Loading...
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright (c) 2018, Intel Corporation. */
3
4/* The driver transmit and receive code */
5
6#include <linux/prefetch.h>
7#include <linux/mm.h>
8#include <linux/bpf_trace.h>
9#include <net/xdp.h>
10#include "ice_txrx_lib.h"
11#include "ice_lib.h"
12#include "ice.h"
13#include "ice_dcb_lib.h"
14#include "ice_xsk.h"
15
16#define ICE_RX_HDR_SIZE 256
17
18#define FDIR_DESC_RXDID 0x40
19#define ICE_FDIR_CLEAN_DELAY 10
20
21/**
22 * ice_prgm_fdir_fltr - Program a Flow Director filter
23 * @vsi: VSI to send dummy packet
24 * @fdir_desc: flow director descriptor
25 * @raw_packet: allocated buffer for flow director
26 */
27int
28ice_prgm_fdir_fltr(struct ice_vsi *vsi, struct ice_fltr_desc *fdir_desc,
29 u8 *raw_packet)
30{
31 struct ice_tx_buf *tx_buf, *first;
32 struct ice_fltr_desc *f_desc;
33 struct ice_tx_desc *tx_desc;
34 struct ice_ring *tx_ring;
35 struct device *dev;
36 dma_addr_t dma;
37 u32 td_cmd;
38 u16 i;
39
40 /* VSI and Tx ring */
41 if (!vsi)
42 return -ENOENT;
43 tx_ring = vsi->tx_rings[0];
44 if (!tx_ring || !tx_ring->desc)
45 return -ENOENT;
46 dev = tx_ring->dev;
47
48 /* we are using two descriptors to add/del a filter and we can wait */
49 for (i = ICE_FDIR_CLEAN_DELAY; ICE_DESC_UNUSED(tx_ring) < 2; i--) {
50 if (!i)
51 return -EAGAIN;
52 msleep_interruptible(1);
53 }
54
55 dma = dma_map_single(dev, raw_packet, ICE_FDIR_MAX_RAW_PKT_SIZE,
56 DMA_TO_DEVICE);
57
58 if (dma_mapping_error(dev, dma))
59 return -EINVAL;
60
61 /* grab the next descriptor */
62 i = tx_ring->next_to_use;
63 first = &tx_ring->tx_buf[i];
64 f_desc = ICE_TX_FDIRDESC(tx_ring, i);
65 memcpy(f_desc, fdir_desc, sizeof(*f_desc));
66
67 i++;
68 i = (i < tx_ring->count) ? i : 0;
69 tx_desc = ICE_TX_DESC(tx_ring, i);
70 tx_buf = &tx_ring->tx_buf[i];
71
72 i++;
73 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
74
75 memset(tx_buf, 0, sizeof(*tx_buf));
76 dma_unmap_len_set(tx_buf, len, ICE_FDIR_MAX_RAW_PKT_SIZE);
77 dma_unmap_addr_set(tx_buf, dma, dma);
78
79 tx_desc->buf_addr = cpu_to_le64(dma);
80 td_cmd = ICE_TXD_LAST_DESC_CMD | ICE_TX_DESC_CMD_DUMMY |
81 ICE_TX_DESC_CMD_RE;
82
83 tx_buf->tx_flags = ICE_TX_FLAGS_DUMMY_PKT;
84 tx_buf->raw_buf = raw_packet;
85
86 tx_desc->cmd_type_offset_bsz =
87 ice_build_ctob(td_cmd, 0, ICE_FDIR_MAX_RAW_PKT_SIZE, 0);
88
89 /* Force memory write to complete before letting h/w know
90 * there are new descriptors to fetch.
91 */
92 wmb();
93
94 /* mark the data descriptor to be watched */
95 first->next_to_watch = tx_desc;
96
97 writel(tx_ring->next_to_use, tx_ring->tail);
98
99 return 0;
100}
101
102/**
103 * ice_unmap_and_free_tx_buf - Release a Tx buffer
104 * @ring: the ring that owns the buffer
105 * @tx_buf: the buffer to free
106 */
107static void
108ice_unmap_and_free_tx_buf(struct ice_ring *ring, struct ice_tx_buf *tx_buf)
109{
110 if (tx_buf->skb) {
111 if (tx_buf->tx_flags & ICE_TX_FLAGS_DUMMY_PKT)
112 devm_kfree(ring->dev, tx_buf->raw_buf);
113 else if (ice_ring_is_xdp(ring))
114 page_frag_free(tx_buf->raw_buf);
115 else
116 dev_kfree_skb_any(tx_buf->skb);
117 if (dma_unmap_len(tx_buf, len))
118 dma_unmap_single(ring->dev,
119 dma_unmap_addr(tx_buf, dma),
120 dma_unmap_len(tx_buf, len),
121 DMA_TO_DEVICE);
122 } else if (dma_unmap_len(tx_buf, len)) {
123 dma_unmap_page(ring->dev,
124 dma_unmap_addr(tx_buf, dma),
125 dma_unmap_len(tx_buf, len),
126 DMA_TO_DEVICE);
127 }
128
129 tx_buf->next_to_watch = NULL;
130 tx_buf->skb = NULL;
131 dma_unmap_len_set(tx_buf, len, 0);
132 /* tx_buf must be completely set up in the transmit path */
133}
134
135static struct netdev_queue *txring_txq(const struct ice_ring *ring)
136{
137 return netdev_get_tx_queue(ring->netdev, ring->q_index);
138}
139
140/**
141 * ice_clean_tx_ring - Free any empty Tx buffers
142 * @tx_ring: ring to be cleaned
143 */
144void ice_clean_tx_ring(struct ice_ring *tx_ring)
145{
146 u16 i;
147
148 if (ice_ring_is_xdp(tx_ring) && tx_ring->xsk_umem) {
149 ice_xsk_clean_xdp_ring(tx_ring);
150 goto tx_skip_free;
151 }
152
153 /* ring already cleared, nothing to do */
154 if (!tx_ring->tx_buf)
155 return;
156
157 /* Free all the Tx ring sk_buffs */
158 for (i = 0; i < tx_ring->count; i++)
159 ice_unmap_and_free_tx_buf(tx_ring, &tx_ring->tx_buf[i]);
160
161tx_skip_free:
162 memset(tx_ring->tx_buf, 0, sizeof(*tx_ring->tx_buf) * tx_ring->count);
163
164 /* Zero out the descriptor ring */
165 memset(tx_ring->desc, 0, tx_ring->size);
166
167 tx_ring->next_to_use = 0;
168 tx_ring->next_to_clean = 0;
169
170 if (!tx_ring->netdev)
171 return;
172
173 /* cleanup Tx queue statistics */
174 netdev_tx_reset_queue(txring_txq(tx_ring));
175}
176
177/**
178 * ice_free_tx_ring - Free Tx resources per queue
179 * @tx_ring: Tx descriptor ring for a specific queue
180 *
181 * Free all transmit software resources
182 */
183void ice_free_tx_ring(struct ice_ring *tx_ring)
184{
185 ice_clean_tx_ring(tx_ring);
186 devm_kfree(tx_ring->dev, tx_ring->tx_buf);
187 tx_ring->tx_buf = NULL;
188
189 if (tx_ring->desc) {
190 dmam_free_coherent(tx_ring->dev, tx_ring->size,
191 tx_ring->desc, tx_ring->dma);
192 tx_ring->desc = NULL;
193 }
194}
195
196/**
197 * ice_clean_tx_irq - Reclaim resources after transmit completes
198 * @tx_ring: Tx ring to clean
199 * @napi_budget: Used to determine if we are in netpoll
200 *
201 * Returns true if there's any budget left (e.g. the clean is finished)
202 */
203static bool ice_clean_tx_irq(struct ice_ring *tx_ring, int napi_budget)
204{
205 unsigned int total_bytes = 0, total_pkts = 0;
206 unsigned int budget = ICE_DFLT_IRQ_WORK;
207 struct ice_vsi *vsi = tx_ring->vsi;
208 s16 i = tx_ring->next_to_clean;
209 struct ice_tx_desc *tx_desc;
210 struct ice_tx_buf *tx_buf;
211
212 tx_buf = &tx_ring->tx_buf[i];
213 tx_desc = ICE_TX_DESC(tx_ring, i);
214 i -= tx_ring->count;
215
216 prefetch(&vsi->state);
217
218 do {
219 struct ice_tx_desc *eop_desc = tx_buf->next_to_watch;
220
221 /* if next_to_watch is not set then there is no work pending */
222 if (!eop_desc)
223 break;
224
225 smp_rmb(); /* prevent any other reads prior to eop_desc */
226
227 /* if the descriptor isn't done, no work yet to do */
228 if (!(eop_desc->cmd_type_offset_bsz &
229 cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE)))
230 break;
231
232 /* clear next_to_watch to prevent false hangs */
233 tx_buf->next_to_watch = NULL;
234
235 /* update the statistics for this packet */
236 total_bytes += tx_buf->bytecount;
237 total_pkts += tx_buf->gso_segs;
238
239 if (ice_ring_is_xdp(tx_ring))
240 page_frag_free(tx_buf->raw_buf);
241 else
242 /* free the skb */
243 napi_consume_skb(tx_buf->skb, napi_budget);
244
245 /* unmap skb header data */
246 dma_unmap_single(tx_ring->dev,
247 dma_unmap_addr(tx_buf, dma),
248 dma_unmap_len(tx_buf, len),
249 DMA_TO_DEVICE);
250
251 /* clear tx_buf data */
252 tx_buf->skb = NULL;
253 dma_unmap_len_set(tx_buf, len, 0);
254
255 /* unmap remaining buffers */
256 while (tx_desc != eop_desc) {
257 tx_buf++;
258 tx_desc++;
259 i++;
260 if (unlikely(!i)) {
261 i -= tx_ring->count;
262 tx_buf = tx_ring->tx_buf;
263 tx_desc = ICE_TX_DESC(tx_ring, 0);
264 }
265
266 /* unmap any remaining paged data */
267 if (dma_unmap_len(tx_buf, len)) {
268 dma_unmap_page(tx_ring->dev,
269 dma_unmap_addr(tx_buf, dma),
270 dma_unmap_len(tx_buf, len),
271 DMA_TO_DEVICE);
272 dma_unmap_len_set(tx_buf, len, 0);
273 }
274 }
275
276 /* move us one more past the eop_desc for start of next pkt */
277 tx_buf++;
278 tx_desc++;
279 i++;
280 if (unlikely(!i)) {
281 i -= tx_ring->count;
282 tx_buf = tx_ring->tx_buf;
283 tx_desc = ICE_TX_DESC(tx_ring, 0);
284 }
285
286 prefetch(tx_desc);
287
288 /* update budget accounting */
289 budget--;
290 } while (likely(budget));
291
292 i += tx_ring->count;
293 tx_ring->next_to_clean = i;
294
295 ice_update_tx_ring_stats(tx_ring, total_pkts, total_bytes);
296
297 if (ice_ring_is_xdp(tx_ring))
298 return !!budget;
299
300 netdev_tx_completed_queue(txring_txq(tx_ring), total_pkts,
301 total_bytes);
302
303#define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
304 if (unlikely(total_pkts && netif_carrier_ok(tx_ring->netdev) &&
305 (ICE_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
306 /* Make sure that anybody stopping the queue after this
307 * sees the new next_to_clean.
308 */
309 smp_mb();
310 if (__netif_subqueue_stopped(tx_ring->netdev,
311 tx_ring->q_index) &&
312 !test_bit(__ICE_DOWN, vsi->state)) {
313 netif_wake_subqueue(tx_ring->netdev,
314 tx_ring->q_index);
315 ++tx_ring->tx_stats.restart_q;
316 }
317 }
318
319 return !!budget;
320}
321
322/**
323 * ice_setup_tx_ring - Allocate the Tx descriptors
324 * @tx_ring: the Tx ring to set up
325 *
326 * Return 0 on success, negative on error
327 */
328int ice_setup_tx_ring(struct ice_ring *tx_ring)
329{
330 struct device *dev = tx_ring->dev;
331
332 if (!dev)
333 return -ENOMEM;
334
335 /* warn if we are about to overwrite the pointer */
336 WARN_ON(tx_ring->tx_buf);
337 tx_ring->tx_buf =
338 devm_kzalloc(dev, sizeof(*tx_ring->tx_buf) * tx_ring->count,
339 GFP_KERNEL);
340 if (!tx_ring->tx_buf)
341 return -ENOMEM;
342
343 /* round up to nearest page */
344 tx_ring->size = ALIGN(tx_ring->count * sizeof(struct ice_tx_desc),
345 PAGE_SIZE);
346 tx_ring->desc = dmam_alloc_coherent(dev, tx_ring->size, &tx_ring->dma,
347 GFP_KERNEL);
348 if (!tx_ring->desc) {
349 dev_err(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
350 tx_ring->size);
351 goto err;
352 }
353
354 tx_ring->next_to_use = 0;
355 tx_ring->next_to_clean = 0;
356 tx_ring->tx_stats.prev_pkt = -1;
357 return 0;
358
359err:
360 devm_kfree(dev, tx_ring->tx_buf);
361 tx_ring->tx_buf = NULL;
362 return -ENOMEM;
363}
364
365/**
366 * ice_clean_rx_ring - Free Rx buffers
367 * @rx_ring: ring to be cleaned
368 */
369void ice_clean_rx_ring(struct ice_ring *rx_ring)
370{
371 struct device *dev = rx_ring->dev;
372 u16 i;
373
374 /* ring already cleared, nothing to do */
375 if (!rx_ring->rx_buf)
376 return;
377
378 if (rx_ring->xsk_umem) {
379 ice_xsk_clean_rx_ring(rx_ring);
380 goto rx_skip_free;
381 }
382
383 /* Free all the Rx ring sk_buffs */
384 for (i = 0; i < rx_ring->count; i++) {
385 struct ice_rx_buf *rx_buf = &rx_ring->rx_buf[i];
386
387 if (rx_buf->skb) {
388 dev_kfree_skb(rx_buf->skb);
389 rx_buf->skb = NULL;
390 }
391 if (!rx_buf->page)
392 continue;
393
394 /* Invalidate cache lines that may have been written to by
395 * device so that we avoid corrupting memory.
396 */
397 dma_sync_single_range_for_cpu(dev, rx_buf->dma,
398 rx_buf->page_offset,
399 rx_ring->rx_buf_len,
400 DMA_FROM_DEVICE);
401
402 /* free resources associated with mapping */
403 dma_unmap_page_attrs(dev, rx_buf->dma, ice_rx_pg_size(rx_ring),
404 DMA_FROM_DEVICE, ICE_RX_DMA_ATTR);
405 __page_frag_cache_drain(rx_buf->page, rx_buf->pagecnt_bias);
406
407 rx_buf->page = NULL;
408 rx_buf->page_offset = 0;
409 }
410
411rx_skip_free:
412 memset(rx_ring->rx_buf, 0, sizeof(*rx_ring->rx_buf) * rx_ring->count);
413
414 /* Zero out the descriptor ring */
415 memset(rx_ring->desc, 0, rx_ring->size);
416
417 rx_ring->next_to_alloc = 0;
418 rx_ring->next_to_clean = 0;
419 rx_ring->next_to_use = 0;
420}
421
422/**
423 * ice_free_rx_ring - Free Rx resources
424 * @rx_ring: ring to clean the resources from
425 *
426 * Free all receive software resources
427 */
428void ice_free_rx_ring(struct ice_ring *rx_ring)
429{
430 ice_clean_rx_ring(rx_ring);
431 if (rx_ring->vsi->type == ICE_VSI_PF)
432 if (xdp_rxq_info_is_reg(&rx_ring->xdp_rxq))
433 xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
434 rx_ring->xdp_prog = NULL;
435 devm_kfree(rx_ring->dev, rx_ring->rx_buf);
436 rx_ring->rx_buf = NULL;
437
438 if (rx_ring->desc) {
439 dmam_free_coherent(rx_ring->dev, rx_ring->size,
440 rx_ring->desc, rx_ring->dma);
441 rx_ring->desc = NULL;
442 }
443}
444
445/**
446 * ice_setup_rx_ring - Allocate the Rx descriptors
447 * @rx_ring: the Rx ring to set up
448 *
449 * Return 0 on success, negative on error
450 */
451int ice_setup_rx_ring(struct ice_ring *rx_ring)
452{
453 struct device *dev = rx_ring->dev;
454
455 if (!dev)
456 return -ENOMEM;
457
458 /* warn if we are about to overwrite the pointer */
459 WARN_ON(rx_ring->rx_buf);
460 rx_ring->rx_buf =
461 devm_kzalloc(dev, sizeof(*rx_ring->rx_buf) * rx_ring->count,
462 GFP_KERNEL);
463 if (!rx_ring->rx_buf)
464 return -ENOMEM;
465
466 /* round up to nearest page */
467 rx_ring->size = ALIGN(rx_ring->count * sizeof(union ice_32byte_rx_desc),
468 PAGE_SIZE);
469 rx_ring->desc = dmam_alloc_coherent(dev, rx_ring->size, &rx_ring->dma,
470 GFP_KERNEL);
471 if (!rx_ring->desc) {
472 dev_err(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
473 rx_ring->size);
474 goto err;
475 }
476
477 rx_ring->next_to_use = 0;
478 rx_ring->next_to_clean = 0;
479
480 if (ice_is_xdp_ena_vsi(rx_ring->vsi))
481 WRITE_ONCE(rx_ring->xdp_prog, rx_ring->vsi->xdp_prog);
482
483 if (rx_ring->vsi->type == ICE_VSI_PF &&
484 !xdp_rxq_info_is_reg(&rx_ring->xdp_rxq))
485 if (xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev,
486 rx_ring->q_index))
487 goto err;
488 return 0;
489
490err:
491 devm_kfree(dev, rx_ring->rx_buf);
492 rx_ring->rx_buf = NULL;
493 return -ENOMEM;
494}
495
496/**
497 * ice_rx_offset - Return expected offset into page to access data
498 * @rx_ring: Ring we are requesting offset of
499 *
500 * Returns the offset value for ring into the data buffer.
501 */
502static unsigned int ice_rx_offset(struct ice_ring *rx_ring)
503{
504 if (ice_ring_uses_build_skb(rx_ring))
505 return ICE_SKB_PAD;
506 else if (ice_is_xdp_ena_vsi(rx_ring->vsi))
507 return XDP_PACKET_HEADROOM;
508
509 return 0;
510}
511
512static unsigned int
513ice_rx_frame_truesize(struct ice_ring *rx_ring, unsigned int __maybe_unused size)
514{
515 unsigned int truesize;
516
517#if (PAGE_SIZE < 8192)
518 truesize = ice_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */
519#else
520 truesize = ice_rx_offset(rx_ring) ?
521 SKB_DATA_ALIGN(ice_rx_offset(rx_ring) + size) +
522 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
523 SKB_DATA_ALIGN(size);
524#endif
525 return truesize;
526}
527
528/**
529 * ice_run_xdp - Executes an XDP program on initialized xdp_buff
530 * @rx_ring: Rx ring
531 * @xdp: xdp_buff used as input to the XDP program
532 * @xdp_prog: XDP program to run
533 *
534 * Returns any of ICE_XDP_{PASS, CONSUMED, TX, REDIR}
535 */
536static int
537ice_run_xdp(struct ice_ring *rx_ring, struct xdp_buff *xdp,
538 struct bpf_prog *xdp_prog)
539{
540 int err, result = ICE_XDP_PASS;
541 struct ice_ring *xdp_ring;
542 u32 act;
543
544 act = bpf_prog_run_xdp(xdp_prog, xdp);
545 switch (act) {
546 case XDP_PASS:
547 break;
548 case XDP_TX:
549 xdp_ring = rx_ring->vsi->xdp_rings[smp_processor_id()];
550 result = ice_xmit_xdp_buff(xdp, xdp_ring);
551 break;
552 case XDP_REDIRECT:
553 err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
554 result = !err ? ICE_XDP_REDIR : ICE_XDP_CONSUMED;
555 break;
556 default:
557 bpf_warn_invalid_xdp_action(act);
558 fallthrough;
559 case XDP_ABORTED:
560 trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
561 fallthrough;
562 case XDP_DROP:
563 result = ICE_XDP_CONSUMED;
564 break;
565 }
566
567 return result;
568}
569
570/**
571 * ice_xdp_xmit - submit packets to XDP ring for transmission
572 * @dev: netdev
573 * @n: number of XDP frames to be transmitted
574 * @frames: XDP frames to be transmitted
575 * @flags: transmit flags
576 *
577 * Returns number of frames successfully sent. Frames that fail are
578 * free'ed via XDP return API.
