Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright (c) 2018, Intel Corporation. */
   3
   4/* The driver transmit and receive code */
   5
   6#include <linux/prefetch.h>
   7#include <linux/mm.h>
   8#include <linux/bpf_trace.h>
   9#include <net/xdp.h>
  10#include "ice_txrx_lib.h"
  11#include "ice_lib.h"
  12#include "ice.h"
  13#include "ice_dcb_lib.h"
  14#include "ice_xsk.h"
  15
  16#define ICE_RX_HDR_SIZE		256
  17
  18#define FDIR_DESC_RXDID 0x40
  19#define ICE_FDIR_CLEAN_DELAY 10
  20
  21/**
  22 * ice_prgm_fdir_fltr - Program a Flow Director filter
  23 * @vsi: VSI to send dummy packet
  24 * @fdir_desc: flow director descriptor
  25 * @raw_packet: allocated buffer for flow director
  26 */
  27int
  28ice_prgm_fdir_fltr(struct ice_vsi *vsi, struct ice_fltr_desc *fdir_desc,
  29		   u8 *raw_packet)
  30{
  31	struct ice_tx_buf *tx_buf, *first;
  32	struct ice_fltr_desc *f_desc;
  33	struct ice_tx_desc *tx_desc;
  34	struct ice_ring *tx_ring;
  35	struct device *dev;
  36	dma_addr_t dma;
  37	u32 td_cmd;
  38	u16 i;
  39
  40	/* VSI and Tx ring */
  41	if (!vsi)
  42		return -ENOENT;
  43	tx_ring = vsi->tx_rings[0];
  44	if (!tx_ring || !tx_ring->desc)
  45		return -ENOENT;
  46	dev = tx_ring->dev;
  47
  48	/* we are using two descriptors to add/del a filter and we can wait */
  49	for (i = ICE_FDIR_CLEAN_DELAY; ICE_DESC_UNUSED(tx_ring) < 2; i--) {
  50		if (!i)
  51			return -EAGAIN;
  52		msleep_interruptible(1);
  53	}
  54
  55	dma = dma_map_single(dev, raw_packet, ICE_FDIR_MAX_RAW_PKT_SIZE,
  56			     DMA_TO_DEVICE);
  57
  58	if (dma_mapping_error(dev, dma))
  59		return -EINVAL;
  60
  61	/* grab the next descriptor */
  62	i = tx_ring->next_to_use;
  63	first = &tx_ring->tx_buf[i];
  64	f_desc = ICE_TX_FDIRDESC(tx_ring, i);
  65	memcpy(f_desc, fdir_desc, sizeof(*f_desc));
  66
  67	i++;
  68	i = (i < tx_ring->count) ? i : 0;
  69	tx_desc = ICE_TX_DESC(tx_ring, i);
  70	tx_buf = &tx_ring->tx_buf[i];
  71
  72	i++;
  73	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
  74
  75	memset(tx_buf, 0, sizeof(*tx_buf));
  76	dma_unmap_len_set(tx_buf, len, ICE_FDIR_MAX_RAW_PKT_SIZE);
  77	dma_unmap_addr_set(tx_buf, dma, dma);
  78
  79	tx_desc->buf_addr = cpu_to_le64(dma);
  80	td_cmd = ICE_TXD_LAST_DESC_CMD | ICE_TX_DESC_CMD_DUMMY |
  81		 ICE_TX_DESC_CMD_RE;
  82
  83	tx_buf->tx_flags = ICE_TX_FLAGS_DUMMY_PKT;
  84	tx_buf->raw_buf = raw_packet;
  85
  86	tx_desc->cmd_type_offset_bsz =
  87		ice_build_ctob(td_cmd, 0, ICE_FDIR_MAX_RAW_PKT_SIZE, 0);
  88
  89	/* Force memory write to complete before letting h/w know
  90	 * there are new descriptors to fetch.
  91	 */
  92	wmb();
  93
  94	/* mark the data descriptor to be watched */
  95	first->next_to_watch = tx_desc;
  96
  97	writel(tx_ring->next_to_use, tx_ring->tail);
  98
  99	return 0;
 100}
 101
 102/**
 103 * ice_unmap_and_free_tx_buf - Release a Tx buffer
 104 * @ring: the ring that owns the buffer
 105 * @tx_buf: the buffer to free
 106 */
 107static void
 108ice_unmap_and_free_tx_buf(struct ice_ring *ring, struct ice_tx_buf *tx_buf)
 109{
 110	if (tx_buf->skb) {
 111		if (tx_buf->tx_flags & ICE_TX_FLAGS_DUMMY_PKT)
 112			devm_kfree(ring->dev, tx_buf->raw_buf);
 113		else if (ice_ring_is_xdp(ring))
 114			page_frag_free(tx_buf->raw_buf);
 115		else
 116			dev_kfree_skb_any(tx_buf->skb);
 117		if (dma_unmap_len(tx_buf, len))
 118			dma_unmap_single(ring->dev,
 119					 dma_unmap_addr(tx_buf, dma),
 120					 dma_unmap_len(tx_buf, len),
 121					 DMA_TO_DEVICE);
 122	} else if (dma_unmap_len(tx_buf, len)) {
 123		dma_unmap_page(ring->dev,
 124			       dma_unmap_addr(tx_buf, dma),
 125			       dma_unmap_len(tx_buf, len),
 126			       DMA_TO_DEVICE);
 127	}
 128
 129	tx_buf->next_to_watch = NULL;
 130	tx_buf->skb = NULL;
 131	dma_unmap_len_set(tx_buf, len, 0);
 132	/* tx_buf must be completely set up in the transmit path */
 133}
 134
 135static struct netdev_queue *txring_txq(const struct ice_ring *ring)
 136{
 137	return netdev_get_tx_queue(ring->netdev, ring->q_index);
 138}
 139
 140/**
 141 * ice_clean_tx_ring - Free any empty Tx buffers
 142 * @tx_ring: ring to be cleaned
 143 */
 144void ice_clean_tx_ring(struct ice_ring *tx_ring)
 145{
 
 146	u16 i;
 147
 148	if (ice_ring_is_xdp(tx_ring) && tx_ring->xsk_umem) {
 149		ice_xsk_clean_xdp_ring(tx_ring);
 150		goto tx_skip_free;
 151	}
 152
 153	/* ring already cleared, nothing to do */
 154	if (!tx_ring->tx_buf)
 155		return;
 156
 157	/* Free all the Tx ring sk_buffs */
 158	for (i = 0; i < tx_ring->count; i++)
 159		ice_unmap_and_free_tx_buf(tx_ring, &tx_ring->tx_buf[i]);
 160
 161tx_skip_free:
 162	memset(tx_ring->tx_buf, 0, sizeof(*tx_ring->tx_buf) * tx_ring->count);
 163
 164	/* Zero out the descriptor ring */
 165	memset(tx_ring->desc, 0, tx_ring->size);
 166
 167	tx_ring->next_to_use = 0;
 168	tx_ring->next_to_clean = 0;
 169
 170	if (!tx_ring->netdev)
 171		return;
 172
 173	/* cleanup Tx queue statistics */
 174	netdev_tx_reset_queue(txring_txq(tx_ring));
 175}
 176
 177/**
 178 * ice_free_tx_ring - Free Tx resources per queue
 179 * @tx_ring: Tx descriptor ring for a specific queue
 180 *
 181 * Free all transmit software resources
 182 */
 183void ice_free_tx_ring(struct ice_ring *tx_ring)
 184{
 185	ice_clean_tx_ring(tx_ring);
 186	devm_kfree(tx_ring->dev, tx_ring->tx_buf);
 187	tx_ring->tx_buf = NULL;
 188
 189	if (tx_ring->desc) {
 190		dmam_free_coherent(tx_ring->dev, tx_ring->size,
 191				   tx_ring->desc, tx_ring->dma);
 192		tx_ring->desc = NULL;
 193	}
 194}
 195
 196/**
 197 * ice_clean_tx_irq - Reclaim resources after transmit completes
 
 198 * @tx_ring: Tx ring to clean
 199 * @napi_budget: Used to determine if we are in netpoll
 200 *
 201 * Returns true if there's any budget left (e.g. the clean is finished)
 202 */
 203static bool ice_clean_tx_irq(struct ice_ring *tx_ring, int napi_budget)
 
 204{
 205	unsigned int total_bytes = 0, total_pkts = 0;
 206	unsigned int budget = ICE_DFLT_IRQ_WORK;
 207	struct ice_vsi *vsi = tx_ring->vsi;
 208	s16 i = tx_ring->next_to_clean;
 209	struct ice_tx_desc *tx_desc;
 210	struct ice_tx_buf *tx_buf;
 211
 212	tx_buf = &tx_ring->tx_buf[i];
 213	tx_desc = ICE_TX_DESC(tx_ring, i);
 214	i -= tx_ring->count;
 215
 216	prefetch(&vsi->state);
 217
 218	do {
 219		struct ice_tx_desc *eop_desc = tx_buf->next_to_watch;
 220
 221		/* if next_to_watch is not set then there is no work pending */
 222		if (!eop_desc)
 223			break;
 224
 225		smp_rmb();	/* prevent any other reads prior to eop_desc */
 226
 227		/* if the descriptor isn't done, no work yet to do */
 228		if (!(eop_desc->cmd_type_offset_bsz &
 229		      cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE)))
 230			break;
 231
 232		/* clear next_to_watch to prevent false hangs */
 233		tx_buf->next_to_watch = NULL;
 234
 235		/* update the statistics for this packet */
 236		total_bytes += tx_buf->bytecount;
 237		total_pkts += tx_buf->gso_segs;
 238
 239		if (ice_ring_is_xdp(tx_ring))
 240			page_frag_free(tx_buf->raw_buf);
 241		else
 242			/* free the skb */
 243			napi_consume_skb(tx_buf->skb, napi_budget);
 244
 245		/* unmap skb header data */
 246		dma_unmap_single(tx_ring->dev,
 247				 dma_unmap_addr(tx_buf, dma),
 248				 dma_unmap_len(tx_buf, len),
 249				 DMA_TO_DEVICE);
 250
 251		/* clear tx_buf data */
 252		tx_buf->skb = NULL;
 253		dma_unmap_len_set(tx_buf, len, 0);
 254
 255		/* unmap remaining buffers */
 256		while (tx_desc != eop_desc) {
 257			tx_buf++;
 258			tx_desc++;
 259			i++;
 260			if (unlikely(!i)) {
 261				i -= tx_ring->count;
 262				tx_buf = tx_ring->tx_buf;
 263				tx_desc = ICE_TX_DESC(tx_ring, 0);
 264			}
 265
 266			/* unmap any remaining paged data */
 267			if (dma_unmap_len(tx_buf, len)) {
 268				dma_unmap_page(tx_ring->dev,
 269					       dma_unmap_addr(tx_buf, dma),
 270					       dma_unmap_len(tx_buf, len),
 271					       DMA_TO_DEVICE);
 272				dma_unmap_len_set(tx_buf, len, 0);
 273			}
 274		}
 275
 276		/* move us one more past the eop_desc for start of next pkt */
 277		tx_buf++;
 278		tx_desc++;
 279		i++;
 280		if (unlikely(!i)) {
 281			i -= tx_ring->count;
 282			tx_buf = tx_ring->tx_buf;
 283			tx_desc = ICE_TX_DESC(tx_ring, 0);
 284		}
 285
 286		prefetch(tx_desc);
 287
 288		/* update budget accounting */
 289		budget--;
 290	} while (likely(budget));
 291
 292	i += tx_ring->count;
 293	tx_ring->next_to_clean = i;
 294
 295	ice_update_tx_ring_stats(tx_ring, total_pkts, total_bytes);
 296
 297	if (ice_ring_is_xdp(tx_ring))
 298		return !!budget;
 
 299
 300	netdev_tx_completed_queue(txring_txq(tx_ring), total_pkts,
 301				  total_bytes);
 302
 303#define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
 304	if (unlikely(total_pkts && netif_carrier_ok(tx_ring->netdev) &&
 305		     (ICE_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
 306		/* Make sure that anybody stopping the queue after this
 307		 * sees the new next_to_clean.
 308		 */
 309		smp_mb();
 310		if (__netif_subqueue_stopped(tx_ring->netdev,
 311					     tx_ring->q_index) &&
 312		    !test_bit(__ICE_DOWN, vsi->state)) {
 313			netif_wake_subqueue(tx_ring->netdev,
 314					    tx_ring->q_index);
 315			++tx_ring->tx_stats.restart_q;
 316		}
 317	}
 318
 319	return !!budget;
 320}
 321
 322/**
 323 * ice_setup_tx_ring - Allocate the Tx descriptors
 324 * @tx_ring: the Tx ring to set up
 325 *
 326 * Return 0 on success, negative on error
 327 */
 328int ice_setup_tx_ring(struct ice_ring *tx_ring)
 329{
 330	struct device *dev = tx_ring->dev;
 
 331
 332	if (!dev)
 333		return -ENOMEM;
 334
 335	/* warn if we are about to overwrite the pointer */
 336	WARN_ON(tx_ring->tx_buf);
 337	tx_ring->tx_buf =
 338		devm_kzalloc(dev, sizeof(*tx_ring->tx_buf) * tx_ring->count,
 339			     GFP_KERNEL);
 340	if (!tx_ring->tx_buf)
 341		return -ENOMEM;
 342
 343	/* round up to nearest page */
 344	tx_ring->size = ALIGN(tx_ring->count * sizeof(struct ice_tx_desc),
 345			      PAGE_SIZE);
 346	tx_ring->desc = dmam_alloc_coherent(dev, tx_ring->size, &tx_ring->dma,
 347					    GFP_KERNEL);
 348	if (!tx_ring->desc) {
 349		dev_err(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
 350			tx_ring->size);
 351		goto err;
 352	}
 353
 354	tx_ring->next_to_use = 0;
 355	tx_ring->next_to_clean = 0;
 356	tx_ring->tx_stats.prev_pkt = -1;
 357	return 0;
 358
 359err:
 360	devm_kfree(dev, tx_ring->tx_buf);
 361	tx_ring->tx_buf = NULL;
 362	return -ENOMEM;
 363}
 364
 365/**
 366 * ice_clean_rx_ring - Free Rx buffers
 367 * @rx_ring: ring to be cleaned
 368 */
 369void ice_clean_rx_ring(struct ice_ring *rx_ring)
 370{
 371	struct device *dev = rx_ring->dev;
 
 372	u16 i;
 373
 374	/* ring already cleared, nothing to do */
 375	if (!rx_ring->rx_buf)
 376		return;
 377
 378	if (rx_ring->xsk_umem) {
 379		ice_xsk_clean_rx_ring(rx_ring);
 380		goto rx_skip_free;
 381	}
 382
 383	/* Free all the Rx ring sk_buffs */
 384	for (i = 0; i < rx_ring->count; i++) {
 385		struct ice_rx_buf *rx_buf = &rx_ring->rx_buf[i];
 386
 387		if (rx_buf->skb) {
 388			dev_kfree_skb(rx_buf->skb);
 389			rx_buf->skb = NULL;
 390		}
 391		if (!rx_buf->page)
 392			continue;
 393
 394		/* Invalidate cache lines that may have been written to by
 395		 * device so that we avoid corrupting memory.
 396		 */
 397		dma_sync_single_range_for_cpu(dev, rx_buf->dma,
 398					      rx_buf->page_offset,
 399					      rx_ring->rx_buf_len,
 400					      DMA_FROM_DEVICE);
 401
 402		/* free resources associated with mapping */
 403		dma_unmap_page_attrs(dev, rx_buf->dma, ice_rx_pg_size(rx_ring),
 404				     DMA_FROM_DEVICE, ICE_RX_DMA_ATTR);
 405		__page_frag_cache_drain(rx_buf->page, rx_buf->pagecnt_bias);
 406
 407		rx_buf->page = NULL;
 408		rx_buf->page_offset = 0;
 409	}
 410
 411rx_skip_free:
 412	memset(rx_ring->rx_buf, 0, sizeof(*rx_ring->rx_buf) * rx_ring->count);
 413
 414	/* Zero out the descriptor ring */
 415	memset(rx_ring->desc, 0, rx_ring->size);
 416
 417	rx_ring->next_to_alloc = 0;
 418	rx_ring->next_to_clean = 0;
 419	rx_ring->next_to_use = 0;
 420}
 421
 422/**
 423 * ice_free_rx_ring - Free Rx resources
 424 * @rx_ring: ring to clean the resources from
 425 *
 426 * Free all receive software resources
 427 */
 428void ice_free_rx_ring(struct ice_ring *rx_ring)
 429{
 430	ice_clean_rx_ring(rx_ring);
 431	if (rx_ring->vsi->type == ICE_VSI_PF)
 432		if (xdp_rxq_info_is_reg(&rx_ring->xdp_rxq))
 433			xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
 434	rx_ring->xdp_prog = NULL;
 435	devm_kfree(rx_ring->dev, rx_ring->rx_buf);
 436	rx_ring->rx_buf = NULL;
 437
 438	if (rx_ring->desc) {
 439		dmam_free_coherent(rx_ring->dev, rx_ring->size,
 440				   rx_ring->desc, rx_ring->dma);
 441		rx_ring->desc = NULL;
 442	}
 443}
 444
 445/**
 446 * ice_setup_rx_ring - Allocate the Rx descriptors
 447 * @rx_ring: the Rx ring to set up
 448 *
 449 * Return 0 on success, negative on error
 450 */
 451int ice_setup_rx_ring(struct ice_ring *rx_ring)
 452{
 453	struct device *dev = rx_ring->dev;
 
 454
 455	if (!dev)
 456		return -ENOMEM;
 457
 458	/* warn if we are about to overwrite the pointer */
 459	WARN_ON(rx_ring->rx_buf);
 460	rx_ring->rx_buf =
 461		devm_kzalloc(dev, sizeof(*rx_ring->rx_buf) * rx_ring->count,
 462			     GFP_KERNEL);
 463	if (!rx_ring->rx_buf)
 464		return -ENOMEM;
 465
 466	/* round up to nearest page */
 467	rx_ring->size = ALIGN(rx_ring->count * sizeof(union ice_32byte_rx_desc),
 468			      PAGE_SIZE);
 469	rx_ring->desc = dmam_alloc_coherent(dev, rx_ring->size, &rx_ring->dma,
 470					    GFP_KERNEL);
 471	if (!rx_ring->desc) {
 472		dev_err(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
 473			rx_ring->size);
 474		goto err;
 475	}
 476
 477	rx_ring->next_to_use = 0;
 478	rx_ring->next_to_clean = 0;
 479
 480	if (ice_is_xdp_ena_vsi(rx_ring->vsi))
 481		WRITE_ONCE(rx_ring->xdp_prog, rx_ring->vsi->xdp_prog);
 482
 483	if (rx_ring->vsi->type == ICE_VSI_PF &&
 484	    !xdp_rxq_info_is_reg(&rx_ring->xdp_rxq))
 485		if (xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev,
 486				     rx_ring->q_index))
 487			goto err;
 488	return 0;
 489
 490err:
 491	devm_kfree(dev, rx_ring->rx_buf);
 492	rx_ring->rx_buf = NULL;
 493	return -ENOMEM;
 494}
 495
 496/**
 497 * ice_rx_offset - Return expected offset into page to access data
 498 * @rx_ring: Ring we are requesting offset of
 499 *
 500 * Returns the offset value for ring into the data buffer.
 501 */
 502static unsigned int ice_rx_offset(struct ice_ring *rx_ring)
 503{
 504	if (ice_ring_uses_build_skb(rx_ring))
 505		return ICE_SKB_PAD;
 506	else if (ice_is_xdp_ena_vsi(rx_ring->vsi))
 507		return XDP_PACKET_HEADROOM;
 508
 509	return 0;
 510}
 511
 512static unsigned int
 513ice_rx_frame_truesize(struct ice_ring *rx_ring, unsigned int __maybe_unused size)
 514{
 515	unsigned int truesize;
 516
 517#if (PAGE_SIZE < 8192)
 518	truesize = ice_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */
 519#else
 520	truesize = ice_rx_offset(rx_ring) ?
 521		SKB_DATA_ALIGN(ice_rx_offset(rx_ring) + size) +
 522		SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
 523		SKB_DATA_ALIGN(size);
 524#endif
 525	return truesize;
 526}
 527
 528/**
 529 * ice_run_xdp - Executes an XDP program on initialized xdp_buff
 530 * @rx_ring: Rx ring
 531 * @xdp: xdp_buff used as input to the XDP program
 532 * @xdp_prog: XDP program to run
 533 *
 534 * Returns any of ICE_XDP_{PASS, CONSUMED, TX, REDIR}
 535 */
 536static int
 537ice_run_xdp(struct ice_ring *rx_ring, struct xdp_buff *xdp,
 538	    struct bpf_prog *xdp_prog)
 539{
 540	int err, result = ICE_XDP_PASS;
 541	struct ice_ring *xdp_ring;
 542	u32 act;
 543
 544	act = bpf_prog_run_xdp(xdp_prog, xdp);
 545	switch (act) {
 546	case XDP_PASS:
 547		break;
 548	case XDP_TX:
 549		xdp_ring = rx_ring->vsi->xdp_rings[smp_processor_id()];
 550		result = ice_xmit_xdp_buff(xdp, xdp_ring);
 551		break;
 552	case XDP_REDIRECT:
 553		err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
 554		result = !err ? ICE_XDP_REDIR : ICE_XDP_CONSUMED;
 555		break;
 556	default:
 557		bpf_warn_invalid_xdp_action(act);
 558		fallthrough;
 559	case XDP_ABORTED:
 560		trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
 561		fallthrough;
 562	case XDP_DROP:
 563		result = ICE_XDP_CONSUMED;
 564		break;
 565	}
 566
 567	return result;
 568}
 569
 570/**
 571 * ice_xdp_xmit - submit packets to XDP ring for transmission
 572 * @dev: netdev
 573 * @n: number of XDP frames to be transmitted
 574 * @frames: XDP frames to be transmitted
 575 * @flags: transmit flags
 576 *
 577 * Returns number of frames successfully sent. Frames that fail are
 578 * free'ed via XDP return API.
 579 * For error cases, a negative errno code is returned and no-frames
 580 * are transmitted (caller must handle freeing frames).
 581 */
 582int
 583ice_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames,
 584	     u32 flags)
 585{
 586	struct ice_netdev_priv *np = netdev_priv(dev);
 587	unsigned int queue_index = smp_processor_id();
 588	struct ice_vsi *vsi = np->vsi;
 589	struct ice_ring *xdp_ring;
 590	int drops = 0, i;
 591
 592	if (test_bit(__ICE_DOWN, vsi->state))
 593		return -ENETDOWN;
 594
 595	if (!ice_is_xdp_ena_vsi(vsi) || queue_index >= vsi->num_xdp_txq)
 596		return -ENXIO;
 597
 598	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
 599		return -EINVAL;
 600
 601	xdp_ring = vsi->xdp_rings[queue_index];
 602	for (i = 0; i < n; i++) {
 603		struct xdp_frame *xdpf = frames[i];
 604		int err;
 605
 606		err = ice_xmit_xdp_ring(xdpf->data, xdpf->len, xdp_ring);
 607		if (err != ICE_XDP_TX) {
 608			xdp_return_frame_rx_napi(xdpf);
 609			drops++;
 610		}
 611	}
 612
 613	if (unlikely(flags & XDP_XMIT_FLUSH))
 614		ice_xdp_ring_update_tail(xdp_ring);
 615
 616	return n - drops;
 617}
 618
 619/**
 620 * ice_alloc_mapped_page - recycle or make a new page
 621 * @rx_ring: ring to use
 622 * @bi: rx_buf struct to modify
 623 *
 624 * Returns true if the page was successfully allocated or
 625 * reused.
 626 */
 627static bool
 628ice_alloc_mapped_page(struct ice_ring *rx_ring, struct ice_rx_buf *bi)
 629{
 630	struct page *page = bi->page;
 631	dma_addr_t dma;
 632
 633	/* since we are recycling buffers we should seldom need to alloc */
 634	if (likely(page))
 
