Linux Audio

Check our new training course

Loading...
v5.9
   1/*
   2 * Copyright © 2008-2015 Intel Corporation
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice (including the next
  12 * paragraph) shall be included in all copies or substantial portions of the
  13 * Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21 * IN THE SOFTWARE.
  22 *
  23 */
  24
  25#include <linux/dma-fence-array.h>
  26#include <linux/dma-fence-chain.h>
  27#include <linux/irq_work.h>
  28#include <linux/prefetch.h>
 
  29#include <linux/sched.h>
  30#include <linux/sched/clock.h>
  31#include <linux/sched/signal.h>
  32
  33#include "gem/i915_gem_context.h"
  34#include "gt/intel_context.h"
  35#include "gt/intel_ring.h"
  36#include "gt/intel_rps.h"
  37
  38#include "i915_active.h"
  39#include "i915_drv.h"
  40#include "i915_globals.h"
  41#include "i915_trace.h"
  42#include "intel_pm.h"
  43
  44struct execute_cb {
  45	struct irq_work work;
  46	struct i915_sw_fence *fence;
  47	void (*hook)(struct i915_request *rq, struct dma_fence *signal);
  48	struct i915_request *signal;
  49};
  50
  51static struct i915_global_request {
  52	struct i915_global base;
  53	struct kmem_cache *slab_requests;
  54	struct kmem_cache *slab_execute_cbs;
  55} global;
  56
  57static const char *i915_fence_get_driver_name(struct dma_fence *fence)
  58{
  59	return dev_name(to_request(fence)->engine->i915->drm.dev);
  60}
  61
  62static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
  63{
  64	const struct i915_gem_context *ctx;
  65
  66	/*
  67	 * The timeline struct (as part of the ppgtt underneath a context)
  68	 * may be freed when the request is no longer in use by the GPU.
  69	 * We could extend the life of a context to beyond that of all
  70	 * fences, possibly keeping the hw resource around indefinitely,
  71	 * or we just give them a false name. Since
  72	 * dma_fence_ops.get_timeline_name is a debug feature, the occasional
  73	 * lie seems justifiable.
  74	 */
  75	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
  76		return "signaled";
  77
  78	ctx = i915_request_gem_context(to_request(fence));
  79	if (!ctx)
  80		return "[" DRIVER_NAME "]";
  81
  82	return ctx->name;
  83}
  84
  85static bool i915_fence_signaled(struct dma_fence *fence)
  86{
  87	return i915_request_completed(to_request(fence));
  88}
  89
  90static bool i915_fence_enable_signaling(struct dma_fence *fence)
  91{
  92	return i915_request_enable_breadcrumb(to_request(fence));
 
 
 
 
  93}
  94
  95static signed long i915_fence_wait(struct dma_fence *fence,
  96				   bool interruptible,
  97				   signed long timeout)
  98{
  99	return i915_request_wait(to_request(fence),
 100				 interruptible | I915_WAIT_PRIORITY,
 101				 timeout);
 102}
 103
 104struct kmem_cache *i915_request_slab_cache(void)
 105{
 106	return global.slab_requests;
 107}
 108
 109static void i915_fence_release(struct dma_fence *fence)
 110{
 111	struct i915_request *rq = to_request(fence);
 112
 113	/*
 114	 * The request is put onto a RCU freelist (i.e. the address
 115	 * is immediately reused), mark the fences as being freed now.
 116	 * Otherwise the debugobjects for the fences are only marked as
 117	 * freed when the slab cache itself is freed, and so we would get
 118	 * caught trying to reuse dead objects.
 119	 */
 120	i915_sw_fence_fini(&rq->submit);
 121	i915_sw_fence_fini(&rq->semaphore);
 122
 123	/*
 124	 * Keep one request on each engine for reserved use under mempressure
 125	 *
 126	 * We do not hold a reference to the engine here and so have to be
 127	 * very careful in what rq->engine we poke. The virtual engine is
 128	 * referenced via the rq->context and we released that ref during
 129	 * i915_request_retire(), ergo we must not dereference a virtual
 130	 * engine here. Not that we would want to, as the only consumer of
 131	 * the reserved engine->request_pool is the power management parking,
 132	 * which must-not-fail, and that is only run on the physical engines.
 133	 *
 134	 * Since the request must have been executed to be have completed,
 135	 * we know that it will have been processed by the HW and will
 136	 * not be unsubmitted again, so rq->engine and rq->execution_mask
 137	 * at this point is stable. rq->execution_mask will be a single
 138	 * bit if the last and _only_ engine it could execution on was a
 139	 * physical engine, if it's multiple bits then it started on and
 140	 * could still be on a virtual engine. Thus if the mask is not a
 141	 * power-of-two we assume that rq->engine may still be a virtual
 142	 * engine and so a dangling invalid pointer that we cannot dereference
 143	 *
 144	 * For example, consider the flow of a bonded request through a virtual
 145	 * engine. The request is created with a wide engine mask (all engines
 146	 * that we might execute on). On processing the bond, the request mask
 147	 * is reduced to one or more engines. If the request is subsequently
 148	 * bound to a single engine, it will then be constrained to only
 149	 * execute on that engine and never returned to the virtual engine
 150	 * after timeslicing away, see __unwind_incomplete_requests(). Thus we
 151	 * know that if the rq->execution_mask is a single bit, rq->engine
 152	 * can be a physical engine with the exact corresponding mask.
 153	 */
 154	if (is_power_of_2(rq->execution_mask) &&
 155	    !cmpxchg(&rq->engine->request_pool, NULL, rq))
 156		return;
 157
 158	kmem_cache_free(global.slab_requests, rq);
 159}
 160
 161const struct dma_fence_ops i915_fence_ops = {
 162	.get_driver_name = i915_fence_get_driver_name,
 163	.get_timeline_name = i915_fence_get_timeline_name,
 164	.enable_signaling = i915_fence_enable_signaling,
 165	.signaled = i915_fence_signaled,
 166	.wait = i915_fence_wait,
 167	.release = i915_fence_release,
 168};
 169
 170static void irq_execute_cb(struct irq_work *wrk)
 
