Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Copyright (c) International Business Machines Corp., 2006
   4 * Copyright (c) Nokia Corporation, 2006, 2007
   5 *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   6 * Author: Artem Bityutskiy (Битюцкий Артём)
   7 */
   8
   9/*
  10 * UBI input/output sub-system.
  11 *
  12 * This sub-system provides a uniform way to work with all kinds of the
  13 * underlying MTD devices. It also implements handy functions for reading and
  14 * writing UBI headers.
  15 *
  16 * We are trying to have a paranoid mindset and not to trust to what we read
  17 * from the flash media in order to be more secure and robust. So this
  18 * sub-system validates every single header it reads from the flash media.
  19 *
  20 * Some words about how the eraseblock headers are stored.
  21 *
  22 * The erase counter header is always stored at offset zero. By default, the
  23 * VID header is stored after the EC header at the closest aligned offset
  24 * (i.e. aligned to the minimum I/O unit size). Data starts next to the VID
  25 * header at the closest aligned offset. But this default layout may be
  26 * changed. For example, for different reasons (e.g., optimization) UBI may be
  27 * asked to put the VID header at further offset, and even at an unaligned
  28 * offset. Of course, if the offset of the VID header is unaligned, UBI adds
  29 * proper padding in front of it. Data offset may also be changed but it has to
  30 * be aligned.
  31 *
  32 * About minimal I/O units. In general, UBI assumes flash device model where
  33 * there is only one minimal I/O unit size. E.g., in case of NOR flash it is 1,
  34 * in case of NAND flash it is a NAND page, etc. This is reported by MTD in the
  35 * @ubi->mtd->writesize field. But as an exception, UBI admits use of another
  36 * (smaller) minimal I/O unit size for EC and VID headers to make it possible
  37 * to do different optimizations.
  38 *
  39 * This is extremely useful in case of NAND flashes which admit of several
  40 * write operations to one NAND page. In this case UBI can fit EC and VID
  41 * headers at one NAND page. Thus, UBI may use "sub-page" size as the minimal
  42 * I/O unit for the headers (the @ubi->hdrs_min_io_size field). But it still
  43 * reports NAND page size (@ubi->min_io_size) as a minimal I/O unit for the UBI
  44 * users.
  45 *
  46 * Example: some Samsung NANDs with 2KiB pages allow 4x 512-byte writes, so
  47 * although the minimal I/O unit is 2K, UBI uses 512 bytes for EC and VID
  48 * headers.
  49 *
  50 * Q: why not just to treat sub-page as a minimal I/O unit of this flash
  51 * device, e.g., make @ubi->min_io_size = 512 in the example above?
  52 *
  53 * A: because when writing a sub-page, MTD still writes a full 2K page but the
  54 * bytes which are not relevant to the sub-page are 0xFF. So, basically,
  55 * writing 4x512 sub-pages is 4 times slower than writing one 2KiB NAND page.
  56 * Thus, we prefer to use sub-pages only for EC and VID headers.
  57 *
  58 * As it was noted above, the VID header may start at a non-aligned offset.
  59 * For example, in case of a 2KiB page NAND flash with a 512 bytes sub-page,
  60 * the VID header may reside at offset 1984 which is the last 64 bytes of the
  61 * last sub-page (EC header is always at offset zero). This causes some
  62 * difficulties when reading and writing VID headers.
  63 *
  64 * Suppose we have a 64-byte buffer and we read a VID header at it. We change
  65 * the data and want to write this VID header out. As we can only write in
  66 * 512-byte chunks, we have to allocate one more buffer and copy our VID header
  67 * to offset 448 of this buffer.
  68 *
  69 * The I/O sub-system does the following trick in order to avoid this extra
  70 * copy. It always allocates a @ubi->vid_hdr_alsize bytes buffer for the VID
  71 * header and returns a pointer to offset @ubi->vid_hdr_shift of this buffer.
  72 * When the VID header is being written out, it shifts the VID header pointer
  73 * back and writes the whole sub-page.
  74 */
  75
  76#include <linux/crc32.h>
  77#include <linux/err.h>
  78#include <linux/slab.h>
  79#include "ubi.h"
  80
  81static int self_check_not_bad(const struct ubi_device *ubi, int pnum);
  82static int self_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum);
  83static int self_check_ec_hdr(const struct ubi_device *ubi, int pnum,
  84			     const struct ubi_ec_hdr *ec_hdr);
  85static int self_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum);
  86static int self_check_vid_hdr(const struct ubi_device *ubi, int pnum,
  87			      const struct ubi_vid_hdr *vid_hdr);
  88static int self_check_write(struct ubi_device *ubi, const void *buf, int pnum,
  89			    int offset, int len);
  90
  91/**
  92 * ubi_io_read - read data from a physical eraseblock.
  93 * @ubi: UBI device description object
  94 * @buf: buffer where to store the read data
  95 * @pnum: physical eraseblock number to read from
  96 * @offset: offset within the physical eraseblock from where to read
  97 * @len: how many bytes to read
  98 *
  99 * This function reads data from offset @offset of physical eraseblock @pnum
 100 * and stores the read data in the @buf buffer. The following return codes are
 101 * possible:
 102 *
 103 * o %0 if all the requested data were successfully read;
 104 * o %UBI_IO_BITFLIPS if all the requested data were successfully read, but
 105 *   correctable bit-flips were detected; this is harmless but may indicate
 106 *   that this eraseblock may become bad soon (but do not have to);
 107 * o %-EBADMSG if the MTD subsystem reported about data integrity problems, for
 108 *   example it can be an ECC error in case of NAND; this most probably means
 109 *   that the data is corrupted;
 110 * o %-EIO if some I/O error occurred;
 111 * o other negative error codes in case of other errors.
 112 */
 113int ubi_io_read(const struct ubi_device *ubi, void *buf, int pnum, int offset,
 114		int len)
 115{
 116	int err, retries = 0;
 117	size_t read;
 118	loff_t addr;
 119
 120	dbg_io("read %d bytes from PEB %d:%d", len, pnum, offset);
 121
 122	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
 123	ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
 124	ubi_assert(len > 0);
 125
 126	err = self_check_not_bad(ubi, pnum);
 127	if (err)
 128		return err;
 129
 130	/*
 131	 * Deliberately corrupt the buffer to improve robustness. Indeed, if we
 132	 * do not do this, the following may happen:
 133	 * 1. The buffer contains data from previous operation, e.g., read from
 134	 *    another PEB previously. The data looks like expected, e.g., if we
 135	 *    just do not read anything and return - the caller would not
 136	 *    notice this. E.g., if we are reading a VID header, the buffer may
 137	 *    contain a valid VID header from another PEB.
 138	 * 2. The driver is buggy and returns us success or -EBADMSG or
 139	 *    -EUCLEAN, but it does not actually put any data to the buffer.
 140	 *
 141	 * This may confuse UBI or upper layers - they may think the buffer
 142	 * contains valid data while in fact it is just old data. This is
 143	 * especially possible because UBI (and UBIFS) relies on CRC, and
 144	 * treats data as correct even in case of ECC errors if the CRC is
 145	 * correct.
 146	 *
 147	 * Try to prevent this situation by changing the first byte of the
 148	 * buffer.
 149	 */
 150	*((uint8_t *)buf) ^= 0xFF;
 151
 152	addr = (loff_t)pnum * ubi->peb_size + offset;
 153retry:
 154	err = mtd_read(ubi->mtd, addr, len, &read, buf);
 155	if (err) {
 156		const char *errstr = mtd_is_eccerr(err) ? " (ECC error)" : "";
 157
 158		if (mtd_is_bitflip(err)) {
 159			/*
 160			 * -EUCLEAN is reported if there was a bit-flip which
 161			 * was corrected, so this is harmless.
 162			 *
 163			 * We do not report about it here unless debugging is
 164			 * enabled. A corresponding message will be printed
 165			 * later, when it is has been scrubbed.
 166			 */
 167			ubi_msg(ubi, "fixable bit-flip detected at PEB %d",
 168				pnum);
 169			ubi_assert(len == read);
 170			return UBI_IO_BITFLIPS;
 171		}
 172
 173		if (retries++ < UBI_IO_RETRIES) {
 174			ubi_warn(ubi, "error %d%s while reading %d bytes from PEB %d:%d, read only %zd bytes, retry",
 175				 err, errstr, len, pnum, offset, read);
 176			yield();
 177			goto retry;
 178		}
 179
 180		ubi_err(ubi, "error %d%s while reading %d bytes from PEB %d:%d, read %zd bytes",
 181			err, errstr, len, pnum, offset, read);
 182		dump_stack();
 183
 184		/*
 185		 * The driver should never return -EBADMSG if it failed to read
 186		 * all the requested data. But some buggy drivers might do
 187		 * this, so we change it to -EIO.
 188		 */
 189		if (read != len && mtd_is_eccerr(err)) {
 190			ubi_assert(0);
 191			err = -EIO;
 192		}
 193	} else {
 194		ubi_assert(len == read);
 195
 196		if (ubi_dbg_is_bitflip(ubi)) {
 197			dbg_gen("bit-flip (emulated)");
 198			err = UBI_IO_BITFLIPS;
 199		}
 200	}
 201
 202	return err;
 203}
 204
 205/**
 206 * ubi_io_write - write data to a physical eraseblock.
 207 * @ubi: UBI device description object
 208 * @buf: buffer with the data to write
 209 * @pnum: physical eraseblock number to write to
 210 * @offset: offset within the physical eraseblock where to write
 211 * @len: how many bytes to write
 212 *
 213 * This function writes @len bytes of data from buffer @buf to offset @offset
 214 * of physical eraseblock @pnum. If all the data were successfully written,
 215 * zero is returned. If an error occurred, this function returns a negative
 216 * error code. If %-EIO is returned, the physical eraseblock most probably went
 217 * bad.
 218 *
 219 * Note, in case of an error, it is possible that something was still written
 220 * to the flash media, but may be some garbage.
 221 */
 222int ubi_io_write(struct ubi_device *ubi, const void *buf, int pnum, int offset,
 223		 int len)
 224{
 225	int err;
 226	size_t written;
 227	loff_t addr;
 228
 229	dbg_io("write %d bytes to PEB %d:%d", len, pnum, offset);
 230
 231	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
 232	ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
 233	ubi_assert(offset % ubi->hdrs_min_io_size == 0);
 234	ubi_assert(len > 0 && len % ubi->hdrs_min_io_size == 0);
 235
 236	if (ubi->ro_mode) {
 237		ubi_err(ubi, "read-only mode");
 238		return -EROFS;
 239	}
 240
 241	err = self_check_not_bad(ubi, pnum);
 242	if (err)
 243		return err;
 244
 245	/* The area we are writing to has to contain all 0xFF bytes */
 246	err = ubi_self_check_all_ff(ubi, pnum, offset, len);
 247	if (err)
 248		return err;
 249
 250	if (offset >= ubi->leb_start) {
 251		/*
 252		 * We write to the data area of the physical eraseblock. Make
 253		 * sure it has valid EC and VID headers.
 254		 */
 255		err = self_check_peb_ec_hdr(ubi, pnum);
 256		if (err)
 257			return err;
 258		err = self_check_peb_vid_hdr(ubi, pnum);
 259		if (err)
 260			return err;
 261	}
 262
 263	if (ubi_dbg_is_write_failure(ubi)) {
 264		ubi_err(ubi, "cannot write %d bytes to PEB %d:%d (emulated)",
 265			len, pnum, offset);
 266		dump_stack();
 267		return -EIO;
 268	}
 269
 270	addr = (loff_t)pnum * ubi->peb_size + offset;
 271	err = mtd_write(ubi->mtd, addr, len, &written, buf);
 272	if (err) {
 273		ubi_err(ubi, "error %d while writing %d bytes to PEB %d:%d, written %zd bytes",
 274			err, len, pnum, offset, written);
 275		dump_stack();
 276		ubi_dump_flash(ubi, pnum, offset, len);
 277	} else
 278		ubi_assert(written == len);
 279
 280	if (!err) {
 281		err = self_check_write(ubi, buf, pnum, offset, len);
 282		if (err)
 283			return err;
 284
 285		/*
 286		 * Since we always write sequentially, the rest of the PEB has
 287		 * to contain only 0xFF bytes.
 288		 */
 289		offset += len;
 290		len = ubi->peb_size - offset;
 291		if (len)
 292			err = ubi_self_check_all_ff(ubi, pnum, offset, len);
 293	}
 294
 295	return err;
 296}
 297
 298/**
 299 * do_sync_erase - synchronously erase a physical eraseblock.
 300 * @ubi: UBI device description object
 301 * @pnum: the physical eraseblock number to erase
 302 *
 303 * This function synchronously erases physical eraseblock @pnum and returns
 304 * zero in case of success and a negative error code in case of failure. If
 305 * %-EIO is returned, the physical eraseblock most probably went bad.
 306 */
 307static int do_sync_erase(struct ubi_device *ubi, int pnum)
 308{
 309	int err, retries = 0;
 310	struct erase_info ei;
 311
 312	dbg_io("erase PEB %d", pnum);
 313	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
 314
 315	if (ubi->ro_mode) {
 316		ubi_err(ubi, "read-only mode");
 317		return -EROFS;
 318	}
 319
 320retry:
 321	memset(&ei, 0, sizeof(struct erase_info));
 322
 323	ei.addr     = (loff_t)pnum * ubi->peb_size;
 324	ei.len      = ubi->peb_size;
 325
 326	err = mtd_erase(ubi->mtd, &ei);
 327	if (err) {
 328		if (retries++ < UBI_IO_RETRIES) {
 329			ubi_warn(ubi, "error %d while erasing PEB %d, retry",
 330				 err, pnum);
 331			yield();
 332			goto retry;
 333		}
 334		ubi_err(ubi, "cannot erase PEB %d, error %d", pnum, err);
 335		dump_stack();
 336		return err;
 337	}
 338
 339	err = ubi_self_check_all_ff(ubi, pnum, 0, ubi->peb_size);
 340	if (err)
 341		return err;
 342
 343	if (ubi_dbg_is_erase_failure(ubi)) {
 344		ubi_err(ubi, "cannot erase PEB %d (emulated)", pnum);
 345		return -EIO;
 346	}
 347
 348	return 0;
 349}
 350
 351/* Patterns to write to a physical eraseblock when torturing it */
 352static uint8_t patterns[] = {0xa5, 0x5a, 0x0};
 353
 354/**
 355 * torture_peb - test a supposedly bad physical eraseblock.
