Linux Audio

Check our new training course

Loading...
v5.9
  1/* SPDX-License-Identifier: GPL-2.0 */
  2#ifndef _LINUX_RMAP_H
  3#define _LINUX_RMAP_H
  4/*
  5 * Declarations for Reverse Mapping functions in mm/rmap.c
  6 */
  7
  8#include <linux/list.h>
  9#include <linux/slab.h>
 10#include <linux/mm.h>
 11#include <linux/rwsem.h>
 12#include <linux/memcontrol.h>
 13#include <linux/highmem.h>
 14
 15/*
 16 * The anon_vma heads a list of private "related" vmas, to scan if
 17 * an anonymous page pointing to this anon_vma needs to be unmapped:
 18 * the vmas on the list will be related by forking, or by splitting.
 19 *
 20 * Since vmas come and go as they are split and merged (particularly
 21 * in mprotect), the mapping field of an anonymous page cannot point
 22 * directly to a vma: instead it points to an anon_vma, on whose list
 23 * the related vmas can be easily linked or unlinked.
 24 *
 25 * After unlinking the last vma on the list, we must garbage collect
 26 * the anon_vma object itself: we're guaranteed no page can be
 27 * pointing to this anon_vma once its vma list is empty.
 28 */
 29struct anon_vma {
 30	struct anon_vma *root;		/* Root of this anon_vma tree */
 31	struct rw_semaphore rwsem;	/* W: modification, R: walking the list */
 32	/*
 33	 * The refcount is taken on an anon_vma when there is no
 34	 * guarantee that the vma of page tables will exist for
 35	 * the duration of the operation. A caller that takes
 36	 * the reference is responsible for clearing up the
 37	 * anon_vma if they are the last user on release
 38	 */
 39	atomic_t refcount;
 40
 41	/*
 42	 * Count of child anon_vmas and VMAs which points to this anon_vma.
 43	 *
 44	 * This counter is used for making decision about reusing anon_vma
 45	 * instead of forking new one. See comments in function anon_vma_clone.
 46	 */
 47	unsigned degree;
 48
 49	struct anon_vma *parent;	/* Parent of this anon_vma */
 50
 51	/*
 52	 * NOTE: the LSB of the rb_root.rb_node is set by
 53	 * mm_take_all_locks() _after_ taking the above lock. So the
 54	 * rb_root must only be read/written after taking the above lock
 55	 * to be sure to see a valid next pointer. The LSB bit itself
 56	 * is serialized by a system wide lock only visible to
 57	 * mm_take_all_locks() (mm_all_locks_mutex).
 58	 */
 59
 60	/* Interval tree of private "related" vmas */
 61	struct rb_root_cached rb_root;
 62};
 63
 64/*
 65 * The copy-on-write semantics of fork mean that an anon_vma
 66 * can become associated with multiple processes. Furthermore,
 67 * each child process will have its own anon_vma, where new
 68 * pages for that process are instantiated.
 69 *
 70 * This structure allows us to find the anon_vmas associated
 71 * with a VMA, or the VMAs associated with an anon_vma.
 72 * The "same_vma" list contains the anon_vma_chains linking
 73 * all the anon_vmas associated with this VMA.
 74 * The "rb" field indexes on an interval tree the anon_vma_chains
 75 * which link all the VMAs associated with this anon_vma.