 635		return true;
 
 636
 637	/* alloc new page for storage */
 638	page = dev_alloc_pages(ice_rx_pg_order(rx_ring));
 639	if (unlikely(!page)) {
 640		rx_ring->rx_stats.alloc_page_failed++;
 641		return false;
 642	}
 643
 644	/* map page for use */
 645	dma = dma_map_page_attrs(rx_ring->dev, page, 0, ice_rx_pg_size(rx_ring),
 646				 DMA_FROM_DEVICE, ICE_RX_DMA_ATTR);
 647
 648	/* if mapping failed free memory back to system since
 649	 * there isn't much point in holding memory we can't use
 650	 */
 651	if (dma_mapping_error(rx_ring->dev, dma)) {
 652		__free_pages(page, ice_rx_pg_order(rx_ring));
 653		rx_ring->rx_stats.alloc_page_failed++;
 654		return false;
 655	}
 656
 657	bi->dma = dma;
 658	bi->page = page;
 659	bi->page_offset = ice_rx_offset(rx_ring);
 660	page_ref_add(page, USHRT_MAX - 1);
 661	bi->pagecnt_bias = USHRT_MAX;
 662
 663	return true;
 664}
 665
 666/**
 667 * ice_alloc_rx_bufs - Replace used receive buffers
 668 * @rx_ring: ring to place buffers on
 669 * @cleaned_count: number of buffers to replace
 670 *
 671 * Returns false if all allocations were successful, true if any fail. Returning
 672 * true signals to the caller that we didn't replace cleaned_count buffers and
 673 * there is more work to do.
 674 *
 675 * First, try to clean "cleaned_count" Rx buffers. Then refill the cleaned Rx
 676 * buffers. Then bump tail at most one time. Grouping like this lets us avoid
 677 * multiple tail writes per call.
 678 */
 679bool ice_alloc_rx_bufs(struct ice_ring *rx_ring, u16 cleaned_count)
 680{
 681	union ice_32b_rx_flex_desc *rx_desc;
 682	u16 ntu = rx_ring->next_to_use;
 683	struct ice_rx_buf *bi;
 684
 685	/* do nothing if no valid netdev defined */
 686	if ((!rx_ring->netdev && rx_ring->vsi->type != ICE_VSI_CTRL) ||
 687	    !cleaned_count)
 688		return false;
 689
 690	/* get the Rx descriptor and buffer based on next_to_use */
 691	rx_desc = ICE_RX_DESC(rx_ring, ntu);
 692	bi = &rx_ring->rx_buf[ntu];
 693
 694	do {
 695		/* if we fail here, we have work remaining */
 696		if (!ice_alloc_mapped_page(rx_ring, bi))
 697			break;
 698
 699		/* sync the buffer for use by the device */
 700		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
 701						 bi->page_offset,
 702						 rx_ring->rx_buf_len,
 703						 DMA_FROM_DEVICE);
 704
 705		/* Refresh the desc even if buffer_addrs didn't change
 706		 * because each write-back erases this info.
 707		 */
 708		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
 709
 710		rx_desc++;
 711		bi++;
 712		ntu++;
 713		if (unlikely(ntu == rx_ring->count)) {
 714			rx_desc = ICE_RX_DESC(rx_ring, 0);
 715			bi = rx_ring->rx_buf;
 716			ntu = 0;
 717		}
 718
 719		/* clear the status bits for the next_to_use descriptor */
 720		rx_desc->wb.status_error0 = 0;
 721
 722		cleaned_count--;
 723	} while (cleaned_count);
 724
 725	if (rx_ring->next_to_use != ntu)
 726		ice_release_rx_desc(rx_ring, ntu);
 727
 728	return !!cleaned_count;
 
 
 
 
 
 
 
 
 
 729}
 730
 731/**
 732 * ice_page_is_reserved - check if reuse is possible
 733 * @page: page struct to check
 734 */
 735static bool ice_page_is_reserved(struct page *page)
 736{
 737	return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
 738}
 739
 740/**
 741 * ice_rx_buf_adjust_pg_offset - Prepare Rx buffer for reuse
 742 * @rx_buf: Rx buffer to adjust
 743 * @size: Size of adjustment
 744 *
 745 * Update the offset within page so that Rx buf will be ready to be reused.
 746 * For systems with PAGE_SIZE < 8192 this function will flip the page offset
 747 * so the second half of page assigned to Rx buffer will be used, otherwise
 748 * the offset is moved by "size" bytes
 749 */
 750static void
 751ice_rx_buf_adjust_pg_offset(struct ice_rx_buf *rx_buf, unsigned int size)
 
 
 
 
 
 752{
 753#if (PAGE_SIZE < 8192)
 754	/* flip page offset to other buffer */
 755	rx_buf->page_offset ^= size;
 756#else
 757	/* move offset up to the next cache line */
 758	rx_buf->page_offset += size;
 759#endif
 760}
 761
 762/**
 763 * ice_can_reuse_rx_page - Determine if page can be reused for another Rx
 764 * @rx_buf: buffer containing the page
 765 *
 766 * If page is reusable, we have a green light for calling ice_reuse_rx_page,
 767 * which will assign the current buffer to the buffer that next_to_alloc is
 768 * pointing to; otherwise, the DMA mapping needs to be destroyed and
 769 * page freed
 770 */
 771static bool ice_can_reuse_rx_page(struct ice_rx_buf *rx_buf)
 772{
 773	unsigned int pagecnt_bias = rx_buf->pagecnt_bias;
 774	struct page *page = rx_buf->page;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 775
 776	/* avoid re-using remote pages */
 777	if (unlikely(ice_page_is_reserved(page)))
 778		return false;
 779
 780#if (PAGE_SIZE < 8192)
 781	/* if we are only owner of page we can reuse it */
 782	if (unlikely((page_count(page) - pagecnt_bias) > 1))
 783		return false;
 
 
 
 784#else
 785#define ICE_LAST_OFFSET \
 786	(SKB_WITH_OVERHEAD(PAGE_SIZE) - ICE_RXBUF_2048)
 787	if (rx_buf->page_offset > ICE_LAST_OFFSET)
 
 788		return false;
 789#endif /* PAGE_SIZE < 8192) */
 790
 791	/* If we have drained the page fragment pool we need to update
 792	 * the pagecnt_bias and page count so that we fully restock the
 793	 * number of references the driver holds.
 794	 */
 795	if (unlikely(pagecnt_bias == 1)) {
 796		page_ref_add(page, USHRT_MAX - 1);
 797		rx_buf->pagecnt_bias = USHRT_MAX;
 798	}
 799
 800	return true;
 801}
 802
 803/**
 804 * ice_add_rx_frag - Add contents of Rx buffer to sk_buff as a frag
 805 * @rx_ring: Rx descriptor ring to transact packets on
 806 * @rx_buf: buffer containing page to add
 807 * @skb: sk_buff to place the data into
 808 * @size: packet length from rx_desc
 809 *
 810 * This function will add the data contained in rx_buf->page to the skb.
 811 * It will just attach the page as a frag to the skb.
 812 * The function will then update the page offset.
 813 */
 814static void
 815ice_add_rx_frag(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf,
 816		struct sk_buff *skb, unsigned int size)
 817{
 818#if (PAGE_SIZE >= 8192)
 819	unsigned int truesize = SKB_DATA_ALIGN(size + ice_rx_offset(rx_ring));
 820#else
 821	unsigned int truesize = ice_rx_pg_size(rx_ring) / 2;
 822#endif
 823
 824	if (!size)
 825		return;
 826	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buf->page,
 827			rx_buf->page_offset, size, truesize);
 828
 829	/* page is being used so we must update the page offset */
 830	ice_rx_buf_adjust_pg_offset(rx_buf, truesize);
 831}
 832
 833/**
 834 * ice_reuse_rx_page - page flip buffer and store it back on the ring
 835 * @rx_ring: Rx descriptor ring to store buffers on
 836 * @old_buf: donor buffer to have page reused
 837 *
 838 * Synchronizes page for reuse by the adapter
 839 */
 840static void
 841ice_reuse_rx_page(struct ice_ring *rx_ring, struct ice_rx_buf *old_buf)
 842{
 843	u16 nta = rx_ring->next_to_alloc;
 844	struct ice_rx_buf *new_buf;
 845
 846	new_buf = &rx_ring->rx_buf[nta];
 847
 848	/* update, and store next to alloc */
 849	nta++;
 850	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
 851
 852	/* Transfer page from old buffer to new buffer.
 853	 * Move each member individually to avoid possible store
 854	 * forwarding stalls and unnecessary copy of skb.
 855	 */
 856	new_buf->dma = old_buf->dma;
 857	new_buf->page = old_buf->page;
 858	new_buf->page_offset = old_buf->page_offset;
 859	new_buf->pagecnt_bias = old_buf->pagecnt_bias;
 860}
 861
 862/**
 863 * ice_get_rx_buf - Fetch Rx buffer and synchronize data for use
 864 * @rx_ring: Rx descriptor ring to transact packets on
 865 * @skb: skb to be used
 866 * @size: size of buffer to add to skb
 867 *
 868 * This function will pull an Rx buffer from the ring and synchronize it
 869 * for use by the CPU.
 
 
 870 */
 871static struct ice_rx_buf *
 872ice_get_rx_buf(struct ice_ring *rx_ring, struct sk_buff **skb,
 873	       const unsigned int size)
 874{
 875	struct ice_rx_buf *rx_buf;
 
 
 876
 877	rx_buf = &rx_ring->rx_buf[rx_ring->next_to_clean];
 878	prefetchw(rx_buf->page);
 879	*skb = rx_buf->skb;
 880
 881	if (!size)
 882		return rx_buf;
 883	/* we are reusing so sync this buffer for CPU use */
 884	dma_sync_single_range_for_cpu(rx_ring->dev, rx_buf->dma,
 885				      rx_buf->page_offset, size,
 886				      DMA_FROM_DEVICE);
 887
 888	/* We have pulled a buffer for use, so decrement pagecnt_bias */
 889	rx_buf->pagecnt_bias--;
 890
 891	return rx_buf;
 892}
 
 
 
 893
 894/**
 895 * ice_build_skb - Build skb around an existing buffer
 896 * @rx_ring: Rx descriptor ring to transact packets on
 897 * @rx_buf: Rx buffer to pull data from
 898 * @xdp: xdp_buff pointing to the data
 899 *
 900 * This function builds an skb around an existing Rx buffer, taking care
 901 * to set up the skb correctly and avoid any memcpy overhead.
 902 */
 903static struct sk_buff *
 904ice_build_skb(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf,
 905	      struct xdp_buff *xdp)
 906{
 907	u8 metasize = xdp->data - xdp->data_meta;
 908#if (PAGE_SIZE < 8192)
 909	unsigned int truesize = ice_rx_pg_size(rx_ring) / 2;
 910#else
 911	unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
 912				SKB_DATA_ALIGN(xdp->data_end -
 913					       xdp->data_hard_start);
 914#endif
 915	struct sk_buff *skb;
 916
 917	/* Prefetch first cache line of first page. If xdp->data_meta
 918	 * is unused, this points exactly as xdp->data, otherwise we
 919	 * likely have a consumer accessing first few bytes of meta
 920	 * data, and then actual data.
 921	 */
 922	prefetch(xdp->data_meta);
 923#if L1_CACHE_BYTES < 128
 924	prefetch((void *)(xdp->data + L1_CACHE_BYTES));
 925#endif
 926	/* build an skb around the page buffer */
 927	skb = build_skb(xdp->data_hard_start, truesize);
 928	if (unlikely(!skb))
 929		return NULL;
 930
 931	/* must to record Rx queue, otherwise OS features such as
 932	 * symmetric queue won't work
 933	 */
 934	skb_record_rx_queue(skb, rx_ring->q_index);
 
 
 
 
 
 
 935
 936	/* update pointers within the skb to store the data */
 937	skb_reserve(skb, xdp->data - xdp->data_hard_start);
 938	__skb_put(skb, xdp->data_end - xdp->data);
 939	if (metasize)
 940		skb_metadata_set(skb, metasize);
 
 
 
 
 
 941
 942	/* buffer is used by skb, update page_offset */
 943	ice_rx_buf_adjust_pg_offset(rx_buf, truesize);
 944
 945	return skb;
 946}
 947
 948/**
 949 * ice_construct_skb - Allocate skb and populate it
 950 * @rx_ring: Rx descriptor ring to transact packets on
 951 * @rx_buf: Rx buffer to pull data from
 952 * @xdp: xdp_buff pointing to the data
 953 *
 954 * This function allocates an skb. It then populates it with the page
 955 * data from the current receive descriptor, taking care to set up the
 956 * skb correctly.
 957 */
 958static struct sk_buff *
 959ice_construct_skb(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf,
 960		  struct xdp_buff *xdp)
 961{
 962	unsigned int size = xdp->data_end - xdp->data;
 963	unsigned int headlen;
 964	struct sk_buff *skb;
 965
 966	/* prefetch first cache line of first page */
 967	prefetch(xdp->data);
 968#if L1_CACHE_BYTES < 128
 969	prefetch((void *)(xdp->data + L1_CACHE_BYTES));
 970#endif /* L1_CACHE_BYTES */
 971
 972	/* allocate a skb to store the frags */
 973	skb = __napi_alloc_skb(&rx_ring->q_vector->napi, ICE_RX_HDR_SIZE,
 974			       GFP_ATOMIC | __GFP_NOWARN);
 975	if (unlikely(!skb))
 976		return NULL;
 977
 978	skb_record_rx_queue(skb, rx_ring->q_index);
 979	/* Determine available headroom for copy */
 980	headlen = size;
 981	if (headlen > ICE_RX_HDR_SIZE)
 982		headlen = eth_get_headlen(skb->dev, xdp->data, ICE_RX_HDR_SIZE);
 983
 984	/* align pull length to size of long to optimize memcpy performance */
 985	memcpy(__skb_put(skb, headlen), xdp->data, ALIGN(headlen,
 986							 sizeof(long)));
 987
 988	/* if we exhaust the linear part then add what is left as a frag */
 989	size -= headlen;
 990	if (size) {
 991#if (PAGE_SIZE >= 8192)
 992		unsigned int truesize = SKB_DATA_ALIGN(size);
 993#else
 994		unsigned int truesize = ice_rx_pg_size(rx_ring) / 2;
 995#endif
 996		skb_add_rx_frag(skb, 0, rx_buf->page,
 997				rx_buf->page_offset + headlen, size, truesize);
 998		/* buffer is used by skb, update page_offset */
 999		ice_rx_buf_adjust_pg_offset(rx_buf, truesize);
1000	} else {
1001		/* buffer is unused, reset bias back to rx_buf; data was copied
1002		 * onto skb's linear part so there's no need for adjusting
1003		 * page offset and we can reuse this buffer as-is
1004		 */
1005		rx_buf->pagecnt_bias++;
1006	}
1007
1008	return skb;
 
 
 
 
1009}
1010
1011/**
1012 * ice_put_rx_buf - Clean up used buffer and either recycle or free
1013 * @rx_ring: Rx descriptor ring to transact packets on
1014 * @rx_buf: Rx buffer to pull data from
 
 
 
 
 
1015 *
1016 * This function will update next_to_clean and then clean up the contents
1017 * of the rx_buf. It will either recycle the buffer or unmap it and free
1018 * the associated resources.
1019 */
1020static void ice_put_rx_buf(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf)
1021{
1022	u16 ntc = rx_ring->next_to_clean + 1;
1023
1024	/* fetch, update, and store next to clean */
1025	ntc = (ntc < rx_ring->count) ? ntc : 0;
1026	rx_ring->next_to_clean = ntc;
1027
1028	if (!rx_buf)
1029		return;
 
1030
1031	if (ice_can_reuse_rx_page(rx_buf)) {
1032		/* hand second half of page back to the ring */
1033		ice_reuse_rx_page(rx_ring, rx_buf);
1034	} else {
1035		/* we are not reusing the buffer so unmap it */
1036		dma_unmap_page_attrs(rx_ring->dev, rx_buf->dma,
1037				     ice_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
1038				     ICE_RX_DMA_ATTR);
1039		__page_frag_cache_drain(rx_buf->page, rx_buf->pagecnt_bias);
1040	}
1041
1042	/* clear contents of buffer_info */
1043	rx_buf->page = NULL;
1044	rx_buf->skb = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
1045}
1046
1047/**
1048 * ice_is_non_eop - process handling of non-EOP buffers
1049 * @rx_ring: Rx ring being processed
1050 * @rx_desc: Rx descriptor for current buffer
1051 * @skb: Current socket buffer containing buffer in progress
1052 *
1053 * If the buffer is an EOP buffer, this function exits returning false,
1054 * otherwise return true indicating that this is in fact a non-EOP buffer.
1055 */
1056static bool
1057ice_is_non_eop(struct ice_ring *rx_ring, union ice_32b_rx_flex_desc *rx_desc,
1058	       struct sk_buff *skb)
 
 
1059{
 
 
 
 
 
 
 
 
1060	/* if we are the last buffer then there is nothing else to do */
1061#define ICE_RXD_EOF BIT(ICE_RX_FLEX_DESC_STATUS0_EOF_S)
1062	if (likely(ice_test_staterr(rx_desc, ICE_RXD_EOF)))
1063		return false;
1064
1065	/* place skb in next buffer to be received */
1066	rx_ring->rx_buf[rx_ring->next_to_clean].skb = skb;
1067	rx_ring->rx_stats.non_eop_descs++;
1068
1069	return true;
1070}
1071
1072/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1073 * ice_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
1074 * @rx_ring: Rx descriptor ring to transact packets on
1075 * @budget: Total limit on number of packets to process
1076 *
1077 * This function provides a "bounce buffer" approach to Rx interrupt
1078 * processing. The advantage to this is that on systems that have
1079 * expensive overhead for IOMMU access this provides a means of avoiding
1080 * it by maintaining the mapping of the page to the system.
1081 *
1082 * Returns amount of work completed
1083 */
1084int ice_clean_rx_irq(struct ice_ring *rx_ring, int budget)
1085{
1086	unsigned int total_rx_bytes = 0, total_rx_pkts = 0;
1087	u16 cleaned_count = ICE_DESC_UNUSED(rx_ring);
1088	unsigned int xdp_res, xdp_xmit = 0;
1089	struct bpf_prog *xdp_prog = NULL;
1090	struct xdp_buff xdp;
1091	bool failure;
1092
1093	xdp.rxq = &rx_ring->xdp_rxq;
1094	/* Frame size depend on rx_ring setup when PAGE_SIZE=4K */
1095#if (PAGE_SIZE < 8192)
1096	xdp.frame_sz = ice_rx_frame_truesize(rx_ring, 0);
1097#endif
1098
1099	/* start the loop to process Rx packets bounded by 'budget' */
1100	while (likely(total_rx_pkts < (unsigned int)budget)) {
1101		union ice_32b_rx_flex_desc *rx_desc;
1102		struct ice_rx_buf *rx_buf;
1103		struct sk_buff *skb;
1104		unsigned int size;
1105		u16 stat_err_bits;
1106		u16 vlan_tag = 0;
1107		u8 rx_ptype;
1108
1109		/* get the Rx desc from Rx ring based on 'next_to_clean' */
 
