->offset;
144	rctx->dst[0].offset = offset;
145
146out:
147	return err;
148}
149
150static int pre_crypt(struct skcipher_request *req)
151{
152	struct rctx *rctx = skcipher_request_ctx(req);
153	le128 *buf = rctx->ext ?: rctx->buf;
154	struct skcipher_request *subreq;
155	const int bs = XTS_BLOCK_SIZE;
156	struct skcipher_walk w;
157	struct scatterlist *sg;
158	unsigned cryptlen;
159	unsigned offset;
160	bool more;
161	int err;
162
163	subreq = &rctx->subreq;
164	cryptlen = subreq->cryptlen;
 
 
165
166	more = rctx->left > cryptlen;
167	if (!more)
168		cryptlen = rctx->left;
 
169
170	skcipher_request_set_crypt(subreq, rctx->src, rctx->dst,
171				   cryptlen, NULL);
172
173	err = skcipher_walk_virt(&w, subreq, false);
174
175	while (w.nbytes) {
176		unsigned int avail = w.nbytes;
177		le128 *wsrc;
178		le128 *wdst;
179
180		wsrc = w.src.virt.addr;
181		wdst = w.dst.virt.addr;
182
183		do {
184			*buf++ = rctx->t;
185			le128_xor(wdst++, &rctx->t, wsrc++);
186			gf128mul_x_ble(&rctx->t, &rctx->t);
187		} while ((avail -= bs) >= bs);
188
189		err = skcipher_walk_done(&w, avail);
190	}
191
192	skcipher_request_set_crypt(subreq, rctx->dst, rctx->dst,
193				   cryptlen, NULL);
194
195	if (err || !more)
196		goto out;
 
 
 
 
 
 
 
 
 
197
198	rctx->src = rctx->srcbuf;
 
199
200	scatterwalk_done(&w.in, 0, 1);
201	sg = w.in.sg;
202	offset = w.in.offset;
203
204	if (rctx->src != sg) {
205		rctx->src[0] = *sg;
206		sg_unmark_end(rctx->src);
207		scatterwalk_crypto_chain(rctx->src, sg_next(sg), 0, 2);
208	}
209	rctx->src[0].length -= offset - sg->offset;
210	rctx->src[0].offset = offset;
211
212out:
213	return err;
214}
215
216static int init_crypt(struct skcipher_request *req, crypto_completion_t done)
217{
218	struct priv *ctx = crypto_skcipher_ctx(crypto_skcipher_reqtfm(req));
219	struct rctx *rctx = skcipher_request_ctx(req);
220	struct skcipher_request *subreq;
221	gfp_t gfp;
222
223	subreq = &rctx->subreq;
224	skcipher_request_set_tfm(subreq, ctx->child);
225	skcipher_request_set_callback(subreq, req->base.flags, done, req);
 
 
 
226
227	gfp = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ? GFP_KERNEL :
228							   GFP_ATOMIC;
229	rctx->ext = NULL;
230
231	subreq->cryptlen = XTS_BUFFER_SIZE;
232	if (req->cryptlen > XTS_BUFFER_SIZE) {
233		unsigned int n = min(req->cryptlen, (unsigned int)PAGE_SIZE);
234
235		rctx->ext = kmalloc(n, gfp);
236		if (rctx->ext)
237			subreq->cryptlen = n;
238	}
239
240	rctx->src = req->src;
241	rctx->dst = req->dst;
242	rctx->left = req->cryptlen;
243
244	/* calculate first value of T */
245	crypto_cipher_encrypt_one(ctx->tweak, (u8 *)&rctx->t, req->iv);
246
247	return 0;
248}
249
250static void exit_crypt(struct skcipher_request *req)
251{
252	struct rctx *rctx = skcipher_request_ctx(req);
253
254	rctx->left = 0;
 
255
256	if (rctx->ext)
257		kzfree(rctx->ext);
258}
259
260static int do_encrypt(struct skcipher_request *req, int err)
261{
262	struct rctx *rctx = skcipher_request_ctx(req);
263	struct skcipher_request *subreq;
264
265	subreq = &rctx->subreq;
266
267	while (!err && rctx->left) {
268		err = pre_crypt(req) ?:
269		      crypto_skcipher_encrypt(subreq) ?:
270		      post_crypt(req);
271
272		if (err == -EINPROGRESS || err == -EBUSY)
273			return err;
274	}
275
276	exit_crypt(req);
277	return err;
278}
279
280static void encrypt_done(struct crypto_async_request *areq, int err)
281{
282	struct skcipher_request *req = areq->data;
283	struct skcipher_request *subreq;
284	struct rctx *rctx;
285
286	rctx = skcipher_request_ctx(req);
 
