Linux Audio

Check our new training course

Loading...
v5.9
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * SMP boot-related support
  4 *
  5 * Copyright (C) 1998-2003, 2005 Hewlett-Packard Co
  6 *	David Mosberger-Tang <davidm@hpl.hp.com>
  7 * Copyright (C) 2001, 2004-2005 Intel Corp
  8 * 	Rohit Seth <rohit.seth@intel.com>
  9 * 	Suresh Siddha <suresh.b.siddha@intel.com>
 10 * 	Gordon Jin <gordon.jin@intel.com>
 11 *	Ashok Raj  <ashok.raj@intel.com>
 12 *
 13 * 01/05/16 Rohit Seth <rohit.seth@intel.com>	Moved SMP booting functions from smp.c to here.
 14 * 01/04/27 David Mosberger <davidm@hpl.hp.com>	Added ITC synching code.
 15 * 02/07/31 David Mosberger <davidm@hpl.hp.com>	Switch over to hotplug-CPU boot-sequence.
 16 *						smp_boot_cpus()/smp_commence() is replaced by
 17 *						smp_prepare_cpus()/__cpu_up()/smp_cpus_done().
 18 * 04/06/21 Ashok Raj		<ashok.raj@intel.com> Added CPU Hotplug Support
 19 * 04/12/26 Jin Gordon <gordon.jin@intel.com>
 20 * 04/12/26 Rohit Seth <rohit.seth@intel.com>
 21 *						Add multi-threading and multi-core detection
 22 * 05/01/30 Suresh Siddha <suresh.b.siddha@intel.com>
 23 *						Setup cpu_sibling_map and cpu_core_map
 24 */
 25
 26#include <linux/module.h>
 27#include <linux/acpi.h>
 28#include <linux/memblock.h>
 29#include <linux/cpu.h>
 30#include <linux/delay.h>
 31#include <linux/init.h>
 32#include <linux/interrupt.h>
 33#include <linux/irq.h>
 34#include <linux/kernel.h>
 35#include <linux/kernel_stat.h>
 36#include <linux/mm.h>
 37#include <linux/notifier.h>
 38#include <linux/smp.h>
 39#include <linux/spinlock.h>
 40#include <linux/efi.h>
 41#include <linux/percpu.h>
 42#include <linux/bitops.h>
 43
 44#include <linux/atomic.h>
 45#include <asm/cache.h>
 46#include <asm/current.h>
 47#include <asm/delay.h>
 48#include <asm/io.h>
 49#include <asm/irq.h>
 
 50#include <asm/mca.h>
 51#include <asm/page.h>
 
 
 52#include <asm/processor.h>
 53#include <asm/ptrace.h>
 54#include <asm/sal.h>
 55#include <asm/tlbflush.h>
 56#include <asm/unistd.h>
 
 57
 58#define SMP_DEBUG 0
 59
 60#if SMP_DEBUG
 61#define Dprintk(x...)  printk(x)
 62#else
 63#define Dprintk(x...)
 64#endif
 65
 66#ifdef CONFIG_HOTPLUG_CPU
 67#ifdef CONFIG_PERMIT_BSP_REMOVE
 68#define bsp_remove_ok	1
 69#else
 70#define bsp_remove_ok	0
 71#endif
 72
 73/*
 74 * Global array allocated for NR_CPUS at boot time
 75 */
 76struct sal_to_os_boot sal_boot_rendez_state[NR_CPUS];
 77
 78/*
 79 * start_ap in head.S uses this to store current booting cpu
 80 * info.
 81 */
 82struct sal_to_os_boot *sal_state_for_booting_cpu = &sal_boot_rendez_state[0];
 83
 84#define set_brendez_area(x) (sal_state_for_booting_cpu = &sal_boot_rendez_state[(x)]);
 85
 86#else
 87#define set_brendez_area(x)
 88#endif
 89
 90
 91/*
 92 * ITC synchronization related stuff:
 93 */
 94#define MASTER	(0)
 95#define SLAVE	(SMP_CACHE_BYTES/8)
 96
 97#define NUM_ROUNDS	64	/* magic value */
 98#define NUM_ITERS	5	/* likewise */
 99
100static DEFINE_SPINLOCK(itc_sync_lock);
101static volatile unsigned long go[SLAVE + 1];
102
103#define DEBUG_ITC_SYNC	0
104
105extern void start_ap (void);
106extern unsigned long ia64_iobase;
107
108struct task_struct *task_for_booting_cpu;
109
110/*
111 * State for each CPU
112 */
113DEFINE_PER_CPU(int, cpu_state);
114
115cpumask_t cpu_core_map[NR_CPUS] __cacheline_aligned;
116EXPORT_SYMBOL(cpu_core_map);
117DEFINE_PER_CPU_SHARED_ALIGNED(cpumask_t, cpu_sibling_map);
118EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
119
120int smp_num_siblings = 1;
121
122/* which logical CPU number maps to which CPU (physical APIC ID) */
123volatile int ia64_cpu_to_sapicid[NR_CPUS];
124EXPORT_SYMBOL(ia64_cpu_to_sapicid);
125
126static cpumask_t cpu_callin_map;
127
128struct smp_boot_data smp_boot_data __initdata;
129
130unsigned long ap_wakeup_vector = -1; /* External Int use to wakeup APs */
131
132char __initdata no_int_routing;
133
134unsigned char smp_int_redirect; /* are INT and IPI redirectable by the chipset? */
135
136#ifdef CONFIG_FORCE_CPEI_RETARGET
137#define CPEI_OVERRIDE_DEFAULT	(1)
138#else
139#define CPEI_OVERRIDE_DEFAULT	(0)
140#endif
141
142unsigned int force_cpei_retarget = CPEI_OVERRIDE_DEFAULT;
143
144static int __init
145cmdl_force_cpei(char *str)
146{
147	int value=0;
148
149	get_option (&str, &value);
150	force_cpei_retarget = value;
151
152	return 1;
153}
154
155__setup("force_cpei=", cmdl_force_cpei);
156
157static int __init
158nointroute (char *str)
159{
160	no_int_routing = 1;
161	printk ("no_int_routing on\n");
162	return 1;
163}
164
165__setup("nointroute", nointroute);
166
167static void fix_b0_for_bsp(void)
168{
169#ifdef CONFIG_HOTPLUG_CPU
170	int cpuid;
171	static int fix_bsp_b0 = 1;
172
173	cpuid = smp_processor_id();
174
175	/*
176	 * Cache the b0 value on the first AP that comes up
177	 */
178	if (!(fix_bsp_b0 && cpuid))
179		return;
180
181	sal_boot_rendez_state[0].br[0] = sal_boot_rendez_state[cpuid].br[0];
182	printk ("Fixed BSP b0 value from CPU %d\n", cpuid);
183
184	fix_bsp_b0 = 0;
185#endif
186}
187
188void
189sync_master (void *arg)
190{
191	unsigned long flags, i;
192
193	go[MASTER] = 0;
194
195	local_irq_save(flags);
196	{
197		for (i = 0; i < NUM_ROUNDS*NUM_ITERS; ++i) {
198			while (!go[MASTER])
199				cpu_relax();
200			go[MASTER] = 0;
201			go[SLAVE] = ia64_get_itc();
202		}
203	}
204	local_irq_restore(flags);
205}
206
207/*
208 * Return the number of cycles by which our itc differs from the itc on the master
209 * (time-keeper) CPU.  A positive number indicates our itc is ahead of the master,
210 * negative that it is behind.