 
 
 
 
 
 
1110		rx_desc = ICE_RX_DESC(rx_ring, rx_ring->next_to_clean);
1111
1112		/* status_error_len will always be zero for unused descriptors
1113		 * because it's cleared in cleanup, and overlaps with hdr_addr
1114		 * which is always zero because packet split isn't used, if the
1115		 * hardware wrote DD then it will be non-zero
1116		 */
1117		stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S);
1118		if (!ice_test_staterr(rx_desc, stat_err_bits))
1119			break;
1120
1121		/* This memory barrier is needed to keep us from reading
1122		 * any other fields out of the rx_desc until we know the
1123		 * DD bit is set.
1124		 */
1125		dma_rmb();
1126
1127		if (rx_desc->wb.rxdid == FDIR_DESC_RXDID || !rx_ring->netdev) {
1128			ice_put_rx_buf(rx_ring, NULL);
1129			cleaned_count++;
1130			continue;
1131		}
1132
1133		size = le16_to_cpu(rx_desc->wb.pkt_len) &
1134			ICE_RX_FLX_DESC_PKT_LEN_M;
1135
1136		/* retrieve a buffer from the ring */
1137		rx_buf = ice_get_rx_buf(rx_ring, &skb, size);
1138
1139		if (!size) {
1140			xdp.data = NULL;
1141			xdp.data_end = NULL;
1142			xdp.data_hard_start = NULL;
1143			xdp.data_meta = NULL;
1144			goto construct_skb;
1145		}
1146
1147		xdp.data = page_address(rx_buf->page) + rx_buf->page_offset;
1148		xdp.data_hard_start = xdp.data - ice_rx_offset(rx_ring);
1149		xdp.data_meta = xdp.data;
1150		xdp.data_end = xdp.data + size;
1151#if (PAGE_SIZE > 4096)
1152		/* At larger PAGE_SIZE, frame_sz depend on len size */
1153		xdp.frame_sz = ice_rx_frame_truesize(rx_ring, size);
1154#endif
1155
1156		rcu_read_lock();
1157		xdp_prog = READ_ONCE(rx_ring->xdp_prog);
1158		if (!xdp_prog) {
1159			rcu_read_unlock();
1160			goto construct_skb;
1161		}
1162
1163		xdp_res = ice_run_xdp(rx_ring, &xdp, xdp_prog);
1164		rcu_read_unlock();
1165		if (!xdp_res)
1166			goto construct_skb;
1167		if (xdp_res & (ICE_XDP_TX | ICE_XDP_REDIR)) {
1168			xdp_xmit |= xdp_res;
1169			ice_rx_buf_adjust_pg_offset(rx_buf, xdp.frame_sz);
1170		} else {
1171			rx_buf->pagecnt_bias++;
1172		}
1173		total_rx_bytes += size;
1174		total_rx_pkts++;
1175
1176		cleaned_count++;
1177		ice_put_rx_buf(rx_ring, rx_buf);
1178		continue;
1179construct_skb:
1180		if (skb) {
1181			ice_add_rx_frag(rx_ring, rx_buf, skb, size);
1182		} else if (likely(xdp.data)) {
1183			if (ice_ring_uses_build_skb(rx_ring))
1184				skb = ice_build_skb(rx_ring, rx_buf, &xdp);
1185			else
1186				skb = ice_construct_skb(rx_ring, rx_buf, &xdp);
1187		}
1188		/* exit if we failed to retrieve a buffer */
1189		if (!skb) {
1190			rx_ring->rx_stats.alloc_buf_failed++;
1191			if (rx_buf)
1192				rx_buf->pagecnt_bias++;
1193			break;
1194		}
1195
1196		ice_put_rx_buf(rx_ring, rx_buf);
1197		cleaned_count++;
1198
1199		/* skip if it is NOP desc */
1200		if (ice_is_non_eop(rx_ring, rx_desc, skb))
1201			continue;
1202
1203		stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_RXE_S);
1204		if (unlikely(ice_test_staterr(rx_desc, stat_err_bits))) {
1205			dev_kfree_skb_any(skb);
1206			continue;
1207		}
1208
 
 
 
1209		stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_L2TAG1P_S);
1210		if (ice_test_staterr(rx_desc, stat_err_bits))
1211			vlan_tag = le16_to_cpu(rx_desc->wb.l2tag1);
1212
1213		/* pad the skb if needed, to make a valid ethernet frame */
1214		if (eth_skb_pad(skb)) {
 
 
1215			skb = NULL;
1216			continue;
1217		}
1218
1219		/* probably a little skewed due to removing CRC */
1220		total_rx_bytes += skb->len;
1221
1222		/* populate checksum, VLAN, and protocol */
1223		rx_ptype = le16_to_cpu(rx_desc->wb.ptype_flex_flags0) &
1224			ICE_RX_FLEX_DESC_PTYPE_M;
1225
1226		ice_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
1227
1228		/* send completed skb up the stack */
1229		ice_receive_skb(rx_ring, skb, vlan_tag);
1230
1231		/* update budget accounting */
1232		total_rx_pkts++;
1233	}
1234
1235	/* return up to cleaned_count buffers to hardware */
1236	failure = ice_alloc_rx_bufs(rx_ring, cleaned_count);
1237
1238	if (xdp_prog)
1239		ice_finalize_xdp_rx(rx_ring, xdp_xmit);
1240
1241	ice_update_rx_ring_stats(rx_ring, total_rx_pkts, total_rx_bytes);
1242
1243	/* guarantee a trip back through this routine if there was a failure */
1244	return failure ? budget : (int)total_rx_pkts;
1245}
1246
1247/**
1248 * ice_adjust_itr_by_size_and_speed - Adjust ITR based on current traffic
1249 * @port_info: port_info structure containing the current link speed
1250 * @avg_pkt_size: average size of Tx or Rx packets based on clean routine
1251 * @itr: ITR value to update
1252 *
1253 * Calculate how big of an increment should be applied to the ITR value passed
1254 * in based on wmem_default, SKB overhead, ethernet overhead, and the current
1255 * link speed.
1256 *
1257 * The following is a calculation derived from:
1258 *  wmem_default / (size + overhead) = desired_pkts_per_int
1259 *  rate / bits_per_byte / (size + ethernet overhead) = pkt_rate
1260 *  (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
1261 *
1262 * Assuming wmem_default is 212992 and overhead is 640 bytes per
1263 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
1264 * formula down to:
1265 *
1266 *	 wmem_default * bits_per_byte * usecs_per_sec   pkt_size + 24
1267 * ITR = -------------------------------------------- * --------------
1268 *			     rate			pkt_size + 640
1269 */
1270static unsigned int
1271ice_adjust_itr_by_size_and_speed(struct ice_port_info *port_info,
1272				 unsigned int avg_pkt_size,
1273				 unsigned int itr)
1274{
1275	switch (port_info->phy.link_info.link_speed) {
1276	case ICE_AQ_LINK_SPEED_100GB:
1277		itr += DIV_ROUND_UP(17 * (avg_pkt_size + 24),
1278				    avg_pkt_size + 640);
1279		break;
1280	case ICE_AQ_LINK_SPEED_50GB:
1281		itr += DIV_ROUND_UP(34 * (avg_pkt_size + 24),
1282				    avg_pkt_size + 640);
1283		break;
1284	case ICE_AQ_LINK_SPEED_40GB:
1285		itr += DIV_ROUND_UP(43 * (avg_pkt_size + 24),
1286				    avg_pkt_size + 640);
1287		break;
1288	case ICE_AQ_LINK_SPEED_25GB:
1289		itr += DIV_ROUND_UP(68 * (avg_pkt_size + 24),
1290				    avg_pkt_size + 640);
1291		break;
1292	case ICE_AQ_LINK_SPEED_20GB:
1293		itr += DIV_ROUND_UP(85 * (avg_pkt_size + 24),
1294				    avg_pkt_size + 640);
1295		break;
1296	case ICE_AQ_LINK_SPEED_10GB:
1297	default:
1298		itr += DIV_ROUND_UP(170 * (avg_pkt_size + 24),
1299				    avg_pkt_size + 640);
1300		break;
1301	}
1302
1303	if ((itr & ICE_ITR_MASK) > ICE_ITR_ADAPTIVE_MAX_USECS) {
1304		itr &= ICE_ITR_ADAPTIVE_LATENCY;
1305		itr += ICE_ITR_ADAPTIVE_MAX_USECS;
1306	}
1307
1308	return itr;
1309}
1310
1311/**
1312 * ice_update_itr - update the adaptive ITR value based on statistics
1313 * @q_vector: structure containing interrupt and ring information
1314 * @rc: structure containing ring performance data
1315 *
1316 * Stores a new ITR value based on packets and byte
1317 * counts during the last interrupt.  The advantage of per interrupt
1318 * computation is faster updates and more accurate ITR for the current
1319 * traffic pattern.  Constants in this function were computed
1320 * based on theoretical maximum wire speed and thresholds were set based
1321 * on testing data as well as attempting to minimize response time
1322 * while increasing bulk throughput.
1323 */
1324static void
1325ice_update_itr(struct ice_q_vector *q_vector, struct ice_ring_container *rc)
1326{
1327	unsigned long next_update = jiffies;
1328	unsigned int packets, bytes, itr;
1329	bool container_is_rx;
1330
1331	if (!rc->ring || !ITR_IS_DYNAMIC(rc->itr_setting))
1332		return;
1333
1334	/* If itr_countdown is set it means we programmed an ITR within
1335	 * the last 4 interrupt cycles. This has a side effect of us
1336	 * potentially firing an early interrupt. In order to work around
1337	 * this we need to throw out any data received for a few
1338	 * interrupts following the update.
1339	 */
1340	if (q_vector->itr_countdown) {
1341		itr = rc->target_itr;
1342		goto clear_counts;
1343	}
1344
1345	container_is_rx = (&q_vector->rx == rc);
1346	/* For Rx we want to push the delay up and default to low latency.
1347	 * for Tx we want to pull the delay down and default to high latency.
1348	 */
1349	itr = container_is_rx ?
1350		ICE_ITR_ADAPTIVE_MIN_USECS | ICE_ITR_ADAPTIVE_LATENCY :
1351		ICE_ITR_ADAPTIVE_MAX_USECS | ICE_ITR_ADAPTIVE_LATENCY;
1352
1353	/* If we didn't update within up to 1 - 2 jiffies we can assume
1354	 * that either packets are coming in so slow there hasn't been
1355	 * any work, or that there is so much work that NAPI is dealing
1356	 * with interrupt moderation and we don't need to do anything.
1357	 */
1358	if (time_after(next_update, rc->next_update))
1359		goto clear_counts;
1360
1361	prefetch(q_vector->vsi->port_info);
1362
1363	packets = rc->total_pkts;
1364	bytes = rc->total_bytes;
1365
1366	if (container_is_rx) {
1367		/* If Rx there are 1 to 4 packets and bytes are less than
1368		 * 9000 assume insufficient data to use bulk rate limiting
1369		 * approach unless Tx is already in bulk rate limiting. We
1370		 * are likely latency driven.
1371		 */
1372		if (packets && packets < 4 && bytes < 9000 &&
1373		    (q_vector->tx.target_itr & ICE_ITR_ADAPTIVE_LATENCY)) {
1374			itr = ICE_ITR_ADAPTIVE_LATENCY;
1375			goto adjust_by_size_and_speed;
1376		}
1377	} else if (packets < 4) {
1378		/* If we have Tx and Rx ITR maxed and Tx ITR is running in
1379		 * bulk mode and we are receiving 4 or fewer packets just
1380		 * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so
1381		 * that the Rx can relax.
1382		 */
1383		if (rc->target_itr == ICE_ITR_ADAPTIVE_MAX_USECS &&
1384		    (q_vector->rx.target_itr & ICE_ITR_MASK) ==
1385		    ICE_ITR_ADAPTIVE_MAX_USECS)
1386			goto clear_counts;
1387	} else if (packets > 32) {
1388		/* If we have processed over 32 packets in a single interrupt
1389		 * for Tx assume we need to switch over to "bulk" mode.
1390		 */
1391		rc->target_itr &= ~ICE_ITR_ADAPTIVE_LATENCY;
1392	}
1393
1394	/* We have no packets to actually measure against. This means
1395	 * either one of the other queues on this vector is active or
1396	 * we are a Tx queue doing TSO with too high of an interrupt rate.
1397	 *
1398	 * Between 4 and 56 we can assume that our current interrupt delay
1399	 * is only slightly too low. As such we should increase it by a small
1400	 * fixed amount.
1401	 */
1402	if (packets < 56) {
1403		itr = rc->target_itr + ICE_ITR_ADAPTIVE_MIN_INC;
1404		if ((itr & ICE_ITR_MASK) > ICE_ITR_ADAPTIVE_MAX_USECS) {
1405			itr &= ICE_ITR_ADAPTIVE_LATENCY;
1406			itr += ICE_ITR_ADAPTIVE_MAX_USECS;
1407		}
1408		goto clear_counts;
1409	}
1410
1411	if (packets <= 256) {
1412		itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr);
1413		itr &= ICE_ITR_MASK;
1414
1415		/* Between 56 and 112 is our "goldilocks" zone where we are
1416		 * working out "just right". Just report that our current
1417		 * ITR is good for us.
1418		 */
1419		if (packets <= 112)
1420			goto clear_counts;
1421
1422		/* If packet count is 128 or greater we are likely looking
1423		 * at a slight overrun of the delay we want. Try halving
1424		 * our delay to see if that will cut the number of packets
1425		 * in half per interrupt.
1426		 */
1427		itr >>= 1;
1428		itr &= ICE_ITR_MASK;
1429		if (itr < ICE_ITR_ADAPTIVE_MIN_USECS)
1430			itr = ICE_ITR_ADAPTIVE_MIN_USECS;
1431
1432		goto clear_counts;
1433	}
1434
1435	/* The paths below assume we are dealing with a bulk ITR since
1436	 * number of packets is greater than 256. We are just going to have
1437	 * to compute a value and try to bring the count under control,
1438	 * though for smaller packet sizes there isn't much we can do as
1439	 * NAPI polling will likely be kicking in sooner rather than later.
1440	 */
1441	itr = ICE_ITR_ADAPTIVE_BULK;
1442
1443adjust_by_size_and_speed:
1444
1445	/* based on checks above packets cannot be 0 so division is safe */
1446	itr = ice_adjust_itr_by_size_and_speed(q_vector->vsi->port_info,
1447					       bytes / packets, itr);
1448
1449clear_counts:
1450	/* write back value */
1451	rc->target_itr = itr;
1452
1453	/* next update should occur within next jiffy */
1454	rc->next_update = next_update + 1;
1455
1456	rc->total_bytes = 0;
1457	rc->total_pkts = 0;
1458}
1459
1460/**
1461 * ice_buildreg_itr - build value for writing to the GLINT_DYN_CTL register
1462 * @itr_idx: interrupt throttling index
1463 * @itr: interrupt throttling value in usecs
1464 */
1465static u32 ice_buildreg_itr(u16 itr_idx, u16 itr)
1466{
1467	/* The ITR value is reported in microseconds, and the register value is
1468	 * recorded in 2 microsecond units. For this reason we only need to
1469	 * shift by the GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S to apply this
1470	 * granularity as a shift instead of division. The mask makes sure the
1471	 * ITR value is never odd so we don't accidentally write into the field
1472	 * prior to the ITR field.
1473	 */
1474	itr &= ICE_ITR_MASK;
1475
1476	return GLINT_DYN_CTL_INTENA_M | GLINT_DYN_CTL_CLEARPBA_M |
1477		(itr_idx << GLINT_DYN_CTL_ITR_INDX_S) |
1478		(itr << (GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S));
1479}
1480
1481/* The act of updating the ITR will cause it to immediately trigger. In order
1482 * to prevent this from throwing off adaptive update statistics we defer the
1483 * update so that it can only happen so often. So after either Tx or Rx are
1484 * updated we make the adaptive scheme wait until either the ITR completely
1485 * expires via the next_update expiration or we have been through at least
1486 * 3 interrupts.
1487 */
1488#define ITR_COUNTDOWN_START 3
1489
1490/**
1491 * ice_update_ena_itr - Update ITR and re-enable MSIX interrupt
1492 * @q_vector: q_vector for which ITR is being updated and interrupt enabled
1493 */
1494static void ice_update_ena_itr(struct ice_q_vector *q_vector)
1495{
1496	struct ice_ring_container *tx = &q_vector->tx;
1497	struct ice_ring_container *rx = &q_vector->rx;
1498	struct ice_vsi *vsi = q_vector->vsi;
1499	u32 itr_val;
1500
1501	/* when exiting WB_ON_ITR lets set a low ITR value and trigger
1502	 * interrupts to expire right away in case we have more work ready to go
1503	 * already
1504	 */
1505	if (q_vector->itr_countdown == ICE_IN_WB_ON_ITR_MODE) {
1506		itr_val = ice_buildreg_itr(rx->itr_idx, ICE_WB_ON_ITR_USECS);
1507		wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx), itr_val);
1508		/* set target back to last user set value */
1509		rx->target_itr = rx->itr_setting;
1510		/* set current to what we just wrote and dynamic if needed */
1511		rx->current_itr = ICE_WB_ON_ITR_USECS |
1512			(rx->itr_setting & ICE_ITR_DYNAMIC);
1513		/* allow normal interrupt flow to start */
1514		q_vector->itr_countdown = 0;
1515		return;
1516	}
1517
1518	/* This will do nothing if dynamic updates are not enabled */
1519	ice_update_itr(q_vector, tx);
1520	ice_update_itr(q_vector, rx);
1521
1522	/* This block of logic allows us to get away with only updating
1523	 * one ITR value with each interrupt. The idea is to perform a
1524	 * pseudo-lazy update with the following criteria.
1525	 *
1526	 * 1. Rx is given higher priority than Tx if both are in same state
1527	 * 2. If we must reduce an ITR that is given highest priority.
1528	 * 3. We then give priority to increasing ITR based on amount.
1529	 */
1530	if (rx->target_itr < rx->current_itr) {
1531		/* Rx ITR needs to be reduced, this is highest priority */
1532		itr_val = ice_buildreg_itr(rx->itr_idx, rx->target_itr);
1533		rx->current_itr = rx->target_itr;
1534		q_vector->itr_countdown = ITR_COUNTDOWN_START;
1535	} else if ((tx->target_itr < tx->current_itr) ||
1536		   ((rx->target_itr - rx->current_itr) <
1537		    (tx->target_itr - tx->current_itr))) {
1538		/* Tx ITR needs to be reduced, this is second priority
1539		 * Tx ITR needs to be increased more than Rx, fourth priority
1540		 */
1541		itr_val = ice_buildreg_itr(tx->itr_idx, tx->target_itr);
1542		tx->current_itr = tx->target_itr;
1543		q_vector->itr_countdown = ITR_COUNTDOWN_START;
1544	} else if (rx->current_itr != rx->target_itr) {
1545		/* Rx ITR needs to be increased, third priority */
1546		itr_val = ice_buildreg_itr(rx->itr_idx, rx->target_itr);
1547		rx->current_itr = rx->target_itr;
1548		q_vector->itr_countdown = ITR_COUNTDOWN_START;
1549	} else {
1550		/* Still have to re-enable the interrupts */
1551		itr_val = ice_buildreg_itr(ICE_ITR_NONE, 0);
1552		if (q_vector->itr_countdown)
1553			q_vector->itr_countdown--;
1554	}
1555
1556	if (!test_bit(__ICE_DOWN, q_vector->vsi->state))
1557		wr32(&q_vector->vsi->back->hw,
1558		     GLINT_DYN_CTL(q_vector->reg_idx),
1559		     itr_val);
1560}
1561
1562/**
1563 * ice_set_wb_on_itr - set WB_ON_ITR for this q_vector
1564 * @q_vector: q_vector to set WB_ON_ITR on
1565 *
1566 * We need to tell hardware to write-back completed descriptors even when
1567 * interrupts are disabled. Descriptors will be written back on cache line
1568 * boundaries without WB_ON_ITR enabled, but if we don't enable WB_ON_ITR
1569 * descriptors may not be written back if they don't fill a cache line until the
1570 * next interrupt.
1571 *
1572 * This sets the write-back frequency to 2 microseconds as that is the minimum
1573 * value that's not 0 due to ITR granularity. Also, set the INTENA_MSK bit to
1574 * make sure hardware knows we aren't meddling with the INTENA_M bit.
1575 */
1576static void ice_set_wb_on_itr(struct ice_q_vector *q_vector)
1577{
1578	struct ice_vsi *vsi = q_vector->vsi;
1579
1580	/* already in WB_ON_ITR mode no need to change it */
1581	if (q_vector->itr_countdown == ICE_IN_WB_ON_ITR_MODE)
1582		return;
1583
1584	if (q_vector->num_ring_rx)
1585		wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx),
1586		     ICE_GLINT_DYN_CTL_WB_ON_ITR(ICE_WB_ON_ITR_USECS,
1587						 ICE_RX_ITR));
1588
1589	if (q_vector->num_ring_tx)
1590		wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx),
1591		     ICE_GLINT_DYN_CTL_WB_ON_ITR(ICE_WB_ON_ITR_USECS,
1592						 ICE_TX_ITR));
1593
1594	q_vector->itr_countdown = ICE_IN_WB_ON_ITR_MODE;
1595}
1596
1597/**
1598 * ice_napi_poll - NAPI polling Rx/Tx cleanup routine
1599 * @napi: napi struct with our devices info in it
1600 * @budget: amount of work driver is allowed to do this pass, in packets
1601 *
1602 * This function will clean all queues associated with a q_vector.
1603 *
1604 * Returns the amount of work done
1605 */
1606int ice_napi_poll(struct napi_struct *napi, int budget)
1607{
1608	struct ice_q_vector *q_vector =
1609				container_of(napi, struct ice_q_vector, napi);
 