579 * For error cases, a negative errno code is returned and no-frames
580 * are transmitted (caller must handle freeing frames).
581 */
582int
583ice_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames,
584 u32 flags)
585{
586 struct ice_netdev_priv *np = netdev_priv(dev);
587 unsigned int queue_index = smp_processor_id();
588 struct ice_vsi *vsi = np->vsi;
589 struct ice_ring *xdp_ring;
590 int drops = 0, i;
591
592 if (test_bit(__ICE_DOWN, vsi->state))
593 return -ENETDOWN;
594
595 if (!ice_is_xdp_ena_vsi(vsi) || queue_index >= vsi->num_xdp_txq)
596 return -ENXIO;
597
598 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
599 return -EINVAL;
600
601 xdp_ring = vsi->xdp_rings[queue_index];
602 for (i = 0; i < n; i++) {
603 struct xdp_frame *xdpf = frames[i];
604 int err;
605
606 err = ice_xmit_xdp_ring(xdpf->data, xdpf->len, xdp_ring);
607 if (err != ICE_XDP_TX) {
608 xdp_return_frame_rx_napi(xdpf);
609 drops++;
610 }
611 }
612
613 if (unlikely(flags & XDP_XMIT_FLUSH))
614 ice_xdp_ring_update_tail(xdp_ring);
615
616 return n - drops;
617}
618
619/**
620 * ice_alloc_mapped_page - recycle or make a new page
621 * @rx_ring: ring to use
622 * @bi: rx_buf struct to modify
623 *
624 * Returns true if the page was successfully allocated or
625 * reused.
626 */
627static bool
628ice_alloc_mapped_page(struct ice_ring *rx_ring, struct ice_rx_buf *bi)
629{
630 struct page *page = bi->page;
631 dma_addr_t dma;
632
633 /* since we are recycling buffers we should seldom need to alloc */
634 if (likely(page))
635 return true;
636
637 /* alloc new page for storage */
638 page = dev_alloc_pages(ice_rx_pg_order(rx_ring));
639 if (unlikely(!page)) {
640 rx_ring->rx_stats.alloc_page_failed++;
641 return false;
642 }
643
644 /* map page for use */
645 dma = dma_map_page_attrs(rx_ring->dev, page, 0, ice_rx_pg_size(rx_ring),
646 DMA_FROM_DEVICE, ICE_RX_DMA_ATTR);
647
648 /* if mapping failed free memory back to system since
649 * there isn't much point in holding memory we can't use
650 */
651 if (dma_mapping_error(rx_ring->dev, dma)) {
652 __free_pages(page, ice_rx_pg_order(rx_ring));
653 rx_ring->rx_stats.alloc_page_failed++;
654 return false;
655 }
656
657 bi->dma = dma;
658 bi->page = page;
659 bi->page_offset = ice_rx_offset(rx_ring);
660 page_ref_add(page, USHRT_MAX - 1);
661 bi->pagecnt_bias = USHRT_MAX;
662
663 return true;
664}
665
666/**
667 * ice_alloc_rx_bufs - Replace used receive buffers
668 * @rx_ring: ring to place buffers on
669 * @cleaned_count: number of buffers to replace
670 *
671 * Returns false if all allocations were successful, true if any fail. Returning
672 * true signals to the caller that we didn't replace cleaned_count buffers and
673 * there is more work to do.
674 *
675 * First, try to clean "cleaned_count" Rx buffers. Then refill the cleaned Rx
676 * buffers. Then bump tail at most one time. Grouping like this lets us avoid
677 * multiple tail writes per call.
678 */
679bool ice_alloc_rx_bufs(struct ice_ring *rx_ring, u16 cleaned_count)
680{
681 union ice_32b_rx_flex_desc *rx_desc;
682 u16 ntu = rx_ring->next_to_use;
683 struct ice_rx_buf *bi;
684
685 /* do nothing if no valid netdev defined */
686 if ((!rx_ring->netdev && rx_ring->vsi->type != ICE_VSI_CTRL) ||
687 !cleaned_count)
688 return false;
689
690 /* get the Rx descriptor and buffer based on next_to_use */
691 rx_desc = ICE_RX_DESC(rx_ring, ntu);
692 bi = &rx_ring->rx_buf[ntu];
693
694 do {
695 /* if we fail here, we have work remaining */
696 if (!ice_alloc_mapped_page(rx_ring, bi))
697 break;
698
699 /* sync the buffer for use by the device */
700 dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
701 bi->page_offset,
702 rx_ring->rx_buf_len,
703 DMA_FROM_DEVICE);
704
705 /* Refresh the desc even if buffer_addrs didn't change
706 * because each write-back erases this info.
707 */
708 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
709
710 rx_desc++;
711 bi++;
712 ntu++;
713 if (unlikely(ntu == rx_ring->count)) {
714 rx_desc = ICE_RX_DESC(rx_ring, 0);
715 bi = rx_ring->rx_buf;
716 ntu = 0;
717 }
718
719 /* clear the status bits for the next_to_use descriptor */
720 rx_desc->wb.status_error0 = 0;
721
722 cleaned_count--;
723 } while (cleaned_count);
724
725 if (rx_ring->next_to_use != ntu)
726 ice_release_rx_desc(rx_ring, ntu);
727
728 return !!cleaned_count;
729}
730
731/**
732 * ice_page_is_reserved - check if reuse is possible
733 * @page: page struct to check
734 */
735static bool ice_page_is_reserved(struct page *page)
736{
737 return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
738}
739
740/**
741 * ice_rx_buf_adjust_pg_offset - Prepare Rx buffer for reuse
742 * @rx_buf: Rx buffer to adjust
743 * @size: Size of adjustment
744 *
745 * Update the offset within page so that Rx buf will be ready to be reused.
746 * For systems with PAGE_SIZE < 8192 this function will flip the page offset
747 * so the second half of page assigned to Rx buffer will be used, otherwise
748 * the offset is moved by "size" bytes
749 */
750static void
751ice_rx_buf_adjust_pg_offset(struct ice_rx_buf *rx_buf, unsigned int size)
752{
753#if (PAGE_SIZE < 8192)
754 /* flip page offset to other buffer */
755 rx_buf->page_offset ^= size;
756#else
757 /* move offset up to the next cache line */
758 rx_buf->page_offset += size;
759#endif
760}
761
762/**
763 * ice_can_reuse_rx_page - Determine if page can be reused for another Rx
764 * @rx_buf: buffer containing the page
765 *
766 * If page is reusable, we have a green light for calling ice_reuse_rx_page,
767 * which will assign the current buffer to the buffer that next_to_alloc is
768 * pointing to; otherwise, the DMA mapping needs to be destroyed and
769 * page freed
770 */
771static bool ice_can_reuse_rx_page(struct ice_rx_buf *rx_buf)
772{
773 unsigned int pagecnt_bias = rx_buf->pagecnt_bias;
774 struct page *page = rx_buf->page;
775
776 /* avoid re-using remote pages */
777 if (unlikely(ice_page_is_reserved(page)))
778 return false;
779
780#if (PAGE_SIZE < 8192)
781 /* if we are only owner of page we can reuse it */
782 if (unlikely((page_count(page) - pagecnt_bias) > 1))
783 return false;
784#else
785#define ICE_LAST_OFFSET \
786 (SKB_WITH_OVERHEAD(PAGE_SIZE) - ICE_RXBUF_2048)
787 if (rx_buf->page_offset > ICE_LAST_OFFSET)
788 return false;
789#endif /* PAGE_SIZE < 8192) */
790
791 /* If we have drained the page fragment pool we need to update
792 * the pagecnt_bias and page count so that we fully restock the
793 * number of references the driver holds.
794 */
795 if (unlikely(pagecnt_bias == 1)) {
796 page_ref_add(page, USHRT_MAX - 1);
797 rx_buf->pagecnt_bias = USHRT_MAX;
798 }
799
800 return true;
801}
802
803/**
804 * ice_add_rx_frag - Add contents of Rx buffer to sk_buff as a frag
805 * @rx_ring: Rx descriptor ring to transact packets on
806 * @rx_buf: buffer containing page to add
807 * @skb: sk_buff to place the data into
808 * @size: packet length from rx_desc
809 *
810 * This function will add the data contained in rx_buf->page to the skb.
811 * It will just attach the page as a frag to the skb.
812 * The function will then update the page offset.
813 */
814static void
815ice_add_rx_frag(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf,
816 struct sk_buff *skb, unsigned int size)
817{
818#if (PAGE_SIZE >= 8192)
819 unsigned int truesize = SKB_DATA_ALIGN(size + ice_rx_offset(rx_ring));
820#else
821 unsigned int truesize = ice_rx_pg_size(rx_ring) / 2;
822#endif
823
824 if (!size)
825 return;
826 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buf->page,
827 rx_buf->page_offset, size, truesize);
828
829 /* page is being used so we must update the page offset */
830 ice_rx_buf_adjust_pg_offset(rx_buf, truesize);
831}
832
833/**
834 * ice_reuse_rx_page - page flip buffer and store it back on the ring
835 * @rx_ring: Rx descriptor ring to store buffers on
836 * @old_buf: donor buffer to have page reused
837 *
838 * Synchronizes page for reuse by the adapter
839 */
840static void
841ice_reuse_rx_page(struct ice_ring *rx_ring, struct ice_rx_buf *old_buf)
842{
843 u16 nta = rx_ring->next_to_alloc;
844 struct ice_rx_buf *new_buf;
845
846 new_buf = &rx_ring->rx_buf[nta];
847
848 /* update, and store next to alloc */
849 nta++;
850 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
851
852 /* Transfer page from old buffer to new buffer.
853 * Move each member individually to avoid possible store
854 * forwarding stalls and unnecessary copy of skb.
855 */
856 new_buf->dma = old_buf->dma;
857 new_buf->page = old_buf->page;
858 new_buf->page_offset = old_buf->page_offset;
859 new_buf->pagecnt_bias = old_buf->pagecnt_bias;
860}
861
862/**
863 * ice_get_rx_buf - Fetch Rx buffer and synchronize data for use
864 * @rx_ring: Rx descriptor ring to transact packets on
865 * @skb: skb to be used
866 * @size: size of buffer to add to skb
867 *
868 * This function will pull an Rx buffer from the ring and synchronize it
869 * for use by the CPU.
870 */
871static struct ice_rx_buf *
872ice_get_rx_buf(struct ice_ring *rx_ring, struct sk_buff **skb,
873 const unsigned int size)
874{
875 struct ice_rx_buf *rx_buf;
876
877 rx_buf = &rx_ring->rx_buf[rx_ring->next_to_clean];
878 prefetchw(rx_buf->page);
879 *skb = rx_buf->skb;
880
881 if (!size)
882 return rx_buf;
883 /* we are reusing so sync this buffer for CPU use */
884 dma_sync_single_range_for_cpu(rx_ring->dev, rx_buf->dma,
885 rx_buf->page_offset, size,
886 DMA_FROM_DEVICE);
887
888 /* We have pulled a buffer for use, so decrement pagecnt_bias */
889 rx_buf->pagecnt_bias--;
890
891 return rx_buf;
892}
893
894/**
895 * ice_build_skb - Build skb around an existing buffer
896 * @rx_ring: Rx descriptor ring to transact packets on
897 * @rx_buf: Rx buffer to pull data from
898 * @xdp: xdp_buff pointing to the data
899 *
900 * This function builds an skb around an existing Rx buffer, taking care
901 * to set up the skb correctly and avoid any memcpy overhead.
902 */
903static struct sk_buff *
904ice_build_skb(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf,
905 struct xdp_buff *xdp)
906{
907 u8 metasize = xdp->data - xdp->data_meta;
908#if (PAGE_SIZE < 8192)
909 unsigned int truesize = ice_rx_pg_size(rx_ring) / 2;
910#else
911 unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
912 SKB_DATA_ALIGN(xdp->data_end -
913 xdp->data_hard_start);
914#endif
915 struct sk_buff *skb;
916
917 /* Prefetch first cache line of first page. If xdp->data_meta
918 * is unused, this points exactly as xdp->data, otherwise we
919 * likely have a consumer accessing first few bytes of meta
920 * data, and then actual data.
921 */
922 prefetch(xdp->data_meta);
923#if L1_CACHE_BYTES < 128
924 prefetch((void *)(xdp->data + L1_CACHE_BYTES));
925#endif
926 /* build an skb around the page buffer */
927 skb = build_skb(xdp->data_hard_start, truesize);
928 if (unlikely(!skb))
929 return NULL;
930
931 /* must to record Rx queue, otherwise OS features such as
932 * symmetric queue won't work
933 */
934 skb_record_rx_queue(skb, rx_ring->q_index);
935
936 /* update pointers within the skb to store the data */
937 skb_reserve(skb, xdp->data - xdp->data_hard_start);
938 __skb_put(skb, xdp->data_end - xdp->data);
939 if (metasize)
940 skb_metadata_set(skb, metasize);
941
942 /* buffer is used by skb, update page_offset */
943 ice_rx_buf_adjust_pg_offset(rx_buf, truesize);
944
945 return skb;
946}
947
948/**
949 * ice_construct_skb - Allocate skb and populate it
950 * @rx_ring: Rx descriptor ring to transact packets on
951 * @rx_buf: Rx buffer to pull data from
952 * @xdp: xdp_buff pointing to the data
953 *
954 * This function allocates an skb. It then populates it with the page
955 * data from the current receive descriptor, taking care to set up the
956 * skb correctly.
957 */
958static struct sk_buff *
959ice_construct_skb(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf,
960 struct xdp_buff *xdp)
961{
962 unsigned int size = xdp->data_end - xdp->data;
963 unsigned int headlen;
964 struct sk_buff *skb;
965
966 /* prefetch first cache line of first page */
967 prefetch(xdp->data);
968#if L1_CACHE_BYTES < 128
969 prefetch((void *)(xdp->data + L1_CACHE_BYTES));
970#endif /* L1_CACHE_BYTES */
971
972 /* allocate a skb to store the frags */
973 skb = __napi_alloc_skb(&rx_ring->q_vector->napi, ICE_RX_HDR_SIZE,
974 GFP_ATOMIC | __GFP_NOWARN);
975 if (unlikely(!skb))
976 return NULL;
977
978 skb_record_rx_queue(skb, rx_ring->q_index);
979 /* Determine available headroom for copy */
980 headlen = size;
981 if (headlen > ICE_RX_HDR_SIZE)
982 headlen = eth_get_headlen(skb->dev, xdp->data, ICE_RX_HDR_SIZE);
983
984 /* align pull length to size of long to optimize memcpy performance */
985 memcpy(__skb_put(skb, headlen), xdp->data, ALIGN(headlen,
986 sizeof(long)));
987
988 /* if we exhaust the linear part then add what is left as a frag */
989 size -= headlen;
990 if (size) {
991#if (PAGE_SIZE >= 8192)
992 unsigned int truesize = SKB_DATA_ALIGN(size);
993#else
994 unsigned int truesize = ice_rx_pg_size(rx_ring) / 2;
995#endif
996 skb_add_rx_frag(skb, 0, rx_buf->page,
997 rx_buf->page_offset + headlen, size, truesize);
998 /* buffer is used by skb, update page_offset */
999 ice_rx_buf_adjust_pg_offset(rx_buf, truesize);
1000 } else {
1001 /* buffer is unused, reset bias back to rx_buf; data was copied
1002 * onto skb's linear part so there's no need for adjusting
1003 * page offset and we can reuse this buffer as-is
1004 */
1005 rx_buf->pagecnt_bias++;
1006 }
1007
1008 return skb;
1009}
1010
1011/**
1012 * ice_put_rx_buf - Clean up used buffer and either recycle or free
1013 * @rx_ring: Rx descriptor ring to transact packets on
1014 * @rx_buf: Rx buffer to pull data from
1015 *
1016 * This function will update next_to_clean and then clean up the contents
1017 * of the rx_buf. It will either recycle the buffer or unmap it and free
1018 * the associated resources.
1019 */
1020static void ice_put_rx_buf(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf)
1021{
1022 u16 ntc = rx_ring->next_to_clean + 1;
1023
1024 /* fetch, update, and store next to clean */
1025 ntc = (ntc < rx_ring->count) ? ntc : 0;
1026 rx_ring->next_to_clean = ntc;
1027
1028 if (!rx_buf)
1029 return;
1030
1031 if (ice_can_reuse_rx_page(rx_buf)) {
1032 /* hand second half of page back to the ring */
1033 ice_reuse_rx_page(rx_ring, rx_buf);
1034 } else {
1035 /* we are not reusing the buffer so unmap it */
1036 dma_unmap_page_attrs(rx_ring->dev, rx_buf->dma,
1037 ice_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
1038 ICE_RX_DMA_ATTR);
1039 __page_frag_cache_drain(rx_buf->page, rx_buf->pagecnt_bias);
1040 }
1041
1042 /* clear contents of buffer_info */
1043 rx_buf->page = NULL;
1044 rx_buf->skb = NULL;
1045}
1046
1047/**
1048 * ice_is_non_eop - process handling of non-EOP buffers
1049 * @rx_ring: Rx ring being processed
1050 * @rx_desc: Rx descriptor for current buffer
1051 * @skb: Current socket buffer containing buffer in progress
1052 *
1053 * If the buffer is an EOP buffer, this function exits returning false,
1054 * otherwise return true indicating that this is in fact a non-EOP buffer.
1055 */
1056static bool
1057ice_is_non_eop(struct ice_ring *rx_ring, union ice_32b_rx_flex_desc *rx_desc,
1058 struct sk_buff *skb)
1059{
1060 /* if we are the last buffer then there is nothing else to do */
1061#define ICE_RXD_EOF BIT(ICE_RX_FLEX_DESC_STATUS0_EOF_S)
1062 if (likely(ice_test_staterr(rx_desc, ICE_RXD_EOF)))
1063 return false;
1064
1065 /* place skb in next buffer to be received */
1066 rx_ring->rx_buf[rx_ring->next_to_clean].skb = skb;
1067 rx_ring->rx_stats.non_eop_descs++;
1068
1069 return true;
1070}
1071
1072/**
1073 * ice_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
1074 * @rx_ring: Rx descriptor ring to transact packets on
1075 * @budget: Total limit on number of packets to process
1076 *
1077 * This function provides a "bounce buffer" approach to Rx interrupt
1078 * processing. The advantage to this is that on systems that have
1079 * expensive overhead for IOMMU access this provides a means of avoiding
1080 * it by maintaining the mapping of the page to the system.
1081 *
1082 * Returns amount of work completed
1083 */
1084int ice_clean_rx_irq(struct ice_ring *rx_ring, int budget)
1085{
1086 unsigned int total_rx_bytes = 0, total_rx_pkts = 0;
1087 u16 cleaned_count = ICE_DESC_UNUSED(rx_ring);
1088 unsigned int xdp_res, xdp_xmit = 0;
1089 struct bpf_prog *xdp_prog = NULL;
1090 struct xdp_buff xdp;
1091 bool failure;
1092
1093 xdp.rxq = &rx_ring->xdp_rxq;
1094 /* Frame size depend on rx_ring setup when PAGE_SIZE=4K */
1095#if (PAGE_SIZE < 8192)
1096 xdp.frame_sz = ice_rx_frame_truesize(rx_ring, 0);
1097#endif
1098
1099 /* start the loop to process Rx packets bounded by 'budget' */
1100 while (likely(total_rx_pkts < (unsigned int)budget)) {
1101 union ice_32b_rx_flex_desc *rx_desc;
1102 struct ice_rx_buf *rx_buf;
1103 struct sk_buff *skb;
1104 unsigned int size;
1105 u16 stat_err_bits;
1106 u16 vlan_tag = 0;
1107 u8 rx_ptype;
1108
1109 /* get the Rx desc from Rx ring based on 'next_to_clean' */
1110 rx_desc = ICE_RX_DESC(rx_ring, rx_ring->next_to_clean);
1111
1112 /* status_error_len will always be zero for unused descriptors
1113 * because it's cleared in cleanup, and overlaps with hdr_addr
1114 * which is always zero because packet split isn't used, if the
1115 * hardware wrote DD then it will be non-zero
1116 */
1117 stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S);
1118 if (!ice_test_staterr(rx_desc, stat_err_bits))
1119 break;
1120
1121 /* This memory barrier is needed to keep us from reading
1122 * any other fields out of the rx_desc until we know the
1123 * DD bit is set.
