Linux Audio

Check our new training course

Loading...
v5.9
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 *  linux/arch/arm/mm/ioremap.c
  4 *
  5 * Re-map IO memory to kernel address space so that we can access it.
  6 *
  7 * (C) Copyright 1995 1996 Linus Torvalds
  8 *
  9 * Hacked for ARM by Phil Blundell <philb@gnu.org>
 10 * Hacked to allow all architectures to build, and various cleanups
 11 * by Russell King
 12 *
 13 * This allows a driver to remap an arbitrary region of bus memory into
 14 * virtual space.  One should *only* use readl, writel, memcpy_toio and
 15 * so on with such remapped areas.
 16 *
 17 * Because the ARM only has a 32-bit address space we can't address the
 18 * whole of the (physical) PCI space at once.  PCI huge-mode addressing
 19 * allows us to circumvent this restriction by splitting PCI space into
 20 * two 2GB chunks and mapping only one at a time into processor memory.
 21 * We use MMU protection domains to trap any attempt to access the bank
 22 * that is not currently mapped.  (This isn't fully implemented yet.)
 23 */
 24#include <linux/module.h>
 25#include <linux/errno.h>
 26#include <linux/mm.h>
 27#include <linux/vmalloc.h>
 28#include <linux/io.h>
 29#include <linux/sizes.h>
 30
 31#include <asm/cp15.h>
 32#include <asm/cputype.h>
 33#include <asm/cacheflush.h>
 34#include <asm/early_ioremap.h>
 35#include <asm/mmu_context.h>
 36#include <asm/pgalloc.h>
 37#include <asm/tlbflush.h>
 38#include <asm/system_info.h>
 39
 40#include <asm/mach/map.h>
 41#include <asm/mach/pci.h>
 42#include "mm.h"
 43
 44
 45LIST_HEAD(static_vmlist);
 46
 47static struct static_vm *find_static_vm_paddr(phys_addr_t paddr,
 48			size_t size, unsigned int mtype)
 49{
 50	struct static_vm *svm;
 51	struct vm_struct *vm;
 52
 53	list_for_each_entry(svm, &static_vmlist, list) {
 54		vm = &svm->vm;
 55		if (!(vm->flags & VM_ARM_STATIC_MAPPING))
 56			continue;
 57		if ((vm->flags & VM_ARM_MTYPE_MASK) != VM_ARM_MTYPE(mtype))
 58			continue;
 59
 60		if (vm->phys_addr > paddr ||
 61			paddr + size - 1 > vm->phys_addr + vm->size - 1)
 62			continue;
 63
 64		return svm;
 65	}
 66
 67	return NULL;
 68}
 69
 70struct static_vm *find_static_vm_vaddr(void *vaddr)
 71{
 72	struct static_vm *svm;
 73	struct vm_struct *vm;
 74
 75	list_for_each_entry(svm, &static_vmlist, list) {
 76		vm = &svm->vm;
 77
 78		/* static_vmlist is ascending order */
 79		if (vm->addr > vaddr)
 80			break;
 81
 82		if (vm->addr <= vaddr && vm->addr + vm->size > vaddr)
 83			return svm;
 84	}
 85
 86	return NULL;
 87}
 88
 89void __init add_static_vm_early(struct static_vm *svm)
 90{
 91	struct static_vm *curr_svm;
 92	struct vm_struct *vm;
 93	void *vaddr;
 94
 95	vm = &svm->vm;
 96	vm_area_add_early(vm);
 97	vaddr = vm->addr;
 98
 99	list_for_each_entry(curr_svm, &static_vmlist, list) {
100		vm = &curr_svm->vm;
101
102		if (vm->addr > vaddr)
103			break;
104	}
105	list_add_tail(&svm->list, &curr_svm->list);
106}
107
108int ioremap_page(unsigned long virt, unsigned long phys,
109		 const struct mem_type *mtype)
110{
111	return ioremap_page_range(virt, virt + PAGE_SIZE, phys,
112				  __pgprot(mtype->prot_pte));
113}
114EXPORT_SYMBOL(ioremap_page);
115
116void __check_vmalloc_seq(struct mm_struct *mm)
117{
118	unsigned int seq;
119
120	do {
121		seq = init_mm.context.vmalloc_seq;
122		memcpy(pgd_offset(mm, VMALLOC_START),
123		       pgd_offset_k(VMALLOC_START),
124		       sizeof(pgd_t) * (pgd_index(VMALLOC_END) -
125					pgd_index(VMALLOC_START)));
126		mm->context.vmalloc_seq = seq;
127	} while (seq != init_mm.context.vmalloc_seq);
128}
129
130#if !defined(CONFIG_SMP) && !defined(CONFIG_ARM_LPAE)
131/*
132 * Section support is unsafe on SMP - If you iounmap and ioremap a region,
133 * the other CPUs will not see this change until their next context switch.
134 * Meanwhile, (eg) if an interrupt comes in on one of those other CPUs
135 * which requires the new ioremap'd region to be referenced, the CPU will
136 * reference the _old_ region.
137 *
138 * Note that get_vm_area_caller() allocates a guard 4K page, so we need to
139 * mask the size back to 1MB aligned or we will overflow in the loop below.
140 */
141static void unmap_area_sections(unsigned long virt, unsigned long size)
142{
143	unsigned long addr = virt, end = virt + (size & ~(SZ_1M - 1));
144	pmd_t *pmdp = pmd_off_k(addr);
145
 