 356 * @ubi: UBI device description object
 357 * @pnum: the physical eraseblock number to test
 358 *
 359 * This function returns %-EIO if the physical eraseblock did not pass the
 360 * test, a positive number of erase operations done if the test was
 361 * successfully passed, and other negative error codes in case of other errors.
 362 */
 363static int torture_peb(struct ubi_device *ubi, int pnum)
 364{
 365	int err, i, patt_count;
 366
 367	ubi_msg(ubi, "run torture test for PEB %d", pnum);
 368	patt_count = ARRAY_SIZE(patterns);
 369	ubi_assert(patt_count > 0);
 370
 371	mutex_lock(&ubi->buf_mutex);
 372	for (i = 0; i < patt_count; i++) {
 373		err = do_sync_erase(ubi, pnum);
 374		if (err)
 375			goto out;
 376
 377		/* Make sure the PEB contains only 0xFF bytes */
 378		err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size);
 379		if (err)
 380			goto out;
 381
 382		err = ubi_check_pattern(ubi->peb_buf, 0xFF, ubi->peb_size);
 383		if (err == 0) {
 384			ubi_err(ubi, "erased PEB %d, but a non-0xFF byte found",
 385				pnum);
 386			err = -EIO;
 387			goto out;
 388		}
 389
 390		/* Write a pattern and check it */
 391		memset(ubi->peb_buf, patterns[i], ubi->peb_size);
 392		err = ubi_io_write(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size);
 393		if (err)
 394			goto out;
 395
 396		memset(ubi->peb_buf, ~patterns[i], ubi->peb_size);
 397		err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size);
 398		if (err)
 399			goto out;
 400
 401		err = ubi_check_pattern(ubi->peb_buf, patterns[i],
 402					ubi->peb_size);
 403		if (err == 0) {
 404			ubi_err(ubi, "pattern %x checking failed for PEB %d",
 405				patterns[i], pnum);
 406			err = -EIO;
 407			goto out;
 408		}
 409	}
 410
 411	err = patt_count;
 412	ubi_msg(ubi, "PEB %d passed torture test, do not mark it as bad", pnum);
 413
 414out:
 415	mutex_unlock(&ubi->buf_mutex);
 416	if (err == UBI_IO_BITFLIPS || mtd_is_eccerr(err)) {
 417		/*
 418		 * If a bit-flip or data integrity error was detected, the test
 419		 * has not passed because it happened on a freshly erased
 420		 * physical eraseblock which means something is wrong with it.
 421		 */
 422		ubi_err(ubi, "read problems on freshly erased PEB %d, must be bad",
 423			pnum);
 424		err = -EIO;
 425	}
 426	return err;
 427}
 428
 429/**
 430 * nor_erase_prepare - prepare a NOR flash PEB for erasure.
 431 * @ubi: UBI device description object
 432 * @pnum: physical eraseblock number to prepare
 433 *
 434 * NOR flash, or at least some of them, have peculiar embedded PEB erasure
 435 * algorithm: the PEB is first filled with zeroes, then it is erased. And
 436 * filling with zeroes starts from the end of the PEB. This was observed with
 437 * Spansion S29GL512N NOR flash.
 438 *
 439 * This means that in case of a power cut we may end up with intact data at the
 440 * beginning of the PEB, and all zeroes at the end of PEB. In other words, the
 441 * EC and VID headers are OK, but a large chunk of data at the end of PEB is
 442 * zeroed. This makes UBI mistakenly treat this PEB as used and associate it
 443 * with an LEB, which leads to subsequent failures (e.g., UBIFS fails).
 444 *
 445 * This function is called before erasing NOR PEBs and it zeroes out EC and VID
 446 * magic numbers in order to invalidate them and prevent the failures. Returns
 447 * zero in case of success and a negative error code in case of failure.
 448 */
 449static int nor_erase_prepare(struct ubi_device *ubi, int pnum)
 450{
 451	int err;
 452	size_t written;
 453	loff_t addr;
 454	uint32_t data = 0;
 455	struct ubi_ec_hdr ec_hdr;
 456	struct ubi_vid_io_buf vidb;
 457
 458	/*
 459	 * Note, we cannot generally define VID header buffers on stack,
 460	 * because of the way we deal with these buffers (see the header
 461	 * comment in this file). But we know this is a NOR-specific piece of
 462	 * code, so we can do this. But yes, this is error-prone and we should
 463	 * (pre-)allocate VID header buffer instead.
 464	 */
 465	struct ubi_vid_hdr vid_hdr;
 466
 467	/*
 468	 * If VID or EC is valid, we have to corrupt them before erasing.
 469	 * It is important to first invalidate the EC header, and then the VID
 470	 * header. Otherwise a power cut may lead to valid EC header and
 471	 * invalid VID header, in which case UBI will treat this PEB as
 472	 * corrupted and will try to preserve it, and print scary warnings.
 473	 */
 474	addr = (loff_t)pnum * ubi->peb_size;
 475	err = ubi_io_read_ec_hdr(ubi, pnum, &ec_hdr, 0);
 476	if (err != UBI_IO_BAD_HDR_EBADMSG && err != UBI_IO_BAD_HDR &&
 477	    err != UBI_IO_FF){
 478		err = mtd_write(ubi->mtd, addr, 4, &written, (void *)&data);
 479		if(err)
 480			goto error;
 481	}
 482
 483	ubi_init_vid_buf(ubi, &vidb, &vid_hdr);
 484	ubi_assert(&vid_hdr == ubi_get_vid_hdr(&vidb));
 485
 486	err = ubi_io_read_vid_hdr(ubi, pnum, &vidb, 0);
 487	if (err != UBI_IO_BAD_HDR_EBADMSG && err != UBI_IO_BAD_HDR &&
 488	    err != UBI_IO_FF){
 489		addr += ubi->vid_hdr_aloffset;
 490		err = mtd_write(ubi->mtd, addr, 4, &written, (void *)&data);
 491		if (err)
 492			goto error;
 493	}
 494	return 0;
 495
 496error:
 497	/*
 498	 * The PEB contains a valid VID or EC header, but we cannot invalidate
 499	 * it. Supposedly the flash media or the driver is screwed up, so
 500	 * return an error.
 501	 */
 502	ubi_err(ubi, "cannot invalidate PEB %d, write returned %d", pnum, err);
 503	ubi_dump_flash(ubi, pnum, 0, ubi->peb_size);
 504	return -EIO;
 505}
 506
 507/**
 508 * ubi_io_sync_erase - synchronously erase a physical eraseblock.
 509 * @ubi: UBI device description object
 510 * @pnum: physical eraseblock number to erase
 511 * @torture: if this physical eraseblock has to be tortured
 512 *
 513 * This function synchronously erases physical eraseblock @pnum. If @torture
 514 * flag is not zero, the physical eraseblock is checked by means of writing
 515 * different patterns to it and reading them back. If the torturing is enabled,
 516 * the physical eraseblock is erased more than once.
 517 *
 518 * This function returns the number of erasures made in case of success, %-EIO
 519 * if the erasure failed or the torturing test failed, and other negative error
 520 * codes in case of other errors. Note, %-EIO means that the physical
 521 * eraseblock is bad.
 522 */
 523int ubi_io_sync_erase(struct ubi_device *ubi, int pnum, int torture)
 524{
 525	int err, ret = 0;
 526
 527	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
 528
 529	err = self_check_not_bad(ubi, pnum);
 530	if (err != 0)
 531		return err;
 532
 533	if (ubi->ro_mode) {
 534		ubi_err(ubi, "read-only mode");
 535		return -EROFS;
 536	}
 537
 538	if (ubi->nor_flash) {
 539		err = nor_erase_prepare(ubi, pnum);
 540		if (err)
 541			return err;
 542	}
 543
 544	if (torture) {
 545		ret = torture_peb(ubi, pnum);
 546		if (ret < 0)
 547			return ret;
 548	}
 549
 550	err = do_sync_erase(ubi, pnum);
 551	if (err)
 552		return err;
 553
 554	return ret + 1;
 555}
 556
 557/**
 558 * ubi_io_is_bad - check if a physical eraseblock is bad.
 559 * @ubi: UBI device description object
 560 * @pnum: the physical eraseblock number to check
 561 *
 562 * This function returns a positive number if the physical eraseblock is bad,
 563 * zero if not, and a negative error code if an error occurred.
 564 */
 565int ubi_io_is_bad(const struct ubi_device *ubi, int pnum)
 566{
 567	struct mtd_info *mtd = ubi->mtd;
 568
 569	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
 570
 571	if (ubi->bad_allowed) {
 572		int ret;
 573
 574		ret = mtd_block_isbad(mtd, (loff_t)pnum * ubi->peb_size);
 575		if (ret < 0)
 576			ubi_err(ubi, "error %d while checking if PEB %d is bad",
 577				ret, pnum);
 578		else if (ret)
 579			dbg_io("PEB %d is bad", pnum);
 580		return ret;
 581	}
 582
 583	return 0;
 584}
 585
 586/**
 587 * ubi_io_mark_bad - mark a physical eraseblock as bad.
 588 * @ubi: UBI device description object
 589 * @pnum: the physical eraseblock number to mark
 590 *
 591 * This function returns zero in case of success and a negative error code in
 592 * case of failure.
 593 */
 594int ubi_io_mark_bad(const struct ubi_device *ubi, int pnum)
 595{
 596	int err;
 597	struct mtd_info *mtd = ubi->mtd;
 598
 599	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
 600
 601	if (ubi->ro_mode) {
 602		ubi_err(ubi, "read-only mode");
 603		return -EROFS;
 604	}
 605
 606	if (!ubi->bad_allowed)
 607		return 0;
 608
 609	err = mtd_block_markbad(mtd, (loff_t)pnum * ubi->peb_size);
 610	if (err)
 611		ubi_err(ubi, "cannot mark PEB %d bad, error %d", pnum, err);
 612	return err;
 613}
 614
 615/**
 616 * validate_ec_hdr - validate an erase counter header.
 617 * @ubi: UBI device description object
 618 * @ec_hdr: the erase counter header to check
 619 *
 620 * This function returns zero if the erase counter header is OK, and %1 if
 621 * not.
 622 */
 623static int validate_ec_hdr(const struct ubi_device *ubi,
 624			   const struct ubi_ec_hdr *ec_hdr)
 625{
 626	long long ec;
 627	int vid_hdr_offset, leb_start;
 628
 629	ec = be64_to_cpu(ec_hdr->ec);
 630	vid_hdr_offset = be32_to_cpu(ec_hdr->vid_hdr_offset);
 631	leb_start = be32_to_cpu(ec_hdr->data_offset);
 632
 633	if (ec_hdr->version != UBI_VERSION) {
 634		ubi_err(ubi, "node with incompatible UBI version found: this UBI version is %d, image version is %d",
 635			UBI_VERSION, (int)ec_hdr->version);
 636		goto bad;
 637	}
 638
 639	if (vid_hdr_offset != ubi->vid_hdr_offset) {
 640		ubi_err(ubi, "bad VID header offset %d, expected %d",
 641			vid_hdr_offset, ubi->vid_hdr_offset);
 642		goto bad;
 643	}
 644
 645	if (leb_start != ubi->leb_start) {
 646		ubi_err(ubi, "bad data offset %d, expected %d",
 647			leb_start, ubi->leb_start);
 648		goto bad;
 649	}
 650
 651	if (ec < 0 || ec > UBI_MAX_ERASECOUNTER) {
 652		ubi_err(ubi, "bad erase counter %lld", ec);
 653		goto bad;
 654	}
 655
 656	return 0;
 657
 658bad:
 659	ubi_err(ubi, "bad EC header");
 660	ubi_dump_ec_hdr(ec_hdr);
 661	dump_stack();
 662	return 1;
 663}
 664
 665/**
 666 * ubi_io_read_ec_hdr - read and check an erase counter header.
 667 * @ubi: UBI device description object
 668 * @pnum: physical eraseblock to read from
 669 * @ec_hdr: a &struct ubi_ec_hdr object where to store the read erase counter
 670 * header
 671 * @verbose: be verbose if the header is corrupted or was not found
 672 *
 673 * This function reads erase counter header from physical eraseblock @pnum and
 674 * stores it in @ec_hdr. This function also checks CRC checksum of the read
 675 * erase counter header. The following codes may be returned:
 676 *
 677 * o %0 if the CRC checksum is correct and the header was successfully read;
 678 * o %UBI_IO_BITFLIPS if the CRC is correct, but bit-flips were detected
 679 *   and corrected by the flash driver; this is harmless but may indicate that
 680 *   this eraseblock may become bad soon (but may be not);
 681 * o %UBI_IO_BAD_HDR if the erase counter header is corrupted (a CRC error);
 682 * o %UBI_IO_BAD_HDR_EBADMSG is the same as %UBI_IO_BAD_HDR, but there also was
 683 *   a data integrity error (uncorrectable ECC error in case of NAND);
 684 * o %UBI_IO_FF if only 0xFF bytes were read (the PEB is supposedly empty)
 685 * o a negative error code in case of failure.
