Linux Audio

Check our new training course

Loading...
v5.9
  1// SPDX-License-Identifier: GPL-2.0+
  2/*
  3 * Copyright 2008-2009 Freescale Semiconductor, Inc. All Rights Reserved.
  4 * Copyright 2010 Orex Computed Radiography
  5 */
  6
  7/*
 
 
 
 
 
 
 
 
 
 
 
  8 * This driver uses the 47-bit 32 kHz counter in the Freescale DryIce block
  9 * to implement a Linux RTC. Times and alarms are truncated to seconds.
 10 * Since the RTC framework performs API locking via rtc->ops_lock the
 11 * only simultaneous accesses we need to deal with is updating DryIce
 12 * registers while servicing an alarm.
 13 *
 14 * Note that reading the DSR (DryIce Status Register) automatically clears
 15 * the WCF (Write Complete Flag). All DryIce writes are synchronized to the
 16 * LP (Low Power) domain and set the WCF upon completion. Writes to the
 17 * DIER (DryIce Interrupt Enable Register) are the only exception. These
 18 * occur at normal bus speeds and do not set WCF.  Periodic interrupts are
 19 * not supported by the hardware.
 20 */
 21
 22#include <linux/io.h>
 23#include <linux/clk.h>
 24#include <linux/delay.h>
 25#include <linux/module.h>
 26#include <linux/platform_device.h>
 27#include <linux/rtc.h>
 28#include <linux/sched.h>
 29#include <linux/spinlock.h>
 30#include <linux/workqueue.h>
 31#include <linux/of.h>
 32
 33/* DryIce Register Definitions */
 34
 35#define DTCMR     0x00           /* Time Counter MSB Reg */
 36#define DTCLR     0x04           /* Time Counter LSB Reg */
 37
 38#define DCAMR     0x08           /* Clock Alarm MSB Reg */
 39#define DCALR     0x0c           /* Clock Alarm LSB Reg */
 40#define DCAMR_UNSET  0xFFFFFFFF  /* doomsday - 1 sec */
 41
 42#define DCR       0x10           /* Control Reg */
 43#define DCR_TDCHL (1 << 30)      /* Tamper-detect configuration hard lock */
 44#define DCR_TDCSL (1 << 29)      /* Tamper-detect configuration soft lock */
 45#define DCR_KSSL  (1 << 27)      /* Key-select soft lock */
 46#define DCR_MCHL  (1 << 20)      /* Monotonic-counter hard lock */
 47#define DCR_MCSL  (1 << 19)      /* Monotonic-counter soft lock */
 48#define DCR_TCHL  (1 << 18)      /* Timer-counter hard lock */
 49#define DCR_TCSL  (1 << 17)      /* Timer-counter soft lock */
 50#define DCR_FSHL  (1 << 16)      /* Failure state hard lock */
 51#define DCR_TCE   (1 << 3)       /* Time Counter Enable */
 52#define DCR_MCE   (1 << 2)       /* Monotonic Counter Enable */
 53
 54#define DSR       0x14           /* Status Reg */
 55#define DSR_WTD   (1 << 23)      /* Wire-mesh tamper detected */
 56#define DSR_ETBD  (1 << 22)      /* External tamper B detected */
 57#define DSR_ETAD  (1 << 21)      /* External tamper A detected */
 58#define DSR_EBD   (1 << 20)      /* External boot detected */
 59#define DSR_SAD   (1 << 19)      /* SCC alarm detected */
 60#define DSR_TTD   (1 << 18)      /* Temperature tamper detected */
 61#define DSR_CTD   (1 << 17)      /* Clock tamper detected */
 62#define DSR_VTD   (1 << 16)      /* Voltage tamper detected */
 63#define DSR_WBF   (1 << 10)      /* Write Busy Flag (synchronous) */
 64#define DSR_WNF   (1 << 9)       /* Write Next Flag (synchronous) */
 65#define DSR_WCF   (1 << 8)       /* Write Complete Flag (synchronous)*/
 66#define DSR_WEF   (1 << 7)       /* Write Error Flag */
 67#define DSR_CAF   (1 << 4)       /* Clock Alarm Flag */
 68#define DSR_MCO   (1 << 3)       /* monotonic counter overflow */
 69#define DSR_TCO   (1 << 2)       /* time counter overflow */
 70#define DSR_NVF   (1 << 1)       /* Non-Valid Flag */
 71#define DSR_SVF   (1 << 0)       /* Security Violation Flag */
 72
 73#define DIER      0x18           /* Interrupt Enable Reg (synchronous) */
 74#define DIER_WNIE (1 << 9)       /* Write Next Interrupt Enable */
 75#define DIER_WCIE (1 << 8)       /* Write Complete Interrupt Enable */
 76#define DIER_WEIE (1 << 7)       /* Write Error Interrupt Enable */
 77#define DIER_CAIE (1 << 4)       /* Clock Alarm Interrupt Enable */
 78#define DIER_SVIE (1 << 0)       /* Security-violation Interrupt Enable */
 79
 80#define DMCR      0x1c           /* DryIce Monotonic Counter Reg */
 81
 82#define DTCR      0x28           /* DryIce Tamper Configuration Reg */
 83#define DTCR_MOE  (1 << 9)       /* monotonic overflow enabled */
 84#define DTCR_TOE  (1 << 8)       /* time overflow enabled */
 85#define DTCR_WTE  (1 << 7)       /* wire-mesh tamper enabled */
 86#define DTCR_ETBE (1 << 6)       /* external B tamper enabled */
 87#define DTCR_ETAE (1 << 5)       /* external A tamper enabled */
 88#define DTCR_EBE  (1 << 4)       /* external boot tamper enabled */
 89#define DTCR_SAIE (1 << 3)       /* SCC enabled */
 90#define DTCR_TTE  (1 << 2)       /* temperature tamper enabled */
 91#define DTCR_CTE  (1 << 1)       /* clock tamper enabled */
 92#define DTCR_VTE  (1 << 0)       /* voltage tamper enabled */
 93
 94#define DGPR      0x3c           /* DryIce General Purpose Reg */
 95
 96/**
 97 * struct imxdi_dev - private imxdi rtc data
 98 * @pdev: pointer to platform dev
 99 * @rtc: pointer to rtc struct
100 * @ioaddr: IO registers pointer
101 * @clk: input reference clock
102 * @dsr: copy of the DSR register
103 * @irq_lock: interrupt enable register (DIER) lock
104 * @write_wait: registers write complete queue
105 * @write_mutex: serialize registers write
106 * @work: schedule alarm work
107 */
108struct imxdi_dev {
109	struct platform_device *pdev;
110	struct rtc_device *rtc;
111	void __iomem *ioaddr;
112	struct clk *clk;
113	u32 dsr;
114	spinlock_t irq_lock;
115	wait_queue_head_t write_wait;
116	struct mutex write_mutex;
117	struct work_struct work;
118};
119
120/* Some background:
121 *
122 * The DryIce unit is a complex security/tamper monitor device. To be able do
123 * its job in a useful manner it runs a bigger statemachine to bring it into
124 * security/tamper failure state and once again to bring it out of this state.
125 *
126 * This unit can be in one of three states:
127 *
128 * - "NON-VALID STATE"
129 *   always after the battery power was removed
130 * - "FAILURE STATE"
131 *   if one of the enabled security events has happened
132 * - "VALID STATE"
133 *   if the unit works as expected
134 *
135 * Everything stops when the unit enters the failure state including the RTC
136 * counter (to be able to detect the time the security event happened).
137 *
138 * The following events (when enabled) let the DryIce unit enter the failure
139 * state:
140 *
141 * - wire-mesh-tamper detect
142 * - external tamper B detect
143 * - external tamper A detect
144 * - temperature tamper detect
145 * - clock tamper detect
146 * - voltage tamper detect
147 * - RTC counter overflow
148 * - monotonic counter overflow
149 * - external boot
150 *
151 * If we find the DryIce unit in "FAILURE STATE" and the TDCHL cleared, we
152 * can only detect this state. In this case the unit is completely locked and
153 * must force a second "SYSTEM POR" to bring the DryIce into the
154 * "NON-VALID STATE" + "FAILURE STATE" where a recovery is possible.
155 * If the TDCHL is set in the "FAILURE STATE" we are out of luck. In this case
156 * a battery power cycle is required.
157 *
158 * In the "NON-VALID STATE" + "FAILURE STATE" we can clear the "FAILURE STATE"
159 * and recover the DryIce unit. By clearing the "NON-VALID STATE" as the last
160 * task, we bring back this unit into life.
161 */
162
163/*
164 * Do a write into the unit without interrupt support.
165 * We do not need to check the WEF here, because the only reason this kind of
166 * write error can happen is if we write to the unit twice within the 122 us
167 * interval. This cannot happen, since we are using this function only while
168 * setting up the unit.
169 */
170static void di_write_busy_wait(const struct imxdi_dev *imxdi, u32 val,
171			       unsigned reg)
172{
173	/* do the register write */
174	writel(val, imxdi->ioaddr + reg);
175
176	/*
177	 * now it takes four 32,768 kHz clock cycles to take
178	 * the change into effect = 122 us
179	 */
180	usleep_range(130, 200);
181}
182
183static void di_report_tamper_info(struct imxdi_dev *imxdi,  u32 dsr)
184{
185	u32 dtcr;
186
187	dtcr = readl(imxdi->ioaddr + DTCR);
188
189	dev_emerg(&imxdi->pdev->dev, "DryIce tamper event detected\n");
190	/* the following flags force a transition into the "FAILURE STATE" */
191	if (dsr & DSR_VTD)
192		dev_emerg(&imxdi->pdev->dev, "%sVoltage Tamper Event\n",
193			  dtcr & DTCR_VTE ? "" : "Spurious ");
194
195	if (dsr & DSR_CTD)
196		dev_emerg(&imxdi->pdev->dev, "%s32768 Hz Clock Tamper Event\n",
197			  dtcr & DTCR_CTE ? "" : "Spurious ");
198
199	if (dsr & DSR_TTD)
200		dev_emerg(&imxdi->pdev->dev, "%sTemperature Tamper Event\n",
201			  dtcr & DTCR_TTE ? "" : "Spurious ");
202
203	if (dsr & DSR_SAD)
204		dev_emerg(&imxdi->pdev->dev,
205			  "%sSecure Controller Alarm Event\n",
206			  dtcr & DTCR_SAIE ? "" : "Spurious ");
207
208	if (dsr & DSR_EBD)
209		dev_emerg(&imxdi->pdev->dev, "%sExternal Boot Tamper Event\n",
210			  dtcr & DTCR_EBE ? "" : "Spurious ");
211
212	if (dsr & DSR_ETAD)
213		dev_emerg(&imxdi->pdev->dev, "%sExternal Tamper A Event\n",
214			  dtcr & DTCR_ETAE ? "" : "Spurious ");
215
216	if (dsr & DSR_ETBD)
217		dev_emerg(&imxdi->pdev->dev, "%sExternal Tamper B Event\n",
218			  dtcr & DTCR_ETBE ? "" : "Spurious ");
219
220	if (dsr & DSR_WTD)
221		dev_emerg(&imxdi->pdev->dev, "%sWire-mesh Tamper Event\n",
222			  dtcr & DTCR_WTE ? "" : "Spurious ");
223
224	if (dsr & DSR_MCO)
225		dev_emerg(&imxdi->pdev->dev,
226			  "%sMonotonic-counter Overflow Event\n",
227			  dtcr & DTCR_MOE ? "" : "Spurious ");
228
229	if (dsr & DSR_TCO)
230		dev_emerg(&imxdi->pdev->dev, "%sTimer-counter Overflow Event\n",
231			  dtcr & DTCR_TOE ? "" : "Spurious ");
232}
233
234static void di_what_is_to_be_done(struct imxdi_dev *imxdi,
235				  const char *power_supply)
236{
237	dev_emerg(&imxdi->pdev->dev, "Please cycle the %s power supply in order to get the DryIce/RTC unit working again\n",
238		  power_supply);
239}
240
241static int di_handle_failure_state(struct imxdi_dev *imxdi, u32 dsr)
242{
243	u32 dcr;
244
245	dev_dbg(&imxdi->pdev->dev, "DSR register reports: %08X\n", dsr);
246
247	/* report the cause */
248	di_report_tamper_info(imxdi, dsr);
249
250	dcr = readl(imxdi->ioaddr + DCR);
251
252	if (dcr & DCR_FSHL) {
253		/* we are out of luck */
254		di_what_is_to_be_done(imxdi, "battery");
255		return -ENODEV;
256	}
257	/*
258	 * with the next SYSTEM POR we will transit from the "FAILURE STATE"
259	 * into the "NON-VALID STATE" + "FAILURE STATE"
260	 */
261	di_what_is_to_be_done(imxdi, "main");