 76 */
 77struct anon_vma_chain {
 78	struct vm_area_struct *vma;
 79	struct anon_vma *anon_vma;
 80	struct list_head same_vma;   /* locked by mmap_lock & page_table_lock */
 81	struct rb_node rb;			/* locked by anon_vma->rwsem */
 82	unsigned long rb_subtree_last;
 83#ifdef CONFIG_DEBUG_VM_RB
 84	unsigned long cached_vma_start, cached_vma_last;
 85#endif
 86};
 87
 88enum ttu_flags {
 89	TTU_MIGRATION		= 0x1,	/* migration mode */
 90	TTU_MUNLOCK		= 0x2,	/* munlock mode */
 91
 92	TTU_SPLIT_HUGE_PMD	= 0x4,	/* split huge PMD if any */
 93	TTU_IGNORE_MLOCK	= 0x8,	/* ignore mlock */
 94	TTU_IGNORE_ACCESS	= 0x10,	/* don't age */
 95	TTU_IGNORE_HWPOISON	= 0x20,	/* corrupted page is recoverable */
 96	TTU_BATCH_FLUSH		= 0x40,	/* Batch TLB flushes where possible
 97					 * and caller guarantees they will
 98					 * do a final flush if necessary */
 99	TTU_RMAP_LOCKED		= 0x80,	/* do not grab rmap lock:
100					 * caller holds it */
101	TTU_SPLIT_FREEZE	= 0x100,		/* freeze pte under splitting thp */
102};
103
104#ifdef CONFIG_MMU
105static inline void get_anon_vma(struct anon_vma *anon_vma)
106{
107	atomic_inc(&anon_vma->refcount);
108}
109
110void __put_anon_vma(struct anon_vma *anon_vma);
111
112static inline void put_anon_vma(struct anon_vma *anon_vma)
113{
114	if (atomic_dec_and_test(&anon_vma->refcount))
115		__put_anon_vma(anon_vma);
116}
117
118static inline void anon_vma_lock_write(struct anon_vma *anon_vma)
119{
120	down_write(&anon_vma->root->rwsem);
121}
122
123static inline void anon_vma_unlock_write(struct anon_vma *anon_vma)
124{
125	up_write(&anon_vma->root->rwsem);
126}
127
128static inline void anon_vma_lock_read(struct anon_vma *anon_vma)
129{
130	down_read(&anon_vma->root->rwsem);
131}
132
133static inline void anon_vma_unlock_read(struct anon_vma *anon_vma)
134{
135	up_read(&anon_vma->root->rwsem);
136}
137
138
139/*
140 * anon_vma helper functions.
141 */
142void anon_vma_init(void);	/* create anon_vma_cachep */
143int  __anon_vma_prepare(struct vm_area_struct *);
144void unlink_anon_vmas(struct vm_area_struct *);
145int anon_vma_clone(struct vm_area_struct *, struct vm_area_struct *);
146int anon_vma_fork(struct vm_area_struct *, struct vm_area_struct *);
147
148static inline int anon_vma_prepare(struct vm_area_struct *vma)
149{
150	if (likely(vma->anon_vma))
151		return 0;
152
153	return __anon_vma_prepare(vma);
154}
155
156static inline void anon_vma_merge(struct vm_area_struct *vma,
157				  struct vm_area_struct *next)
158{
159	VM_BUG_ON_VMA(vma->anon_vma != next->anon_vma, vma);
160	unlink_anon_vmas(next);
161}
162
163struct anon_vma *page_get_anon_vma(struct page *page);
164
165/* bitflags for do_page_add_anon_rmap() */
166#define RMAP_EXCLUSIVE 0x01
167#define RMAP_COMPOUND 0x02
168
169/*
170 * rmap interfaces called when adding or removing pte of page
171 */
172void page_move_anon_rmap(struct page *, struct vm_area_struct *);
173void page_add_anon_rmap(struct page *, struct vm_area_struct *,
174		unsigned long, bool);
175void do_page_add_anon_rmap(struct page *, struct vm_area_struct *,
176			   unsigned long, int);
177void page_add_new_anon_rmap(struct page *, struct vm_area_struct *,
178		unsigned long, bool);
179void page_add_file_rmap(struct page *, bool);
180void page_remove_rmap(struct page *, bool);
181
182void hugepage_add_anon_rmap(struct page *, struct vm_area_struct *,
183			    unsigned long);
184void hugepage_add_new_anon_rmap(struct page *, struct vm_area_struct *,
185				unsigned long);
186
187static inline void page_dup_rmap(struct page *page, bool compound)
188{
189	atomic_inc(compound ? compound_mapcount_ptr(page) : &page->_mapcount);
190}
191
192/*
193 * Called from mm/vmscan.c to handle paging out
194 */