 
1610	bool clean_complete = true;
 
1611	struct ice_ring *ring;
1612	int budget_per_ring;
1613	int work_done = 0;
1614
1615	/* Since the actual Tx work is minimal, we can give the Tx a larger
1616	 * budget and be more aggressive about cleaning up the Tx descriptors.
1617	 */
1618	ice_for_each_ring(ring, q_vector->tx) {
1619		bool wd = ring->xsk_umem ?
1620			  ice_clean_tx_irq_zc(ring, budget) :
1621			  ice_clean_tx_irq(ring, budget);
1622
1623		if (!wd)
1624			clean_complete = false;
1625	}
1626
1627	/* Handle case where we are called by netpoll with a budget of 0 */
1628	if (unlikely(budget <= 0))
1629		return budget;
1630
1631	/* normally we have 1 Rx ring per q_vector */
1632	if (unlikely(q_vector->num_ring_rx > 1))
1633		/* We attempt to distribute budget to each Rx queue fairly, but
1634		 * don't allow the budget to go below 1 because that would exit
1635		 * polling early.
1636		 */
1637		budget_per_ring = max_t(int, budget / q_vector->num_ring_rx, 1);
1638	else
1639		/* Max of 1 Rx ring in this q_vector so give it the budget */
1640		budget_per_ring = budget;
1641
1642	ice_for_each_ring(ring, q_vector->rx) {
1643		int cleaned;
1644
1645		/* A dedicated path for zero-copy allows making a single
1646		 * comparison in the irq context instead of many inside the
1647		 * ice_clean_rx_irq function and makes the codebase cleaner.
1648		 */
1649		cleaned = ring->xsk_umem ?
1650			  ice_clean_rx_irq_zc(ring, budget_per_ring) :
1651			  ice_clean_rx_irq(ring, budget_per_ring);
1652		work_done += cleaned;
1653		/* if we clean as many as budgeted, we must not be done */
1654		if (cleaned >= budget_per_ring)
1655			clean_complete = false;
1656	}
1657
1658	/* If work not completed, return budget and polling will return */
1659	if (!clean_complete)
1660		return budget;
1661
1662	/* Exit the polling mode, but don't re-enable interrupts if stack might
1663	 * poll us due to busy-polling
1664	 */
1665	if (likely(napi_complete_done(napi, work_done)))
1666		ice_update_ena_itr(q_vector);
1667	else
1668		ice_set_wb_on_itr(q_vector);
1669
1670	return min_t(int, work_done, budget - 1);
 
 
 
 
 
 
 
 
1671}
1672
1673/**
1674 * __ice_maybe_stop_tx - 2nd level check for Tx stop conditions
1675 * @tx_ring: the ring to be checked
1676 * @size: the size buffer we want to assure is available
1677 *
1678 * Returns -EBUSY if a stop is needed, else 0
1679 */
1680static int __ice_maybe_stop_tx(struct ice_ring *tx_ring, unsigned int size)
1681{
1682	netif_stop_subqueue(tx_ring->netdev, tx_ring->q_index);
1683	/* Memory barrier before checking head and tail */
1684	smp_mb();
1685
1686	/* Check again in a case another CPU has just made room available. */
1687	if (likely(ICE_DESC_UNUSED(tx_ring) < size))
1688		return -EBUSY;
1689
1690	/* A reprieve! - use start_subqueue because it doesn't call schedule */
1691	netif_start_subqueue(tx_ring->netdev, tx_ring->q_index);
1692	++tx_ring->tx_stats.restart_q;
1693	return 0;
1694}
1695
1696/**
1697 * ice_maybe_stop_tx - 1st level check for Tx stop conditions
1698 * @tx_ring: the ring to be checked
1699 * @size:    the size buffer we want to assure is available
1700 *
1701 * Returns 0 if stop is not needed
1702 */
1703static int ice_maybe_stop_tx(struct ice_ring *tx_ring, unsigned int size)
1704{
1705	if (likely(ICE_DESC_UNUSED(tx_ring) >= size))
1706		return 0;
1707
1708	return __ice_maybe_stop_tx(tx_ring, size);
1709}
1710
1711/**
1712 * ice_tx_map - Build the Tx descriptor
1713 * @tx_ring: ring to send buffer on
1714 * @first: first buffer info buffer to use
1715 * @off: pointer to struct that holds offload parameters
1716 *
1717 * This function loops over the skb data pointed to by *first
1718 * and gets a physical address for each memory location and programs
1719 * it and the length into the transmit descriptor.
1720 */
1721static void
1722ice_tx_map(struct ice_ring *tx_ring, struct ice_tx_buf *first,
1723	   struct ice_tx_offload_params *off)
1724{
1725	u64 td_offset, td_tag, td_cmd;
1726	u16 i = tx_ring->next_to_use;
 
1727	unsigned int data_len, size;
1728	struct ice_tx_desc *tx_desc;
1729	struct ice_tx_buf *tx_buf;
1730	struct sk_buff *skb;
1731	skb_frag_t *frag;
1732	dma_addr_t dma;
1733
1734	td_tag = off->td_l2tag1;
1735	td_cmd = off->td_cmd;
1736	td_offset = off->td_offset;
1737	skb = first->skb;
1738
1739	data_len = skb->data_len;
1740	size = skb_headlen(skb);
1741
1742	tx_desc = ICE_TX_DESC(tx_ring, i);
1743
1744	if (first->tx_flags & ICE_TX_FLAGS_HW_VLAN) {
1745		td_cmd |= (u64)ICE_TX_DESC_CMD_IL2TAG1;
1746		td_tag = (first->tx_flags & ICE_TX_FLAGS_VLAN_M) >>
1747			  ICE_TX_FLAGS_VLAN_S;
1748	}
1749
1750	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
1751
1752	tx_buf = first;
1753
1754	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1755		unsigned int max_data = ICE_MAX_DATA_PER_TXD_ALIGNED;
1756
1757		if (dma_mapping_error(tx_ring->dev, dma))
1758			goto dma_error;
1759
1760		/* record length, and DMA address */
1761		dma_unmap_len_set(tx_buf, len, size);
1762		dma_unmap_addr_set(tx_buf, dma, dma);
1763
1764		/* align size to end of page */
1765		max_data += -dma & (ICE_MAX_READ_REQ_SIZE - 1);
1766		tx_desc->buf_addr = cpu_to_le64(dma);
1767
1768		/* account for data chunks larger than the hardware
1769		 * can handle
1770		 */
1771		while (unlikely(size > ICE_MAX_DATA_PER_TXD)) {
1772			tx_desc->cmd_type_offset_bsz =
1773				ice_build_ctob(td_cmd, td_offset, max_data,
1774					       td_tag);
1775
1776			tx_desc++;
1777			i++;
1778
1779			if (i == tx_ring->count) {
1780				tx_desc = ICE_TX_DESC(tx_ring, 0);
1781				i = 0;
1782			}
1783
1784			dma += max_data;
1785			size -= max_data;
1786
1787			max_data = ICE_MAX_DATA_PER_TXD_ALIGNED;
1788			tx_desc->buf_addr = cpu_to_le64(dma);
1789		}
1790
1791		if (likely(!data_len))
1792			break;
1793
1794		tx_desc->cmd_type_offset_bsz = ice_build_ctob(td_cmd, td_offset,
1795							      size, td_tag);
1796
1797		tx_desc++;
1798		i++;
1799
1800		if (i == tx_ring->count) {
1801			tx_desc = ICE_TX_DESC(tx_ring, 0);
1802			i = 0;
1803		}
1804
1805		size = skb_frag_size(frag);
1806		data_len -= size;
1807
1808		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
1809				       DMA_TO_DEVICE);
1810
1811		tx_buf = &tx_ring->tx_buf[i];
1812	}
1813
1814	/* record bytecount for BQL */
1815	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1816
1817	/* record SW timestamp if HW timestamp is not available */
1818	skb_tx_timestamp(first->skb);
1819
1820	i++;
1821	if (i == tx_ring->count)
1822		i = 0;
1823
1824	/* write last descriptor with RS and EOP bits */
1825	td_cmd |= (u64)ICE_TXD_LAST_DESC_CMD;
1826	tx_desc->cmd_type_offset_bsz =
1827			ice_build_ctob(td_cmd, td_offset, size, td_tag);
1828
1829	/* Force memory writes to complete before letting h/w know there
1830	 * are new descriptors to fetch.
1831	 *
1832	 * We also use this memory barrier to make certain all of the
1833	 * status bits have been updated before next_to_watch is written.
1834	 */
1835	wmb();
1836
1837	/* set next_to_watch value indicating a packet is present */
1838	first->next_to_watch = tx_desc;
1839
1840	tx_ring->next_to_use = i;
1841
1842	ice_maybe_stop_tx(tx_ring, DESC_NEEDED);
1843
1844	/* notify HW of packet */
1845	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more())
1846		writel(i, tx_ring->tail);
1847
 
 
 
 
 
 
1848	return;
1849
1850dma_error:
1851	/* clear DMA mappings for failed tx_buf map */
1852	for (;;) {
1853		tx_buf = &tx_ring->tx_buf[i];
1854		ice_unmap_and_free_tx_buf(tx_ring, tx_buf);
1855		if (tx_buf == first)
1856			break;
1857		if (i == 0)
1858			i = tx_ring->count;
1859		i--;
1860	}
1861
1862	tx_ring->next_to_use = i;
1863}
1864
1865/**
1866 * ice_tx_csum - Enable Tx checksum offloads
1867 * @first: pointer to the first descriptor
1868 * @off: pointer to struct that holds offload parameters
1869 *
1870 * Returns 0 or error (negative) if checksum offload can't happen, 1 otherwise.
1871 */
1872static
1873int ice_tx_csum(struct ice_tx_buf *first, struct ice_tx_offload_params *off)
1874{
1875	u32 l4_len = 0, l3_len = 0, l2_len = 0;
1876	struct sk_buff *skb = first->skb;
1877	union {
1878		struct iphdr *v4;
1879		struct ipv6hdr *v6;
1880		unsigned char *hdr;
1881	} ip;
1882	union {
1883		struct tcphdr *tcp;
1884		unsigned char *hdr;
1885	} l4;
1886	__be16 frag_off, protocol;
1887	unsigned char *exthdr;
1888	u32 offset, cmd = 0;
1889	u8 l4_proto = 0;
1890
1891	if (skb->ip_summed != CHECKSUM_PARTIAL)
1892		return 0;
1893
1894	ip.hdr = skb_network_header(skb);
1895	l4.hdr = skb_transport_header(skb);
1896
1897	/* compute outer L2 header size */
1898	l2_len = ip.hdr - skb->data;
1899	offset = (l2_len / 2) << ICE_TX_DESC_LEN_MACLEN_S;
1900
1901	protocol = vlan_get_protocol(skb);
1902
1903	if (protocol == htons(ETH_P_IP))
1904		first->tx_flags |= ICE_TX_FLAGS_IPV4;
1905	else if (protocol == htons(ETH_P_IPV6))
1906		first->tx_flags |= ICE_TX_FLAGS_IPV6;
1907
1908	if (skb->encapsulation) {
1909		bool gso_ena = false;
1910		u32 tunnel = 0;
1911
1912		/* define outer network header type */
1913		if (first->tx_flags & ICE_TX_FLAGS_IPV4) {
1914			tunnel |= (first->tx_flags & ICE_TX_FLAGS_TSO) ?
1915				  ICE_TX_CTX_EIPT_IPV4 :
1916				  ICE_TX_CTX_EIPT_IPV4_NO_CSUM;
1917			l4_proto = ip.v4->protocol;
1918		} else if (first->tx_flags & ICE_TX_FLAGS_IPV6) {
1919			tunnel |= ICE_TX_CTX_EIPT_IPV6;
1920			exthdr = ip.hdr + sizeof(*ip.v6);
1921			l4_proto = ip.v6->nexthdr;
1922			if (l4.hdr != exthdr)
1923				ipv6_skip_exthdr(skb, exthdr - skb->data,
1924						 &l4_proto, &frag_off);
1925		}
1926
1927		/* define outer transport */
1928		switch (l4_proto) {
1929		case IPPROTO_UDP:
1930			tunnel |= ICE_TXD_CTX_UDP_TUNNELING;
1931			first->tx_flags |= ICE_TX_FLAGS_TUNNEL;
1932			break;
1933		case IPPROTO_GRE:
1934			tunnel |= ICE_TXD_CTX_GRE_TUNNELING;
1935			first->tx_flags |= ICE_TX_FLAGS_TUNNEL;
1936			break;
1937		case IPPROTO_IPIP:
1938		case IPPROTO_IPV6:
1939			first->tx_flags |= ICE_TX_FLAGS_TUNNEL;
1940			l4.hdr = skb_inner_network_header(skb);
1941			break;
1942		default:
1943			if (first->tx_flags & ICE_TX_FLAGS_TSO)
1944				return -1;
1945
1946			skb_checksum_help(skb);
1947			return 0;
1948		}
1949
1950		/* compute outer L3 header size */
1951		tunnel |= ((l4.hdr - ip.hdr) / 4) <<
1952			  ICE_TXD_CTX_QW0_EIPLEN_S;
1953
1954		/* switch IP header pointer from outer to inner header */
1955		ip.hdr = skb_inner_network_header(skb);
1956
1957		/* compute tunnel header size */
1958		tunnel |= ((ip.hdr - l4.hdr) / 2) <<
1959			   ICE_TXD_CTX_QW0_NATLEN_S;
1960
1961		gso_ena = skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL;
1962		/* indicate if we need to offload outer UDP header */
1963		if ((first->tx_flags & ICE_TX_FLAGS_TSO) && !gso_ena &&
1964		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
1965			tunnel |= ICE_TXD_CTX_QW0_L4T_CS_M;
1966
1967		/* record tunnel offload values */
1968		off->cd_tunnel_params |= tunnel;
1969
1970		/* set DTYP=1 to indicate that it's an Tx context descriptor
1971		 * in IPsec tunnel mode with Tx offloads in Quad word 1
1972		 */
1973		off->cd_qw1 |= (u64)ICE_TX_DESC_DTYPE_CTX;
1974
1975		/* switch L4 header pointer from outer to inner */
1976		l4.hdr = skb_inner_transport_header(skb);
1977		l4_proto = 0;
1978
1979		/* reset type as we transition from outer to inner headers */
1980		first->tx_flags &= ~(ICE_TX_FLAGS_IPV4 | ICE_TX_FLAGS_IPV6);
1981		if (ip.v4->version == 4)
1982			first->tx_flags |= ICE_TX_FLAGS_IPV4;
1983		if (ip.v6->version == 6)
1984			first->tx_flags |= ICE_TX_FLAGS_IPV6;
1985	}
1986
1987	/* Enable IP checksum offloads */
1988	if (first->tx_flags & ICE_TX_FLAGS_IPV4) {
 
1989		l4_proto = ip.v4->protocol;
1990		/* the stack computes the IP header already, the only time we
1991		 * need the hardware to recompute it is in the case of TSO.
1992		 */
1993		if (first->tx_flags & ICE_TX_FLAGS_TSO)
1994			cmd |= ICE_TX_DESC_CMD_IIPT_IPV4_CSUM;
1995		else
1996			cmd |= ICE_TX_DESC_CMD_IIPT_IPV4;
1997
1998	} else if (first->tx_flags & ICE_TX_FLAGS_IPV6) {
1999		cmd |= ICE_TX_DESC_CMD_IIPT_IPV6;
2000		exthdr = ip.hdr + sizeof(*ip.v6);
2001		l4_proto = ip.v6->nexthdr;
2002		if (l4.hdr != exthdr)
2003			ipv6_skip_exthdr(skb, exthdr - skb->data, &l4_proto,
2004					 &frag_off);
2005	} else {
2006		return -1;
2007	}
2008
2009	/* compute inner L3 header size */
2010	l3_len = l4.hdr - ip.hdr;
2011	offset |= (l3_len / 4) << ICE_TX_DESC_LEN_IPLEN_S;
2012
2013	/* Enable L4 checksum offloads */
2014	switch (l4_proto) {
2015	case IPPROTO_TCP:
2016		/* enable checksum offloads */
2017		cmd |= ICE_TX_DESC_CMD_L4T_EOFT_TCP;
2018		l4_len = l4.tcp->doff;
2019		offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
2020		break;
2021	case IPPROTO_UDP:
2022		/* enable UDP checksum offload */
2023		cmd |= ICE_TX_DESC_CMD_L4T_EOFT_UDP;
2024		l4_len = (sizeof(struct udphdr) >> 2);
2025		offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
2026		break;
2027	case IPPROTO_SCTP:
2028		/* enable SCTP checksum offload */
2029		cmd |= ICE_TX_DESC_CMD_L4T_EOFT_SCTP;
2030		l4_len = sizeof(struct sctphdr) >> 2;
2031		offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
2032		break;
2033
2034	default:
2035		if (first->tx_flags & ICE_TX_FLAGS_TSO)
2036			return -1;
2037		skb_checksum_help(skb);
2038		return 0;
2039	}
2040
2041	off->td_cmd |= cmd;
2042	off->td_offset |= offset;
2043	return 1;
2044}
2045
2046/**
2047 * ice_tx_prepare_vlan_flags - prepare generic Tx VLAN tagging flags for HW
2048 * @tx_ring: ring to send buffer on
2049 * @first: pointer to struct ice_tx_buf
2050 *
2051 * Checks the skb and set up correspondingly several generic transmit flags
2052 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
 
 
 
2053 */
2054static void
2055ice_tx_prepare_vlan_flags(struct ice_ring *tx_ring, struct ice_tx_buf *first)
2056{
2057	struct sk_buff *skb = first->skb;
 
2058
2059	/* nothing left to do, software offloaded VLAN */
2060	if (!skb_vlan_tag_present(skb) && eth_type_vlan(skb->protocol))
2061		return;
 
 
 
 
 
 
 
 
 
2062
2063	/* currently, we always assume 802.1Q for VLAN insertion as VLAN
2064	 * insertion for 802.1AD is not supported
2065	 */
2066	if (skb_vlan_tag_present(skb)) {
2067		first->tx_flags |= skb_vlan_tag_get(skb) << ICE_TX_FLAGS_VLAN_S;
2068		first->tx_flags |= ICE_TX_FLAGS_HW_VLAN;
 
 
 
 
 
 
 
 
 
 
 
 
 
2069	}
2070
2071	ice_tx_prepare_vlan_flags_dcb(tx_ring, first);
 
2072}
2073
2074/**
2075 * ice_tso - computes mss and TSO length to prepare for TSO
2076 * @first: pointer to struct ice_tx_buf
2077 * @off: pointer to struct that holds offload parameters
2078 *
2079 * Returns 0 or error (negative) if TSO can't happen, 1 otherwise.
2080 */
2081static
2082int ice_tso(struct ice_tx_buf *first, struct ice_tx_offload_params *off)
2083{
2084	struct sk_buff *skb = first->skb;
2085	union {
2086		struct iphdr *v4;
2087		struct ipv6hdr *v6;
2088		unsigned char *hdr;
2089	} ip;
2090	union {
2091		struct tcphdr *tcp;
2092		struct udphdr *udp;
2093		unsigned char *hdr;
2094	} l4;
2095	u64 cd_mss, cd_tso_len;
2096	u32 paylen;
2097	u8 l4_start;
2098	int err;
2099
2100	if (skb->ip_summed != CHECKSUM_PARTIAL)
2101		return 0;
2102
2103	if (!skb_is_gso(skb))
2104		return 0;
2105
2106	err = skb_cow_head(skb, 0);
2107	if (err < 0)
2108		return err;
2109
2110	/* cppcheck-suppress unreadVariable */
2111	ip.hdr = skb_network_header(skb);
2112	l4.hdr = skb_transport_header(skb);
2113
2114	/* initialize outer IP header fields */
2115	if (ip.v4->version == 4) {
2116		ip.v4->tot_len = 0;
2117		ip.v4->check = 0;
2118	} else {
2119		ip.v6->payload_len = 0;
2120	}
2121
2122	if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
2123					 SKB_GSO_GRE_CSUM |
2124					 SKB_GSO_IPXIP4 |
2125					 SKB_GSO_IPXIP6 |
2126					 SKB_GSO_UDP_TUNNEL |
2127					 SKB_GSO_UDP_TUNNEL_CSUM)) {
2128		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
2129		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
2130			l4.udp->len = 0;
2131
2132			/* determine offset of outer transport header */
2133			l4_start = (u8)(l4.hdr - skb->data);
2134
2135			/* remove payload length from outer checksum */
2136			paylen = skb->len - l4_start;
2137			csum_replace_by_diff(&l4.udp->check,
2138					     (__force __wsum)htonl(paylen));
2139		}
2140
2141		/* reset pointers to inner headers */
2142
2143		/* cppcheck-suppress unreadVariable */
2144		ip.hdr = skb_inner_network_header(skb);
2145		l4.hdr = skb_inner_transport_header(skb);
2146
2147		/* initialize inner IP header fields */
2148		if (ip.v4->version == 4) {
2149			ip.v4->tot_len = 0;
2150			ip.v4->check = 0;
2151		} else {
2152			ip.v6->payload_len = 0;
2153		}
2154	}
2155
2156	/* determine offset of transport header */
2157	l4_start = (u8)(l4.hdr - skb->data);
2158
2159	/* remove payload length from checksum */
2160	paylen = skb->len - l4_start;
 