262
263	return -ENODEV;
264}
265
266static int di_handle_valid_state(struct imxdi_dev *imxdi, u32 dsr)
267{
268	/* initialize alarm */
269	di_write_busy_wait(imxdi, DCAMR_UNSET, DCAMR);
270	di_write_busy_wait(imxdi, 0, DCALR);
271
272	/* clear alarm flag */
273	if (dsr & DSR_CAF)
274		di_write_busy_wait(imxdi, DSR_CAF, DSR);
275
276	return 0;
277}
278
279static int di_handle_invalid_state(struct imxdi_dev *imxdi, u32 dsr)
280{
281	u32 dcr, sec;
282
283	/*
284	 * lets disable all sources which can force the DryIce unit into
285	 * the "FAILURE STATE" for now
286	 */
287	di_write_busy_wait(imxdi, 0x00000000, DTCR);
288	/* and lets protect them at runtime from any change */
289	di_write_busy_wait(imxdi, DCR_TDCSL, DCR);
290
291	sec = readl(imxdi->ioaddr + DTCMR);
292	if (sec != 0)
293		dev_warn(&imxdi->pdev->dev,
294			 "The security violation has happened at %u seconds\n",
295			 sec);
296	/*
297	 * the timer cannot be set/modified if
298	 * - the TCHL or TCSL bit is set in DCR
299	 */
300	dcr = readl(imxdi->ioaddr + DCR);
301	if (!(dcr & DCR_TCE)) {
302		if (dcr & DCR_TCHL) {
303			/* we are out of luck */
304			di_what_is_to_be_done(imxdi, "battery");
305			return -ENODEV;
306		}
307		if (dcr & DCR_TCSL) {
308			di_what_is_to_be_done(imxdi, "main");
309			return -ENODEV;
310		}
311	}
312	/*
313	 * - the timer counter stops/is stopped if
314	 *   - its overflow flag is set (TCO in DSR)
315	 *      -> clear overflow bit to make it count again
316	 *   - NVF is set in DSR
317	 *      -> clear non-valid bit to make it count again
318	 *   - its TCE (DCR) is cleared
319	 *      -> set TCE to make it count
320	 *   - it was never set before
321	 *      -> write a time into it (required again if the NVF was set)
322	 */
323	/* state handled */
324	di_write_busy_wait(imxdi, DSR_NVF, DSR);
325	/* clear overflow flag */
326	di_write_busy_wait(imxdi, DSR_TCO, DSR);
327	/* enable the counter */
328	di_write_busy_wait(imxdi, dcr | DCR_TCE, DCR);
329	/* set and trigger it to make it count */
330	di_write_busy_wait(imxdi, sec, DTCMR);
331
332	/* now prepare for the valid state */
333	return di_handle_valid_state(imxdi, __raw_readl(imxdi->ioaddr + DSR));
334}
335
336static int di_handle_invalid_and_failure_state(struct imxdi_dev *imxdi, u32 dsr)
337{
338	u32 dcr;
339
340	/*
341	 * now we must first remove the tamper sources in order to get the
342	 * device out of the "FAILURE STATE"
343	 * To disable any of the following sources we need to modify the DTCR
344	 */
345	if (dsr & (DSR_WTD | DSR_ETBD | DSR_ETAD | DSR_EBD | DSR_SAD |
346			DSR_TTD | DSR_CTD | DSR_VTD | DSR_MCO | DSR_TCO)) {
347		dcr = __raw_readl(imxdi->ioaddr + DCR);
348		if (dcr & DCR_TDCHL) {
349			/*
350			 * the tamper register is locked. We cannot disable the
351			 * tamper detection. The TDCHL can only be reset by a
352			 * DRYICE POR, but we cannot force a DRYICE POR in
353			 * software because we are still in "FAILURE STATE".
354			 * We need a DRYICE POR via battery power cycling....
355			 */
356			/*
357			 * out of luck!
358			 * we cannot disable them without a DRYICE POR
359			 */
360			di_what_is_to_be_done(imxdi, "battery");
361			return -ENODEV;
362		}
363		if (dcr & DCR_TDCSL) {
364			/* a soft lock can be removed by a SYSTEM POR */
365			di_what_is_to_be_done(imxdi, "main");
366			return -ENODEV;
367		}
368	}
369
370	/* disable all sources */
371	di_write_busy_wait(imxdi, 0x00000000, DTCR);
372
373	/* clear the status bits now */
374	di_write_busy_wait(imxdi, dsr & (DSR_WTD | DSR_ETBD | DSR_ETAD |
375			DSR_EBD | DSR_SAD | DSR_TTD | DSR_CTD | DSR_VTD |
376			DSR_MCO | DSR_TCO), DSR);
377
378	dsr = readl(imxdi->ioaddr + DSR);
379	if ((dsr & ~(DSR_NVF | DSR_SVF | DSR_WBF | DSR_WNF |
380			DSR_WCF | DSR_WEF)) != 0)
381		dev_warn(&imxdi->pdev->dev,
382			 "There are still some sources of pain in DSR: %08x!\n",
383			 dsr & ~(DSR_NVF | DSR_SVF | DSR_WBF | DSR_WNF |
384				 DSR_WCF | DSR_WEF));
385
386	/*
387	 * now we are trying to clear the "Security-violation flag" to
388	 * get the DryIce out of this state
389	 */
390	di_write_busy_wait(imxdi, DSR_SVF, DSR);
391
392	/* success? */
393	dsr = readl(imxdi->ioaddr + DSR);
394	if (dsr & DSR_SVF) {
395		dev_crit(&imxdi->pdev->dev,
396			 "Cannot clear the security violation flag. We are ending up in an endless loop!\n");
397		/* last resort */
398		di_what_is_to_be_done(imxdi, "battery");
399		return -ENODEV;
400	}
401
402	/*
403	 * now we have left the "FAILURE STATE" and ending up in the
404	 * "NON-VALID STATE" time to recover everything
405	 */
406	return di_handle_invalid_state(imxdi, dsr);
407}
408
409static int di_handle_state(struct imxdi_dev *imxdi)
410{
411	int rc;
412	u32 dsr;
413
414	dsr = readl(imxdi->ioaddr + DSR);
415
416	switch (dsr & (DSR_NVF | DSR_SVF)) {
417	case DSR_NVF:
418		dev_warn(&imxdi->pdev->dev, "Invalid stated unit detected\n");
419		rc = di_handle_invalid_state(imxdi, dsr);
420		break;
421	case DSR_SVF:
422		dev_warn(&imxdi->pdev->dev, "Failure stated unit detected\n");
423		rc = di_handle_failure_state(imxdi, dsr);
424		break;
425	case DSR_NVF | DSR_SVF:
426		dev_warn(&imxdi->pdev->dev,
427			 "Failure+Invalid stated unit detected\n");
428		rc = di_handle_invalid_and_failure_state(imxdi, dsr);
429		break;
430	default:
431		dev_notice(&imxdi->pdev->dev, "Unlocked unit detected\n");
432		rc = di_handle_valid_state(imxdi, dsr);
433	}
434
435	return rc;
436}
437
438/*
439 * enable a dryice interrupt
440 */
441static void di_int_enable(struct imxdi_dev *imxdi, u32 intr)
442{
443	unsigned long flags;
444
445	spin_lock_irqsave(&imxdi->irq_lock, flags);
446	writel(readl(imxdi->ioaddr + DIER) | intr,
447	       imxdi->ioaddr + DIER);
448	spin_unlock_irqrestore(&imxdi->irq_lock, flags);
449}
450
451/*
452 * disable a dryice interrupt
453 */
454static void di_int_disable(struct imxdi_dev *imxdi, u32 intr)
455{
456	unsigned long flags;
457
458	spin_lock_irqsave(&imxdi->irq_lock, flags);
459	writel(readl(imxdi->ioaddr + DIER) & ~intr,
460	       imxdi->ioaddr + DIER);
461	spin_unlock_irqrestore(&imxdi->irq_lock, flags);
462}
463
464/*
465 * This function attempts to clear the dryice write-error flag.
466 *
467 * A dryice write error is similar to a bus fault and should not occur in
468 * normal operation.  Clearing the flag requires another write, so the root
469 * cause of the problem may need to be fixed before the flag can be cleared.
470 */
471static void clear_write_error(struct imxdi_dev *imxdi)
472{
473	int cnt;
474
475	dev_warn(&imxdi->pdev->dev, "WARNING: Register write error!\n");
476
477	/* clear the write error flag */
478	writel(DSR_WEF, imxdi->ioaddr + DSR);
479
480	/* wait for it to take effect */
481	for (cnt = 0; cnt < 1000; cnt++) {
482		if ((readl(imxdi->ioaddr + DSR) & DSR_WEF) == 0)
483			return;
484		udelay(10);
485	}
486	dev_err(&imxdi->pdev->dev,
487			"ERROR: Cannot clear write-error flag!\n");
488}
489
490/*
491 * Write a dryice register and wait until it completes.
492 *
493 * This function uses interrupts to determine when the
494 * write has completed.
495 */
496static int di_write_wait(struct imxdi_dev *imxdi, u32 val, int reg)
497{
498	int ret;
499	int rc = 0;
500
501	/* serialize register writes */
502	mutex_lock(&imxdi->write_mutex);
503
504	/* enable the write-complete interrupt */
505	di_int_enable(imxdi, DIER_WCIE);
506
507	imxdi->dsr = 0;
508
509	/* do the register write */
510	writel(val, imxdi->ioaddr + reg);
511
512	/* wait for the write to finish */
513	ret = wait_event_interruptible_timeout(imxdi->write_wait,
514			imxdi->dsr & (DSR_WCF | DSR_WEF), msecs_to_jiffies(1));
515	if (ret < 0) {
516		rc = ret;
517		goto out;
518	} else if (ret == 0) {
519		dev_warn(&imxdi->pdev->dev,
520				"Write-wait timeout "
521				"val = 0x%08x reg = 0x%08x\n", val, reg);
522	}
523
524	/* check for write error */
525	if (imxdi->dsr & DSR_WEF) {
526		clear_write_error(imxdi);
527		rc = -EIO;
528	}
529
530out:
531	mutex_unlock(&imxdi->write_mutex);
532
533	return rc;
534}
535
536/*
537 * read the seconds portion of the current time from the dryice time counter
538 */
539static int dryice_rtc_read_time(struct device *dev, struct rtc_time *tm)
540{
541	struct imxdi_dev *imxdi = dev_get_drvdata(dev);
542	unsigned long now;
543
544	now = readl(imxdi->ioaddr + DTCMR);
545	rtc_time64_to_tm(now, tm);
546
547	return 0;
548}
549
550/*
551 * set the seconds portion of dryice time counter and clear the
552 * fractional part.
553 */
554static int dryice_rtc_set_time(struct device *dev, struct rtc_time *tm)
555{
556	struct imxdi_dev *imxdi = dev_get_drvdata(dev);
557	u32 dcr, dsr;
558	int rc;
559
560	dcr = readl(imxdi->ioaddr + DCR);
561	dsr = readl(imxdi->ioaddr + DSR);
562
563	if (!(dcr & DCR_TCE) || (dsr & DSR_SVF)) {
564		if (dcr & DCR_TCHL) {
565			/* we are even more out of luck */
566			di_what_is_to_be_done(imxdi, "battery");
567			return -EPERM;
568		}
569		if ((dcr & DCR_TCSL) || (dsr & DSR_SVF)) {
570			/* we are out of luck for now */
571			di_what_is_to_be_done(imxdi, "main");
572			return -EPERM;
573		}
574	}
575
576	/* zero the fractional part first */
577	rc = di_write_wait(imxdi, 0, DTCLR);
578	if (rc != 0)
579		return rc;
580
581	rc = di_write_wait(imxdi, rtc_tm_to_time64(tm), DTCMR);
582	if (rc != 0)
583		return rc;
584
585	return di_write_wait(imxdi, readl(imxdi->ioaddr + DCR) | DCR_TCE, DCR);
586}
587
588static int dryice_rtc_alarm_irq_enable(struct device *dev,
589		unsigned int enabled)
590{
591	struct imxdi_dev *imxdi = dev_get_drvdata(dev);
592
593	if (enabled)
594		di_int_enable(imxdi, DIER_CAIE);
595	else
596		di_int_disable(imxdi, DIER_CAIE);
597
598	return 0;
599}
600
601/*
602 * read the seconds portion of the alarm register.
603 * the fractional part of the alarm register is always zero.
604 */
605static int dryice_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alarm)
606{
607	struct imxdi_dev *imxdi = dev_get_drvdata(dev);
608	u32 dcamr;
609
610	dcamr = readl(imxdi->ioaddr + DCAMR);
611	rtc_time64_to_tm(dcamr, &alarm->time);
612
613	/* alarm is enabled if the interrupt is enabled */
614	alarm->enabled = (readl(imxdi->ioaddr + DIER) & DIER_CAIE) != 0;
615
616	/* don't allow the DSR read to mess up DSR_WCF */
617	mutex_lock(&imxdi->write_mutex);
618
619	/* alarm is pending if the alarm flag is set */
620	alarm->pending = (readl(imxdi->ioaddr + DSR) & DSR_CAF) != 0;
621
622	mutex_unlock(&imxdi->write_mutex);
623
624	return 0;
625}
626
627/*
628 * set the seconds portion of dryice alarm register
629 */
630static int dryice_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alarm)
631{
632	struct imxdi_dev *imxdi = dev_get_drvdata(dev);
 