195int page_referenced(struct page *, int is_locked,
196			struct mem_cgroup *memcg, unsigned long *vm_flags);
197
198bool try_to_unmap(struct page *, enum ttu_flags flags);
199
200/* Avoid racy checks */
201#define PVMW_SYNC		(1 << 0)
202/* Look for migarion entries rather than present PTEs */
203#define PVMW_MIGRATION		(1 << 1)
204
205struct page_vma_mapped_walk {
206	struct page *page;
207	struct vm_area_struct *vma;
208	unsigned long address;
209	pmd_t *pmd;
210	pte_t *pte;
211	spinlock_t *ptl;
212	unsigned int flags;
213};
214
215static inline void page_vma_mapped_walk_done(struct page_vma_mapped_walk *pvmw)
216{
217	if (pvmw->pte)
218		pte_unmap(pvmw->pte);
219	if (pvmw->ptl)
220		spin_unlock(pvmw->ptl);
221}
222
223bool page_vma_mapped_walk(struct page_vma_mapped_walk *pvmw);
224
225/*
226 * Used by swapoff to help locate where page is expected in vma.
227 */
228unsigned long page_address_in_vma(struct page *, struct vm_area_struct *);
229
230/*
231 * Cleans the PTEs of shared mappings.
232 * (and since clean PTEs should also be readonly, write protects them too)
233 *
234 * returns the number of cleaned PTEs.
235 */
236int page_mkclean(struct page *);
237
238/*
239 * called in munlock()/munmap() path to check for other vmas holding
240 * the page mlocked.
241 */
242void try_to_munlock(struct page *);
243
244void remove_migration_ptes(struct page *old, struct page *new, bool locked);
245
246/*
247 * Called by memory-failure.c to kill processes.
248 */
249struct anon_vma *page_lock_anon_vma_read(struct page *page);
250void page_unlock_anon_vma_read(struct anon_vma *anon_vma);
251int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma);
252
253/*
254 * rmap_walk_control: To control rmap traversing for specific needs
255 *
256 * arg: passed to rmap_one() and invalid_vma()
257 * rmap_one: executed on each vma where page is mapped
258 * done: for checking traversing termination condition
259 * anon_lock: for getting anon_lock by optimized way rather than default
260 * invalid_vma: for skipping uninterested vma
261 */
262struct rmap_walk_control {
263	void *arg;
264	/*
265	 * Return false if page table scanning in rmap_walk should be stopped.
266	 * Otherwise, return true.
267	 */
268	bool (*rmap_one)(struct page *page, struct vm_area_struct *vma,
269					unsigned long addr, void *arg);
270	int (*done)(struct page *page);
271	struct anon_vma *(*anon_lock)(struct page *page);
272	bool (*invalid_vma)(struct vm_area_struct *vma, void *arg);
273};
274
275void rmap_walk(struct page *page, struct rmap_walk_control *rwc);
276void rmap_walk_locked(struct page *page, struct rmap_walk_control *rwc);
277
278#else	/* !CONFIG_MMU */
279
280#define anon_vma_init()		do {} while (0)
281#define anon_vma_prepare(vma)	(0)
282#define anon_vma_link(vma)	do {} while (0)
283
284static inline int page_referenced(struct page *page, int is_locked,
285				  struct mem_cgroup *memcg,
286				  unsigned long *vm_flags)
287{
288	*vm_flags = 0;
289	return 0;
290}
291
292#define try_to_unmap(page, refs) false
293
294static inline int page_mkclean(struct page *page)
295{
296	return 0;
297}
298
299
300#endif	/* CONFIG_MMU */
301
302#endif	/* _LINUX_RMAP_H */
v4.17
  1/* SPDX-License-Identifier: GPL-2.0 */
  2#ifndef _LINUX_RMAP_H
  3#define _LINUX_RMAP_H
  4/*
  5 * Declarations for Reverse Mapping functions in mm/rmap.c
  6 */
  7
  8#include <linux/list.h>
  9#include <linux/slab.h>
 10#include <linux/mm.h>
 11#include <linux/rwsem.h>
 12#include <linux/memcontrol.h>
 13#include <linux/highmem.h>
 14
 15/*
 16 * The anon_vma heads a list of private "related" vmas, to scan if
 17 * an anonymous page pointing to this anon_vma needs to be unmapped:
 18 * the vmas on the list will be related by forking, or by splitting.