211 */
212static inline long
213get_delta (long *rt, long *master)
214{
215	unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
216	unsigned long tcenter, t0, t1, tm;
217	long i;
218
219	for (i = 0; i < NUM_ITERS; ++i) {
220		t0 = ia64_get_itc();
221		go[MASTER] = 1;
222		while (!(tm = go[SLAVE]))
223			cpu_relax();
224		go[SLAVE] = 0;
225		t1 = ia64_get_itc();
226
227		if (t1 - t0 < best_t1 - best_t0)
228			best_t0 = t0, best_t1 = t1, best_tm = tm;
229	}
230
231	*rt = best_t1 - best_t0;
232	*master = best_tm - best_t0;
233
234	/* average best_t0 and best_t1 without overflow: */
235	tcenter = (best_t0/2 + best_t1/2);
236	if (best_t0 % 2 + best_t1 % 2 == 2)
237		++tcenter;
238	return tcenter - best_tm;
239}
240
241/*
242 * Synchronize ar.itc of the current (slave) CPU with the ar.itc of the MASTER CPU
243 * (normally the time-keeper CPU).  We use a closed loop to eliminate the possibility of
244 * unaccounted-for errors (such as getting a machine check in the middle of a calibration
245 * step).  The basic idea is for the slave to ask the master what itc value it has and to
246 * read its own itc before and after the master responds.  Each iteration gives us three
247 * timestamps:
248 *
249 *	slave		master
250 *
251 *	t0 ---\
252 *             ---\
253 *		   --->
254 *			tm
255 *		   /---
256 *	       /---
257 *	t1 <---
258 *
259 *
260 * The goal is to adjust the slave's ar.itc such that tm falls exactly half-way between t0
261 * and t1.  If we achieve this, the clocks are synchronized provided the interconnect
262 * between the slave and the master is symmetric.  Even if the interconnect were
263 * asymmetric, we would still know that the synchronization error is smaller than the
264 * roundtrip latency (t0 - t1).
265 *
266 * When the interconnect is quiet and symmetric, this lets us synchronize the itc to
267 * within one or two cycles.  However, we can only *guarantee* that the synchronization is
268 * accurate to within a round-trip time, which is typically in the range of several
269 * hundred cycles (e.g., ~500 cycles).  In practice, this means that the itc's are usually
270 * almost perfectly synchronized, but we shouldn't assume that the accuracy is much better
271 * than half a micro second or so.
272 */
273void
274ia64_sync_itc (unsigned int master)
275{
276	long i, delta, adj, adjust_latency = 0, done = 0;
277	unsigned long flags, rt, master_time_stamp, bound;
278#if DEBUG_ITC_SYNC
279	struct {
280		long rt;	/* roundtrip time */
281		long master;	/* master's timestamp */
282		long diff;	/* difference between midpoint and master's timestamp */
283		long lat;	/* estimate of itc adjustment latency */
284	} t[NUM_ROUNDS];
285#endif
286
287	/*
288	 * Make sure local timer ticks are disabled while we sync.  If
289	 * they were enabled, we'd have to worry about nasty issues
290	 * like setting the ITC ahead of (or a long time before) the
291	 * next scheduled tick.
292	 */
293	BUG_ON((ia64_get_itv() & (1 << 16)) == 0);
294
295	go[MASTER] = 1;
296
297	if (smp_call_function_single(master, sync_master, NULL, 0) < 0) {
298		printk(KERN_ERR "sync_itc: failed to get attention of CPU %u!\n", master);
299		return;
300	}
301
302	while (go[MASTER])
303		cpu_relax();	/* wait for master to be ready */
304
305	spin_lock_irqsave(&itc_sync_lock, flags);
306	{
307		for (i = 0; i < NUM_ROUNDS; ++i) {
308			delta = get_delta(&rt, &master_time_stamp);
309			if (delta == 0) {
310				done = 1;	/* let's lock on to this... */
311				bound = rt;
312			}
313
314			if (!done) {
315				if (i > 0) {
316					adjust_latency += -delta;
317					adj = -delta + adjust_latency/4;
318				} else
319					adj = -delta;
320
321				ia64_set_itc(ia64_get_itc() + adj);
322			}
323#if DEBUG_ITC_SYNC
324			t[i].rt = rt;
325			t[i].master = master_time_stamp;
326			t[i].diff = delta;
327			t[i].lat = adjust_latency/4;
328#endif
329		}
330	}
331	spin_unlock_irqrestore(&itc_sync_lock, flags);
332
333#if DEBUG_ITC_SYNC
334	for (i = 0; i < NUM_ROUNDS; ++i)
335		printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
336		       t[i].rt, t[i].master, t[i].diff, t[i].lat);
337#endif
338
339	printk(KERN_INFO "CPU %d: synchronized ITC with CPU %u (last diff %ld cycles, "
340	       "maxerr %lu cycles)\n", smp_processor_id(), master, delta, rt);
341}
342
343/*
344 * Ideally sets up per-cpu profiling hooks.  Doesn't do much now...
345 */
346static inline void smp_setup_percpu_timer(void)
347{
348}
349
350static void
351smp_callin (void)
352{
353	int cpuid, phys_id, itc_master;
354	struct cpuinfo_ia64 *last_cpuinfo, *this_cpuinfo;
355	extern void ia64_init_itm(void);
356	extern volatile int time_keeper_id;
357
358#ifdef CONFIG_PERFMON
359	extern void pfm_init_percpu(void);
360#endif
361
362	cpuid = smp_processor_id();
363	phys_id = hard_smp_processor_id();
364	itc_master = time_keeper_id;
365
366	if (cpu_online(cpuid)) {
367		printk(KERN_ERR "huh, phys CPU#0x%x, CPU#0x%x already present??\n",
368		       phys_id, cpuid);
369		BUG();
370	}
371
372	fix_b0_for_bsp();
373
374	/*
375	 * numa_node_id() works after this.
376	 */
377	set_numa_node(cpu_to_node_map[cpuid]);
378	set_numa_mem(local_memory_node(cpu_to_node_map[cpuid]));
379
380	spin_lock(&vector_lock);
381	/* Setup the per cpu irq handling data structures */
382	__setup_vector_irq(cpuid);
383	notify_cpu_starting(cpuid);
384	set_cpu_online(cpuid, true);
385	per_cpu(cpu_state, cpuid) = CPU_ONLINE;
386	spin_unlock(&vector_lock);
387
388	smp_setup_percpu_timer();
389
390	ia64_mca_cmc_vector_setup();	/* Setup vector on AP */
391
392#ifdef CONFIG_PERFMON
393	pfm_init_percpu();
394#endif
395
396	local_irq_enable();
397
398	if (!(sal_platform_features & IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT)) {
399		/*
400		 * Synchronize the ITC with the BP.  Need to do this after irqs are
401		 * enabled because ia64_sync_itc() calls smp_call_function_single(), which
402		 * calls spin_unlock_bh(), which calls spin_unlock_bh(), which calls
403		 * local_bh_enable(), which bugs out if irqs are not enabled...
404		 */
405		Dprintk("Going to syncup ITC with ITC Master.\n");
406		ia64_sync_itc(itc_master);
407	}
408
409	/*
410	 * Get our bogomips.
411	 */
412	ia64_init_itm();
413
414	/*
415	 * Delay calibration can be skipped if new processor is identical to the
416	 * previous processor.