 
633	int rc;
634
 
 
 
 
 
 
 
 
 
635	/* write the new alarm time */
636	rc = di_write_wait(imxdi, rtc_tm_to_time64(&alarm->time), DCAMR);
637	if (rc)
638		return rc;
639
640	if (alarm->enabled)
641		di_int_enable(imxdi, DIER_CAIE);  /* enable alarm intr */
642	else
643		di_int_disable(imxdi, DIER_CAIE); /* disable alarm intr */
644
645	return 0;
646}
647
648static const struct rtc_class_ops dryice_rtc_ops = {
649	.read_time		= dryice_rtc_read_time,
650	.set_time		= dryice_rtc_set_time,
651	.alarm_irq_enable	= dryice_rtc_alarm_irq_enable,
652	.read_alarm		= dryice_rtc_read_alarm,
653	.set_alarm		= dryice_rtc_set_alarm,
654};
655
656/*
657 * interrupt handler for dryice "normal" and security violation interrupt
658 */
659static irqreturn_t dryice_irq(int irq, void *dev_id)
660{
661	struct imxdi_dev *imxdi = dev_id;
662	u32 dsr, dier;
663	irqreturn_t rc = IRQ_NONE;
664
665	dier = readl(imxdi->ioaddr + DIER);
666	dsr = readl(imxdi->ioaddr + DSR);
667
668	/* handle the security violation event */
669	if (dier & DIER_SVIE) {
670		if (dsr & DSR_SVF) {
671			/*
672			 * Disable the interrupt when this kind of event has
673			 * happened.
674			 * There cannot be more than one event of this type,
675			 * because it needs a complex state change
676			 * including a main power cycle to get again out of
677			 * this state.
678			 */
679			di_int_disable(imxdi, DIER_SVIE);
680			/* report the violation */
681			di_report_tamper_info(imxdi, dsr);
682			rc = IRQ_HANDLED;
683		}
684	}
685
686	/* handle write complete and write error cases */
687	if (dier & DIER_WCIE) {
688		/*If the write wait queue is empty then there is no pending
689		  operations. It means the interrupt is for DryIce -Security.
690		  IRQ must be returned as none.*/
691		if (list_empty_careful(&imxdi->write_wait.head))
692			return rc;
693
694		/* DSR_WCF clears itself on DSR read */
695		if (dsr & (DSR_WCF | DSR_WEF)) {
696			/* mask the interrupt */
697			di_int_disable(imxdi, DIER_WCIE);
698
699			/* save the dsr value for the wait queue */
700			imxdi->dsr |= dsr;
701
702			wake_up_interruptible(&imxdi->write_wait);
703			rc = IRQ_HANDLED;
704		}
705	}
706
707	/* handle the alarm case */
708	if (dier & DIER_CAIE) {
709		/* DSR_WCF clears itself on DSR read */
710		if (dsr & DSR_CAF) {
711			/* mask the interrupt */
712			di_int_disable(imxdi, DIER_CAIE);
713
714			/* finish alarm in user context */
715			schedule_work(&imxdi->work);
716			rc = IRQ_HANDLED;
717		}
718	}
719	return rc;
720}
721
722/*
723 * post the alarm event from user context so it can sleep
724 * on the write completion.
725 */
726static void dryice_work(struct work_struct *work)
727{
728	struct imxdi_dev *imxdi = container_of(work,
729			struct imxdi_dev, work);
730
731	/* dismiss the interrupt (ignore error) */
732	di_write_wait(imxdi, DSR_CAF, DSR);
733
734	/* pass the alarm event to the rtc framework. */
735	rtc_update_irq(imxdi->rtc, 1, RTC_AF | RTC_IRQF);
736}
737
738/*
739 * probe for dryice rtc device
740 */
741static int __init dryice_rtc_probe(struct platform_device *pdev)
742{
 
743	struct imxdi_dev *imxdi;
744	int norm_irq, sec_irq;
745	int rc;
746
747	imxdi = devm_kzalloc(&pdev->dev, sizeof(*imxdi), GFP_KERNEL);
748	if (!imxdi)
749		return -ENOMEM;
750
751	imxdi->pdev = pdev;
752
753	imxdi->ioaddr = devm_platform_ioremap_resource(pdev, 0);
 
754	if (IS_ERR(imxdi->ioaddr))
755		return PTR_ERR(imxdi->ioaddr);
756
757	spin_lock_init(&imxdi->irq_lock);
758
759	norm_irq = platform_get_irq(pdev, 0);
760	if (norm_irq < 0)
761		return norm_irq;
762
763	/* the 2nd irq is the security violation irq
764	 * make this optional, don't break the device tree ABI
765	 */
766	sec_irq = platform_get_irq(pdev, 1);
767	if (sec_irq <= 0)
768		sec_irq = IRQ_NOTCONNECTED;
769
770	init_waitqueue_head(&imxdi->write_wait);
771
772	INIT_WORK(&imxdi->work, dryice_work);
773
774	mutex_init(&imxdi->write_mutex);
775
776	imxdi->rtc = devm_rtc_allocate_device(&pdev->dev);
777	if (IS_ERR(imxdi->rtc))
778		return PTR_ERR(imxdi->rtc);
779
780	imxdi->clk = devm_clk_get(&pdev->dev, NULL);
781	if (IS_ERR(imxdi->clk))
782		return PTR_ERR(imxdi->clk);
783	rc = clk_prepare_enable(imxdi->clk);
784	if (rc)
785		return rc;
786
787	/*
788	 * Initialize dryice hardware
789	 */
790
791	/* mask all interrupts */
792	writel(0, imxdi->ioaddr + DIER);
793
794	rc = di_handle_state(imxdi);
795	if (rc != 0)
796		goto err;
797
798	rc = devm_request_irq(&pdev->dev, norm_irq, dryice_irq,
799			      IRQF_SHARED, pdev->name, imxdi);
800	if (rc) {
801		dev_warn(&pdev->dev, "interrupt not available.\n");
802		goto err;
803	}
804
805	rc = devm_request_irq(&pdev->dev, sec_irq, dryice_irq,
806			      IRQF_SHARED, pdev->name, imxdi);
807	if (rc) {
808		dev_warn(&pdev->dev, "security violation interrupt not available.\n");
809		/* this is not an error, see above */
810	}
811
812	platform_set_drvdata(pdev, imxdi);
813
814	imxdi->rtc->ops = &dryice_rtc_ops;
815	imxdi->rtc->range_max = U32_MAX;
816
817	rc = rtc_register_device(imxdi->rtc);
818	if (rc)
819		goto err;
 
820
821	return 0;
822
823err:
824	clk_disable_unprepare(imxdi->clk);
825
826	return rc;
827}
828
829static int __exit dryice_rtc_remove(struct platform_device *pdev)
830{
831	struct imxdi_dev *imxdi = platform_get_drvdata(pdev);
832
833	flush_work(&imxdi->work);
834
835	/* mask all interrupts */
836	writel(0, imxdi->ioaddr + DIER);
837
838	clk_disable_unprepare(imxdi->clk);
839
840	return 0;
841}
842
843#ifdef CONFIG_OF
844static const struct of_device_id dryice_dt_ids[] = {
845	{ .compatible = "fsl,imx25-rtc" },
846	{ /* sentinel */ }
847};
848
849MODULE_DEVICE_TABLE(of, dryice_dt_ids);
850#endif
851
852static struct platform_driver dryice_rtc_driver = {
853	.driver = {
854		   .name = "imxdi_rtc",
855		   .of_match_table = of_match_ptr(dryice_dt_ids),
856		   },
857	.remove = __exit_p(dryice_rtc_remove),
858};
859
860module_platform_driver_probe(dryice_rtc_driver, dryice_rtc_probe);
861
862MODULE_AUTHOR("Freescale Semiconductor, Inc.");
863MODULE_AUTHOR("Baruch Siach <baruch@tkos.co.il>");
864MODULE_DESCRIPTION("IMX DryIce Realtime Clock Driver (RTC)");
865MODULE_LICENSE("GPL");
v4.17
 