1124 */
1125 dma_rmb();
1126
1127 if (rx_desc->wb.rxdid == FDIR_DESC_RXDID || !rx_ring->netdev) {
1128 ice_put_rx_buf(rx_ring, NULL);
1129 cleaned_count++;
1130 continue;
1131 }
1132
1133 size = le16_to_cpu(rx_desc->wb.pkt_len) &
1134 ICE_RX_FLX_DESC_PKT_LEN_M;
1135
1136 /* retrieve a buffer from the ring */
1137 rx_buf = ice_get_rx_buf(rx_ring, &skb, size);
1138
1139 if (!size) {
1140 xdp.data = NULL;
1141 xdp.data_end = NULL;
1142 xdp.data_hard_start = NULL;
1143 xdp.data_meta = NULL;
1144 goto construct_skb;
1145 }
1146
1147 xdp.data = page_address(rx_buf->page) + rx_buf->page_offset;
1148 xdp.data_hard_start = xdp.data - ice_rx_offset(rx_ring);
1149 xdp.data_meta = xdp.data;
1150 xdp.data_end = xdp.data + size;
1151#if (PAGE_SIZE > 4096)
1152 /* At larger PAGE_SIZE, frame_sz depend on len size */
1153 xdp.frame_sz = ice_rx_frame_truesize(rx_ring, size);
1154#endif
1155
1156 rcu_read_lock();
1157 xdp_prog = READ_ONCE(rx_ring->xdp_prog);
1158 if (!xdp_prog) {
1159 rcu_read_unlock();
1160 goto construct_skb;
1161 }
1162
1163 xdp_res = ice_run_xdp(rx_ring, &xdp, xdp_prog);
1164 rcu_read_unlock();
1165 if (!xdp_res)
1166 goto construct_skb;
1167 if (xdp_res & (ICE_XDP_TX | ICE_XDP_REDIR)) {
1168 xdp_xmit |= xdp_res;
1169 ice_rx_buf_adjust_pg_offset(rx_buf, xdp.frame_sz);
1170 } else {
1171 rx_buf->pagecnt_bias++;
1172 }
1173 total_rx_bytes += size;
1174 total_rx_pkts++;
1175
1176 cleaned_count++;
1177 ice_put_rx_buf(rx_ring, rx_buf);
1178 continue;
1179construct_skb:
1180 if (skb) {
1181 ice_add_rx_frag(rx_ring, rx_buf, skb, size);
1182 } else if (likely(xdp.data)) {
1183 if (ice_ring_uses_build_skb(rx_ring))
1184 skb = ice_build_skb(rx_ring, rx_buf, &xdp);
1185 else
1186 skb = ice_construct_skb(rx_ring, rx_buf, &xdp);
1187 }
1188 /* exit if we failed to retrieve a buffer */
1189 if (!skb) {
1190 rx_ring->rx_stats.alloc_buf_failed++;
1191 if (rx_buf)
1192 rx_buf->pagecnt_bias++;
1193 break;
1194 }
1195
1196 ice_put_rx_buf(rx_ring, rx_buf);
1197 cleaned_count++;
1198
1199 /* skip if it is NOP desc */
1200 if (ice_is_non_eop(rx_ring, rx_desc, skb))
1201 continue;
1202
1203 stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_RXE_S);
1204 if (unlikely(ice_test_staterr(rx_desc, stat_err_bits))) {
1205 dev_kfree_skb_any(skb);
1206 continue;
1207 }
1208
1209 stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_L2TAG1P_S);
1210 if (ice_test_staterr(rx_desc, stat_err_bits))
1211 vlan_tag = le16_to_cpu(rx_desc->wb.l2tag1);
1212
1213 /* pad the skb if needed, to make a valid ethernet frame */
1214 if (eth_skb_pad(skb)) {
1215 skb = NULL;
1216 continue;
1217 }
1218
1219 /* probably a little skewed due to removing CRC */
1220 total_rx_bytes += skb->len;
1221
1222 /* populate checksum, VLAN, and protocol */
1223 rx_ptype = le16_to_cpu(rx_desc->wb.ptype_flex_flags0) &
1224 ICE_RX_FLEX_DESC_PTYPE_M;
1225
1226 ice_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
1227
1228 /* send completed skb up the stack */
1229 ice_receive_skb(rx_ring, skb, vlan_tag);
1230
1231 /* update budget accounting */
1232 total_rx_pkts++;
1233 }
1234
1235 /* return up to cleaned_count buffers to hardware */
1236 failure = ice_alloc_rx_bufs(rx_ring, cleaned_count);
1237
1238 if (xdp_prog)
1239 ice_finalize_xdp_rx(rx_ring, xdp_xmit);
1240
1241 ice_update_rx_ring_stats(rx_ring, total_rx_pkts, total_rx_bytes);
1242
1243 /* guarantee a trip back through this routine if there was a failure */
1244 return failure ? budget : (int)total_rx_pkts;
1245}
1246
1247/**
1248 * ice_adjust_itr_by_size_and_speed - Adjust ITR based on current traffic
1249 * @port_info: port_info structure containing the current link speed
1250 * @avg_pkt_size: average size of Tx or Rx packets based on clean routine
1251 * @itr: ITR value to update
1252 *
1253 * Calculate how big of an increment should be applied to the ITR value passed
1254 * in based on wmem_default, SKB overhead, ethernet overhead, and the current
1255 * link speed.
1256 *
1257 * The following is a calculation derived from:
1258 * wmem_default / (size + overhead) = desired_pkts_per_int
1259 * rate / bits_per_byte / (size + ethernet overhead) = pkt_rate
1260 * (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
1261 *
1262 * Assuming wmem_default is 212992 and overhead is 640 bytes per
1263 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
1264 * formula down to:
1265 *
1266 * wmem_default * bits_per_byte * usecs_per_sec pkt_size + 24
1267 * ITR = -------------------------------------------- * --------------
1268 * rate pkt_size + 640
1269 */
1270static unsigned int
1271ice_adjust_itr_by_size_and_speed(struct ice_port_info *port_info,
1272 unsigned int avg_pkt_size,
1273 unsigned int itr)
1274{
1275 switch (port_info->phy.link_info.link_speed) {
1276 case ICE_AQ_LINK_SPEED_100GB:
1277 itr += DIV_ROUND_UP(17 * (avg_pkt_size + 24),
1278 avg_pkt_size + 640);
1279 break;
1280 case ICE_AQ_LINK_SPEED_50GB:
1281 itr += DIV_ROUND_UP(34 * (avg_pkt_size + 24),
1282 avg_pkt_size + 640);
1283 break;
1284 case ICE_AQ_LINK_SPEED_40GB:
1285 itr += DIV_ROUND_UP(43 * (avg_pkt_size + 24),
1286 avg_pkt_size + 640);
1287 break;
1288 case ICE_AQ_LINK_SPEED_25GB:
1289 itr += DIV_ROUND_UP(68 * (avg_pkt_size + 24),
1290 avg_pkt_size + 640);
1291 break;
1292 case ICE_AQ_LINK_SPEED_20GB:
1293 itr += DIV_ROUND_UP(85 * (avg_pkt_size + 24),
1294 avg_pkt_size + 640);
1295 break;
1296 case ICE_AQ_LINK_SPEED_10GB:
1297 default:
1298 itr += DIV_ROUND_UP(170 * (avg_pkt_size + 24),
1299 avg_pkt_size + 640);
1300 break;
1301 }
1302
1303 if ((itr & ICE_ITR_MASK) > ICE_ITR_ADAPTIVE_MAX_USECS) {
1304 itr &= ICE_ITR_ADAPTIVE_LATENCY;
1305 itr += ICE_ITR_ADAPTIVE_MAX_USECS;
1306 }
1307
1308 return itr;
1309}
1310
1311/**
1312 * ice_update_itr - update the adaptive ITR value based on statistics
1313 * @q_vector: structure containing interrupt and ring information
1314 * @rc: structure containing ring performance data
1315 *
1316 * Stores a new ITR value based on packets and byte
1317 * counts during the last interrupt. The advantage of per interrupt
1318 * computation is faster updates and more accurate ITR for the current
1319 * traffic pattern. Constants in this function were computed
1320 * based on theoretical maximum wire speed and thresholds were set based
1321 * on testing data as well as attempting to minimize response time
1322 * while increasing bulk throughput.
1323 */
1324static void
1325ice_update_itr(struct ice_q_vector *q_vector, struct ice_ring_container *rc)
1326{
1327 unsigned long next_update = jiffies;
1328 unsigned int packets, bytes, itr;
1329 bool container_is_rx;
1330
1331 if (!rc->ring || !ITR_IS_DYNAMIC(rc->itr_setting))
1332 return;
1333
1334 /* If itr_countdown is set it means we programmed an ITR within
1335 * the last 4 interrupt cycles. This has a side effect of us
1336 * potentially firing an early interrupt. In order to work around
1337 * this we need to throw out any data received for a few
1338 * interrupts following the update.
1339 */
1340 if (q_vector->itr_countdown) {
1341 itr = rc->target_itr;
1342 goto clear_counts;
1343 }
1344
1345 container_is_rx = (&q_vector->rx == rc);
1346 /* For Rx we want to push the delay up and default to low latency.
1347 * for Tx we want to pull the delay down and default to high latency.
1348 */
1349 itr = container_is_rx ?
1350 ICE_ITR_ADAPTIVE_MIN_USECS | ICE_ITR_ADAPTIVE_LATENCY :
1351 ICE_ITR_ADAPTIVE_MAX_USECS | ICE_ITR_ADAPTIVE_LATENCY;
1352
1353 /* If we didn't update within up to 1 - 2 jiffies we can assume
1354 * that either packets are coming in so slow there hasn't been
1355 * any work, or that there is so much work that NAPI is dealing
1356 * with interrupt moderation and we don't need to do anything.
1357 */
1358 if (time_after(next_update, rc->next_update))
1359 goto clear_counts;
1360
1361 prefetch(q_vector->vsi->port_info);
1362
1363 packets = rc->total_pkts;
1364 bytes = rc->total_bytes;
1365
1366 if (container_is_rx) {
1367 /* If Rx there are 1 to 4 packets and bytes are less than
1368 * 9000 assume insufficient data to use bulk rate limiting
1369 * approach unless Tx is already in bulk rate limiting. We
1370 * are likely latency driven.
1371 */
1372 if (packets && packets < 4 && bytes < 9000 &&
1373 (q_vector->tx.target_itr & ICE_ITR_ADAPTIVE_LATENCY)) {
1374 itr = ICE_ITR_ADAPTIVE_LATENCY;
1375 goto adjust_by_size_and_speed;
1376 }
1377 } else if (packets < 4) {
1378 /* If we have Tx and Rx ITR maxed and Tx ITR is running in
1379 * bulk mode and we are receiving 4 or fewer packets just
1380 * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so
1381 * that the Rx can relax.
1382 */
1383 if (rc->target_itr == ICE_ITR_ADAPTIVE_MAX_USECS &&
1384 (q_vector->rx.target_itr & ICE_ITR_MASK) ==
1385 ICE_ITR_ADAPTIVE_MAX_USECS)
1386 goto clear_counts;
1387 } else if (packets > 32) {
1388 /* If we have processed over 32 packets in a single interrupt
1389 * for Tx assume we need to switch over to "bulk" mode.
1390 */
1391 rc->target_itr &= ~ICE_ITR_ADAPTIVE_LATENCY;
1392 }
1393
1394 /* We have no packets to actually measure against. This means
1395 * either one of the other queues on this vector is active or
1396 * we are a Tx queue doing TSO with too high of an interrupt rate.
1397 *
1398 * Between 4 and 56 we can assume that our current interrupt delay
1399 * is only slightly too low. As such we should increase it by a small
1400 * fixed amount.
1401 */
1402 if (packets < 56) {
1403 itr = rc->target_itr + ICE_ITR_ADAPTIVE_MIN_INC;
1404 if ((itr & ICE_ITR_MASK) > ICE_ITR_ADAPTIVE_MAX_USECS) {
1405 itr &= ICE_ITR_ADAPTIVE_LATENCY;
1406 itr += ICE_ITR_ADAPTIVE_MAX_USECS;
1407 }
1408 goto clear_counts;
1409 }
1410
1411 if (packets <= 256) {
1412 itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr);
1413 itr &= ICE_ITR_MASK;
1414
1415 /* Between 56 and 112 is our "goldilocks" zone where we are
1416 * working out "just right". Just report that our current
1417 * ITR is good for us.
1418 */
1419 if (packets <= 112)
1420 goto clear_counts;
1421
1422 /* If packet count is 128 or greater we are likely looking
1423 * at a slight overrun of the delay we want. Try halving
1424 * our delay to see if that will cut the number of packets
1425 * in half per interrupt.
1426 */
1427 itr >>= 1;
1428 itr &= ICE_ITR_MASK;
1429 if (itr < ICE_ITR_ADAPTIVE_MIN_USECS)
1430 itr = ICE_ITR_ADAPTIVE_MIN_USECS;
1431
1432 goto clear_counts;
1433 }
1434
1435 /* The paths below assume we are dealing with a bulk ITR since
1436 * number of packets is greater than 256. We are just going to have
1437 * to compute a value and try to bring the count under control,
1438 * though for smaller packet sizes there isn't much we can do as
1439 * NAPI polling will likely be kicking in sooner rather than later.
1440 */
1441 itr = ICE_ITR_ADAPTIVE_BULK;
1442
1443adjust_by_size_and_speed:
1444
1445 /* based on checks above packets cannot be 0 so division is safe */
1446 itr = ice_adjust_itr_by_size_and_speed(q_vector->vsi->port_info,
1447 bytes / packets, itr);
1448
1449clear_counts:
1450 /* write back value */
1451 rc->target_itr = itr;
1452
1453 /* next update should occur within next jiffy */
1454 rc->next_update = next_update + 1;
1455
1456 rc->total_bytes = 0;
1457 rc->total_pkts = 0;
1458}
1459
1460/**
1461 * ice_buildreg_itr - build value for writing to the GLINT_DYN_CTL register
1462 * @itr_idx: interrupt throttling index
1463 * @itr: interrupt throttling value in usecs
1464 */
1465static u32 ice_buildreg_itr(u16 itr_idx, u16 itr)
1466{
1467 /* The ITR value is reported in microseconds, and the register value is
1468 * recorded in 2 microsecond units. For this reason we only need to
1469 * shift by the GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S to apply this
1470 * granularity as a shift instead of division. The mask makes sure the
1471 * ITR value is never odd so we don't accidentally write into the field
1472 * prior to the ITR field.
1473 */
1474 itr &= ICE_ITR_MASK;
1475
1476 return GLINT_DYN_CTL_INTENA_M | GLINT_DYN_CTL_CLEARPBA_M |
1477 (itr_idx << GLINT_DYN_CTL_ITR_INDX_S) |
1478 (itr << (GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S));
1479}
1480
1481/* The act of updating the ITR will cause it to immediately trigger. In order
1482 * to prevent this from throwing off adaptive update statistics we defer the
1483 * update so that it can only happen so often. So after either Tx or Rx are
1484 * updated we make the adaptive scheme wait until either the ITR completely
1485 * expires via the next_update expiration or we have been through at least
1486 * 3 interrupts.
1487 */
1488#define ITR_COUNTDOWN_START 3
1489
1490/**
1491 * ice_update_ena_itr - Update ITR and re-enable MSIX interrupt
1492 * @q_vector: q_vector for which ITR is being updated and interrupt enabled
1493 */
1494static void ice_update_ena_itr(struct ice_q_vector *q_vector)
1495{
1496 struct ice_ring_container *tx = &q_vector->tx;
1497 struct ice_ring_container *rx = &q_vector->rx;
1498 struct ice_vsi *vsi = q_vector->vsi;
1499 u32 itr_val;
1500
1501 /* when exiting WB_ON_ITR lets set a low ITR value and trigger
1502 * interrupts to expire right away in case we have more work ready to go
1503 * already
1504 */
1505 if (q_vector->itr_countdown == ICE_IN_WB_ON_ITR_MODE) {
1506 itr_val = ice_buildreg_itr(rx->itr_idx, ICE_WB_ON_ITR_USECS);
1507 wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx), itr_val);
1508 /* set target back to last user set value */
1509 rx->target_itr = rx->itr_setting;
1510 /* set current to what we just wrote and dynamic if needed */
1511 rx->current_itr = ICE_WB_ON_ITR_USECS |
1512 (rx->itr_setting & ICE_ITR_DYNAMIC);
1513 /* allow normal interrupt flow to start */
1514 q_vector->itr_countdown = 0;
1515 return;
1516 }
1517
1518 /* This will do nothing if dynamic updates are not enabled */
1519 ice_update_itr(q_vector, tx);
1520 ice_update_itr(q_vector, rx);
1521
1522 /* This block of logic allows us to get away with only updating
1523 * one ITR value with each interrupt. The idea is to perform a
1524 * pseudo-lazy update with the following criteria.
1525 *
1526 * 1. Rx is given higher priority than Tx if both are in same state
1527 * 2. If we must reduce an ITR that is given highest priority.
1528 * 3. We then give priority to increasing ITR based on amount.
1529 */
1530 if (rx->target_itr < rx->current_itr) {
1531 /* Rx ITR needs to be reduced, this is highest priority */
1532 itr_val = ice_buildreg_itr(rx->itr_idx, rx->target_itr);
1533 rx->current_itr = rx->target_itr;
1534 q_vector->itr_countdown = ITR_COUNTDOWN_START;
1535 } else if ((tx->target_itr < tx->current_itr) ||
1536 ((rx->target_itr - rx->current_itr) <
1537 (tx->target_itr - tx->current_itr))) {
1538 /* Tx ITR needs to be reduced, this is second priority
1539 * Tx ITR needs to be increased more than Rx, fourth priority
1540 */
1541 itr_val = ice_buildreg_itr(tx->itr_idx, tx->target_itr);
1542 tx->current_itr = tx->target_itr;
1543 q_vector->itr_countdown = ITR_COUNTDOWN_START;
1544 } else if (rx->current_itr != rx->target_itr) {
1545 /* Rx ITR needs to be increased, third priority */
1546 itr_val = ice_buildreg_itr(rx->itr_idx, rx->target_itr);
1547 rx->current_itr = rx->target_itr;
1548 q_vector->itr_countdown = ITR_COUNTDOWN_START;
1549 } else {
1550 /* Still have to re-enable the interrupts */
1551 itr_val = ice_buildreg_itr(ICE_ITR_NONE, 0);
1552 if (q_vector->itr_countdown)
1553 q_vector->itr_countdown--;
1554 }
1555
1556 if (!test_bit(__ICE_DOWN, q_vector->vsi->state))
1557 wr32(&q_vector->vsi->back->hw,
1558 GLINT_DYN_CTL(q_vector->reg_idx),
1559 itr_val);
1560}
1561
1562/**
1563 * ice_set_wb_on_itr - set WB_ON_ITR for this q_vector
1564 * @q_vector: q_vector to set WB_ON_ITR on
1565 *
1566 * We need to tell hardware to write-back completed descriptors even when
1567 * interrupts are disabled. Descriptors will be written back on cache line
1568 * boundaries without WB_ON_ITR enabled, but if we don't enable WB_ON_ITR
1569 * descriptors may not be written back if they don't fill a cache line until the
1570 * next interrupt.
1571 *
1572 * This sets the write-back frequency to 2 microseconds as that is the minimum
1573 * value that's not 0 due to ITR granularity. Also, set the INTENA_MSK bit to
1574 * make sure hardware knows we aren't meddling with the INTENA_M bit.
1575 */
1576static void ice_set_wb_on_itr(struct ice_q_vector *q_vector)
1577{
1578 struct ice_vsi *vsi = q_vector->vsi;
1579
1580 /* already in WB_ON_ITR mode no need to change it */
1581 if (q_vector->itr_countdown == ICE_IN_WB_ON_ITR_MODE)
1582 return;
1583
1584 if (q_vector->num_ring_rx)
1585 wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx),
1586 ICE_GLINT_DYN_CTL_WB_ON_ITR(ICE_WB_ON_ITR_USECS,
1587 ICE_RX_ITR));
1588
1589 if (q_vector->num_ring_tx)
1590 wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx),
1591 ICE_GLINT_DYN_CTL_WB_ON_ITR(ICE_WB_ON_ITR_USECS,
1592 ICE_TX_ITR));
1593
1594 q_vector->itr_countdown = ICE_IN_WB_ON_ITR_MODE;
1595}
1596
1597/**
1598 * ice_napi_poll - NAPI polling Rx/Tx cleanup routine
1599 * @napi: napi struct with our devices info in it
1600 * @budget: amount of work driver is allowed to do this pass, in packets
1601 *
1602 * This function will clean all queues associated with a q_vector.