 19 *
 20 * Since vmas come and go as they are split and merged (particularly
 21 * in mprotect), the mapping field of an anonymous page cannot point
 22 * directly to a vma: instead it points to an anon_vma, on whose list
 23 * the related vmas can be easily linked or unlinked.
 24 *
 25 * After unlinking the last vma on the list, we must garbage collect
 26 * the anon_vma object itself: we're guaranteed no page can be
 27 * pointing to this anon_vma once its vma list is empty.
 28 */
 29struct anon_vma {
 30	struct anon_vma *root;		/* Root of this anon_vma tree */
 31	struct rw_semaphore rwsem;	/* W: modification, R: walking the list */
 32	/*
 33	 * The refcount is taken on an anon_vma when there is no
 34	 * guarantee that the vma of page tables will exist for
 35	 * the duration of the operation. A caller that takes
 36	 * the reference is responsible for clearing up the
 37	 * anon_vma if they are the last user on release
 38	 */
 39	atomic_t refcount;
 40
 41	/*
 42	 * Count of child anon_vmas and VMAs which points to this anon_vma.
 43	 *
 44	 * This counter is used for making decision about reusing anon_vma
 45	 * instead of forking new one. See comments in function anon_vma_clone.
 46	 */
 47	unsigned degree;
 48
 49	struct anon_vma *parent;	/* Parent of this anon_vma */
 50
 51	/*
 52	 * NOTE: the LSB of the rb_root.rb_node is set by
 53	 * mm_take_all_locks() _after_ taking the above lock. So the
 54	 * rb_root must only be read/written after taking the above lock
 55	 * to be sure to see a valid next pointer. The LSB bit itself
 56	 * is serialized by a system wide lock only visible to
 57	 * mm_take_all_locks() (mm_all_locks_mutex).
 58	 */
 59
 60	/* Interval tree of private "related" vmas */
 61	struct rb_root_cached rb_root;
 62};
 63
 64/*
 65 * The copy-on-write semantics of fork mean that an anon_vma
 66 * can become associated with multiple processes. Furthermore,
 67 * each child process will have its own anon_vma, where new
 68 * pages for that process are instantiated.
 69 *
 70 * This structure allows us to find the anon_vmas associated
 71 * with a VMA, or the VMAs associated with an anon_vma.
 72 * The "same_vma" list contains the anon_vma_chains linking
 73 * all the anon_vmas associated with this VMA.
 74 * The "rb" field indexes on an interval tree the anon_vma_chains
 75 * which link all the VMAs associated with this anon_vma.