 
 
 
 
 
146	do {
147		pmd_t pmd = *pmdp;
148
149		if (!pmd_none(pmd)) {
150			/*
151			 * Clear the PMD from the page table, and
152			 * increment the vmalloc sequence so others
153			 * notice this change.
154			 *
155			 * Note: this is still racy on SMP machines.
156			 */
157			pmd_clear(pmdp);
158			init_mm.context.vmalloc_seq++;
159
160			/*
161			 * Free the page table, if there was one.
162			 */
163			if ((pmd_val(pmd) & PMD_TYPE_MASK) == PMD_TYPE_TABLE)
164				pte_free_kernel(&init_mm, pmd_page_vaddr(pmd));
165		}
166
167		addr += PMD_SIZE;
168		pmdp += 2;
169	} while (addr < end);
170
171	/*
172	 * Ensure that the active_mm is up to date - we want to
173	 * catch any use-after-iounmap cases.
174	 */
175	if (current->active_mm->context.vmalloc_seq != init_mm.context.vmalloc_seq)
176		__check_vmalloc_seq(current->active_mm);
177
178	flush_tlb_kernel_range(virt, end);
179}
180
181static int
182remap_area_sections(unsigned long virt, unsigned long pfn,
183		    size_t size, const struct mem_type *type)
184{
185	unsigned long addr = virt, end = virt + size;
186	pmd_t *pmd = pmd_off_k(addr);
 
 
187
188	/*
189	 * Remove and free any PTE-based mapping, and
190	 * sync the current kernel mapping.
191	 */
192	unmap_area_sections(virt, size);
193
 
 
 
194	do {
195		pmd[0] = __pmd(__pfn_to_phys(pfn) | type->prot_sect);
196		pfn += SZ_1M >> PAGE_SHIFT;
197		pmd[1] = __pmd(__pfn_to_phys(pfn) | type->prot_sect);
198		pfn += SZ_1M >> PAGE_SHIFT;
199		flush_pmd_entry(pmd);
200
201		addr += PMD_SIZE;
202		pmd += 2;
203	} while (addr < end);
204
205	return 0;
206}
207
208static int
209remap_area_supersections(unsigned long virt, unsigned long pfn,
210			 size_t size, const struct mem_type *type)
211{
212	unsigned long addr = virt, end = virt + size;
213	pmd_t *pmd = pmd_off_k(addr);
 
 
214
215	/*
216	 * Remove and free any PTE-based mapping, and
217	 * sync the current kernel mapping.
218	 */
219	unmap_area_sections(virt, size);
 
 
 