 
 
 
287
288	if (err == -EINPROGRESS) {
289		if (rctx->left != req->cryptlen)
290			return;
291		goto out;
 
292	}
293
294	subreq = &rctx->subreq;
295	subreq->base.flags &= CRYPTO_TFM_REQ_MAY_BACKLOG;
296
297	err = do_encrypt(req, err ?: post_crypt(req));
298	if (rctx->left)
299		return;
300
301out:
302	skcipher_request_complete(req, err);
303}
304
305static int encrypt(struct skcipher_request *req)
 
306{
307	return do_encrypt(req, init_crypt(req, encrypt_done));
308}
 
 
309
310static int do_decrypt(struct skcipher_request *req, int err)
311{
312	struct rctx *rctx = skcipher_request_ctx(req);
313	struct skcipher_request *subreq;
314
315	subreq = &rctx->subreq;
 
 
 
316
317	while (!err && rctx->left) {
318		err = pre_crypt(req) ?:
319		      crypto_skcipher_decrypt(subreq) ?:
320		      post_crypt(req);
321
322		if (err == -EINPROGRESS || err == -EBUSY)
323			return err;
324	}
325
326	exit_crypt(req);
327	return err;
328}
329
330static void decrypt_done(struct crypto_async_request *areq, int err)
331{
332	struct skcipher_request *req = areq->data;
333	struct skcipher_request *subreq;
334	struct rctx *rctx;
335
336	rctx = skcipher_request_ctx(req);
 
 
 
337
338	if (err == -EINPROGRESS) {
339		if (rctx->left != req->cryptlen)
340			return;
341		goto out;
342	}
343
344	subreq = &rctx->subreq;
345	subreq->base.flags &= CRYPTO_TFM_REQ_MAY_BACKLOG;
 
 
 
346
347	err = do_decrypt(req, err ?: post_crypt(req));
348	if (rctx->left)
349		return;
 
350
351out:
352	skcipher_request_complete(req, err);
353}
354
355static int decrypt(struct skcipher_request *req)
356{
357	return do_decrypt(req, init_crypt(req, decrypt_done));
358}
359
360static int init_tfm(struct crypto_skcipher *tfm)
361{
362	struct skcipher_instance *inst = skcipher_alg_instance(tfm);
363	struct xts_instance_ctx *ictx = skcipher_instance_ctx(inst);
364	struct priv *ctx = crypto_skcipher_ctx(tfm);
365	struct crypto_skcipher *child;
366	struct crypto_cipher *tweak;
367
368	child = crypto_spawn_skcipher(&ictx->spawn);
369	if (IS_ERR(child))
370		return PTR_ERR(child);
371
372	ctx->child = child;
373
374	tweak = crypto_alloc_cipher(ictx->name, 0, 0);
375	if (IS_ERR(tweak)) {
376		crypto_free_skcipher(ctx->child);
377		return PTR_ERR(tweak);
378	}
379
380	ctx->tweak = tweak;
381
382	crypto_skcipher_set_reqsize(tfm, crypto_skcipher_reqsize(child) +
383					 sizeof(struct rctx));
384
385	return 0;
386}
387
388static void exit_tfm(struct crypto_skcipher *tfm)
389{
390	struct priv *ctx = crypto_skcipher_ctx(tfm);
391
392	crypto_free_skcipher(ctx->child);
393	crypto_free_cipher(ctx->tweak);
394}
395
396static void free(struct skcipher_instance *inst)
397{
398	crypto_drop_skcipher(skcipher_instance_ctx(inst));
 