2161
2162	if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
2163		csum_replace_by_diff(&l4.udp->check,
2164				     (__force __wsum)htonl(paylen));
2165		/* compute length of UDP segmentation header */
2166		off->header_len = (u8)sizeof(l4.udp) + l4_start;
2167	} else {
2168		csum_replace_by_diff(&l4.tcp->check,
2169				     (__force __wsum)htonl(paylen));
2170		/* compute length of TCP segmentation header */
2171		off->header_len = (u8)((l4.tcp->doff * 4) + l4_start);
2172	}
2173
2174	/* update gso_segs and bytecount */
2175	first->gso_segs = skb_shinfo(skb)->gso_segs;
2176	first->bytecount += (first->gso_segs - 1) * off->header_len;
2177
2178	cd_tso_len = skb->len - off->header_len;
2179	cd_mss = skb_shinfo(skb)->gso_size;
2180
2181	/* record cdesc_qw1 with TSO parameters */
2182	off->cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX |
2183			     (ICE_TX_CTX_DESC_TSO << ICE_TXD_CTX_QW1_CMD_S) |
2184			     (cd_tso_len << ICE_TXD_CTX_QW1_TSO_LEN_S) |
2185			     (cd_mss << ICE_TXD_CTX_QW1_MSS_S));
2186	first->tx_flags |= ICE_TX_FLAGS_TSO;
2187	return 1;
2188}
2189
2190/**
2191 * ice_txd_use_count  - estimate the number of descriptors needed for Tx
2192 * @size: transmit request size in bytes
2193 *
2194 * Due to hardware alignment restrictions (4K alignment), we need to
2195 * assume that we can have no more than 12K of data per descriptor, even
2196 * though each descriptor can take up to 16K - 1 bytes of aligned memory.
2197 * Thus, we need to divide by 12K. But division is slow! Instead,
2198 * we decompose the operation into shifts and one relatively cheap
2199 * multiply operation.
2200 *
2201 * To divide by 12K, we first divide by 4K, then divide by 3:
2202 *     To divide by 4K, shift right by 12 bits
2203 *     To divide by 3, multiply by 85, then divide by 256
2204 *     (Divide by 256 is done by shifting right by 8 bits)
2205 * Finally, we add one to round up. Because 256 isn't an exact multiple of
2206 * 3, we'll underestimate near each multiple of 12K. This is actually more
2207 * accurate as we have 4K - 1 of wiggle room that we can fit into the last
2208 * segment. For our purposes this is accurate out to 1M which is orders of
2209 * magnitude greater than our largest possible GSO size.
2210 *
2211 * This would then be implemented as:
2212 *     return (((size >> 12) * 85) >> 8) + ICE_DESCS_FOR_SKB_DATA_PTR;
2213 *
2214 * Since multiplication and division are commutative, we can reorder
2215 * operations into:
2216 *     return ((size * 85) >> 20) + ICE_DESCS_FOR_SKB_DATA_PTR;
2217 */
2218static unsigned int ice_txd_use_count(unsigned int size)
2219{
2220	return ((size * 85) >> 20) + ICE_DESCS_FOR_SKB_DATA_PTR;
2221}
2222
2223/**
2224 * ice_xmit_desc_count - calculate number of Tx descriptors needed
2225 * @skb: send buffer
2226 *
2227 * Returns number of data descriptors needed for this skb.
2228 */
2229static unsigned int ice_xmit_desc_count(struct sk_buff *skb)
2230{
2231	const skb_frag_t *frag = &skb_shinfo(skb)->frags[0];
2232	unsigned int nr_frags = skb_shinfo(skb)->nr_frags;
2233	unsigned int count = 0, size = skb_headlen(skb);
2234
2235	for (;;) {
2236		count += ice_txd_use_count(size);
2237
2238		if (!nr_frags--)
2239			break;
2240
2241		size = skb_frag_size(frag++);
2242	}
2243
2244	return count;
2245}
2246
2247/**
2248 * __ice_chk_linearize - Check if there are more than 8 buffers per packet
2249 * @skb: send buffer
2250 *
2251 * Note: This HW can't DMA more than 8 buffers to build a packet on the wire
2252 * and so we need to figure out the cases where we need to linearize the skb.
2253 *
2254 * For TSO we need to count the TSO header and segment payload separately.
2255 * As such we need to check cases where we have 7 fragments or more as we
2256 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
2257 * the segment payload in the first descriptor, and another 7 for the
2258 * fragments.
2259 */
2260static bool __ice_chk_linearize(struct sk_buff *skb)
2261{
2262	const skb_frag_t *frag, *stale;
2263	int nr_frags, sum;
2264
2265	/* no need to check if number of frags is less than 7 */
2266	nr_frags = skb_shinfo(skb)->nr_frags;
2267	if (nr_frags < (ICE_MAX_BUF_TXD - 1))
2268		return false;
2269
2270	/* We need to walk through the list and validate that each group
2271	 * of 6 fragments totals at least gso_size.
2272	 */
2273	nr_frags -= ICE_MAX_BUF_TXD - 2;
2274	frag = &skb_shinfo(skb)->frags[0];
2275
2276	/* Initialize size to the negative value of gso_size minus 1. We
2277	 * use this as the worst case scenario in which the frag ahead
2278	 * of us only provides one byte which is why we are limited to 6
2279	 * descriptors for a single transmit as the header and previous
2280	 * fragment are already consuming 2 descriptors.
2281	 */
2282	sum = 1 - skb_shinfo(skb)->gso_size;
2283
2284	/* Add size of frags 0 through 4 to create our initial sum */
2285	sum += skb_frag_size(frag++);
2286	sum += skb_frag_size(frag++);
2287	sum += skb_frag_size(frag++);
2288	sum += skb_frag_size(frag++);
2289	sum += skb_frag_size(frag++);
2290
2291	/* Walk through fragments adding latest fragment, testing it, and
2292	 * then removing stale fragments from the sum.
2293	 */
2294	for (stale = &skb_shinfo(skb)->frags[0];; stale++) {
2295		int stale_size = skb_frag_size(stale);
2296
2297		sum += skb_frag_size(frag++);
2298
2299		/* The stale fragment may present us with a smaller
2300		 * descriptor than the actual fragment size. To account
2301		 * for that we need to remove all the data on the front and
2302		 * figure out what the remainder would be in the last
2303		 * descriptor associated with the fragment.
2304		 */
2305		if (stale_size > ICE_MAX_DATA_PER_TXD) {
2306			int align_pad = -(skb_frag_off(stale)) &
2307					(ICE_MAX_READ_REQ_SIZE - 1);
2308
2309			sum -= align_pad;
2310			stale_size -= align_pad;
2311
2312			do {
2313				sum -= ICE_MAX_DATA_PER_TXD_ALIGNED;
2314				stale_size -= ICE_MAX_DATA_PER_TXD_ALIGNED;
2315			} while (stale_size > ICE_MAX_DATA_PER_TXD);
2316		}
2317
2318		/* if sum is negative we failed to make sufficient progress */
2319		if (sum < 0)
2320			return true;
2321
2322		if (!nr_frags--)
2323			break;
2324
2325		sum -= stale_size;
2326	}
2327
2328	return false;
2329}
2330
2331/**
2332 * ice_chk_linearize - Check if there are more than 8 fragments per packet
2333 * @skb:      send buffer
2334 * @count:    number of buffers used
2335 *
2336 * Note: Our HW can't scatter-gather more than 8 fragments to build
2337 * a packet on the wire and so we need to figure out the cases where we
2338 * need to linearize the skb.
2339 */
2340static bool ice_chk_linearize(struct sk_buff *skb, unsigned int count)
2341{
2342	/* Both TSO and single send will work if count is less than 8 */
2343	if (likely(count < ICE_MAX_BUF_TXD))
2344		return false;
2345
2346	if (skb_is_gso(skb))
2347		return __ice_chk_linearize(skb);
2348
2349	/* we can support up to 8 data buffers for a single send */
2350	return count != ICE_MAX_BUF_TXD;
2351}
2352
2353/**
2354 * ice_xmit_frame_ring - Sends buffer on Tx ring
2355 * @skb: send buffer
2356 * @tx_ring: ring to send buffer on
2357 *
2358 * Returns NETDEV_TX_OK if sent, else an error code
2359 */
2360static netdev_tx_t
2361ice_xmit_frame_ring(struct sk_buff *skb, struct ice_ring *tx_ring)
2362{
2363	struct ice_tx_offload_params offload = { 0 };
2364	struct ice_vsi *vsi = tx_ring->vsi;
2365	struct ice_tx_buf *first;
2366	unsigned int count;
2367	int tso, csum;
2368
2369	count = ice_xmit_desc_count(skb);
2370	if (ice_chk_linearize(skb, count)) {
2371		if (__skb_linearize(skb))
2372			goto out_drop;
2373		count = ice_txd_use_count(skb->len);
2374		tx_ring->tx_stats.tx_linearize++;
2375	}
2376
2377	/* need: 1 descriptor per page * PAGE_SIZE/ICE_MAX_DATA_PER_TXD,
2378	 *       + 1 desc for skb_head_len/ICE_MAX_DATA_PER_TXD,
2379	 *       + 4 desc gap to avoid the cache line where head is,
2380	 *       + 1 desc for context descriptor,
2381	 * otherwise try next time
2382	 */
2383	if (ice_maybe_stop_tx(tx_ring, count + ICE_DESCS_PER_CACHE_LINE +
2384			      ICE_DESCS_FOR_CTX_DESC)) {
2385		tx_ring->tx_stats.tx_busy++;
2386		return NETDEV_TX_BUSY;
2387	}
2388
2389	offload.tx_ring = tx_ring;
2390
2391	/* record the location of the first descriptor for this packet */
2392	first = &tx_ring->tx_buf[tx_ring->next_to_use];
2393	first->skb = skb;
2394	first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN);
2395	first->gso_segs = 1;
2396	first->tx_flags = 0;
2397
2398	/* prepare the VLAN tagging flags for Tx */
2399	ice_tx_prepare_vlan_flags(tx_ring, first);
 
2400
2401	/* set up TSO offload */
2402	tso = ice_tso(first, &offload);
2403	if (tso < 0)
2404		goto out_drop;
2405
2406	/* always set up Tx checksum offload */
2407	csum = ice_tx_csum(first, &offload);
2408	if (csum < 0)
2409		goto out_drop;
2410
2411	/* allow CONTROL frames egress from main VSI if FW LLDP disabled */
2412	if (unlikely(skb->priority == TC_PRIO_CONTROL &&
2413		     vsi->type == ICE_VSI_PF &&
2414		     vsi->port_info->is_sw_lldp))
2415		offload.cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX |
2416					ICE_TX_CTX_DESC_SWTCH_UPLINK <<
2417					ICE_TXD_CTX_QW1_CMD_S);
2418
2419	if (offload.cd_qw1 & ICE_TX_DESC_DTYPE_CTX) {
2420		struct ice_tx_ctx_desc *cdesc;
2421		u16 i = tx_ring->next_to_use;
2422
2423		/* grab the next descriptor */
2424		cdesc = ICE_TX_CTX_DESC(tx_ring, i);
2425		i++;
2426		tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2427
2428		/* setup context descriptor */
2429		cdesc->tunneling_params = cpu_to_le32(offload.cd_tunnel_params);
2430		cdesc->l2tag2 = cpu_to_le16(offload.cd_l2tag2);
2431		cdesc->rsvd = cpu_to_le16(0);
2432		cdesc->qw1 = cpu_to_le64(offload.cd_qw1);
2433	}
2434
2435	ice_tx_map(tx_ring, first, &offload);
2436	return NETDEV_TX_OK;
2437
2438out_drop:
2439	dev_kfree_skb_any(skb);
2440	return NETDEV_TX_OK;
2441}
2442
2443/**
2444 * ice_start_xmit - Selects the correct VSI and Tx queue to send buffer
2445 * @skb: send buffer
2446 * @netdev: network interface device structure
2447 *
2448 * Returns NETDEV_TX_OK if sent, else an error code
2449 */
2450netdev_tx_t ice_start_xmit(struct sk_buff *skb, struct net_device *netdev)
2451{
2452	struct ice_netdev_priv *np = netdev_priv(netdev);
2453	struct ice_vsi *vsi = np->vsi;
2454	struct ice_ring *tx_ring;
2455
2456	tx_ring = vsi->tx_rings[skb->queue_mapping];
2457
2458	/* hardware can't handle really short frames, hardware padding works
2459	 * beyond this point
2460	 */
2461	if (skb_put_padto(skb, ICE_MIN_TX_LEN))
2462		return NETDEV_TX_OK;
2463
2464	return ice_xmit_frame_ring(skb, tx_ring);
2465}
2466
2467/**
2468 * ice_clean_ctrl_tx_irq - interrupt handler for flow director Tx queue
2469 * @tx_ring: tx_ring to clean
2470 */
2471void ice_clean_ctrl_tx_irq(struct ice_ring *tx_ring)
2472{
2473	struct ice_vsi *vsi = tx_ring->vsi;
2474	s16 i = tx_ring->next_to_clean;
2475	int budget = ICE_DFLT_IRQ_WORK;
2476	struct ice_tx_desc *tx_desc;
2477	struct ice_tx_buf *tx_buf;
2478
2479	tx_buf = &tx_ring->tx_buf[i];
2480	tx_desc = ICE_TX_DESC(tx_ring, i);
2481	i -= tx_ring->count;
2482
2483	do {
2484		struct ice_tx_desc *eop_desc = tx_buf->next_to_watch;
2485
2486		/* if next_to_watch is not set then there is no pending work */
2487		if (!eop_desc)
2488			break;
2489
2490		/* prevent any other reads prior to eop_desc */
2491		smp_rmb();
2492
2493		/* if the descriptor isn't done, no work to do */
2494		if (!(eop_desc->cmd_type_offset_bsz &
2495		      cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE)))
2496			break;
2497
2498		/* clear next_to_watch to prevent false hangs */
2499		tx_buf->next_to_watch = NULL;
2500		tx_desc->buf_addr = 0;
2501		tx_desc->cmd_type_offset_bsz = 0;
2502
2503		/* move past filter desc */
2504		tx_buf++;
2505		tx_desc++;
2506		i++;
2507		if (unlikely(!i)) {
2508			i -= tx_ring->count;
2509			tx_buf = tx_ring->tx_buf;
2510			tx_desc = ICE_TX_DESC(tx_ring, 0);
2511		}
2512
2513		/* unmap the data header */
2514		if (dma_unmap_len(tx_buf, len))
2515			dma_unmap_single(tx_ring->dev,
2516					 dma_unmap_addr(tx_buf, dma),
2517					 dma_unmap_len(tx_buf, len),
2518					 DMA_TO_DEVICE);
2519		if (tx_buf->tx_flags & ICE_TX_FLAGS_DUMMY_PKT)
2520			devm_kfree(tx_ring->dev, tx_buf->raw_buf);
2521
2522		/* clear next_to_watch to prevent false hangs */
2523		tx_buf->raw_buf = NULL;
2524		tx_buf->tx_flags = 0;
2525		tx_buf->next_to_watch = NULL;
2526		dma_unmap_len_set(tx_buf, len, 0);
2527		tx_desc->buf_addr = 0;
2528		tx_desc->cmd_type_offset_bsz = 0;
2529
2530		/* move past eop_desc for start of next FD desc */
2531		tx_buf++;
2532		tx_desc++;
2533		i++;
2534		if (unlikely(!i)) {
2535			i -= tx_ring->count;
2536			tx_buf = tx_ring->tx_buf;
2537			tx_desc = ICE_TX_DESC(tx_ring, 0);
2538		}
2539
2540		budget--;
2541	} while (likely(budget));
2542
2543	i += tx_ring->count;
2544	tx_ring->next_to_clean = i;
2545
2546	/* re-enable interrupt if needed */
2547	ice_irq_dynamic_ena(&vsi->back->hw, vsi, vsi->q_vectors[0]);
2548}
v4.17
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright (c) 2018, Intel Corporation. */
   3
   4/* The driver transmit and receive code */
   5
   6#include <linux/prefetch.h>
   7#include <linux/mm.h>
 
 
 
 
   8#include "ice.h"
 
 
   9
  10#define ICE_RX_HDR_SIZE		256
  11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  12/**
  13 * ice_unmap_and_free_tx_buf - Release a Tx buffer
  14 * @ring: the ring that owns the buffer
  15 * @tx_buf: the buffer to free
  16 */
  17static void
  18ice_unmap_and_free_tx_buf(struct ice_ring *ring, struct ice_tx_buf *tx_buf)
  19{
  20	if (tx_buf->skb) {
  21		dev_kfree_skb_any(tx_buf->skb);
 
 
 
 
 
  22		if (dma_unmap_len(tx_buf, len))
  23			dma_unmap_single(ring->dev,
  24					 dma_unmap_addr(tx_buf, dma),
  25					 dma_unmap_len(tx_buf, len),
  26					 DMA_TO_DEVICE);
  27	} else if (dma_unmap_len(tx_buf, len)) {
  28		dma_unmap_page(ring->dev,
  29			       dma_unmap_addr(tx_buf, dma),
  30			       dma_unmap_len(tx_buf, len),
  31			       DMA_TO_DEVICE);
  32	}
  33
  34	tx_buf->next_to_watch = NULL;
  35	tx_buf->skb = NULL;
  36	dma_unmap_len_set(tx_buf, len, 0);
  37	/* tx_buf must be completely set up in the transmit path */
  38}
  39
  40static struct netdev_queue *txring_txq(const struct ice_ring *ring)
  41{
  42	return netdev_get_tx_queue(ring->netdev, ring->q_index);
  43}
  44
  45/**
  46 * ice_clean_tx_ring - Free any empty Tx buffers
  47 * @tx_ring: ring to be cleaned
  48 */
  49void ice_clean_tx_ring(struct ice_ring *tx_ring)
  50{
  51	unsigned long size;
  52	u16 i;
  53
 
 
 
 
 
  54	/* ring already cleared, nothing to do */
  55	if (!tx_ring->tx_buf)
  56		return;
  57
  58	/* Free all the Tx ring sk_bufss */
  59	for (i = 0; i < tx_ring->count; i++)
  60		ice_unmap_and_free_tx_buf(tx_ring, &tx_ring->tx_buf[i]);
  61
  62	size = sizeof(struct ice_tx_buf) * tx_ring->count;
  63	memset(tx_ring->tx_buf, 0, size);
  64
  65	/* Zero out the descriptor ring */
  66	memset(tx_ring->desc, 0, tx_ring->size);
  67
  68	tx_ring->next_to_use = 0;
  69	tx_ring->next_to_clean = 0;
  70
  71	if (!tx_ring->netdev)
  72		return;
  73
  74	/* cleanup Tx queue statistics */
  75	netdev_tx_reset_queue(txring_txq(tx_ring));
  76}
  77
  78/**
  79 * ice_free_tx_ring - Free Tx resources per queue
  80 * @tx_ring: Tx descriptor ring for a specific queue
  81 *
  82 * Free all transmit software resources
  83 */
  84void ice_free_tx_ring(struct ice_ring *tx_ring)
  85{
  86	ice_clean_tx_ring(tx_ring);
  87	devm_kfree(tx_ring->dev, tx_ring->tx_buf);
  88	tx_ring->tx_buf = NULL;
  89
  90	if (tx_ring->desc) {
  91		dmam_free_coherent(tx_ring->dev, tx_ring->size,
  92				   tx_ring->desc, tx_ring->dma);
  93		tx_ring->desc = NULL;
  94	}
  95}
  96
  97/**
  98 * ice_clean_tx_irq - Reclaim resources after transmit completes
  99 * @vsi: the VSI we care about
 100 * @tx_ring: Tx ring to clean
 101 * @napi_budget: Used to determine if we are in netpoll
 102 *
 103 * Returns true if there's any budget left (e.g. the clean is finished)
 104 */
 105static bool ice_clean_tx_irq(struct ice_vsi *vsi, struct ice_ring *tx_ring,
 106			     int napi_budget)
 107{
 108	unsigned int total_bytes = 0, total_pkts = 0;
 109	unsigned int budget = vsi->work_lmt;
 
 110	s16 i = tx_ring->next_to_clean;
 111	struct ice_tx_desc *tx_desc;
 112	struct ice_tx_buf *tx_buf;
 113
 114	tx_buf = &tx_ring->tx_buf[i];
 115	tx_desc = ICE_TX_DESC(tx_ring, i);
 116	i -= tx_ring->count;
 117
 