 
220	do {
221		unsigned long super_pmd_val, i;
222
223		super_pmd_val = __pfn_to_phys(pfn) | type->prot_sect |
224				PMD_SECT_SUPER;
225		super_pmd_val |= ((pfn >> (32 - PAGE_SHIFT)) & 0xf) << 20;
226
227		for (i = 0; i < 8; i++) {
228			pmd[0] = __pmd(super_pmd_val);
229			pmd[1] = __pmd(super_pmd_val);
230			flush_pmd_entry(pmd);
231
232			addr += PMD_SIZE;
233			pmd += 2;
234		}
235
236		pfn += SUPERSECTION_SIZE >> PAGE_SHIFT;
237	} while (addr < end);
238
239	return 0;
240}
241#endif
242
243static void __iomem * __arm_ioremap_pfn_caller(unsigned long pfn,
244	unsigned long offset, size_t size, unsigned int mtype, void *caller)
245{
246	const struct mem_type *type;
247	int err;
248	unsigned long addr;
249	struct vm_struct *area;
250	phys_addr_t paddr = __pfn_to_phys(pfn);
251
252#ifndef CONFIG_ARM_LPAE
253	/*
254	 * High mappings must be supersection aligned
255	 */
256	if (pfn >= 0x100000 && (paddr & ~SUPERSECTION_MASK))
257		return NULL;
258#endif
259
260	type = get_mem_type(mtype);
261	if (!type)
262		return NULL;
263
264	/*
265	 * Page align the mapping size, taking account of any offset.
266	 */
267	size = PAGE_ALIGN(offset + size);
268
269	/*
270	 * Try to reuse one of the static mapping whenever possible.
271	 */
272	if (size && !(sizeof(phys_addr_t) == 4 && pfn >= 0x100000)) {
273		struct static_vm *svm;
274
275		svm = find_static_vm_paddr(paddr, size, mtype);
276		if (svm) {
277			addr = (unsigned long)svm->vm.addr;
278			addr += paddr - svm->vm.phys_addr;
279			return (void __iomem *) (offset + addr);
280		}
281	}
282
283	/*
284	 * Don't allow RAM to be mapped with mismatched attributes - this
285	 * causes problems with ARMv6+
286	 */
287	if (WARN_ON(pfn_valid(pfn) && mtype != MT_MEMORY_RW))
288		return NULL;
289
290	area = get_vm_area_caller(size, VM_IOREMAP, caller);
291 	if (!area)
292 		return NULL;
293 	addr = (unsigned long)area->addr;
294	area->phys_addr = paddr;
295
296#if !defined(CONFIG_SMP) && !defined(CONFIG_ARM_LPAE)
297	if (DOMAIN_IO == 0 &&
298	    (((cpu_architecture() >= CPU_ARCH_ARMv6) && (get_cr() & CR_XP)) ||
299	       cpu_is_xsc3()) && pfn >= 0x100000 &&
300	       !((paddr | size | addr) & ~SUPERSECTION_MASK)) {
301		area->flags |= VM_ARM_SECTION_MAPPING;
302		err = remap_area_supersections(addr, pfn, size, type);
303	} else if (!((paddr | size | addr) & ~PMD_MASK)) {
304		area->flags |= VM_ARM_SECTION_MAPPING;
305		err = remap_area_sections(addr, pfn, size, type);
306	} else
307#endif
308		err = ioremap_page_range(addr, addr + size, paddr,
309					 __pgprot(type->prot_pte));
310
311	if (err) {
312 		vunmap((void *)addr);
313 		return NULL;
314 	}
315
316	flush_cache_vmap(addr, addr + size);
317	return (void __iomem *) (offset + addr);
318}
319
320void __iomem *__arm_ioremap_caller(phys_addr_t phys_addr, size_t size,
321	unsigned int mtype, void *caller)
322{
323	phys_addr_t last_addr;
324 	unsigned long offset = phys_addr & ~PAGE_MASK;
325 	unsigned long pfn = __phys_to_pfn(phys_addr);
326
327 	/*
328 	 * Don't allow wraparound or zero size
329	 */
330	last_addr = phys_addr + size - 1;
331	if (!size || last_addr < phys_addr)
332		return NULL;
333
334	return __arm_ioremap_pfn_caller(pfn, offset, size, mtype,
335			caller);
336}
337
338/*
339 * Remap an arbitrary physical address space into the kernel virtual
340 * address space. Needed when the kernel wants to access high addresses
341 * directly.
342 *
343 * NOTE! We need to allow non-page-aligned mappings too: we will obviously
344 * have to convert them into an offset in a page-aligned mapping, but the
345 * caller shouldn't need to know that small detail.
346 */
347void __iomem *
348__arm_ioremap_pfn(unsigned long pfn, unsigned long offset, size_t size,
349		  unsigned int mtype)
350{
351	return __arm_ioremap_pfn_caller(pfn, offset, size, mtype,
352					__builtin_return_address(0));
353}
354EXPORT_SYMBOL(__arm_ioremap_pfn);
355
356void __iomem * (*arch_ioremap_caller)(phys_addr_t, size_t,
357				      unsigned int, void *) =
358	__arm_ioremap_caller;
359
360void __iomem *ioremap(resource_size_t res_cookie, size_t size)
361{
362	return arch_ioremap_caller(res_cookie, size, MT_DEVICE,
363				   __builtin_return_address(0));
364}
365EXPORT_SYMBOL(ioremap);
366
367void __iomem *ioremap_cache(resource_size_t res_cookie, size_t size)
 
