Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/* SCTP kernel implementation
   3 * Copyright (c) 1999-2000 Cisco, Inc.
   4 * Copyright (c) 1999-2001 Motorola, Inc.
   5 * Copyright (c) 2001-2003 International Business Machines, Corp.
   6 * Copyright (c) 2001 Intel Corp.
   7 * Copyright (c) 2001 Nokia, Inc.
   8 * Copyright (c) 2001 La Monte H.P. Yarroll
   9 *
  10 * This file is part of the SCTP kernel implementation
  11 *
  12 * These functions handle all input from the IP layer into SCTP.
  13 *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  14 * Please send any bug reports or fixes you make to the
  15 * email address(es):
  16 *    lksctp developers <linux-sctp@vger.kernel.org>
  17 *
  18 * Written or modified by:
  19 *    La Monte H.P. Yarroll <piggy@acm.org>
  20 *    Karl Knutson <karl@athena.chicago.il.us>
  21 *    Xingang Guo <xingang.guo@intel.com>
  22 *    Jon Grimm <jgrimm@us.ibm.com>
  23 *    Hui Huang <hui.huang@nokia.com>
  24 *    Daisy Chang <daisyc@us.ibm.com>
  25 *    Sridhar Samudrala <sri@us.ibm.com>
  26 *    Ardelle Fan <ardelle.fan@intel.com>
  27 */
  28
  29#include <linux/types.h>
  30#include <linux/list.h> /* For struct list_head */
  31#include <linux/socket.h>
  32#include <linux/ip.h>
  33#include <linux/time.h> /* For struct timeval */
  34#include <linux/slab.h>
  35#include <net/ip.h>
  36#include <net/icmp.h>
  37#include <net/snmp.h>
  38#include <net/sock.h>
  39#include <net/xfrm.h>
  40#include <net/sctp/sctp.h>
  41#include <net/sctp/sm.h>
  42#include <net/sctp/checksum.h>
  43#include <net/net_namespace.h>
  44#include <linux/rhashtable.h>
  45#include <net/sock_reuseport.h>
  46
  47/* Forward declarations for internal helpers. */
  48static int sctp_rcv_ootb(struct sk_buff *);
  49static struct sctp_association *__sctp_rcv_lookup(struct net *net,
  50				      struct sk_buff *skb,
  51				      const union sctp_addr *paddr,
  52				      const union sctp_addr *laddr,
  53				      struct sctp_transport **transportp);
  54static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(
  55					struct net *net, struct sk_buff *skb,
  56					const union sctp_addr *laddr,
  57					const union sctp_addr *daddr);
  58static struct sctp_association *__sctp_lookup_association(
  59					struct net *net,
  60					const union sctp_addr *local,
  61					const union sctp_addr *peer,
  62					struct sctp_transport **pt);
  63
  64static int sctp_add_backlog(struct sock *sk, struct sk_buff *skb);
  65
  66
  67/* Calculate the SCTP checksum of an SCTP packet.  */
  68static inline int sctp_rcv_checksum(struct net *net, struct sk_buff *skb)
  69{
  70	struct sctphdr *sh = sctp_hdr(skb);
  71	__le32 cmp = sh->checksum;
  72	__le32 val = sctp_compute_cksum(skb, 0);
  73
  74	if (val != cmp) {
  75		/* CRC failure, dump it. */
  76		__SCTP_INC_STATS(net, SCTP_MIB_CHECKSUMERRORS);
  77		return -1;
  78	}
  79	return 0;
  80}
  81
  82/*
  83 * This is the routine which IP calls when receiving an SCTP packet.
  84 */
  85int sctp_rcv(struct sk_buff *skb)
  86{
  87	struct sock *sk;
  88	struct sctp_association *asoc;
  89	struct sctp_endpoint *ep = NULL;
  90	struct sctp_ep_common *rcvr;
  91	struct sctp_transport *transport = NULL;
  92	struct sctp_chunk *chunk;
  93	union sctp_addr src;
  94	union sctp_addr dest;
  95	int family;
  96	struct sctp_af *af;
  97	struct net *net = dev_net(skb->dev);
  98	bool is_gso = skb_is_gso(skb) && skb_is_gso_sctp(skb);
  99
 100	if (skb->pkt_type != PACKET_HOST)
 101		goto discard_it;
 102
 103	__SCTP_INC_STATS(net, SCTP_MIB_INSCTPPACKS);
 104
 105	/* If packet is too small to contain a single chunk, let's not
 106	 * waste time on it anymore.
 107	 */
 108	if (skb->len < sizeof(struct sctphdr) + sizeof(struct sctp_chunkhdr) +
 109		       skb_transport_offset(skb))
 110		goto discard_it;
 111
 112	/* If the packet is fragmented and we need to do crc checking,
 113	 * it's better to just linearize it otherwise crc computing
 114	 * takes longer.
 115	 */
 116	if ((!is_gso && skb_linearize(skb)) ||
 117	    !pskb_may_pull(skb, sizeof(struct sctphdr)))
 118		goto discard_it;
 119
 120	/* Pull up the IP header. */
 121	__skb_pull(skb, skb_transport_offset(skb));
 122
 123	skb->csum_valid = 0; /* Previous value not applicable */
 124	if (skb_csum_unnecessary(skb))
 125		__skb_decr_checksum_unnecessary(skb);
 126	else if (!sctp_checksum_disable &&
 127		 !is_gso &&
 128		 sctp_rcv_checksum(net, skb) < 0)
 129		goto discard_it;
 130	skb->csum_valid = 1;
 131
 132	__skb_pull(skb, sizeof(struct sctphdr));
 133
 134	family = ipver2af(ip_hdr(skb)->version);
 135	af = sctp_get_af_specific(family);
 136	if (unlikely(!af))
 137		goto discard_it;
 138	SCTP_INPUT_CB(skb)->af = af;
 139
 140	/* Initialize local addresses for lookups. */
 141	af->from_skb(&src, skb, 1);
 142	af->from_skb(&dest, skb, 0);
 143
 144	/* If the packet is to or from a non-unicast address,
 145	 * silently discard the packet.
 146	 *
 147	 * This is not clearly defined in the RFC except in section
 148	 * 8.4 - OOTB handling.  However, based on the book "Stream Control
 149	 * Transmission Protocol" 2.1, "It is important to note that the
 150	 * IP address of an SCTP transport address must be a routable
 151	 * unicast address.  In other words, IP multicast addresses and
 152	 * IP broadcast addresses cannot be used in an SCTP transport
 153	 * address."
 154	 */
 155	if (!af->addr_valid(&src, NULL, skb) ||
 156	    !af->addr_valid(&dest, NULL, skb))
 157		goto discard_it;
 158
 159	asoc = __sctp_rcv_lookup(net, skb, &src, &dest, &transport);
 160
 161	if (!asoc)
 162		ep = __sctp_rcv_lookup_endpoint(net, skb, &dest, &src);
 163
 164	/* Retrieve the common input handling substructure. */
 165	rcvr = asoc ? &asoc->base : &ep->base;
 166	sk = rcvr->sk;
 167
 168	/*
 169	 * If a frame arrives on an interface and the receiving socket is
 170	 * bound to another interface, via SO_BINDTODEVICE, treat it as OOTB
 171	 */
 172	if (sk->sk_bound_dev_if && (sk->sk_bound_dev_if != af->skb_iif(skb))) {
 173		if (transport) {
 174			sctp_transport_put(transport);
 175			asoc = NULL;
 176			transport = NULL;
 177		} else {
 178			sctp_endpoint_put(ep);
 179			ep = NULL;
 180		}
 181		sk = net->sctp.ctl_sock;
 182		ep = sctp_sk(sk)->ep;
 183		sctp_endpoint_hold(ep);
 184		rcvr = &ep->base;
 185	}
 186
 187	/*
 188	 * RFC 2960, 8.4 - Handle "Out of the blue" Packets.
 189	 * An SCTP packet is called an "out of the blue" (OOTB)
 190	 * packet if it is correctly formed, i.e., passed the
 191	 * receiver's checksum check, but the receiver is not
 192	 * able to identify the association to which this
 193	 * packet belongs.
 194	 */
 195	if (!asoc) {
 196		if (sctp_rcv_ootb(skb)) {
 197			__SCTP_INC_STATS(net, SCTP_MIB_OUTOFBLUES);
 198			goto discard_release;
 199		}
 200	}
 201
 202	if (!xfrm_policy_check(sk, XFRM_POLICY_IN, skb, family))
 203		goto discard_release;
 204	nf_reset_ct(skb);
 205
 206	if (sk_filter(sk, skb))
 207		goto discard_release;
 208
 209	/* Create an SCTP packet structure. */
 210	chunk = sctp_chunkify(skb, asoc, sk, GFP_ATOMIC);
 211	if (!chunk)
 212		goto discard_release;
 213	SCTP_INPUT_CB(skb)->chunk = chunk;
 214
 215	/* Remember what endpoint is to handle this packet. */
 216	chunk->rcvr = rcvr;
 217
 218	/* Remember the SCTP header. */
 219	chunk->sctp_hdr = sctp_hdr(skb);
 220
 221	/* Set the source and destination addresses of the incoming chunk.  */
 222	sctp_init_addrs(chunk, &src, &dest);
 223
 224	/* Remember where we came from.  */
 225	chunk->transport = transport;
 226
 227	/* Acquire access to the sock lock. Note: We are safe from other
 228	 * bottom halves on this lock, but a user may be in the lock too,
 229	 * so check if it is busy.
 230	 */
 231	bh_lock_sock(sk);
 232
 233	if (sk != rcvr->sk) {
 234		/* Our cached sk is different from the rcvr->sk.  This is
 235		 * because migrate()/accept() may have moved the association
 236		 * to a new socket and released all the sockets.  So now we
 237		 * are holding a lock on the old socket while the user may
 238		 * be doing something with the new socket.  Switch our veiw
 239		 * of the current sk.
 240		 */
 241		bh_unlock_sock(sk);
 242		sk = rcvr->sk;
 243		bh_lock_sock(sk);
 244	}
 245
 246	if (sock_owned_by_user(sk) || !sctp_newsk_ready(sk)) {
 247		if (sctp_add_backlog(sk, skb)) {
 248			bh_unlock_sock(sk);
 249			sctp_chunk_free(chunk);
 250			skb = NULL; /* sctp_chunk_free already freed the skb */
 251			goto discard_release;
 252		}
 253		__SCTP_INC_STATS(net, SCTP_MIB_IN_PKT_BACKLOG);
 254	} else {
 255		__SCTP_INC_STATS(net, SCTP_MIB_IN_PKT_SOFTIRQ);
 256		sctp_inq_push(&chunk->rcvr->inqueue, chunk);
 257	}
 258
 259	bh_unlock_sock(sk);
 260
 261	/* Release the asoc/ep ref we took in the lookup calls. */
 262	if (transport)
 263		sctp_transport_put(transport);
 264	else
 265		sctp_endpoint_put(ep);
 266
 267	return 0;
 268
 269discard_it:
 270	__SCTP_INC_STATS(net, SCTP_MIB_IN_PKT_DISCARDS);
 271	kfree_skb(skb);
 272	return 0;
 273
 274discard_release:
 275	/* Release the asoc/ep ref we took in the lookup calls. */
 276	if (transport)
 277		sctp_transport_put(transport);
 278	else
 279		sctp_endpoint_put(ep);
 280
 281	goto discard_it;
 282}
 283
 284/* Process the backlog queue of the socket.  Every skb on
 285 * the backlog holds a ref on an association or endpoint.
 286 * We hold this ref throughout the state machine to make
 287 * sure that the structure we need is still around.
 288 */
 289int sctp_backlog_rcv(struct sock *sk, struct sk_buff *skb)
 290{
 291	struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk;
 292	struct sctp_inq *inqueue = &chunk->rcvr->inqueue;
 293	struct sctp_transport *t = chunk->transport;
 294	struct sctp_ep_common *rcvr = NULL;
 295	int backloged = 0;
 296
 297	rcvr = chunk->rcvr;
 298
 299	/* If the rcvr is dead then the association or endpoint
 300	 * has been deleted and we can safely drop the chunk
 301	 * and refs that we are holding.
 302	 */
 303	if (rcvr->dead) {
 304		sctp_chunk_free(chunk);
 305		goto done;
 306	}
 307
 308	if (unlikely(rcvr->sk != sk)) {
 309		/* In this case, the association moved from one socket to
 310		 * another.  We are currently sitting on the backlog of the
 311		 * old socket, so we need to move.
 312		 * However, since we are here in the process context we
 313		 * need to take make sure that the user doesn't own
 314		 * the new socket when we process the packet.
 315		 * If the new socket is user-owned, queue the chunk to the
 316		 * backlog of the new socket without dropping any refs.
 317		 * Otherwise, we can safely push the chunk on the inqueue.
 318		 */
 319
 320		sk = rcvr->sk;
 321		local_bh_disable();
 322		bh_lock_sock(sk);
 323
 324		if (sock_owned_by_user(sk) || !sctp_newsk_ready(sk)) {
 325			if (sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf)))
 326				sctp_chunk_free(chunk);
 327			else
 328				backloged = 1;
 329		} else
 330			sctp_inq_push(inqueue, chunk);
 331
 332		bh_unlock_sock(sk);
 333		local_bh_enable();
 334
 335		/* If the chunk was backloged again, don't drop refs */
 336		if (backloged)
 337			return 0;
 338	} else {
 339		if (!sctp_newsk_ready(sk)) {
 340			if (!sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf)))
 341				return 0;
 342			sctp_chunk_free(chunk);
 343		} else {
 344			sctp_inq_push(inqueue, chunk);
 345		}
 346	}
 347
 348done:
 349	/* Release the refs we took in sctp_add_backlog */
 350	if (SCTP_EP_TYPE_ASSOCIATION == rcvr->type)
 351		sctp_transport_put(t);
 352	else if (SCTP_EP_TYPE_SOCKET == rcvr->type)