 
 118	do {
 119		struct ice_tx_desc *eop_desc = tx_buf->next_to_watch;
 120
 121		/* if next_to_watch is not set then there is no work pending */
 122		if (!eop_desc)
 123			break;
 124
 125		smp_rmb();	/* prevent any other reads prior to eop_desc */
 126
 127		/* if the descriptor isn't done, no work yet to do */
 128		if (!(eop_desc->cmd_type_offset_bsz &
 129		      cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE)))
 130			break;
 131
 132		/* clear next_to_watch to prevent false hangs */
 133		tx_buf->next_to_watch = NULL;
 134
 135		/* update the statistics for this packet */
 136		total_bytes += tx_buf->bytecount;
 137		total_pkts += tx_buf->gso_segs;
 138
 139		/* free the skb */
 140		napi_consume_skb(tx_buf->skb, napi_budget);
 
 
 
 141
 142		/* unmap skb header data */
 143		dma_unmap_single(tx_ring->dev,
 144				 dma_unmap_addr(tx_buf, dma),
 145				 dma_unmap_len(tx_buf, len),
 146				 DMA_TO_DEVICE);
 147
 148		/* clear tx_buf data */
 149		tx_buf->skb = NULL;
 150		dma_unmap_len_set(tx_buf, len, 0);
 151
 152		/* unmap remaining buffers */
 153		while (tx_desc != eop_desc) {
 154			tx_buf++;
 155			tx_desc++;
 156			i++;
 157			if (unlikely(!i)) {
 158				i -= tx_ring->count;
 159				tx_buf = tx_ring->tx_buf;
 160				tx_desc = ICE_TX_DESC(tx_ring, 0);
 161			}
 162
 163			/* unmap any remaining paged data */
 164			if (dma_unmap_len(tx_buf, len)) {
 165				dma_unmap_page(tx_ring->dev,
 166					       dma_unmap_addr(tx_buf, dma),
 167					       dma_unmap_len(tx_buf, len),
 168					       DMA_TO_DEVICE);
 169				dma_unmap_len_set(tx_buf, len, 0);
 170			}
 171		}
 172
 173		/* move us one more past the eop_desc for start of next pkt */
 174		tx_buf++;
 175		tx_desc++;
 176		i++;
 177		if (unlikely(!i)) {
 178			i -= tx_ring->count;
 179			tx_buf = tx_ring->tx_buf;
 180			tx_desc = ICE_TX_DESC(tx_ring, 0);
 181		}
 182
 183		prefetch(tx_desc);
 184
 185		/* update budget accounting */
 186		budget--;
 187	} while (likely(budget));
 188
 189	i += tx_ring->count;
 190	tx_ring->next_to_clean = i;
 191	u64_stats_update_begin(&tx_ring->syncp);
 192	tx_ring->stats.bytes += total_bytes;
 193	tx_ring->stats.pkts += total_pkts;
 194	u64_stats_update_end(&tx_ring->syncp);
 195	tx_ring->q_vector->tx.total_bytes += total_bytes;
 196	tx_ring->q_vector->tx.total_pkts += total_pkts;
 197
 198	netdev_tx_completed_queue(txring_txq(tx_ring), total_pkts,
 199				  total_bytes);
 200
 201#define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
 202	if (unlikely(total_pkts && netif_carrier_ok(tx_ring->netdev) &&
 203		     (ICE_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
 204		/* Make sure that anybody stopping the queue after this
 205		 * sees the new next_to_clean.
 206		 */
 207		smp_mb();
 208		if (__netif_subqueue_stopped(tx_ring->netdev,
 209					     tx_ring->q_index) &&
 210		   !test_bit(__ICE_DOWN, vsi->state)) {
 211			netif_wake_subqueue(tx_ring->netdev,
 212					    tx_ring->q_index);
 213			++tx_ring->tx_stats.restart_q;
 214		}
 215	}
 216
 217	return !!budget;
 218}
 219
 220/**
 221 * ice_setup_tx_ring - Allocate the Tx descriptors
 222 * @tx_ring: the tx ring to set up
 223 *
 224 * Return 0 on success, negative on error
 225 */
 226int ice_setup_tx_ring(struct ice_ring *tx_ring)
 227{
 228	struct device *dev = tx_ring->dev;
 229	int bi_size;
 230
 231	if (!dev)
 232		return -ENOMEM;
 233
 234	/* warn if we are about to overwrite the pointer */
 235	WARN_ON(tx_ring->tx_buf);
 236	bi_size = sizeof(struct ice_tx_buf) * tx_ring->count;
 237	tx_ring->tx_buf = devm_kzalloc(dev, bi_size, GFP_KERNEL);
 
 238	if (!tx_ring->tx_buf)
 239		return -ENOMEM;
 240
 241	/* round up to nearest 4K */
 242	tx_ring->size = tx_ring->count * sizeof(struct ice_tx_desc);
 243	tx_ring->size = ALIGN(tx_ring->size, 4096);
 244	tx_ring->desc = dmam_alloc_coherent(dev, tx_ring->size, &tx_ring->dma,
 245					    GFP_KERNEL);
 246	if (!tx_ring->desc) {
 247		dev_err(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
 248			tx_ring->size);
 249		goto err;
 250	}
 251
 252	tx_ring->next_to_use = 0;
 253	tx_ring->next_to_clean = 0;
 
 254	return 0;
 255
 256err:
 257	devm_kfree(dev, tx_ring->tx_buf);
 258	tx_ring->tx_buf = NULL;
 259	return -ENOMEM;
 260}
 261
 262/**
 263 * ice_clean_rx_ring - Free Rx buffers
 264 * @rx_ring: ring to be cleaned
 265 */
 266void ice_clean_rx_ring(struct ice_ring *rx_ring)
 267{
 268	struct device *dev = rx_ring->dev;
 269	unsigned long size;
 270	u16 i;
 271
 272	/* ring already cleared, nothing to do */
 273	if (!rx_ring->rx_buf)
 274		return;
 275
 
 
 
 
 
 276	/* Free all the Rx ring sk_buffs */
 277	for (i = 0; i < rx_ring->count; i++) {
 278		struct ice_rx_buf *rx_buf = &rx_ring->rx_buf[i];
 279
 280		if (rx_buf->skb) {
 281			dev_kfree_skb(rx_buf->skb);
 282			rx_buf->skb = NULL;
 283		}
 284		if (!rx_buf->page)
 285			continue;
 286
 287		dma_unmap_page(dev, rx_buf->dma, PAGE_SIZE, DMA_FROM_DEVICE);
 288		__free_pages(rx_buf->page, 0);
 
 
 
 
 
 
 
 
 
 
 289
 290		rx_buf->page = NULL;
 291		rx_buf->page_offset = 0;
 292	}
 293
 294	size = sizeof(struct ice_rx_buf) * rx_ring->count;
 295	memset(rx_ring->rx_buf, 0, size);
 296
 297	/* Zero out the descriptor ring */
 298	memset(rx_ring->desc, 0, rx_ring->size);
 299
 300	rx_ring->next_to_alloc = 0;
 301	rx_ring->next_to_clean = 0;
 302	rx_ring->next_to_use = 0;
 303}
 304
 305/**
 306 * ice_free_rx_ring - Free Rx resources
 307 * @rx_ring: ring to clean the resources from
 308 *
 309 * Free all receive software resources
 310 */
 311void ice_free_rx_ring(struct ice_ring *rx_ring)
 312{
 313	ice_clean_rx_ring(rx_ring);
 
 
 
 
 314	devm_kfree(rx_ring->dev, rx_ring->rx_buf);
 315	rx_ring->rx_buf = NULL;
 316
 317	if (rx_ring->desc) {
 318		dmam_free_coherent(rx_ring->dev, rx_ring->size,
 319				   rx_ring->desc, rx_ring->dma);
 320		rx_ring->desc = NULL;
 321	}
 322}
 323
 324/**
 325 * ice_setup_rx_ring - Allocate the Rx descriptors
 326 * @rx_ring: the rx ring to set up
 327 *
 328 * Return 0 on success, negative on error
 329 */
 330int ice_setup_rx_ring(struct ice_ring *rx_ring)
 331{
 332	struct device *dev = rx_ring->dev;
 333	int bi_size;
 334
 335	if (!dev)
 336		return -ENOMEM;
 337
 338	/* warn if we are about to overwrite the pointer */
 339	WARN_ON(rx_ring->rx_buf);
 340	bi_size = sizeof(struct ice_rx_buf) * rx_ring->count;
 341	rx_ring->rx_buf = devm_kzalloc(dev, bi_size, GFP_KERNEL);
 
 342	if (!rx_ring->rx_buf)
 343		return -ENOMEM;
 344
 345	/* round up to nearest 4K */
 346	rx_ring->size = rx_ring->count * sizeof(union ice_32byte_rx_desc);
 347	rx_ring->size = ALIGN(rx_ring->size, 4096);
 348	rx_ring->desc = dmam_alloc_coherent(dev, rx_ring->size, &rx_ring->dma,
 349					    GFP_KERNEL);
 350	if (!rx_ring->desc) {
 351		dev_err(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
 352			rx_ring->size);
 353		goto err;
 354	}
 355
 356	rx_ring->next_to_use = 0;
 357	rx_ring->next_to_clean = 0;
 
 
 
 
 
 
 
 
 
 358	return 0;
 359
 360err:
 361	devm_kfree(dev, rx_ring->rx_buf);
 362	rx_ring->rx_buf = NULL;
 363	return -ENOMEM;
 364}
 365
 366/**
 367 * ice_release_rx_desc - Store the new tail and head values
 368 * @rx_ring: ring to bump
 369 * @val: new head index
 
 370 */
 371static void ice_release_rx_desc(struct ice_ring *rx_ring, u32 val)
 
 
 
 
 
 
 
 
 
 
 
 372{
 373	rx_ring->next_to_use = val;
 374
 375	/* update next to alloc since we have filled the ring */
 376	rx_ring->next_to_alloc = val;
 
 
 
 
 
 
 
 
 377
 378	/* Force memory writes to complete before letting h/w
 379	 * know there are new descriptors to fetch.  (Only
 380	 * applicable for weak-ordered memory model archs,
 381	 * such as IA-64).
 382	 */
 383	wmb();
 384	writel(val, rx_ring->tail);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 385}
 386
 387/**
 388 * ice_alloc_mapped_page - recycle or make a new page
 389 * @rx_ring: ring to use
 390 * @bi: rx_buf struct to modify
 391 *
 392 * Returns true if the page was successfully allocated or
 393 * reused.
 394 */
 395static bool ice_alloc_mapped_page(struct ice_ring *rx_ring,
 396				  struct ice_rx_buf *bi)
 397{
 398	struct page *page = bi->page;
 399	dma_addr_t dma;
 400
 401	/* since we are recycling buffers we should seldom need to alloc */
 402	if (likely(page)) {
 403		rx_ring->rx_stats.page_reuse_count++;
 404		return true;
 405	}
 406
 407	/* alloc new page for storage */
 408	page = alloc_page(GFP_ATOMIC | __GFP_NOWARN);
 409	if (unlikely(!page)) {
 410		rx_ring->rx_stats.alloc_page_failed++;
 411		return false;
 412	}
 413
 414	/* map page for use */
 415	dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
 
 416
 417	/* if mapping failed free memory back to system since
 418	 * there isn't much point in holding memory we can't use
 419	 */
 420	if (dma_mapping_error(rx_ring->dev, dma)) {
 421		__free_pages(page, 0);
 422		rx_ring->rx_stats.alloc_page_failed++;
 423		return false;
 424	}
 425
 426	bi->dma = dma;
 427	bi->page = page;
 428	bi->page_offset = 0;
 
 
 429
 430	return true;
 431}
 432
 433/**
 434 * ice_alloc_rx_bufs - Replace used receive buffers
 435 * @rx_ring: ring to place buffers on
 436 * @cleaned_count: number of buffers to replace
 437 *
 438 * Returns false if all allocations were successful, true if any fail
 
 
 
 
 
 
 439 */
 440bool ice_alloc_rx_bufs(struct ice_ring *rx_ring, u16 cleaned_count)
 441{
 442	union ice_32b_rx_flex_desc *rx_desc;
 443	u16 ntu = rx_ring->next_to_use;
 444	struct ice_rx_buf *bi;
 445
 446	/* do nothing if no valid netdev defined */
 447	if (!rx_ring->netdev || !cleaned_count)
 
 448		return false;
 449
 450	/* get the RX descriptor and buffer based on next_to_use */
 451	rx_desc = ICE_RX_DESC(rx_ring, ntu);
 452	bi = &rx_ring->rx_buf[ntu];
 453
 454	do {
 
 455		if (!ice_alloc_mapped_page(rx_ring, bi))
 456			goto no_bufs;
 
 
 
 
 
 
 457
 458		/* Refresh the desc even if buffer_addrs didn't change
 459		 * because each write-back erases this info.
 460		 */
 461		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
 462
 463		rx_desc++;
 464		bi++;
 465		ntu++;
 466		if (unlikely(ntu == rx_ring->count)) {
 467			rx_desc = ICE_RX_DESC(rx_ring, 0);
 468			bi = rx_ring->rx_buf;
 469			ntu = 0;
 470		}
 471
 472		/* clear the status bits for the next_to_use descriptor */
 473		rx_desc->wb.status_error0 = 0;
 474
 475		cleaned_count--;
 476	} while (cleaned_count);
 477
 478	if (rx_ring->next_to_use != ntu)
 479		ice_release_rx_desc(rx_ring, ntu);
 480
 481	return false;
 482
 483no_bufs:
 484	if (rx_ring->next_to_use != ntu)
 485		ice_release_rx_desc(rx_ring, ntu);
 486
 487	/* make sure to come back via polling to try again after
 488	 * allocation failure
 489	 */
 490	return true;
 491}
 492
 493/**
 494 * ice_page_is_reserved - check if reuse is possible
 495 * @page: page struct to check
 496 */
 497static bool ice_page_is_reserved(struct page *page)
 498{
 499	return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
 500}
 501
 502/**
 503 * ice_add_rx_frag - Add contents of Rx buffer to sk_buff
 504 * @rx_buf: buffer containing page to add
 505 * @rx_desc: descriptor containing length of buffer written by hardware
 506 * @skb: sk_buf to place the data into
 507 *
 508 * This function will add the data contained in rx_buf->page to the skb.
 509 * This is done either through a direct copy if the data in the buffer is
 510 * less than the skb header size, otherwise it will just attach the page as
 511 * a frag to the skb.
 512 *
 513 * The function will then update the page offset if necessary and return
 514 * true if the buffer can be reused by the adapter.
 515 */
 516static bool ice_add_rx_frag(struct ice_rx_buf *rx_buf,
 517			    union ice_32b_rx_flex_desc *rx_desc,
 518			    struct sk_buff *skb)
 519{
 520#if (PAGE_SIZE < 8192)
 521	unsigned int truesize = ICE_RXBUF_2048;
 
 522#else
 523	unsigned int last_offset = PAGE_SIZE - ICE_RXBUF_2048;
 524	unsigned int truesize;
 525#endif /* PAGE_SIZE < 8192) */
 
 526
 527	struct page *page;
 528	unsigned int size;
 529
 530	size = le16_to_cpu(rx_desc->wb.pkt_len) &
 531		ICE_RX_FLX_DESC_PKT_LEN_M;
 532
 533	page = rx_buf->page;
 534
 535#if (PAGE_SIZE >= 8192)
 536	truesize = ALIGN(size, L1_CACHE_BYTES);
 537#endif /* PAGE_SIZE >= 8192) */
 538
 539	/* will the data fit in the skb we allocated? if so, just
 540	 * copy it as it is pretty small anyway
 541	 */
 542	if (size <= ICE_RX_HDR_SIZE && !skb_is_nonlinear(skb)) {
 543		unsigned char *va = page_address(page) + rx_buf->page_offset;
 544
 545		memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
 546
 547		/* page is not reserved, we can reuse buffer as-is */
 548		if (likely(!ice_page_is_reserved(page)))
 549			return true;
 550
 551		/* this page cannot be reused so discard it */
 552		__free_pages(page, 0);
 553		return false;
 554	}
 555
 556	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
 557			rx_buf->page_offset, size, truesize);
 558
 559	/* avoid re-using remote pages */
 560	if (unlikely(ice_page_is_reserved(page)))
 561		return false;
 562
 563#if (PAGE_SIZE < 8192)
 564	/* if we are only owner of page we can reuse it */
 565	if (unlikely(page_count(page) != 1))
 566		return false;
 567
 568	/* flip page offset to other buffer */
 569	rx_buf->page_offset ^= truesize;
 570#else
 571	/* move offset up to the next cache line */
 572	rx_buf->page_offset += truesize;
 573
 574	if (rx_buf->page_offset > last_offset)
 575		return false;
 576#endif /* PAGE_SIZE < 8192) */
 577
 578	/* Even if we own the page, we are not allowed to use atomic_set()
 579	 * This would break get_page_unless_zero() users.
 
 580	 */
 581	get_page(rx_buf->page);
 
 
 
 582
 583	return true;
 584}
 585
 586/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 587 * ice_reuse_rx_page - page flip buffer and store it back on the ring
 588 * @rx_ring: rx descriptor ring to store buffers on
 589 * @old_buf: donor buffer to have page reused
 590 *
 591 * Synchronizes page for reuse by the adapter
 592 */
 593static void ice_reuse_rx_page(struct ice_ring *rx_ring,
 594			      struct ice_rx_buf *old_buf)
 595{
 596	u16 nta = rx_ring->next_to_alloc;
 597	struct ice_rx_buf *new_buf;
 598
 599	new_buf = &rx_ring->rx_buf[nta];
 600
 601	/* update, and store next to alloc */
 602	nta++;
 603	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
 604
 605	/* transfer page from old buffer to new buffer */
 606	*new_buf = *old_buf;
 
 
 
 
 
 
 607}
 608
 609/**
 610 * ice_fetch_rx_buf - Allocate skb and populate it
 611 * @rx_ring: rx descriptor ring to transact packets on
 612 * @rx_desc: descriptor containing info written by hardware
 
 613 *
 614 * This function allocates an skb on the fly, and populates it with the page
 615 * data from the current receive descriptor, taking care to set up the skb
 616 * correctly, as well as handling calling the page recycle function if
 617 * necessary.
 618 */
 619static struct sk_buff *ice_fetch_rx_buf(struct ice_ring *rx_ring,
 620					union ice_32b_rx_flex_desc *rx_desc)
 
 621{
 622	struct ice_rx_buf *rx_buf;
 623	struct sk_buff *skb;
 624	struct page *page;
 625
 626	rx_buf = &rx_ring->rx_buf[rx_ring->next_to_clean];
 627	page = rx_buf->page;
 628	prefetchw(page);
 629
 630	skb = rx_buf->skb;
 
 
 
 
 
 631
 632	if (likely(!skb)) {
 633		u8 *page_addr = page_address(page) + rx_buf->page_offset;
 634
 635		/* prefetch first cache line of first page */
 636		prefetch(page_addr);
 637#if L1_CACHE_BYTES < 128
 638		prefetch((void *)(page_addr + L1_CACHE_BYTES));
 639#endif /* L1_CACHE_BYTES */
 640
 641		/* allocate a skb to store the frags */
 642		skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
 643				       ICE_RX_HDR_SIZE,
 644				       GFP_ATOMIC | __GFP_NOWARN);
 645		if (unlikely(!skb)) {
 646			rx_ring->rx_stats.alloc_buf_failed++;
 647			return NULL;
 648		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 649
 650		/* we will be copying header into skb->data in
 651		 * pskb_may_pull so it is in our interest to prefetch
 652		 * it now to avoid a possible cache miss
 653		 */
 654		prefetchw(skb->data);
 
 
 
 
 
 
 
 
 655
 656		skb_record_rx_queue(skb, rx_ring->q_index);
 657	} else {
 658		/* we are reusing so sync this buffer for CPU use */
 659		dma_sync_single_range_for_cpu(rx_ring->dev, rx_buf->dma,
 660					      rx_buf->page_offset,
 661					      ICE_RXBUF_2048,
 662					      DMA_FROM_DEVICE);
 663
 664		rx_buf->skb = NULL;
 665	}
 666
 667	/* pull page into skb */
 668	if (ice_add_rx_frag(rx_buf, rx_desc, skb)) {
 669		/* hand second half of page back to the ring */
 670		ice_reuse_rx_page(rx_ring, rx_buf);
 671		rx_ring->rx_stats.page_reuse_count++;
 672	} else {
 673		/* we are not reusing the buffer so unmap it */
 674		dma_unmap_page(rx_ring->dev, rx_buf->dma, PAGE_SIZE,
 675			       DMA_FROM_DEVICE);
 676	}
 677
 678	/* clear contents of buffer_info */
 679	rx_buf->page = NULL;
 680
 681	return skb;
 682}
 683
 684/**
 685 * ice_pull_tail - ice specific version of skb_pull_tail
 686 * @skb: pointer to current skb being adjusted
 687 *
 688 * This function is an ice specific version of __pskb_pull_tail.  The
 689 * main difference between this version and the original function is that
 690 * this function can make several assumptions about the state of things
 691 * that allow for significant optimizations versus the standard function.
 692 * As a result we can do things like drop a frag and maintain an accurate
 693 * truesize for the skb.
 694 */
 695static void ice_pull_tail(struct sk_buff *skb)
 
 696{
 697	struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
 698	unsigned int pull_len;
 699	unsigned char *va;
 700
 701	/* it is valid to use page_address instead of kmap since we are
 702	 * working with pages allocated out of the lomem pool per
 703	 * alloc_page(GFP_ATOMIC)
 704	 */
 705	va = skb_frag_address(frag);
 706
 707	/* we need the header to contain the greater of either ETH_HLEN or
 708	 * 60 bytes if the skb->len is less than 60 for skb_pad.
 709	 */
 710	pull_len = eth_get_headlen(va, ICE_RX_HDR_SIZE);
 
 
 
 
 
 
 
 711
 712	/* align pull length to size of long to optimize memcpy performance */
 713	skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 714
 715	/* update all of the pointers */
 716	skb_frag_size_sub(frag, pull_len);
 717	frag->page_offset += pull_len;
 718	skb->data_len -= pull_len;
 719	skb->tail += pull_len;
 720}
 721
 722/**
 723 * ice_cleanup_headers - Correct empty headers
 724 * @skb: pointer to current skb being fixed
 725 *
 726 * Also address the case where we are pulling data in on pages only
 727 * and as such no data is present in the skb header.
 728 *
 729 * In addition if skb is not at least 60 bytes we need to pad it so that
 730 * it is large enough to qualify as a valid Ethernet frame.
 731 *
 732 * Returns true if an error was encountered and skb was freed.
 