 
 
368{
369	return arch_ioremap_caller(res_cookie, size, MT_DEVICE_CACHED,
370				   __builtin_return_address(0));
371}
372EXPORT_SYMBOL(ioremap_cache);
 
373
374void __iomem *ioremap_wc(resource_size_t res_cookie, size_t size)
375{
376	return arch_ioremap_caller(res_cookie, size, MT_DEVICE_WC,
377				   __builtin_return_address(0));
378}
379EXPORT_SYMBOL(ioremap_wc);
380
381/*
382 * Remap an arbitrary physical address space into the kernel virtual
383 * address space as memory. Needed when the kernel wants to execute
384 * code in external memory. This is needed for reprogramming source
385 * clocks that would affect normal memory for example. Please see
386 * CONFIG_GENERIC_ALLOCATOR for allocating external memory.
387 */
388void __iomem *
389__arm_ioremap_exec(phys_addr_t phys_addr, size_t size, bool cached)
390{
391	unsigned int mtype;
392
393	if (cached)
394		mtype = MT_MEMORY_RWX;
395	else
396		mtype = MT_MEMORY_RWX_NONCACHED;
397
398	return __arm_ioremap_caller(phys_addr, size, mtype,
399			__builtin_return_address(0));
400}
401
402void *arch_memremap_wb(phys_addr_t phys_addr, size_t size)
403{
404	return (__force void *)arch_ioremap_caller(phys_addr, size,
405						   MT_MEMORY_RW,
406						   __builtin_return_address(0));
407}
408
409void __iounmap(volatile void __iomem *io_addr)
410{
411	void *addr = (void *)(PAGE_MASK & (unsigned long)io_addr);
412	struct static_vm *svm;
413
414	/* If this is a static mapping, we must leave it alone */
415	svm = find_static_vm_vaddr(addr);
416	if (svm)
417		return;
418
419#if !defined(CONFIG_SMP) && !defined(CONFIG_ARM_LPAE)
420	{
421		struct vm_struct *vm;
422
423		vm = find_vm_area(addr);
424
425		/*
426		 * If this is a section based mapping we need to handle it
427		 * specially as the VM subsystem does not know how to handle
428		 * such a beast.
429		 */
430		if (vm && (vm->flags & VM_ARM_SECTION_MAPPING))
431			unmap_area_sections((unsigned long)vm->addr, vm->size);
432	}
433#endif
434
435	vunmap(addr);
436}
437
438void (*arch_iounmap)(volatile void __iomem *) = __iounmap;
439
440void iounmap(volatile void __iomem *cookie)
441{
442	arch_iounmap(cookie);
443}
444EXPORT_SYMBOL(iounmap);
445
446#ifdef CONFIG_PCI
447static int pci_ioremap_mem_type = MT_DEVICE;
448
449void pci_ioremap_set_mem_type(int mem_type)
450{
451	pci_ioremap_mem_type = mem_type;
452}
453
454int pci_ioremap_io(unsigned int offset, phys_addr_t phys_addr)
455{
456	BUG_ON(offset + SZ_64K - 1 > IO_SPACE_LIMIT);
457
458	return ioremap_page_range(PCI_IO_VIRT_BASE + offset,
459				  PCI_IO_VIRT_BASE + offset + SZ_64K,
460				  phys_addr,
461				  __pgprot(get_mem_type(pci_ioremap_mem_type)->prot_pte));
462}
463EXPORT_SYMBOL_GPL(pci_ioremap_io);
464
465void __iomem *pci_remap_cfgspace(resource_size_t res_cookie, size_t size)
466{
467	return arch_ioremap_caller(res_cookie, size, MT_UNCACHED,
468				   __builtin_return_address(0));
469}
470EXPORT_SYMBOL_GPL(pci_remap_cfgspace);
471#endif
472
473/*
474 * Must be called after early_fixmap_init
475 */
476void __init early_ioremap_init(void)
477{
478	early_ioremap_setup();
479}
v4.17
 