  1/*
  2 * Copyright 2008-2009 Freescale Semiconductor, Inc. All Rights Reserved.
  3 * Copyright 2010 Orex Computed Radiography
  4 */
  5
  6/*
  7 * The code contained herein is licensed under the GNU General Public
  8 * License. You may obtain a copy of the GNU General Public License
  9 * Version 2 or later at the following locations:
 10 *
 11 * http://www.opensource.org/licenses/gpl-license.html
 12 * http://www.gnu.org/copyleft/gpl.html
 13 */
 14
 15/* based on rtc-mc13892.c */
 16
 17/*
 18 * This driver uses the 47-bit 32 kHz counter in the Freescale DryIce block
 19 * to implement a Linux RTC. Times and alarms are truncated to seconds.
 20 * Since the RTC framework performs API locking via rtc->ops_lock the
 21 * only simultaneous accesses we need to deal with is updating DryIce
 22 * registers while servicing an alarm.
 23 *
 24 * Note that reading the DSR (DryIce Status Register) automatically clears
 25 * the WCF (Write Complete Flag). All DryIce writes are synchronized to the
 26 * LP (Low Power) domain and set the WCF upon completion. Writes to the
 27 * DIER (DryIce Interrupt Enable Register) are the only exception. These
 28 * occur at normal bus speeds and do not set WCF.  Periodic interrupts are
 29 * not supported by the hardware.
 30 */
 31
 32#include <linux/io.h>
 33#include <linux/clk.h>
 34#include <linux/delay.h>
 35#include <linux/module.h>
 36#include <linux/platform_device.h>
 37#include <linux/rtc.h>
 38#include <linux/sched.h>
 39#include <linux/spinlock.h>
 40#include <linux/workqueue.h>
 41#include <linux/of.h>
 42
 43/* DryIce Register Definitions */
 44
 45#define DTCMR     0x00           /* Time Counter MSB Reg */
 46#define DTCLR     0x04           /* Time Counter LSB Reg */
 47
 48#define DCAMR     0x08           /* Clock Alarm MSB Reg */
 49#define DCALR     0x0c           /* Clock Alarm LSB Reg */
 50#define DCAMR_UNSET  0xFFFFFFFF  /* doomsday - 1 sec */
 51
 52#define DCR       0x10           /* Control Reg */
 53#define DCR_TDCHL (1 << 30)      /* Tamper-detect configuration hard lock */
 54#define DCR_TDCSL (1 << 29)      /* Tamper-detect configuration soft lock */
 55#define DCR_KSSL  (1 << 27)      /* Key-select soft lock */
 56#define DCR_MCHL  (1 << 20)      /* Monotonic-counter hard lock */
 57#define DCR_MCSL  (1 << 19)      /* Monotonic-counter soft lock */
 58#define DCR_TCHL  (1 << 18)      /* Timer-counter hard lock */
 59#define DCR_TCSL  (1 << 17)      /* Timer-counter soft lock */
 60#define DCR_FSHL  (1 << 16)      /* Failure state hard lock */
 61#define DCR_TCE   (1 << 3)       /* Time Counter Enable */
 62#define DCR_MCE   (1 << 2)       /* Monotonic Counter Enable */
 63
 64#define DSR       0x14           /* Status Reg */
 65#define DSR_WTD   (1 << 23)      /* Wire-mesh tamper detected */
 66#define DSR_ETBD  (1 << 22)      /* External tamper B detected */
 67#define DSR_ETAD  (1 << 21)      /* External tamper A detected */
 68#define DSR_EBD   (1 << 20)      /* External boot detected */
 69#define DSR_SAD   (1 << 19)      /* SCC alarm detected */
 70#define DSR_TTD   (1 << 18)      /* Temperature tamper detected */
 71#define DSR_CTD   (1 << 17)      /* Clock tamper detected */
 72#define DSR_VTD   (1 << 16)      /* Voltage tamper detected */
 73#define DSR_WBF   (1 << 10)      /* Write Busy Flag (synchronous) */
 74#define DSR_WNF   (1 << 9)       /* Write Next Flag (synchronous) */
 75#define DSR_WCF   (1 << 8)       /* Write Complete Flag (synchronous)*/
 76#define DSR_WEF   (1 << 7)       /* Write Error Flag */
 77#define DSR_CAF   (1 << 4)       /* Clock Alarm Flag */
 78#define DSR_MCO   (1 << 3)       /* monotonic counter overflow */
 79#define DSR_TCO   (1 << 2)       /* time counter overflow */
 80#define DSR_NVF   (1 << 1)       /* Non-Valid Flag */
 81#define DSR_SVF   (1 << 0)       /* Security Violation Flag */
 82
 83#define DIER      0x18           /* Interrupt Enable Reg (synchronous) */
 84#define DIER_WNIE (1 << 9)       /* Write Next Interrupt Enable */
 85#define DIER_WCIE (1 << 8)       /* Write Complete Interrupt Enable */
 86#define DIER_WEIE (1 << 7)       /* Write Error Interrupt Enable */
 87#define DIER_CAIE (1 << 4)       /* Clock Alarm Interrupt Enable */
 88#define DIER_SVIE (1 << 0)       /* Security-violation Interrupt Enable */
 89
 90#define DMCR      0x1c           /* DryIce Monotonic Counter Reg */
 91
 92#define DTCR      0x28           /* DryIce Tamper Configuration Reg */
 93#define DTCR_MOE  (1 << 9)       /* monotonic overflow enabled */
 94#define DTCR_TOE  (1 << 8)       /* time overflow enabled */
 95#define DTCR_WTE  (1 << 7)       /* wire-mesh tamper enabled */
 96#define DTCR_ETBE (1 << 6)       /* external B tamper enabled */
 97#define DTCR_ETAE (1 << 5)       /* external A tamper enabled */
 98#define DTCR_EBE  (1 << 4)       /* external boot tamper enabled */
 99#define DTCR_SAIE (1 << 3)       /* SCC enabled */
100#define DTCR_TTE  (1 << 2)       /* temperature tamper enabled */
101#define DTCR_CTE  (1 << 1)       /* clock tamper enabled */
102#define DTCR_VTE  (1 << 0)       /* voltage tamper enabled */
103
104#define DGPR      0x3c           /* DryIce General Purpose Reg */
105
106/**
107 * struct imxdi_dev - private imxdi rtc data
108 * @pdev: pionter to platform dev
109 * @rtc: pointer to rtc struct
110 * @ioaddr: IO registers pointer
111 * @clk: input reference clock
112 * @dsr: copy of the DSR register
113 * @irq_lock: interrupt enable register (DIER) lock
114 * @write_wait: registers write complete queue
115 * @write_mutex: serialize registers write
116 * @work: schedule alarm work
117 */
118struct imxdi_dev {
119	struct platform_device *pdev;
120	struct rtc_device *rtc;
121	void __iomem *ioaddr;
122	struct clk *clk;
123	u32 dsr;
124	spinlock_t irq_lock;
125	wait_queue_head_t write_wait;
126	struct mutex write_mutex;
127	struct work_struct work;
128};
129
130/* Some background:
131 *
132 * The DryIce unit is a complex security/tamper monitor device. To be able do
133 * its job in a useful manner it runs a bigger statemachine to bring it into
134 * security/tamper failure state and once again to bring it out of this state.
135 *
136 * This unit can be in one of three states:
137 *
138 * - "NON-VALID STATE"
139 *   always after the battery power was removed
140 * - "FAILURE STATE"
141 *   if one of the enabled security events has happened
142 * - "VALID STATE"
143 *   if the unit works as expected
144 *
145 * Everything stops when the unit enters the failure state including the RTC
146 * counter (to be able to detect the time the security event happened).
147 *
148 * The following events (when enabled) let the DryIce unit enter the failure
149 * state:
150 *
151 * - wire-mesh-tamper detect
152 * - external tamper B detect
153 * - external tamper A detect
154 * - temperature tamper detect
155 * - clock tamper detect
156 * - voltage tamper detect
157 * - RTC counter overflow
158 * - monotonic counter overflow
159 * - external boot
160 *
161 * If we find the DryIce unit in "FAILURE STATE" and the TDCHL cleared, we
162 * can only detect this state. In this case the unit is completely locked and
163 * must force a second "SYSTEM POR" to bring the DryIce into the
164 * "NON-VALID STATE" + "FAILURE STATE" where a recovery is possible.
165 * If the TDCHL is set in the "FAILURE STATE" we are out of luck. In this case
166 * a battery power cycle is required.
167 *
168 * In the "NON-VALID STATE" + "FAILURE STATE" we can clear the "FAILURE STATE"
169 * and recover the DryIce unit. By clearing the "NON-VALID STATE" as the last
170 * task, we bring back this unit into life.
171 */
172
173/*
174 * Do a write into the unit without interrupt support.
175 * We do not need to check the WEF here, because the only reason this kind of
176 * write error can happen is if we write to the unit twice within the 122 us
177 * interval. This cannot happen, since we are using this function only while
178 * setting up the unit.
179 */
180static void di_write_busy_wait(const struct imxdi_dev *imxdi, u32 val,
181			       unsigned reg)
182{
183	/* do the register write */
184	writel(val, imxdi->ioaddr + reg);
185
186	/*
187	 * now it takes four 32,768 kHz clock cycles to take
188	 * the change into effect = 122 us
189	 */
190	usleep_range(130, 200);
191}
192
193static void di_report_tamper_info(struct imxdi_dev *imxdi,  u32 dsr)
194{
195	u32 dtcr;
196
197	dtcr = readl(imxdi->ioaddr + DTCR);
198
199	dev_emerg(&imxdi->pdev->dev, "DryIce tamper event detected\n");
200	/* the following flags force a transition into the "FAILURE STATE" */