 
 733 */
 734static bool ice_cleanup_headers(struct sk_buff *skb)
 735{
 736	/* place header in linear portion of buffer */
 737	if (skb_is_nonlinear(skb))
 738		ice_pull_tail(skb);
 
 
 739
 740	/* if eth_skb_pad returns an error the skb was freed */
 741	if (eth_skb_pad(skb))
 742		return true;
 743
 744	return false;
 745}
 
 
 
 
 
 
 
 
 746
 747/**
 748 * ice_test_staterr - tests bits in Rx descriptor status and error fields
 749 * @rx_desc: pointer to receive descriptor (in le64 format)
 750 * @stat_err_bits: value to mask
 751 *
 752 * This function does some fast chicanery in order to return the
 753 * value of the mask which is really only used for boolean tests.
 754 * The status_error_len doesn't need to be shifted because it begins
 755 * at offset zero.
 756 */
 757static bool ice_test_staterr(union ice_32b_rx_flex_desc *rx_desc,
 758			     const u16 stat_err_bits)
 759{
 760	return !!(rx_desc->wb.status_error0 &
 761		  cpu_to_le16(stat_err_bits));
 762}
 763
 764/**
 765 * ice_is_non_eop - process handling of non-EOP buffers
 766 * @rx_ring: Rx ring being processed
 767 * @rx_desc: Rx descriptor for current buffer
 768 * @skb: Current socket buffer containing buffer in progress
 769 *
 770 * This function updates next to clean.  If the buffer is an EOP buffer
 771 * this function exits returning false, otherwise it will place the
 772 * sk_buff in the next buffer to be chained and return true indicating
 773 * that this is in fact a non-EOP buffer.
 774 */
 775static bool ice_is_non_eop(struct ice_ring *rx_ring,
 776			   union ice_32b_rx_flex_desc *rx_desc,
 777			   struct sk_buff *skb)
 778{
 779	u32 ntc = rx_ring->next_to_clean + 1;
 780
 781	/* fetch, update, and store next to clean */
 782	ntc = (ntc < rx_ring->count) ? ntc : 0;
 783	rx_ring->next_to_clean = ntc;
 784
 785	prefetch(ICE_RX_DESC(rx_ring, ntc));
 786
 787	/* if we are the last buffer then there is nothing else to do */
 788#define ICE_RXD_EOF BIT(ICE_RX_FLEX_DESC_STATUS0_EOF_S)
 789	if (likely(ice_test_staterr(rx_desc, ICE_RXD_EOF)))
 790		return false;
 791
 792	/* place skb in next buffer to be received */
 793	rx_ring->rx_buf[ntc].skb = skb;
 794	rx_ring->rx_stats.non_eop_descs++;
 795
 796	return true;
 797}
 798
 799/**
 800 * ice_ptype_to_htype - get a hash type
 801 * @ptype: the ptype value from the descriptor
 802 *
 803 * Returns a hash type to be used by skb_set_hash
 804 */
 805static enum pkt_hash_types ice_ptype_to_htype(u8 __always_unused ptype)
 806{
 807	return PKT_HASH_TYPE_NONE;
 808}
 809
 810/**
 811 * ice_rx_hash - set the hash value in the skb
 812 * @rx_ring: descriptor ring
 813 * @rx_desc: specific descriptor
 814 * @skb: pointer to current skb
 815 * @rx_ptype: the ptype value from the descriptor
 816 */
 817static void
 818ice_rx_hash(struct ice_ring *rx_ring, union ice_32b_rx_flex_desc *rx_desc,
 819	    struct sk_buff *skb, u8 rx_ptype)
 820{
 821	struct ice_32b_rx_flex_desc_nic *nic_mdid;
 822	u32 hash;
 823
 824	if (!(rx_ring->netdev->features & NETIF_F_RXHASH))
 825		return;
 826
 827	if (rx_desc->wb.rxdid != ICE_RXDID_FLEX_NIC)
 828		return;
 829
 830	nic_mdid = (struct ice_32b_rx_flex_desc_nic *)rx_desc;
 831	hash = le32_to_cpu(nic_mdid->rss_hash);
 832	skb_set_hash(skb, hash, ice_ptype_to_htype(rx_ptype));
 833}
 834
 835/**
 836 * ice_rx_csum - Indicate in skb if checksum is good
 837 * @vsi: the VSI we care about
 838 * @skb: skb currently being received and modified
 839 * @rx_desc: the receive descriptor
 840 * @ptype: the packet type decoded by hardware
 841 *
 842 * skb->protocol must be set before this function is called
 843 */
 844static void ice_rx_csum(struct ice_vsi *vsi, struct sk_buff *skb,
 845			union ice_32b_rx_flex_desc *rx_desc, u8 ptype)
 846{
 847	struct ice_rx_ptype_decoded decoded;
 848	u32 rx_error, rx_status;
 849	bool ipv4, ipv6;
 850
 851	rx_status = le16_to_cpu(rx_desc->wb.status_error0);
 852	rx_error = rx_status;
 853
 854	decoded = ice_decode_rx_desc_ptype(ptype);
 855
 856	/* Start with CHECKSUM_NONE and by default csum_level = 0 */
 857	skb->ip_summed = CHECKSUM_NONE;
 858	skb_checksum_none_assert(skb);
 859
 860	/* check if Rx checksum is enabled */
 861	if (!(vsi->netdev->features & NETIF_F_RXCSUM))
 862		return;
 863
 864	/* check if HW has decoded the packet and checksum */
 865	if (!(rx_status & BIT(ICE_RX_FLEX_DESC_STATUS0_L3L4P_S)))
 866		return;
 867
 868	if (!(decoded.known && decoded.outer_ip))
 869		return;
 870
 871	ipv4 = (decoded.outer_ip == ICE_RX_PTYPE_OUTER_IP) &&
 872	       (decoded.outer_ip_ver == ICE_RX_PTYPE_OUTER_IPV4);
 873	ipv6 = (decoded.outer_ip == ICE_RX_PTYPE_OUTER_IP) &&
 874	       (decoded.outer_ip_ver == ICE_RX_PTYPE_OUTER_IPV6);
 875
 876	if (ipv4 && (rx_error & (BIT(ICE_RX_FLEX_DESC_STATUS0_XSUM_IPE_S) |
 877				 BIT(ICE_RX_FLEX_DESC_STATUS0_XSUM_EIPE_S))))
 878		goto checksum_fail;
 879	else if (ipv6 && (rx_status &
 880		 (BIT(ICE_RX_FLEX_DESC_STATUS0_IPV6EXADD_S))))
 881		goto checksum_fail;
 882
 883	/* check for L4 errors and handle packets that were not able to be
 884	 * checksummed due to arrival speed
 885	 */
 886	if (rx_error & BIT(ICE_RX_FLEX_DESC_STATUS0_XSUM_L4E_S))
 887		goto checksum_fail;
 888
 889	/* Only report checksum unnecessary for TCP, UDP, or SCTP */
 890	switch (decoded.inner_prot) {
 891	case ICE_RX_PTYPE_INNER_PROT_TCP:
 892	case ICE_RX_PTYPE_INNER_PROT_UDP:
 893	case ICE_RX_PTYPE_INNER_PROT_SCTP:
 894		skb->ip_summed = CHECKSUM_UNNECESSARY;
 895	default:
 896		break;
 897	}
 898	return;
 899
 900checksum_fail:
 901	vsi->back->hw_csum_rx_error++;
 902}
 903
 904/**
 905 * ice_process_skb_fields - Populate skb header fields from Rx descriptor
 906 * @rx_ring: rx descriptor ring packet is being transacted on
 907 * @rx_desc: pointer to the EOP Rx descriptor
 908 * @skb: pointer to current skb being populated
 909 * @ptype: the packet type decoded by hardware
 910 *
 911 * This function checks the ring, descriptor, and packet information in
 912 * order to populate the hash, checksum, VLAN, protocol, and
 913 * other fields within the skb.
 914 */
 915static void ice_process_skb_fields(struct ice_ring *rx_ring,
 916				   union ice_32b_rx_flex_desc *rx_desc,
 917				   struct sk_buff *skb, u8 ptype)
 918{
 919	ice_rx_hash(rx_ring, rx_desc, skb, ptype);
 920
 921	/* modifies the skb - consumes the enet header */
 922	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
 923
 924	ice_rx_csum(rx_ring->vsi, skb, rx_desc, ptype);
 925}
 926
 927/**
 928 * ice_receive_skb - Send a completed packet up the stack
 929 * @rx_ring: rx ring in play
 930 * @skb: packet to send up
 931 * @vlan_tag: vlan tag for packet
 932 *
 933 * This function sends the completed packet (via. skb) up the stack using
 934 * gro receive functions (with/without vlan tag)
 935 */
 936static void ice_receive_skb(struct ice_ring *rx_ring, struct sk_buff *skb,
 937			    u16 vlan_tag)
 938{
 939	if ((rx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
 940	    (vlan_tag & VLAN_VID_MASK)) {
 941		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
 942	}
 943	napi_gro_receive(&rx_ring->q_vector->napi, skb);
 944}
 945
 946/**
 947 * ice_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
 948 * @rx_ring: rx descriptor ring to transact packets on
 949 * @budget: Total limit on number of packets to process
 950 *
 951 * This function provides a "bounce buffer" approach to Rx interrupt
 952 * processing.  The advantage to this is that on systems that have
 953 * expensive overhead for IOMMU access this provides a means of avoiding
 954 * it by maintaining the mapping of the page to the system.
 955 *
 956 * Returns amount of work completed
 957 */
 958static int ice_clean_rx_irq(struct ice_ring *rx_ring, int budget)
 959{
 960	unsigned int total_rx_bytes = 0, total_rx_pkts = 0;
 961	u16 cleaned_count = ICE_DESC_UNUSED(rx_ring);
 962	bool failure = false;
 
 
 
 
 
 
 
 
 
 963
 964	/* start the loop to process RX packets bounded by 'budget' */
 965	while (likely(total_rx_pkts < (unsigned int)budget)) {
 966		union ice_32b_rx_flex_desc *rx_desc;
 
 967		struct sk_buff *skb;
 
 968		u16 stat_err_bits;
 969		u16 vlan_tag = 0;
 970		u8 rx_ptype;
 971
 972		/* return some buffers to hardware, one at a time is too slow */
 973		if (cleaned_count >= ICE_RX_BUF_WRITE) {
 974			failure = failure ||
 975				  ice_alloc_rx_bufs(rx_ring, cleaned_count);
 976			cleaned_count = 0;
 977		}
 978
 979		/* get the RX desc from RX ring based on 'next_to_clean' */
 980		rx_desc = ICE_RX_DESC(rx_ring, rx_ring->next_to_clean);
 981
 982		/* status_error_len will always be zero for unused descriptors
 983		 * because it's cleared in cleanup, and overlaps with hdr_addr
 984		 * which is always zero because packet split isn't used, if the
 985		 * hardware wrote DD then it will be non-zero
 986		 */
 987		stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S);
 988		if (!ice_test_staterr(rx_desc, stat_err_bits))
 989			break;
 990
 991		/* This memory barrier is needed to keep us from reading
 992		 * any other fields out of the rx_desc until we know the
 993		 * DD bit is set.
 994		 */
 995		dma_rmb();
 996
 997		/* allocate (if needed) and populate skb */
 998		skb = ice_fetch_rx_buf(rx_ring, rx_desc);
 999		if (!skb)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1000			break;
 
1001
 
1002		cleaned_count++;
1003
1004		/* skip if it is NOP desc */
1005		if (ice_is_non_eop(rx_ring, rx_desc, skb))
1006			continue;
1007
1008		stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_RXE_S);
1009		if (unlikely(ice_test_staterr(rx_desc, stat_err_bits))) {
1010			dev_kfree_skb_any(skb);
1011			continue;
1012		}
1013
1014		rx_ptype = le16_to_cpu(rx_desc->wb.ptype_flex_flags0) &
1015			ICE_RX_FLEX_DESC_PTYPE_M;
1016
1017		stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_L2TAG1P_S);
1018		if (ice_test_staterr(rx_desc, stat_err_bits))
1019			vlan_tag = le16_to_cpu(rx_desc->wb.l2tag1);
1020
1021		/* correct empty headers and pad skb if needed (to make valid
1022		 * ethernet frame
1023		 */
1024		if (ice_cleanup_headers(skb)) {
1025			skb = NULL;
1026			continue;
1027		}
1028
1029		/* probably a little skewed due to removing CRC */
1030		total_rx_bytes += skb->len;
1031
1032		/* populate checksum, VLAN, and protocol */
 
 
 
1033		ice_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
1034
1035		/* send completed skb up the stack */
1036		ice_receive_skb(rx_ring, skb, vlan_tag);
1037
1038		/* update budget accounting */
1039		total_rx_pkts++;
1040	}
1041
1042	/* update queue and vector specific stats */
1043	u64_stats_update_begin(&rx_ring->syncp);
1044	rx_ring->stats.pkts += total_rx_pkts;
1045	rx_ring->stats.bytes += total_rx_bytes;
1046	u64_stats_update_end(&rx_ring->syncp);
1047	rx_ring->q_vector->rx.total_pkts += total_rx_pkts;
1048	rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
1049
1050	/* guarantee a trip back through this routine if there was a failure */
1051	return failure ? budget : (int)total_rx_pkts;
1052}
1053
1054/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1055 * ice_napi_poll - NAPI polling Rx/Tx cleanup routine
1056 * @napi: napi struct with our devices info in it
1057 * @budget: amount of work driver is allowed to do this pass, in packets
1058 *
1059 * This function will clean all queues associated with a q_vector.
1060 *
1061 * Returns the amount of work done
1062 */
1063int ice_napi_poll(struct napi_struct *napi, int budget)
1064{
1065	struct ice_q_vector *q_vector =
1066				container_of(napi, struct ice_q_vector, napi);
1067	struct ice_vsi *vsi = q_vector->vsi;
1068	struct ice_pf *pf = vsi->back;
1069	bool clean_complete = true;
1070	int budget_per_ring = 0;
1071	struct ice_ring *ring;
 
1072	int work_done = 0;
1073
1074	/* Since the actual Tx work is minimal, we can give the Tx a larger
1075	 * budget and be more aggressive about cleaning up the Tx descriptors.
1076	 */
1077	ice_for_each_ring(ring, q_vector->tx)
1078		if (!ice_clean_tx_irq(vsi, ring, budget))
 
 
 
 
1079			clean_complete = false;
 
1080
1081	/* Handle case where we are called by netpoll with a budget of 0 */
1082	if (budget <= 0)
1083		return budget;
1084
1085	/* We attempt to distribute budget to each Rx queue fairly, but don't
1086	 * allow the budget to go below 1 because that would exit polling early.
1087	 */
1088	if (q_vector->num_ring_rx)
1089		budget_per_ring = max(budget / q_vector->num_ring_rx, 1);
 
 
 
 
 
1090
1091	ice_for_each_ring(ring, q_vector->rx) {
1092		int cleaned;
1093
1094		cleaned = ice_clean_rx_irq(ring, budget_per_ring);
 
 
 
 
 
 
1095		work_done += cleaned;
1096		/* if we clean as many as budgeted, we must not be done */
1097		if (cleaned >= budget_per_ring)
1098			clean_complete = false;
1099	}
1100
1101	/* If work not completed, return budget and polling will return */
1102	if (!clean_complete)
1103		return budget;
1104
1105	/* Work is done so exit the polling mode and re-enable the interrupt */
1106	napi_complete_done(napi, work_done);
1107	if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags))
1108		ice_irq_dynamic_ena(&vsi->back->hw, vsi, q_vector);
1109	return 0;
1110}
 
1111
1112/* helper function for building cmd/type/offset */
1113static __le64
1114build_ctob(u64 td_cmd, u64 td_offset, unsigned int size, u64 td_tag)
1115{
1116	return cpu_to_le64(ICE_TX_DESC_DTYPE_DATA |
1117			   (td_cmd    << ICE_TXD_QW1_CMD_S) |
1118			   (td_offset << ICE_TXD_QW1_OFFSET_S) |
1119			   ((u64)size << ICE_TXD_QW1_TX_BUF_SZ_S) |
1120			   (td_tag    << ICE_TXD_QW1_L2TAG1_S));
1121}
1122
1123/**
1124 * __ice_maybe_stop_tx - 2nd level check for tx stop conditions
1125 * @tx_ring: the ring to be checked
1126 * @size: the size buffer we want to assure is available
1127 *
1128 * Returns -EBUSY if a stop is needed, else 0
1129 */
1130static int __ice_maybe_stop_tx(struct ice_ring *tx_ring, unsigned int size)
1131{
1132	netif_stop_subqueue(tx_ring->netdev, tx_ring->q_index);
1133	/* Memory barrier before checking head and tail */
1134	smp_mb();
1135
1136	/* Check again in a case another CPU has just made room available. */
1137	if (likely(ICE_DESC_UNUSED(tx_ring) < size))
1138		return -EBUSY;
1139
1140	/* A reprieve! - use start_subqueue because it doesn't call schedule */
1141	netif_start_subqueue(tx_ring->netdev, tx_ring->q_index);
1142	++tx_ring->tx_stats.restart_q;
1143	return 0;
1144}
1145
1146/**
1147 * ice_maybe_stop_tx - 1st level check for tx stop conditions
1148 * @tx_ring: the ring to be checked
1149 * @size:    the size buffer we want to assure is available
1150 *
1151 * Returns 0 if stop is not needed
1152 */
1153static int ice_maybe_stop_tx(struct ice_ring *tx_ring, unsigned int size)
1154{
1155	if (likely(ICE_DESC_UNUSED(tx_ring) >= size))
1156		return 0;
 
1157	return __ice_maybe_stop_tx(tx_ring, size);
1158}
1159
1160/**
1161 * ice_tx_map - Build the Tx descriptor
1162 * @tx_ring: ring to send buffer on
1163 * @first: first buffer info buffer to use
1164 * @off: pointer to struct that holds offload parameters
1165 *
1166 * This function loops over the skb data pointed to by *first
1167 * and gets a physical address for each memory location and programs
1168 * it and the length into the transmit descriptor.
1169 */
1170static void
1171ice_tx_map(struct ice_ring *tx_ring, struct ice_tx_buf *first,
1172	   struct ice_tx_offload_params *off)
1173{
1174	u64 td_offset, td_tag, td_cmd;
1175	u16 i = tx_ring->next_to_use;
1176	struct skb_frag_struct *frag;
1177	unsigned int data_len, size;
1178	struct ice_tx_desc *tx_desc;
1179	struct ice_tx_buf *tx_buf;
1180	struct sk_buff *skb;
 
1181	dma_addr_t dma;
1182
1183	td_tag = off->td_l2tag1;
1184	td_cmd = off->td_cmd;
1185	td_offset = off->td_offset;
1186	skb = first->skb;
1187
1188	data_len = skb->data_len;
1189	size = skb_headlen(skb);
1190
1191	tx_desc = ICE_TX_DESC(tx_ring, i);
1192
1193	if (first->tx_flags & ICE_TX_FLAGS_HW_VLAN) {
1194		td_cmd |= (u64)ICE_TX_DESC_CMD_IL2TAG1;
1195		td_tag = (first->tx_flags & ICE_TX_FLAGS_VLAN_M) >>
1196			  ICE_TX_FLAGS_VLAN_S;
1197	}
1198
1199	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
1200
1201	tx_buf = first;
1202
1203	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1204		unsigned int max_data = ICE_MAX_DATA_PER_TXD_ALIGNED;
1205
1206		if (dma_mapping_error(tx_ring->dev, dma))
1207			goto dma_error;
1208
1209		/* record length, and DMA address */
1210		dma_unmap_len_set(tx_buf, len, size);
1211		dma_unmap_addr_set(tx_buf, dma, dma);
1212
1213		/* align size to end of page */
1214		max_data += -dma & (ICE_MAX_READ_REQ_SIZE - 1);
1215		tx_desc->buf_addr = cpu_to_le64(dma);
1216
1217		/* account for data chunks larger than the hardware
1218		 * can handle
1219		 */
1220		while (unlikely(size > ICE_MAX_DATA_PER_TXD)) {
1221			tx_desc->cmd_type_offset_bsz =
1222				build_ctob(td_cmd, td_offset, max_data, td_tag);
 