417	 */
418	last_cpuinfo = cpu_data(cpuid - 1);
419	this_cpuinfo = local_cpu_data;
420	if (last_cpuinfo->itc_freq != this_cpuinfo->itc_freq ||
421	    last_cpuinfo->proc_freq != this_cpuinfo->proc_freq ||
422	    last_cpuinfo->features != this_cpuinfo->features ||
423	    last_cpuinfo->revision != this_cpuinfo->revision ||
424	    last_cpuinfo->family != this_cpuinfo->family ||
425	    last_cpuinfo->archrev != this_cpuinfo->archrev ||
426	    last_cpuinfo->model != this_cpuinfo->model)
427		calibrate_delay();
428	local_cpu_data->loops_per_jiffy = loops_per_jiffy;
429
430	/*
431	 * Allow the master to continue.
432	 */
433	cpumask_set_cpu(cpuid, &cpu_callin_map);
434	Dprintk("Stack on CPU %d at about %p\n",cpuid, &cpuid);
435}
436
437
438/*
439 * Activate a secondary processor.  head.S calls this.
440 */
441int
442start_secondary (void *unused)
443{
444	/* Early console may use I/O ports */
445	ia64_set_kr(IA64_KR_IO_BASE, __pa(ia64_iobase));
446#ifndef CONFIG_PRINTK_TIME
447	Dprintk("start_secondary: starting CPU 0x%x\n", hard_smp_processor_id());
448#endif
449	efi_map_pal_code();
450	cpu_init();
451	preempt_disable();
452	smp_callin();
453
454	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
455	return 0;
456}
457
458static int
459do_boot_cpu (int sapicid, int cpu, struct task_struct *idle)
460{
461	int timeout;
462
463	task_for_booting_cpu = idle;
464	Dprintk("Sending wakeup vector %lu to AP 0x%x/0x%x.\n", ap_wakeup_vector, cpu, sapicid);
465
466	set_brendez_area(cpu);
467	ia64_send_ipi(cpu, ap_wakeup_vector, IA64_IPI_DM_INT, 0);
468
469	/*
470	 * Wait 10s total for the AP to start
471	 */
472	Dprintk("Waiting on callin_map ...");
473	for (timeout = 0; timeout < 100000; timeout++) {
474		if (cpumask_test_cpu(cpu, &cpu_callin_map))
475			break;  /* It has booted */
476		barrier(); /* Make sure we re-read cpu_callin_map */
477		udelay(100);
478	}
479	Dprintk("\n");
480
481	if (!cpumask_test_cpu(cpu, &cpu_callin_map)) {
482		printk(KERN_ERR "Processor 0x%x/0x%x is stuck.\n", cpu, sapicid);
483		ia64_cpu_to_sapicid[cpu] = -1;
484		set_cpu_online(cpu, false);  /* was set in smp_callin() */
485		return -EINVAL;
486	}
487	return 0;
488}
489
490static int __init
491decay (char *str)
492{
493	int ticks;
494	get_option (&str, &ticks);
495	return 1;
496}
497
498__setup("decay=", decay);
499
500/*
501 * Initialize the logical CPU number to SAPICID mapping
502 */
503void __init
504smp_build_cpu_map (void)
505{
506	int sapicid, cpu, i;
507	int boot_cpu_id = hard_smp_processor_id();
508
509	for (cpu = 0; cpu < NR_CPUS; cpu++) {
510		ia64_cpu_to_sapicid[cpu] = -1;
511	}
512
513	ia64_cpu_to_sapicid[0] = boot_cpu_id;
514	init_cpu_present(cpumask_of(0));
515	set_cpu_possible(0, true);
516	for (cpu = 1, i = 0; i < smp_boot_data.cpu_count; i++) {
517		sapicid = smp_boot_data.cpu_phys_id[i];
518		if (sapicid == boot_cpu_id)
519			continue;
520		set_cpu_present(cpu, true);
521		set_cpu_possible(cpu, true);
522		ia64_cpu_to_sapicid[cpu] = sapicid;
523		cpu++;
524	}
525}
526
527/*
528 * Cycle through the APs sending Wakeup IPIs to boot each.
529 */
530void __init
531smp_prepare_cpus (unsigned int max_cpus)
532{
533	int boot_cpu_id = hard_smp_processor_id();
534
535	/*
536	 * Initialize the per-CPU profiling counter/multiplier
537	 */
538
539	smp_setup_percpu_timer();
540
541	cpumask_set_cpu(0, &cpu_callin_map);
542
543	local_cpu_data->loops_per_jiffy = loops_per_jiffy;
544	ia64_cpu_to_sapicid[0] = boot_cpu_id;
545
546	printk(KERN_INFO "Boot processor id 0x%x/0x%x\n", 0, boot_cpu_id);
547
548	current_thread_info()->cpu = 0;
549
550	/*
551	 * If SMP should be disabled, then really disable it!
552	 */
553	if (!max_cpus) {
554		printk(KERN_INFO "SMP mode deactivated.\n");
555		init_cpu_online(cpumask_of(0));
556		init_cpu_present(cpumask_of(0));
557		init_cpu_possible(cpumask_of(0));
558		return;
559	}
560}
561
562void smp_prepare_boot_cpu(void)
563{
564	set_cpu_online(smp_processor_id(), true);
565	cpumask_set_cpu(smp_processor_id(), &cpu_callin_map);
566	set_numa_node(cpu_to_node_map[smp_processor_id()]);
567	per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE;
568}
569
570#ifdef CONFIG_HOTPLUG_CPU
571static inline void
572clear_cpu_sibling_map(int cpu)
573{
574	int i;
575
576	for_each_cpu(i, &per_cpu(cpu_sibling_map, cpu))
577		cpumask_clear_cpu(cpu, &per_cpu(cpu_sibling_map, i));
578	for_each_cpu(i, &cpu_core_map[cpu])
579		cpumask_clear_cpu(cpu, &cpu_core_map[i]);
580
581	per_cpu(cpu_sibling_map, cpu) = cpu_core_map[cpu] = CPU_MASK_NONE;
582}
583
584static void
585remove_siblinginfo(int cpu)
586{
587	int last = 0;
588
589	if (cpu_data(cpu)->threads_per_core == 1 &&
590	    cpu_data(cpu)->cores_per_socket == 1) {
591		cpumask_clear_cpu(cpu, &cpu_core_map[cpu]);
592		cpumask_clear_cpu(cpu, &per_cpu(cpu_sibling_map, cpu));
593		return;
594	}
595
596	last = (cpumask_weight(&cpu_core_map[cpu]) == 1 ? 1 : 0);
597
598	/* remove it from all sibling map's */
599	clear_cpu_sibling_map(cpu);
600}
601
602extern void fixup_irqs(void);
603
604int migrate_platform_irqs(unsigned int cpu)
605{
606	int new_cpei_cpu;
607	struct irq_data *data = NULL;
608	const struct cpumask *mask;
609	int 		retval = 0;
610
611	/*
612	 * dont permit CPEI target to removed.
613	 */
614	if (cpe_vector > 0 && is_cpu_cpei_target(cpu)) {
615		printk ("CPU (%d) is CPEI Target\n", cpu);
616		if (can_cpei_retarget()) {
617			/*
618			 * Now re-target the CPEI to a different processor
619			 */
620			new_cpei_cpu = cpumask_any(cpu_online_mask);
621			mask = cpumask_of(new_cpei_cpu);
622			set_cpei_target_cpu(new_cpei_cpu);
623			data = irq_get_irq_data(ia64_cpe_irq);
624			/*
625			 * Switch for now, immediately, we need to do fake intr
626			 * as other interrupts, but need to study CPEI behaviour with
627			 * polling before making changes.