201	if (dsr & DSR_VTD)
202		dev_emerg(&imxdi->pdev->dev, "%sVoltage Tamper Event\n",
203			  dtcr & DTCR_VTE ? "" : "Spurious ");
204
205	if (dsr & DSR_CTD)
206		dev_emerg(&imxdi->pdev->dev, "%s32768 Hz Clock Tamper Event\n",
207			  dtcr & DTCR_CTE ? "" : "Spurious ");
208
209	if (dsr & DSR_TTD)
210		dev_emerg(&imxdi->pdev->dev, "%sTemperature Tamper Event\n",
211			  dtcr & DTCR_TTE ? "" : "Spurious ");
212
213	if (dsr & DSR_SAD)
214		dev_emerg(&imxdi->pdev->dev,
215			  "%sSecure Controller Alarm Event\n",
216			  dtcr & DTCR_SAIE ? "" : "Spurious ");
217
218	if (dsr & DSR_EBD)
219		dev_emerg(&imxdi->pdev->dev, "%sExternal Boot Tamper Event\n",
220			  dtcr & DTCR_EBE ? "" : "Spurious ");
221
222	if (dsr & DSR_ETAD)
223		dev_emerg(&imxdi->pdev->dev, "%sExternal Tamper A Event\n",
224			  dtcr & DTCR_ETAE ? "" : "Spurious ");
225
226	if (dsr & DSR_ETBD)
227		dev_emerg(&imxdi->pdev->dev, "%sExternal Tamper B Event\n",
228			  dtcr & DTCR_ETBE ? "" : "Spurious ");
229
230	if (dsr & DSR_WTD)
231		dev_emerg(&imxdi->pdev->dev, "%sWire-mesh Tamper Event\n",
232			  dtcr & DTCR_WTE ? "" : "Spurious ");
233
234	if (dsr & DSR_MCO)
235		dev_emerg(&imxdi->pdev->dev,
236			  "%sMonotonic-counter Overflow Event\n",
237			  dtcr & DTCR_MOE ? "" : "Spurious ");
238
239	if (dsr & DSR_TCO)
240		dev_emerg(&imxdi->pdev->dev, "%sTimer-counter Overflow Event\n",
241			  dtcr & DTCR_TOE ? "" : "Spurious ");
242}
243
244static void di_what_is_to_be_done(struct imxdi_dev *imxdi,
245				  const char *power_supply)
246{
247	dev_emerg(&imxdi->pdev->dev, "Please cycle the %s power supply in order to get the DryIce/RTC unit working again\n",
248		  power_supply);
249}
250
251static int di_handle_failure_state(struct imxdi_dev *imxdi, u32 dsr)
252{
253	u32 dcr;
254
255	dev_dbg(&imxdi->pdev->dev, "DSR register reports: %08X\n", dsr);
256
257	/* report the cause */
258	di_report_tamper_info(imxdi, dsr);
259
260	dcr = readl(imxdi->ioaddr + DCR);
261
262	if (dcr & DCR_FSHL) {
263		/* we are out of luck */
264		di_what_is_to_be_done(imxdi, "battery");
265		return -ENODEV;
266	}
267	/*
268	 * with the next SYSTEM POR we will transit from the "FAILURE STATE"
269	 * into the "NON-VALID STATE" + "FAILURE STATE"
270	 */
271	di_what_is_to_be_done(imxdi, "main");
272
273	return -ENODEV;
274}
275
276static int di_handle_valid_state(struct imxdi_dev *imxdi, u32 dsr)
277{
278	/* initialize alarm */
279	di_write_busy_wait(imxdi, DCAMR_UNSET, DCAMR);
280	di_write_busy_wait(imxdi, 0, DCALR);
281
282	/* clear alarm flag */
283	if (dsr & DSR_CAF)
284		di_write_busy_wait(imxdi, DSR_CAF, DSR);
285
286	return 0;
287}
288
289static int di_handle_invalid_state(struct imxdi_dev *imxdi, u32 dsr)
290{
291	u32 dcr, sec;
292
293	/*
294	 * lets disable all sources which can force the DryIce unit into
295	 * the "FAILURE STATE" for now
296	 */
297	di_write_busy_wait(imxdi, 0x00000000, DTCR);
298	/* and lets protect them at runtime from any change */
299	di_write_busy_wait(imxdi, DCR_TDCSL, DCR);
300
301	sec = readl(imxdi->ioaddr + DTCMR);
302	if (sec != 0)
303		dev_warn(&imxdi->pdev->dev,
304			 "The security violation has happened at %u seconds\n",
305			 sec);
306	/*
307	 * the timer cannot be set/modified if
308	 * - the TCHL or TCSL bit is set in DCR
309	 */
310	dcr = readl(imxdi->ioaddr + DCR);
311	if (!(dcr & DCR_TCE)) {
312		if (dcr & DCR_TCHL) {
313			/* we are out of luck */
314			di_what_is_to_be_done(imxdi, "battery");
315			return -ENODEV;
316		}
317		if (dcr & DCR_TCSL) {
318			di_what_is_to_be_done(imxdi, "main");
319			return -ENODEV;
320		}
321	}
322	/*
323	 * - the timer counter stops/is stopped if
324	 *   - its overflow flag is set (TCO in DSR)
325	 *      -> clear overflow bit to make it count again
326	 *   - NVF is set in DSR
327	 *      -> clear non-valid bit to make it count again
328	 *   - its TCE (DCR) is cleared
329	 *      -> set TCE to make it count
330	 *   - it was never set before
331	 *      -> write a time into it (required again if the NVF was set)
332	 */
333	/* state handled */
334	di_write_busy_wait(imxdi, DSR_NVF, DSR);
335	/* clear overflow flag */
336	di_write_busy_wait(imxdi, DSR_TCO, DSR);
337	/* enable the counter */
338	di_write_busy_wait(imxdi, dcr | DCR_TCE, DCR);
339	/* set and trigger it to make it count */
340	di_write_busy_wait(imxdi, sec, DTCMR);
341
342	/* now prepare for the valid state */
343	return di_handle_valid_state(imxdi, __raw_readl(imxdi->ioaddr + DSR));
344}
345
346static int di_handle_invalid_and_failure_state(struct imxdi_dev *imxdi, u32 dsr)
347{
348	u32 dcr;
349
350	/*
351	 * now we must first remove the tamper sources in order to get the
352	 * device out of the "FAILURE STATE"
353	 * To disable any of the following sources we need to modify the DTCR
354	 */
355	if (dsr & (DSR_WTD | DSR_ETBD | DSR_ETAD | DSR_EBD | DSR_SAD |
356			DSR_TTD | DSR_CTD | DSR_VTD | DSR_MCO | DSR_TCO)) {
357		dcr = __raw_readl(imxdi->ioaddr + DCR);
358		if (dcr & DCR_TDCHL) {
359			/*
360			 * the tamper register is locked. We cannot disable the
361			 * tamper detection. The TDCHL can only be reset by a
362			 * DRYICE POR, but we cannot force a DRYICE POR in
363			 * softwere because we are still in "FAILURE STATE".
364			 * We need a DRYICE POR via battery power cycling....
365			 */
366			/*
367			 * out of luck!
368			 * we cannot disable them without a DRYICE POR
369			 */
370			di_what_is_to_be_done(imxdi, "battery");
371			return -ENODEV;
372		}
373		if (dcr & DCR_TDCSL) {
374			/* a soft lock can be removed by a SYSTEM POR */
375			di_what_is_to_be_done(imxdi, "main");
376			return -ENODEV;
377		}
378	}
379
380	/* disable all sources */
381	di_write_busy_wait(imxdi, 0x00000000, DTCR);
382
383	/* clear the status bits now */
384	di_write_busy_wait(imxdi, dsr & (DSR_WTD | DSR_ETBD | DSR_ETAD |
385			DSR_EBD | DSR_SAD | DSR_TTD | DSR_CTD | DSR_VTD |
386			DSR_MCO | DSR_TCO), DSR);
387
388	dsr = readl(imxdi->ioaddr + DSR);
389	if ((dsr & ~(DSR_NVF | DSR_SVF | DSR_WBF | DSR_WNF |
390			DSR_WCF | DSR_WEF)) != 0)
391		dev_warn(&imxdi->pdev->dev,
392			 "There are still some sources of pain in DSR: %08x!\n",
393			 dsr & ~(DSR_NVF | DSR_SVF | DSR_WBF | DSR_WNF |
394				 DSR_WCF | DSR_WEF));
395
396	/*
397	 * now we are trying to clear the "Security-violation flag" to
398	 * get the DryIce out of this state
399	 */
400	di_write_busy_wait(imxdi, DSR_SVF, DSR);
401
402	/* success? */
403	dsr = readl(imxdi->ioaddr + DSR);
404	if (dsr & DSR_SVF) {
405		dev_crit(&imxdi->pdev->dev,
406			 "Cannot clear the security violation flag. We are ending up in an endless loop!\n");
407		/* last resort */
408		di_what_is_to_be_done(imxdi, "battery");
409		return -ENODEV;
410	}
411
412	/*
413	 * now we have left the "FAILURE STATE" and ending up in the
414	 * "NON-VALID STATE" time to recover everything
415	 */
416	return di_handle_invalid_state(imxdi, dsr);
417}
418
419static int di_handle_state(struct imxdi_dev *imxdi)
420{
421	int rc;
422	u32 dsr;
423
424	dsr = readl(imxdi->ioaddr + DSR);
425
426	switch (dsr & (DSR_NVF | DSR_SVF)) {
427	case DSR_NVF:
428		dev_warn(&imxdi->pdev->dev, "Invalid stated unit detected\n");
429		rc = di_handle_invalid_state(imxdi, dsr);
430		break;
431	case DSR_SVF:
432		dev_warn(&imxdi->pdev->dev, "Failure stated unit detected\n");
433		rc = di_handle_failure_state(imxdi, dsr);
434		break;
435	case DSR_NVF | DSR_SVF:
436		dev_warn(&imxdi->pdev->dev,
437			 "Failure+Invalid stated unit detected\n");
438		rc = di_handle_invalid_and_failure_state(imxdi, dsr);
439		break;
440	default:
441		dev_notice(&imxdi->pdev->dev, "Unlocked unit detected\n");
442		rc = di_handle_valid_state(imxdi, dsr);
443	}
444
445	return rc;
446}
447
448/*
449 * enable a dryice interrupt
450 */
451static void di_int_enable(struct imxdi_dev *imxdi, u32 intr)
452{
453	unsigned long flags;
454
455	spin_lock_irqsave(&imxdi->irq_lock, flags);
456	writel(readl(imxdi->ioaddr + DIER) | intr,
457	       imxdi->ioaddr + DIER);
458	spin_unlock_irqrestore(&imxdi->irq_lock, flags);
459}
460
461/*
462 * disable a dryice interrupt
463 */
464static void di_int_disable(struct imxdi_dev *imxdi, u32 intr)
465{
466	unsigned long flags;
467
468	spin_lock_irqsave(&imxdi->irq_lock, flags);
469	writel(readl(imxdi->ioaddr + DIER) & ~intr,
470	       imxdi->ioaddr + DIER);
471	spin_unlock_irqrestore(&imxdi->irq_lock, flags);
472}
473
474/*
475 * This function attempts to clear the dryice write-error flag.
476 *
477 * A dryice write error is similar to a bus fault and should not occur in