1603 *
1604 * Returns the amount of work done
1605 */
1606int ice_napi_poll(struct napi_struct *napi, int budget)
1607{
1608 struct ice_q_vector *q_vector =
1609 container_of(napi, struct ice_q_vector, napi);
1610 bool clean_complete = true;
1611 struct ice_ring *ring;
1612 int budget_per_ring;
1613 int work_done = 0;
1614
1615 /* Since the actual Tx work is minimal, we can give the Tx a larger
1616 * budget and be more aggressive about cleaning up the Tx descriptors.
1617 */
1618 ice_for_each_ring(ring, q_vector->tx) {
1619 bool wd = ring->xsk_umem ?
1620 ice_clean_tx_irq_zc(ring, budget) :
1621 ice_clean_tx_irq(ring, budget);
1622
1623 if (!wd)
1624 clean_complete = false;
1625 }
1626
1627 /* Handle case where we are called by netpoll with a budget of 0 */
1628 if (unlikely(budget <= 0))
1629 return budget;
1630
1631 /* normally we have 1 Rx ring per q_vector */
1632 if (unlikely(q_vector->num_ring_rx > 1))
1633 /* We attempt to distribute budget to each Rx queue fairly, but
1634 * don't allow the budget to go below 1 because that would exit
1635 * polling early.
1636 */
1637 budget_per_ring = max_t(int, budget / q_vector->num_ring_rx, 1);
1638 else
1639 /* Max of 1 Rx ring in this q_vector so give it the budget */
1640 budget_per_ring = budget;
1641
1642 ice_for_each_ring(ring, q_vector->rx) {
1643 int cleaned;
1644
1645 /* A dedicated path for zero-copy allows making a single
1646 * comparison in the irq context instead of many inside the
1647 * ice_clean_rx_irq function and makes the codebase cleaner.
1648 */
1649 cleaned = ring->xsk_umem ?
1650 ice_clean_rx_irq_zc(ring, budget_per_ring) :
1651 ice_clean_rx_irq(ring, budget_per_ring);
1652 work_done += cleaned;
1653 /* if we clean as many as budgeted, we must not be done */
1654 if (cleaned >= budget_per_ring)
1655 clean_complete = false;
1656 }
1657
1658 /* If work not completed, return budget and polling will return */
1659 if (!clean_complete)
1660 return budget;
1661
1662 /* Exit the polling mode, but don't re-enable interrupts if stack might
1663 * poll us due to busy-polling
1664 */
1665 if (likely(napi_complete_done(napi, work_done)))
1666 ice_update_ena_itr(q_vector);
1667 else
1668 ice_set_wb_on_itr(q_vector);
1669
1670 return min_t(int, work_done, budget - 1);
1671}
1672
1673/**
1674 * __ice_maybe_stop_tx - 2nd level check for Tx stop conditions
1675 * @tx_ring: the ring to be checked
1676 * @size: the size buffer we want to assure is available
1677 *
1678 * Returns -EBUSY if a stop is needed, else 0
1679 */
1680static int __ice_maybe_stop_tx(struct ice_ring *tx_ring, unsigned int size)
1681{
1682 netif_stop_subqueue(tx_ring->netdev, tx_ring->q_index);
1683 /* Memory barrier before checking head and tail */
1684 smp_mb();
1685
1686 /* Check again in a case another CPU has just made room available. */
1687 if (likely(ICE_DESC_UNUSED(tx_ring) < size))
1688 return -EBUSY;
1689
1690 /* A reprieve! - use start_subqueue because it doesn't call schedule */
1691 netif_start_subqueue(tx_ring->netdev, tx_ring->q_index);
1692 ++tx_ring->tx_stats.restart_q;
1693 return 0;
1694}
1695
1696/**
1697 * ice_maybe_stop_tx - 1st level check for Tx stop conditions
1698 * @tx_ring: the ring to be checked
1699 * @size: the size buffer we want to assure is available
1700 *
1701 * Returns 0 if stop is not needed
1702 */
1703static int ice_maybe_stop_tx(struct ice_ring *tx_ring, unsigned int size)
1704{
1705 if (likely(ICE_DESC_UNUSED(tx_ring) >= size))
1706 return 0;
1707
1708 return __ice_maybe_stop_tx(tx_ring, size);
1709}
1710
1711/**
1712 * ice_tx_map - Build the Tx descriptor
1713 * @tx_ring: ring to send buffer on
1714 * @first: first buffer info buffer to use
1715 * @off: pointer to struct that holds offload parameters
1716 *
1717 * This function loops over the skb data pointed to by *first
1718 * and gets a physical address for each memory location and programs
1719 * it and the length into the transmit descriptor.
1720 */
1721static void
1722ice_tx_map(struct ice_ring *tx_ring, struct ice_tx_buf *first,
1723 struct ice_tx_offload_params *off)
1724{
1725 u64 td_offset, td_tag, td_cmd;
1726 u16 i = tx_ring->next_to_use;
1727 unsigned int data_len, size;
1728 struct ice_tx_desc *tx_desc;
1729 struct ice_tx_buf *tx_buf;
1730 struct sk_buff *skb;
1731 skb_frag_t *frag;
1732 dma_addr_t dma;
1733
1734 td_tag = off->td_l2tag1;
1735 td_cmd = off->td_cmd;
1736 td_offset = off->td_offset;
1737 skb = first->skb;
1738
1739 data_len = skb->data_len;
1740 size = skb_headlen(skb);
1741
1742 tx_desc = ICE_TX_DESC(tx_ring, i);
1743
1744 if (first->tx_flags & ICE_TX_FLAGS_HW_VLAN) {
1745 td_cmd |= (u64)ICE_TX_DESC_CMD_IL2TAG1;
1746 td_tag = (first->tx_flags & ICE_TX_FLAGS_VLAN_M) >>
1747 ICE_TX_FLAGS_VLAN_S;
1748 }
1749
1750 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
1751
1752 tx_buf = first;
1753
1754 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1755 unsigned int max_data = ICE_MAX_DATA_PER_TXD_ALIGNED;
1756
1757 if (dma_mapping_error(tx_ring->dev, dma))
1758 goto dma_error;
1759
1760 /* record length, and DMA address */
1761 dma_unmap_len_set(tx_buf, len, size);
1762 dma_unmap_addr_set(tx_buf, dma, dma);
1763
1764 /* align size to end of page */
1765 max_data += -dma & (ICE_MAX_READ_REQ_SIZE - 1);
1766 tx_desc->buf_addr = cpu_to_le64(dma);
1767
1768 /* account for data chunks larger than the hardware
1769 * can handle
1770 */
1771 while (unlikely(size > ICE_MAX_DATA_PER_TXD)) {
1772 tx_desc->cmd_type_offset_bsz =
1773 ice_build_ctob(td_cmd, td_offset, max_data,
1774 td_tag);
1775
1776 tx_desc++;
1777 i++;
1778
1779 if (i == tx_ring->count) {
1780 tx_desc = ICE_TX_DESC(tx_ring, 0);
1781 i = 0;
1782 }
1783
1784 dma += max_data;
1785 size -= max_data;
1786
1787 max_data = ICE_MAX_DATA_PER_TXD_ALIGNED;
1788 tx_desc->buf_addr = cpu_to_le64(dma);
1789 }
1790
1791 if (likely(!data_len))
1792 break;
1793
1794 tx_desc->cmd_type_offset_bsz = ice_build_ctob(td_cmd, td_offset,
1795 size, td_tag);
1796
1797 tx_desc++;
1798 i++;
1799
1800 if (i == tx_ring->count) {
1801 tx_desc = ICE_TX_DESC(tx_ring, 0);
1802 i = 0;
1803 }
1804
1805 size = skb_frag_size(frag);
1806 data_len -= size;
1807
1808 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
1809 DMA_TO_DEVICE);
1810
1811 tx_buf = &tx_ring->tx_buf[i];
1812 }
1813
1814 /* record bytecount for BQL */
1815 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1816
1817 /* record SW timestamp if HW timestamp is not available */
1818 skb_tx_timestamp(first->skb);
1819
1820 i++;
1821 if (i == tx_ring->count)
1822 i = 0;
1823
1824 /* write last descriptor with RS and EOP bits */
1825 td_cmd |= (u64)ICE_TXD_LAST_DESC_CMD;
1826 tx_desc->cmd_type_offset_bsz =
1827 ice_build_ctob(td_cmd, td_offset, size, td_tag);
1828
1829 /* Force memory writes to complete before letting h/w know there
1830 * are new descriptors to fetch.
1831 *
1832 * We also use this memory barrier to make certain all of the
1833 * status bits have been updated before next_to_watch is written.
1834 */
1835 wmb();
1836
1837 /* set next_to_watch value indicating a packet is present */
1838 first->next_to_watch = tx_desc;
1839
1840 tx_ring->next_to_use = i;
1841
1842 ice_maybe_stop_tx(tx_ring, DESC_NEEDED);
1843
1844 /* notify HW of packet */
1845 if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more())
1846 writel(i, tx_ring->tail);
1847
1848 return;
1849
1850dma_error:
1851 /* clear DMA mappings for failed tx_buf map */
1852 for (;;) {
1853 tx_buf = &tx_ring->tx_buf[i];
1854 ice_unmap_and_free_tx_buf(tx_ring, tx_buf);
1855 if (tx_buf == first)
1856 break;
1857 if (i == 0)
1858 i = tx_ring->count;
1859 i--;
1860 }
1861
1862 tx_ring->next_to_use = i;
1863}
1864
1865/**
1866 * ice_tx_csum - Enable Tx checksum offloads
1867 * @first: pointer to the first descriptor
1868 * @off: pointer to struct that holds offload parameters
1869 *
1870 * Returns 0 or error (negative) if checksum offload can't happen, 1 otherwise.
1871 */
1872static
1873int ice_tx_csum(struct ice_tx_buf *first, struct ice_tx_offload_params *off)
1874{
1875 u32 l4_len = 0, l3_len = 0, l2_len = 0;
1876 struct sk_buff *skb = first->skb;
1877 union {
1878 struct iphdr *v4;
1879 struct ipv6hdr *v6;
1880 unsigned char *hdr;
1881 } ip;
1882 union {
1883 struct tcphdr *tcp;
1884 unsigned char *hdr;
1885 } l4;
1886 __be16 frag_off, protocol;
1887 unsigned char *exthdr;
1888 u32 offset, cmd = 0;
1889 u8 l4_proto = 0;
1890
1891 if (skb->ip_summed != CHECKSUM_PARTIAL)
1892 return 0;
1893
1894 ip.hdr = skb_network_header(skb);
1895 l4.hdr = skb_transport_header(skb);
1896
1897 /* compute outer L2 header size */
1898 l2_len = ip.hdr - skb->data;
1899 offset = (l2_len / 2) << ICE_TX_DESC_LEN_MACLEN_S;
1900
1901 protocol = vlan_get_protocol(skb);
1902
1903 if (protocol == htons(ETH_P_IP))
1904 first->tx_flags |= ICE_TX_FLAGS_IPV4;
1905 else if (protocol == htons(ETH_P_IPV6))
1906 first->tx_flags |= ICE_TX_FLAGS_IPV6;
1907
1908 if (skb->encapsulation) {
1909 bool gso_ena = false;
1910 u32 tunnel = 0;
1911
1912 /* define outer network header type */
1913 if (first->tx_flags & ICE_TX_FLAGS_IPV4) {
1914 tunnel |= (first->tx_flags & ICE_TX_FLAGS_TSO) ?
1915 ICE_TX_CTX_EIPT_IPV4 :
1916 ICE_TX_CTX_EIPT_IPV4_NO_CSUM;
1917 l4_proto = ip.v4->protocol;
1918 } else if (first->tx_flags & ICE_TX_FLAGS_IPV6) {
1919 tunnel |= ICE_TX_CTX_EIPT_IPV6;
1920 exthdr = ip.hdr + sizeof(*ip.v6);
1921 l4_proto = ip.v6->nexthdr;
1922 if (l4.hdr != exthdr)
1923 ipv6_skip_exthdr(skb, exthdr - skb->data,
1924 &l4_proto, &frag_off);
1925 }
1926
1927 /* define outer transport */
1928 switch (l4_proto) {
1929 case IPPROTO_UDP:
1930 tunnel |= ICE_TXD_CTX_UDP_TUNNELING;
1931 first->tx_flags |= ICE_TX_FLAGS_TUNNEL;
1932 break;
1933 case IPPROTO_GRE:
1934 tunnel |= ICE_TXD_CTX_GRE_TUNNELING;
1935 first->tx_flags |= ICE_TX_FLAGS_TUNNEL;
1936 break;
1937 case IPPROTO_IPIP:
1938 case IPPROTO_IPV6:
1939 first->tx_flags |= ICE_TX_FLAGS_TUNNEL;
1940 l4.hdr = skb_inner_network_header(skb);
1941 break;
1942 default:
1943 if (first->tx_flags & ICE_TX_FLAGS_TSO)
1944 return -1;
1945
1946 skb_checksum_help(skb);
1947 return 0;
1948 }
1949
1950 /* compute outer L3 header size */
1951 tunnel |= ((l4.hdr - ip.hdr) / 4) <<
1952 ICE_TXD_CTX_QW0_EIPLEN_S;
1953
1954 /* switch IP header pointer from outer to inner header */
1955 ip.hdr = skb_inner_network_header(skb);
1956
1957 /* compute tunnel header size */
1958 tunnel |= ((ip.hdr - l4.hdr) / 2) <<
1959 ICE_TXD_CTX_QW0_NATLEN_S;
1960
1961 gso_ena = skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL;
1962 /* indicate if we need to offload outer UDP header */
1963 if ((first->tx_flags & ICE_TX_FLAGS_TSO) && !gso_ena &&
1964 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
1965 tunnel |= ICE_TXD_CTX_QW0_L4T_CS_M;
1966
1967 /* record tunnel offload values */
1968 off->cd_tunnel_params |= tunnel;
1969
1970 /* set DTYP=1 to indicate that it's an Tx context descriptor
1971 * in IPsec tunnel mode with Tx offloads in Quad word 1
1972 */
1973 off->cd_qw1 |= (u64)ICE_TX_DESC_DTYPE_CTX;
1974
1975 /* switch L4 header pointer from outer to inner */
1976 l4.hdr = skb_inner_transport_header(skb);
1977 l4_proto = 0;
1978
1979 /* reset type as we transition from outer to inner headers */
1980 first->tx_flags &= ~(ICE_TX_FLAGS_IPV4 | ICE_TX_FLAGS_IPV6);
1981 if (ip.v4->version == 4)
1982 first->tx_flags |= ICE_TX_FLAGS_IPV4;
1983 if (ip.v6->version == 6)
1984 first->tx_flags |= ICE_TX_FLAGS_IPV6;
1985 }
1986
1987 /* Enable IP checksum offloads */
1988 if (first->tx_flags & ICE_TX_FLAGS_IPV4) {
1989 l4_proto = ip.v4->protocol;
1990 /* the stack computes the IP header already, the only time we
1991 * need the hardware to recompute it is in the case of TSO.
1992 */
1993 if (first->tx_flags & ICE_TX_FLAGS_TSO)
1994 cmd |= ICE_TX_DESC_CMD_IIPT_IPV4_CSUM;
1995 else
1996 cmd |= ICE_TX_DESC_CMD_IIPT_IPV4;
1997
1998 } else if (first->tx_flags & ICE_TX_FLAGS_IPV6) {
1999 cmd |= ICE_TX_DESC_CMD_IIPT_IPV6;
2000 exthdr = ip.hdr + sizeof(*ip.v6);
2001 l4_proto = ip.v6->nexthdr;
2002 if (l4.hdr != exthdr)
2003 ipv6_skip_exthdr(skb, exthdr - skb->data, &l4_proto,
2004 &frag_off);
2005 } else {
2006 return -1;
2007 }
2008
2009 /* compute inner L3 header size */
2010 l3_len = l4.hdr - ip.hdr;
2011 offset |= (l3_len / 4) << ICE_TX_DESC_LEN_IPLEN_S;
2012
2013 /* Enable L4 checksum offloads */
2014 switch (l4_proto) {
2015 case IPPROTO_TCP:
2016 /* enable checksum offloads */
2017 cmd |= ICE_TX_DESC_CMD_L4T_EOFT_TCP;
2018 l4_len = l4.tcp->doff;
2019 offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
2020 break;
2021 case IPPROTO_UDP:
2022 /* enable UDP checksum offload */
2023 cmd |= ICE_TX_DESC_CMD_L4T_EOFT_UDP;
2024 l4_len = (sizeof(struct udphdr) >> 2);
2025 offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
2026 break;
2027 case IPPROTO_SCTP:
2028 /* enable SCTP checksum offload */
2029 cmd |= ICE_TX_DESC_CMD_L4T_EOFT_SCTP;
2030 l4_len = sizeof(struct sctphdr) >> 2;
2031 offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
2032 break;
2033
2034 default:
2035 if (first->tx_flags & ICE_TX_FLAGS_TSO)
2036 return -1;
2037 skb_checksum_help(skb);
2038 return 0;
2039 }
2040
2041 off->td_cmd |= cmd;
2042 off->td_offset |= offset;
2043 return 1;
2044}
2045
2046/**
2047 * ice_tx_prepare_vlan_flags - prepare generic Tx VLAN tagging flags for HW
2048 * @tx_ring: ring to send buffer on
2049 * @first: pointer to struct ice_tx_buf
2050 *
2051 * Checks the skb and set up correspondingly several generic transmit flags
2052 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
2053 */
2054static void
2055ice_tx_prepare_vlan_flags(struct ice_ring *tx_ring, struct ice_tx_buf *first)
2056{
2057 struct sk_buff *skb = first->skb;
2058
2059 /* nothing left to do, software offloaded VLAN */
2060 if (!skb_vlan_tag_present(skb) && eth_type_vlan(skb->protocol))
2061 return;
2062
2063 /* currently, we always assume 802.1Q for VLAN insertion as VLAN
2064 * insertion for 802.1AD is not supported
2065 */
2066 if (skb_vlan_tag_present(skb)) {
2067 first->tx_flags |= skb_vlan_tag_get(skb) << ICE_TX_FLAGS_VLAN_S;
2068 first->tx_flags |= ICE_TX_FLAGS_HW_VLAN;
2069 }
2070
2071 ice_tx_prepare_vlan_flags_dcb(tx_ring, first);
2072}
2073
2074/**
2075 * ice_tso - computes mss and TSO length to prepare for TSO
2076 * @first: pointer to struct ice_tx_buf
2077 * @off: pointer to struct that holds offload parameters
2078 *
2079 * Returns 0 or error (negative) if TSO can't happen, 1 otherwise.