628			 */
629			if (data && data->chip) {
630				data->chip->irq_disable(data);
631				data->chip->irq_set_affinity(data, mask, false);
632				data->chip->irq_enable(data);
633				printk ("Re-targeting CPEI to cpu %d\n", new_cpei_cpu);
634			}
635		}
636		if (!data) {
637			printk ("Unable to retarget CPEI, offline cpu [%d] failed\n", cpu);
638			retval = -EBUSY;
639		}
640	}
641	return retval;
642}
643
644/* must be called with cpucontrol mutex held */
645int __cpu_disable(void)
646{
647	int cpu = smp_processor_id();
648
649	/*
650	 * dont permit boot processor for now
651	 */
652	if (cpu == 0 && !bsp_remove_ok) {
653		printk ("Your platform does not support removal of BSP\n");
654		return (-EBUSY);
 
 
 
 
 
655	}
656
657	set_cpu_online(cpu, false);
658
659	if (migrate_platform_irqs(cpu)) {
660		set_cpu_online(cpu, true);
661		return -EBUSY;
662	}
663
664	remove_siblinginfo(cpu);
665	fixup_irqs();
666	local_flush_tlb_all();
667	cpumask_clear_cpu(cpu, &cpu_callin_map);
668	return 0;
669}
670
671void __cpu_die(unsigned int cpu)
672{
673	unsigned int i;
674
675	for (i = 0; i < 100; i++) {
676		/* They ack this in play_dead by setting CPU_DEAD */
677		if (per_cpu(cpu_state, cpu) == CPU_DEAD)
678		{
679			printk ("CPU %d is now offline\n", cpu);
680			return;
681		}
682		msleep(100);
683	}
684 	printk(KERN_ERR "CPU %u didn't die...\n", cpu);
685}
686#endif /* CONFIG_HOTPLUG_CPU */
687
688void
689smp_cpus_done (unsigned int dummy)
690{
691	int cpu;
692	unsigned long bogosum = 0;
693
694	/*
695	 * Allow the user to impress friends.
696	 */
697
698	for_each_online_cpu(cpu) {
699		bogosum += cpu_data(cpu)->loops_per_jiffy;
700	}
701
702	printk(KERN_INFO "Total of %d processors activated (%lu.%02lu BogoMIPS).\n",
703	       (int)num_online_cpus(), bogosum/(500000/HZ), (bogosum/(5000/HZ))%100);
704}
705
706static inline void set_cpu_sibling_map(int cpu)
707{
708	int i;
709
710	for_each_online_cpu(i) {
711		if ((cpu_data(cpu)->socket_id == cpu_data(i)->socket_id)) {
712			cpumask_set_cpu(i, &cpu_core_map[cpu]);
713			cpumask_set_cpu(cpu, &cpu_core_map[i]);
714			if (cpu_data(cpu)->core_id == cpu_data(i)->core_id) {
715				cpumask_set_cpu(i,
716						&per_cpu(cpu_sibling_map, cpu));
717				cpumask_set_cpu(cpu,
718						&per_cpu(cpu_sibling_map, i));
719			}
720		}
721	}
722}
723
724int
725__cpu_up(unsigned int cpu, struct task_struct *tidle)
726{
727	int ret;
728	int sapicid;
729
730	sapicid = ia64_cpu_to_sapicid[cpu];
731	if (sapicid == -1)
732		return -EINVAL;
733
734	/*
735	 * Already booted cpu? not valid anymore since we dont
736	 * do idle loop tightspin anymore.
737	 */
738	if (cpumask_test_cpu(cpu, &cpu_callin_map))
739		return -EINVAL;
740
741	per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
742	/* Processor goes to start_secondary(), sets online flag */
743	ret = do_boot_cpu(sapicid, cpu, tidle);
744	if (ret < 0)
745		return ret;
746
747	if (cpu_data(cpu)->threads_per_core == 1 &&
748	    cpu_data(cpu)->cores_per_socket == 1) {
749		cpumask_set_cpu(cpu, &per_cpu(cpu_sibling_map, cpu));
750		cpumask_set_cpu(cpu, &cpu_core_map[cpu]);
751		return 0;
752	}
753
754	set_cpu_sibling_map(cpu);
755
756	return 0;
757}
758
759/*
760 * Assume that CPUs have been discovered by some platform-dependent interface.  For
761 * SoftSDV/Lion, that would be ACPI.
762 *
763 * Setup of the IPI irq handler is done in irq.c:init_IRQ_SMP().
764 */
765void __init
766init_smp_config(void)
767{
768	struct fptr {
769		unsigned long fp;
770		unsigned long gp;
771	} *ap_startup;
772	long sal_ret;
773
774	/* Tell SAL where to drop the APs.  */
775	ap_startup = (struct fptr *) start_ap;
776	sal_ret = ia64_sal_set_vectors(SAL_VECTOR_OS_BOOT_RENDEZ,
777				       ia64_tpa(ap_startup->fp), ia64_tpa(ap_startup->gp), 0, 0, 0, 0);
778	if (sal_ret < 0)
779		printk(KERN_ERR "SMP: Can't set SAL AP Boot Rendezvous: %s\n",
780		       ia64_sal_strerror(sal_ret));
781}
782
783/*
784 * identify_siblings(cpu) gets called from identify_cpu. This populates the 
785 * information related to logical execution units in per_cpu_data structure.
786 */
787void identify_siblings(struct cpuinfo_ia64 *c)
788{
789	long status;
790	u16 pltid;
791	pal_logical_to_physical_t info;
792
793	status = ia64_pal_logical_to_phys(-1, &info);
794	if (status != PAL_STATUS_SUCCESS) {
795		if (status != PAL_STATUS_UNIMPLEMENTED) {
796			printk(KERN_ERR
797				"ia64_pal_logical_to_phys failed with %ld\n",
798				status);
799			return;
800		}
801
802		info.overview_ppid = 0;
803		info.overview_cpp  = 1;
804		info.overview_tpc  = 1;
805	}
806
807	status = ia64_sal_physical_id_info(&pltid);
808	if (status != PAL_STATUS_SUCCESS) {
809		if (status != PAL_STATUS_UNIMPLEMENTED)
810			printk(KERN_ERR
811				"ia64_sal_pltid failed with %ld\n",
812				status);
813		return;
814	}
815
816	c->socket_id =  (pltid << 8) | info.overview_ppid;
817
818	if (info.overview_cpp == 1 && info.overview_tpc == 1)
819		return;
820
821	c->cores_per_socket = info.overview_cpp;
822	c->threads_per_core = info.overview_tpc;
823	c->num_log = info.overview_num_log;
824
825	c->core_id = info.log1_cid;
826	c->thread_id = info.log1_tid;
827}
828
829/*
830 * returns non zero, if multi-threading is enabled
831 * on at least one physical package. Due to hotplug cpu
832 * and (maxcpus=), all threads may not necessarily be enabled
833 * even though the processor supports multi-threading.
834 */
835int is_multithreading_enabled(void)
836{
837	int i, j;
838
839	for_each_present_cpu(i) {
840		for_each_present_cpu(j) {
841			if (j == i)
842				continue;
843			if ((cpu_data(j)->socket_id == cpu_data(i)->socket_id)) {
844				if (cpu_data(j)->core_id == cpu_data(i)->core_id)
845					return 1;
846			}
847		}
848	}
849	return 0;
850}
851EXPORT_SYMBOL_GPL(is_multithreading_enabled);
v4.17
 
  1/*
  2 * SMP boot-related support
  3 *
  4 * Copyright (C) 1998-2003, 2005 Hewlett-Packard Co
  5 *	David Mosberger-Tang <davidm@hpl.hp.com>
  6 * Copyright (C) 2001, 2004-2005 Intel Corp
  7 * 	Rohit Seth <rohit.seth@intel.com>
  8 * 	Suresh Siddha <suresh.b.siddha@intel.com>
  9 * 	Gordon Jin <gordon.jin@intel.com>
 10 *	Ashok Raj  <ashok.raj@intel.com>
 11 *
 12 * 01/05/16 Rohit Seth <rohit.seth@intel.com>	Moved SMP booting functions from smp.c to here.