 171{
 172	struct execute_cb *cb = container_of(wrk, typeof(*cb), work);
 
 
 
 
 173
 174	i915_sw_fence_complete(cb->fence);
 175	kmem_cache_free(global.slab_execute_cbs, cb);
 
 
 
 
 176}
 177
 178static void irq_execute_cb_hook(struct irq_work *wrk)
 
 179{
 180	struct execute_cb *cb = container_of(wrk, typeof(*cb), work);
 
 181
 182	cb->hook(container_of(cb->fence, struct i915_request, submit),
 183		 &cb->signal->fence);
 184	i915_request_put(cb->signal);
 
 
 
 185
 186	irq_execute_cb(wrk);
 
 
 
 
 
 
 
 
 
 
 187}
 188
 189static void __notify_execute_cb(struct i915_request *rq)
 
 
 
 190{
 191	struct execute_cb *cb, *cn;
 192
 193	lockdep_assert_held(&rq->lock);
 
 
 194
 195	GEM_BUG_ON(!i915_request_is_active(rq));
 196	if (llist_empty(&rq->execute_cb))
 197		return;
 198
 199	llist_for_each_entry_safe(cb, cn, rq->execute_cb.first, work.llnode)
 200		irq_work_queue(&cb->work);
 
 
 
 
 201
 202	/*
 203	 * XXX Rollback on __i915_request_unsubmit()
 204	 *
 205	 * In the future, perhaps when we have an active time-slicing scheduler,
 206	 * it will be interesting to unsubmit parallel execution and remove
 207	 * busywaits from the GPU until their master is restarted. This is
 208	 * quite hairy, we have to carefully rollback the fence and do a
 209	 * preempt-to-idle cycle on the target engine, all the while the
 210	 * master execute_cb may refire.
 211	 */
 212	init_llist_head(&rq->execute_cb);
 213}
 
 214
 215static inline void
 216remove_from_client(struct i915_request *request)
 217{
 218	struct drm_i915_file_private *file_priv;
 219
 220	if (!READ_ONCE(request->file_priv))
 221		return;
 
 
 222
 223	rcu_read_lock();
 224	file_priv = xchg(&request->file_priv, NULL);
 225	if (file_priv) {
 226		spin_lock(&file_priv->mm.lock);
 227		list_del(&request->client_link);
 228		spin_unlock(&file_priv->mm.lock);
 229	}
 230	rcu_read_unlock();
 231}
 232
 233static void free_capture_list(struct i915_request *request)
 
 234{
 235	struct i915_capture_list *capture;
 
 
 
 
 236
 237	capture = fetch_and_zero(&request->capture_list);
 238	while (capture) {
 239		struct i915_capture_list *next = capture->next;
 
 
 240
 241		kfree(capture);
 242		capture = next;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 243	}
 
 
 244}
 245
 246static void __i915_request_fill(struct i915_request *rq, u8 val)
 247{
 248	void *vaddr = rq->ring->vaddr;
 249	u32 head;
 250
 251	head = rq->infix;
 252	if (rq->postfix < head) {
 253		memset(vaddr + head, val, rq->ring->size - head);
 254		head = 0;
 255	}
 256	memset(vaddr + head, val, rq->postfix - head);
 
 257}
 258
 259static void remove_from_engine(struct i915_request *rq)
 260{
 261	struct intel_engine_cs *engine, *locked;
 
 
 
 
 
 262
 263	/*
 264	 * Virtual engines complicate acquiring the engine timeline lock,
 265	 * as their rq->engine pointer is not stable until under that
 266	 * engine lock. The simple ploy we use is to take the lock then
 267	 * check that the rq still belongs to the newly locked engine.
 