  1/*
  2 *  linux/arch/arm/mm/ioremap.c
  3 *
  4 * Re-map IO memory to kernel address space so that we can access it.
  5 *
  6 * (C) Copyright 1995 1996 Linus Torvalds
  7 *
  8 * Hacked for ARM by Phil Blundell <philb@gnu.org>
  9 * Hacked to allow all architectures to build, and various cleanups
 10 * by Russell King
 11 *
 12 * This allows a driver to remap an arbitrary region of bus memory into
 13 * virtual space.  One should *only* use readl, writel, memcpy_toio and
 14 * so on with such remapped areas.
 15 *
 16 * Because the ARM only has a 32-bit address space we can't address the
 17 * whole of the (physical) PCI space at once.  PCI huge-mode addressing
 18 * allows us to circumvent this restriction by splitting PCI space into
 19 * two 2GB chunks and mapping only one at a time into processor memory.
 20 * We use MMU protection domains to trap any attempt to access the bank
 21 * that is not currently mapped.  (This isn't fully implemented yet.)
 22 */
 23#include <linux/module.h>
 24#include <linux/errno.h>
 25#include <linux/mm.h>
 26#include <linux/vmalloc.h>
 27#include <linux/io.h>
 28#include <linux/sizes.h>
 29
 30#include <asm/cp15.h>
 31#include <asm/cputype.h>
 32#include <asm/cacheflush.h>
 33#include <asm/early_ioremap.h>
 34#include <asm/mmu_context.h>
 35#include <asm/pgalloc.h>
 36#include <asm/tlbflush.h>
 37#include <asm/system_info.h>
 38
 39#include <asm/mach/map.h>
 40#include <asm/mach/pci.h>
 41#include "mm.h"
 42
 43
 44LIST_HEAD(static_vmlist);
 45
 46static struct static_vm *find_static_vm_paddr(phys_addr_t paddr,
 47			size_t size, unsigned int mtype)
 48{
 49	struct static_vm *svm;
 50	struct vm_struct *vm;
 51
 52	list_for_each_entry(svm, &static_vmlist, list) {
 53		vm = &svm->vm;
 54		if (!(vm->flags & VM_ARM_STATIC_MAPPING))
 55			continue;
 56		if ((vm->flags & VM_ARM_MTYPE_MASK) != VM_ARM_MTYPE(mtype))
 57			continue;
 58
 59		if (vm->phys_addr > paddr ||
 60			paddr + size - 1 > vm->phys_addr + vm->size - 1)
 61			continue;
 62
 63		return svm;
 64	}
 65
 66	return NULL;
 67}
 68
 69struct static_vm *find_static_vm_vaddr(void *vaddr)
 70{
 71	struct static_vm *svm;
 72	struct vm_struct *vm;
 73
 74	list_for_each_entry(svm, &static_vmlist, list) {
 75		vm = &svm->vm;
 76
 77		/* static_vmlist is ascending order */
 78		if (vm->addr > vaddr)
 79			break;
 80
 81		if (vm->addr <= vaddr && vm->addr + vm->size > vaddr)
 82			return svm;
 83	}
 84
 85	return NULL;
 86}
 87
 88void __init add_static_vm_early(struct static_vm *svm)
 89{
 90	struct static_vm *curr_svm;
 91	struct vm_struct *vm;
 92	void *vaddr;
 93
 94	vm = &svm->vm;
 95	vm_area_add_early(vm);
 96	vaddr = vm->addr;
 97
 98	list_for_each_entry(curr_svm, &static_vmlist, list) {
 99		vm = &curr_svm->vm;
100
101		if (vm->addr > vaddr)
102			break;
103	}
104	list_add_tail(&svm->list, &curr_svm->list);
105}
106
107int ioremap_page(unsigned long virt, unsigned long phys,
108		 const struct mem_type *mtype)
109{
110	return ioremap_page_range(virt, virt + PAGE_SIZE, phys,
111				  __pgprot(mtype->prot_pte));
112}
113EXPORT_SYMBOL(ioremap_page);
114
115void __check_vmalloc_seq(struct mm_struct *mm)
116{
117	unsigned int seq;
118
119	do {
120		seq = init_mm.context.vmalloc_seq;
121		memcpy(pgd_offset(mm, VMALLOC_START),
122		       pgd_offset_k(VMALLOC_START),
123		       sizeof(pgd_t) * (pgd_index(VMALLOC_END) -
124					pgd_index(VMALLOC_START)));
125		mm->context.vmalloc_seq = seq;
126	} while (seq != init_mm.context.vmalloc_seq);
127}
128