478 * normal operation.  Clearing the flag requires another write, so the root
479 * cause of the problem may need to be fixed before the flag can be cleared.
480 */
481static void clear_write_error(struct imxdi_dev *imxdi)
482{
483	int cnt;
484
485	dev_warn(&imxdi->pdev->dev, "WARNING: Register write error!\n");
486
487	/* clear the write error flag */
488	writel(DSR_WEF, imxdi->ioaddr + DSR);
489
490	/* wait for it to take effect */
491	for (cnt = 0; cnt < 1000; cnt++) {
492		if ((readl(imxdi->ioaddr + DSR) & DSR_WEF) == 0)
493			return;
494		udelay(10);
495	}
496	dev_err(&imxdi->pdev->dev,
497			"ERROR: Cannot clear write-error flag!\n");
498}
499
500/*
501 * Write a dryice register and wait until it completes.
502 *
503 * This function uses interrupts to determine when the
504 * write has completed.
505 */
506static int di_write_wait(struct imxdi_dev *imxdi, u32 val, int reg)
507{
508	int ret;
509	int rc = 0;
510
511	/* serialize register writes */
512	mutex_lock(&imxdi->write_mutex);
513
514	/* enable the write-complete interrupt */
515	di_int_enable(imxdi, DIER_WCIE);
516
517	imxdi->dsr = 0;
518
519	/* do the register write */
520	writel(val, imxdi->ioaddr + reg);
521
522	/* wait for the write to finish */
523	ret = wait_event_interruptible_timeout(imxdi->write_wait,
524			imxdi->dsr & (DSR_WCF | DSR_WEF), msecs_to_jiffies(1));
525	if (ret < 0) {
526		rc = ret;
527		goto out;
528	} else if (ret == 0) {
529		dev_warn(&imxdi->pdev->dev,
530				"Write-wait timeout "
531				"val = 0x%08x reg = 0x%08x\n", val, reg);
532	}
533
534	/* check for write error */
535	if (imxdi->dsr & DSR_WEF) {
536		clear_write_error(imxdi);
537		rc = -EIO;
538	}
539
540out:
541	mutex_unlock(&imxdi->write_mutex);
542
543	return rc;
544}
545
546/*
547 * read the seconds portion of the current time from the dryice time counter
548 */
549static int dryice_rtc_read_time(struct device *dev, struct rtc_time *tm)
550{
551	struct imxdi_dev *imxdi = dev_get_drvdata(dev);
552	unsigned long now;
553
554	now = readl(imxdi->ioaddr + DTCMR);
555	rtc_time_to_tm(now, tm);
556
557	return 0;
558}
559
560/*
561 * set the seconds portion of dryice time counter and clear the
562 * fractional part.
563 */
564static int dryice_rtc_set_mmss(struct device *dev, unsigned long secs)
565{
566	struct imxdi_dev *imxdi = dev_get_drvdata(dev);
567	u32 dcr, dsr;
568	int rc;
569
570	dcr = readl(imxdi->ioaddr + DCR);
571	dsr = readl(imxdi->ioaddr + DSR);
572
573	if (!(dcr & DCR_TCE) || (dsr & DSR_SVF)) {
574		if (dcr & DCR_TCHL) {
575			/* we are even more out of luck */
576			di_what_is_to_be_done(imxdi, "battery");
577			return -EPERM;
578		}
579		if ((dcr & DCR_TCSL) || (dsr & DSR_SVF)) {
580			/* we are out of luck for now */
581			di_what_is_to_be_done(imxdi, "main");
582			return -EPERM;
583		}
584	}
585
586	/* zero the fractional part first */
587	rc = di_write_wait(imxdi, 0, DTCLR);
588	if (rc != 0)
589		return rc;
590
591	rc = di_write_wait(imxdi, secs, DTCMR);
592	if (rc != 0)
593		return rc;
594
595	return di_write_wait(imxdi, readl(imxdi->ioaddr + DCR) | DCR_TCE, DCR);
596}
597
598static int dryice_rtc_alarm_irq_enable(struct device *dev,
599		unsigned int enabled)
600{
601	struct imxdi_dev *imxdi = dev_get_drvdata(dev);
602
603	if (enabled)
604		di_int_enable(imxdi, DIER_CAIE);
605	else
606		di_int_disable(imxdi, DIER_CAIE);
607
608	return 0;
609}
610
611/*
612 * read the seconds portion of the alarm register.
613 * the fractional part of the alarm register is always zero.
614 */
615static int dryice_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alarm)
616{
617	struct imxdi_dev *imxdi = dev_get_drvdata(dev);
618	u32 dcamr;
619
620	dcamr = readl(imxdi->ioaddr + DCAMR);
621	rtc_time_to_tm(dcamr, &alarm->time);
622
623	/* alarm is enabled if the interrupt is enabled */
624	alarm->enabled = (readl(imxdi->ioaddr + DIER) & DIER_CAIE) != 0;
625
626	/* don't allow the DSR read to mess up DSR_WCF */
627	mutex_lock(&imxdi->write_mutex);
628
629	/* alarm is pending if the alarm flag is set */
630	alarm->pending = (readl(imxdi->ioaddr + DSR) & DSR_CAF) != 0;
631
632	mutex_unlock(&imxdi->write_mutex);
633
634	return 0;
635}
636
637/*
638 * set the seconds portion of dryice alarm register
639 */
640static int dryice_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alarm)
641{
642	struct imxdi_dev *imxdi = dev_get_drvdata(dev);
643	unsigned long now;
644	unsigned long alarm_time;
645	int rc;
646
647	rc = rtc_tm_to_time(&alarm->time, &alarm_time);
648	if (rc)
649		return rc;
650
651	/* don't allow setting alarm in the past */
652	now = readl(imxdi->ioaddr + DTCMR);
653	if (alarm_time < now)
654		return -EINVAL;
655
656	/* write the new alarm time */
657	rc = di_write_wait(imxdi, (u32)alarm_time, DCAMR);
658	if (rc)
659		return rc;
660
661	if (alarm->enabled)
662		di_int_enable(imxdi, DIER_CAIE);  /* enable alarm intr */
663	else
664		di_int_disable(imxdi, DIER_CAIE); /* disable alarm intr */
665
666	return 0;
667}
668
669static const struct rtc_class_ops dryice_rtc_ops = {
670	.read_time		= dryice_rtc_read_time,
671	.set_mmss		= dryice_rtc_set_mmss,
672	.alarm_irq_enable	= dryice_rtc_alarm_irq_enable,
673	.read_alarm		= dryice_rtc_read_alarm,
674	.set_alarm		= dryice_rtc_set_alarm,
675};
676
677/*
678 * interrupt handler for dryice "normal" and security violation interrupt
679 */
680static irqreturn_t dryice_irq(int irq, void *dev_id)
681{
682	struct imxdi_dev *imxdi = dev_id;
683	u32 dsr, dier;
684	irqreturn_t rc = IRQ_NONE;
685
686	dier = readl(imxdi->ioaddr + DIER);
687	dsr = readl(imxdi->ioaddr + DSR);
688
689	/* handle the security violation event */
690	if (dier & DIER_SVIE) {
691		if (dsr & DSR_SVF) {
692			/*
693			 * Disable the interrupt when this kind of event has
694			 * happened.
695			 * There cannot be more than one event of this type,
696			 * because it needs a complex state change
697			 * including a main power cycle to get again out of
698			 * this state.
699			 */
700			di_int_disable(imxdi, DIER_SVIE);
701			/* report the violation */
702			di_report_tamper_info(imxdi, dsr);
703			rc = IRQ_HANDLED;
704		}
705	}
706
707	/* handle write complete and write error cases */
708	if (dier & DIER_WCIE) {
709		/*If the write wait queue is empty then there is no pending
710		  operations. It means the interrupt is for DryIce -Security.
711		  IRQ must be returned as none.*/
712		if (list_empty_careful(&imxdi->write_wait.head))
713			return rc;
714
715		/* DSR_WCF clears itself on DSR read */
716		if (dsr & (DSR_WCF | DSR_WEF)) {
717			/* mask the interrupt */
718			di_int_disable(imxdi, DIER_WCIE);
719
720			/* save the dsr value for the wait queue */
721			imxdi->dsr |= dsr;
722
723			wake_up_interruptible(&imxdi->write_wait);
724			rc = IRQ_HANDLED;
725		}
726	}
727
728	/* handle the alarm case */
729	if (dier & DIER_CAIE) {
730		/* DSR_WCF clears itself on DSR read */
731		if (dsr & DSR_CAF) {
732			/* mask the interrupt */
733			di_int_disable(imxdi, DIER_CAIE);
734
735			/* finish alarm in user context */
736			schedule_work(&imxdi->work);
737			rc = IRQ_HANDLED;
738		}
739	}
740	return rc;
741}
742
743/*
744 * post the alarm event from user context so it can sleep
745 * on the write completion.
746 */
747static void dryice_work(struct work_struct *work)
748{
749	struct imxdi_dev *imxdi = container_of(work,
750			struct imxdi_dev, work);
751
752	/* dismiss the interrupt (ignore error) */
753	di_write_wait(imxdi, DSR_CAF, DSR);
754
755	/* pass the alarm event to the rtc framework. */
756	rtc_update_irq(imxdi->rtc, 1, RTC_AF | RTC_IRQF);
757}
758
759/*
760 * probe for dryice rtc device
761 */
762static int __init dryice_rtc_probe(struct platform_device *pdev)
763{
764	struct resource *res;
765	struct imxdi_dev *imxdi;
766	int norm_irq, sec_irq;
767	int rc;
768
769	imxdi = devm_kzalloc(&pdev->dev, sizeof(*imxdi), GFP_KERNEL);
770	if (!imxdi)
771		return -ENOMEM;
772
773	imxdi->pdev = pdev;
774
775	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
776	imxdi->ioaddr = devm_ioremap_resource(&pdev->dev, res);
777	if (IS_ERR(imxdi->ioaddr))
778		return PTR_ERR(imxdi->ioaddr);
779
780	spin_lock_init(&imxdi->irq_lock);
781
782	norm_irq = platform_get_irq(pdev, 0);
783	if (norm_irq < 0)
784		return norm_irq;
785
786	/* the 2nd irq is the security violation irq
787	 * make this optional, don't break the device tree ABI
788	 */
789	sec_irq = platform_get_irq(pdev, 1);
790	if (sec_irq <= 0)
791		sec_irq = IRQ_NOTCONNECTED;
792
793	init_waitqueue_head(&imxdi->write_wait);
794
795	INIT_WORK(&imxdi->work, dryice_work);
796
797	mutex_init(&imxdi->write_mutex);
798
 