 353		sctp_endpoint_put(sctp_ep(rcvr));
 354	else
 355		BUG();
 356
 357	return 0;
 358}
 359
 360static int sctp_add_backlog(struct sock *sk, struct sk_buff *skb)
 361{
 362	struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk;
 363	struct sctp_transport *t = chunk->transport;
 364	struct sctp_ep_common *rcvr = chunk->rcvr;
 365	int ret;
 366
 367	ret = sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf));
 368	if (!ret) {
 369		/* Hold the assoc/ep while hanging on the backlog queue.
 370		 * This way, we know structures we need will not disappear
 371		 * from us
 372		 */
 373		if (SCTP_EP_TYPE_ASSOCIATION == rcvr->type)
 374			sctp_transport_hold(t);
 375		else if (SCTP_EP_TYPE_SOCKET == rcvr->type)
 376			sctp_endpoint_hold(sctp_ep(rcvr));
 377		else
 378			BUG();
 379	}
 380	return ret;
 381
 382}
 383
 384/* Handle icmp frag needed error. */
 385void sctp_icmp_frag_needed(struct sock *sk, struct sctp_association *asoc,
 386			   struct sctp_transport *t, __u32 pmtu)
 387{
 388	if (!t || (t->pathmtu <= pmtu))
 389		return;
 390
 391	if (sock_owned_by_user(sk)) {
 392		atomic_set(&t->mtu_info, pmtu);
 393		asoc->pmtu_pending = 1;
 394		t->pmtu_pending = 1;
 395		return;
 396	}
 397
 398	if (!(t->param_flags & SPP_PMTUD_ENABLE))
 399		/* We can't allow retransmitting in such case, as the
 400		 * retransmission would be sized just as before, and thus we
 401		 * would get another icmp, and retransmit again.
 402		 */
 403		return;
 404
 405	/* Update transports view of the MTU. Return if no update was needed.
 406	 * If an update wasn't needed/possible, it also doesn't make sense to
 407	 * try to retransmit now.
 408	 */
 409	if (!sctp_transport_update_pmtu(t, pmtu))
 410		return;
 411
 412	/* Update association pmtu. */
 413	sctp_assoc_sync_pmtu(asoc);
 414
 415	/* Retransmit with the new pmtu setting. */
 416	sctp_retransmit(&asoc->outqueue, t, SCTP_RTXR_PMTUD);
 417}
 418
 419void sctp_icmp_redirect(struct sock *sk, struct sctp_transport *t,
 420			struct sk_buff *skb)
 421{
 422	struct dst_entry *dst;
 423
 424	if (sock_owned_by_user(sk) || !t)
 425		return;
 426	dst = sctp_transport_dst_check(t);
 427	if (dst)
 428		dst->ops->redirect(dst, sk, skb);
 429}
 430
 431/*
 432 * SCTP Implementer's Guide, 2.37 ICMP handling procedures
 433 *
 434 * ICMP8) If the ICMP code is a "Unrecognized next header type encountered"
 435 *        or a "Protocol Unreachable" treat this message as an abort
 436 *        with the T bit set.
 437 *
 438 * This function sends an event to the state machine, which will abort the
 439 * association.
 440 *
 441 */
 442void sctp_icmp_proto_unreachable(struct sock *sk,
 443			   struct sctp_association *asoc,
 444			   struct sctp_transport *t)
 445{
 446	if (sock_owned_by_user(sk)) {
 447		if (timer_pending(&t->proto_unreach_timer))
 448			return;
 449		else {
 450			if (!mod_timer(&t->proto_unreach_timer,
 451						jiffies + (HZ/20)))
 452				sctp_association_hold(asoc);
 453		}
 454	} else {
 455		struct net *net = sock_net(sk);
 456
 457		pr_debug("%s: unrecognized next header type "
 458			 "encountered!\n", __func__);
 459
 460		if (del_timer(&t->proto_unreach_timer))
 461			sctp_association_put(asoc);
 462
 463		sctp_do_sm(net, SCTP_EVENT_T_OTHER,
 464			   SCTP_ST_OTHER(SCTP_EVENT_ICMP_PROTO_UNREACH),
 465			   asoc->state, asoc->ep, asoc, t,
 466			   GFP_ATOMIC);
 467	}
 468}
 469
 470/* Common lookup code for icmp/icmpv6 error handler. */
 471struct sock *sctp_err_lookup(struct net *net, int family, struct sk_buff *skb,
 472			     struct sctphdr *sctphdr,
 473			     struct sctp_association **app,
 474			     struct sctp_transport **tpp)
 475{
 476	struct sctp_init_chunk *chunkhdr, _chunkhdr;
 477	union sctp_addr saddr;
 478	union sctp_addr daddr;
 479	struct sctp_af *af;
 480	struct sock *sk = NULL;
 481	struct sctp_association *asoc;
 482	struct sctp_transport *transport = NULL;
 483	__u32 vtag = ntohl(sctphdr->vtag);
 484
 485	*app = NULL; *tpp = NULL;
 486
 487	af = sctp_get_af_specific(family);
 488	if (unlikely(!af)) {
 489		return NULL;
 490	}
 491
 492	/* Initialize local addresses for lookups. */
 493	af->from_skb(&saddr, skb, 1);
 494	af->from_skb(&daddr, skb, 0);
 495
 496	/* Look for an association that matches the incoming ICMP error
 497	 * packet.
 498	 */
 499	asoc = __sctp_lookup_association(net, &saddr, &daddr, &transport);
 500	if (!asoc)
 501		return NULL;
 502
 503	sk = asoc->base.sk;
 504
 505	/* RFC 4960, Appendix C. ICMP Handling
 506	 *
 507	 * ICMP6) An implementation MUST validate that the Verification Tag
 508	 * contained in the ICMP message matches the Verification Tag of
 509	 * the peer.  If the Verification Tag is not 0 and does NOT
 510	 * match, discard the ICMP message.  If it is 0 and the ICMP
 511	 * message contains enough bytes to verify that the chunk type is
 512	 * an INIT chunk and that the Initiate Tag matches the tag of the
 513	 * peer, continue with ICMP7.  If the ICMP message is too short
 514	 * or the chunk type or the Initiate Tag does not match, silently
 515	 * discard the packet.
 516	 */
 517	if (vtag == 0) {
 518		/* chunk header + first 4 octects of init header */
 519		chunkhdr = skb_header_pointer(skb, skb_transport_offset(skb) +
 520					      sizeof(struct sctphdr),
 521					      sizeof(struct sctp_chunkhdr) +
 522					      sizeof(__be32), &_chunkhdr);
 523		if (!chunkhdr ||
 524		    chunkhdr->chunk_hdr.type != SCTP_CID_INIT ||
 525		    ntohl(chunkhdr->init_hdr.init_tag) != asoc->c.my_vtag)
 526			goto out;
 527
 528	} else if (vtag != asoc->c.peer_vtag) {
 529		goto out;
 530	}
 531
 532	bh_lock_sock(sk);
 533
 534	/* If too many ICMPs get dropped on busy
 535	 * servers this needs to be solved differently.
 536	 */
 537	if (sock_owned_by_user(sk))
 538		__NET_INC_STATS(net, LINUX_MIB_LOCKDROPPEDICMPS);
 539
 540	*app = asoc;
 541	*tpp = transport;
 542	return sk;
 543
 544out:
 545	sctp_transport_put(transport);
 546	return NULL;
 547}
 548
 549/* Common cleanup code for icmp/icmpv6 error handler. */
 550void sctp_err_finish(struct sock *sk, struct sctp_transport *t)
 551	__releases(&((__sk)->sk_lock.slock))
 552{
 553	bh_unlock_sock(sk);
 554	sctp_transport_put(t);
 555}
 556
 557/*
 558 * This routine is called by the ICMP module when it gets some
 559 * sort of error condition.  If err < 0 then the socket should
 560 * be closed and the error returned to the user.  If err > 0
 561 * it's just the icmp type << 8 | icmp code.  After adjustment
 562 * header points to the first 8 bytes of the sctp header.  We need
 563 * to find the appropriate port.
 564 *
 565 * The locking strategy used here is very "optimistic". When
 566 * someone else accesses the socket the ICMP is just dropped
 567 * and for some paths there is no check at all.
 568 * A more general error queue to queue errors for later handling
 569 * is probably better.
 570 *
 571 */
 572int sctp_v4_err(struct sk_buff *skb, __u32 info)
 573{
 574	const struct iphdr *iph = (const struct iphdr *)skb->data;
 575	const int ihlen = iph->ihl * 4;
 576	const int type = icmp_hdr(skb)->type;
 577	const int code = icmp_hdr(skb)->code;
 578	struct sock *sk;
 579	struct sctp_association *asoc = NULL;
 580	struct sctp_transport *transport;
 581	struct inet_sock *inet;
 582	__u16 saveip, savesctp;
 583	int err;
 584	struct net *net = dev_net(skb->dev);
 585
 586	/* Fix up skb to look at the embedded net header. */
 587	saveip = skb->network_header;
 588	savesctp = skb->transport_header;
 589	skb_reset_network_header(skb);
 590	skb_set_transport_header(skb, ihlen);
 591	sk = sctp_err_lookup(net, AF_INET, skb, sctp_hdr(skb), &asoc, &transport);
 592	/* Put back, the original values. */
 593	skb->network_header = saveip;
 594	skb->transport_header = savesctp;
 595	if (!sk) {
 596		__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
 597		return -ENOENT;
 598	}
 599	/* Warning:  The sock lock is held.  Remember to call
 600	 * sctp_err_finish!
 601	 */
 602
 603	switch (type) {
 604	case ICMP_PARAMETERPROB:
 605		err = EPROTO;
 606		break;
 607	case ICMP_DEST_UNREACH:
 608		if (code > NR_ICMP_UNREACH)
 609			goto out_unlock;
 610
 611		/* PMTU discovery (RFC1191) */
 612		if (ICMP_FRAG_NEEDED == code) {
 613			sctp_icmp_frag_needed(sk, asoc, transport,
 614					      SCTP_TRUNC4(info));
 615			goto out_unlock;
 616		} else {
 617			if (ICMP_PROT_UNREACH == code) {
 618				sctp_icmp_proto_unreachable(sk, asoc,
 619							    transport);
 620				goto out_unlock;
 621			}
 622		}
 623		err = icmp_err_convert[code].errno;
 624		break;
 625	case ICMP_TIME_EXCEEDED:
 626		/* Ignore any time exceeded errors due to fragment reassembly
 627		 * timeouts.
 628		 */
 629		if (ICMP_EXC_FRAGTIME == code)
 630			goto out_unlock;
 631
 632		err = EHOSTUNREACH;
 633		break;
 634	case ICMP_REDIRECT:
 635		sctp_icmp_redirect(sk, transport, skb);
 636		/* Fall through to out_unlock. */
 637	default:
 638		goto out_unlock;
 639	}
 640
 641	inet = inet_sk(sk);
 642	if (!sock_owned_by_user(sk) && inet->recverr) {
 643		sk->sk_err = err;
 644		sk->sk_error_report(sk);
 645	} else {  /* Only an error on timeout */
 646		sk->sk_err_soft = err;
 647	}
 648
 649out_unlock:
 650	sctp_err_finish(sk, transport);
 651	return 0;
 652}
 653
 654/*
 655 * RFC 2960, 8.4 - Handle "Out of the blue" Packets.
 656 *
 657 * This function scans all the chunks in the OOTB packet to determine if
 658 * the packet should be discarded right away.  If a response might be needed
 659 * for this packet, or, if further processing is possible, the packet will
 660 * be queued to a proper inqueue for the next phase of handling.
 661 *
 662 * Output:
 663 * Return 0 - If further processing is needed.
 664 * Return 1 - If the packet can be discarded right away.
 665 */
 666static int sctp_rcv_ootb(struct sk_buff *skb)
 667{
 668	struct sctp_chunkhdr *ch, _ch;
 669	int ch_end, offset = 0;
 670
 671	/* Scan through all the chunks in the packet.  */
 672	do {
 673		/* Make sure we have at least the header there */
 674		if (offset + sizeof(_ch) > skb->len)
 675			break;
 676
 677		ch = skb_header_pointer(skb, offset, sizeof(*ch), &_ch);
 678
 679		/* Break out if chunk length is less then minimal. */
 680		if (ntohs(ch->length) < sizeof(_ch))
 681			break;
 682
 683		ch_end = offset + SCTP_PAD4(ntohs(ch->length));
 684		if (ch_end > skb->len)
 685			break;
 686
 687		/* RFC 8.4, 2) If the OOTB packet contains an ABORT chunk, the
 688		 * receiver MUST silently discard the OOTB packet and take no
 689		 * further action.
 690		 */
 691		if (SCTP_CID_ABORT == ch->type)
 692			goto discard;
 693
 694		/* RFC 8.4, 6) If the packet contains a SHUTDOWN COMPLETE
 695		 * chunk, the receiver should silently discard the packet
 696		 * and take no further action.
 697		 */
 698		if (SCTP_CID_SHUTDOWN_COMPLETE == ch->type)
 699			goto discard;
 700
 701		/* RFC 4460, 2.11.2
 702		 * This will discard packets with INIT chunk bundled as
 703		 * subsequent chunks in the packet.  When INIT is first,
 704		 * the normal INIT processing will discard the chunk.
 705		 */
 706		if (SCTP_CID_INIT == ch->type && (void *)ch != skb->data)
 707			goto discard;
 708
 709		offset = ch_end;
 710	} while (ch_end < skb->len);
 711
 712	return 0;
 713
 714discard:
 715	return 1;
 716}
 717
 718/* Insert endpoint into the hash table.  */
 719static int __sctp_hash_endpoint(struct sctp_endpoint *ep)
 720{
 721	struct sock *sk = ep->base.sk;
 722	struct net *net = sock_net(sk);
 723	struct sctp_hashbucket *head;
 724	struct sctp_ep_common *epb;
 