 76 */
 77struct anon_vma_chain {
 78	struct vm_area_struct *vma;
 79	struct anon_vma *anon_vma;
 80	struct list_head same_vma;   /* locked by mmap_sem & page_table_lock */
 81	struct rb_node rb;			/* locked by anon_vma->rwsem */
 82	unsigned long rb_subtree_last;
 83#ifdef CONFIG_DEBUG_VM_RB
 84	unsigned long cached_vma_start, cached_vma_last;
 85#endif
 86};
 87
 88enum ttu_flags {
 89	TTU_MIGRATION		= 0x1,	/* migration mode */
 90	TTU_MUNLOCK		= 0x2,	/* munlock mode */
 91
 92	TTU_SPLIT_HUGE_PMD	= 0x4,	/* split huge PMD if any */
 93	TTU_IGNORE_MLOCK	= 0x8,	/* ignore mlock */
 94	TTU_IGNORE_ACCESS	= 0x10,	/* don't age */
 95	TTU_IGNORE_HWPOISON	= 0x20,	/* corrupted page is recoverable */
 96	TTU_BATCH_FLUSH		= 0x40,	/* Batch TLB flushes where possible
 97					 * and caller guarantees they will
 98					 * do a final flush if necessary */
 99	TTU_RMAP_LOCKED		= 0x80,	/* do not grab rmap lock:
100					 * caller holds it */
101	TTU_SPLIT_FREEZE	= 0x100,		/* freeze pte under splitting thp */
102};
103
104#ifdef CONFIG_MMU
105static inline void get_anon_vma(struct anon_vma *anon_vma)
106{
107	atomic_inc(&anon_vma->refcount);
108}
109
110void __put_anon_vma(struct anon_vma *anon_vma);
111
112static inline void put_anon_vma(struct anon_vma *anon_vma)
113{
114	if (atomic_dec_and_test(&anon_vma->refcount))
115		__put_anon_vma(anon_vma);
116}
117
118static inline void anon_vma_lock_write(struct anon_vma *anon_vma)
119{
120	down_write(&anon_vma->root->rwsem);
121}
122
123static inline void anon_vma_unlock_write(struct anon_vma *anon_vma)
124{
125	up_write(&anon_vma->root->rwsem);
126}
127
128static inline void anon_vma_lock_read(struct anon_vma *anon_vma)
129{
130	down_read(&anon_vma->root->rwsem);
131}
132
133static inline void anon_vma_unlock_read(struct anon_vma *anon_vma)
134{
135	up_read(&anon_vma->root->rwsem);
136}
137
138
139/*
140 * anon_vma helper functions.
141 */
142void anon_vma_init(void);	/* create anon_vma_cachep */
143int  __anon_vma_prepare(struct vm_area_struct *);
144void unlink_anon_vmas(struct vm_area_struct *);
145int anon_vma_clone(struct vm_area_struct *, struct vm_area_struct *);
146int anon_vma_fork(struct vm_area_struct *, struct vm_area_struct *);
147
148static inline int anon_vma_prepare(struct vm_area_struct *vma)
149{
150	if (likely(vma->anon_vma))
151		return 0;
152
153	return __anon_vma_prepare(vma);
154}
155
156static inline void anon_vma_merge(struct vm_area_struct *vma,
157				  struct vm_area_struct *next)
158{
159	VM_BUG_ON_VMA(vma->anon_vma != next->anon_vma, vma);
160	unlink_anon_vmas(next);
161}
162
163struct anon_vma *page_get_anon_vma(struct page *page);
164
165/* bitflags for do_page_add_anon_rmap() */
166#define RMAP_EXCLUSIVE 0x01
167#define RMAP_COMPOUND 0x02
168
169/*
170 * rmap interfaces called when adding or removing pte of page
171 */
172void page_move_anon_rmap(struct page *, struct vm_area_struct *);
173void page_add_anon_rmap(struct page *, struct vm_area_struct *,
174		unsigned long, bool);
175void do_page_add_anon_rmap(struct page *, struct vm_area_struct *,
176			   unsigned long, int);
177void page_add_new_anon_rmap(struct page *, struct vm_area_struct *,
178		unsigned long, bool);
179void page_add_file_rmap(struct page *, bool);
180void page_remove_rmap(struct page *, bool);
181
182void hugepage_add_anon_rmap(struct page *, struct vm_area_struct *,
183			    unsigned long);
184void hugepage_add_new_anon_rmap(struct page *, struct vm_area_struct *,