 
 
 
799	imxdi->clk = devm_clk_get(&pdev->dev, NULL);
800	if (IS_ERR(imxdi->clk))
801		return PTR_ERR(imxdi->clk);
802	rc = clk_prepare_enable(imxdi->clk);
803	if (rc)
804		return rc;
805
806	/*
807	 * Initialize dryice hardware
808	 */
809
810	/* mask all interrupts */
811	writel(0, imxdi->ioaddr + DIER);
812
813	rc = di_handle_state(imxdi);
814	if (rc != 0)
815		goto err;
816
817	rc = devm_request_irq(&pdev->dev, norm_irq, dryice_irq,
818			      IRQF_SHARED, pdev->name, imxdi);
819	if (rc) {
820		dev_warn(&pdev->dev, "interrupt not available.\n");
821		goto err;
822	}
823
824	rc = devm_request_irq(&pdev->dev, sec_irq, dryice_irq,
825			      IRQF_SHARED, pdev->name, imxdi);
826	if (rc) {
827		dev_warn(&pdev->dev, "security violation interrupt not available.\n");
828		/* this is not an error, see above */
829	}
830
831	platform_set_drvdata(pdev, imxdi);
832	imxdi->rtc = devm_rtc_device_register(&pdev->dev, pdev->name,
833				  &dryice_rtc_ops, THIS_MODULE);
834	if (IS_ERR(imxdi->rtc)) {
835		rc = PTR_ERR(imxdi->rtc);
 