1223
1224			tx_desc++;
1225			i++;
1226
1227			if (i == tx_ring->count) {
1228				tx_desc = ICE_TX_DESC(tx_ring, 0);
1229				i = 0;
1230			}
1231
1232			dma += max_data;
1233			size -= max_data;
1234
1235			max_data = ICE_MAX_DATA_PER_TXD_ALIGNED;
1236			tx_desc->buf_addr = cpu_to_le64(dma);
1237		}
1238
1239		if (likely(!data_len))
1240			break;
1241
1242		tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
1243							  size, td_tag);
1244
1245		tx_desc++;
1246		i++;
1247
1248		if (i == tx_ring->count) {
1249			tx_desc = ICE_TX_DESC(tx_ring, 0);
1250			i = 0;
1251		}
1252
1253		size = skb_frag_size(frag);
1254		data_len -= size;
1255
1256		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
1257				       DMA_TO_DEVICE);
1258
1259		tx_buf = &tx_ring->tx_buf[i];
1260	}
1261
1262	/* record bytecount for BQL */
1263	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1264
1265	/* record SW timestamp if HW timestamp is not available */
1266	skb_tx_timestamp(first->skb);
1267
1268	i++;
1269	if (i == tx_ring->count)
1270		i = 0;
1271
1272	/* write last descriptor with RS and EOP bits */
1273	td_cmd |= (u64)(ICE_TX_DESC_CMD_EOP | ICE_TX_DESC_CMD_RS);
1274	tx_desc->cmd_type_offset_bsz =
1275			build_ctob(td_cmd, td_offset, size, td_tag);
1276
1277	/* Force memory writes to complete before letting h/w know there
1278	 * are new descriptors to fetch.
1279	 *
1280	 * We also use this memory barrier to make certain all of the
1281	 * status bits have been updated before next_to_watch is written.
1282	 */
1283	wmb();
1284
1285	/* set next_to_watch value indicating a packet is present */
1286	first->next_to_watch = tx_desc;
1287
1288	tx_ring->next_to_use = i;
1289
1290	ice_maybe_stop_tx(tx_ring, DESC_NEEDED);
1291
1292	/* notify HW of packet */
1293	if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) {
1294		writel(i, tx_ring->tail);
1295
1296		/* we need this if more than one processor can write to our tail
1297		 * at a time, it synchronizes IO on IA64/Altix systems
1298		 */
1299		mmiowb();
1300	}
1301
1302	return;
1303
1304dma_error:
1305	/* clear dma mappings for failed tx_buf map */
1306	for (;;) {
1307		tx_buf = &tx_ring->tx_buf[i];
1308		ice_unmap_and_free_tx_buf(tx_ring, tx_buf);
1309		if (tx_buf == first)
1310			break;
1311		if (i == 0)
1312			i = tx_ring->count;
1313		i--;
1314	}
1315
1316	tx_ring->next_to_use = i;
1317}
1318
1319/**
1320 * ice_tx_csum - Enable Tx checksum offloads
1321 * @first: pointer to the first descriptor
1322 * @off: pointer to struct that holds offload parameters
1323 *
1324 * Returns 0 or error (negative) if checksum offload can't happen, 1 otherwise.
1325 */
1326static
1327int ice_tx_csum(struct ice_tx_buf *first, struct ice_tx_offload_params *off)
1328{
1329	u32 l4_len = 0, l3_len = 0, l2_len = 0;
1330	struct sk_buff *skb = first->skb;
1331	union {
1332		struct iphdr *v4;
1333		struct ipv6hdr *v6;
1334		unsigned char *hdr;
1335	} ip;
1336	union {
1337		struct tcphdr *tcp;
1338		unsigned char *hdr;
1339	} l4;
1340	__be16 frag_off, protocol;
1341	unsigned char *exthdr;
1342	u32 offset, cmd = 0;
1343	u8 l4_proto = 0;
1344
1345	if (skb->ip_summed != CHECKSUM_PARTIAL)
1346		return 0;
1347
1348	ip.hdr = skb_network_header(skb);
1349	l4.hdr = skb_transport_header(skb);
1350
1351	/* compute outer L2 header size */
1352	l2_len = ip.hdr - skb->data;
1353	offset = (l2_len / 2) << ICE_TX_DESC_LEN_MACLEN_S;
1354
1355	if (skb->encapsulation)
1356		return -1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1357
1358	/* Enable IP checksum offloads */
1359	protocol = vlan_get_protocol(skb);
1360	if (protocol == htons(ETH_P_IP)) {
1361		l4_proto = ip.v4->protocol;
1362		/* the stack computes the IP header already, the only time we
1363		 * need the hardware to recompute it is in the case of TSO.
1364		 */
1365		if (first->tx_flags & ICE_TX_FLAGS_TSO)
1366			cmd |= ICE_TX_DESC_CMD_IIPT_IPV4_CSUM;
1367		else
1368			cmd |= ICE_TX_DESC_CMD_IIPT_IPV4;
1369
1370	} else if (protocol == htons(ETH_P_IPV6)) {
1371		cmd |= ICE_TX_DESC_CMD_IIPT_IPV6;
1372		exthdr = ip.hdr + sizeof(*ip.v6);
1373		l4_proto = ip.v6->nexthdr;
1374		if (l4.hdr != exthdr)
1375			ipv6_skip_exthdr(skb, exthdr - skb->data, &l4_proto,
1376					 &frag_off);
1377	} else {
1378		return -1;
1379	}
1380
1381	/* compute inner L3 header size */
1382	l3_len = l4.hdr - ip.hdr;
1383	offset |= (l3_len / 4) << ICE_TX_DESC_LEN_IPLEN_S;
1384
1385	/* Enable L4 checksum offloads */
1386	switch (l4_proto) {
1387	case IPPROTO_TCP:
1388		/* enable checksum offloads */
1389		cmd |= ICE_TX_DESC_CMD_L4T_EOFT_TCP;
1390		l4_len = l4.tcp->doff;
1391		offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
1392		break;
1393	case IPPROTO_UDP:
1394		/* enable UDP checksum offload */
1395		cmd |= ICE_TX_DESC_CMD_L4T_EOFT_UDP;
1396		l4_len = (sizeof(struct udphdr) >> 2);
1397		offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
1398		break;
1399	case IPPROTO_SCTP:
 
 
 
 
 
 
1400	default:
1401		if (first->tx_flags & ICE_TX_FLAGS_TSO)
1402			return -1;
1403		skb_checksum_help(skb);
1404		return 0;
1405	}
1406
1407	off->td_cmd |= cmd;
1408	off->td_offset |= offset;
1409	return 1;
1410}
1411
1412/**
1413 * ice_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
1414 * @tx_ring: ring to send buffer on
1415 * @first: pointer to struct ice_tx_buf
1416 *
1417 * Checks the skb and set up correspondingly several generic transmit flags
1418 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
1419 *
1420 * Returns error code indicate the frame should be dropped upon error and the
1421 * otherwise returns 0 to indicate the flags has been set properly.
1422 */
1423static int
1424ice_tx_prepare_vlan_flags(struct ice_ring *tx_ring, struct ice_tx_buf *first)
1425{
1426	struct sk_buff *skb = first->skb;
1427	__be16 protocol = skb->protocol;
1428
1429	if (protocol == htons(ETH_P_8021Q) &&
1430	    !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
1431		/* when HW VLAN acceleration is turned off by the user the
1432		 * stack sets the protocol to 8021q so that the driver
1433		 * can take any steps required to support the SW only
1434		 * VLAN handling. In our case the driver doesn't need
1435		 * to take any further steps so just set the protocol
1436		 * to the encapsulated ethertype.
1437		 */
1438		skb->protocol = vlan_get_protocol(skb);
1439		goto out;
1440	}
1441
1442	/* if we have a HW VLAN tag being added, default to the HW one */
 
 
1443	if (skb_vlan_tag_present(skb)) {
1444		first->tx_flags |= skb_vlan_tag_get(skb) << ICE_TX_FLAGS_VLAN_S;
1445		first->tx_flags |= ICE_TX_FLAGS_HW_VLAN;
1446	} else if (protocol == htons(ETH_P_8021Q)) {
1447		struct vlan_hdr *vhdr, _vhdr;
1448
1449		/* for SW VLAN, check the next protocol and store the tag */
1450		vhdr = (struct vlan_hdr *)skb_header_pointer(skb, ETH_HLEN,
1451							     sizeof(_vhdr),
1452							     &_vhdr);
1453		if (!vhdr)
1454			return -EINVAL;
1455
1456		first->tx_flags |= ntohs(vhdr->h_vlan_TCI) <<
1457				   ICE_TX_FLAGS_VLAN_S;
1458		first->tx_flags |= ICE_TX_FLAGS_SW_VLAN;
1459	}
1460
1461out:
1462	return 0;
1463}
1464
1465/**
1466 * ice_tso - computes mss and TSO length to prepare for TSO
1467 * @first: pointer to struct ice_tx_buf
1468 * @off: pointer to struct that holds offload parameters
1469 *
1470 * Returns 0 or error (negative) if TSO can't happen, 1 otherwise.
1471 */
1472static
1473int ice_tso(struct ice_tx_buf *first, struct ice_tx_offload_params *off)
1474{
1475	struct sk_buff *skb = first->skb;
1476	union {
1477		struct iphdr *v4;
1478		struct ipv6hdr *v6;
1479		unsigned char *hdr;
1480	} ip;
1481	union {
1482		struct tcphdr *tcp;
 
1483		unsigned char *hdr;
1484	} l4;
1485	u64 cd_mss, cd_tso_len;
1486	u32 paylen, l4_start;
 
1487	int err;
1488
1489	if (skb->ip_summed != CHECKSUM_PARTIAL)
1490		return 0;
1491
1492	if (!skb_is_gso(skb))
1493		return 0;
1494
1495	err = skb_cow_head(skb, 0);
1496	if (err < 0)
1497		return err;
1498
 
1499	ip.hdr = skb_network_header(skb);
1500	l4.hdr = skb_transport_header(skb);
1501
1502	/* initialize outer IP header fields */
1503	if (ip.v4->version == 4) {
1504		ip.v4->tot_len = 0;
1505		ip.v4->check = 0;
1506	} else {
1507		ip.v6->payload_len = 0;
1508	}
1509
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1510	/* determine offset of transport header */
1511	l4_start = l4.hdr - skb->data;
1512
1513	/* remove payload length from checksum */
1514	paylen = skb->len - l4_start;
1515	csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));
1516
1517	/* compute length of segmentation header */
1518	off->header_len = (l4.tcp->doff * 4) + l4_start;
 
 
 
 
 
 
 
 
 
1519
1520	/* update gso_segs and bytecount */
1521	first->gso_segs = skb_shinfo(skb)->gso_segs;
1522	first->bytecount = (first->gso_segs - 1) * off->header_len;
1523
1524	cd_tso_len = skb->len - off->header_len;
1525	cd_mss = skb_shinfo(skb)->gso_size;
1526
1527	/* record cdesc_qw1 with TSO parameters */
1528	off->cd_qw1 |= ICE_TX_DESC_DTYPE_CTX |
1529			 (ICE_TX_CTX_DESC_TSO << ICE_TXD_CTX_QW1_CMD_S) |
1530			 (cd_tso_len << ICE_TXD_CTX_QW1_TSO_LEN_S) |
1531			 (cd_mss << ICE_TXD_CTX_QW1_MSS_S);
1532	first->tx_flags |= ICE_TX_FLAGS_TSO;
1533	return 1;
1534}
1535
1536/**
1537 * ice_txd_use_count  - estimate the number of descriptors needed for Tx
1538 * @size: transmit request size in bytes
1539 *
1540 * Due to hardware alignment restrictions (4K alignment), we need to
1541 * assume that we can have no more than 12K of data per descriptor, even
1542 * though each descriptor can take up to 16K - 1 bytes of aligned memory.
1543 * Thus, we need to divide by 12K. But division is slow! Instead,
1544 * we decompose the operation into shifts and one relatively cheap
1545 * multiply operation.
1546 *
1547 * To divide by 12K, we first divide by 4K, then divide by 3:
1548 *     To divide by 4K, shift right by 12 bits
1549 *     To divide by 3, multiply by 85, then divide by 256
1550 *     (Divide by 256 is done by shifting right by 8 bits)
1551 * Finally, we add one to round up. Because 256 isn't an exact multiple of
1552 * 3, we'll underestimate near each multiple of 12K. This is actually more
1553 * accurate as we have 4K - 1 of wiggle room that we can fit into the last
1554 * segment.  For our purposes this is accurate out to 1M which is orders of
1555 * magnitude greater than our largest possible GSO size.
1556 *
1557 * This would then be implemented as:
1558 *     return (((size >> 12) * 85) >> 8) + 1;
1559 *
1560 * Since multiplication and division are commutative, we can reorder
1561 * operations into:
1562 *     return ((size * 85) >> 20) + 1;
1563 */
1564static unsigned int ice_txd_use_count(unsigned int size)
1565{
1566	return ((size * 85) >> 20) + 1;
1567}
1568
1569/**
1570 * ice_xmit_desc_count - calculate number of tx descriptors needed
1571 * @skb: send buffer
1572 *
1573 * Returns number of data descriptors needed for this skb.
1574 */
1575static unsigned int ice_xmit_desc_count(struct sk_buff *skb)
1576{
1577	const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
1578	unsigned int nr_frags = skb_shinfo(skb)->nr_frags;
1579	unsigned int count = 0, size = skb_headlen(skb);
1580
1581	for (;;) {
1582		count += ice_txd_use_count(size);
1583
1584		if (!nr_frags--)
1585			break;
1586
1587		size = skb_frag_size(frag++);
1588	}
1589
1590	return count;
1591}
1592
1593/**
1594 * __ice_chk_linearize - Check if there are more than 8 buffers per packet
1595 * @skb: send buffer
1596 *
1597 * Note: This HW can't DMA more than 8 buffers to build a packet on the wire
1598 * and so we need to figure out the cases where we need to linearize the skb.
1599 *
1600 * For TSO we need to count the TSO header and segment payload separately.
1601 * As such we need to check cases where we have 7 fragments or more as we
1602 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
1603 * the segment payload in the first descriptor, and another 7 for the
1604 * fragments.
1605 */
1606static bool __ice_chk_linearize(struct sk_buff *skb)
1607{
1608	const struct skb_frag_struct *frag, *stale;
1609	int nr_frags, sum;
1610
1611	/* no need to check if number of frags is less than 7 */
1612	nr_frags = skb_shinfo(skb)->nr_frags;
1613	if (nr_frags < (ICE_MAX_BUF_TXD - 1))
1614		return false;
1615
1616	/* We need to walk through the list and validate that each group
1617	 * of 6 fragments totals at least gso_size.
1618	 */
1619	nr_frags -= ICE_MAX_BUF_TXD - 2;
1620	frag = &skb_shinfo(skb)->frags[0];
1621
1622	/* Initialize size to the negative value of gso_size minus 1.  We
1623	 * use this as the worst case scenerio in which the frag ahead
1624	 * of us only provides one byte which is why we are limited to 6
1625	 * descriptors for a single transmit as the header and previous
1626	 * fragment are already consuming 2 descriptors.
1627	 */
1628	sum = 1 - skb_shinfo(skb)->gso_size;
1629
1630	/* Add size of frags 0 through 4 to create our initial sum */
1631	sum += skb_frag_size(frag++);
1632	sum += skb_frag_size(frag++);
1633	sum += skb_frag_size(frag++);
1634	sum += skb_frag_size(frag++);
1635	sum += skb_frag_size(frag++);
1636
1637	/* Walk through fragments adding latest fragment, testing it, and
1638	 * then removing stale fragments from the sum.
1639	 */
1640	stale = &skb_shinfo(skb)->frags[0];
1641	for (;;) {
 
1642		sum += skb_frag_size(frag++);
1643
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1644		/* if sum is negative we failed to make sufficient progress */
1645		if (sum < 0)
1646			return true;
1647
1648		if (!nr_frags--)
1649			break;
1650
1651		sum -= skb_frag_size(stale++);
1652	}
1653
1654	return false;
1655}
1656
1657/**
1658 * ice_chk_linearize - Check if there are more than 8 fragments per packet
1659 * @skb:      send buffer
1660 * @count:    number of buffers used
1661 *
1662 * Note: Our HW can't scatter-gather more than 8 fragments to build
1663 * a packet on the wire and so we need to figure out the cases where we
1664 * need to linearize the skb.
1665 */
1666static bool ice_chk_linearize(struct sk_buff *skb, unsigned int count)
1667{
1668	/* Both TSO and single send will work if count is less than 8 */
1669	if (likely(count < ICE_MAX_BUF_TXD))
1670		return false;
1671
1672	if (skb_is_gso(skb))
1673		return __ice_chk_linearize(skb);
1674
1675	/* we can support up to 8 data buffers for a single send */
1676	return count != ICE_MAX_BUF_TXD;
1677}
1678
1679/**
1680 * ice_xmit_frame_ring - Sends buffer on Tx ring
1681 * @skb: send buffer
1682 * @tx_ring: ring to send buffer on
1683 *
1684 * Returns NETDEV_TX_OK if sent, else an error code
1685 */
1686static netdev_tx_t
1687ice_xmit_frame_ring(struct sk_buff *skb, struct ice_ring *tx_ring)
1688{
1689	struct ice_tx_offload_params offload = { 0 };
 
1690	struct ice_tx_buf *first;
1691	unsigned int count;
1692	int tso, csum;
1693
1694	count = ice_xmit_desc_count(skb);
1695	if (ice_chk_linearize(skb, count)) {
1696		if (__skb_linearize(skb))
1697			goto out_drop;
1698		count = ice_txd_use_count(skb->len);
1699		tx_ring->tx_stats.tx_linearize++;
1700	}
1701
1702	/* need: 1 descriptor per page * PAGE_SIZE/ICE_MAX_DATA_PER_TXD,
1703	 *       + 1 desc for skb_head_len/ICE_MAX_DATA_PER_TXD,
1704	 *       + 4 desc gap to avoid the cache line where head is,
1705	 *       + 1 desc for context descriptor,
1706	 * otherwise try next time
1707	 */
1708	if (ice_maybe_stop_tx(tx_ring, count + 4 + 1)) {
 
1709		tx_ring->tx_stats.tx_busy++;
1710		return NETDEV_TX_BUSY;
1711	}
1712
1713	offload.tx_ring = tx_ring;
1714
1715	/* record the location of the first descriptor for this packet */
1716	first = &tx_ring->tx_buf[tx_ring->next_to_use];
1717	first->skb = skb;
1718	first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN);
1719	first->gso_segs = 1;
1720	first->tx_flags = 0;
1721
1722	/* prepare the VLAN tagging flags for Tx */
1723	if (ice_tx_prepare_vlan_flags(tx_ring, first))
1724		goto out_drop;
1725
1726	/* set up TSO offload */
1727	tso = ice_tso(first, &offload);
1728	if (tso < 0)
1729		goto out_drop;
1730
1731	/* always set up Tx checksum offload */
1732	csum = ice_tx_csum(first, &offload);
1733	if (csum < 0)
1734		goto out_drop;
1735
1736	if (tso || offload.cd_tunnel_params) {
 
 
 
 
 
 
 
 
1737		struct ice_tx_ctx_desc *cdesc;
1738		int i = tx_ring->next_to_use;
1739
1740		/* grab the next descriptor */
1741		cdesc = ICE_TX_CTX_DESC(tx_ring, i);
1742		i++;
1743		tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1744
1745		/* setup context descriptor */
1746		cdesc->tunneling_params = cpu_to_le32(offload.cd_tunnel_params);
1747		cdesc->l2tag2 = cpu_to_le16(offload.cd_l2tag2);
1748		cdesc->rsvd = cpu_to_le16(0);
1749		cdesc->qw1 = cpu_to_le64(offload.cd_qw1);
1750	}
1751
1752	ice_tx_map(tx_ring, first, &offload);
1753	return NETDEV_TX_OK;
1754
1755out_drop:
1756	dev_kfree_skb_any(skb);
1757	return NETDEV_TX_OK;
1758}
1759
1760/**
1761 * ice_start_xmit - Selects the correct VSI and Tx queue to send buffer
1762 * @skb: send buffer
1763 * @netdev: network interface device structure
1764 *
1765 * Returns NETDEV_TX_OK if sent, else an error code
1766 */
1767netdev_tx_t ice_start_xmit(struct sk_buff *skb, struct net_device *netdev)
1768{
1769	struct ice_netdev_priv *np = netdev_priv(netdev);
1770	struct ice_vsi *vsi = np->vsi;
1771	struct ice_ring *tx_ring;
1772
1773	tx_ring = vsi->tx_rings[skb->queue_mapping];
1774
1775	/* hardware can't handle really short frames, hardware padding works
1776	 * beyond this point
1777	 */
1778	if (skb_put_padto(skb, ICE_MIN_TX_LEN))
1779		return NETDEV_TX_OK;
1780
1781	return ice_xmit_frame_ring(skb, tx_ring);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1782}