 686 */
 687int ubi_io_read_ec_hdr(struct ubi_device *ubi, int pnum,
 688		       struct ubi_ec_hdr *ec_hdr, int verbose)
 689{
 690	int err, read_err;
 691	uint32_t crc, magic, hdr_crc;
 692
 693	dbg_io("read EC header from PEB %d", pnum);
 694	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
 695
 696	read_err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE);
 697	if (read_err) {
 698		if (read_err != UBI_IO_BITFLIPS && !mtd_is_eccerr(read_err))
 699			return read_err;
 700
 701		/*
 702		 * We read all the data, but either a correctable bit-flip
 703		 * occurred, or MTD reported a data integrity error
 704		 * (uncorrectable ECC error in case of NAND). The former is
 705		 * harmless, the later may mean that the read data is
 706		 * corrupted. But we have a CRC check-sum and we will detect
 707		 * this. If the EC header is still OK, we just report this as
 708		 * there was a bit-flip, to force scrubbing.
 709		 */
 710	}
 711
 712	magic = be32_to_cpu(ec_hdr->magic);
 713	if (magic != UBI_EC_HDR_MAGIC) {
 714		if (mtd_is_eccerr(read_err))
 715			return UBI_IO_BAD_HDR_EBADMSG;
 716
 717		/*
 718		 * The magic field is wrong. Let's check if we have read all
 719		 * 0xFF. If yes, this physical eraseblock is assumed to be
 720		 * empty.
 721		 */
 722		if (ubi_check_pattern(ec_hdr, 0xFF, UBI_EC_HDR_SIZE)) {
 723			/* The physical eraseblock is supposedly empty */
 724			if (verbose)
 725				ubi_warn(ubi, "no EC header found at PEB %d, only 0xFF bytes",
 726					 pnum);
 727			dbg_bld("no EC header found at PEB %d, only 0xFF bytes",
 728				pnum);
 729			if (!read_err)
 730				return UBI_IO_FF;
 731			else
 732				return UBI_IO_FF_BITFLIPS;
 733		}
 734
 735		/*
 736		 * This is not a valid erase counter header, and these are not
 737		 * 0xFF bytes. Report that the header is corrupted.
 738		 */
 739		if (verbose) {
 740			ubi_warn(ubi, "bad magic number at PEB %d: %08x instead of %08x",
 741				 pnum, magic, UBI_EC_HDR_MAGIC);
 742			ubi_dump_ec_hdr(ec_hdr);
 743		}
 744		dbg_bld("bad magic number at PEB %d: %08x instead of %08x",
 745			pnum, magic, UBI_EC_HDR_MAGIC);
 746		return UBI_IO_BAD_HDR;
 747	}
 748
 749	crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
 750	hdr_crc = be32_to_cpu(ec_hdr->hdr_crc);
 751
 752	if (hdr_crc != crc) {
 753		if (verbose) {
 754			ubi_warn(ubi, "bad EC header CRC at PEB %d, calculated %#08x, read %#08x",
 755				 pnum, crc, hdr_crc);
 756			ubi_dump_ec_hdr(ec_hdr);
 757		}
 758		dbg_bld("bad EC header CRC at PEB %d, calculated %#08x, read %#08x",
 759			pnum, crc, hdr_crc);
 760
 761		if (!read_err)
 762			return UBI_IO_BAD_HDR;
 763		else
 764			return UBI_IO_BAD_HDR_EBADMSG;
 765	}
 766
 767	/* And of course validate what has just been read from the media */
 768	err = validate_ec_hdr(ubi, ec_hdr);
 769	if (err) {
 770		ubi_err(ubi, "validation failed for PEB %d", pnum);
 771		return -EINVAL;
 772	}
 773
 774	/*
 775	 * If there was %-EBADMSG, but the header CRC is still OK, report about
 776	 * a bit-flip to force scrubbing on this PEB.
 777	 */
 778	return read_err ? UBI_IO_BITFLIPS : 0;
 779}
 780
 781/**
 782 * ubi_io_write_ec_hdr - write an erase counter header.
 783 * @ubi: UBI device description object
 784 * @pnum: physical eraseblock to write to
 785 * @ec_hdr: the erase counter header to write
 786 *
 787 * This function writes erase counter header described by @ec_hdr to physical
 788 * eraseblock @pnum. It also fills most fields of @ec_hdr before writing, so
 789 * the caller do not have to fill them. Callers must only fill the @ec_hdr->ec
 790 * field.
 791 *
 792 * This function returns zero in case of success and a negative error code in
 793 * case of failure. If %-EIO is returned, the physical eraseblock most probably
 794 * went bad.
 795 */
 796int ubi_io_write_ec_hdr(struct ubi_device *ubi, int pnum,
 797			struct ubi_ec_hdr *ec_hdr)
 798{
 799	int err;
 800	uint32_t crc;
 801
 802	dbg_io("write EC header to PEB %d", pnum);
 803	ubi_assert(pnum >= 0 &&  pnum < ubi->peb_count);
 804
 805	ec_hdr->magic = cpu_to_be32(UBI_EC_HDR_MAGIC);
 806	ec_hdr->version = UBI_VERSION;
 807	ec_hdr->vid_hdr_offset = cpu_to_be32(ubi->vid_hdr_offset);
 808	ec_hdr->data_offset = cpu_to_be32(ubi->leb_start);
 809	ec_hdr->image_seq = cpu_to_be32(ubi->image_seq);
 810	crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
 811	ec_hdr->hdr_crc = cpu_to_be32(crc);
 812
 813	err = self_check_ec_hdr(ubi, pnum, ec_hdr);
 814	if (err)
 815		return err;
 816
 817	if (ubi_dbg_power_cut(ubi, POWER_CUT_EC_WRITE))
 818		return -EROFS;
 819
 820	err = ubi_io_write(ubi, ec_hdr, pnum, 0, ubi->ec_hdr_alsize);
 821	return err;
 822}
 823
 824/**
 825 * validate_vid_hdr - validate a volume identifier header.
 826 * @ubi: UBI device description object
 827 * @vid_hdr: the volume identifier header to check
 828 *
 829 * This function checks that data stored in the volume identifier header
 830 * @vid_hdr. Returns zero if the VID header is OK and %1 if not.
 831 */
 832static int validate_vid_hdr(const struct ubi_device *ubi,
 833			    const struct ubi_vid_hdr *vid_hdr)
 834{
 835	int vol_type = vid_hdr->vol_type;
 836	int copy_flag = vid_hdr->copy_flag;
 837	int vol_id = be32_to_cpu(vid_hdr->vol_id);
 838	int lnum = be32_to_cpu(vid_hdr->lnum);
 839	int compat = vid_hdr->compat;
 840	int data_size = be32_to_cpu(vid_hdr->data_size);
 841	int used_ebs = be32_to_cpu(vid_hdr->used_ebs);
 842	int data_pad = be32_to_cpu(vid_hdr->data_pad);
 843	int data_crc = be32_to_cpu(vid_hdr->data_crc);
 844	int usable_leb_size = ubi->leb_size - data_pad;
 845
 846	if (copy_flag != 0 && copy_flag != 1) {
 847		ubi_err(ubi, "bad copy_flag");
 848		goto bad;
 849	}
 850
 851	if (vol_id < 0 || lnum < 0 || data_size < 0 || used_ebs < 0 ||
 852	    data_pad < 0) {
 853		ubi_err(ubi, "negative values");
 854		goto bad;
 855	}
 856
 857	if (vol_id >= UBI_MAX_VOLUMES && vol_id < UBI_INTERNAL_VOL_START) {
 858		ubi_err(ubi, "bad vol_id");
 859		goto bad;
 860	}
 861
 862	if (vol_id < UBI_INTERNAL_VOL_START && compat != 0) {
 863		ubi_err(ubi, "bad compat");
 864		goto bad;
 865	}
 866
 867	if (vol_id >= UBI_INTERNAL_VOL_START && compat != UBI_COMPAT_DELETE &&
 868	    compat != UBI_COMPAT_RO && compat != UBI_COMPAT_PRESERVE &&
 869	    compat != UBI_COMPAT_REJECT) {
 870		ubi_err(ubi, "bad compat");
 871		goto bad;
 872	}
 873
 874	if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) {
 875		ubi_err(ubi, "bad vol_type");
 876		goto bad;
 877	}
 878
 879	if (data_pad >= ubi->leb_size / 2) {
 880		ubi_err(ubi, "bad data_pad");
 881		goto bad;
 882	}
 883
 884	if (data_size > ubi->leb_size) {
 885		ubi_err(ubi, "bad data_size");
 886		goto bad;
 887	}
 888
 889	if (vol_type == UBI_VID_STATIC) {
 890		/*
 891		 * Although from high-level point of view static volumes may
 892		 * contain zero bytes of data, but no VID headers can contain
 893		 * zero at these fields, because they empty volumes do not have
 894		 * mapped logical eraseblocks.
 895		 */
 896		if (used_ebs == 0) {
 897			ubi_err(ubi, "zero used_ebs");
 898			goto bad;
 899		}
 900		if (data_size == 0) {
 901			ubi_err(ubi, "zero data_size");
 902			goto bad;
 903		}
 904		if (lnum < used_ebs - 1) {
 905			if (data_size != usable_leb_size) {
 906				ubi_err(ubi, "bad data_size");
 907				goto bad;
 908			}
 909		} else if (lnum == used_ebs - 1) {
 910			if (data_size == 0) {
 911				ubi_err(ubi, "bad data_size at last LEB");
 912				goto bad;
 913			}
 914		} else {
 915			ubi_err(ubi, "too high lnum");
 916			goto bad;
 917		}
 918	} else {
 919		if (copy_flag == 0) {
 920			if (data_crc != 0) {
 921				ubi_err(ubi, "non-zero data CRC");
 922				goto bad;
 923			}
 924			if (data_size != 0) {
 925				ubi_err(ubi, "non-zero data_size");
 926				goto bad;
 927			}
 928		} else {
 929			if (data_size == 0) {
 930				ubi_err(ubi, "zero data_size of copy");
 931				goto bad;
 932			}
 933		}
 934		if (used_ebs != 0) {
 935			ubi_err(ubi, "bad used_ebs");
 936			goto bad;
 937		}
 938	}
 939
 940	return 0;
 941
 942bad:
 943	ubi_err(ubi, "bad VID header");
 944	ubi_dump_vid_hdr(vid_hdr);
 945	dump_stack();
 946	return 1;
 947}
 948
 949/**
 950 * ubi_io_read_vid_hdr - read and check a volume identifier header.
 951 * @ubi: UBI device description object
 952 * @pnum: physical eraseblock number to read from
 953 * @vidb: the volume identifier buffer to store data in
 954 * @verbose: be verbose if the header is corrupted or wasn't found
 955 *
 956 * This function reads the volume identifier header from physical eraseblock
 957 * @pnum and stores it in @vidb. It also checks CRC checksum of the read
 958 * volume identifier header. The error codes are the same as in
 959 * 'ubi_io_read_ec_hdr()'.
 960 *
 961 * Note, the implementation of this function is also very similar to
 962 * 'ubi_io_read_ec_hdr()', so refer commentaries in 'ubi_io_read_ec_hdr()'.
 963 */
 964int ubi_io_read_vid_hdr(struct ubi_device *ubi, int pnum,
 965			struct ubi_vid_io_buf *vidb, int verbose)
 966{
 967	int err, read_err;
 968	uint32_t crc, magic, hdr_crc;
 969	struct ubi_vid_hdr *vid_hdr = ubi_get_vid_hdr(vidb);
 970	void *p = vidb->buffer;
 971
 972	dbg_io("read VID header from PEB %d", pnum);
 973	ubi_assert(pnum >= 0 &&  pnum < ubi->peb_count);
 974
 975	read_err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset,
 976			  ubi->vid_hdr_shift + UBI_VID_HDR_SIZE);
 977	if (read_err && read_err != UBI_IO_BITFLIPS && !mtd_is_eccerr(read_err))
 978		return read_err;
 979
 980	magic = be32_to_cpu(vid_hdr->magic);
 981	if (magic != UBI_VID_HDR_MAGIC) {
 982		if (mtd_is_eccerr(read_err))
 983			return UBI_IO_BAD_HDR_EBADMSG;
 984
 985		if (ubi_check_pattern(vid_hdr, 0xFF, UBI_VID_HDR_SIZE)) {
 986			if (verbose)
 987				ubi_warn(ubi, "no VID header found at PEB %d, only 0xFF bytes",
 988					 pnum);
 989			dbg_bld("no VID header found at PEB %d, only 0xFF bytes",
 990				pnum);
 991			if (!read_err)
 992				return UBI_IO_FF;
 993			else
 994				return UBI_IO_FF_BITFLIPS;
 995		}
 996
 997		if (verbose) {
 998			ubi_warn(ubi, "bad magic number at PEB %d: %08x instead of %08x",
 999				 pnum, magic, UBI_VID_HDR_MAGIC);
1000			ubi_dump_vid_hdr(vid_hdr);
1001		}
1002		dbg_bld("bad magic number at PEB %d: %08x instead of %08x",
1003			pnum, magic, UBI_VID_HDR_MAGIC);
1004		return UBI_IO_BAD_HDR;
1005	}
1006
1007	crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
1008	hdr_crc = be32_to_cpu(vid_hdr->hdr_crc);
1009
1010	if (hdr_crc != crc) {
1011		if (verbose) {
1012			ubi_warn(ubi, "bad CRC at PEB %d, calculated %#08x, read %#08x",
1013				 pnum, crc, hdr_crc);
1014			ubi_dump_vid_hdr(vid_hdr);
1015		}
1016		dbg_bld("bad CRC at PEB %d, calculated %#08x, read %#08x",
1017			pnum, crc, hdr_crc);
1018		if (!read_err)
1019			return UBI_IO_BAD_HDR;
1020		else
1021			return UBI_IO_BAD_HDR_EBADMSG;
1022	}
1023
1024	err = validate_vid_hdr(ubi, vid_hdr);
1025	if (err) {
1026		ubi_err(ubi, "validation failed for PEB %d", pnum);
1027		return -EINVAL;
1028	}
1029
1030	return read_err ? UBI_IO_BITFLIPS : 0;
1031}
1032
1033/**
1034 * ubi_io_write_vid_hdr - write a volume identifier header.