2080 */
2081static
2082int ice_tso(struct ice_tx_buf *first, struct ice_tx_offload_params *off)
2083{
2084 struct sk_buff *skb = first->skb;
2085 union {
2086 struct iphdr *v4;
2087 struct ipv6hdr *v6;
2088 unsigned char *hdr;
2089 } ip;
2090 union {
2091 struct tcphdr *tcp;
2092 struct udphdr *udp;
2093 unsigned char *hdr;
2094 } l4;
2095 u64 cd_mss, cd_tso_len;
2096 u32 paylen;
2097 u8 l4_start;
2098 int err;
2099
2100 if (skb->ip_summed != CHECKSUM_PARTIAL)
2101 return 0;
2102
2103 if (!skb_is_gso(skb))
2104 return 0;
2105
2106 err = skb_cow_head(skb, 0);
2107 if (err < 0)
2108 return err;
2109
2110 /* cppcheck-suppress unreadVariable */
2111 ip.hdr = skb_network_header(skb);
2112 l4.hdr = skb_transport_header(skb);
2113
2114 /* initialize outer IP header fields */
2115 if (ip.v4->version == 4) {
2116 ip.v4->tot_len = 0;
2117 ip.v4->check = 0;
2118 } else {
2119 ip.v6->payload_len = 0;
2120 }
2121
2122 if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
2123 SKB_GSO_GRE_CSUM |
2124 SKB_GSO_IPXIP4 |
2125 SKB_GSO_IPXIP6 |
2126 SKB_GSO_UDP_TUNNEL |
2127 SKB_GSO_UDP_TUNNEL_CSUM)) {
2128 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
2129 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
2130 l4.udp->len = 0;
2131
2132 /* determine offset of outer transport header */
2133 l4_start = (u8)(l4.hdr - skb->data);
2134
2135 /* remove payload length from outer checksum */
2136 paylen = skb->len - l4_start;
2137 csum_replace_by_diff(&l4.udp->check,
2138 (__force __wsum)htonl(paylen));
2139 }
2140
2141 /* reset pointers to inner headers */
2142
2143 /* cppcheck-suppress unreadVariable */
2144 ip.hdr = skb_inner_network_header(skb);
2145 l4.hdr = skb_inner_transport_header(skb);
2146
2147 /* initialize inner IP header fields */
2148 if (ip.v4->version == 4) {
2149 ip.v4->tot_len = 0;
2150 ip.v4->check = 0;
2151 } else {
2152 ip.v6->payload_len = 0;
2153 }
2154 }
2155
2156 /* determine offset of transport header */
2157 l4_start = (u8)(l4.hdr - skb->data);
2158
2159 /* remove payload length from checksum */
2160 paylen = skb->len - l4_start;
2161
2162 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
2163 csum_replace_by_diff(&l4.udp->check,
2164 (__force __wsum)htonl(paylen));
2165 /* compute length of UDP segmentation header */
2166 off->header_len = (u8)sizeof(l4.udp) + l4_start;
2167 } else {
2168 csum_replace_by_diff(&l4.tcp->check,
2169 (__force __wsum)htonl(paylen));
2170 /* compute length of TCP segmentation header */
2171 off->header_len = (u8)((l4.tcp->doff * 4) + l4_start);
2172 }
2173
2174 /* update gso_segs and bytecount */
2175 first->gso_segs = skb_shinfo(skb)->gso_segs;
2176 first->bytecount += (first->gso_segs - 1) * off->header_len;
2177
2178 cd_tso_len = skb->len - off->header_len;
2179 cd_mss = skb_shinfo(skb)->gso_size;
2180
2181 /* record cdesc_qw1 with TSO parameters */
2182 off->cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX |
2183 (ICE_TX_CTX_DESC_TSO << ICE_TXD_CTX_QW1_CMD_S) |
2184 (cd_tso_len << ICE_TXD_CTX_QW1_TSO_LEN_S) |
2185 (cd_mss << ICE_TXD_CTX_QW1_MSS_S));
2186 first->tx_flags |= ICE_TX_FLAGS_TSO;
2187 return 1;
2188}
2189
2190/**
2191 * ice_txd_use_count - estimate the number of descriptors needed for Tx
2192 * @size: transmit request size in bytes
2193 *
2194 * Due to hardware alignment restrictions (4K alignment), we need to
2195 * assume that we can have no more than 12K of data per descriptor, even
2196 * though each descriptor can take up to 16K - 1 bytes of aligned memory.
2197 * Thus, we need to divide by 12K. But division is slow! Instead,
2198 * we decompose the operation into shifts and one relatively cheap
2199 * multiply operation.
2200 *
2201 * To divide by 12K, we first divide by 4K, then divide by 3:
2202 * To divide by 4K, shift right by 12 bits
2203 * To divide by 3, multiply by 85, then divide by 256
2204 * (Divide by 256 is done by shifting right by 8 bits)
2205 * Finally, we add one to round up. Because 256 isn't an exact multiple of
2206 * 3, we'll underestimate near each multiple of 12K. This is actually more
2207 * accurate as we have 4K - 1 of wiggle room that we can fit into the last
2208 * segment. For our purposes this is accurate out to 1M which is orders of
2209 * magnitude greater than our largest possible GSO size.
2210 *
2211 * This would then be implemented as:
2212 * return (((size >> 12) * 85) >> 8) + ICE_DESCS_FOR_SKB_DATA_PTR;
2213 *
2214 * Since multiplication and division are commutative, we can reorder
2215 * operations into:
2216 * return ((size * 85) >> 20) + ICE_DESCS_FOR_SKB_DATA_PTR;
2217 */
2218static unsigned int ice_txd_use_count(unsigned int size)
2219{
2220 return ((size * 85) >> 20) + ICE_DESCS_FOR_SKB_DATA_PTR;
2221}
2222
2223/**
2224 * ice_xmit_desc_count - calculate number of Tx descriptors needed
2225 * @skb: send buffer
2226 *
2227 * Returns number of data descriptors needed for this skb.
2228 */
2229static unsigned int ice_xmit_desc_count(struct sk_buff *skb)
2230{
2231 const skb_frag_t *frag = &skb_shinfo(skb)->frags[0];
2232 unsigned int nr_frags = skb_shinfo(skb)->nr_frags;
2233 unsigned int count = 0, size = skb_headlen(skb);
2234
2235 for (;;) {
2236 count += ice_txd_use_count(size);
2237
2238 if (!nr_frags--)
2239 break;
2240
2241 size = skb_frag_size(frag++);
2242 }
2243
2244 return count;
2245}
2246
2247/**
2248 * __ice_chk_linearize - Check if there are more than 8 buffers per packet
2249 * @skb: send buffer
2250 *
2251 * Note: This HW can't DMA more than 8 buffers to build a packet on the wire
2252 * and so we need to figure out the cases where we need to linearize the skb.
2253 *
2254 * For TSO we need to count the TSO header and segment payload separately.
2255 * As such we need to check cases where we have 7 fragments or more as we
2256 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
2257 * the segment payload in the first descriptor, and another 7 for the
2258 * fragments.
2259 */
2260static bool __ice_chk_linearize(struct sk_buff *skb)
2261{
2262 const skb_frag_t *frag, *stale;
2263 int nr_frags, sum;
2264
2265 /* no need to check if number of frags is less than 7 */
2266 nr_frags = skb_shinfo(skb)->nr_frags;
2267 if (nr_frags < (ICE_MAX_BUF_TXD - 1))
2268 return false;
2269
2270 /* We need to walk through the list and validate that each group
2271 * of 6 fragments totals at least gso_size.
2272 */
2273 nr_frags -= ICE_MAX_BUF_TXD - 2;
2274 frag = &skb_shinfo(skb)->frags[0];
2275
2276 /* Initialize size to the negative value of gso_size minus 1. We
2277 * use this as the worst case scenario in which the frag ahead
2278 * of us only provides one byte which is why we are limited to 6
2279 * descriptors for a single transmit as the header and previous
2280 * fragment are already consuming 2 descriptors.
2281 */
2282 sum = 1 - skb_shinfo(skb)->gso_size;
2283
2284 /* Add size of frags 0 through 4 to create our initial sum */
2285 sum += skb_frag_size(frag++);
2286 sum += skb_frag_size(frag++);
2287 sum += skb_frag_size(frag++);
2288 sum += skb_frag_size(frag++);
2289 sum += skb_frag_size(frag++);
2290
2291 /* Walk through fragments adding latest fragment, testing it, and
2292 * then removing stale fragments from the sum.
2293 */
2294 for (stale = &skb_shinfo(skb)->frags[0];; stale++) {
2295 int stale_size = skb_frag_size(stale);
2296
2297 sum += skb_frag_size(frag++);
2298
2299 /* The stale fragment may present us with a smaller
2300 * descriptor than the actual fragment size. To account
2301 * for that we need to remove all the data on the front and
2302 * figure out what the remainder would be in the last
2303 * descriptor associated with the fragment.
2304 */
2305 if (stale_size > ICE_MAX_DATA_PER_TXD) {
2306 int align_pad = -(skb_frag_off(stale)) &
2307 (ICE_MAX_READ_REQ_SIZE - 1);
2308
2309 sum -= align_pad;
2310 stale_size -= align_pad;
2311
2312 do {
2313 sum -= ICE_MAX_DATA_PER_TXD_ALIGNED;
2314 stale_size -= ICE_MAX_DATA_PER_TXD_ALIGNED;
2315 } while (stale_size > ICE_MAX_DATA_PER_TXD);
2316 }
2317
2318 /* if sum is negative we failed to make sufficient progress */
2319 if (sum < 0)
2320 return true;
2321
2322 if (!nr_frags--)
2323 break;
2324
2325 sum -= stale_size;
2326 }
2327
2328 return false;
2329}
2330
2331/**
2332 * ice_chk_linearize - Check if there are more than 8 fragments per packet
2333 * @skb: send buffer
2334 * @count: number of buffers used
2335 *
2336 * Note: Our HW can't scatter-gather more than 8 fragments to build
2337 * a packet on the wire and so we need to figure out the cases where we
2338 * need to linearize the skb.
2339 */
2340static bool ice_chk_linearize(struct sk_buff *skb, unsigned int count)
2341{
2342 /* Both TSO and single send will work if count is less than 8 */
2343 if (likely(count < ICE_MAX_BUF_TXD))
2344 return false;
2345
2346 if (skb_is_gso(skb))
2347 return __ice_chk_linearize(skb);
2348
2349 /* we can support up to 8 data buffers for a single send */
2350 return count != ICE_MAX_BUF_TXD;
2351}
2352
2353/**
2354 * ice_xmit_frame_ring - Sends buffer on Tx ring
2355 * @skb: send buffer
2356 * @tx_ring: ring to send buffer on
2357 *
2358 * Returns NETDEV_TX_OK if sent, else an error code
2359 */
2360static netdev_tx_t
2361ice_xmit_frame_ring(struct sk_buff *skb, struct ice_ring *tx_ring)
2362{
2363 struct ice_tx_offload_params offload = { 0 };
2364 struct ice_vsi *vsi = tx_ring->vsi;
2365 struct ice_tx_buf *first;
2366 unsigned int count;
2367 int tso, csum;
2368
2369 count = ice_xmit_desc_count(skb);
2370 if (ice_chk_linearize(skb, count)) {
2371 if (__skb_linearize(skb))
2372 goto out_drop;
2373 count = ice_txd_use_count(skb->len);
2374 tx_ring->tx_stats.tx_linearize++;
2375 }
2376
2377 /* need: 1 descriptor per page * PAGE_SIZE/ICE_MAX_DATA_PER_TXD,
2378 * + 1 desc for skb_head_len/ICE_MAX_DATA_PER_TXD,
2379 * + 4 desc gap to avoid the cache line where head is,
2380 * + 1 desc for context descriptor,
2381 * otherwise try next time
2382 */
2383 if (ice_maybe_stop_tx(tx_ring, count + ICE_DESCS_PER_CACHE_LINE +
2384 ICE_DESCS_FOR_CTX_DESC)) {
2385 tx_ring->tx_stats.tx_busy++;
2386 return NETDEV_TX_BUSY;
2387 }
2388
2389 offload.tx_ring = tx_ring;
2390
2391 /* record the location of the first descriptor for this packet */
2392 first = &tx_ring->tx_buf[tx_ring->next_to_use];
2393 first->skb = skb;
2394 first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN);
2395 first->gso_segs = 1;
2396 first->tx_flags = 0;
2397
2398 /* prepare the VLAN tagging flags for Tx */
2399 ice_tx_prepare_vlan_flags(tx_ring, first);
2400
2401 /* set up TSO offload */
2402 tso = ice_tso(first, &offload);
2403 if (tso < 0)
2404 goto out_drop;
2405
2406 /* always set up Tx checksum offload */
2407 csum = ice_tx_csum(first, &offload);
2408 if (csum < 0)
2409 goto out_drop;
2410
2411 /* allow CONTROL frames egress from main VSI if FW LLDP disabled */
2412 if (unlikely(skb->priority == TC_PRIO_CONTROL &&
2413 vsi->type == ICE_VSI_PF &&
2414 vsi->port_info->is_sw_lldp))
2415 offload.cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX |
2416 ICE_TX_CTX_DESC_SWTCH_UPLINK <<
2417 ICE_TXD_CTX_QW1_CMD_S);
2418
2419 if (offload.cd_qw1 & ICE_TX_DESC_DTYPE_CTX) {
2420 struct ice_tx_ctx_desc *cdesc;
2421 u16 i = tx_ring->next_to_use;
2422
2423 /* grab the next descriptor */
2424 cdesc = ICE_TX_CTX_DESC(tx_ring, i);
2425 i++;
2426 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2427
2428 /* setup context descriptor */
2429 cdesc->tunneling_params = cpu_to_le32(offload.cd_tunnel_params);
2430 cdesc->l2tag2 = cpu_to_le16(offload.cd_l2tag2);
2431 cdesc->rsvd = cpu_to_le16(0);
2432 cdesc->qw1 = cpu_to_le64(offload.cd_qw1);
2433 }
2434
2435 ice_tx_map(tx_ring, first, &offload);
2436 return NETDEV_TX_OK;
2437
2438out_drop:
2439 dev_kfree_skb_any(skb);
2440 return NETDEV_TX_OK;
2441}
2442
2443/**
2444 * ice_start_xmit - Selects the correct VSI and Tx queue to send buffer
2445 * @skb: send buffer
2446 * @netdev: network interface device structure
2447 *
2448 * Returns NETDEV_TX_OK if sent, else an error code
2449 */
2450netdev_tx_t ice_start_xmit(struct sk_buff *skb, struct net_device *netdev)
2451{
2452 struct ice_netdev_priv *np = netdev_priv(netdev);
2453 struct ice_vsi *vsi = np->vsi;
2454 struct ice_ring *tx_ring;
2455
2456 tx_ring = vsi->tx_rings[skb->queue_mapping];
2457
2458 /* hardware can't handle really short frames, hardware padding works
2459 * beyond this point
2460 */
2461 if (skb_put_padto(skb, ICE_MIN_TX_LEN))
2462 return NETDEV_TX_OK;
2463
2464 return ice_xmit_frame_ring(skb, tx_ring);
2465}
2466
2467/**
2468 * ice_clean_ctrl_tx_irq - interrupt handler for flow director Tx queue
2469 * @tx_ring: tx_ring to clean
2470 */
2471void ice_clean_ctrl_tx_irq(struct ice_ring *tx_ring)
2472{
2473 struct ice_vsi *vsi = tx_ring->vsi;
2474 s16 i = tx_ring->next_to_clean;
2475 int budget = ICE_DFLT_IRQ_WORK;
2476 struct ice_tx_desc *tx_desc;
2477 struct ice_tx_buf *tx_buf;
2478
2479 tx_buf = &tx_ring->tx_buf[i];
2480 tx_desc = ICE_TX_DESC(tx_ring, i);
2481 i -= tx_ring->count;
2482
2483 do {
2484 struct ice_tx_desc *eop_desc = tx_buf->next_to_watch;
2485
2486 /* if next_to_watch is not set then there is no pending work */
2487 if (!eop_desc)
2488 break;
2489
2490 /* prevent any other reads prior to eop_desc */
2491 smp_rmb();
2492
2493 /* if the descriptor isn't done, no work to do */
2494 if (!(eop_desc->cmd_type_offset_bsz &
2495 cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE)))
2496 break;
2497
2498 /* clear next_to_watch to prevent false hangs */
2499 tx_buf->next_to_watch = NULL;
2500 tx_desc->buf_addr = 0;
2501 tx_desc->cmd_type_offset_bsz = 0;
2502
2503 /* move past filter desc */
2504 tx_buf++;
2505 tx_desc++;
2506 i++;
2507 if (unlikely(!i)) {
2508 i -= tx_ring->count;
2509 tx_buf = tx_ring->tx_buf;
2510 tx_desc = ICE_TX_DESC(tx_ring, 0);
2511 }
2512
2513 /* unmap the data header */
2514 if (dma_unmap_len(tx_buf, len))
2515 dma_unmap_single(tx_ring->dev,
2516 dma_unmap_addr(tx_buf, dma),
2517 dma_unmap_len(tx_buf, len),
2518 DMA_TO_DEVICE);
2519 if (tx_buf->tx_flags & ICE_TX_FLAGS_DUMMY_PKT)
2520 devm_kfree(tx_ring->dev, tx_buf->raw_buf);
2521
2522 /* clear next_to_watch to prevent false hangs */
2523 tx_buf->raw_buf = NULL;
2524 tx_buf->tx_flags = 0;
2525 tx_buf->next_to_watch = NULL;
2526 dma_unmap_len_set(tx_buf, len, 0);
2527 tx_desc->buf_addr = 0;
2528 tx_desc->cmd_type_offset_bsz = 0;
2529
2530 /* move past eop_desc for start of next FD desc */
2531 tx_buf++;
2532 tx_desc++;
2533 i++;
2534 if (unlikely(!i)) {
2535 i -= tx_ring->count;
2536 tx_buf = tx_ring->tx_buf;
2537 tx_desc = ICE_TX_DESC(tx_ring, 0);
2538 }
2539
2540 budget--;
2541 } while (likely(budget));
2542
2543 i += tx_ring->count;
2544 tx_ring->next_to_clean = i;
2545
2546 /* re-enable interrupt if needed */
2547 ice_irq_dynamic_ena(&vsi->back->hw, vsi, vsi->q_vectors[0]);
2548}
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright (c) 2018, Intel Corporation. */
3
4/* The driver transmit and receive code */
5
6#include <linux/prefetch.h>
7#include <linux/mm.h>
8#include "ice.h"
9
10#define ICE_RX_HDR_SIZE 256
11
12/**
13 * ice_unmap_and_free_tx_buf - Release a Tx buffer
14 * @ring: the ring that owns the buffer
15 * @tx_buf: the buffer to free
16 */
17static void
18ice_unmap_and_free_tx_buf(struct ice_ring *ring, struct ice_tx_buf *tx_buf)
19{
20 if (tx_buf->skb) {
21 dev_kfree_skb_any(tx_buf->skb);
22 if (dma_unmap_len(tx_buf, len))
23 dma_unmap_single(ring->dev,
24 dma_unmap_addr(tx_buf, dma),
25 dma_unmap_len(tx_buf, len),
26 DMA_TO_DEVICE);
27 } else if (dma_unmap_len(tx_buf, len)) {
28 dma_unmap_page(ring->dev,
29 dma_unmap_addr(tx_buf, dma),
30 dma_unmap_len(tx_buf, len),
31 DMA_TO_DEVICE);
32 }
33
34 tx_buf->next_to_watch = NULL;
35 tx_buf->skb = NULL;
36 dma_unmap_len_set(tx_buf, len, 0);
37 /* tx_buf must be completely set up in the transmit path */
38}
39
40static struct netdev_queue *txring_txq(const struct ice_ring *ring)
41{
42 return netdev_get_tx_queue(ring->netdev, ring->q_index);
43}
44
45/**
46 * ice_clean_tx_ring - Free any empty Tx buffers
47 * @tx_ring: ring to be cleaned
48 */
49void ice_clean_tx_ring(struct ice_ring *tx_ring)
50{
51 unsigned long size;
52 u16 i;
53
54 /* ring already cleared, nothing to do */
55 if (!tx_ring->tx_buf)
56 return;
57
58 /* Free all the Tx ring sk_bufss */
59 for (i = 0; i < tx_ring->count; i++)
60 ice_unmap_and_free_tx_buf(tx_ring, &tx_ring->tx_buf[i]);
61
62 size = sizeof(struct ice_tx_buf) * tx_ring->count;
63 memset(tx_ring->tx_buf, 0, size);
64
65 /* Zero out the descriptor ring */
66 memset(tx_ring->desc, 0, tx_ring->size);
67
68 tx_ring->next_to_use = 0;
69 tx_ring->next_to_clean = 0;
70
71 if (!tx_ring->netdev)
72 return;
73
74 /* cleanup Tx queue statistics */
75 netdev_tx_reset_queue(txring_txq(tx_ring));
76}
77
78/**
79 * ice_free_tx_ring - Free Tx resources per queue
80 * @tx_ring: Tx descriptor ring for a specific queue
81 *
82 * Free all transmit software resources
83 */
84void ice_free_tx_ring(struct ice_ring *tx_ring)
85{
86 ice_clean_tx_ring(tx_ring);
87 devm_kfree(tx_ring->dev, tx_ring->tx_buf);
88 tx_ring->tx_buf = NULL;
89
90 if (tx_ring->desc) {
91 dmam_free_coherent(tx_ring->dev, tx_ring->size,
92 tx_ring->desc, tx_ring->dma);
93 tx_ring->desc = NULL;
94 }
95}
96
97/**
98 * ice_clean_tx_irq - Reclaim resources after transmit completes
99 * @vsi: the VSI we care about
100 * @tx_ring: Tx ring to clean
101 * @napi_budget: Used to determine if we are in netpoll
102 *
103 * Returns true if there's any budget left (e.g. the clean is finished)
104 */
105static bool ice_clean_tx_irq(struct ice_vsi *vsi, struct ice_ring *tx_ring,
106 int napi_budget)
107{
108 unsigned int total_bytes = 0, total_pkts = 0;
109 unsigned int budget = vsi->work_lmt;
110 s16 i = tx_ring->next_to_clean;
111 struct ice_tx_desc *tx_desc;
112 struct ice_tx_buf *tx_buf;
113
114 tx_buf = &tx_ring->tx_buf[i];
115 tx_desc = ICE_TX_DESC(tx_ring, i);
116 i -= tx_ring->count;
117
118 do {
119 struct ice_tx_desc *eop_desc = tx_buf->next_to_watch;
120
121 /* if next_to_watch is not set then there is no work pending */
122 if (!eop_desc)
123 break;
124
125 smp_rmb(); /* prevent any other reads prior to eop_desc */
126
127 /* if the descriptor isn't done, no work yet to do */
128 if (!(eop_desc->cmd_type_offset_bsz &
129 cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE)))
130 break;
131
132 /* clear next_to_watch to prevent false hangs */
133 tx_buf->next_to_watch = NULL;
134
135 /* update the statistics for this packet */
136 total_bytes += tx_buf->bytecount;
137 total_pkts += tx_buf->gso_segs;
138
139 /* free the skb */
140 napi_consume_skb(tx_buf->skb, napi_budget);
141
142 /* unmap skb header data */
143 dma_unmap_single(tx_ring->dev,
144 dma_unmap_addr(tx_buf, dma),
145 dma_unmap_len(tx_buf, len),
146 DMA_TO_DEVICE);
147
148 /* clear tx_buf data */
149 tx_buf->skb = NULL;
150 dma_unmap_len_set(tx_buf, len, 0);
151
152 /* unmap remaining buffers */
153 while (tx_desc != eop_desc) {
154 tx_buf++;
155 tx_desc++;
156 i++;
157 if (unlikely(!i)) {
158 i -= tx_ring->count;
159 tx_buf = tx_ring->tx_buf;
160 tx_desc = ICE_TX_DESC(tx_ring, 0);
161 }
162
163 /* unmap any remaining paged data */
164 if (dma_unmap_len(tx_buf, len)) {
165 dma_unmap_page(tx_ring->dev,
166 dma_unmap_addr(tx_buf, dma),
167 dma_unmap_len(tx_buf, len),
168 DMA_TO_DEVICE);
169 dma_unmap_len_set(tx_buf, len, 0);
170 }
171 }
172
173 /* move us one more past the eop_desc for start of next pkt */
174 tx_buf++;
175 tx_desc++;
176 i++;
177 if (unlikely(!i)) {
178 i -= tx_ring->count;
179 tx_buf = tx_ring->tx_buf;
180 tx_desc = ICE_TX_DESC(tx_ring, 0);
181 }
182
183 prefetch(tx_desc);
184
185 /* update budget accounting */
186 budget--;
187 } while (likely(budget));
188
189 i += tx_ring->count;
190 tx_ring->next_to_clean = i;
191 u64_stats_update_begin(&tx_ring->syncp);
192 tx_ring->stats.bytes += total_bytes;
193 tx_ring->stats.pkts += total_pkts;
194 u64_stats_update_end(&tx_ring->syncp);
195 tx_ring->q_vector->tx.total_bytes += total_bytes;
196 tx_ring->q_vector->tx.total_pkts += total_pkts;
197
198 netdev_tx_completed_queue(txring_txq(tx_ring), total_pkts,
199 total_bytes);
200
201#define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
202 if (unlikely(total_pkts && netif_carrier_ok(tx_ring->netdev) &&
203 (ICE_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
204 /* Make sure that anybody stopping the queue after this
205 * sees the new next_to_clean.