 
399	kfree(inst);
400}
401
402static int create(struct crypto_template *tmpl, struct rtattr **tb)
403{
404	struct skcipher_instance *inst;
405	struct crypto_attr_type *algt;
406	struct xts_instance_ctx *ctx;
407	struct skcipher_alg *alg;
408	const char *cipher_name;
409	u32 mask;
410	int err;
411
412	algt = crypto_get_attr_type(tb);
413	if (IS_ERR(algt))
414		return PTR_ERR(algt);
415
416	if ((algt->type ^ CRYPTO_ALG_TYPE_SKCIPHER) & algt->mask)
417		return -EINVAL;
418
419	cipher_name = crypto_attr_alg_name(tb[1]);
420	if (IS_ERR(cipher_name))
421		return PTR_ERR(cipher_name);
422
423	inst = kzalloc(sizeof(*inst) + sizeof(*ctx), GFP_KERNEL);
424	if (!inst)
425		return -ENOMEM;
426
427	ctx = skcipher_instance_ctx(inst);
428
429	crypto_set_skcipher_spawn(&ctx->spawn, skcipher_crypto_instance(inst));
430
431	mask = crypto_requires_off(algt->type, algt->mask,
432				   CRYPTO_ALG_NEED_FALLBACK |
433				   CRYPTO_ALG_ASYNC);
434
435	err = crypto_grab_skcipher(&ctx->spawn, cipher_name, 0, mask);
436	if (err == -ENOENT) {
437		err = -ENAMETOOLONG;
438		if (snprintf(ctx->name, CRYPTO_MAX_ALG_NAME, "ecb(%s)",
439			     cipher_name) >= CRYPTO_MAX_ALG_NAME)
440			goto err_free_inst;
441
442		err = crypto_grab_skcipher(&ctx->spawn, ctx->name, 0, mask);
 
 
443	}
444
445	if (err)
446		goto err_free_inst;
447
448	alg = crypto_skcipher_spawn_alg(&ctx->spawn);
449
450	err = -EINVAL;
451	if (alg->base.cra_blocksize != XTS_BLOCK_SIZE)
452		goto err_drop_spawn;
453
454	if (crypto_skcipher_alg_ivsize(alg))
455		goto err_drop_spawn;
456
457	err = crypto_inst_setname(skcipher_crypto_instance(inst), "xts",
458				  &alg->base);
459	if (err)
460		goto err_drop_spawn;
461
462	err = -EINVAL;
463	cipher_name = alg->base.cra_name;
464
465	/* Alas we screwed up the naming so we have to mangle the
466	 * cipher name.
467	 */
468	if (!strncmp(cipher_name, "ecb(", 4)) {
469		unsigned len;
470
471		len = strlcpy(ctx->name, cipher_name + 4, sizeof(ctx->name));
472		if (len < 2 || len >= sizeof(ctx->name))
473			goto err_drop_spawn;
474
475		if (ctx->name[len - 1] != ')')
476			goto err_drop_spawn;
477
478		ctx->name[len - 1] = 0;
479
480		if (snprintf(inst->alg.base.cra_name, CRYPTO_MAX_ALG_NAME,
481			     "xts(%s)", ctx->name) >= CRYPTO_MAX_ALG_NAME) {
482			err = -ENAMETOOLONG;
483			goto err_drop_spawn;
484		}
485	} else
486		goto err_drop_spawn;
487
488	inst->alg.base.cra_flags = alg->base.cra_flags & CRYPTO_ALG_ASYNC;
489	inst->alg.base.cra_priority = alg->base.cra_priority;
490	inst->alg.base.cra_blocksize = XTS_BLOCK_SIZE;
491	inst->alg.base.cra_alignmask = alg->base.cra_alignmask |
492				       (__alignof__(u64) - 1);
493
494	inst->alg.ivsize = XTS_BLOCK_SIZE;
495	inst->alg.min_keysize = crypto_skcipher_alg_min_keysize(alg) * 2;
496	inst->alg.max_keysize = crypto_skcipher_alg_max_keysize(alg) * 2;
497
498	inst->alg.base.cra_ctxsize = sizeof(struct priv);
499
500	inst->alg.init = init_tfm;
501	inst->alg.exit = exit_tfm;
502
503	inst->alg.setkey = setkey;
504	inst->alg.encrypt = encrypt;
505	inst->alg.decrypt = decrypt;
506
507	inst->free = free;
508
509	err = skcipher_register_instance(tmpl, inst);
510	if (err)
511		goto err_drop_spawn;
512
513out:
514	return err;
515
516err_drop_spawn:
517	crypto_drop_skcipher(&ctx->spawn);
518err_free_inst:
519	kfree(inst);
520	goto out;
521}
522
523static struct crypto_template crypto_tmpl = {
524	.name = "xts",
525	.create = create,
526	.module = THIS_MODULE,
527};
528
529static int __init crypto_module_init(void)
530{
531	return crypto_register_template(&crypto_tmpl);
532}
533
534static void __exit crypto_module_exit(void)
535{
536	crypto_unregister_template(&crypto_tmpl);
537}
538
539module_init(crypto_module_init);
540module_exit(crypto_module_exit);
541
542MODULE_LICENSE("GPL");
543MODULE_DESCRIPTION("XTS block cipher mode");
544MODULE_ALIAS_CRYPTO("xts");