 13 * 01/04/27 David Mosberger <davidm@hpl.hp.com>	Added ITC synching code.
 14 * 02/07/31 David Mosberger <davidm@hpl.hp.com>	Switch over to hotplug-CPU boot-sequence.
 15 *						smp_boot_cpus()/smp_commence() is replaced by
 16 *						smp_prepare_cpus()/__cpu_up()/smp_cpus_done().
 17 * 04/06/21 Ashok Raj		<ashok.raj@intel.com> Added CPU Hotplug Support
 18 * 04/12/26 Jin Gordon <gordon.jin@intel.com>
 19 * 04/12/26 Rohit Seth <rohit.seth@intel.com>
 20 *						Add multi-threading and multi-core detection
 21 * 05/01/30 Suresh Siddha <suresh.b.siddha@intel.com>
 22 *						Setup cpu_sibling_map and cpu_core_map
 23 */
 24
 25#include <linux/module.h>
 26#include <linux/acpi.h>
 27#include <linux/bootmem.h>
 28#include <linux/cpu.h>
 29#include <linux/delay.h>
 30#include <linux/init.h>
 31#include <linux/interrupt.h>
 32#include <linux/irq.h>
 33#include <linux/kernel.h>
 34#include <linux/kernel_stat.h>
 35#include <linux/mm.h>
 36#include <linux/notifier.h>
 37#include <linux/smp.h>
 38#include <linux/spinlock.h>
 39#include <linux/efi.h>
 40#include <linux/percpu.h>
 41#include <linux/bitops.h>
 42
 43#include <linux/atomic.h>
 44#include <asm/cache.h>
 45#include <asm/current.h>
 46#include <asm/delay.h>
 47#include <asm/io.h>
 48#include <asm/irq.h>
 49#include <asm/machvec.h>
 50#include <asm/mca.h>
 51#include <asm/page.h>
 52#include <asm/pgalloc.h>
 53#include <asm/pgtable.h>
 54#include <asm/processor.h>
 55#include <asm/ptrace.h>
 56#include <asm/sal.h>
 57#include <asm/tlbflush.h>
 58#include <asm/unistd.h>
 59#include <asm/sn/arch.h>
 60
 61#define SMP_DEBUG 0
 62
 63#if SMP_DEBUG
 64#define Dprintk(x...)  printk(x)
 65#else
 66#define Dprintk(x...)
 67#endif
 68
 69#ifdef CONFIG_HOTPLUG_CPU
 70#ifdef CONFIG_PERMIT_BSP_REMOVE
 71#define bsp_remove_ok	1
 72#else
 73#define bsp_remove_ok	0
 74#endif
 75
 76/*
 77 * Global array allocated for NR_CPUS at boot time
 78 */
 79struct sal_to_os_boot sal_boot_rendez_state[NR_CPUS];
 80
 81/*
 82 * start_ap in head.S uses this to store current booting cpu
 83 * info.
 84 */
 85struct sal_to_os_boot *sal_state_for_booting_cpu = &sal_boot_rendez_state[0];
 86
 87#define set_brendez_area(x) (sal_state_for_booting_cpu = &sal_boot_rendez_state[(x)]);
 88
 89#else
 90#define set_brendez_area(x)
 91#endif
 92
 93
 94/*
 95 * ITC synchronization related stuff:
 96 */
 97#define MASTER	(0)
 98#define SLAVE	(SMP_CACHE_BYTES/8)
 99
100#define NUM_ROUNDS	64	/* magic value */
101#define NUM_ITERS	5	/* likewise */
102
103static DEFINE_SPINLOCK(itc_sync_lock);
104static volatile unsigned long go[SLAVE + 1];
105
106#define DEBUG_ITC_SYNC	0
107
108extern void start_ap (void);
109extern unsigned long ia64_iobase;
110
111struct task_struct *task_for_booting_cpu;
112
113/*
114 * State for each CPU
115 */
116DEFINE_PER_CPU(int, cpu_state);
117
118cpumask_t cpu_core_map[NR_CPUS] __cacheline_aligned;
119EXPORT_SYMBOL(cpu_core_map);
120DEFINE_PER_CPU_SHARED_ALIGNED(cpumask_t, cpu_sibling_map);
121EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
122
123int smp_num_siblings = 1;
124
125/* which logical CPU number maps to which CPU (physical APIC ID) */
126volatile int ia64_cpu_to_sapicid[NR_CPUS];
127EXPORT_SYMBOL(ia64_cpu_to_sapicid);
128
129static cpumask_t cpu_callin_map;
130
131struct smp_boot_data smp_boot_data __initdata;
132
133unsigned long ap_wakeup_vector = -1; /* External Int use to wakeup APs */
134
135char __initdata no_int_routing;
136
137unsigned char smp_int_redirect; /* are INT and IPI redirectable by the chipset? */
138
139#ifdef CONFIG_FORCE_CPEI_RETARGET
140#define CPEI_OVERRIDE_DEFAULT	(1)
141#else
142#define CPEI_OVERRIDE_DEFAULT	(0)
143#endif
144
145unsigned int force_cpei_retarget = CPEI_OVERRIDE_DEFAULT;
146
147static int __init
148cmdl_force_cpei(char *str)
149{
150	int value=0;
151
152	get_option (&str, &value);
153	force_cpei_retarget = value;
154
155	return 1;
156}
157
158__setup("force_cpei=", cmdl_force_cpei);
159
160static int __init
161nointroute (char *str)
162{
163	no_int_routing = 1;
164	printk ("no_int_routing on\n");
165	return 1;
166}
167
168__setup("nointroute", nointroute);
169
170static void fix_b0_for_bsp(void)
171{
172#ifdef CONFIG_HOTPLUG_CPU
173	int cpuid;
174	static int fix_bsp_b0 = 1;
175
176	cpuid = smp_processor_id();
177
178	/*
179	 * Cache the b0 value on the first AP that comes up
180	 */
181	if (!(fix_bsp_b0 && cpuid))
182		return;
183
184	sal_boot_rendez_state[0].br[0] = sal_boot_rendez_state[cpuid].br[0];
185	printk ("Fixed BSP b0 value from CPU %d\n", cpuid);
186
187	fix_bsp_b0 = 0;
188#endif
189}
190
191void
192sync_master (void *arg)
193{
194	unsigned long flags, i;
195
196	go[MASTER] = 0;
197
198	local_irq_save(flags);
199	{
200		for (i = 0; i < NUM_ROUNDS*NUM_ITERS; ++i) {
201			while (!go[MASTER])
202				cpu_relax();
203			go[MASTER] = 0;
204			go[SLAVE] = ia64_get_itc();
205		}
206	}
207	local_irq_restore(flags);
208}
209
210/*
211 * Return the number of cycles by which our itc differs from the itc on the master
212 * (time-keeper) CPU.  A positive number indicates our itc is ahead of the master,
213 * negative that it is behind.