 725
 726	epb = &ep->base;
 
 727	epb->hashent = sctp_ep_hashfn(net, epb->bind_addr.port);
 728	head = &sctp_ep_hashtable[epb->hashent];
 729
 730	if (sk->sk_reuseport) {
 731		bool any = sctp_is_ep_boundall(sk);
 732		struct sctp_ep_common *epb2;
 733		struct list_head *list;
 734		int cnt = 0, err = 1;
 735
 736		list_for_each(list, &ep->base.bind_addr.address_list)
 737			cnt++;
 738
 739		sctp_for_each_hentry(epb2, &head->chain) {
 740			struct sock *sk2 = epb2->sk;
 741
 742			if (!net_eq(sock_net(sk2), net) || sk2 == sk ||
 743			    !uid_eq(sock_i_uid(sk2), sock_i_uid(sk)) ||
 744			    !sk2->sk_reuseport)
 745				continue;
 746
 747			err = sctp_bind_addrs_check(sctp_sk(sk2),
 748						    sctp_sk(sk), cnt);
 749			if (!err) {
 750				err = reuseport_add_sock(sk, sk2, any);
 751				if (err)
 752					return err;
 753				break;
 754			} else if (err < 0) {
 755				return err;
 756			}
 757		}
 758
 759		if (err) {
 760			err = reuseport_alloc(sk, any);
 761			if (err)
 762				return err;
 763		}
 764	}
 765
 766	write_lock(&head->lock);
 767	hlist_add_head(&epb->node, &head->chain);
 768	write_unlock(&head->lock);
 769	return 0;
 770}
 771
 772/* Add an endpoint to the hash. Local BH-safe. */
 773int sctp_hash_endpoint(struct sctp_endpoint *ep)
 774{
 775	int err;
 776
 777	local_bh_disable();
 778	err = __sctp_hash_endpoint(ep);
 779	local_bh_enable();
 780
 781	return err;
 782}
 783
 784/* Remove endpoint from the hash table.  */
 785static void __sctp_unhash_endpoint(struct sctp_endpoint *ep)
 786{
 787	struct sock *sk = ep->base.sk;
 788	struct sctp_hashbucket *head;
 789	struct sctp_ep_common *epb;
 790
 791	epb = &ep->base;
 792
 793	epb->hashent = sctp_ep_hashfn(sock_net(sk), epb->bind_addr.port);
 794
 795	head = &sctp_ep_hashtable[epb->hashent];
 796
 797	if (rcu_access_pointer(sk->sk_reuseport_cb))
 798		reuseport_detach_sock(sk);
 799
 800	write_lock(&head->lock);
 801	hlist_del_init(&epb->node);
 802	write_unlock(&head->lock);
 803}
 804
 805/* Remove endpoint from the hash.  Local BH-safe. */
 806void sctp_unhash_endpoint(struct sctp_endpoint *ep)
 807{
 808	local_bh_disable();
 809	__sctp_unhash_endpoint(ep);
 810	local_bh_enable();
 811}
 812
 813static inline __u32 sctp_hashfn(const struct net *net, __be16 lport,
 814				const union sctp_addr *paddr, __u32 seed)
 815{
 816	__u32 addr;
 817
 818	if (paddr->sa.sa_family == AF_INET6)
 819		addr = jhash(&paddr->v6.sin6_addr, 16, seed);
 820	else
 821		addr = (__force __u32)paddr->v4.sin_addr.s_addr;
 822
 823	return  jhash_3words(addr, ((__force __u32)paddr->v4.sin_port) << 16 |
 824			     (__force __u32)lport, net_hash_mix(net), seed);
 825}
 826
 827/* Look up an endpoint. */
 828static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(
 829					struct net *net, struct sk_buff *skb,
 830					const union sctp_addr *laddr,
 831					const union sctp_addr *paddr)
 832{
 833	struct sctp_hashbucket *head;
 834	struct sctp_ep_common *epb;
 835	struct sctp_endpoint *ep;
 836	struct sock *sk;
 837	__be16 lport;
 838	int hash;
 839
 840	lport = laddr->v4.sin_port;
 841	hash = sctp_ep_hashfn(net, ntohs(lport));
 842	head = &sctp_ep_hashtable[hash];
 843	read_lock(&head->lock);
 844	sctp_for_each_hentry(epb, &head->chain) {
 845		ep = sctp_ep(epb);
 846		if (sctp_endpoint_is_match(ep, net, laddr))
 847			goto hit;
 848	}
 849
 850	ep = sctp_sk(net->sctp.ctl_sock)->ep;
 851
 852hit:
 853	sk = ep->base.sk;
 854	if (sk->sk_reuseport) {
 855		__u32 phash = sctp_hashfn(net, lport, paddr, 0);
 856
 857		sk = reuseport_select_sock(sk, phash, skb,
 858					   sizeof(struct sctphdr));
 859		if (sk)
 860			ep = sctp_sk(sk)->ep;
 861	}
 862	sctp_endpoint_hold(ep);
 863	read_unlock(&head->lock);
 864	return ep;
 865}
 866
 867/* rhashtable for transport */
 868struct sctp_hash_cmp_arg {
 869	const union sctp_addr	*paddr;
 870	const struct net	*net;
 871	__be16			lport;
 872};
 873
 874static inline int sctp_hash_cmp(struct rhashtable_compare_arg *arg,
 875				const void *ptr)
 876{
 877	struct sctp_transport *t = (struct sctp_transport *)ptr;
 878	const struct sctp_hash_cmp_arg *x = arg->key;
 879	int err = 1;
 880
 881	if (!sctp_cmp_addr_exact(&t->ipaddr, x->paddr))
 882		return err;
 883	if (!sctp_transport_hold(t))
 884		return err;
 885
 886	if (!net_eq(t->asoc->base.net, x->net))
 887		goto out;
 888	if (x->lport != htons(t->asoc->base.bind_addr.port))
 889		goto out;
 890
 891	err = 0;
 892out:
 893	sctp_transport_put(t);
 894	return err;
 895}
 896
 897static inline __u32 sctp_hash_obj(const void *data, u32 len, u32 seed)
 898{
 899	const struct sctp_transport *t = data;
 
 
 
 
 900
 901	return sctp_hashfn(t->asoc->base.net,
 902			   htons(t->asoc->base.bind_addr.port),
 903			   &t->ipaddr, seed);
 
 
 
 
 904}
 905
 906static inline __u32 sctp_hash_key(const void *data, u32 len, u32 seed)
 907{
 908	const struct sctp_hash_cmp_arg *x = data;
 
 
 
 
 909
 910	return sctp_hashfn(x->net, x->lport, x->paddr, seed);
 
 
 
 
 
 
 911}
 912
 913static const struct rhashtable_params sctp_hash_params = {
 914	.head_offset		= offsetof(struct sctp_transport, node),
 915	.hashfn			= sctp_hash_key,
 916	.obj_hashfn		= sctp_hash_obj,
 917	.obj_cmpfn		= sctp_hash_cmp,
 918	.automatic_shrinking	= true,
 919};
 920
 921int sctp_transport_hashtable_init(void)
 922{
 923	return rhltable_init(&sctp_transport_hashtable, &sctp_hash_params);
 924}
 925
 926void sctp_transport_hashtable_destroy(void)
 927{
 928	rhltable_destroy(&sctp_transport_hashtable);
 929}
 930
 931int sctp_hash_transport(struct sctp_transport *t)
 932{
 933	struct sctp_transport *transport;
 934	struct rhlist_head *tmp, *list;
 935	struct sctp_hash_cmp_arg arg;
 936	int err;
 937
 938	if (t->asoc->temp)
 939		return 0;
 940
 941	arg.net   = t->asoc->base.net;
 942	arg.paddr = &t->ipaddr;
 943	arg.lport = htons(t->asoc->base.bind_addr.port);
 944
 945	rcu_read_lock();
 946	list = rhltable_lookup(&sctp_transport_hashtable, &arg,
 947			       sctp_hash_params);
 948
 949	rhl_for_each_entry_rcu(transport, tmp, list, node)
 950		if (transport->asoc->ep == t->asoc->ep) {
 951			rcu_read_unlock();
 952			return -EEXIST;
 953		}
 954	rcu_read_unlock();
 955
 956	err = rhltable_insert_key(&sctp_transport_hashtable, &arg,
 957				  &t->node, sctp_hash_params);
 958	if (err)
 959		pr_err_once("insert transport fail, errno %d\n", err);
 960
 961	return err;
 962}
 963
 964void sctp_unhash_transport(struct sctp_transport *t)
 965{
 966	if (t->asoc->temp)
 967		return;
 968
 969	rhltable_remove(&sctp_transport_hashtable, &t->node,
 970			sctp_hash_params);
 971}
 972
 973/* return a transport with holding it */
 974struct sctp_transport *sctp_addrs_lookup_transport(
 975				struct net *net,
 976				const union sctp_addr *laddr,
 977				const union sctp_addr *paddr)
 978{
 979	struct rhlist_head *tmp, *list;
 980	struct sctp_transport *t;
 981	struct sctp_hash_cmp_arg arg = {
 982		.paddr = paddr,
 983		.net   = net,
 984		.lport = laddr->v4.sin_port,
 985	};
 986
 987	list = rhltable_lookup(&sctp_transport_hashtable, &arg,
 988			       sctp_hash_params);
 989
 990	rhl_for_each_entry_rcu(t, tmp, list, node) {
 991		if (!sctp_transport_hold(t))
 992			continue;
 993
 994		if (sctp_bind_addr_match(&t->asoc->base.bind_addr,
 995					 laddr, sctp_sk(t->asoc->base.sk)))
 996			return t;
 997		sctp_transport_put(t);
 998	}
 999
1000	return NULL;
1001}
1002
1003/* return a transport without holding it, as it's only used under sock lock */
1004struct sctp_transport *sctp_epaddr_lookup_transport(
1005				const struct sctp_endpoint *ep,
1006				const union sctp_addr *paddr)
1007{
 