1035 * @ubi: UBI device description object
1036 * @pnum: the physical eraseblock number to write to
1037 * @vidb: the volume identifier buffer to write
1038 *
1039 * This function writes the volume identifier header described by @vid_hdr to
1040 * physical eraseblock @pnum. This function automatically fills the
1041 * @vidb->hdr->magic and the @vidb->hdr->version fields, as well as calculates
1042 * header CRC checksum and stores it at vidb->hdr->hdr_crc.
1043 *
1044 * This function returns zero in case of success and a negative error code in
1045 * case of failure. If %-EIO is returned, the physical eraseblock probably went
1046 * bad.
1047 */
1048int ubi_io_write_vid_hdr(struct ubi_device *ubi, int pnum,
1049			 struct ubi_vid_io_buf *vidb)
1050{
1051	struct ubi_vid_hdr *vid_hdr = ubi_get_vid_hdr(vidb);
1052	int err;
1053	uint32_t crc;
1054	void *p = vidb->buffer;
1055
1056	dbg_io("write VID header to PEB %d", pnum);
1057	ubi_assert(pnum >= 0 &&  pnum < ubi->peb_count);
1058
1059	err = self_check_peb_ec_hdr(ubi, pnum);
1060	if (err)
1061		return err;
1062
1063	vid_hdr->magic = cpu_to_be32(UBI_VID_HDR_MAGIC);
1064	vid_hdr->version = UBI_VERSION;
1065	crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
1066	vid_hdr->hdr_crc = cpu_to_be32(crc);
1067
1068	err = self_check_vid_hdr(ubi, pnum, vid_hdr);
1069	if (err)
1070		return err;
1071
1072	if (ubi_dbg_power_cut(ubi, POWER_CUT_VID_WRITE))
1073		return -EROFS;
1074
1075	err = ubi_io_write(ubi, p, pnum, ubi->vid_hdr_aloffset,
1076			   ubi->vid_hdr_alsize);
1077	return err;
1078}
1079
1080/**
1081 * self_check_not_bad - ensure that a physical eraseblock is not bad.
1082 * @ubi: UBI device description object
1083 * @pnum: physical eraseblock number to check
1084 *
1085 * This function returns zero if the physical eraseblock is good, %-EINVAL if
1086 * it is bad and a negative error code if an error occurred.
1087 */
1088static int self_check_not_bad(const struct ubi_device *ubi, int pnum)
1089{
1090	int err;
1091
1092	if (!ubi_dbg_chk_io(ubi))
1093		return 0;
1094
1095	err = ubi_io_is_bad(ubi, pnum);
1096	if (!err)
1097		return err;
1098
1099	ubi_err(ubi, "self-check failed for PEB %d", pnum);
1100	dump_stack();
1101	return err > 0 ? -EINVAL : err;
1102}
1103
1104/**
1105 * self_check_ec_hdr - check if an erase counter header is all right.
1106 * @ubi: UBI device description object
1107 * @pnum: physical eraseblock number the erase counter header belongs to
1108 * @ec_hdr: the erase counter header to check
1109 *
1110 * This function returns zero if the erase counter header contains valid
1111 * values, and %-EINVAL if not.
1112 */
1113static int self_check_ec_hdr(const struct ubi_device *ubi, int pnum,
1114			     const struct ubi_ec_hdr *ec_hdr)
1115{
1116	int err;
1117	uint32_t magic;
1118
1119	if (!ubi_dbg_chk_io(ubi))
1120		return 0;
1121
1122	magic = be32_to_cpu(ec_hdr->magic);
1123	if (magic != UBI_EC_HDR_MAGIC) {
1124		ubi_err(ubi, "bad magic %#08x, must be %#08x",
1125			magic, UBI_EC_HDR_MAGIC);
1126		goto fail;
1127	}
1128
1129	err = validate_ec_hdr(ubi, ec_hdr);
1130	if (err) {
1131		ubi_err(ubi, "self-check failed for PEB %d", pnum);
1132		goto fail;
1133	}
1134
1135	return 0;
1136
1137fail:
1138	ubi_dump_ec_hdr(ec_hdr);
1139	dump_stack();
1140	return -EINVAL;
1141}
1142
1143/**
1144 * self_check_peb_ec_hdr - check erase counter header.
1145 * @ubi: UBI device description object
1146 * @pnum: the physical eraseblock number to check
1147 *
1148 * This function returns zero if the erase counter header is all right and and
1149 * a negative error code if not or if an error occurred.
1150 */
1151static int self_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum)
1152{
1153	int err;
1154	uint32_t crc, hdr_crc;
1155	struct ubi_ec_hdr *ec_hdr;
1156
1157	if (!ubi_dbg_chk_io(ubi))
1158		return 0;
1159
1160	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
1161	if (!ec_hdr)
1162		return -ENOMEM;
1163
1164	err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE);
1165	if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err))
1166		goto exit;
1167
1168	crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
1169	hdr_crc = be32_to_cpu(ec_hdr->hdr_crc);
1170	if (hdr_crc != crc) {
1171		ubi_err(ubi, "bad CRC, calculated %#08x, read %#08x",
1172			crc, hdr_crc);
1173		ubi_err(ubi, "self-check failed for PEB %d", pnum);
1174		ubi_dump_ec_hdr(ec_hdr);
1175		dump_stack();
1176		err = -EINVAL;
1177		goto exit;
1178	}
1179
1180	err = self_check_ec_hdr(ubi, pnum, ec_hdr);
1181
1182exit:
1183	kfree(ec_hdr);
1184	return err;
1185}
1186
1187/**
1188 * self_check_vid_hdr - check that a volume identifier header is all right.
1189 * @ubi: UBI device description object
1190 * @pnum: physical eraseblock number the volume identifier header belongs to
1191 * @vid_hdr: the volume identifier header to check
1192 *
1193 * This function returns zero if the volume identifier header is all right, and
1194 * %-EINVAL if not.
1195 */
1196static int self_check_vid_hdr(const struct ubi_device *ubi, int pnum,
1197			      const struct ubi_vid_hdr *vid_hdr)
1198{
1199	int err;
1200	uint32_t magic;
1201
1202	if (!ubi_dbg_chk_io(ubi))
1203		return 0;
1204
1205	magic = be32_to_cpu(vid_hdr->magic);
1206	if (magic != UBI_VID_HDR_MAGIC) {
1207		ubi_err(ubi, "bad VID header magic %#08x at PEB %d, must be %#08x",
1208			magic, pnum, UBI_VID_HDR_MAGIC);
1209		goto fail;
1210	}
1211
1212	err = validate_vid_hdr(ubi, vid_hdr);
1213	if (err) {
1214		ubi_err(ubi, "self-check failed for PEB %d", pnum);
1215		goto fail;
1216	}
1217
1218	return err;
1219
1220fail:
1221	ubi_err(ubi, "self-check failed for PEB %d", pnum);
1222	ubi_dump_vid_hdr(vid_hdr);
1223	dump_stack();
1224	return -EINVAL;
1225
1226}
1227
1228/**
1229 * self_check_peb_vid_hdr - check volume identifier header.
1230 * @ubi: UBI device description object
1231 * @pnum: the physical eraseblock number to check
1232 *
1233 * This function returns zero if the volume identifier header is all right,
1234 * and a negative error code if not or if an error occurred.
1235 */
1236static int self_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum)
1237{
1238	int err;
1239	uint32_t crc, hdr_crc;
1240	struct ubi_vid_io_buf *vidb;
1241	struct ubi_vid_hdr *vid_hdr;
1242	void *p;
1243
1244	if (!ubi_dbg_chk_io(ubi))
1245		return 0;
1246
1247	vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS);
1248	if (!vidb)
1249		return -ENOMEM;
1250
1251	vid_hdr = ubi_get_vid_hdr(vidb);
1252	p = vidb->buffer;
1253	err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset,
1254			  ubi->vid_hdr_alsize);
1255	if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err))
1256		goto exit;
1257
1258	crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
1259	hdr_crc = be32_to_cpu(vid_hdr->hdr_crc);
1260	if (hdr_crc != crc) {
1261		ubi_err(ubi, "bad VID header CRC at PEB %d, calculated %#08x, read %#08x",
1262			pnum, crc, hdr_crc);
1263		ubi_err(ubi, "self-check failed for PEB %d", pnum);
1264		ubi_dump_vid_hdr(vid_hdr);
1265		dump_stack();
1266		err = -EINVAL;
1267		goto exit;
1268	}
1269
1270	err = self_check_vid_hdr(ubi, pnum, vid_hdr);
1271
1272exit:
1273	ubi_free_vid_buf(vidb);
1274	return err;
1275}
1276
1277/**
1278 * self_check_write - make sure write succeeded.
1279 * @ubi: UBI device description object
1280 * @buf: buffer with data which were written
1281 * @pnum: physical eraseblock number the data were written to
1282 * @offset: offset within the physical eraseblock the data were written to
1283 * @len: how many bytes were written
1284 *
1285 * This functions reads data which were recently written and compares it with
1286 * the original data buffer - the data have to match. Returns zero if the data
1287 * match and a negative error code if not or in case of failure.
1288 */
1289static int self_check_write(struct ubi_device *ubi, const void *buf, int pnum,
1290			    int offset, int len)
1291{
1292	int err, i;
1293	size_t read;
1294	void *buf1;
1295	loff_t addr = (loff_t)pnum * ubi->peb_size + offset;
1296
1297	if (!ubi_dbg_chk_io(ubi))
1298		return 0;
1299
1300	buf1 = __vmalloc(len, GFP_NOFS);
1301	if (!buf1) {
1302		ubi_err(ubi, "cannot allocate memory to check writes");
1303		return 0;
1304	}
1305
1306	err = mtd_read(ubi->mtd, addr, len, &read, buf1);
1307	if (err && !mtd_is_bitflip(err))
1308		goto out_free;
1309
1310	for (i = 0; i < len; i++) {
1311		uint8_t c = ((uint8_t *)buf)[i];
1312		uint8_t c1 = ((uint8_t *)buf1)[i];
1313		int dump_len;
1314
1315		if (c == c1)
1316			continue;
1317
1318		ubi_err(ubi, "self-check failed for PEB %d:%d, len %d",
1319			pnum, offset, len);
1320		ubi_msg(ubi, "data differ at position %d", i);
1321		dump_len = max_t(int, 128, len - i);
1322		ubi_msg(ubi, "hex dump of the original buffer from %d to %d",
1323			i, i + dump_len);
1324		print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
1325			       buf + i, dump_len, 1);
1326		ubi_msg(ubi, "hex dump of the read buffer from %d to %d",
1327			i, i + dump_len);
1328		print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
1329			       buf1 + i, dump_len, 1);
1330		dump_stack();
1331		err = -EINVAL;
1332		goto out_free;
1333	}
1334
1335	vfree(buf1);
1336	return 0;
1337
1338out_free:
1339	vfree(buf1);
1340	return err;
1341}
1342
1343/**
1344 * ubi_self_check_all_ff - check that a region of flash is empty.
1345 * @ubi: UBI device description object
1346 * @pnum: the physical eraseblock number to check
1347 * @offset: the starting offset within the physical eraseblock to check
1348 * @len: the length of the region to check
1349 *
1350 * This function returns zero if only 0xFF bytes are present at offset
1351 * @offset of the physical eraseblock @pnum, and a negative error code if not
1352 * or if an error occurred.
1353 */
1354int ubi_self_check_all_ff(struct ubi_device *ubi, int pnum, int offset, int len)
1355{
1356	size_t read;
1357	int err;
1358	void *buf;
1359	loff_t addr = (loff_t)pnum * ubi->peb_size + offset;
1360
1361	if (!ubi_dbg_chk_io(ubi))
1362		return 0;
1363
1364	buf = __vmalloc(len, GFP_NOFS);
1365	if (!buf) {
1366		ubi_err(ubi, "cannot allocate memory to check for 0xFFs");
1367		return 0;
1368	}
1369
1370	err = mtd_read(ubi->mtd, addr, len, &read, buf);
1371	if (err && !mtd_is_bitflip(err)) {
1372		ubi_err(ubi, "err %d while reading %d bytes from PEB %d:%d, read %zd bytes",
1373			err, len, pnum, offset, read);
1374		goto error;
1375	}
1376
1377	err = ubi_check_pattern(buf, 0xFF, len);
1378	if (err == 0) {
1379		ubi_err(ubi, "flash region at PEB %d:%d, length %d does not contain all 0xFF bytes",
1380			pnum, offset, len);
1381		goto fail;
1382	}
1383
1384	vfree(buf);
1385	return 0;
1386
1387fail:
1388	ubi_err(ubi, "self-check failed for PEB %d", pnum);
1389	ubi_msg(ubi, "hex dump of the %d-%d region", offset, offset + len);
1390	print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, buf, len, 1);
1391	err = -EINVAL;
1392error:
1393	dump_stack();
1394	vfree(buf);
1395	return err;
1396}
v4.17
 
   1/*
   2 * Copyright (c) International Business Machines Corp., 2006
   3 * Copyright (c) Nokia Corporation, 2006, 2007
   4 *
   5 * This program is free software; you can redistribute it and/or modify
   6 * it under the terms of the GNU General Public License as published by
   7 * the Free Software Foundation; either version 2 of the License, or
   8 * (at your option) any later version.