214 */
215static inline long
216get_delta (long *rt, long *master)
217{
218	unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
219	unsigned long tcenter, t0, t1, tm;
220	long i;
221
222	for (i = 0; i < NUM_ITERS; ++i) {
223		t0 = ia64_get_itc();
224		go[MASTER] = 1;
225		while (!(tm = go[SLAVE]))
226			cpu_relax();
227		go[SLAVE] = 0;
228		t1 = ia64_get_itc();
229
230		if (t1 - t0 < best_t1 - best_t0)
231			best_t0 = t0, best_t1 = t1, best_tm = tm;
232	}
233
234	*rt = best_t1 - best_t0;
235	*master = best_tm - best_t0;
236
237	/* average best_t0 and best_t1 without overflow: */
238	tcenter = (best_t0/2 + best_t1/2);
239	if (best_t0 % 2 + best_t1 % 2 == 2)
240		++tcenter;
241	return tcenter - best_tm;
242}
243
244/*
245 * Synchronize ar.itc of the current (slave) CPU with the ar.itc of the MASTER CPU
246 * (normally the time-keeper CPU).  We use a closed loop to eliminate the possibility of
247 * unaccounted-for errors (such as getting a machine check in the middle of a calibration
248 * step).  The basic idea is for the slave to ask the master what itc value it has and to
249 * read its own itc before and after the master responds.  Each iteration gives us three
250 * timestamps:
251 *
252 *	slave		master
253 *
254 *	t0 ---\
255 *             ---\
256 *		   --->
257 *			tm
258 *		   /---
259 *	       /---
260 *	t1 <---
261 *
262 *
263 * The goal is to adjust the slave's ar.itc such that tm falls exactly half-way between t0
264 * and t1.  If we achieve this, the clocks are synchronized provided the interconnect
265 * between the slave and the master is symmetric.  Even if the interconnect were
266 * asymmetric, we would still know that the synchronization error is smaller than the
267 * roundtrip latency (t0 - t1).
268 *
269 * When the interconnect is quiet and symmetric, this lets us synchronize the itc to
270 * within one or two cycles.  However, we can only *guarantee* that the synchronization is
271 * accurate to within a round-trip time, which is typically in the range of several
272 * hundred cycles (e.g., ~500 cycles).  In practice, this means that the itc's are usually
273 * almost perfectly synchronized, but we shouldn't assume that the accuracy is much better
274 * than half a micro second or so.
275 */
276void
277ia64_sync_itc (unsigned int master)
278{
279	long i, delta, adj, adjust_latency = 0, done = 0;
280	unsigned long flags, rt, master_time_stamp, bound;
281#if DEBUG_ITC_SYNC
282	struct {
283		long rt;	/* roundtrip time */
284		long master;	/* master's timestamp */
285		long diff;	/* difference between midpoint and master's timestamp */
286		long lat;	/* estimate of itc adjustment latency */
287	} t[NUM_ROUNDS];
288#endif
289
290	/*
291	 * Make sure local timer ticks are disabled while we sync.  If
292	 * they were enabled, we'd have to worry about nasty issues
293	 * like setting the ITC ahead of (or a long time before) the
294	 * next scheduled tick.
295	 */
296	BUG_ON((ia64_get_itv() & (1 << 16)) == 0);
297
298	go[MASTER] = 1;
299
300	if (smp_call_function_single(master, sync_master, NULL, 0) < 0) {
301		printk(KERN_ERR "sync_itc: failed to get attention of CPU %u!\n", master);
302		return;
303	}
304
305	while (go[MASTER])
306		cpu_relax();	/* wait for master to be ready */
307
308	spin_lock_irqsave(&itc_sync_lock, flags);
309	{
310		for (i = 0; i < NUM_ROUNDS; ++i) {
311			delta = get_delta(&rt, &master_time_stamp);
312			if (delta == 0) {
313				done = 1;	/* let's lock on to this... */
314				bound = rt;
315			}
316
317			if (!done) {
318				if (i > 0) {
319					adjust_latency += -delta;
320					adj = -delta + adjust_latency/4;
321				} else
322					adj = -delta;
323
324				ia64_set_itc(ia64_get_itc() + adj);
325			}
326#if DEBUG_ITC_SYNC
327			t[i].rt = rt;
328			t[i].master = master_time_stamp;
329			t[i].diff = delta;
330			t[i].lat = adjust_latency/4;
331#endif
332		}
333	}
334	spin_unlock_irqrestore(&itc_sync_lock, flags);
335
336#if DEBUG_ITC_SYNC
337	for (i = 0; i < NUM_ROUNDS; ++i)
338		printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
339		       t[i].rt, t[i].master, t[i].diff, t[i].lat);
340#endif
341
342	printk(KERN_INFO "CPU %d: synchronized ITC with CPU %u (last diff %ld cycles, "
343	       "maxerr %lu cycles)\n", smp_processor_id(), master, delta, rt);
344}
345
346/*
347 * Ideally sets up per-cpu profiling hooks.  Doesn't do much now...
348 */
349static inline void smp_setup_percpu_timer(void)
350{
351}
352
353static void
354smp_callin (void)
355{
356	int cpuid, phys_id, itc_master;
357	struct cpuinfo_ia64 *last_cpuinfo, *this_cpuinfo;
358	extern void ia64_init_itm(void);
359	extern volatile int time_keeper_id;
360
361#ifdef CONFIG_PERFMON
362	extern void pfm_init_percpu(void);
363#endif
364
365	cpuid = smp_processor_id();
366	phys_id = hard_smp_processor_id();
367	itc_master = time_keeper_id;
368
369	if (cpu_online(cpuid)) {
370		printk(KERN_ERR "huh, phys CPU#0x%x, CPU#0x%x already present??\n",
371		       phys_id, cpuid);
372		BUG();
373	}
374
375	fix_b0_for_bsp();
376
377	/*
378	 * numa_node_id() works after this.
379	 */
380	set_numa_node(cpu_to_node_map[cpuid]);
381	set_numa_mem(local_memory_node(cpu_to_node_map[cpuid]));
382
383	spin_lock(&vector_lock);
384	/* Setup the per cpu irq handling data structures */
385	__setup_vector_irq(cpuid);
386	notify_cpu_starting(cpuid);
387	set_cpu_online(cpuid, true);
388	per_cpu(cpu_state, cpuid) = CPU_ONLINE;
389	spin_unlock(&vector_lock);
390
391	smp_setup_percpu_timer();
392
393	ia64_mca_cmc_vector_setup();	/* Setup vector on AP */
394
395#ifdef CONFIG_PERFMON
396	pfm_init_percpu();
397#endif
398
399	local_irq_enable();
400
401	if (!(sal_platform_features & IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT)) {
402		/*
403		 * Synchronize the ITC with the BP.  Need to do this after irqs are
404		 * enabled because ia64_sync_itc() calls smp_call_function_single(), which
405		 * calls spin_unlock_bh(), which calls spin_unlock_bh(), which calls
406		 * local_bh_enable(), which bugs out if irqs are not enabled...
407		 */
408		Dprintk("Going to syncup ITC with ITC Master.\n");
409		ia64_sync_itc(itc_master);
410	}
411
412	/*
413	 * Get our bogomips.
414	 */
415	ia64_init_itm();
416
417	/*
418	 * Delay calibration can be skipped if new processor is identical to the
419	 * previous processor.