129#if !defined(CONFIG_SMP) && !defined(CONFIG_ARM_LPAE)
130/*
131 * Section support is unsafe on SMP - If you iounmap and ioremap a region,
132 * the other CPUs will not see this change until their next context switch.
133 * Meanwhile, (eg) if an interrupt comes in on one of those other CPUs
134 * which requires the new ioremap'd region to be referenced, the CPU will
135 * reference the _old_ region.
136 *
137 * Note that get_vm_area_caller() allocates a guard 4K page, so we need to
138 * mask the size back to 1MB aligned or we will overflow in the loop below.
139 */
140static void unmap_area_sections(unsigned long virt, unsigned long size)
141{
142	unsigned long addr = virt, end = virt + (size & ~(SZ_1M - 1));
143	pgd_t *pgd;
144	pud_t *pud;
145	pmd_t *pmdp;
146
147	flush_cache_vunmap(addr, end);
148	pgd = pgd_offset_k(addr);
149	pud = pud_offset(pgd, addr);
150	pmdp = pmd_offset(pud, addr);
151	do {
152		pmd_t pmd = *pmdp;
153
154		if (!pmd_none(pmd)) {
155			/*
156			 * Clear the PMD from the page table, and
157			 * increment the vmalloc sequence so others
158			 * notice this change.
159			 *
160			 * Note: this is still racy on SMP machines.
161			 */
162			pmd_clear(pmdp);
163			init_mm.context.vmalloc_seq++;
164
165			/*
166			 * Free the page table, if there was one.
167			 */
168			if ((pmd_val(pmd) & PMD_TYPE_MASK) == PMD_TYPE_TABLE)
169				pte_free_kernel(&init_mm, pmd_page_vaddr(pmd));
170		}
171
172		addr += PMD_SIZE;
173		pmdp += 2;
174	} while (addr < end);
175
176	/*
177	 * Ensure that the active_mm is up to date - we want to
178	 * catch any use-after-iounmap cases.
179	 */
180	if (current->active_mm->context.vmalloc_seq != init_mm.context.vmalloc_seq)
181		__check_vmalloc_seq(current->active_mm);
182
183	flush_tlb_kernel_range(virt, end);
184}
185
186static int
187remap_area_sections(unsigned long virt, unsigned long pfn,
188		    size_t size, const struct mem_type *type)
189{
190	unsigned long addr = virt, end = virt + size;
191	pgd_t *pgd;
192	pud_t *pud;
193	pmd_t *pmd;
194
195	/*
196	 * Remove and free any PTE-based mapping, and
197	 * sync the current kernel mapping.
198	 */
199	unmap_area_sections(virt, size);
200
201	pgd = pgd_offset_k(addr);
202	pud = pud_offset(pgd, addr);
203	pmd = pmd_offset(pud, addr);
204	do {
205		pmd[0] = __pmd(__pfn_to_phys(pfn) | type->prot_sect);
206		pfn += SZ_1M >> PAGE_SHIFT;
207		pmd[1] = __pmd(__pfn_to_phys(pfn) | type->prot_sect);
208		pfn += SZ_1M >> PAGE_SHIFT;
209		flush_pmd_entry(pmd);
210
211		addr += PMD_SIZE;
212		pmd += 2;
213	} while (addr < end);
214
215	return 0;
216}
217
218static int
219remap_area_supersections(unsigned long virt, unsigned long pfn,
220			 size_t size, const struct mem_type *type)
221{
222	unsigned long addr = virt, end = virt + size;
223	pgd_t *pgd;
224	pud_t *pud;
225	pmd_t *pmd;
226
227	/*
228	 * Remove and free any PTE-based mapping, and
229	 * sync the current kernel mapping.
230	 */
231	unmap_area_sections(virt, size);
232
233	pgd = pgd_offset_k(virt);
234	pud = pud_offset(pgd, addr);
235	pmd = pmd_offset(pud, addr);
236	do {
237		unsigned long super_pmd_val, i;
238
239		super_pmd_val = __pfn_to_phys(pfn) | type->prot_sect |
240				PMD_SECT_SUPER;
241		super_pmd_val |= ((pfn >> (32 - PAGE_SHIFT)) & 0xf) << 20;
242
243		for (i = 0; i < 8; i++) {
244			pmd[0] = __pmd(super_pmd_val);
245			pmd[1] = __pmd(super_pmd_val);
246			flush_pmd_entry(pmd);
247
248			addr += PMD_SIZE;
249			pmd += 2;
250		}
251
252		pfn += SUPERSECTION_SIZE >> PAGE_SHIFT;
253	} while (addr < end);
254
255	return 0;