185				unsigned long);
186
187static inline void page_dup_rmap(struct page *page, bool compound)
188{
189	atomic_inc(compound ? compound_mapcount_ptr(page) : &page->_mapcount);
190}
191
192/*
193 * Called from mm/vmscan.c to handle paging out
194 */
195int page_referenced(struct page *, int is_locked,
196			struct mem_cgroup *memcg, unsigned long *vm_flags);
197
198bool try_to_unmap(struct page *, enum ttu_flags flags);
199
200/* Avoid racy checks */
201#define PVMW_SYNC		(1 << 0)
202/* Look for migarion entries rather than present PTEs */
203#define PVMW_MIGRATION		(1 << 1)
204
205struct page_vma_mapped_walk {
206	struct page *page;
207	struct vm_area_struct *vma;
208	unsigned long address;
209	pmd_t *pmd;
210	pte_t *pte;
211	spinlock_t *ptl;
212	unsigned int flags;
213};
214
215static inline void page_vma_mapped_walk_done(struct page_vma_mapped_walk *pvmw)
216{
217	if (pvmw->pte)
218		pte_unmap(pvmw->pte);
219	if (pvmw->ptl)
220		spin_unlock(pvmw->ptl);
221}
222
223bool page_vma_mapped_walk(struct page_vma_mapped_walk *pvmw);
224
225/*
226 * Used by swapoff to help locate where page is expected in vma.
227 */
228unsigned long page_address_in_vma(struct page *, struct vm_area_struct *);
229
230/*
231 * Cleans the PTEs of shared mappings.
232 * (and since clean PTEs should also be readonly, write protects them too)
233 *
234 * returns the number of cleaned PTEs.
235 */
236int page_mkclean(struct page *);
237
238/*
239 * called in munlock()/munmap() path to check for other vmas holding
240 * the page mlocked.
241 */
242void try_to_munlock(struct page *);
243
244void remove_migration_ptes(struct page *old, struct page *new, bool locked);
245
246/*
247 * Called by memory-failure.c to kill processes.
248 */
249struct anon_vma *page_lock_anon_vma_read(struct page *page);
250void page_unlock_anon_vma_read(struct anon_vma *anon_vma);
251int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma);
252
253/*
254 * rmap_walk_control: To control rmap traversing for specific needs
255 *
256 * arg: passed to rmap_one() and invalid_vma()
257 * rmap_one: executed on each vma where page is mapped
258 * done: for checking traversing termination condition
259 * anon_lock: for getting anon_lock by optimized way rather than default
260 * invalid_vma: for skipping uninterested vma
261 */
262struct rmap_walk_control {
263	void *arg;
264	/*
265	 * Return false if page table scanning in rmap_walk should be stopped.
266	 * Otherwise, return true.
267	 */
268	bool (*rmap_one)(struct page *page, struct vm_area_struct *vma,
269					unsigned long addr, void *arg);
270	int (*done)(struct page *page);
271	struct anon_vma *(*anon_lock)(struct page *page);
272	bool (*invalid_vma)(struct vm_area_struct *vma, void *arg);
273};
274
275void rmap_walk(struct page *page, struct rmap_walk_control *rwc);
276void rmap_walk_locked(struct page *page, struct rmap_walk_control *rwc);
277
278#else	/* !CONFIG_MMU */
279
280#define anon_vma_init()		do {} while (0)
281#define anon_vma_prepare(vma)	(0)
282#define anon_vma_link(vma)	do {} while (0)
283
284static inline int page_referenced(struct page *page, int is_locked,
285				  struct mem_cgroup *memcg,
286				  unsigned long *vm_flags)
287{
288	*vm_flags = 0;
289	return 0;
290}
291
292#define try_to_unmap(page, refs) false
293
294static inline int page_mkclean(struct page *page)
295{
296	return 0;
297}
298
299
300#endif	/* CONFIG_MMU */
301
302#endif	/* _LINUX_RMAP_H */