1008	struct rhlist_head *tmp, *list;
1009	struct sctp_transport *t;
1010	struct sctp_hash_cmp_arg arg = {
1011		.paddr = paddr,
1012		.net   = ep->base.net,
1013		.lport = htons(ep->base.bind_addr.port),
1014	};
1015
1016	list = rhltable_lookup(&sctp_transport_hashtable, &arg,
1017			       sctp_hash_params);
1018
1019	rhl_for_each_entry_rcu(t, tmp, list, node)
1020		if (ep == t->asoc->ep)
1021			return t;
1022
1023	return NULL;
1024}
1025
1026/* Look up an association. */
1027static struct sctp_association *__sctp_lookup_association(
1028					struct net *net,
1029					const union sctp_addr *local,
1030					const union sctp_addr *peer,
1031					struct sctp_transport **pt)
1032{
1033	struct sctp_transport *t;
1034	struct sctp_association *asoc = NULL;
1035
1036	t = sctp_addrs_lookup_transport(net, local, peer);
1037	if (!t)
1038		goto out;
1039
1040	asoc = t->asoc;
1041	*pt = t;
1042
1043out:
1044	return asoc;
1045}
1046
1047/* Look up an association. protected by RCU read lock */
1048static
1049struct sctp_association *sctp_lookup_association(struct net *net,
1050						 const union sctp_addr *laddr,
1051						 const union sctp_addr *paddr,
1052						 struct sctp_transport **transportp)
1053{
1054	struct sctp_association *asoc;
1055
1056	rcu_read_lock();
1057	asoc = __sctp_lookup_association(net, laddr, paddr, transportp);
1058	rcu_read_unlock();
1059
1060	return asoc;
1061}
1062
1063/* Is there an association matching the given local and peer addresses? */
1064bool sctp_has_association(struct net *net,
1065			  const union sctp_addr *laddr,
1066			  const union sctp_addr *paddr)
1067{
1068	struct sctp_transport *transport;
1069
1070	if (sctp_lookup_association(net, laddr, paddr, &transport)) {
1071		sctp_transport_put(transport);
1072		return true;
1073	}
1074
1075	return false;
1076}
1077
1078/*
1079 * SCTP Implementors Guide, 2.18 Handling of address
1080 * parameters within the INIT or INIT-ACK.
1081 *
1082 * D) When searching for a matching TCB upon reception of an INIT
1083 *    or INIT-ACK chunk the receiver SHOULD use not only the
1084 *    source address of the packet (containing the INIT or
1085 *    INIT-ACK) but the receiver SHOULD also use all valid
1086 *    address parameters contained within the chunk.
1087 *
1088 * 2.18.3 Solution description
1089 *
1090 * This new text clearly specifies to an implementor the need
1091 * to look within the INIT or INIT-ACK. Any implementation that
1092 * does not do this, may not be able to establish associations
1093 * in certain circumstances.
1094 *
1095 */
1096static struct sctp_association *__sctp_rcv_init_lookup(struct net *net,
1097	struct sk_buff *skb,
1098	const union sctp_addr *laddr, struct sctp_transport **transportp)
1099{
1100	struct sctp_association *asoc;
1101	union sctp_addr addr;
1102	union sctp_addr *paddr = &addr;
1103	struct sctphdr *sh = sctp_hdr(skb);
1104	union sctp_params params;
1105	struct sctp_init_chunk *init;
1106	struct sctp_af *af;
1107
1108	/*
1109	 * This code will NOT touch anything inside the chunk--it is
1110	 * strictly READ-ONLY.
1111	 *
1112	 * RFC 2960 3  SCTP packet Format
1113	 *
1114	 * Multiple chunks can be bundled into one SCTP packet up to
1115	 * the MTU size, except for the INIT, INIT ACK, and SHUTDOWN
1116	 * COMPLETE chunks.  These chunks MUST NOT be bundled with any
1117	 * other chunk in a packet.  See Section 6.10 for more details
1118	 * on chunk bundling.
1119	 */
1120
1121	/* Find the start of the TLVs and the end of the chunk.  This is
1122	 * the region we search for address parameters.
1123	 */
1124	init = (struct sctp_init_chunk *)skb->data;
1125
1126	/* Walk the parameters looking for embedded addresses. */
1127	sctp_walk_params(params, init, init_hdr.params) {
1128
1129		/* Note: Ignoring hostname addresses. */
1130		af = sctp_get_af_specific(param_type2af(params.p->type));
1131		if (!af)
1132			continue;
1133
1134		af->from_addr_param(paddr, params.addr, sh->source, 0);
1135
1136		asoc = __sctp_lookup_association(net, laddr, paddr, transportp);
1137		if (asoc)
1138			return asoc;
1139	}
1140
1141	return NULL;
1142}
1143
1144/* ADD-IP, Section 5.2
1145 * When an endpoint receives an ASCONF Chunk from the remote peer
1146 * special procedures may be needed to identify the association the
1147 * ASCONF Chunk is associated with. To properly find the association
1148 * the following procedures SHOULD be followed:
1149 *
1150 * D2) If the association is not found, use the address found in the
1151 * Address Parameter TLV combined with the port number found in the
1152 * SCTP common header. If found proceed to rule D4.
1153 *
1154 * D2-ext) If more than one ASCONF Chunks are packed together, use the
1155 * address found in the ASCONF Address Parameter TLV of each of the
1156 * subsequent ASCONF Chunks. If found, proceed to rule D4.
1157 */
1158static struct sctp_association *__sctp_rcv_asconf_lookup(
1159					struct net *net,
1160					struct sctp_chunkhdr *ch,
1161					const union sctp_addr *laddr,
1162					__be16 peer_port,
1163					struct sctp_transport **transportp)
1164{
1165	struct sctp_addip_chunk *asconf = (struct sctp_addip_chunk *)ch;
1166	struct sctp_af *af;
1167	union sctp_addr_param *param;
1168	union sctp_addr paddr;
1169
1170	/* Skip over the ADDIP header and find the Address parameter */
1171	param = (union sctp_addr_param *)(asconf + 1);
1172
1173	af = sctp_get_af_specific(param_type2af(param->p.type));
1174	if (unlikely(!af))
1175		return NULL;
1176
1177	af->from_addr_param(&paddr, param, peer_port, 0);
1178
1179	return __sctp_lookup_association(net, laddr, &paddr, transportp);
1180}
1181
1182
1183/* SCTP-AUTH, Section 6.3:
1184*    If the receiver does not find a STCB for a packet containing an AUTH
1185*    chunk as the first chunk and not a COOKIE-ECHO chunk as the second
1186*    chunk, it MUST use the chunks after the AUTH chunk to look up an existing
1187*    association.
1188*
1189* This means that any chunks that can help us identify the association need
1190* to be looked at to find this association.
1191*/
1192static struct sctp_association *__sctp_rcv_walk_lookup(struct net *net,
1193				      struct sk_buff *skb,
1194				      const union sctp_addr *laddr,
1195				      struct sctp_transport **transportp)
1196{
1197	struct sctp_association *asoc = NULL;
1198	struct sctp_chunkhdr *ch;
1199	int have_auth = 0;
1200	unsigned int chunk_num = 1;
1201	__u8 *ch_end;
1202
1203	/* Walk through the chunks looking for AUTH or ASCONF chunks
1204	 * to help us find the association.
1205	 */
1206	ch = (struct sctp_chunkhdr *)skb->data;
1207	do {
1208		/* Break out if chunk length is less then minimal. */
1209		if (ntohs(ch->length) < sizeof(*ch))
1210			break;
1211
1212		ch_end = ((__u8 *)ch) + SCTP_PAD4(ntohs(ch->length));
1213		if (ch_end > skb_tail_pointer(skb))
1214			break;
1215
1216		switch (ch->type) {
1217		case SCTP_CID_AUTH:
1218			have_auth = chunk_num;
1219			break;
1220
1221		case SCTP_CID_COOKIE_ECHO:
1222			/* If a packet arrives containing an AUTH chunk as
1223			 * a first chunk, a COOKIE-ECHO chunk as the second
1224			 * chunk, and possibly more chunks after them, and
1225			 * the receiver does not have an STCB for that
1226			 * packet, then authentication is based on
1227			 * the contents of the COOKIE- ECHO chunk.
1228			 */
1229			if (have_auth == 1 && chunk_num == 2)
1230				return NULL;
1231			break;
1232
1233		case SCTP_CID_ASCONF:
1234			if (have_auth || net->sctp.addip_noauth)
1235				asoc = __sctp_rcv_asconf_lookup(
1236						net, ch, laddr,
1237						sctp_hdr(skb)->source,
1238						transportp);
1239		default:
1240			break;
1241		}
1242
1243		if (asoc)
1244			break;
1245
1246		ch = (struct sctp_chunkhdr *)ch_end;
1247		chunk_num++;
1248	} while (ch_end < skb_tail_pointer(skb));
1249
1250	return asoc;
1251}
1252
1253/*
1254 * There are circumstances when we need to look inside the SCTP packet
1255 * for information to help us find the association.   Examples
1256 * include looking inside of INIT/INIT-ACK chunks or after the AUTH
1257 * chunks.
1258 */
1259static struct sctp_association *__sctp_rcv_lookup_harder(struct net *net,
1260				      struct sk_buff *skb,
1261				      const union sctp_addr *laddr,
1262				      struct sctp_transport **transportp)
1263{
1264	struct sctp_chunkhdr *ch;
1265
1266	/* We do not allow GSO frames here as we need to linearize and
1267	 * then cannot guarantee frame boundaries. This shouldn't be an
1268	 * issue as packets hitting this are mostly INIT or INIT-ACK and
1269	 * those cannot be on GSO-style anyway.
1270	 */
1271	if (skb_is_gso(skb) && skb_is_gso_sctp(skb))
1272		return NULL;
1273
1274	ch = (struct sctp_chunkhdr *)skb->data;
1275
1276	/* The code below will attempt to walk the chunk and extract
1277	 * parameter information.  Before we do that, we need to verify
1278	 * that the chunk length doesn't cause overflow.  Otherwise, we'll
1279	 * walk off the end.
1280	 */
1281	if (SCTP_PAD4(ntohs(ch->length)) > skb->len)
1282		return NULL;
1283
1284	/* If this is INIT/INIT-ACK look inside the chunk too. */
1285	if (ch->type == SCTP_CID_INIT || ch->type == SCTP_CID_INIT_ACK)
1286		return __sctp_rcv_init_lookup(net, skb, laddr, transportp);
1287
1288	return __sctp_rcv_walk_lookup(net, skb, laddr, transportp);
1289}
1290
1291/* Lookup an association for an inbound skb. */
1292static struct sctp_association *__sctp_rcv_lookup(struct net *net,
1293				      struct sk_buff *skb,
1294				      const union sctp_addr *paddr,
1295				      const union sctp_addr *laddr,
1296				      struct sctp_transport **transportp)
1297{
1298	struct sctp_association *asoc;
1299
1300	asoc = __sctp_lookup_association(net, laddr, paddr, transportp);
1301	if (asoc)
1302		goto out;
1303
1304	/* Further lookup for INIT/INIT-ACK packets.
1305	 * SCTP Implementors Guide, 2.18 Handling of address
1306	 * parameters within the INIT or INIT-ACK.
1307	 */
1308	asoc = __sctp_rcv_lookup_harder(net, skb, laddr, transportp);
1309	if (asoc)
1310		goto out;
1311
1312	if (paddr->sa.sa_family == AF_INET)
1313		pr_debug("sctp: asoc not found for src:%pI4:%d dst:%pI4:%d\n",
1314			 &laddr->v4.sin_addr, ntohs(laddr->v4.sin_port),
1315			 &paddr->v4.sin_addr, ntohs(paddr->v4.sin_port));
1316	else
1317		pr_debug("sctp: asoc not found for src:%pI6:%d dst:%pI6:%d\n",
1318			 &laddr->v6.sin6_addr, ntohs(laddr->v6.sin6_port),
1319			 &paddr->v6.sin6_addr, ntohs(paddr->v6.sin6_port));
1320
1321out:
1322	return asoc;
1323}
v4.17
 