256}
257#endif
258
259static void __iomem * __arm_ioremap_pfn_caller(unsigned long pfn,
260	unsigned long offset, size_t size, unsigned int mtype, void *caller)
261{
262	const struct mem_type *type;
263	int err;
264	unsigned long addr;
265	struct vm_struct *area;
266	phys_addr_t paddr = __pfn_to_phys(pfn);
267
268#ifndef CONFIG_ARM_LPAE
269	/*
270	 * High mappings must be supersection aligned
271	 */
272	if (pfn >= 0x100000 && (paddr & ~SUPERSECTION_MASK))
273		return NULL;
274#endif
275
276	type = get_mem_type(mtype);
277	if (!type)
278		return NULL;
279
280	/*
281	 * Page align the mapping size, taking account of any offset.
282	 */
283	size = PAGE_ALIGN(offset + size);
284
285	/*
286	 * Try to reuse one of the static mapping whenever possible.
287	 */
288	if (size && !(sizeof(phys_addr_t) == 4 && pfn >= 0x100000)) {
289		struct static_vm *svm;
290
291		svm = find_static_vm_paddr(paddr, size, mtype);
292		if (svm) {
293			addr = (unsigned long)svm->vm.addr;
294			addr += paddr - svm->vm.phys_addr;
295			return (void __iomem *) (offset + addr);
296		}
297	}
298
299	/*
300	 * Don't allow RAM to be mapped with mismatched attributes - this
301	 * causes problems with ARMv6+
302	 */
303	if (WARN_ON(pfn_valid(pfn) && mtype != MT_MEMORY_RW))
304		return NULL;
305
306	area = get_vm_area_caller(size, VM_IOREMAP, caller);
307 	if (!area)
308 		return NULL;
309 	addr = (unsigned long)area->addr;
310	area->phys_addr = paddr;
311
312#if !defined(CONFIG_SMP) && !defined(CONFIG_ARM_LPAE)
313	if (DOMAIN_IO == 0 &&
314	    (((cpu_architecture() >= CPU_ARCH_ARMv6) && (get_cr() & CR_XP)) ||
315	       cpu_is_xsc3()) && pfn >= 0x100000 &&
316	       !((paddr | size | addr) & ~SUPERSECTION_MASK)) {
317		area->flags |= VM_ARM_SECTION_MAPPING;
318		err = remap_area_supersections(addr, pfn, size, type);
319	} else if (!((paddr | size | addr) & ~PMD_MASK)) {
320		area->flags |= VM_ARM_SECTION_MAPPING;
321		err = remap_area_sections(addr, pfn, size, type);
322	} else
323#endif
324		err = ioremap_page_range(addr, addr + size, paddr,
325					 __pgprot(type->prot_pte));
326
327	if (err) {
328 		vunmap((void *)addr);
329 		return NULL;
330 	}
331
332	flush_cache_vmap(addr, addr + size);
333	return (void __iomem *) (offset + addr);
334}
335
336void __iomem *__arm_ioremap_caller(phys_addr_t phys_addr, size_t size,
337	unsigned int mtype, void *caller)
338{
339	phys_addr_t last_addr;
340 	unsigned long offset = phys_addr & ~PAGE_MASK;
341 	unsigned long pfn = __phys_to_pfn(phys_addr);
342
343 	/*
344 	 * Don't allow wraparound or zero size
345	 */
346	last_addr = phys_addr + size - 1;
347	if (!size || last_addr < phys_addr)
348		return NULL;
349
350	return __arm_ioremap_pfn_caller(pfn, offset, size, mtype,
351			caller);
352}
353
354/*
355 * Remap an arbitrary physical address space into the kernel virtual
356 * address space. Needed when the kernel wants to access high addresses
357 * directly.
358 *
359 * NOTE! We need to allow non-page-aligned mappings too: we will obviously
360 * have to convert them into an offset in a page-aligned mapping, but the
361 * caller shouldn't need to know that small detail.
362 */
363void __iomem *
364__arm_ioremap_pfn(unsigned long pfn, unsigned long offset, size_t size,
365		  unsigned int mtype)
366{
367	return __arm_ioremap_pfn_caller(pfn, offset, size, mtype,
368					__builtin_return_address(0));
369}
370EXPORT_SYMBOL(__arm_ioremap_pfn);
371
372void __iomem * (*arch_ioremap_caller)(phys_addr_t, size_t,
373				      unsigned int, void *) =