206 */
207 smp_mb();
208 if (__netif_subqueue_stopped(tx_ring->netdev,
209 tx_ring->q_index) &&
210 !test_bit(__ICE_DOWN, vsi->state)) {
211 netif_wake_subqueue(tx_ring->netdev,
212 tx_ring->q_index);
213 ++tx_ring->tx_stats.restart_q;
214 }
215 }
216
217 return !!budget;
218}
219
220/**
221 * ice_setup_tx_ring - Allocate the Tx descriptors
222 * @tx_ring: the tx ring to set up
223 *
224 * Return 0 on success, negative on error
225 */
226int ice_setup_tx_ring(struct ice_ring *tx_ring)
227{
228 struct device *dev = tx_ring->dev;
229 int bi_size;
230
231 if (!dev)
232 return -ENOMEM;
233
234 /* warn if we are about to overwrite the pointer */
235 WARN_ON(tx_ring->tx_buf);
236 bi_size = sizeof(struct ice_tx_buf) * tx_ring->count;
237 tx_ring->tx_buf = devm_kzalloc(dev, bi_size, GFP_KERNEL);
238 if (!tx_ring->tx_buf)
239 return -ENOMEM;
240
241 /* round up to nearest 4K */
242 tx_ring->size = tx_ring->count * sizeof(struct ice_tx_desc);
243 tx_ring->size = ALIGN(tx_ring->size, 4096);
244 tx_ring->desc = dmam_alloc_coherent(dev, tx_ring->size, &tx_ring->dma,
245 GFP_KERNEL);
246 if (!tx_ring->desc) {
247 dev_err(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
248 tx_ring->size);
249 goto err;
250 }
251
252 tx_ring->next_to_use = 0;
253 tx_ring->next_to_clean = 0;
254 return 0;
255
256err:
257 devm_kfree(dev, tx_ring->tx_buf);
258 tx_ring->tx_buf = NULL;
259 return -ENOMEM;
260}
261
262/**
263 * ice_clean_rx_ring - Free Rx buffers
264 * @rx_ring: ring to be cleaned
265 */
266void ice_clean_rx_ring(struct ice_ring *rx_ring)
267{
268 struct device *dev = rx_ring->dev;
269 unsigned long size;
270 u16 i;
271
272 /* ring already cleared, nothing to do */
273 if (!rx_ring->rx_buf)
274 return;
275
276 /* Free all the Rx ring sk_buffs */
277 for (i = 0; i < rx_ring->count; i++) {
278 struct ice_rx_buf *rx_buf = &rx_ring->rx_buf[i];
279
280 if (rx_buf->skb) {
281 dev_kfree_skb(rx_buf->skb);
282 rx_buf->skb = NULL;
283 }
284 if (!rx_buf->page)
285 continue;
286
287 dma_unmap_page(dev, rx_buf->dma, PAGE_SIZE, DMA_FROM_DEVICE);
288 __free_pages(rx_buf->page, 0);
289
290 rx_buf->page = NULL;
291 rx_buf->page_offset = 0;
292 }
293
294 size = sizeof(struct ice_rx_buf) * rx_ring->count;
295 memset(rx_ring->rx_buf, 0, size);
296
297 /* Zero out the descriptor ring */
298 memset(rx_ring->desc, 0, rx_ring->size);
299
300 rx_ring->next_to_alloc = 0;
301 rx_ring->next_to_clean = 0;
302 rx_ring->next_to_use = 0;
303}
304
305/**
306 * ice_free_rx_ring - Free Rx resources
307 * @rx_ring: ring to clean the resources from
308 *
309 * Free all receive software resources
310 */
311void ice_free_rx_ring(struct ice_ring *rx_ring)
312{
313 ice_clean_rx_ring(rx_ring);
314 devm_kfree(rx_ring->dev, rx_ring->rx_buf);
315 rx_ring->rx_buf = NULL;
316
317 if (rx_ring->desc) {
318 dmam_free_coherent(rx_ring->dev, rx_ring->size,
319 rx_ring->desc, rx_ring->dma);
320 rx_ring->desc = NULL;
321 }
322}
323
324/**
325 * ice_setup_rx_ring - Allocate the Rx descriptors
326 * @rx_ring: the rx ring to set up
327 *
328 * Return 0 on success, negative on error
329 */
330int ice_setup_rx_ring(struct ice_ring *rx_ring)
331{
332 struct device *dev = rx_ring->dev;
333 int bi_size;
334
335 if (!dev)
336 return -ENOMEM;
337
338 /* warn if we are about to overwrite the pointer */
339 WARN_ON(rx_ring->rx_buf);
340 bi_size = sizeof(struct ice_rx_buf) * rx_ring->count;
341 rx_ring->rx_buf = devm_kzalloc(dev, bi_size, GFP_KERNEL);
342 if (!rx_ring->rx_buf)
343 return -ENOMEM;
344
345 /* round up to nearest 4K */
346 rx_ring->size = rx_ring->count * sizeof(union ice_32byte_rx_desc);
347 rx_ring->size = ALIGN(rx_ring->size, 4096);
348 rx_ring->desc = dmam_alloc_coherent(dev, rx_ring->size, &rx_ring->dma,
349 GFP_KERNEL);
350 if (!rx_ring->desc) {
351 dev_err(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
352 rx_ring->size);
353 goto err;
354 }
355
356 rx_ring->next_to_use = 0;
357 rx_ring->next_to_clean = 0;
358 return 0;
359
360err:
361 devm_kfree(dev, rx_ring->rx_buf);
362 rx_ring->rx_buf = NULL;
363 return -ENOMEM;
364}
365
366/**
367 * ice_release_rx_desc - Store the new tail and head values
368 * @rx_ring: ring to bump
369 * @val: new head index
370 */
371static void ice_release_rx_desc(struct ice_ring *rx_ring, u32 val)
372{
373 rx_ring->next_to_use = val;
374
375 /* update next to alloc since we have filled the ring */
376 rx_ring->next_to_alloc = val;
377
378 /* Force memory writes to complete before letting h/w
379 * know there are new descriptors to fetch. (Only
380 * applicable for weak-ordered memory model archs,
381 * such as IA-64).
382 */
383 wmb();
384 writel(val, rx_ring->tail);
385}
386
387/**
388 * ice_alloc_mapped_page - recycle or make a new page
389 * @rx_ring: ring to use
390 * @bi: rx_buf struct to modify
391 *
392 * Returns true if the page was successfully allocated or
393 * reused.
394 */
395static bool ice_alloc_mapped_page(struct ice_ring *rx_ring,
396 struct ice_rx_buf *bi)
397{
398 struct page *page = bi->page;
399 dma_addr_t dma;
400
401 /* since we are recycling buffers we should seldom need to alloc */
402 if (likely(page)) {
403 rx_ring->rx_stats.page_reuse_count++;
404 return true;
405 }
406
407 /* alloc new page for storage */
408 page = alloc_page(GFP_ATOMIC | __GFP_NOWARN);
409 if (unlikely(!page)) {
410 rx_ring->rx_stats.alloc_page_failed++;
411 return false;
412 }
413
414 /* map page for use */
415 dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
416
417 /* if mapping failed free memory back to system since
418 * there isn't much point in holding memory we can't use
419 */
420 if (dma_mapping_error(rx_ring->dev, dma)) {
421 __free_pages(page, 0);
422 rx_ring->rx_stats.alloc_page_failed++;
423 return false;
424 }
425
426 bi->dma = dma;
427 bi->page = page;
428 bi->page_offset = 0;
429
430 return true;
431}
432
433/**
434 * ice_alloc_rx_bufs - Replace used receive buffers
435 * @rx_ring: ring to place buffers on
436 * @cleaned_count: number of buffers to replace
437 *
438 * Returns false if all allocations were successful, true if any fail
439 */
440bool ice_alloc_rx_bufs(struct ice_ring *rx_ring, u16 cleaned_count)
441{
442 union ice_32b_rx_flex_desc *rx_desc;
443 u16 ntu = rx_ring->next_to_use;
444 struct ice_rx_buf *bi;
445
446 /* do nothing if no valid netdev defined */
447 if (!rx_ring->netdev || !cleaned_count)
448 return false;
449
450 /* get the RX descriptor and buffer based on next_to_use */
451 rx_desc = ICE_RX_DESC(rx_ring, ntu);
452 bi = &rx_ring->rx_buf[ntu];
453
454 do {
455 if (!ice_alloc_mapped_page(rx_ring, bi))
456 goto no_bufs;
457
458 /* Refresh the desc even if buffer_addrs didn't change
459 * because each write-back erases this info.
460 */
461 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
462
463 rx_desc++;
464 bi++;
465 ntu++;
466 if (unlikely(ntu == rx_ring->count)) {
467 rx_desc = ICE_RX_DESC(rx_ring, 0);
468 bi = rx_ring->rx_buf;
469 ntu = 0;
470 }
471
472 /* clear the status bits for the next_to_use descriptor */
473 rx_desc->wb.status_error0 = 0;
474
475 cleaned_count--;
476 } while (cleaned_count);
477
478 if (rx_ring->next_to_use != ntu)
479 ice_release_rx_desc(rx_ring, ntu);
480
481 return false;
482
483no_bufs:
484 if (rx_ring->next_to_use != ntu)
485 ice_release_rx_desc(rx_ring, ntu);
486
487 /* make sure to come back via polling to try again after
488 * allocation failure
489 */
490 return true;
491}
492
493/**
494 * ice_page_is_reserved - check if reuse is possible
495 * @page: page struct to check
496 */
497static bool ice_page_is_reserved(struct page *page)
498{
499 return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
500}
501
502/**
503 * ice_add_rx_frag - Add contents of Rx buffer to sk_buff
504 * @rx_buf: buffer containing page to add
505 * @rx_desc: descriptor containing length of buffer written by hardware
506 * @skb: sk_buf to place the data into
507 *
508 * This function will add the data contained in rx_buf->page to the skb.
509 * This is done either through a direct copy if the data in the buffer is
510 * less than the skb header size, otherwise it will just attach the page as
511 * a frag to the skb.
512 *
513 * The function will then update the page offset if necessary and return
514 * true if the buffer can be reused by the adapter.
515 */
516static bool ice_add_rx_frag(struct ice_rx_buf *rx_buf,
517 union ice_32b_rx_flex_desc *rx_desc,
518 struct sk_buff *skb)
519{
520#if (PAGE_SIZE < 8192)
521 unsigned int truesize = ICE_RXBUF_2048;
522#else
523 unsigned int last_offset = PAGE_SIZE - ICE_RXBUF_2048;
524 unsigned int truesize;
525#endif /* PAGE_SIZE < 8192) */
526
527 struct page *page;
528 unsigned int size;
529
530 size = le16_to_cpu(rx_desc->wb.pkt_len) &
531 ICE_RX_FLX_DESC_PKT_LEN_M;
532
533 page = rx_buf->page;
534
535#if (PAGE_SIZE >= 8192)
536 truesize = ALIGN(size, L1_CACHE_BYTES);
537#endif /* PAGE_SIZE >= 8192) */
538
539 /* will the data fit in the skb we allocated? if so, just
540 * copy it as it is pretty small anyway
541 */
542 if (size <= ICE_RX_HDR_SIZE && !skb_is_nonlinear(skb)) {
543 unsigned char *va = page_address(page) + rx_buf->page_offset;
544
545 memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
546
547 /* page is not reserved, we can reuse buffer as-is */
548 if (likely(!ice_page_is_reserved(page)))
549 return true;
550
551 /* this page cannot be reused so discard it */
552 __free_pages(page, 0);
553 return false;
554 }
555
556 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
557 rx_buf->page_offset, size, truesize);
558
559 /* avoid re-using remote pages */
560 if (unlikely(ice_page_is_reserved(page)))
561 return false;
562
563#if (PAGE_SIZE < 8192)
564 /* if we are only owner of page we can reuse it */
565 if (unlikely(page_count(page) != 1))
566 return false;
567
568 /* flip page offset to other buffer */
569 rx_buf->page_offset ^= truesize;
570#else
571 /* move offset up to the next cache line */
572 rx_buf->page_offset += truesize;
573
574 if (rx_buf->page_offset > last_offset)
575 return false;
576#endif /* PAGE_SIZE < 8192) */
577
578 /* Even if we own the page, we are not allowed to use atomic_set()
579 * This would break get_page_unless_zero() users.
580 */
581 get_page(rx_buf->page);
582
583 return true;
584}
585
586/**
587 * ice_reuse_rx_page - page flip buffer and store it back on the ring
588 * @rx_ring: rx descriptor ring to store buffers on
589 * @old_buf: donor buffer to have page reused
590 *
591 * Synchronizes page for reuse by the adapter
592 */
593static void ice_reuse_rx_page(struct ice_ring *rx_ring,
594 struct ice_rx_buf *old_buf)
595{
596 u16 nta = rx_ring->next_to_alloc;
597 struct ice_rx_buf *new_buf;
598
599 new_buf = &rx_ring->rx_buf[nta];
600
601 /* update, and store next to alloc */
602 nta++;
603 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
604
605 /* transfer page from old buffer to new buffer */
606 *new_buf = *old_buf;
607}
608
609/**
610 * ice_fetch_rx_buf - Allocate skb and populate it
611 * @rx_ring: rx descriptor ring to transact packets on
612 * @rx_desc: descriptor containing info written by hardware
613 *
614 * This function allocates an skb on the fly, and populates it with the page
615 * data from the current receive descriptor, taking care to set up the skb
616 * correctly, as well as handling calling the page recycle function if
617 * necessary.
618 */
619static struct sk_buff *ice_fetch_rx_buf(struct ice_ring *rx_ring,
620 union ice_32b_rx_flex_desc *rx_desc)
621{
622 struct ice_rx_buf *rx_buf;
623 struct sk_buff *skb;
624 struct page *page;
625
626 rx_buf = &rx_ring->rx_buf[rx_ring->next_to_clean];
627 page = rx_buf->page;
628 prefetchw(page);
629
630 skb = rx_buf->skb;
631
632 if (likely(!skb)) {
633 u8 *page_addr = page_address(page) + rx_buf->page_offset;
634
635 /* prefetch first cache line of first page */
636 prefetch(page_addr);
637#if L1_CACHE_BYTES < 128
638 prefetch((void *)(page_addr + L1_CACHE_BYTES));
639#endif /* L1_CACHE_BYTES */
640
641 /* allocate a skb to store the frags */
642 skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
643 ICE_RX_HDR_SIZE,
644 GFP_ATOMIC | __GFP_NOWARN);
645 if (unlikely(!skb)) {
646 rx_ring->rx_stats.alloc_buf_failed++;
647 return NULL;
648 }
649
650 /* we will be copying header into skb->data in
651 * pskb_may_pull so it is in our interest to prefetch
652 * it now to avoid a possible cache miss
653 */
654 prefetchw(skb->data);
655
656 skb_record_rx_queue(skb, rx_ring->q_index);
657 } else {
658 /* we are reusing so sync this buffer for CPU use */
659 dma_sync_single_range_for_cpu(rx_ring->dev, rx_buf->dma,
660 rx_buf->page_offset,
661 ICE_RXBUF_2048,
662 DMA_FROM_DEVICE);
663
664 rx_buf->skb = NULL;
665 }
666
667 /* pull page into skb */
668 if (ice_add_rx_frag(rx_buf, rx_desc, skb)) {
669 /* hand second half of page back to the ring */
670 ice_reuse_rx_page(rx_ring, rx_buf);
671 rx_ring->rx_stats.page_reuse_count++;
672 } else {
673 /* we are not reusing the buffer so unmap it */
674 dma_unmap_page(rx_ring->dev, rx_buf->dma, PAGE_SIZE,
675 DMA_FROM_DEVICE);
676 }
677
678 /* clear contents of buffer_info */
679 rx_buf->page = NULL;
680
681 return skb;
682}
683
684/**
685 * ice_pull_tail - ice specific version of skb_pull_tail
686 * @skb: pointer to current skb being adjusted
687 *
688 * This function is an ice specific version of __pskb_pull_tail. The
689 * main difference between this version and the original function is that
690 * this function can make several assumptions about the state of things
691 * that allow for significant optimizations versus the standard function.
692 * As a result we can do things like drop a frag and maintain an accurate
693 * truesize for the skb.
694 */
695static void ice_pull_tail(struct sk_buff *skb)
696{
697 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
698 unsigned int pull_len;
699 unsigned char *va;
700
701 /* it is valid to use page_address instead of kmap since we are
702 * working with pages allocated out of the lomem pool per
703 * alloc_page(GFP_ATOMIC)
704 */
705 va = skb_frag_address(frag);
706
707 /* we need the header to contain the greater of either ETH_HLEN or
708 * 60 bytes if the skb->len is less than 60 for skb_pad.