   9 *
  10 * This program is distributed in the hope that it will be useful,
  11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
  13 * the GNU General Public License for more details.
  14 *
  15 * You should have received a copy of the GNU General Public License
  16 * along with this program; if not, write to the Free Software
  17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  18 *
  19 * Author: Artem Bityutskiy (Битюцкий Артём)
  20 */
  21
  22/*
  23 * UBI input/output sub-system.
  24 *
  25 * This sub-system provides a uniform way to work with all kinds of the
  26 * underlying MTD devices. It also implements handy functions for reading and
  27 * writing UBI headers.
  28 *
  29 * We are trying to have a paranoid mindset and not to trust to what we read
  30 * from the flash media in order to be more secure and robust. So this
  31 * sub-system validates every single header it reads from the flash media.
  32 *
  33 * Some words about how the eraseblock headers are stored.
  34 *
  35 * The erase counter header is always stored at offset zero. By default, the
  36 * VID header is stored after the EC header at the closest aligned offset
  37 * (i.e. aligned to the minimum I/O unit size). Data starts next to the VID
  38 * header at the closest aligned offset. But this default layout may be
  39 * changed. For example, for different reasons (e.g., optimization) UBI may be
  40 * asked to put the VID header at further offset, and even at an unaligned
  41 * offset. Of course, if the offset of the VID header is unaligned, UBI adds
  42 * proper padding in front of it. Data offset may also be changed but it has to
  43 * be aligned.
  44 *
  45 * About minimal I/O units. In general, UBI assumes flash device model where
  46 * there is only one minimal I/O unit size. E.g., in case of NOR flash it is 1,
  47 * in case of NAND flash it is a NAND page, etc. This is reported by MTD in the
  48 * @ubi->mtd->writesize field. But as an exception, UBI admits use of another
  49 * (smaller) minimal I/O unit size for EC and VID headers to make it possible
  50 * to do different optimizations.
  51 *
  52 * This is extremely useful in case of NAND flashes which admit of several
  53 * write operations to one NAND page. In this case UBI can fit EC and VID
  54 * headers at one NAND page. Thus, UBI may use "sub-page" size as the minimal
  55 * I/O unit for the headers (the @ubi->hdrs_min_io_size field). But it still
  56 * reports NAND page size (@ubi->min_io_size) as a minimal I/O unit for the UBI
  57 * users.
  58 *
  59 * Example: some Samsung NANDs with 2KiB pages allow 4x 512-byte writes, so
  60 * although the minimal I/O unit is 2K, UBI uses 512 bytes for EC and VID
  61 * headers.
  62 *
  63 * Q: why not just to treat sub-page as a minimal I/O unit of this flash
  64 * device, e.g., make @ubi->min_io_size = 512 in the example above?
  65 *
  66 * A: because when writing a sub-page, MTD still writes a full 2K page but the
  67 * bytes which are not relevant to the sub-page are 0xFF. So, basically,
  68 * writing 4x512 sub-pages is 4 times slower than writing one 2KiB NAND page.
  69 * Thus, we prefer to use sub-pages only for EC and VID headers.
  70 *
  71 * As it was noted above, the VID header may start at a non-aligned offset.
  72 * For example, in case of a 2KiB page NAND flash with a 512 bytes sub-page,
  73 * the VID header may reside at offset 1984 which is the last 64 bytes of the
  74 * last sub-page (EC header is always at offset zero). This causes some
  75 * difficulties when reading and writing VID headers.
  76 *
  77 * Suppose we have a 64-byte buffer and we read a VID header at it. We change
  78 * the data and want to write this VID header out. As we can only write in
  79 * 512-byte chunks, we have to allocate one more buffer and copy our VID header
  80 * to offset 448 of this buffer.
  81 *
  82 * The I/O sub-system does the following trick in order to avoid this extra
  83 * copy. It always allocates a @ubi->vid_hdr_alsize bytes buffer for the VID
  84 * header and returns a pointer to offset @ubi->vid_hdr_shift of this buffer.
  85 * When the VID header is being written out, it shifts the VID header pointer
  86 * back and writes the whole sub-page.
  87 */
  88
  89#include <linux/crc32.h>
  90#include <linux/err.h>
  91#include <linux/slab.h>
  92#include "ubi.h"
  93
  94static int self_check_not_bad(const struct ubi_device *ubi, int pnum);
  95static int self_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum);
  96static int self_check_ec_hdr(const struct ubi_device *ubi, int pnum,
  97			     const struct ubi_ec_hdr *ec_hdr);
  98static int self_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum);
  99static int self_check_vid_hdr(const struct ubi_device *ubi, int pnum,
 100			      const struct ubi_vid_hdr *vid_hdr);
 101static int self_check_write(struct ubi_device *ubi, const void *buf, int pnum,
 102			    int offset, int len);
 103
 104/**
 105 * ubi_io_read - read data from a physical eraseblock.
 106 * @ubi: UBI device description object
 107 * @buf: buffer where to store the read data
 108 * @pnum: physical eraseblock number to read from
 109 * @offset: offset within the physical eraseblock from where to read
 110 * @len: how many bytes to read
 111 *
 112 * This function reads data from offset @offset of physical eraseblock @pnum
 113 * and stores the read data in the @buf buffer. The following return codes are
 114 * possible:
 115 *
 116 * o %0 if all the requested data were successfully read;
 117 * o %UBI_IO_BITFLIPS if all the requested data were successfully read, but
 118 *   correctable bit-flips were detected; this is harmless but may indicate
 119 *   that this eraseblock may become bad soon (but do not have to);
 120 * o %-EBADMSG if the MTD subsystem reported about data integrity problems, for
 121 *   example it can be an ECC error in case of NAND; this most probably means
 122 *   that the data is corrupted;
 123 * o %-EIO if some I/O error occurred;
 124 * o other negative error codes in case of other errors.
 125 */
 126int ubi_io_read(const struct ubi_device *ubi, void *buf, int pnum, int offset,
 127		int len)
 128{
 129	int err, retries = 0;
 130	size_t read;
 131	loff_t addr;
 132
 133	dbg_io("read %d bytes from PEB %d:%d", len, pnum, offset);
 134
 135	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
 136	ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
 137	ubi_assert(len > 0);
 138
 139	err = self_check_not_bad(ubi, pnum);
 140	if (err)
 141		return err;
 142
 143	/*
 144	 * Deliberately corrupt the buffer to improve robustness. Indeed, if we
 145	 * do not do this, the following may happen:
 146	 * 1. The buffer contains data from previous operation, e.g., read from
 147	 *    another PEB previously. The data looks like expected, e.g., if we
 148	 *    just do not read anything and return - the caller would not
 149	 *    notice this. E.g., if we are reading a VID header, the buffer may
 150	 *    contain a valid VID header from another PEB.
 151	 * 2. The driver is buggy and returns us success or -EBADMSG or
 152	 *    -EUCLEAN, but it does not actually put any data to the buffer.
 153	 *
 154	 * This may confuse UBI or upper layers - they may think the buffer
 155	 * contains valid data while in fact it is just old data. This is
 156	 * especially possible because UBI (and UBIFS) relies on CRC, and
 157	 * treats data as correct even in case of ECC errors if the CRC is
 158	 * correct.
 159	 *
 160	 * Try to prevent this situation by changing the first byte of the
 161	 * buffer.
 162	 */
 163	*((uint8_t *)buf) ^= 0xFF;
 164
 165	addr = (loff_t)pnum * ubi->peb_size + offset;
 166retry:
 167	err = mtd_read(ubi->mtd, addr, len, &read, buf);
 168	if (err) {
 169		const char *errstr = mtd_is_eccerr(err) ? " (ECC error)" : "";
 170
 171		if (mtd_is_bitflip(err)) {
 172			/*
 173			 * -EUCLEAN is reported if there was a bit-flip which
 174			 * was corrected, so this is harmless.
 175			 *
 176			 * We do not report about it here unless debugging is
 177			 * enabled. A corresponding message will be printed
 178			 * later, when it is has been scrubbed.
 179			 */
 180			ubi_msg(ubi, "fixable bit-flip detected at PEB %d",
 181				pnum);
 182			ubi_assert(len == read);
 183			return UBI_IO_BITFLIPS;
 184		}
 185
 186		if (retries++ < UBI_IO_RETRIES) {
 187			ubi_warn(ubi, "error %d%s while reading %d bytes from PEB %d:%d, read only %zd bytes, retry",
 188				 err, errstr, len, pnum, offset, read);
 189			yield();
 190			goto retry;
 191		}
 192
 193		ubi_err(ubi, "error %d%s while reading %d bytes from PEB %d:%d, read %zd bytes",
 194			err, errstr, len, pnum, offset, read);
 195		dump_stack();
 196
 197		/*
 198		 * The driver should never return -EBADMSG if it failed to read
 199		 * all the requested data. But some buggy drivers might do
 200		 * this, so we change it to -EIO.
 201		 */
 202		if (read != len && mtd_is_eccerr(err)) {
 203			ubi_assert(0);
 204			err = -EIO;
 205		}
 206	} else {
 207		ubi_assert(len == read);
 208
 209		if (ubi_dbg_is_bitflip(ubi)) {
 210			dbg_gen("bit-flip (emulated)");
 211			err = UBI_IO_BITFLIPS;
 212		}
 213	}
 214
 215	return err;
 216}
 217
 218/**
 219 * ubi_io_write - write data to a physical eraseblock.
 220 * @ubi: UBI device description object
 221 * @buf: buffer with the data to write
 222 * @pnum: physical eraseblock number to write to
 223 * @offset: offset within the physical eraseblock where to write
 224 * @len: how many bytes to write
 225 *
 226 * This function writes @len bytes of data from buffer @buf to offset @offset
 227 * of physical eraseblock @pnum. If all the data were successfully written,
 228 * zero is returned. If an error occurred, this function returns a negative
 229 * error code. If %-EIO is returned, the physical eraseblock most probably went
 230 * bad.
 231 *
 232 * Note, in case of an error, it is possible that something was still written
 233 * to the flash media, but may be some garbage.
 234 */
 235int ubi_io_write(struct ubi_device *ubi, const void *buf, int pnum, int offset,
 236		 int len)
 237{
 238	int err;
 239	size_t written;
 240	loff_t addr;
 241
 242	dbg_io("write %d bytes to PEB %d:%d", len, pnum, offset);
 243
 244	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
 245	ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
 246	ubi_assert(offset % ubi->hdrs_min_io_size == 0);
 247	ubi_assert(len > 0 && len % ubi->hdrs_min_io_size == 0);
 248
 249	if (ubi->ro_mode) {
 250		ubi_err(ubi, "read-only mode");
 251		return -EROFS;
 252	}
 253
 254	err = self_check_not_bad(ubi, pnum);
 255	if (err)
 256		return err;
 257
 258	/* The area we are writing to has to contain all 0xFF bytes */
 259	err = ubi_self_check_all_ff(ubi, pnum, offset, len);
 260	if (err)
 261		return err;
 262
 263	if (offset >= ubi->leb_start) {
 264		/*
 265		 * We write to the data area of the physical eraseblock. Make
 266		 * sure it has valid EC and VID headers.
 267		 */
 268		err = self_check_peb_ec_hdr(ubi, pnum);
 269		if (err)
 270			return err;
 271		err = self_check_peb_vid_hdr(ubi, pnum);
 272		if (err)
 273			return err;
 274	}
 275
 276	if (ubi_dbg_is_write_failure(ubi)) {
 277		ubi_err(ubi, "cannot write %d bytes to PEB %d:%d (emulated)",
 278			len, pnum, offset);
 279		dump_stack();
 280		return -EIO;
 281	}
 282
 283	addr = (loff_t)pnum * ubi->peb_size + offset;
 284	err = mtd_write(ubi->mtd, addr, len, &written, buf);
 285	if (err) {
 286		ubi_err(ubi, "error %d while writing %d bytes to PEB %d:%d, written %zd bytes",
 287			err, len, pnum, offset, written);
 288		dump_stack();
 289		ubi_dump_flash(ubi, pnum, offset, len);
 290	} else
 291		ubi_assert(written == len);
 292
 293	if (!err) {
 294		err = self_check_write(ubi, buf, pnum, offset, len);
 295		if (err)
 296			return err;
 297
 298		/*
 299		 * Since we always write sequentially, the rest of the PEB has
 300		 * to contain only 0xFF bytes.
 301		 */
 302		offset += len;
 303		len = ubi->peb_size - offset;
 304		if (len)
 305			err = ubi_self_check_all_ff(ubi, pnum, offset, len);
 306	}
 307
 308	return err;
 309}
 310
 311/**
 312 * do_sync_erase - synchronously erase a physical eraseblock.
 313 * @ubi: UBI device description object
 314 * @pnum: the physical eraseblock number to erase
 315 *
 316 * This function synchronously erases physical eraseblock @pnum and returns
 317 * zero in case of success and a negative error code in case of failure. If
 318 * %-EIO is returned, the physical eraseblock most probably went bad.