374	__arm_ioremap_caller;
375
376void __iomem *ioremap(resource_size_t res_cookie, size_t size)
377{
378	return arch_ioremap_caller(res_cookie, size, MT_DEVICE,
379				   __builtin_return_address(0));
380}
381EXPORT_SYMBOL(ioremap);
382
383void __iomem *ioremap_cache(resource_size_t res_cookie, size_t size)
384	__alias(ioremap_cached);
385
386void __iomem *ioremap_cached(resource_size_t res_cookie, size_t size)
387{
388	return arch_ioremap_caller(res_cookie, size, MT_DEVICE_CACHED,
389				   __builtin_return_address(0));
390}
391EXPORT_SYMBOL(ioremap_cache);
392EXPORT_SYMBOL(ioremap_cached);
393
394void __iomem *ioremap_wc(resource_size_t res_cookie, size_t size)
395{
396	return arch_ioremap_caller(res_cookie, size, MT_DEVICE_WC,
397				   __builtin_return_address(0));
398}
399EXPORT_SYMBOL(ioremap_wc);
400
401/*
402 * Remap an arbitrary physical address space into the kernel virtual
403 * address space as memory. Needed when the kernel wants to execute
404 * code in external memory. This is needed for reprogramming source
405 * clocks that would affect normal memory for example. Please see
406 * CONFIG_GENERIC_ALLOCATOR for allocating external memory.
407 */
408void __iomem *
409__arm_ioremap_exec(phys_addr_t phys_addr, size_t size, bool cached)
410{
411	unsigned int mtype;
412
413	if (cached)
414		mtype = MT_MEMORY_RWX;
415	else
416		mtype = MT_MEMORY_RWX_NONCACHED;
417
418	return __arm_ioremap_caller(phys_addr, size, mtype,
419			__builtin_return_address(0));
420}
421
422void *arch_memremap_wb(phys_addr_t phys_addr, size_t size)
423{
424	return (__force void *)arch_ioremap_caller(phys_addr, size,
425						   MT_MEMORY_RW,
426						   __builtin_return_address(0));
427}
428
429void __iounmap(volatile void __iomem *io_addr)
430{
431	void *addr = (void *)(PAGE_MASK & (unsigned long)io_addr);
432	struct static_vm *svm;
433
434	/* If this is a static mapping, we must leave it alone */
435	svm = find_static_vm_vaddr(addr);
436	if (svm)
437		return;
438
439#if !defined(CONFIG_SMP) && !defined(CONFIG_ARM_LPAE)
440	{
441		struct vm_struct *vm;
442
443		vm = find_vm_area(addr);
444
445		/*
446		 * If this is a section based mapping we need to handle it
447		 * specially as the VM subsystem does not know how to handle
448		 * such a beast.
449		 */
450		if (vm && (vm->flags & VM_ARM_SECTION_MAPPING))
451			unmap_area_sections((unsigned long)vm->addr, vm->size);
452	}
453#endif
454
455	vunmap(addr);
456}
457
458void (*arch_iounmap)(volatile void __iomem *) = __iounmap;
459
460void iounmap(volatile void __iomem *cookie)
461{
462	arch_iounmap(cookie);
463}
464EXPORT_SYMBOL(iounmap);
465
466#ifdef CONFIG_PCI
467static int pci_ioremap_mem_type = MT_DEVICE;
468
469void pci_ioremap_set_mem_type(int mem_type)
470{
471	pci_ioremap_mem_type = mem_type;
472}
473
474int pci_ioremap_io(unsigned int offset, phys_addr_t phys_addr)
475{
476	BUG_ON(offset + SZ_64K > IO_SPACE_LIMIT);
477
478	return ioremap_page_range(PCI_IO_VIRT_BASE + offset,
479				  PCI_IO_VIRT_BASE + offset + SZ_64K,
480				  phys_addr,
481				  __pgprot(get_mem_type(pci_ioremap_mem_type)->prot_pte));
482}
483EXPORT_SYMBOL_GPL(pci_ioremap_io);
484
485void __iomem *pci_remap_cfgspace(resource_size_t res_cookie, size_t size)
486{
487	return arch_ioremap_caller(res_cookie, size, MT_UNCACHED,
488				   __builtin_return_address(0));
489}
490EXPORT_SYMBOL_GPL(pci_remap_cfgspace);
491#endif
492
493/*
494 * Must be called after early_fixmap_init
495 */
496void __init early_ioremap_init(void)
497{
498	early_ioremap_setup();
499}