   1/* SCTP kernel implementation
   2 * Copyright (c) 1999-2000 Cisco, Inc.
   3 * Copyright (c) 1999-2001 Motorola, Inc.
   4 * Copyright (c) 2001-2003 International Business Machines, Corp.
   5 * Copyright (c) 2001 Intel Corp.
   6 * Copyright (c) 2001 Nokia, Inc.
   7 * Copyright (c) 2001 La Monte H.P. Yarroll
   8 *
   9 * This file is part of the SCTP kernel implementation
  10 *
  11 * These functions handle all input from the IP layer into SCTP.
  12 *
  13 * This SCTP implementation is free software;
  14 * you can redistribute it and/or modify it under the terms of
  15 * the GNU General Public License as published by
  16 * the Free Software Foundation; either version 2, or (at your option)
  17 * any later version.
  18 *
  19 * This SCTP implementation is distributed in the hope that it
  20 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
  21 *                 ************************
  22 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
  23 * See the GNU General Public License for more details.
  24 *
  25 * You should have received a copy of the GNU General Public License
  26 * along with GNU CC; see the file COPYING.  If not, see
  27 * <http://www.gnu.org/licenses/>.
  28 *
  29 * Please send any bug reports or fixes you make to the
  30 * email address(es):
  31 *    lksctp developers <linux-sctp@vger.kernel.org>
  32 *
  33 * Written or modified by:
  34 *    La Monte H.P. Yarroll <piggy@acm.org>
  35 *    Karl Knutson <karl@athena.chicago.il.us>
  36 *    Xingang Guo <xingang.guo@intel.com>
  37 *    Jon Grimm <jgrimm@us.ibm.com>
  38 *    Hui Huang <hui.huang@nokia.com>
  39 *    Daisy Chang <daisyc@us.ibm.com>
  40 *    Sridhar Samudrala <sri@us.ibm.com>
  41 *    Ardelle Fan <ardelle.fan@intel.com>
  42 */
  43
  44#include <linux/types.h>
  45#include <linux/list.h> /* For struct list_head */
  46#include <linux/socket.h>
  47#include <linux/ip.h>
  48#include <linux/time.h> /* For struct timeval */
  49#include <linux/slab.h>
  50#include <net/ip.h>
  51#include <net/icmp.h>
  52#include <net/snmp.h>
  53#include <net/sock.h>
  54#include <net/xfrm.h>
  55#include <net/sctp/sctp.h>
  56#include <net/sctp/sm.h>
  57#include <net/sctp/checksum.h>
  58#include <net/net_namespace.h>
 
 
  59
  60/* Forward declarations for internal helpers. */
  61static int sctp_rcv_ootb(struct sk_buff *);
  62static struct sctp_association *__sctp_rcv_lookup(struct net *net,
  63				      struct sk_buff *skb,
  64				      const union sctp_addr *paddr,
  65				      const union sctp_addr *laddr,
  66				      struct sctp_transport **transportp);
  67static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(struct net *net,
  68						const union sctp_addr *laddr);
 
 
  69static struct sctp_association *__sctp_lookup_association(
  70					struct net *net,
  71					const union sctp_addr *local,
  72					const union sctp_addr *peer,
  73					struct sctp_transport **pt);
  74
  75static int sctp_add_backlog(struct sock *sk, struct sk_buff *skb);
  76
  77
  78/* Calculate the SCTP checksum of an SCTP packet.  */
  79static inline int sctp_rcv_checksum(struct net *net, struct sk_buff *skb)
  80{
  81	struct sctphdr *sh = sctp_hdr(skb);
  82	__le32 cmp = sh->checksum;
  83	__le32 val = sctp_compute_cksum(skb, 0);
  84
  85	if (val != cmp) {
  86		/* CRC failure, dump it. */
  87		__SCTP_INC_STATS(net, SCTP_MIB_CHECKSUMERRORS);
  88		return -1;
  89	}
  90	return 0;
  91}
  92
  93/*
  94 * This is the routine which IP calls when receiving an SCTP packet.
  95 */
  96int sctp_rcv(struct sk_buff *skb)
  97{
  98	struct sock *sk;
  99	struct sctp_association *asoc;
 100	struct sctp_endpoint *ep = NULL;
 101	struct sctp_ep_common *rcvr;
 102	struct sctp_transport *transport = NULL;
 103	struct sctp_chunk *chunk;
 104	union sctp_addr src;
 105	union sctp_addr dest;
 106	int family;
 107	struct sctp_af *af;
 108	struct net *net = dev_net(skb->dev);
 109	bool is_gso = skb_is_gso(skb) && skb_is_gso_sctp(skb);
 110
 111	if (skb->pkt_type != PACKET_HOST)
 112		goto discard_it;
 113
 114	__SCTP_INC_STATS(net, SCTP_MIB_INSCTPPACKS);
 115
 116	/* If packet is too small to contain a single chunk, let's not
 117	 * waste time on it anymore.
 118	 */
 119	if (skb->len < sizeof(struct sctphdr) + sizeof(struct sctp_chunkhdr) +
 120		       skb_transport_offset(skb))
 121		goto discard_it;
 122
 123	/* If the packet is fragmented and we need to do crc checking,
 124	 * it's better to just linearize it otherwise crc computing
 125	 * takes longer.
 126	 */
 127	if ((!is_gso && skb_linearize(skb)) ||
 128	    !pskb_may_pull(skb, sizeof(struct sctphdr)))
 129		goto discard_it;
 130
 131	/* Pull up the IP header. */
 132	__skb_pull(skb, skb_transport_offset(skb));
 133
 134	skb->csum_valid = 0; /* Previous value not applicable */
 135	if (skb_csum_unnecessary(skb))
 136		__skb_decr_checksum_unnecessary(skb);
 137	else if (!sctp_checksum_disable &&
 138		 !is_gso &&
 139		 sctp_rcv_checksum(net, skb) < 0)
 140		goto discard_it;
 141	skb->csum_valid = 1;
 142
 143	__skb_pull(skb, sizeof(struct sctphdr));
 144
 145	family = ipver2af(ip_hdr(skb)->version);
 146	af = sctp_get_af_specific(family);
 147	if (unlikely(!af))
 148		goto discard_it;
 149	SCTP_INPUT_CB(skb)->af = af;
 150
 151	/* Initialize local addresses for lookups. */
 152	af->from_skb(&src, skb, 1);
 153	af->from_skb(&dest, skb, 0);
 154
 155	/* If the packet is to or from a non-unicast address,
 156	 * silently discard the packet.
 157	 *
 158	 * This is not clearly defined in the RFC except in section
 159	 * 8.4 - OOTB handling.  However, based on the book "Stream Control
 160	 * Transmission Protocol" 2.1, "It is important to note that the
 161	 * IP address of an SCTP transport address must be a routable
 162	 * unicast address.  In other words, IP multicast addresses and
 163	 * IP broadcast addresses cannot be used in an SCTP transport
 164	 * address."
 165	 */
 166	if (!af->addr_valid(&src, NULL, skb) ||
 167	    !af->addr_valid(&dest, NULL, skb))
 168		goto discard_it;
 169
 170	asoc = __sctp_rcv_lookup(net, skb, &src, &dest, &transport);
 171
 172	if (!asoc)
 173		ep = __sctp_rcv_lookup_endpoint(net, &dest);
 174
 175	/* Retrieve the common input handling substructure. */
 176	rcvr = asoc ? &asoc->base : &ep->base;
 177	sk = rcvr->sk;
 178
 179	/*
 180	 * If a frame arrives on an interface and the receiving socket is
 181	 * bound to another interface, via SO_BINDTODEVICE, treat it as OOTB
 182	 */
 183	if (sk->sk_bound_dev_if && (sk->sk_bound_dev_if != af->skb_iif(skb))) {
 184		if (transport) {
 185			sctp_transport_put(transport);
 186			asoc = NULL;
 187			transport = NULL;
 188		} else {
 189			sctp_endpoint_put(ep);
 190			ep = NULL;
 191		}
 192		sk = net->sctp.ctl_sock;
 193		ep = sctp_sk(sk)->ep;
 194		sctp_endpoint_hold(ep);
 195		rcvr = &ep->base;
 196	}
 197
 198	/*
 199	 * RFC 2960, 8.4 - Handle "Out of the blue" Packets.
 200	 * An SCTP packet is called an "out of the blue" (OOTB)
 201	 * packet if it is correctly formed, i.e., passed the
 202	 * receiver's checksum check, but the receiver is not
 203	 * able to identify the association to which this
 204	 * packet belongs.
 205	 */
 206	if (!asoc) {
 207		if (sctp_rcv_ootb(skb)) {
 208			__SCTP_INC_STATS(net, SCTP_MIB_OUTOFBLUES);
 209			goto discard_release;
 210		}
 211	}
 212
 213	if (!xfrm_policy_check(sk, XFRM_POLICY_IN, skb, family))
 214		goto discard_release;
 215	nf_reset(skb);
 216
 217	if (sk_filter(sk, skb))
 218		goto discard_release;
 219
 220	/* Create an SCTP packet structure. */
 221	chunk = sctp_chunkify(skb, asoc, sk, GFP_ATOMIC);
 222	if (!chunk)
 223		goto discard_release;
 224	SCTP_INPUT_CB(skb)->chunk = chunk;
 225
 226	/* Remember what endpoint is to handle this packet. */
 227	chunk->rcvr = rcvr;
 228
 229	/* Remember the SCTP header. */
 230	chunk->sctp_hdr = sctp_hdr(skb);
 231
 232	/* Set the source and destination addresses of the incoming chunk.  */
 233	sctp_init_addrs(chunk, &src, &dest);
 234
 235	/* Remember where we came from.  */
 236	chunk->transport = transport;
 237
 238	/* Acquire access to the sock lock. Note: We are safe from other
 239	 * bottom halves on this lock, but a user may be in the lock too,
 240	 * so check if it is busy.
 241	 */
 242	bh_lock_sock(sk);
 243
 244	if (sk != rcvr->sk) {
 245		/* Our cached sk is different from the rcvr->sk.  This is
 246		 * because migrate()/accept() may have moved the association
 247		 * to a new socket and released all the sockets.  So now we
 248		 * are holding a lock on the old socket while the user may
 249		 * be doing something with the new socket.  Switch our veiw
 250		 * of the current sk.
 251		 */
 252		bh_unlock_sock(sk);
 253		sk = rcvr->sk;
 254		bh_lock_sock(sk);
 255	}
 256
 257	if (sock_owned_by_user(sk)) {
 258		if (sctp_add_backlog(sk, skb)) {
 259			bh_unlock_sock(sk);
 260			sctp_chunk_free(chunk);
 261			skb = NULL; /* sctp_chunk_free already freed the skb */
 262			goto discard_release;
 263		}
 264		__SCTP_INC_STATS(net, SCTP_MIB_IN_PKT_BACKLOG);
 265	} else {
 266		__SCTP_INC_STATS(net, SCTP_MIB_IN_PKT_SOFTIRQ);
 267		sctp_inq_push(&chunk->rcvr->inqueue, chunk);
 268	}
 269
 270	bh_unlock_sock(sk);
 271
 272	/* Release the asoc/ep ref we took in the lookup calls. */
 273	if (transport)
 274		sctp_transport_put(transport);
 275	else
 276		sctp_endpoint_put(ep);
 277
 278	return 0;
 279
 280discard_it:
 281	__SCTP_INC_STATS(net, SCTP_MIB_IN_PKT_DISCARDS);
 282	kfree_skb(skb);
 283	return 0;
 284
 285discard_release:
 286	/* Release the asoc/ep ref we took in the lookup calls. */
 287	if (transport)
 288		sctp_transport_put(transport);
 289	else
 290		sctp_endpoint_put(ep);
 291
 292	goto discard_it;
 293}
 294
 295/* Process the backlog queue of the socket.  Every skb on
 296 * the backlog holds a ref on an association or endpoint.
 297 * We hold this ref throughout the state machine to make
 298 * sure that the structure we need is still around.
 299 */
 300int sctp_backlog_rcv(struct sock *sk, struct sk_buff *skb)
 301{
 302	struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk;
 303	struct sctp_inq *inqueue = &chunk->rcvr->inqueue;
 304	struct sctp_transport *t = chunk->transport;
 305	struct sctp_ep_common *rcvr = NULL;
 306	int backloged = 0;
 307
 308	rcvr = chunk->rcvr;
 309
 310	/* If the rcvr is dead then the association or endpoint
 311	 * has been deleted and we can safely drop the chunk
 312	 * and refs that we are holding.
 313	 */
 314	if (rcvr->dead) {
 315		sctp_chunk_free(chunk);
 316		goto done;
 317	}
 318
 319	if (unlikely(rcvr->sk != sk)) {
 320		/* In this case, the association moved from one socket to
 321		 * another.  We are currently sitting on the backlog of the
 322		 * old socket, so we need to move.
 323		 * However, since we are here in the process context we
 324		 * need to take make sure that the user doesn't own
 325		 * the new socket when we process the packet.
 326		 * If the new socket is user-owned, queue the chunk to the
 327		 * backlog of the new socket without dropping any refs.
 328		 * Otherwise, we can safely push the chunk on the inqueue.
 329		 */
 330
 331		sk = rcvr->sk;
 332		local_bh_disable();
 333		bh_lock_sock(sk);
 334
 335		if (sock_owned_by_user(sk)) {
 336			if (sk_add_backlog(sk, skb, sk->sk_rcvbuf))
 337				sctp_chunk_free(chunk);
 338			else
 339				backloged = 1;
 340		} else
 341			sctp_inq_push(inqueue, chunk);
 342
 343		bh_unlock_sock(sk);
 344		local_bh_enable();
 345
 346		/* If the chunk was backloged again, don't drop refs */
 347		if (backloged)
 348			return 0;
 349	} else {
 350		sctp_inq_push(inqueue, chunk);
 