420	 */
421	last_cpuinfo = cpu_data(cpuid - 1);
422	this_cpuinfo = local_cpu_data;
423	if (last_cpuinfo->itc_freq != this_cpuinfo->itc_freq ||
424	    last_cpuinfo->proc_freq != this_cpuinfo->proc_freq ||
425	    last_cpuinfo->features != this_cpuinfo->features ||
426	    last_cpuinfo->revision != this_cpuinfo->revision ||
427	    last_cpuinfo->family != this_cpuinfo->family ||
428	    last_cpuinfo->archrev != this_cpuinfo->archrev ||
429	    last_cpuinfo->model != this_cpuinfo->model)
430		calibrate_delay();
431	local_cpu_data->loops_per_jiffy = loops_per_jiffy;
432
433	/*
434	 * Allow the master to continue.
435	 */
436	cpumask_set_cpu(cpuid, &cpu_callin_map);
437	Dprintk("Stack on CPU %d at about %p\n",cpuid, &cpuid);
438}
439
440
441/*
442 * Activate a secondary processor.  head.S calls this.
443 */
444int
445start_secondary (void *unused)
446{
447	/* Early console may use I/O ports */
448	ia64_set_kr(IA64_KR_IO_BASE, __pa(ia64_iobase));
449#ifndef CONFIG_PRINTK_TIME
450	Dprintk("start_secondary: starting CPU 0x%x\n", hard_smp_processor_id());
451#endif
452	efi_map_pal_code();
453	cpu_init();
454	preempt_disable();
455	smp_callin();
456
457	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
458	return 0;
459}
460
461static int
462do_boot_cpu (int sapicid, int cpu, struct task_struct *idle)
463{
464	int timeout;
465
466	task_for_booting_cpu = idle;
467	Dprintk("Sending wakeup vector %lu to AP 0x%x/0x%x.\n", ap_wakeup_vector, cpu, sapicid);
468
469	set_brendez_area(cpu);
470	platform_send_ipi(cpu, ap_wakeup_vector, IA64_IPI_DM_INT, 0);
471
472	/*
473	 * Wait 10s total for the AP to start
474	 */
475	Dprintk("Waiting on callin_map ...");
476	for (timeout = 0; timeout < 100000; timeout++) {
477		if (cpumask_test_cpu(cpu, &cpu_callin_map))
478			break;  /* It has booted */
479		barrier(); /* Make sure we re-read cpu_callin_map */
480		udelay(100);
481	}
482	Dprintk("\n");
483
484	if (!cpumask_test_cpu(cpu, &cpu_callin_map)) {
485		printk(KERN_ERR "Processor 0x%x/0x%x is stuck.\n", cpu, sapicid);
486		ia64_cpu_to_sapicid[cpu] = -1;
487		set_cpu_online(cpu, false);  /* was set in smp_callin() */
488		return -EINVAL;
489	}
490	return 0;
491}
492
493static int __init
494decay (char *str)
495{
496	int ticks;
497	get_option (&str, &ticks);
498	return 1;
499}
500
501__setup("decay=", decay);
502
503/*
504 * Initialize the logical CPU number to SAPICID mapping
505 */
506void __init
507smp_build_cpu_map (void)
508{
509	int sapicid, cpu, i;
510	int boot_cpu_id = hard_smp_processor_id();
511
512	for (cpu = 0; cpu < NR_CPUS; cpu++) {
513		ia64_cpu_to_sapicid[cpu] = -1;
514	}
515
516	ia64_cpu_to_sapicid[0] = boot_cpu_id;
517	init_cpu_present(cpumask_of(0));
518	set_cpu_possible(0, true);
519	for (cpu = 1, i = 0; i < smp_boot_data.cpu_count; i++) {
520		sapicid = smp_boot_data.cpu_phys_id[i];
521		if (sapicid == boot_cpu_id)
522			continue;
523		set_cpu_present(cpu, true);
524		set_cpu_possible(cpu, true);
525		ia64_cpu_to_sapicid[cpu] = sapicid;
526		cpu++;
527	}
528}
529
530/*
531 * Cycle through the APs sending Wakeup IPIs to boot each.
532 */
533void __init
534smp_prepare_cpus (unsigned int max_cpus)
535{
536	int boot_cpu_id = hard_smp_processor_id();
537
538	/*
539	 * Initialize the per-CPU profiling counter/multiplier
540	 */
541
542	smp_setup_percpu_timer();
543
544	cpumask_set_cpu(0, &cpu_callin_map);
545
546	local_cpu_data->loops_per_jiffy = loops_per_jiffy;
547	ia64_cpu_to_sapicid[0] = boot_cpu_id;
548
549	printk(KERN_INFO "Boot processor id 0x%x/0x%x\n", 0, boot_cpu_id);
550
551	current_thread_info()->cpu = 0;
552
553	/*
554	 * If SMP should be disabled, then really disable it!
555	 */
556	if (!max_cpus) {
557		printk(KERN_INFO "SMP mode deactivated.\n");
558		init_cpu_online(cpumask_of(0));
559		init_cpu_present(cpumask_of(0));
560		init_cpu_possible(cpumask_of(0));
561		return;
562	}
563}
564
565void smp_prepare_boot_cpu(void)
566{
567	set_cpu_online(smp_processor_id(), true);
568	cpumask_set_cpu(smp_processor_id(), &cpu_callin_map);
569	set_numa_node(cpu_to_node_map[smp_processor_id()]);
570	per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE;
571}
572
573#ifdef CONFIG_HOTPLUG_CPU
574static inline void
575clear_cpu_sibling_map(int cpu)
576{
577	int i;
578
579	for_each_cpu(i, &per_cpu(cpu_sibling_map, cpu))
580		cpumask_clear_cpu(cpu, &per_cpu(cpu_sibling_map, i));
581	for_each_cpu(i, &cpu_core_map[cpu])
582		cpumask_clear_cpu(cpu, &cpu_core_map[i]);
583
584	per_cpu(cpu_sibling_map, cpu) = cpu_core_map[cpu] = CPU_MASK_NONE;
585}
586
587static void
588remove_siblinginfo(int cpu)
589{
590	int last = 0;
591
592	if (cpu_data(cpu)->threads_per_core == 1 &&
593	    cpu_data(cpu)->cores_per_socket == 1) {
594		cpumask_clear_cpu(cpu, &cpu_core_map[cpu]);
595		cpumask_clear_cpu(cpu, &per_cpu(cpu_sibling_map, cpu));
596		return;
597	}
598
599	last = (cpumask_weight(&cpu_core_map[cpu]) == 1 ? 1 : 0);
600
601	/* remove it from all sibling map's */
602	clear_cpu_sibling_map(cpu);
603}
604
605extern void fixup_irqs(void);
606
607int migrate_platform_irqs(unsigned int cpu)
608{
609	int new_cpei_cpu;
610	struct irq_data *data = NULL;
611	const struct cpumask *mask;
612	int 		retval = 0;
613
614	/*
615	 * dont permit CPEI target to removed.
616	 */
617	if (cpe_vector > 0 && is_cpu_cpei_target(cpu)) {
618		printk ("CPU (%d) is CPEI Target\n", cpu);
619		if (can_cpei_retarget()) {
620			/*
621			 * Now re-target the CPEI to a different processor
622			 */
623			new_cpei_cpu = cpumask_any(cpu_online_mask);
624			mask = cpumask_of(new_cpei_cpu);
625			set_cpei_target_cpu(new_cpei_cpu);
626			data = irq_get_irq_data(ia64_cpe_irq);
627			/*
628			 * Switch for now, immediately, we need to do fake intr
629			 * as other interrupts, but need to study CPEI behaviour with
630			 * polling before making changes.