 319 */
 320static int do_sync_erase(struct ubi_device *ubi, int pnum)
 321{
 322	int err, retries = 0;
 323	struct erase_info ei;
 324
 325	dbg_io("erase PEB %d", pnum);
 326	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
 327
 328	if (ubi->ro_mode) {
 329		ubi_err(ubi, "read-only mode");
 330		return -EROFS;
 331	}
 332
 333retry:
 334	memset(&ei, 0, sizeof(struct erase_info));
 335
 336	ei.addr     = (loff_t)pnum * ubi->peb_size;
 337	ei.len      = ubi->peb_size;
 338
 339	err = mtd_erase(ubi->mtd, &ei);
 340	if (err) {
 341		if (retries++ < UBI_IO_RETRIES) {
 342			ubi_warn(ubi, "error %d while erasing PEB %d, retry",
 343				 err, pnum);
 344			yield();
 345			goto retry;
 346		}
 347		ubi_err(ubi, "cannot erase PEB %d, error %d", pnum, err);
 348		dump_stack();
 349		return err;
 350	}
 351
 352	err = ubi_self_check_all_ff(ubi, pnum, 0, ubi->peb_size);
 353	if (err)
 354		return err;
 355
 356	if (ubi_dbg_is_erase_failure(ubi)) {
 357		ubi_err(ubi, "cannot erase PEB %d (emulated)", pnum);
 358		return -EIO;
 359	}
 360
 361	return 0;
 362}
 363
 364/* Patterns to write to a physical eraseblock when torturing it */
 365static uint8_t patterns[] = {0xa5, 0x5a, 0x0};
 366
 367/**
 368 * torture_peb - test a supposedly bad physical eraseblock.
 369 * @ubi: UBI device description object
 370 * @pnum: the physical eraseblock number to test
 371 *
 372 * This function returns %-EIO if the physical eraseblock did not pass the
 373 * test, a positive number of erase operations done if the test was
 374 * successfully passed, and other negative error codes in case of other errors.
 375 */
 376static int torture_peb(struct ubi_device *ubi, int pnum)
 377{
 378	int err, i, patt_count;
 379
 380	ubi_msg(ubi, "run torture test for PEB %d", pnum);
 381	patt_count = ARRAY_SIZE(patterns);
 382	ubi_assert(patt_count > 0);
 383
 384	mutex_lock(&ubi->buf_mutex);
 385	for (i = 0; i < patt_count; i++) {
 386		err = do_sync_erase(ubi, pnum);
 387		if (err)
 388			goto out;
 389
 390		/* Make sure the PEB contains only 0xFF bytes */
 391		err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size);
 392		if (err)
 393			goto out;
 394
 395		err = ubi_check_pattern(ubi->peb_buf, 0xFF, ubi->peb_size);
 396		if (err == 0) {
 397			ubi_err(ubi, "erased PEB %d, but a non-0xFF byte found",
 398				pnum);
 399			err = -EIO;
 400			goto out;
 401		}
 402
 403		/* Write a pattern and check it */
 404		memset(ubi->peb_buf, patterns[i], ubi->peb_size);
 405		err = ubi_io_write(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size);
 406		if (err)
 407			goto out;
 408
 409		memset(ubi->peb_buf, ~patterns[i], ubi->peb_size);
 410		err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size);
 411		if (err)
 412			goto out;
 413
 414		err = ubi_check_pattern(ubi->peb_buf, patterns[i],
 415					ubi->peb_size);
 416		if (err == 0) {
 417			ubi_err(ubi, "pattern %x checking failed for PEB %d",
 418				patterns[i], pnum);
 419			err = -EIO;
 420			goto out;
 421		}
 422	}
 423
 424	err = patt_count;
 425	ubi_msg(ubi, "PEB %d passed torture test, do not mark it as bad", pnum);
 426
 427out:
 428	mutex_unlock(&ubi->buf_mutex);
 429	if (err == UBI_IO_BITFLIPS || mtd_is_eccerr(err)) {
 430		/*
 431		 * If a bit-flip or data integrity error was detected, the test
 432		 * has not passed because it happened on a freshly erased
 433		 * physical eraseblock which means something is wrong with it.
 434		 */
 435		ubi_err(ubi, "read problems on freshly erased PEB %d, must be bad",
 436			pnum);
 437		err = -EIO;
 438	}
 439	return err;
 440}
 441
 442/**
 443 * nor_erase_prepare - prepare a NOR flash PEB for erasure.
 444 * @ubi: UBI device description object
 445 * @pnum: physical eraseblock number to prepare
 446 *
 447 * NOR flash, or at least some of them, have peculiar embedded PEB erasure
 448 * algorithm: the PEB is first filled with zeroes, then it is erased. And
 449 * filling with zeroes starts from the end of the PEB. This was observed with
 450 * Spansion S29GL512N NOR flash.
 451 *
 452 * This means that in case of a power cut we may end up with intact data at the
 453 * beginning of the PEB, and all zeroes at the end of PEB. In other words, the
 454 * EC and VID headers are OK, but a large chunk of data at the end of PEB is
 455 * zeroed. This makes UBI mistakenly treat this PEB as used and associate it
 456 * with an LEB, which leads to subsequent failures (e.g., UBIFS fails).
 457 *
 458 * This function is called before erasing NOR PEBs and it zeroes out EC and VID
 459 * magic numbers in order to invalidate them and prevent the failures. Returns
 460 * zero in case of success and a negative error code in case of failure.
 461 */
 462static int nor_erase_prepare(struct ubi_device *ubi, int pnum)
 463{
 464	int err;
 465	size_t written;
 466	loff_t addr;
 467	uint32_t data = 0;
 468	struct ubi_ec_hdr ec_hdr;
 469	struct ubi_vid_io_buf vidb;
 470
 471	/*
 472	 * Note, we cannot generally define VID header buffers on stack,
 473	 * because of the way we deal with these buffers (see the header
 474	 * comment in this file). But we know this is a NOR-specific piece of
 475	 * code, so we can do this. But yes, this is error-prone and we should
 476	 * (pre-)allocate VID header buffer instead.
 477	 */
 478	struct ubi_vid_hdr vid_hdr;
 479
 480	/*
 481	 * If VID or EC is valid, we have to corrupt them before erasing.
 482	 * It is important to first invalidate the EC header, and then the VID
 483	 * header. Otherwise a power cut may lead to valid EC header and
 484	 * invalid VID header, in which case UBI will treat this PEB as
 485	 * corrupted and will try to preserve it, and print scary warnings.
 486	 */
 487	addr = (loff_t)pnum * ubi->peb_size;
 488	err = ubi_io_read_ec_hdr(ubi, pnum, &ec_hdr, 0);
 489	if (err != UBI_IO_BAD_HDR_EBADMSG && err != UBI_IO_BAD_HDR &&
 490	    err != UBI_IO_FF){
 491		err = mtd_write(ubi->mtd, addr, 4, &written, (void *)&data);
 492		if(err)
 493			goto error;
 494	}
 495
 496	ubi_init_vid_buf(ubi, &vidb, &vid_hdr);
 497	ubi_assert(&vid_hdr == ubi_get_vid_hdr(&vidb));
 498
 499	err = ubi_io_read_vid_hdr(ubi, pnum, &vidb, 0);
 500	if (err != UBI_IO_BAD_HDR_EBADMSG && err != UBI_IO_BAD_HDR &&
 501	    err != UBI_IO_FF){
 502		addr += ubi->vid_hdr_aloffset;
 503		err = mtd_write(ubi->mtd, addr, 4, &written, (void *)&data);
 504		if (err)
 505			goto error;
 506	}
 507	return 0;
 508
 509error:
 510	/*
 511	 * The PEB contains a valid VID or EC header, but we cannot invalidate
 512	 * it. Supposedly the flash media or the driver is screwed up, so
 513	 * return an error.
 514	 */
 515	ubi_err(ubi, "cannot invalidate PEB %d, write returned %d", pnum, err);
 516	ubi_dump_flash(ubi, pnum, 0, ubi->peb_size);
 517	return -EIO;
 518}
 519
 520/**
 521 * ubi_io_sync_erase - synchronously erase a physical eraseblock.
 522 * @ubi: UBI device description object
 523 * @pnum: physical eraseblock number to erase
 524 * @torture: if this physical eraseblock has to be tortured
 525 *
 526 * This function synchronously erases physical eraseblock @pnum. If @torture
 527 * flag is not zero, the physical eraseblock is checked by means of writing
 528 * different patterns to it and reading them back. If the torturing is enabled,
 529 * the physical eraseblock is erased more than once.
 530 *
 531 * This function returns the number of erasures made in case of success, %-EIO
 532 * if the erasure failed or the torturing test failed, and other negative error
 533 * codes in case of other errors. Note, %-EIO means that the physical
 534 * eraseblock is bad.
 535 */
 536int ubi_io_sync_erase(struct ubi_device *ubi, int pnum, int torture)
 537{
 538	int err, ret = 0;
 539
 540	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
 541
 542	err = self_check_not_bad(ubi, pnum);
 543	if (err != 0)
 544		return err;
 545
 546	if (ubi->ro_mode) {
 547		ubi_err(ubi, "read-only mode");
 548		return -EROFS;
 549	}
 550
 551	if (ubi->nor_flash) {
 552		err = nor_erase_prepare(ubi, pnum);
 553		if (err)
 554			return err;
 555	}
 556
 557	if (torture) {
 558		ret = torture_peb(ubi, pnum);
 559		if (ret < 0)
 560			return ret;
 561	}
 562
 563	err = do_sync_erase(ubi, pnum);
 564	if (err)
 565		return err;
 566
 567	return ret + 1;
 568}
 569
 570/**
 571 * ubi_io_is_bad - check if a physical eraseblock is bad.
 572 * @ubi: UBI device description object
 573 * @pnum: the physical eraseblock number to check
 574 *
 575 * This function returns a positive number if the physical eraseblock is bad,
 576 * zero if not, and a negative error code if an error occurred.
 577 */
 578int ubi_io_is_bad(const struct ubi_device *ubi, int pnum)
 579{
 580	struct mtd_info *mtd = ubi->mtd;
 581
 582	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
 583
 584	if (ubi->bad_allowed) {
 585		int ret;
 586
 587		ret = mtd_block_isbad(mtd, (loff_t)pnum * ubi->peb_size);
 588		if (ret < 0)
 589			ubi_err(ubi, "error %d while checking if PEB %d is bad",
 590				ret, pnum);
 591		else if (ret)
 592			dbg_io("PEB %d is bad", pnum);
 593		return ret;
 594	}
 595
 596	return 0;
 597}
 598
 599/**
 600 * ubi_io_mark_bad - mark a physical eraseblock as bad.
 601 * @ubi: UBI device description object
 602 * @pnum: the physical eraseblock number to mark
 603 *
 604 * This function returns zero in case of success and a negative error code in
 605 * case of failure.
 606 */
 607int ubi_io_mark_bad(const struct ubi_device *ubi, int pnum)
 608{
 609	int err;
 610	struct mtd_info *mtd = ubi->mtd;
 611
 612	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
 613
 614	if (ubi->ro_mode) {
 615		ubi_err(ubi, "read-only mode");
 616		return -EROFS;
 617	}
 618
 619	if (!ubi->bad_allowed)
 620		return 0;
 621
 622	err = mtd_block_markbad(mtd, (loff_t)pnum * ubi->peb_size);
 623	if (err)
 624		ubi_err(ubi, "cannot mark PEB %d bad, error %d", pnum, err);
 625	return err;
 626}
 627
 628/**
 629 * validate_ec_hdr - validate an erase counter header.
 630 * @ubi: UBI device description object
 631 * @ec_hdr: the erase counter header to check
 632 *
 633 * This function returns zero if the erase counter header is OK, and %1 if
 634 * not.
 635 */
 636static int validate_ec_hdr(const struct ubi_device *ubi,
 637			   const struct ubi_ec_hdr *ec_hdr)
 638{
 639	long long ec;
 640	int vid_hdr_offset, leb_start;
 641
 642	ec = be64_to_cpu(ec_hdr->ec);
 643	vid_hdr_offset = be32_to_cpu(ec_hdr->vid_hdr_offset);
 644	leb_start = be32_to_cpu(ec_hdr->data_offset);
 645
 646	if (ec_hdr->version != UBI_VERSION) {
 647		ubi_err(ubi, "node with incompatible UBI version found: this UBI version is %d, image version is %d",
 648			UBI_VERSION, (int)ec_hdr->version);
 649		goto bad;
 650	}
 651
 652	if (vid_hdr_offset != ubi->vid_hdr_offset) {
 653		ubi_err(ubi, "bad VID header offset %d, expected %d",
 654			vid_hdr_offset, ubi->vid_hdr_offset);
 655		goto bad;
 656	}
 657
 658	if (leb_start != ubi->leb_start) {
 659		ubi_err(ubi, "bad data offset %d, expected %d",
 660			leb_start, ubi->leb_start);
 661		goto bad;
 662	}
 663
 664	if (ec < 0 || ec > UBI_MAX_ERASECOUNTER) {
 665		ubi_err(ubi, "bad erase counter %lld", ec);
 666		goto bad;
 667	}
 668
 669	return 0;
 670
 671bad:
 672	ubi_err(ubi, "bad EC header");
 673	ubi_dump_ec_hdr(ec_hdr);
 674	dump_stack();
 675	return 1;
 676}
 677
 678/**
 679 * ubi_io_read_ec_hdr - read and check an erase counter header.
 680 * @ubi: UBI device description object
 681 * @pnum: physical eraseblock to read from
 682 * @ec_hdr: a &struct ubi_ec_hdr object where to store the read erase counter
 683 * header
 684 * @verbose: be verbose if the header is corrupted or was not found
 685 *
 686 * This function reads erase counter header from physical eraseblock @pnum and
 687 * stores it in @ec_hdr. This function also checks CRC checksum of the read
 688 * erase counter header. The following codes may be returned:
 689 *
 690 * o %0 if the CRC checksum is correct and the header was successfully read;
 691 * o %UBI_IO_BITFLIPS if the CRC is correct, but bit-flips were detected
 692 *   and corrected by the flash driver; this is harmless but may indicate that
 693 *   this eraseblock may become bad soon (but may be not);
 694 * o %UBI_IO_BAD_HDR if the erase counter header is corrupted (a CRC error);
 695 * o %UBI_IO_BAD_HDR_EBADMSG is the same as %UBI_IO_BAD_HDR, but there also was
 696 *   a data integrity error (uncorrectable ECC error in case of NAND);
 697 * o %UBI_IO_FF if only 0xFF bytes were read (the PEB is supposedly empty)
 698 * o a negative error code in case of failure.