 
836		goto err;
837	}
838
839	return 0;
840
841err:
842	clk_disable_unprepare(imxdi->clk);
843
844	return rc;
845}
846
847static int __exit dryice_rtc_remove(struct platform_device *pdev)
848{
849	struct imxdi_dev *imxdi = platform_get_drvdata(pdev);
850
851	flush_work(&imxdi->work);
852
853	/* mask all interrupts */
854	writel(0, imxdi->ioaddr + DIER);
855
856	clk_disable_unprepare(imxdi->clk);
857
858	return 0;
859}
860
861#ifdef CONFIG_OF
862static const struct of_device_id dryice_dt_ids[] = {
863	{ .compatible = "fsl,imx25-rtc" },
864	{ /* sentinel */ }
865};
866
867MODULE_DEVICE_TABLE(of, dryice_dt_ids);
868#endif
869
870static struct platform_driver dryice_rtc_driver = {
871	.driver = {
872		   .name = "imxdi_rtc",
873		   .of_match_table = of_match_ptr(dryice_dt_ids),
874		   },
875	.remove = __exit_p(dryice_rtc_remove),
876};
877
878module_platform_driver_probe(dryice_rtc_driver, dryice_rtc_probe);
879
880MODULE_AUTHOR("Freescale Semiconductor, Inc.");
881MODULE_AUTHOR("Baruch Siach <baruch@tkos.co.il>");
882MODULE_DESCRIPTION("IMX DryIce Realtime Clock Driver (RTC)");
883MODULE_LICENSE("GPL");