709 */
710 pull_len = eth_get_headlen(va, ICE_RX_HDR_SIZE);
711
712 /* align pull length to size of long to optimize memcpy performance */
713 skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));
714
715 /* update all of the pointers */
716 skb_frag_size_sub(frag, pull_len);
717 frag->page_offset += pull_len;
718 skb->data_len -= pull_len;
719 skb->tail += pull_len;
720}
721
722/**
723 * ice_cleanup_headers - Correct empty headers
724 * @skb: pointer to current skb being fixed
725 *
726 * Also address the case where we are pulling data in on pages only
727 * and as such no data is present in the skb header.
728 *
729 * In addition if skb is not at least 60 bytes we need to pad it so that
730 * it is large enough to qualify as a valid Ethernet frame.
731 *
732 * Returns true if an error was encountered and skb was freed.
733 */
734static bool ice_cleanup_headers(struct sk_buff *skb)
735{
736 /* place header in linear portion of buffer */
737 if (skb_is_nonlinear(skb))
738 ice_pull_tail(skb);
739
740 /* if eth_skb_pad returns an error the skb was freed */
741 if (eth_skb_pad(skb))
742 return true;
743
744 return false;
745}
746
747/**
748 * ice_test_staterr - tests bits in Rx descriptor status and error fields
749 * @rx_desc: pointer to receive descriptor (in le64 format)
750 * @stat_err_bits: value to mask
751 *
752 * This function does some fast chicanery in order to return the
753 * value of the mask which is really only used for boolean tests.
754 * The status_error_len doesn't need to be shifted because it begins
755 * at offset zero.
756 */
757static bool ice_test_staterr(union ice_32b_rx_flex_desc *rx_desc,
758 const u16 stat_err_bits)
759{
760 return !!(rx_desc->wb.status_error0 &
761 cpu_to_le16(stat_err_bits));
762}
763
764/**
765 * ice_is_non_eop - process handling of non-EOP buffers
766 * @rx_ring: Rx ring being processed
767 * @rx_desc: Rx descriptor for current buffer
768 * @skb: Current socket buffer containing buffer in progress
769 *
770 * This function updates next to clean. If the buffer is an EOP buffer
771 * this function exits returning false, otherwise it will place the
772 * sk_buff in the next buffer to be chained and return true indicating
773 * that this is in fact a non-EOP buffer.
774 */
775static bool ice_is_non_eop(struct ice_ring *rx_ring,
776 union ice_32b_rx_flex_desc *rx_desc,
777 struct sk_buff *skb)
778{
779 u32 ntc = rx_ring->next_to_clean + 1;
780
781 /* fetch, update, and store next to clean */
782 ntc = (ntc < rx_ring->count) ? ntc : 0;
783 rx_ring->next_to_clean = ntc;
784
785 prefetch(ICE_RX_DESC(rx_ring, ntc));
786
787 /* if we are the last buffer then there is nothing else to do */
788#define ICE_RXD_EOF BIT(ICE_RX_FLEX_DESC_STATUS0_EOF_S)
789 if (likely(ice_test_staterr(rx_desc, ICE_RXD_EOF)))
790 return false;
791
792 /* place skb in next buffer to be received */
793 rx_ring->rx_buf[ntc].skb = skb;
794 rx_ring->rx_stats.non_eop_descs++;
795
796 return true;
797}
798
799/**
800 * ice_ptype_to_htype - get a hash type
801 * @ptype: the ptype value from the descriptor
802 *
803 * Returns a hash type to be used by skb_set_hash
804 */
805static enum pkt_hash_types ice_ptype_to_htype(u8 __always_unused ptype)
806{
807 return PKT_HASH_TYPE_NONE;
808}
809
810/**
811 * ice_rx_hash - set the hash value in the skb
812 * @rx_ring: descriptor ring
813 * @rx_desc: specific descriptor
814 * @skb: pointer to current skb
815 * @rx_ptype: the ptype value from the descriptor
816 */
817static void
818ice_rx_hash(struct ice_ring *rx_ring, union ice_32b_rx_flex_desc *rx_desc,
819 struct sk_buff *skb, u8 rx_ptype)
820{
821 struct ice_32b_rx_flex_desc_nic *nic_mdid;
822 u32 hash;
823
824 if (!(rx_ring->netdev->features & NETIF_F_RXHASH))
825 return;
826
827 if (rx_desc->wb.rxdid != ICE_RXDID_FLEX_NIC)
828 return;
829
830 nic_mdid = (struct ice_32b_rx_flex_desc_nic *)rx_desc;
831 hash = le32_to_cpu(nic_mdid->rss_hash);
832 skb_set_hash(skb, hash, ice_ptype_to_htype(rx_ptype));
833}
834
835/**
836 * ice_rx_csum - Indicate in skb if checksum is good
837 * @vsi: the VSI we care about
838 * @skb: skb currently being received and modified
839 * @rx_desc: the receive descriptor
840 * @ptype: the packet type decoded by hardware
841 *
842 * skb->protocol must be set before this function is called
843 */
844static void ice_rx_csum(struct ice_vsi *vsi, struct sk_buff *skb,
845 union ice_32b_rx_flex_desc *rx_desc, u8 ptype)
846{
847 struct ice_rx_ptype_decoded decoded;
848 u32 rx_error, rx_status;
849 bool ipv4, ipv6;
850
851 rx_status = le16_to_cpu(rx_desc->wb.status_error0);
852 rx_error = rx_status;
853
854 decoded = ice_decode_rx_desc_ptype(ptype);
855
856 /* Start with CHECKSUM_NONE and by default csum_level = 0 */
857 skb->ip_summed = CHECKSUM_NONE;
858 skb_checksum_none_assert(skb);
859
860 /* check if Rx checksum is enabled */
861 if (!(vsi->netdev->features & NETIF_F_RXCSUM))
862 return;
863
864 /* check if HW has decoded the packet and checksum */
865 if (!(rx_status & BIT(ICE_RX_FLEX_DESC_STATUS0_L3L4P_S)))
866 return;
867
868 if (!(decoded.known && decoded.outer_ip))
869 return;
870
871 ipv4 = (decoded.outer_ip == ICE_RX_PTYPE_OUTER_IP) &&
872 (decoded.outer_ip_ver == ICE_RX_PTYPE_OUTER_IPV4);
873 ipv6 = (decoded.outer_ip == ICE_RX_PTYPE_OUTER_IP) &&
874 (decoded.outer_ip_ver == ICE_RX_PTYPE_OUTER_IPV6);
875
876 if (ipv4 && (rx_error & (BIT(ICE_RX_FLEX_DESC_STATUS0_XSUM_IPE_S) |
877 BIT(ICE_RX_FLEX_DESC_STATUS0_XSUM_EIPE_S))))
878 goto checksum_fail;
879 else if (ipv6 && (rx_status &
880 (BIT(ICE_RX_FLEX_DESC_STATUS0_IPV6EXADD_S))))
881 goto checksum_fail;
882
883 /* check for L4 errors and handle packets that were not able to be
884 * checksummed due to arrival speed
885 */
886 if (rx_error & BIT(ICE_RX_FLEX_DESC_STATUS0_XSUM_L4E_S))
887 goto checksum_fail;
888
889 /* Only report checksum unnecessary for TCP, UDP, or SCTP */
890 switch (decoded.inner_prot) {
891 case ICE_RX_PTYPE_INNER_PROT_TCP:
892 case ICE_RX_PTYPE_INNER_PROT_UDP:
893 case ICE_RX_PTYPE_INNER_PROT_SCTP:
894 skb->ip_summed = CHECKSUM_UNNECESSARY;
895 default:
896 break;
897 }
898 return;
899
900checksum_fail:
901 vsi->back->hw_csum_rx_error++;
902}
903
904/**
905 * ice_process_skb_fields - Populate skb header fields from Rx descriptor
906 * @rx_ring: rx descriptor ring packet is being transacted on
907 * @rx_desc: pointer to the EOP Rx descriptor
908 * @skb: pointer to current skb being populated
909 * @ptype: the packet type decoded by hardware
910 *
911 * This function checks the ring, descriptor, and packet information in
912 * order to populate the hash, checksum, VLAN, protocol, and
913 * other fields within the skb.
914 */
915static void ice_process_skb_fields(struct ice_ring *rx_ring,
916 union ice_32b_rx_flex_desc *rx_desc,
917 struct sk_buff *skb, u8 ptype)
918{
919 ice_rx_hash(rx_ring, rx_desc, skb, ptype);
920
921 /* modifies the skb - consumes the enet header */
922 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
923
924 ice_rx_csum(rx_ring->vsi, skb, rx_desc, ptype);
925}
926
927/**
928 * ice_receive_skb - Send a completed packet up the stack
929 * @rx_ring: rx ring in play
930 * @skb: packet to send up
931 * @vlan_tag: vlan tag for packet
932 *
933 * This function sends the completed packet (via. skb) up the stack using
934 * gro receive functions (with/without vlan tag)
935 */
936static void ice_receive_skb(struct ice_ring *rx_ring, struct sk_buff *skb,
937 u16 vlan_tag)
938{
939 if ((rx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
940 (vlan_tag & VLAN_VID_MASK)) {
941 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
942 }
943 napi_gro_receive(&rx_ring->q_vector->napi, skb);
944}
945
946/**
947 * ice_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
948 * @rx_ring: rx descriptor ring to transact packets on
949 * @budget: Total limit on number of packets to process
950 *
951 * This function provides a "bounce buffer" approach to Rx interrupt
952 * processing. The advantage to this is that on systems that have
953 * expensive overhead for IOMMU access this provides a means of avoiding
954 * it by maintaining the mapping of the page to the system.
955 *
956 * Returns amount of work completed
957 */
958static int ice_clean_rx_irq(struct ice_ring *rx_ring, int budget)
959{
960 unsigned int total_rx_bytes = 0, total_rx_pkts = 0;
961 u16 cleaned_count = ICE_DESC_UNUSED(rx_ring);
962 bool failure = false;
963
964 /* start the loop to process RX packets bounded by 'budget' */
965 while (likely(total_rx_pkts < (unsigned int)budget)) {
966 union ice_32b_rx_flex_desc *rx_desc;
967 struct sk_buff *skb;
968 u16 stat_err_bits;
969 u16 vlan_tag = 0;
970 u8 rx_ptype;
971
972 /* return some buffers to hardware, one at a time is too slow */
973 if (cleaned_count >= ICE_RX_BUF_WRITE) {
974 failure = failure ||
975 ice_alloc_rx_bufs(rx_ring, cleaned_count);
976 cleaned_count = 0;
977 }
978
979 /* get the RX desc from RX ring based on 'next_to_clean' */
980 rx_desc = ICE_RX_DESC(rx_ring, rx_ring->next_to_clean);
981
982 /* status_error_len will always be zero for unused descriptors
983 * because it's cleared in cleanup, and overlaps with hdr_addr
984 * which is always zero because packet split isn't used, if the
985 * hardware wrote DD then it will be non-zero
986 */
987 stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S);
988 if (!ice_test_staterr(rx_desc, stat_err_bits))
989 break;
990
991 /* This memory barrier is needed to keep us from reading
992 * any other fields out of the rx_desc until we know the
993 * DD bit is set.
994 */
995 dma_rmb();
996
997 /* allocate (if needed) and populate skb */
998 skb = ice_fetch_rx_buf(rx_ring, rx_desc);
999 if (!skb)
1000 break;
1001
1002 cleaned_count++;
1003
1004 /* skip if it is NOP desc */
1005 if (ice_is_non_eop(rx_ring, rx_desc, skb))
1006 continue;
1007
1008 stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_RXE_S);
1009 if (unlikely(ice_test_staterr(rx_desc, stat_err_bits))) {
1010 dev_kfree_skb_any(skb);
1011 continue;
1012 }
1013
1014 rx_ptype = le16_to_cpu(rx_desc->wb.ptype_flex_flags0) &
1015 ICE_RX_FLEX_DESC_PTYPE_M;
1016
1017 stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_L2TAG1P_S);
1018 if (ice_test_staterr(rx_desc, stat_err_bits))
1019 vlan_tag = le16_to_cpu(rx_desc->wb.l2tag1);
1020
1021 /* correct empty headers and pad skb if needed (to make valid
1022 * ethernet frame
1023 */
1024 if (ice_cleanup_headers(skb)) {
1025 skb = NULL;
1026 continue;
1027 }
1028
1029 /* probably a little skewed due to removing CRC */
1030 total_rx_bytes += skb->len;
1031
1032 /* populate checksum, VLAN, and protocol */
1033 ice_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
1034
1035 /* send completed skb up the stack */
1036 ice_receive_skb(rx_ring, skb, vlan_tag);
1037
1038 /* update budget accounting */
1039 total_rx_pkts++;
1040 }
1041
1042 /* update queue and vector specific stats */
1043 u64_stats_update_begin(&rx_ring->syncp);
1044 rx_ring->stats.pkts += total_rx_pkts;
1045 rx_ring->stats.bytes += total_rx_bytes;
1046 u64_stats_update_end(&rx_ring->syncp);
1047 rx_ring->q_vector->rx.total_pkts += total_rx_pkts;
1048 rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
1049
1050 /* guarantee a trip back through this routine if there was a failure */
1051 return failure ? budget : (int)total_rx_pkts;
1052}
1053
1054/**
1055 * ice_napi_poll - NAPI polling Rx/Tx cleanup routine
1056 * @napi: napi struct with our devices info in it
1057 * @budget: amount of work driver is allowed to do this pass, in packets
1058 *
1059 * This function will clean all queues associated with a q_vector.
1060 *
1061 * Returns the amount of work done
1062 */
1063int ice_napi_poll(struct napi_struct *napi, int budget)
1064{
1065 struct ice_q_vector *q_vector =
1066 container_of(napi, struct ice_q_vector, napi);
1067 struct ice_vsi *vsi = q_vector->vsi;
1068 struct ice_pf *pf = vsi->back;
1069 bool clean_complete = true;
1070 int budget_per_ring = 0;
1071 struct ice_ring *ring;
1072 int work_done = 0;
1073
1074 /* Since the actual Tx work is minimal, we can give the Tx a larger
1075 * budget and be more aggressive about cleaning up the Tx descriptors.
1076 */
1077 ice_for_each_ring(ring, q_vector->tx)
1078 if (!ice_clean_tx_irq(vsi, ring, budget))
1079 clean_complete = false;
1080
1081 /* Handle case where we are called by netpoll with a budget of 0 */
1082 if (budget <= 0)
1083 return budget;
1084
1085 /* We attempt to distribute budget to each Rx queue fairly, but don't
1086 * allow the budget to go below 1 because that would exit polling early.
1087 */
1088 if (q_vector->num_ring_rx)
1089 budget_per_ring = max(budget / q_vector->num_ring_rx, 1);
1090
1091 ice_for_each_ring(ring, q_vector->rx) {
1092 int cleaned;
1093
1094 cleaned = ice_clean_rx_irq(ring, budget_per_ring);
1095 work_done += cleaned;
1096 /* if we clean as many as budgeted, we must not be done */
1097 if (cleaned >= budget_per_ring)
1098 clean_complete = false;
1099 }
1100
1101 /* If work not completed, return budget and polling will return */
1102 if (!clean_complete)
1103 return budget;
1104
1105 /* Work is done so exit the polling mode and re-enable the interrupt */
1106 napi_complete_done(napi, work_done);
1107 if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags))
1108 ice_irq_dynamic_ena(&vsi->back->hw, vsi, q_vector);
1109 return 0;
1110}
1111
1112/* helper function for building cmd/type/offset */
1113static __le64
1114build_ctob(u64 td_cmd, u64 td_offset, unsigned int size, u64 td_tag)
1115{
1116 return cpu_to_le64(ICE_TX_DESC_DTYPE_DATA |
1117 (td_cmd << ICE_TXD_QW1_CMD_S) |
1118 (td_offset << ICE_TXD_QW1_OFFSET_S) |
1119 ((u64)size << ICE_TXD_QW1_TX_BUF_SZ_S) |
1120 (td_tag << ICE_TXD_QW1_L2TAG1_S));
1121}
1122
1123/**
1124 * __ice_maybe_stop_tx - 2nd level check for tx stop conditions
1125 * @tx_ring: the ring to be checked
1126 * @size: the size buffer we want to assure is available
1127 *
1128 * Returns -EBUSY if a stop is needed, else 0
1129 */
1130static int __ice_maybe_stop_tx(struct ice_ring *tx_ring, unsigned int size)
1131{
1132 netif_stop_subqueue(tx_ring->netdev, tx_ring->q_index);
1133 /* Memory barrier before checking head and tail */
1134 smp_mb();
1135
1136 /* Check again in a case another CPU has just made room available. */
1137 if (likely(ICE_DESC_UNUSED(tx_ring) < size))
1138 return -EBUSY;
1139
1140 /* A reprieve! - use start_subqueue because it doesn't call schedule */
1141 netif_start_subqueue(tx_ring->netdev, tx_ring->q_index);
1142 ++tx_ring->tx_stats.restart_q;
1143 return 0;
1144}
1145
1146/**
1147 * ice_maybe_stop_tx - 1st level check for tx stop conditions
1148 * @tx_ring: the ring to be checked
1149 * @size: the size buffer we want to assure is available
1150 *
1151 * Returns 0 if stop is not needed
1152 */
1153static int ice_maybe_stop_tx(struct ice_ring *tx_ring, unsigned int size)
1154{
1155 if (likely(ICE_DESC_UNUSED(tx_ring) >= size))
1156 return 0;
1157 return __ice_maybe_stop_tx(tx_ring, size);
1158}
1159
1160/**
1161 * ice_tx_map - Build the Tx descriptor
1162 * @tx_ring: ring to send buffer on
1163 * @first: first buffer info buffer to use
1164 * @off: pointer to struct that holds offload parameters
1165 *
1166 * This function loops over the skb data pointed to by *first
1167 * and gets a physical address for each memory location and programs
1168 * it and the length into the transmit descriptor.
1169 */
1170static void
1171ice_tx_map(struct ice_ring *tx_ring, struct ice_tx_buf *first,
1172 struct ice_tx_offload_params *off)
1173{
1174 u64 td_offset, td_tag, td_cmd;
1175 u16 i = tx_ring->next_to_use;
1176 struct skb_frag_struct *frag;
1177 unsigned int data_len, size;
1178 struct ice_tx_desc *tx_desc;
1179 struct ice_tx_buf *tx_buf;
1180 struct sk_buff *skb;
1181 dma_addr_t dma;
1182
1183 td_tag = off->td_l2tag1;
1184 td_cmd = off->td_cmd;
1185 td_offset = off->td_offset;
1186 skb = first->skb;
1187
1188 data_len = skb->data_len;
1189 size = skb_headlen(skb);
1190
1191 tx_desc = ICE_TX_DESC(tx_ring, i);
1192
1193 if (first->tx_flags & ICE_TX_FLAGS_HW_VLAN) {
1194 td_cmd |= (u64)ICE_TX_DESC_CMD_IL2TAG1;
1195 td_tag = (first->tx_flags & ICE_TX_FLAGS_VLAN_M) >>
1196 ICE_TX_FLAGS_VLAN_S;
1197 }
1198
1199 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
1200
1201 tx_buf = first;
1202
1203 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1204 unsigned int max_data = ICE_MAX_DATA_PER_TXD_ALIGNED;
1205
1206 if (dma_mapping_error(tx_ring->dev, dma))
1207 goto dma_error;
1208
1209 /* record length, and DMA address */
1210 dma_unmap_len_set(tx_buf, len, size);
1211 dma_unmap_addr_set(tx_buf, dma, dma);
1212
1213 /* align size to end of page */
1214 max_data += -dma & (ICE_MAX_READ_REQ_SIZE - 1);
1215 tx_desc->buf_addr = cpu_to_le64(dma);
1216
1217 /* account for data chunks larger than the hardware
1218 * can handle
1219 */
1220 while (unlikely(size > ICE_MAX_DATA_PER_TXD)) {
1221 tx_desc->cmd_type_offset_bsz =
1222 build_ctob(td_cmd, td_offset, max_data, td_tag);
1223
1224 tx_desc++;
1225 i++;
1226
1227 if (i == tx_ring->count) {
1228 tx_desc = ICE_TX_DESC(tx_ring, 0);
1229 i = 0;
1230 }
1231
1232 dma += max_data;
1233 size -= max_data;
1234
1235 max_data = ICE_MAX_DATA_PER_TXD_ALIGNED;
1236 tx_desc->buf_addr = cpu_to_le64(dma);
1237 }
1238
1239 if (likely(!data_len))
1240 break;
1241
1242 tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
1243 size, td_tag);
1244
1245 tx_desc++;
1246 i++;
1247
1248 if (i == tx_ring->count) {
1249 tx_desc = ICE_TX_DESC(tx_ring, 0);
1250 i = 0;
1251 }
1252
1253 size = skb_frag_size(frag);
1254 data_len -= size;
1255
1256 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
1257 DMA_TO_DEVICE);
1258
1259 tx_buf = &tx_ring->tx_buf[i];
1260 }
1261
1262 /* record bytecount for BQL */
1263 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1264
1265 /* record SW timestamp if HW timestamp is not available */
1266 skb_tx_timestamp(first->skb);
1267
1268 i++;
1269 if (i == tx_ring->count)
1270 i = 0;
1271
1272 /* write last descriptor with RS and EOP bits */
1273 td_cmd |= (u64)(ICE_TX_DESC_CMD_EOP | ICE_TX_DESC_CMD_RS);
1274 tx_desc->cmd_type_offset_bsz =
1275 build_ctob(td_cmd, td_offset, size, td_tag);
1276
1277 /* Force memory writes to complete before letting h/w know there
1278 * are new descriptors to fetch.