 
 
 
 
 
 351	}
 352
 353done:
 354	/* Release the refs we took in sctp_add_backlog */
 355	if (SCTP_EP_TYPE_ASSOCIATION == rcvr->type)
 356		sctp_transport_put(t);
 357	else if (SCTP_EP_TYPE_SOCKET == rcvr->type)
 358		sctp_endpoint_put(sctp_ep(rcvr));
 359	else
 360		BUG();
 361
 362	return 0;
 363}
 364
 365static int sctp_add_backlog(struct sock *sk, struct sk_buff *skb)
 366{
 367	struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk;
 368	struct sctp_transport *t = chunk->transport;
 369	struct sctp_ep_common *rcvr = chunk->rcvr;
 370	int ret;
 371
 372	ret = sk_add_backlog(sk, skb, sk->sk_rcvbuf);
 373	if (!ret) {
 374		/* Hold the assoc/ep while hanging on the backlog queue.
 375		 * This way, we know structures we need will not disappear
 376		 * from us
 377		 */
 378		if (SCTP_EP_TYPE_ASSOCIATION == rcvr->type)
 379			sctp_transport_hold(t);
 380		else if (SCTP_EP_TYPE_SOCKET == rcvr->type)
 381			sctp_endpoint_hold(sctp_ep(rcvr));
 382		else
 383			BUG();
 384	}
 385	return ret;
 386
 387}
 388
 389/* Handle icmp frag needed error. */
 390void sctp_icmp_frag_needed(struct sock *sk, struct sctp_association *asoc,
 391			   struct sctp_transport *t, __u32 pmtu)
 392{
 393	if (!t || (t->pathmtu <= pmtu))
 394		return;
 395
 396	if (sock_owned_by_user(sk)) {
 
 397		asoc->pmtu_pending = 1;
 398		t->pmtu_pending = 1;
 399		return;
 400	}
 401
 402	if (!(t->param_flags & SPP_PMTUD_ENABLE))
 403		/* We can't allow retransmitting in such case, as the
 404		 * retransmission would be sized just as before, and thus we
 405		 * would get another icmp, and retransmit again.
 406		 */
 407		return;
 408
 409	/* Update transports view of the MTU. Return if no update was needed.
 410	 * If an update wasn't needed/possible, it also doesn't make sense to
 411	 * try to retransmit now.
 412	 */
 413	if (!sctp_transport_update_pmtu(t, pmtu))
 414		return;
 415
 416	/* Update association pmtu. */
 417	sctp_assoc_sync_pmtu(asoc);
 418
 419	/* Retransmit with the new pmtu setting. */
 420	sctp_retransmit(&asoc->outqueue, t, SCTP_RTXR_PMTUD);
 421}
 422
 423void sctp_icmp_redirect(struct sock *sk, struct sctp_transport *t,
 424			struct sk_buff *skb)
 425{
 426	struct dst_entry *dst;
 427
 428	if (sock_owned_by_user(sk) || !t)
 429		return;
 430	dst = sctp_transport_dst_check(t);
 431	if (dst)
 432		dst->ops->redirect(dst, sk, skb);
 433}
 434
 435/*
 436 * SCTP Implementer's Guide, 2.37 ICMP handling procedures
 437 *
 438 * ICMP8) If the ICMP code is a "Unrecognized next header type encountered"
 439 *        or a "Protocol Unreachable" treat this message as an abort
 440 *        with the T bit set.
 441 *
 442 * This function sends an event to the state machine, which will abort the
 443 * association.
 444 *
 445 */
 446void sctp_icmp_proto_unreachable(struct sock *sk,
 447			   struct sctp_association *asoc,
 448			   struct sctp_transport *t)
 449{
 450	if (sock_owned_by_user(sk)) {
 451		if (timer_pending(&t->proto_unreach_timer))
 452			return;
 453		else {
 454			if (!mod_timer(&t->proto_unreach_timer,
 455						jiffies + (HZ/20)))
 456				sctp_association_hold(asoc);
 457		}
 458	} else {
 459		struct net *net = sock_net(sk);
 460
 461		pr_debug("%s: unrecognized next header type "
 462			 "encountered!\n", __func__);
 463
 464		if (del_timer(&t->proto_unreach_timer))
 465			sctp_association_put(asoc);
 466
 467		sctp_do_sm(net, SCTP_EVENT_T_OTHER,
 468			   SCTP_ST_OTHER(SCTP_EVENT_ICMP_PROTO_UNREACH),
 469			   asoc->state, asoc->ep, asoc, t,
 470			   GFP_ATOMIC);
 471	}
 472}
 473
 474/* Common lookup code for icmp/icmpv6 error handler. */
 475struct sock *sctp_err_lookup(struct net *net, int family, struct sk_buff *skb,
 476			     struct sctphdr *sctphdr,
 477			     struct sctp_association **app,
 478			     struct sctp_transport **tpp)
 479{
 480	struct sctp_init_chunk *chunkhdr, _chunkhdr;
 481	union sctp_addr saddr;
 482	union sctp_addr daddr;
 483	struct sctp_af *af;
 484	struct sock *sk = NULL;
 485	struct sctp_association *asoc;
 486	struct sctp_transport *transport = NULL;
 487	__u32 vtag = ntohl(sctphdr->vtag);
 488
 489	*app = NULL; *tpp = NULL;
 490
 491	af = sctp_get_af_specific(family);
 492	if (unlikely(!af)) {
 493		return NULL;
 494	}
 495
 496	/* Initialize local addresses for lookups. */
 497	af->from_skb(&saddr, skb, 1);
 498	af->from_skb(&daddr, skb, 0);
 499
 500	/* Look for an association that matches the incoming ICMP error
 501	 * packet.
 502	 */
 503	asoc = __sctp_lookup_association(net, &saddr, &daddr, &transport);
 504	if (!asoc)
 505		return NULL;
 506
 507	sk = asoc->base.sk;
 508
 509	/* RFC 4960, Appendix C. ICMP Handling
 510	 *
 511	 * ICMP6) An implementation MUST validate that the Verification Tag
 512	 * contained in the ICMP message matches the Verification Tag of
 513	 * the peer.  If the Verification Tag is not 0 and does NOT
 514	 * match, discard the ICMP message.  If it is 0 and the ICMP
 515	 * message contains enough bytes to verify that the chunk type is
 516	 * an INIT chunk and that the Initiate Tag matches the tag of the
 517	 * peer, continue with ICMP7.  If the ICMP message is too short
 518	 * or the chunk type or the Initiate Tag does not match, silently
 519	 * discard the packet.
 520	 */
 521	if (vtag == 0) {
 522		/* chunk header + first 4 octects of init header */
 523		chunkhdr = skb_header_pointer(skb, skb_transport_offset(skb) +
 524					      sizeof(struct sctphdr),
 525					      sizeof(struct sctp_chunkhdr) +
 526					      sizeof(__be32), &_chunkhdr);
 527		if (!chunkhdr ||
 528		    chunkhdr->chunk_hdr.type != SCTP_CID_INIT ||
 529		    ntohl(chunkhdr->init_hdr.init_tag) != asoc->c.my_vtag)
 530			goto out;
 531
 532	} else if (vtag != asoc->c.peer_vtag) {
 533		goto out;
 534	}
 535
 536	bh_lock_sock(sk);
 537
 538	/* If too many ICMPs get dropped on busy
 539	 * servers this needs to be solved differently.
 540	 */
 541	if (sock_owned_by_user(sk))
 542		__NET_INC_STATS(net, LINUX_MIB_LOCKDROPPEDICMPS);
 543
 544	*app = asoc;
 545	*tpp = transport;
 546	return sk;
 547
 548out:
 549	sctp_transport_put(transport);
 550	return NULL;
 551}
 552
 553/* Common cleanup code for icmp/icmpv6 error handler. */
 554void sctp_err_finish(struct sock *sk, struct sctp_transport *t)
 
 555{
 556	bh_unlock_sock(sk);
 557	sctp_transport_put(t);
 558}
 559
 560/*
 561 * This routine is called by the ICMP module when it gets some
 562 * sort of error condition.  If err < 0 then the socket should
 563 * be closed and the error returned to the user.  If err > 0
 564 * it's just the icmp type << 8 | icmp code.  After adjustment
 565 * header points to the first 8 bytes of the sctp header.  We need
 566 * to find the appropriate port.
 567 *
 568 * The locking strategy used here is very "optimistic". When
 569 * someone else accesses the socket the ICMP is just dropped
 570 * and for some paths there is no check at all.
 571 * A more general error queue to queue errors for later handling
 572 * is probably better.
 573 *
 574 */
 575void sctp_v4_err(struct sk_buff *skb, __u32 info)
 576{
 577	const struct iphdr *iph = (const struct iphdr *)skb->data;
 578	const int ihlen = iph->ihl * 4;
 579	const int type = icmp_hdr(skb)->type;
 580	const int code = icmp_hdr(skb)->code;
 581	struct sock *sk;
 582	struct sctp_association *asoc = NULL;
 583	struct sctp_transport *transport;
 584	struct inet_sock *inet;
 585	__u16 saveip, savesctp;
 586	int err;
 587	struct net *net = dev_net(skb->dev);
 588
 589	/* Fix up skb to look at the embedded net header. */
 590	saveip = skb->network_header;
 591	savesctp = skb->transport_header;
 592	skb_reset_network_header(skb);
 593	skb_set_transport_header(skb, ihlen);
 594	sk = sctp_err_lookup(net, AF_INET, skb, sctp_hdr(skb), &asoc, &transport);
 595	/* Put back, the original values. */
 596	skb->network_header = saveip;
 597	skb->transport_header = savesctp;
 598	if (!sk) {
 599		__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
 600		return;
 601	}
 602	/* Warning:  The sock lock is held.  Remember to call
 603	 * sctp_err_finish!
 604	 */
 605
 606	switch (type) {
 607	case ICMP_PARAMETERPROB:
 608		err = EPROTO;
 609		break;
 610	case ICMP_DEST_UNREACH:
 611		if (code > NR_ICMP_UNREACH)
 612			goto out_unlock;
 613
 614		/* PMTU discovery (RFC1191) */
 615		if (ICMP_FRAG_NEEDED == code) {
 616			sctp_icmp_frag_needed(sk, asoc, transport,
 617					      SCTP_TRUNC4(info));
 618			goto out_unlock;
 619		} else {
 620			if (ICMP_PROT_UNREACH == code) {
 621				sctp_icmp_proto_unreachable(sk, asoc,
 622							    transport);
 623				goto out_unlock;
 624			}
 625		}
 626		err = icmp_err_convert[code].errno;
 627		break;
 628	case ICMP_TIME_EXCEEDED:
 629		/* Ignore any time exceeded errors due to fragment reassembly
 630		 * timeouts.
 631		 */
 632		if (ICMP_EXC_FRAGTIME == code)
 633			goto out_unlock;
 634
 635		err = EHOSTUNREACH;
 636		break;
 637	case ICMP_REDIRECT:
 638		sctp_icmp_redirect(sk, transport, skb);
 639		/* Fall through to out_unlock. */
 640	default:
 641		goto out_unlock;
 642	}
 643
 644	inet = inet_sk(sk);
 645	if (!sock_owned_by_user(sk) && inet->recverr) {
 646		sk->sk_err = err;
 647		sk->sk_error_report(sk);
 648	} else {  /* Only an error on timeout */
 649		sk->sk_err_soft = err;
 650	}
 651
 652out_unlock:
 653	sctp_err_finish(sk, transport);
 