 
 
 
 
 268	 */
 269	locked = READ_ONCE(rq->engine);
 270	spin_lock_irq(&locked->active.lock);
 271	while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) {
 272		spin_unlock(&locked->active.lock);
 273		spin_lock(&engine->active.lock);
 274		locked = engine;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 275	}
 276	list_del_init(&rq->sched.link);
 277	clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
 278	clear_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags);
 279	spin_unlock_irq(&locked->active.lock);
 
 280}
 281
 282bool i915_request_retire(struct i915_request *rq)
 283{
 284	if (!i915_request_completed(rq))
 285		return false;
 286
 287	RQ_TRACE(rq, "\n");
 
 
 
 
 
 
 288
 289	GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
 290	trace_i915_request_retire(rq);
 
 
 
 
 
 
 
 
 
 
 
 291
 292	/*
 293	 * We know the GPU must have read the request to have
 294	 * sent us the seqno + interrupt, so use the position
 295	 * of tail of the request to update the last known position
 296	 * of the GPU head.
 297	 *
 298	 * Note this requires that we are always called in request
 299	 * completion order.
 300	 */
 301	GEM_BUG_ON(!list_is_first(&rq->link,
 302				  &i915_request_timeline(rq)->requests));
 303	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
 304		/* Poison before we release our space in the ring */
 305		__i915_request_fill(rq, POISON_FREE);
 306	rq->ring->head = rq->postfix;
 307
 308	/*
 309	 * We only loosely track inflight requests across preemption,
 310	 * and so we may find ourselves attempting to retire a _completed_
 311	 * request that we have removed from the HW and put back on a run
 312	 * queue.
 313	 */
 314	remove_from_engine(rq);
 315
 316	spin_lock_irq(&rq->lock);
 317	i915_request_mark_complete(rq);
 318	if (!i915_request_signaled(rq))
 319		dma_fence_signal_locked(&rq->fence);
 320	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags))
 321		i915_request_cancel_breadcrumb(rq);
 322	if (i915_request_has_waitboost(rq)) {
 323		GEM_BUG_ON(!atomic_read(&rq->engine->gt->rps.num_waiters));
 324		atomic_dec(&rq->engine->gt->rps.num_waiters);
 325	}
 326	if (!test_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags)) {
 327		set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);
 328		__notify_execute_cb(rq);
 329	}
 330	GEM_BUG_ON(!llist_empty(&rq->execute_cb));
 331	spin_unlock_irq(&rq->lock);
 332
 333	remove_from_client(rq);
 334	__list_del_entry(&rq->link); /* poison neither prev/next (RCU walks) */
 335
 336	intel_context_exit(rq->context);
 337	intel_context_unpin(rq->context);
 338
 339	free_capture_list(rq);
 340	i915_sched_node_fini(&rq->sched);
 341	i915_request_put(rq);
 342
 343	return true;
 344}
 345
 346void i915_request_retire_upto(struct i915_request *rq)
 347{
 348	struct intel_timeline * const tl = i915_request_timeline(rq);
 349	struct i915_request *tmp;
 350
 351	RQ_TRACE(rq, "\n");
 352
 353	GEM_BUG_ON(!i915_request_completed(rq));
 
 
 354
 355	do {
 356		tmp = list_first_entry(&tl->requests, typeof(*tmp), link);
 357	} while (i915_request_retire(tmp) && tmp != rq);
 358}
 359
 360static void __llist_add(struct llist_node *node, struct llist_head *head)
 361{
 362	node->next = head->first;
 363	head->first = node;
 364}
 365
 366static struct i915_request * const *
 367__engine_active(struct intel_engine_cs *engine)
 368{
 369	return READ_ONCE(engine->execlists.active);
 370}
 371
 372static bool __request_in_flight(const struct i915_request *signal)
 373{
 374	struct i915_request * const *port, *rq;
 375	bool inflight = false;
 376
 377	if (!i915_request_is_ready(signal))
 378		return false;
 
 
 
 
 