1279 *
1280 * We also use this memory barrier to make certain all of the
1281 * status bits have been updated before next_to_watch is written.
1282 */
1283 wmb();
1284
1285 /* set next_to_watch value indicating a packet is present */
1286 first->next_to_watch = tx_desc;
1287
1288 tx_ring->next_to_use = i;
1289
1290 ice_maybe_stop_tx(tx_ring, DESC_NEEDED);
1291
1292 /* notify HW of packet */
1293 if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) {
1294 writel(i, tx_ring->tail);
1295
1296 /* we need this if more than one processor can write to our tail
1297 * at a time, it synchronizes IO on IA64/Altix systems
1298 */
1299 mmiowb();
1300 }
1301
1302 return;
1303
1304dma_error:
1305 /* clear dma mappings for failed tx_buf map */
1306 for (;;) {
1307 tx_buf = &tx_ring->tx_buf[i];
1308 ice_unmap_and_free_tx_buf(tx_ring, tx_buf);
1309 if (tx_buf == first)
1310 break;
1311 if (i == 0)
1312 i = tx_ring->count;
1313 i--;
1314 }
1315
1316 tx_ring->next_to_use = i;
1317}
1318
1319/**
1320 * ice_tx_csum - Enable Tx checksum offloads
1321 * @first: pointer to the first descriptor
1322 * @off: pointer to struct that holds offload parameters
1323 *
1324 * Returns 0 or error (negative) if checksum offload can't happen, 1 otherwise.
1325 */
1326static
1327int ice_tx_csum(struct ice_tx_buf *first, struct ice_tx_offload_params *off)
1328{
1329 u32 l4_len = 0, l3_len = 0, l2_len = 0;
1330 struct sk_buff *skb = first->skb;
1331 union {
1332 struct iphdr *v4;
1333 struct ipv6hdr *v6;
1334 unsigned char *hdr;
1335 } ip;
1336 union {
1337 struct tcphdr *tcp;
1338 unsigned char *hdr;
1339 } l4;
1340 __be16 frag_off, protocol;
1341 unsigned char *exthdr;
1342 u32 offset, cmd = 0;
1343 u8 l4_proto = 0;
1344
1345 if (skb->ip_summed != CHECKSUM_PARTIAL)
1346 return 0;
1347
1348 ip.hdr = skb_network_header(skb);
1349 l4.hdr = skb_transport_header(skb);
1350
1351 /* compute outer L2 header size */
1352 l2_len = ip.hdr - skb->data;
1353 offset = (l2_len / 2) << ICE_TX_DESC_LEN_MACLEN_S;
1354
1355 if (skb->encapsulation)
1356 return -1;
1357
1358 /* Enable IP checksum offloads */
1359 protocol = vlan_get_protocol(skb);
1360 if (protocol == htons(ETH_P_IP)) {
1361 l4_proto = ip.v4->protocol;
1362 /* the stack computes the IP header already, the only time we
1363 * need the hardware to recompute it is in the case of TSO.
1364 */
1365 if (first->tx_flags & ICE_TX_FLAGS_TSO)
1366 cmd |= ICE_TX_DESC_CMD_IIPT_IPV4_CSUM;
1367 else
1368 cmd |= ICE_TX_DESC_CMD_IIPT_IPV4;
1369
1370 } else if (protocol == htons(ETH_P_IPV6)) {
1371 cmd |= ICE_TX_DESC_CMD_IIPT_IPV6;
1372 exthdr = ip.hdr + sizeof(*ip.v6);
1373 l4_proto = ip.v6->nexthdr;
1374 if (l4.hdr != exthdr)
1375 ipv6_skip_exthdr(skb, exthdr - skb->data, &l4_proto,
1376 &frag_off);
1377 } else {
1378 return -1;
1379 }
1380
1381 /* compute inner L3 header size */
1382 l3_len = l4.hdr - ip.hdr;
1383 offset |= (l3_len / 4) << ICE_TX_DESC_LEN_IPLEN_S;
1384
1385 /* Enable L4 checksum offloads */
1386 switch (l4_proto) {
1387 case IPPROTO_TCP:
1388 /* enable checksum offloads */
1389 cmd |= ICE_TX_DESC_CMD_L4T_EOFT_TCP;
1390 l4_len = l4.tcp->doff;
1391 offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
1392 break;
1393 case IPPROTO_UDP:
1394 /* enable UDP checksum offload */
1395 cmd |= ICE_TX_DESC_CMD_L4T_EOFT_UDP;
1396 l4_len = (sizeof(struct udphdr) >> 2);
1397 offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
1398 break;
1399 case IPPROTO_SCTP:
1400 default:
1401 if (first->tx_flags & ICE_TX_FLAGS_TSO)
1402 return -1;
1403 skb_checksum_help(skb);
1404 return 0;
1405 }
1406
1407 off->td_cmd |= cmd;
1408 off->td_offset |= offset;
1409 return 1;
1410}
1411
1412/**
1413 * ice_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
1414 * @tx_ring: ring to send buffer on
1415 * @first: pointer to struct ice_tx_buf
1416 *
1417 * Checks the skb and set up correspondingly several generic transmit flags
1418 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
1419 *
1420 * Returns error code indicate the frame should be dropped upon error and the
1421 * otherwise returns 0 to indicate the flags has been set properly.
1422 */
1423static int
1424ice_tx_prepare_vlan_flags(struct ice_ring *tx_ring, struct ice_tx_buf *first)
1425{
1426 struct sk_buff *skb = first->skb;
1427 __be16 protocol = skb->protocol;
1428
1429 if (protocol == htons(ETH_P_8021Q) &&
1430 !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
1431 /* when HW VLAN acceleration is turned off by the user the
1432 * stack sets the protocol to 8021q so that the driver
1433 * can take any steps required to support the SW only
1434 * VLAN handling. In our case the driver doesn't need
1435 * to take any further steps so just set the protocol
1436 * to the encapsulated ethertype.
1437 */
1438 skb->protocol = vlan_get_protocol(skb);
1439 goto out;
1440 }
1441
1442 /* if we have a HW VLAN tag being added, default to the HW one */
1443 if (skb_vlan_tag_present(skb)) {
1444 first->tx_flags |= skb_vlan_tag_get(skb) << ICE_TX_FLAGS_VLAN_S;
1445 first->tx_flags |= ICE_TX_FLAGS_HW_VLAN;
1446 } else if (protocol == htons(ETH_P_8021Q)) {
1447 struct vlan_hdr *vhdr, _vhdr;
1448
1449 /* for SW VLAN, check the next protocol and store the tag */
1450 vhdr = (struct vlan_hdr *)skb_header_pointer(skb, ETH_HLEN,
1451 sizeof(_vhdr),
1452 &_vhdr);
1453 if (!vhdr)
1454 return -EINVAL;
1455
1456 first->tx_flags |= ntohs(vhdr->h_vlan_TCI) <<
1457 ICE_TX_FLAGS_VLAN_S;
1458 first->tx_flags |= ICE_TX_FLAGS_SW_VLAN;
1459 }
1460
1461out:
1462 return 0;
1463}
1464
1465/**
1466 * ice_tso - computes mss and TSO length to prepare for TSO
1467 * @first: pointer to struct ice_tx_buf
1468 * @off: pointer to struct that holds offload parameters
1469 *
1470 * Returns 0 or error (negative) if TSO can't happen, 1 otherwise.
1471 */
1472static
1473int ice_tso(struct ice_tx_buf *first, struct ice_tx_offload_params *off)
1474{
1475 struct sk_buff *skb = first->skb;
1476 union {
1477 struct iphdr *v4;
1478 struct ipv6hdr *v6;
1479 unsigned char *hdr;
1480 } ip;
1481 union {
1482 struct tcphdr *tcp;
1483 unsigned char *hdr;
1484 } l4;
1485 u64 cd_mss, cd_tso_len;
1486 u32 paylen, l4_start;
1487 int err;
1488
1489 if (skb->ip_summed != CHECKSUM_PARTIAL)
1490 return 0;
1491
1492 if (!skb_is_gso(skb))
1493 return 0;
1494
1495 err = skb_cow_head(skb, 0);
1496 if (err < 0)
1497 return err;
1498
1499 ip.hdr = skb_network_header(skb);
1500 l4.hdr = skb_transport_header(skb);
1501
1502 /* initialize outer IP header fields */
1503 if (ip.v4->version == 4) {
1504 ip.v4->tot_len = 0;
1505 ip.v4->check = 0;
1506 } else {
1507 ip.v6->payload_len = 0;
1508 }
1509
1510 /* determine offset of transport header */
1511 l4_start = l4.hdr - skb->data;
1512
1513 /* remove payload length from checksum */
1514 paylen = skb->len - l4_start;
1515 csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));
1516
1517 /* compute length of segmentation header */
1518 off->header_len = (l4.tcp->doff * 4) + l4_start;
1519
1520 /* update gso_segs and bytecount */
1521 first->gso_segs = skb_shinfo(skb)->gso_segs;
1522 first->bytecount = (first->gso_segs - 1) * off->header_len;
1523
1524 cd_tso_len = skb->len - off->header_len;
1525 cd_mss = skb_shinfo(skb)->gso_size;
1526
1527 /* record cdesc_qw1 with TSO parameters */
1528 off->cd_qw1 |= ICE_TX_DESC_DTYPE_CTX |
1529 (ICE_TX_CTX_DESC_TSO << ICE_TXD_CTX_QW1_CMD_S) |
1530 (cd_tso_len << ICE_TXD_CTX_QW1_TSO_LEN_S) |
1531 (cd_mss << ICE_TXD_CTX_QW1_MSS_S);
1532 first->tx_flags |= ICE_TX_FLAGS_TSO;
1533 return 1;
1534}
1535
1536/**
1537 * ice_txd_use_count - estimate the number of descriptors needed for Tx
1538 * @size: transmit request size in bytes
1539 *
1540 * Due to hardware alignment restrictions (4K alignment), we need to
1541 * assume that we can have no more than 12K of data per descriptor, even
1542 * though each descriptor can take up to 16K - 1 bytes of aligned memory.
1543 * Thus, we need to divide by 12K. But division is slow! Instead,
1544 * we decompose the operation into shifts and one relatively cheap
1545 * multiply operation.
1546 *
1547 * To divide by 12K, we first divide by 4K, then divide by 3:
1548 * To divide by 4K, shift right by 12 bits
1549 * To divide by 3, multiply by 85, then divide by 256
1550 * (Divide by 256 is done by shifting right by 8 bits)
1551 * Finally, we add one to round up. Because 256 isn't an exact multiple of
1552 * 3, we'll underestimate near each multiple of 12K. This is actually more
1553 * accurate as we have 4K - 1 of wiggle room that we can fit into the last
1554 * segment. For our purposes this is accurate out to 1M which is orders of
1555 * magnitude greater than our largest possible GSO size.
1556 *
1557 * This would then be implemented as:
1558 * return (((size >> 12) * 85) >> 8) + 1;
1559 *
1560 * Since multiplication and division are commutative, we can reorder
1561 * operations into:
1562 * return ((size * 85) >> 20) + 1;
1563 */
1564static unsigned int ice_txd_use_count(unsigned int size)
1565{
1566 return ((size * 85) >> 20) + 1;
1567}
1568
1569/**
1570 * ice_xmit_desc_count - calculate number of tx descriptors needed
1571 * @skb: send buffer
1572 *
1573 * Returns number of data descriptors needed for this skb.
1574 */
1575static unsigned int ice_xmit_desc_count(struct sk_buff *skb)
1576{
1577 const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
1578 unsigned int nr_frags = skb_shinfo(skb)->nr_frags;
1579 unsigned int count = 0, size = skb_headlen(skb);
1580
1581 for (;;) {
1582 count += ice_txd_use_count(size);
1583
1584 if (!nr_frags--)
1585 break;
1586
1587 size = skb_frag_size(frag++);
1588 }
1589
1590 return count;
1591}
1592
1593/**
1594 * __ice_chk_linearize - Check if there are more than 8 buffers per packet
1595 * @skb: send buffer
1596 *
1597 * Note: This HW can't DMA more than 8 buffers to build a packet on the wire
1598 * and so we need to figure out the cases where we need to linearize the skb.
1599 *
1600 * For TSO we need to count the TSO header and segment payload separately.
1601 * As such we need to check cases where we have 7 fragments or more as we
1602 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
1603 * the segment payload in the first descriptor, and another 7 for the
1604 * fragments.
1605 */
1606static bool __ice_chk_linearize(struct sk_buff *skb)
1607{
1608 const struct skb_frag_struct *frag, *stale;
1609 int nr_frags, sum;
1610
1611 /* no need to check if number of frags is less than 7 */
1612 nr_frags = skb_shinfo(skb)->nr_frags;
1613 if (nr_frags < (ICE_MAX_BUF_TXD - 1))
1614 return false;
1615
1616 /* We need to walk through the list and validate that each group
1617 * of 6 fragments totals at least gso_size.
1618 */
1619 nr_frags -= ICE_MAX_BUF_TXD - 2;
1620 frag = &skb_shinfo(skb)->frags[0];
1621
1622 /* Initialize size to the negative value of gso_size minus 1. We
1623 * use this as the worst case scenerio in which the frag ahead
1624 * of us only provides one byte which is why we are limited to 6
1625 * descriptors for a single transmit as the header and previous
1626 * fragment are already consuming 2 descriptors.
1627 */
1628 sum = 1 - skb_shinfo(skb)->gso_size;
1629
1630 /* Add size of frags 0 through 4 to create our initial sum */
1631 sum += skb_frag_size(frag++);
1632 sum += skb_frag_size(frag++);
1633 sum += skb_frag_size(frag++);
1634 sum += skb_frag_size(frag++);
1635 sum += skb_frag_size(frag++);
1636
1637 /* Walk through fragments adding latest fragment, testing it, and
1638 * then removing stale fragments from the sum.
1639 */
1640 stale = &skb_shinfo(skb)->frags[0];
1641 for (;;) {
1642 sum += skb_frag_size(frag++);
1643
1644 /* if sum is negative we failed to make sufficient progress */
1645 if (sum < 0)
1646 return true;
1647
1648 if (!nr_frags--)
1649 break;
1650
1651 sum -= skb_frag_size(stale++);
1652 }
1653
1654 return false;
1655}
1656
1657/**
1658 * ice_chk_linearize - Check if there are more than 8 fragments per packet
1659 * @skb: send buffer
1660 * @count: number of buffers used
1661 *
1662 * Note: Our HW can't scatter-gather more than 8 fragments to build
1663 * a packet on the wire and so we need to figure out the cases where we
1664 * need to linearize the skb.
1665 */
1666static bool ice_chk_linearize(struct sk_buff *skb, unsigned int count)
1667{
1668 /* Both TSO and single send will work if count is less than 8 */
1669 if (likely(count < ICE_MAX_BUF_TXD))
1670 return false;
1671
1672 if (skb_is_gso(skb))
1673 return __ice_chk_linearize(skb);
1674
1675 /* we can support up to 8 data buffers for a single send */
1676 return count != ICE_MAX_BUF_TXD;
1677}
1678
1679/**
1680 * ice_xmit_frame_ring - Sends buffer on Tx ring
1681 * @skb: send buffer
1682 * @tx_ring: ring to send buffer on
1683 *
1684 * Returns NETDEV_TX_OK if sent, else an error code
1685 */
1686static netdev_tx_t
1687ice_xmit_frame_ring(struct sk_buff *skb, struct ice_ring *tx_ring)
1688{
1689 struct ice_tx_offload_params offload = { 0 };
1690 struct ice_tx_buf *first;
1691 unsigned int count;
1692 int tso, csum;
1693
1694 count = ice_xmit_desc_count(skb);
1695 if (ice_chk_linearize(skb, count)) {
1696 if (__skb_linearize(skb))
1697 goto out_drop;
1698 count = ice_txd_use_count(skb->len);
1699 tx_ring->tx_stats.tx_linearize++;
1700 }
1701
1702 /* need: 1 descriptor per page * PAGE_SIZE/ICE_MAX_DATA_PER_TXD,
1703 * + 1 desc for skb_head_len/ICE_MAX_DATA_PER_TXD,
1704 * + 4 desc gap to avoid the cache line where head is,
1705 * + 1 desc for context descriptor,
1706 * otherwise try next time
1707 */
1708 if (ice_maybe_stop_tx(tx_ring, count + 4 + 1)) {
1709 tx_ring->tx_stats.tx_busy++;
1710 return NETDEV_TX_BUSY;
1711 }
1712
1713 offload.tx_ring = tx_ring;
1714
1715 /* record the location of the first descriptor for this packet */
1716 first = &tx_ring->tx_buf[tx_ring->next_to_use];
1717 first->skb = skb;
1718 first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN);
1719 first->gso_segs = 1;
1720 first->tx_flags = 0;
1721
1722 /* prepare the VLAN tagging flags for Tx */
1723 if (ice_tx_prepare_vlan_flags(tx_ring, first))
1724 goto out_drop;
1725
1726 /* set up TSO offload */
1727 tso = ice_tso(first, &offload);
1728 if (tso < 0)
1729 goto out_drop;
1730
1731 /* always set up Tx checksum offload */
1732 csum = ice_tx_csum(first, &offload);
1733 if (csum < 0)
1734 goto out_drop;
1735
1736 if (tso || offload.cd_tunnel_params) {
1737 struct ice_tx_ctx_desc *cdesc;
1738 int i = tx_ring->next_to_use;
1739
1740 /* grab the next descriptor */
1741 cdesc = ICE_TX_CTX_DESC(tx_ring, i);
1742 i++;
1743 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1744
1745 /* setup context descriptor */
1746 cdesc->tunneling_params = cpu_to_le32(offload.cd_tunnel_params);
1747 cdesc->l2tag2 = cpu_to_le16(offload.cd_l2tag2);
1748 cdesc->rsvd = cpu_to_le16(0);
1749 cdesc->qw1 = cpu_to_le64(offload.cd_qw1);
1750 }
1751
1752 ice_tx_map(tx_ring, first, &offload);
1753 return NETDEV_TX_OK;
1754
1755out_drop:
1756 dev_kfree_skb_any(skb);
1757 return NETDEV_TX_OK;
1758}
1759
1760/**
1761 * ice_start_xmit - Selects the correct VSI and Tx queue to send buffer
1762 * @skb: send buffer
1763 * @netdev: network interface device structure
1764 *
1765 * Returns NETDEV_TX_OK if sent, else an error code
1766 */
1767netdev_tx_t ice_start_xmit(struct sk_buff *skb, struct net_device *netdev)
1768{
1769 struct ice_netdev_priv *np = netdev_priv(netdev);
1770 struct ice_vsi *vsi = np->vsi;
1771 struct ice_ring *tx_ring;
1772
1773 tx_ring = vsi->tx_rings[skb->queue_mapping];
1774
1775 /* hardware can't handle really short frames, hardware padding works
1776 * beyond this point
1777 */
1778 if (skb_put_padto(skb, ICE_MIN_TX_LEN))
1779 return NETDEV_TX_OK;
1780
1781 return ice_xmit_frame_ring(skb, tx_ring);
1782}