 654}
 655
 656/*
 657 * RFC 2960, 8.4 - Handle "Out of the blue" Packets.
 658 *
 659 * This function scans all the chunks in the OOTB packet to determine if
 660 * the packet should be discarded right away.  If a response might be needed
 661 * for this packet, or, if further processing is possible, the packet will
 662 * be queued to a proper inqueue for the next phase of handling.
 663 *
 664 * Output:
 665 * Return 0 - If further processing is needed.
 666 * Return 1 - If the packet can be discarded right away.
 667 */
 668static int sctp_rcv_ootb(struct sk_buff *skb)
 669{
 670	struct sctp_chunkhdr *ch, _ch;
 671	int ch_end, offset = 0;
 672
 673	/* Scan through all the chunks in the packet.  */
 674	do {
 675		/* Make sure we have at least the header there */
 676		if (offset + sizeof(_ch) > skb->len)
 677			break;
 678
 679		ch = skb_header_pointer(skb, offset, sizeof(*ch), &_ch);
 680
 681		/* Break out if chunk length is less then minimal. */
 682		if (ntohs(ch->length) < sizeof(_ch))
 683			break;
 684
 685		ch_end = offset + SCTP_PAD4(ntohs(ch->length));
 686		if (ch_end > skb->len)
 687			break;
 688
 689		/* RFC 8.4, 2) If the OOTB packet contains an ABORT chunk, the
 690		 * receiver MUST silently discard the OOTB packet and take no
 691		 * further action.
 692		 */
 693		if (SCTP_CID_ABORT == ch->type)
 694			goto discard;
 695
 696		/* RFC 8.4, 6) If the packet contains a SHUTDOWN COMPLETE
 697		 * chunk, the receiver should silently discard the packet
 698		 * and take no further action.
 699		 */
 700		if (SCTP_CID_SHUTDOWN_COMPLETE == ch->type)
 701			goto discard;
 702
 703		/* RFC 4460, 2.11.2
 704		 * This will discard packets with INIT chunk bundled as
 705		 * subsequent chunks in the packet.  When INIT is first,
 706		 * the normal INIT processing will discard the chunk.
 707		 */
 708		if (SCTP_CID_INIT == ch->type && (void *)ch != skb->data)
 709			goto discard;
 710
 711		offset = ch_end;
 712	} while (ch_end < skb->len);
 713
 714	return 0;
 715
 716discard:
 717	return 1;
 718}
 719
 720/* Insert endpoint into the hash table.  */
 721static void __sctp_hash_endpoint(struct sctp_endpoint *ep)
 722{
 723	struct net *net = sock_net(ep->base.sk);
 
 
 724	struct sctp_ep_common *epb;
 725	struct sctp_hashbucket *head;
 726
 727	epb = &ep->base;
 728
 729	epb->hashent = sctp_ep_hashfn(net, epb->bind_addr.port);
 730	head = &sctp_ep_hashtable[epb->hashent];
 731
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 732	write_lock(&head->lock);
 733	hlist_add_head(&epb->node, &head->chain);
 734	write_unlock(&head->lock);
 
 735}
 736
 737/* Add an endpoint to the hash. Local BH-safe. */
 738void sctp_hash_endpoint(struct sctp_endpoint *ep)
 739{
 
 
 740	local_bh_disable();
 741	__sctp_hash_endpoint(ep);
 742	local_bh_enable();
 
 
 743}
 744
 745/* Remove endpoint from the hash table.  */
 746static void __sctp_unhash_endpoint(struct sctp_endpoint *ep)
 747{
 748	struct net *net = sock_net(ep->base.sk);
 749	struct sctp_hashbucket *head;
 750	struct sctp_ep_common *epb;
 751
 752	epb = &ep->base;
 753
 754	epb->hashent = sctp_ep_hashfn(net, epb->bind_addr.port);
 755
 756	head = &sctp_ep_hashtable[epb->hashent];
 757
 
 
 
 758	write_lock(&head->lock);
 759	hlist_del_init(&epb->node);
 760	write_unlock(&head->lock);
 761}
 762
 763/* Remove endpoint from the hash.  Local BH-safe. */
 764void sctp_unhash_endpoint(struct sctp_endpoint *ep)
 765{
 766	local_bh_disable();
 767	__sctp_unhash_endpoint(ep);
 768	local_bh_enable();
 769}
 770
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 771/* Look up an endpoint. */
 772static struct sctp_endpoint *__sctp_rcv_lookup_endpoint(struct net *net,
 773						const union sctp_addr *laddr)
 
 
 774{
 775	struct sctp_hashbucket *head;
 776	struct sctp_ep_common *epb;
 777	struct sctp_endpoint *ep;
 
 
 778	int hash;
 779
 780	hash = sctp_ep_hashfn(net, ntohs(laddr->v4.sin_port));
 
 781	head = &sctp_ep_hashtable[hash];
 782	read_lock(&head->lock);
 783	sctp_for_each_hentry(epb, &head->chain) {
 784		ep = sctp_ep(epb);
 785		if (sctp_endpoint_is_match(ep, net, laddr))
 786			goto hit;
 787	}
 788
 789	ep = sctp_sk(net->sctp.ctl_sock)->ep;
 790
 791hit:
 
 
 
 
 
 
 
 
 