631			 */
632			if (data && data->chip) {
633				data->chip->irq_disable(data);
634				data->chip->irq_set_affinity(data, mask, false);
635				data->chip->irq_enable(data);
636				printk ("Re-targeting CPEI to cpu %d\n", new_cpei_cpu);
637			}
638		}
639		if (!data) {
640			printk ("Unable to retarget CPEI, offline cpu [%d] failed\n", cpu);
641			retval = -EBUSY;
642		}
643	}
644	return retval;
645}
646
647/* must be called with cpucontrol mutex held */
648int __cpu_disable(void)
649{
650	int cpu = smp_processor_id();
651
652	/*
653	 * dont permit boot processor for now
654	 */
655	if (cpu == 0 && !bsp_remove_ok) {
656		printk ("Your platform does not support removal of BSP\n");
657		return (-EBUSY);
658	}
659
660	if (ia64_platform_is("sn2")) {
661		if (!sn_cpu_disable_allowed(cpu))
662			return -EBUSY;
663	}
664
665	set_cpu_online(cpu, false);
666
667	if (migrate_platform_irqs(cpu)) {
668		set_cpu_online(cpu, true);
669		return -EBUSY;
670	}
671
672	remove_siblinginfo(cpu);
673	fixup_irqs();
674	local_flush_tlb_all();
675	cpumask_clear_cpu(cpu, &cpu_callin_map);
676	return 0;
677}
678
679void __cpu_die(unsigned int cpu)
680{
681	unsigned int i;
682
683	for (i = 0; i < 100; i++) {
684		/* They ack this in play_dead by setting CPU_DEAD */
685		if (per_cpu(cpu_state, cpu) == CPU_DEAD)
686		{
687			printk ("CPU %d is now offline\n", cpu);
688			return;
689		}
690		msleep(100);
691	}
692 	printk(KERN_ERR "CPU %u didn't die...\n", cpu);
693}
694#endif /* CONFIG_HOTPLUG_CPU */
695
696void
697smp_cpus_done (unsigned int dummy)
698{
699	int cpu;
700	unsigned long bogosum = 0;
701
702	/*
703	 * Allow the user to impress friends.
704	 */
705
706	for_each_online_cpu(cpu) {
707		bogosum += cpu_data(cpu)->loops_per_jiffy;
708	}
709
710	printk(KERN_INFO "Total of %d processors activated (%lu.%02lu BogoMIPS).\n",
711	       (int)num_online_cpus(), bogosum/(500000/HZ), (bogosum/(5000/HZ))%100);
712}
713
714static inline void set_cpu_sibling_map(int cpu)
715{
716	int i;
717
718	for_each_online_cpu(i) {
719		if ((cpu_data(cpu)->socket_id == cpu_data(i)->socket_id)) {
720			cpumask_set_cpu(i, &cpu_core_map[cpu]);
721			cpumask_set_cpu(cpu, &cpu_core_map[i]);
722			if (cpu_data(cpu)->core_id == cpu_data(i)->core_id) {
723				cpumask_set_cpu(i,
724						&per_cpu(cpu_sibling_map, cpu));
725				cpumask_set_cpu(cpu,
726						&per_cpu(cpu_sibling_map, i));
727			}
728		}
729	}
730}
731
732int
733__cpu_up(unsigned int cpu, struct task_struct *tidle)
734{
735	int ret;
736	int sapicid;
737
738	sapicid = ia64_cpu_to_sapicid[cpu];
739	if (sapicid == -1)
740		return -EINVAL;
741
742	/*
743	 * Already booted cpu? not valid anymore since we dont
744	 * do idle loop tightspin anymore.
745	 */
746	if (cpumask_test_cpu(cpu, &cpu_callin_map))
747		return -EINVAL;
748
749	per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
750	/* Processor goes to start_secondary(), sets online flag */
751	ret = do_boot_cpu(sapicid, cpu, tidle);
752	if (ret < 0)
753		return ret;
754
755	if (cpu_data(cpu)->threads_per_core == 1 &&
756	    cpu_data(cpu)->cores_per_socket == 1) {
757		cpumask_set_cpu(cpu, &per_cpu(cpu_sibling_map, cpu));
758		cpumask_set_cpu(cpu, &cpu_core_map[cpu]);
759		return 0;
760	}
761
762	set_cpu_sibling_map(cpu);
763
764	return 0;
765}
766
767/*
768 * Assume that CPUs have been discovered by some platform-dependent interface.  For
769 * SoftSDV/Lion, that would be ACPI.
770 *
771 * Setup of the IPI irq handler is done in irq.c:init_IRQ_SMP().
772 */
773void __init
774init_smp_config(void)
775{
776	struct fptr {
777		unsigned long fp;
778		unsigned long gp;
779	} *ap_startup;
780	long sal_ret;
781
782	/* Tell SAL where to drop the APs.  */
783	ap_startup = (struct fptr *) start_ap;
784	sal_ret = ia64_sal_set_vectors(SAL_VECTOR_OS_BOOT_RENDEZ,
785				       ia64_tpa(ap_startup->fp), ia64_tpa(ap_startup->gp), 0, 0, 0, 0);
786	if (sal_ret < 0)
787		printk(KERN_ERR "SMP: Can't set SAL AP Boot Rendezvous: %s\n",
788		       ia64_sal_strerror(sal_ret));
789}
790
791/*
792 * identify_siblings(cpu) gets called from identify_cpu. This populates the 
793 * information related to logical execution units in per_cpu_data structure.
794 */
795void identify_siblings(struct cpuinfo_ia64 *c)
796{
797	long status;
798	u16 pltid;
799	pal_logical_to_physical_t info;
800
801	status = ia64_pal_logical_to_phys(-1, &info);
802	if (status != PAL_STATUS_SUCCESS) {
803		if (status != PAL_STATUS_UNIMPLEMENTED) {
804			printk(KERN_ERR
805				"ia64_pal_logical_to_phys failed with %ld\n",
806				status);
807			return;
808		}
809
810		info.overview_ppid = 0;
811		info.overview_cpp  = 1;
812		info.overview_tpc  = 1;
813	}
814
815	status = ia64_sal_physical_id_info(&pltid);
816	if (status != PAL_STATUS_SUCCESS) {
817		if (status != PAL_STATUS_UNIMPLEMENTED)
818			printk(KERN_ERR
819				"ia64_sal_pltid failed with %ld\n",
820				status);
821		return;
822	}
823
824	c->socket_id =  (pltid << 8) | info.overview_ppid;
825
826	if (info.overview_cpp == 1 && info.overview_tpc == 1)
827		return;
828
829	c->cores_per_socket = info.overview_cpp;
830	c->threads_per_core = info.overview_tpc;
831	c->num_log = info.overview_num_log;
832
833	c->core_id = info.log1_cid;
834	c->thread_id = info.log1_tid;
835}
836
837/*
838 * returns non zero, if multi-threading is enabled
839 * on at least one physical package. Due to hotplug cpu
840 * and (maxcpus=), all threads may not necessarily be enabled
841 * even though the processor supports multi-threading.
842 */
843int is_multithreading_enabled(void)
844{
845	int i, j;
846
847	for_each_present_cpu(i) {
848		for_each_present_cpu(j) {
849			if (j == i)
850				continue;
851			if ((cpu_data(j)->socket_id == cpu_data(i)->socket_id)) {
852				if (cpu_data(j)->core_id == cpu_data(i)->core_id)
853					return 1;
854			}
855		}
856	}
857	return 0;
858}
859EXPORT_SYMBOL_GPL(is_multithreading_enabled);