 699 */
 700int ubi_io_read_ec_hdr(struct ubi_device *ubi, int pnum,
 701		       struct ubi_ec_hdr *ec_hdr, int verbose)
 702{
 703	int err, read_err;
 704	uint32_t crc, magic, hdr_crc;
 705
 706	dbg_io("read EC header from PEB %d", pnum);
 707	ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
 708
 709	read_err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE);
 710	if (read_err) {
 711		if (read_err != UBI_IO_BITFLIPS && !mtd_is_eccerr(read_err))
 712			return read_err;
 713
 714		/*
 715		 * We read all the data, but either a correctable bit-flip
 716		 * occurred, or MTD reported a data integrity error
 717		 * (uncorrectable ECC error in case of NAND). The former is
 718		 * harmless, the later may mean that the read data is
 719		 * corrupted. But we have a CRC check-sum and we will detect
 720		 * this. If the EC header is still OK, we just report this as
 721		 * there was a bit-flip, to force scrubbing.
 722		 */
 723	}
 724
 725	magic = be32_to_cpu(ec_hdr->magic);
 726	if (magic != UBI_EC_HDR_MAGIC) {
 727		if (mtd_is_eccerr(read_err))
 728			return UBI_IO_BAD_HDR_EBADMSG;
 729
 730		/*
 731		 * The magic field is wrong. Let's check if we have read all
 732		 * 0xFF. If yes, this physical eraseblock is assumed to be
 733		 * empty.
 734		 */
 735		if (ubi_check_pattern(ec_hdr, 0xFF, UBI_EC_HDR_SIZE)) {
 736			/* The physical eraseblock is supposedly empty */
 737			if (verbose)
 738				ubi_warn(ubi, "no EC header found at PEB %d, only 0xFF bytes",
 739					 pnum);
 740			dbg_bld("no EC header found at PEB %d, only 0xFF bytes",
 741				pnum);
 742			if (!read_err)
 743				return UBI_IO_FF;
 744			else
 745				return UBI_IO_FF_BITFLIPS;
 746		}
 747
 748		/*
 749		 * This is not a valid erase counter header, and these are not
 750		 * 0xFF bytes. Report that the header is corrupted.
 751		 */
 752		if (verbose) {
 753			ubi_warn(ubi, "bad magic number at PEB %d: %08x instead of %08x",
 754				 pnum, magic, UBI_EC_HDR_MAGIC);
 755			ubi_dump_ec_hdr(ec_hdr);
 756		}
 757		dbg_bld("bad magic number at PEB %d: %08x instead of %08x",
 758			pnum, magic, UBI_EC_HDR_MAGIC);
 759		return UBI_IO_BAD_HDR;
 760	}
 761
 762	crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
 763	hdr_crc = be32_to_cpu(ec_hdr->hdr_crc);
 764
 765	if (hdr_crc != crc) {
 766		if (verbose) {
 767			ubi_warn(ubi, "bad EC header CRC at PEB %d, calculated %#08x, read %#08x",
 768				 pnum, crc, hdr_crc);
 769			ubi_dump_ec_hdr(ec_hdr);
 770		}
 771		dbg_bld("bad EC header CRC at PEB %d, calculated %#08x, read %#08x",
 772			pnum, crc, hdr_crc);
 773
 774		if (!read_err)
 775			return UBI_IO_BAD_HDR;
 776		else
 777			return UBI_IO_BAD_HDR_EBADMSG;
 778	}
 779
 780	/* And of course validate what has just been read from the media */
 781	err = validate_ec_hdr(ubi, ec_hdr);
 782	if (err) {
 783		ubi_err(ubi, "validation failed for PEB %d", pnum);
 784		return -EINVAL;
 785	}
 786
 787	/*
 788	 * If there was %-EBADMSG, but the header CRC is still OK, report about
 789	 * a bit-flip to force scrubbing on this PEB.
 790	 */
 791	return read_err ? UBI_IO_BITFLIPS : 0;
 792}
 793
 794/**
 795 * ubi_io_write_ec_hdr - write an erase counter header.
 796 * @ubi: UBI device description object
 797 * @pnum: physical eraseblock to write to
 798 * @ec_hdr: the erase counter header to write
 799 *
 800 * This function writes erase counter header described by @ec_hdr to physical
 801 * eraseblock @pnum. It also fills most fields of @ec_hdr before writing, so
 802 * the caller do not have to fill them. Callers must only fill the @ec_hdr->ec
 803 * field.
 804 *
 805 * This function returns zero in case of success and a negative error code in
 806 * case of failure. If %-EIO is returned, the physical eraseblock most probably
 807 * went bad.
 808 */
 809int ubi_io_write_ec_hdr(struct ubi_device *ubi, int pnum,
 810			struct ubi_ec_hdr *ec_hdr)
 811{
 812	int err;
 813	uint32_t crc;
 814
 815	dbg_io("write EC header to PEB %d", pnum);
 816	ubi_assert(pnum >= 0 &&  pnum < ubi->peb_count);
 817
 818	ec_hdr->magic = cpu_to_be32(UBI_EC_HDR_MAGIC);
 819	ec_hdr->version = UBI_VERSION;
 820	ec_hdr->vid_hdr_offset = cpu_to_be32(ubi->vid_hdr_offset);
 821	ec_hdr->data_offset = cpu_to_be32(ubi->leb_start);
 822	ec_hdr->image_seq = cpu_to_be32(ubi->image_seq);
 823	crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
 824	ec_hdr->hdr_crc = cpu_to_be32(crc);
 825
 826	err = self_check_ec_hdr(ubi, pnum, ec_hdr);
 827	if (err)
 828		return err;
 829
 830	if (ubi_dbg_power_cut(ubi, POWER_CUT_EC_WRITE))
 831		return -EROFS;
 832
 833	err = ubi_io_write(ubi, ec_hdr, pnum, 0, ubi->ec_hdr_alsize);
 834	return err;
 835}
 836
 837/**
 838 * validate_vid_hdr - validate a volume identifier header.
 839 * @ubi: UBI device description object
 840 * @vid_hdr: the volume identifier header to check
 841 *
 842 * This function checks that data stored in the volume identifier header
 843 * @vid_hdr. Returns zero if the VID header is OK and %1 if not.
 844 */
 845static int validate_vid_hdr(const struct ubi_device *ubi,
 846			    const struct ubi_vid_hdr *vid_hdr)
 847{
 848	int vol_type = vid_hdr->vol_type;
 849	int copy_flag = vid_hdr->copy_flag;
 850	int vol_id = be32_to_cpu(vid_hdr->vol_id);
 851	int lnum = be32_to_cpu(vid_hdr->lnum);
 852	int compat = vid_hdr->compat;
 853	int data_size = be32_to_cpu(vid_hdr->data_size);
 854	int used_ebs = be32_to_cpu(vid_hdr->used_ebs);
 855	int data_pad = be32_to_cpu(vid_hdr->data_pad);
 856	int data_crc = be32_to_cpu(vid_hdr->data_crc);
 857	int usable_leb_size = ubi->leb_size - data_pad;
 858
 859	if (copy_flag != 0 && copy_flag != 1) {
 860		ubi_err(ubi, "bad copy_flag");
 861		goto bad;
 862	}
 863
 864	if (vol_id < 0 || lnum < 0 || data_size < 0 || used_ebs < 0 ||
 865	    data_pad < 0) {
 866		ubi_err(ubi, "negative values");
 867		goto bad;
 868	}
 869
 870	if (vol_id >= UBI_MAX_VOLUMES && vol_id < UBI_INTERNAL_VOL_START) {
 871		ubi_err(ubi, "bad vol_id");
 872		goto bad;
 873	}
 874
 875	if (vol_id < UBI_INTERNAL_VOL_START && compat != 0) {
 876		ubi_err(ubi, "bad compat");
 877		goto bad;
 878	}
 879
 880	if (vol_id >= UBI_INTERNAL_VOL_START && compat != UBI_COMPAT_DELETE &&
 881	    compat != UBI_COMPAT_RO && compat != UBI_COMPAT_PRESERVE &&
 882	    compat != UBI_COMPAT_REJECT) {
 883		ubi_err(ubi, "bad compat");
 884		goto bad;
 885	}
 886
 887	if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) {
 888		ubi_err(ubi, "bad vol_type");
 889		goto bad;
 890	}
 891
 892	if (data_pad >= ubi->leb_size / 2) {
 893		ubi_err(ubi, "bad data_pad");
 894		goto bad;
 895	}
 896
 897	if (data_size > ubi->leb_size) {
 898		ubi_err(ubi, "bad data_size");
 899		goto bad;
 900	}
 901
 902	if (vol_type == UBI_VID_STATIC) {
 903		/*
 904		 * Although from high-level point of view static volumes may
 905		 * contain zero bytes of data, but no VID headers can contain
 906		 * zero at these fields, because they empty volumes do not have
 907		 * mapped logical eraseblocks.
 908		 */
 909		if (used_ebs == 0) {
 910			ubi_err(ubi, "zero used_ebs");
 911			goto bad;
 912		}
 913		if (data_size == 0) {
 914			ubi_err(ubi, "zero data_size");
 915			goto bad;
 916		}
 917		if (lnum < used_ebs - 1) {
 918			if (data_size != usable_leb_size) {
 919				ubi_err(ubi, "bad data_size");
 920				goto bad;
 921			}
 922		} else if (lnum == used_ebs - 1) {
 923			if (data_size == 0) {
 924				ubi_err(ubi, "bad data_size at last LEB");
 925				goto bad;
 926			}
 927		} else {
 928			ubi_err(ubi, "too high lnum");
 929			goto bad;
 930		}
 931	} else {
 932		if (copy_flag == 0) {
 933			if (data_crc != 0) {
 934				ubi_err(ubi, "non-zero data CRC");
 935				goto bad;
 936			}
 937			if (data_size != 0) {
 938				ubi_err(ubi, "non-zero data_size");
 939				goto bad;
 940			}
 941		} else {
 942			if (data_size == 0) {
 943				ubi_err(ubi, "zero data_size of copy");
 944				goto bad;
 945			}
 946		}
 947		if (used_ebs != 0) {
 948			ubi_err(ubi, "bad used_ebs");
 949			goto bad;
 950		}
 951	}
 952
 953	return 0;
 954
 955bad:
 956	ubi_err(ubi, "bad VID header");
 957	ubi_dump_vid_hdr(vid_hdr);
 958	dump_stack();
 959	return 1;
 960}
 961
 962/**
 963 * ubi_io_read_vid_hdr - read and check a volume identifier header.
 964 * @ubi: UBI device description object
 965 * @pnum: physical eraseblock number to read from
 966 * @vidb: the volume identifier buffer to store data in
 967 * @verbose: be verbose if the header is corrupted or wasn't found
 968 *
 969 * This function reads the volume identifier header from physical eraseblock
 970 * @pnum and stores it in @vidb. It also checks CRC checksum of the read
 971 * volume identifier header. The error codes are the same as in
 972 * 'ubi_io_read_ec_hdr()'.
 973 *
 974 * Note, the implementation of this function is also very similar to
 975 * 'ubi_io_read_ec_hdr()', so refer commentaries in 'ubi_io_read_ec_hdr()'.
 976 */
 977int ubi_io_read_vid_hdr(struct ubi_device *ubi, int pnum,
 978			struct ubi_vid_io_buf *vidb, int verbose)
 979{
 980	int err, read_err;
 981	uint32_t crc, magic, hdr_crc;
 982	struct ubi_vid_hdr *vid_hdr = ubi_get_vid_hdr(vidb);
 983	void *p = vidb->buffer;
 984
 985	dbg_io("read VID header from PEB %d", pnum);
 986	ubi_assert(pnum >= 0 &&  pnum < ubi->peb_count);
 987
 988	read_err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset,
 989			  ubi->vid_hdr_shift + UBI_VID_HDR_SIZE);
 990	if (read_err && read_err != UBI_IO_BITFLIPS && !mtd_is_eccerr(read_err))
 991		return read_err;
 992
 993	magic = be32_to_cpu(vid_hdr->magic);
 994	if (magic != UBI_VID_HDR_MAGIC) {
 995		if (mtd_is_eccerr(read_err))
 996			return UBI_IO_BAD_HDR_EBADMSG;
 997
 998		if (ubi_check_pattern(vid_hdr, 0xFF, UBI_VID_HDR_SIZE)) {
 999			if (verbose)
1000				ubi_warn(ubi, "no VID header found at PEB %d, only 0xFF bytes",
1001					 pnum);
1002			dbg_bld("no VID header found at PEB %d, only 0xFF bytes",
1003				pnum);
1004			if (!read_err)
1005				return UBI_IO_FF;
1006			else
1007				return UBI_IO_FF_BITFLIPS;
1008		}
1009
1010		if (verbose) {
1011			ubi_warn(ubi, "bad magic number at PEB %d: %08x instead of %08x",
1012				 pnum, magic, UBI_VID_HDR_MAGIC);
1013			ubi_dump_vid_hdr(vid_hdr);
1014		}
1015		dbg_bld("bad magic number at PEB %d: %08x instead of %08x",
1016			pnum, magic, UBI_VID_HDR_MAGIC);
1017		return UBI_IO_BAD_HDR;
1018	}
1019
1020	crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
1021	hdr_crc = be32_to_cpu(vid_hdr->hdr_crc);
1022
1023	if (hdr_crc != crc) {
1024		if (verbose) {
1025			ubi_warn(ubi, "bad CRC at PEB %d, calculated %#08x, read %#08x",
1026				 pnum, crc, hdr_crc);
1027			ubi_dump_vid_hdr(vid_hdr);
1028		}
1029		dbg_bld("bad CRC at PEB %d, calculated %#08x, read %#08x",
1030			pnum, crc, hdr_crc);
1031		if (!read_err)
1032			return UBI_IO_BAD_HDR;
1033		else
1034			return UBI_IO_BAD_HDR_EBADMSG;
1035	}
1036
1037	err = validate_vid_hdr(ubi, vid_hdr);
1038	if (err) {
1039		ubi_err(ubi, "validation failed for PEB %d", pnum);
1040		return -EINVAL;
1041	}
1042
1043	return read_err ? UBI_IO_BITFLIPS : 0;
1044}
1045
1046/**
1047 * ubi_io_write_vid_hdr - write a volume identifier header.