 792	sctp_endpoint_hold(ep);
 793	read_unlock(&head->lock);
 794	return ep;
 795}
 796
 797/* rhashtable for transport */
 798struct sctp_hash_cmp_arg {
 799	const union sctp_addr	*paddr;
 800	const struct net	*net;
 801	__be16			lport;
 802};
 803
 804static inline int sctp_hash_cmp(struct rhashtable_compare_arg *arg,
 805				const void *ptr)
 806{
 807	struct sctp_transport *t = (struct sctp_transport *)ptr;
 808	const struct sctp_hash_cmp_arg *x = arg->key;
 809	int err = 1;
 810
 811	if (!sctp_cmp_addr_exact(&t->ipaddr, x->paddr))
 812		return err;
 813	if (!sctp_transport_hold(t))
 814		return err;
 815
 816	if (!net_eq(sock_net(t->asoc->base.sk), x->net))
 817		goto out;
 818	if (x->lport != htons(t->asoc->base.bind_addr.port))
 819		goto out;
 820
 821	err = 0;
 822out:
 823	sctp_transport_put(t);
 824	return err;
 825}
 826
 827static inline __u32 sctp_hash_obj(const void *data, u32 len, u32 seed)
 828{
 829	const struct sctp_transport *t = data;
 830	const union sctp_addr *paddr = &t->ipaddr;
 831	const struct net *net = sock_net(t->asoc->base.sk);
 832	__be16 lport = htons(t->asoc->base.bind_addr.port);
 833	__u32 addr;
 834
 835	if (paddr->sa.sa_family == AF_INET6)
 836		addr = jhash(&paddr->v6.sin6_addr, 16, seed);
 837	else
 838		addr = (__force __u32)paddr->v4.sin_addr.s_addr;
 839
 840	return  jhash_3words(addr, ((__force __u32)paddr->v4.sin_port) << 16 |
 841			     (__force __u32)lport, net_hash_mix(net), seed);
 842}
 843
 844static inline __u32 sctp_hash_key(const void *data, u32 len, u32 seed)
 845{
 846	const struct sctp_hash_cmp_arg *x = data;
 847	const union sctp_addr *paddr = x->paddr;
 848	const struct net *net = x->net;
 849	__be16 lport = x->lport;
 850	__u32 addr;
 851
 852	if (paddr->sa.sa_family == AF_INET6)
 853		addr = jhash(&paddr->v6.sin6_addr, 16, seed);
 854	else
 855		addr = (__force __u32)paddr->v4.sin_addr.s_addr;
 856
 857	return  jhash_3words(addr, ((__force __u32)paddr->v4.sin_port) << 16 |
 858			     (__force __u32)lport, net_hash_mix(net), seed);
 859}
 860
 861static const struct rhashtable_params sctp_hash_params = {
 862	.head_offset		= offsetof(struct sctp_transport, node),
 863	.hashfn			= sctp_hash_key,
 864	.obj_hashfn		= sctp_hash_obj,
 865	.obj_cmpfn		= sctp_hash_cmp,
 866	.automatic_shrinking	= true,
 867};
 868
 869int sctp_transport_hashtable_init(void)
 870{
 871	return rhltable_init(&sctp_transport_hashtable, &sctp_hash_params);
 872}
 873
 874void sctp_transport_hashtable_destroy(void)
 875{
 876	rhltable_destroy(&sctp_transport_hashtable);
 877}
 878
 879int sctp_hash_transport(struct sctp_transport *t)
 880{
 881	struct sctp_transport *transport;
 882	struct rhlist_head *tmp, *list;
 883	struct sctp_hash_cmp_arg arg;
 884	int err;
 885
 886	if (t->asoc->temp)
 887		return 0;
 888
 889	arg.net   = sock_net(t->asoc->base.sk);
 890	arg.paddr = &t->ipaddr;
 891	arg.lport = htons(t->asoc->base.bind_addr.port);
 892
 893	rcu_read_lock();
 894	list = rhltable_lookup(&sctp_transport_hashtable, &arg,
 895			       sctp_hash_params);
 896
 897	rhl_for_each_entry_rcu(transport, tmp, list, node)
 898		if (transport->asoc->ep == t->asoc->ep) {
 899			rcu_read_unlock();
 900			return -EEXIST;
 901		}
 902	rcu_read_unlock();
 903
 904	err = rhltable_insert_key(&sctp_transport_hashtable, &arg,
 905				  &t->node, sctp_hash_params);
 906	if (err)
 907		pr_err_once("insert transport fail, errno %d\n", err);
 908
 909	return err;
 910}
 911
 912void sctp_unhash_transport(struct sctp_transport *t)
 913{
 914	if (t->asoc->temp)
 915		return;
 916
 917	rhltable_remove(&sctp_transport_hashtable, &t->node,
 918			sctp_hash_params);
 919}
 920
 921/* return a transport with holding it */
 922struct sctp_transport *sctp_addrs_lookup_transport(
 923				struct net *net,
 924				const union sctp_addr *laddr,
 925				const union sctp_addr *paddr)
 926{
 927	struct rhlist_head *tmp, *list;
 928	struct sctp_transport *t;
 929	struct sctp_hash_cmp_arg arg = {
 930		.paddr = paddr,
 931		.net   = net,
 932		.lport = laddr->v4.sin_port,
 933	};
 934
 935	list = rhltable_lookup(&sctp_transport_hashtable, &arg,
 936			       sctp_hash_params);
 937
 938	rhl_for_each_entry_rcu(t, tmp, list, node) {
 939		if (!sctp_transport_hold(t))
 940			continue;
 941
 942		if (sctp_bind_addr_match(&t->asoc->base.bind_addr,
 943					 laddr, sctp_sk(t->asoc->base.sk)))
 944			return t;
 945		sctp_transport_put(t);
 946	}
 947
 948	return NULL;
 949}
 950
 951/* return a transport without holding it, as it's only used under sock lock */
 952struct sctp_transport *sctp_epaddr_lookup_transport(
 953				const struct sctp_endpoint *ep,
 954				const union sctp_addr *paddr)
 955{
 956	struct net *net = sock_net(ep->base.sk);
 957	struct rhlist_head *tmp, *list;
 958	struct sctp_transport *t;
 959	struct sctp_hash_cmp_arg arg = {
 960		.paddr = paddr,
 961		.net   = net,
 962		.lport = htons(ep->base.bind_addr.port),
 963	};
 964
 965	list = rhltable_lookup(&sctp_transport_hashtable, &arg,
 966			       sctp_hash_params);
 967
 968	rhl_for_each_entry_rcu(t, tmp, list, node)
 969		if (ep == t->asoc->ep)
 970			return t;
 971
 972	return NULL;
 973}
 974
 975/* Look up an association. */
 976static struct sctp_association *__sctp_lookup_association(
 977					struct net *net,
 978					const union sctp_addr *local,
 979					const union sctp_addr *peer,
 980					struct sctp_transport **pt)
 981{
 982	struct sctp_transport *t;
 983	struct sctp_association *asoc = NULL;
 984
 985	t = sctp_addrs_lookup_transport(net, local, peer);
 986	if (!t)
 987		goto out;
 988
 989	asoc = t->asoc;
 990	*pt = t;
 991
 992out:
 993	return asoc;
 994}
 995
 996/* Look up an association. protected by RCU read lock */
 997static
 998struct sctp_association *sctp_lookup_association(struct net *net,
 999						 const union sctp_addr *laddr,
1000						 const union sctp_addr *paddr,
1001						 struct sctp_transport **transportp)
1002{
1003	struct sctp_association *asoc;
1004
1005	rcu_read_lock();
1006	asoc = __sctp_lookup_association(net, laddr, paddr, transportp);
1007	rcu_read_unlock();
1008
1009	return asoc;
1010}
1011
1012/* Is there an association matching the given local and peer addresses? */
1013bool sctp_has_association(struct net *net,
1014			  const union sctp_addr *laddr,
1015			  const union sctp_addr *paddr)
1016{
1017	struct sctp_transport *transport;
1018
1019	if (sctp_lookup_association(net, laddr, paddr, &transport)) {
1020		sctp_transport_put(transport);
1021		return true;
1022	}
1023
1024	return false;
1025}
1026
1027/*
1028 * SCTP Implementors Guide, 2.18 Handling of address
1029 * parameters within the INIT or INIT-ACK.
1030 *
1031 * D) When searching for a matching TCB upon reception of an INIT
1032 *    or INIT-ACK chunk the receiver SHOULD use not only the
1033 *    source address of the packet (containing the INIT or
1034 *    INIT-ACK) but the receiver SHOULD also use all valid
1035 *    address parameters contained within the chunk.
1036 *
1037 * 2.18.3 Solution description
1038 *
1039 * This new text clearly specifies to an implementor the need
1040 * to look within the INIT or INIT-ACK. Any implementation that
1041 * does not do this, may not be able to establish associations
1042 * in certain circumstances.
1043 *
1044 */
1045static struct sctp_association *__sctp_rcv_init_lookup(struct net *net,
1046	struct sk_buff *skb,
1047	const union sctp_addr *laddr, struct sctp_transport **transportp)
1048{
1049	struct sctp_association *asoc;
1050	union sctp_addr addr;
1051	union sctp_addr *paddr = &addr;
1052	struct sctphdr *sh = sctp_hdr(skb);
1053	union sctp_params params;
1054	struct sctp_init_chunk *init;
1055	struct sctp_af *af;
1056
1057	/*
1058	 * This code will NOT touch anything inside the chunk--it is
1059	 * strictly READ-ONLY.
1060	 *
1061	 * RFC 2960 3  SCTP packet Format
1062	 *
1063	 * Multiple chunks can be bundled into one SCTP packet up to
1064	 * the MTU size, except for the INIT, INIT ACK, and SHUTDOWN
1065	 * COMPLETE chunks.  These chunks MUST NOT be bundled with any
1066	 * other chunk in a packet.  See Section 6.10 for more details
1067	 * on chunk bundling.
1068	 */
1069
1070	/* Find the start of the TLVs and the end of the chunk.  This is
1071	 * the region we search for address parameters.
1072	 */
1073	init = (struct sctp_init_chunk *)skb->data;
1074
1075	/* Walk the parameters looking for embedded addresses. */
1076	sctp_walk_params(params, init, init_hdr.params) {
1077
1078		/* Note: Ignoring hostname addresses. */
1079		af = sctp_get_af_specific(param_type2af(params.p->type));
1080		if (!af)
1081			continue;
1082
1083		af->from_addr_param(paddr, params.addr, sh->source, 0);
1084
1085		asoc = __sctp_lookup_association(net, laddr, paddr, transportp);
1086		if (asoc)
1087			return asoc;
1088	}
1089
1090	return NULL;
1091}
1092
1093/* ADD-IP, Section 5.2
1094 * When an endpoint receives an ASCONF Chunk from the remote peer
1095 * special procedures may be needed to identify the association the
1096 * ASCONF Chunk is associated with. To properly find the association
1097 * the following procedures SHOULD be followed:
1098 *
1099 * D2) If the association is not found, use the address found in the
1100 * Address Parameter TLV combined with the port number found in the
1101 * SCTP common header. If found proceed to rule D4.
1102 *
1103 * D2-ext) If more than one ASCONF Chunks are packed together, use the
1104 * address found in the ASCONF Address Parameter TLV of each of the
1105 * subsequent ASCONF Chunks. If found, proceed to rule D4.
1106 */
1107static struct sctp_association *__sctp_rcv_asconf_lookup(
1108					struct net *net,
1109					struct sctp_chunkhdr *ch,
1110					const union sctp_addr *laddr,
1111					__be16 peer_port,
1112					struct sctp_transport **transportp)
1113{
1114	struct sctp_addip_chunk *asconf = (struct sctp_addip_chunk *)ch;
1115	struct sctp_af *af;
1116	union sctp_addr_param *param;
1117	union sctp_addr paddr;
1118
1119	/* Skip over the ADDIP header and find the Address parameter */
1120	param = (union sctp_addr_param *)(asconf + 1);
1121
1122	af = sctp_get_af_specific(param_type2af(param->p.type));
1123	if (unlikely(!af))
1124		return NULL;
1125
1126	af->from_addr_param(&paddr, param, peer_port, 0);
1127
1128	return __sctp_lookup_association(net, laddr, &paddr, transportp);
1129}
1130
1131
1132/* SCTP-AUTH, Section 6.3:
1133*    If the receiver does not find a STCB for a packet containing an AUTH
1134*    chunk as the first chunk and not a COOKIE-ECHO chunk as the second
1135*    chunk, it MUST use the chunks after the AUTH chunk to look up an existing
1136*    association.
1137*
1138* This means that any chunks that can help us identify the association need
1139* to be looked at to find this association.
1140*/
1141static struct sctp_association *__sctp_rcv_walk_lookup(struct net *net,
1142				      struct sk_buff *skb,
1143				      const union sctp_addr *laddr,
1144				      struct sctp_transport **transportp)
1145{
1146	struct sctp_association *asoc = NULL;
1147	struct sctp_chunkhdr *ch;
1148	int have_auth = 0;
1149	unsigned int chunk_num = 1;
1150	__u8 *ch_end;
1151
1152	/* Walk through the chunks looking for AUTH or ASCONF chunks
1153	 * to help us find the association.
1154	 */
1155	ch = (struct sctp_chunkhdr *)skb->data;
1156	do {
1157		/* Break out if chunk length is less then minimal. */
1158		if (ntohs(ch->length) < sizeof(*ch))
1159			break;
1160
1161		ch_end = ((__u8 *)ch) + SCTP_PAD4(ntohs(ch->length));
1162		if (ch_end > skb_tail_pointer(skb))
1163			break;
1164
1165		switch (ch->type) {
1166		case SCTP_CID_AUTH:
1167			have_auth = chunk_num;
1168			break;
1169
1170		case SCTP_CID_COOKIE_ECHO:
1171			/* If a packet arrives containing an AUTH chunk as
1172			 * a first chunk, a COOKIE-ECHO chunk as the second
1173			 * chunk, and possibly more chunks after them, and
1174			 * the receiver does not have an STCB for that
1175			 * packet, then authentication is based on
1176			 * the contents of the COOKIE- ECHO chunk.
1177			 */
1178			if (have_auth == 1 && chunk_num == 2)
1179				return NULL;
1180			break;
1181
1182		case SCTP_CID_ASCONF:
1183			if (have_auth || net->sctp.addip_noauth)
1184				asoc = __sctp_rcv_asconf_lookup(
1185						net, ch, laddr,
1186						sctp_hdr(skb)->source,
1187						transportp);
1188		default:
1189			break;
1190		}
1191
1192		if (asoc)
1193			break;
1194
1195		ch = (struct sctp_chunkhdr *)ch_end;
1196		chunk_num++;
1197	} while (ch_end < skb_tail_pointer(skb));
1198
1199	return asoc;
1200}
1201
1202/*
1203 * There are circumstances when we need to look inside the SCTP packet
1204 * for information to help us find the association.   Examples
1205 * include looking inside of INIT/INIT-ACK chunks or after the AUTH
1206 * chunks.
1207 */
1208static struct sctp_association *__sctp_rcv_lookup_harder(struct net *net,
1209				      struct sk_buff *skb,
1210				      const union sctp_addr *laddr,
1211				      struct sctp_transport **transportp)
1212{
1213	struct sctp_chunkhdr *ch;
1214
1215	/* We do not allow GSO frames here as we need to linearize and
1216	 * then cannot guarantee frame boundaries. This shouldn't be an
1217	 * issue as packets hitting this are mostly INIT or INIT-ACK and
1218	 * those cannot be on GSO-style anyway.
1219	 */
1220	if (skb_is_gso(skb) && skb_is_gso_sctp(skb))
1221		return NULL;
1222
1223	ch = (struct sctp_chunkhdr *)skb->data;
1224
1225	/* The code below will attempt to walk the chunk and extract
1226	 * parameter information.  Before we do that, we need to verify
1227	 * that the chunk length doesn't cause overflow.  Otherwise, we'll
1228	 * walk off the end.
1229	 */
1230	if (SCTP_PAD4(ntohs(ch->length)) > skb->len)
1231		return NULL;
1232
1233	/* If this is INIT/INIT-ACK look inside the chunk too. */
1234	if (ch->type == SCTP_CID_INIT || ch->type == SCTP_CID_INIT_ACK)
1235		return __sctp_rcv_init_lookup(net, skb, laddr, transportp);
1236
1237	return __sctp_rcv_walk_lookup(net, skb, laddr, transportp);
1238}
1239
1240/* Lookup an association for an inbound skb. */
1241static struct sctp_association *__sctp_rcv_lookup(struct net *net,
1242				      struct sk_buff *skb,
1243				      const union sctp_addr *paddr,
1244				      const union sctp_addr *laddr,
1245				      struct sctp_transport **transportp)
1246{
1247	struct sctp_association *asoc;
1248
1249	asoc = __sctp_lookup_association(net, laddr, paddr, transportp);
1250	if (asoc)
1251		goto out;
1252
1253	/* Further lookup for INIT/INIT-ACK packets.
1254	 * SCTP Implementors Guide, 2.18 Handling of address
1255	 * parameters within the INIT or INIT-ACK.
1256	 */
1257	asoc = __sctp_rcv_lookup_harder(net, skb, laddr, transportp);
1258	if (asoc)
1259		goto out;
1260
1261	if (paddr->sa.sa_family == AF_INET)
1262		pr_debug("sctp: asoc not found for src:%pI4:%d dst:%pI4:%d\n",
1263			 &laddr->v4.sin_addr, ntohs(laddr->v4.sin_port),
1264			 &paddr->v4.sin_addr, ntohs(paddr->v4.sin_port));
1265	else
1266		pr_debug("sctp: asoc not found for src:%pI6:%d dst:%pI6:%d\n",
1267			 &laddr->v6.sin6_addr, ntohs(laddr->v6.sin6_port),
1268			 &paddr->v6.sin6_addr, ntohs(paddr->v6.sin6_port));
1269
1270out:
1271	return asoc;
1272}