1048 * @ubi: UBI device description object
1049 * @pnum: the physical eraseblock number to write to
1050 * @vidb: the volume identifier buffer to write
1051 *
1052 * This function writes the volume identifier header described by @vid_hdr to
1053 * physical eraseblock @pnum. This function automatically fills the
1054 * @vidb->hdr->magic and the @vidb->hdr->version fields, as well as calculates
1055 * header CRC checksum and stores it at vidb->hdr->hdr_crc.
1056 *
1057 * This function returns zero in case of success and a negative error code in
1058 * case of failure. If %-EIO is returned, the physical eraseblock probably went
1059 * bad.
1060 */
1061int ubi_io_write_vid_hdr(struct ubi_device *ubi, int pnum,
1062			 struct ubi_vid_io_buf *vidb)
1063{
1064	struct ubi_vid_hdr *vid_hdr = ubi_get_vid_hdr(vidb);
1065	int err;
1066	uint32_t crc;
1067	void *p = vidb->buffer;
1068
1069	dbg_io("write VID header to PEB %d", pnum);
1070	ubi_assert(pnum >= 0 &&  pnum < ubi->peb_count);
1071
1072	err = self_check_peb_ec_hdr(ubi, pnum);
1073	if (err)
1074		return err;
1075
1076	vid_hdr->magic = cpu_to_be32(UBI_VID_HDR_MAGIC);
1077	vid_hdr->version = UBI_VERSION;
1078	crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
1079	vid_hdr->hdr_crc = cpu_to_be32(crc);
1080
1081	err = self_check_vid_hdr(ubi, pnum, vid_hdr);
1082	if (err)
1083		return err;
1084
1085	if (ubi_dbg_power_cut(ubi, POWER_CUT_VID_WRITE))
1086		return -EROFS;
1087
1088	err = ubi_io_write(ubi, p, pnum, ubi->vid_hdr_aloffset,
1089			   ubi->vid_hdr_alsize);
1090	return err;
1091}
1092
1093/**
1094 * self_check_not_bad - ensure that a physical eraseblock is not bad.
1095 * @ubi: UBI device description object
1096 * @pnum: physical eraseblock number to check
1097 *
1098 * This function returns zero if the physical eraseblock is good, %-EINVAL if
1099 * it is bad and a negative error code if an error occurred.
1100 */
1101static int self_check_not_bad(const struct ubi_device *ubi, int pnum)
1102{
1103	int err;
1104
1105	if (!ubi_dbg_chk_io(ubi))
1106		return 0;
1107
1108	err = ubi_io_is_bad(ubi, pnum);
1109	if (!err)
1110		return err;
1111
1112	ubi_err(ubi, "self-check failed for PEB %d", pnum);
1113	dump_stack();
1114	return err > 0 ? -EINVAL : err;
1115}
1116
1117/**
1118 * self_check_ec_hdr - check if an erase counter header is all right.
1119 * @ubi: UBI device description object
1120 * @pnum: physical eraseblock number the erase counter header belongs to
1121 * @ec_hdr: the erase counter header to check
1122 *
1123 * This function returns zero if the erase counter header contains valid
1124 * values, and %-EINVAL if not.
1125 */
1126static int self_check_ec_hdr(const struct ubi_device *ubi, int pnum,
1127			     const struct ubi_ec_hdr *ec_hdr)
1128{
1129	int err;
1130	uint32_t magic;
1131
1132	if (!ubi_dbg_chk_io(ubi))
1133		return 0;
1134
1135	magic = be32_to_cpu(ec_hdr->magic);
1136	if (magic != UBI_EC_HDR_MAGIC) {
1137		ubi_err(ubi, "bad magic %#08x, must be %#08x",
1138			magic, UBI_EC_HDR_MAGIC);
1139		goto fail;
1140	}
1141
1142	err = validate_ec_hdr(ubi, ec_hdr);
1143	if (err) {
1144		ubi_err(ubi, "self-check failed for PEB %d", pnum);
1145		goto fail;
1146	}
1147
1148	return 0;
1149
1150fail:
1151	ubi_dump_ec_hdr(ec_hdr);
1152	dump_stack();
1153	return -EINVAL;
1154}
1155
1156/**
1157 * self_check_peb_ec_hdr - check erase counter header.
1158 * @ubi: UBI device description object
1159 * @pnum: the physical eraseblock number to check
1160 *
1161 * This function returns zero if the erase counter header is all right and and
1162 * a negative error code if not or if an error occurred.
1163 */
1164static int self_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum)
1165{
1166	int err;
1167	uint32_t crc, hdr_crc;
1168	struct ubi_ec_hdr *ec_hdr;
1169
1170	if (!ubi_dbg_chk_io(ubi))
1171		return 0;
1172
1173	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
1174	if (!ec_hdr)
1175		return -ENOMEM;
1176
1177	err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE);
1178	if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err))
1179		goto exit;
1180
1181	crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
1182	hdr_crc = be32_to_cpu(ec_hdr->hdr_crc);
1183	if (hdr_crc != crc) {
1184		ubi_err(ubi, "bad CRC, calculated %#08x, read %#08x",
1185			crc, hdr_crc);
1186		ubi_err(ubi, "self-check failed for PEB %d", pnum);
1187		ubi_dump_ec_hdr(ec_hdr);
1188		dump_stack();
1189		err = -EINVAL;
1190		goto exit;
1191	}
1192
1193	err = self_check_ec_hdr(ubi, pnum, ec_hdr);
1194
1195exit:
1196	kfree(ec_hdr);
1197	return err;
1198}
1199
1200/**
1201 * self_check_vid_hdr - check that a volume identifier header is all right.
1202 * @ubi: UBI device description object
1203 * @pnum: physical eraseblock number the volume identifier header belongs to
1204 * @vid_hdr: the volume identifier header to check
1205 *
1206 * This function returns zero if the volume identifier header is all right, and
1207 * %-EINVAL if not.
1208 */
1209static int self_check_vid_hdr(const struct ubi_device *ubi, int pnum,
1210			      const struct ubi_vid_hdr *vid_hdr)
1211{
1212	int err;
1213	uint32_t magic;
1214
1215	if (!ubi_dbg_chk_io(ubi))
1216		return 0;
1217
1218	magic = be32_to_cpu(vid_hdr->magic);
1219	if (magic != UBI_VID_HDR_MAGIC) {
1220		ubi_err(ubi, "bad VID header magic %#08x at PEB %d, must be %#08x",
1221			magic, pnum, UBI_VID_HDR_MAGIC);
1222		goto fail;
1223	}
1224
1225	err = validate_vid_hdr(ubi, vid_hdr);
1226	if (err) {
1227		ubi_err(ubi, "self-check failed for PEB %d", pnum);
1228		goto fail;
1229	}
1230
1231	return err;
1232
1233fail:
1234	ubi_err(ubi, "self-check failed for PEB %d", pnum);
1235	ubi_dump_vid_hdr(vid_hdr);
1236	dump_stack();
1237	return -EINVAL;
1238
1239}
1240
1241/**
1242 * self_check_peb_vid_hdr - check volume identifier header.
1243 * @ubi: UBI device description object
1244 * @pnum: the physical eraseblock number to check
1245 *
1246 * This function returns zero if the volume identifier header is all right,
1247 * and a negative error code if not or if an error occurred.
1248 */
1249static int self_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum)
1250{
1251	int err;
1252	uint32_t crc, hdr_crc;
1253	struct ubi_vid_io_buf *vidb;
1254	struct ubi_vid_hdr *vid_hdr;
1255	void *p;
1256
1257	if (!ubi_dbg_chk_io(ubi))
1258		return 0;
1259
1260	vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS);
1261	if (!vidb)
1262		return -ENOMEM;
1263
1264	vid_hdr = ubi_get_vid_hdr(vidb);
1265	p = vidb->buffer;
1266	err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset,
1267			  ubi->vid_hdr_alsize);
1268	if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err))
1269		goto exit;
1270
1271	crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
1272	hdr_crc = be32_to_cpu(vid_hdr->hdr_crc);
1273	if (hdr_crc != crc) {
1274		ubi_err(ubi, "bad VID header CRC at PEB %d, calculated %#08x, read %#08x",
1275			pnum, crc, hdr_crc);
1276		ubi_err(ubi, "self-check failed for PEB %d", pnum);
1277		ubi_dump_vid_hdr(vid_hdr);
1278		dump_stack();
1279		err = -EINVAL;
1280		goto exit;
1281	}
1282
1283	err = self_check_vid_hdr(ubi, pnum, vid_hdr);
1284
1285exit:
1286	ubi_free_vid_buf(vidb);
1287	return err;
1288}
1289
1290/**
1291 * self_check_write - make sure write succeeded.
1292 * @ubi: UBI device description object
1293 * @buf: buffer with data which were written
1294 * @pnum: physical eraseblock number the data were written to
1295 * @offset: offset within the physical eraseblock the data were written to
1296 * @len: how many bytes were written
1297 *
1298 * This functions reads data which were recently written and compares it with
1299 * the original data buffer - the data have to match. Returns zero if the data
1300 * match and a negative error code if not or in case of failure.
1301 */
1302static int self_check_write(struct ubi_device *ubi, const void *buf, int pnum,
1303			    int offset, int len)
1304{
1305	int err, i;
1306	size_t read;
1307	void *buf1;
1308	loff_t addr = (loff_t)pnum * ubi->peb_size + offset;
1309
1310	if (!ubi_dbg_chk_io(ubi))
1311		return 0;
1312
1313	buf1 = __vmalloc(len, GFP_NOFS, PAGE_KERNEL);
1314	if (!buf1) {
1315		ubi_err(ubi, "cannot allocate memory to check writes");
1316		return 0;
1317	}
1318
1319	err = mtd_read(ubi->mtd, addr, len, &read, buf1);
1320	if (err && !mtd_is_bitflip(err))
1321		goto out_free;
1322
1323	for (i = 0; i < len; i++) {
1324		uint8_t c = ((uint8_t *)buf)[i];
1325		uint8_t c1 = ((uint8_t *)buf1)[i];
1326		int dump_len;
1327
1328		if (c == c1)
1329			continue;
1330
1331		ubi_err(ubi, "self-check failed for PEB %d:%d, len %d",
1332			pnum, offset, len);
1333		ubi_msg(ubi, "data differ at position %d", i);
1334		dump_len = max_t(int, 128, len - i);
1335		ubi_msg(ubi, "hex dump of the original buffer from %d to %d",
1336			i, i + dump_len);
1337		print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
1338			       buf + i, dump_len, 1);
1339		ubi_msg(ubi, "hex dump of the read buffer from %d to %d",
1340			i, i + dump_len);
1341		print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
1342			       buf1 + i, dump_len, 1);
1343		dump_stack();
1344		err = -EINVAL;
1345		goto out_free;
1346	}
1347
1348	vfree(buf1);
1349	return 0;
1350
1351out_free:
1352	vfree(buf1);
1353	return err;
1354}
1355
1356/**
1357 * ubi_self_check_all_ff - check that a region of flash is empty.
1358 * @ubi: UBI device description object
1359 * @pnum: the physical eraseblock number to check
1360 * @offset: the starting offset within the physical eraseblock to check
1361 * @len: the length of the region to check
1362 *
1363 * This function returns zero if only 0xFF bytes are present at offset
1364 * @offset of the physical eraseblock @pnum, and a negative error code if not
1365 * or if an error occurred.
1366 */
1367int ubi_self_check_all_ff(struct ubi_device *ubi, int pnum, int offset, int len)
1368{
1369	size_t read;
1370	int err;
1371	void *buf;
1372	loff_t addr = (loff_t)pnum * ubi->peb_size + offset;
1373
1374	if (!ubi_dbg_chk_io(ubi))
1375		return 0;
1376
1377	buf = __vmalloc(len, GFP_NOFS, PAGE_KERNEL);
1378	if (!buf) {
1379		ubi_err(ubi, "cannot allocate memory to check for 0xFFs");
1380		return 0;
1381	}
1382
1383	err = mtd_read(ubi->mtd, addr, len, &read, buf);
1384	if (err && !mtd_is_bitflip(err)) {
1385		ubi_err(ubi, "err %d while reading %d bytes from PEB %d:%d, read %zd bytes",
1386			err, len, pnum, offset, read);
1387		goto error;
1388	}
1389
1390	err = ubi_check_pattern(buf, 0xFF, len);
1391	if (err == 0) {
1392		ubi_err(ubi, "flash region at PEB %d:%d, length %d does not contain all 0xFF bytes",
1393			pnum, offset, len);
1394		goto fail;
1395	}
1396
1397	vfree(buf);
1398	return 0;
1399
1400fail:
1401	ubi_err(ubi, "self-check failed for PEB %d", pnum);
1402	ubi_msg(ubi, "hex dump of the %d-%d region", offset, offset + len);
1403	print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, buf, len, 1);
1404	err = -EINVAL;
1405error:
1406	dump_stack();
1407	vfree(buf);
1408	return err;
1409}