 
 379
 380	/*
 381	 * Even if we have unwound the request, it may still be on
 382	 * the GPU (preempt-to-busy). If that request is inside an
 383	 * unpreemptible critical section, it will not be removed. Some
 384	 * GPU functions may even be stuck waiting for the paired request
 385	 * (__await_execution) to be submitted and cannot be preempted
 386	 * until the bond is executing.
 387	 *
 388	 * As we know that there are always preemption points between
 389	 * requests, we know that only the currently executing request
 390	 * may be still active even though we have cleared the flag.
 391	 * However, we can't rely on our tracking of ELSP[0] to know
 392	 * which request is currently active and so maybe stuck, as
 393	 * the tracking maybe an event behind. Instead assume that
 394	 * if the context is still inflight, then it is still active
 395	 * even if the active flag has been cleared.
 396	 *
 397	 * To further complicate matters, if there a pending promotion, the HW
 398	 * may either perform a context switch to the second inflight execlists,
 399	 * or it may switch to the pending set of execlists. In the case of the
 400	 * latter, it may send the ACK and we process the event copying the
 401	 * pending[] over top of inflight[], _overwriting_ our *active. Since
 402	 * this implies the HW is arbitrating and not struck in *active, we do
 403	 * not worry about complete accuracy, but we do require no read/write
 404	 * tearing of the pointer [the read of the pointer must be valid, even
 405	 * as the array is being overwritten, for which we require the writes
 406	 * to avoid tearing.]
 407	 *
 408	 * Note that the read of *execlists->active may race with the promotion
 409	 * of execlists->pending[] to execlists->inflight[], overwritting
 410	 * the value at *execlists->active. This is fine. The promotion implies
 411	 * that we received an ACK from the HW, and so the context is not
 412	 * stuck -- if we do not see ourselves in *active, the inflight status
 413	 * is valid. If instead we see ourselves being copied into *active,
 414	 * we are inflight and may signal the callback.
 415	 */
 416	if (!intel_context_inflight(signal->context))
 417		return false;
 
 
 
 
 
 
 
 
 
 
 418
 419	rcu_read_lock();
 420	for (port = __engine_active(signal->engine);
 421	     (rq = READ_ONCE(*port)); /* may race with promotion of pending[] */
 422	     port++) {
 423		if (rq->context == signal->context) {
 424			inflight = i915_seqno_passed(rq->fence.seqno,
 425						     signal->fence.seqno);
 426			break;
 427		}
 428	}
 429	rcu_read_unlock();
 430
 431	return inflight;
 432}
 433
 434static int
 435__await_execution(struct i915_request *rq,
 436		  struct i915_request *signal,
 437		  void (*hook)(struct i915_request *rq,
 438			       struct dma_fence *signal),
 439		  gfp_t gfp)
 440{
 441	struct execute_cb *cb;
 442
 443	if (i915_request_is_active(signal)) {
 444		if (hook)
 445			hook(rq, &signal->fence);
 446		return 0;
 447	}
 448
 449	cb = kmem_cache_alloc(global.slab_execute_cbs, gfp);
 450	if (!cb)
 451		return -ENOMEM;
 452
 453	cb->fence = &rq->submit;
 454	i915_sw_fence_await(cb->fence);
 455	init_irq_work(&cb->work, irq_execute_cb);
 456
 457	if (hook) {
 458		cb->hook = hook;
 459		cb->signal = i915_request_get(signal);
 460		cb->work.func = irq_execute_cb_hook;
 461	}
 462
 463	spin_lock_irq(&signal->lock);
 464	if (i915_request_is_active(signal) || __request_in_flight(signal)) {
 465		if (hook) {
 466			hook(rq, &signal->fence);
 467			i915_request_put(signal);
 468		}
 469		i915_sw_fence_complete(cb->fence);
 470		kmem_cache_free(global.slab_execute_cbs, cb);
 471	} else {
 472		__llist_add(&cb->work.llnode, &signal->execute_cb);
 
 
 
 
 
 
 
 
 
 
 473	}
 474	spin_unlock_irq(&signal->lock);
 475
 476	return 0;
 
 477}
 478
 479static bool fatal_error(int error)
 480{
 481	switch (error) {
 482	case 0: /* not an error! */
 483	case -EAGAIN: /* innocent victim of a GT reset (__i915_request_reset) */
 484	case -ETIMEDOUT: /* waiting for Godot (timer_i915_sw_fence_wake) */
 485		return false;
 486	default:
 487		return true;
 488	}
 489}
 490
 491void __i915_request_skip(struct i915_request *rq)
 492{
 493	GEM_BUG_ON(!fatal_error(rq->fence.error));
 494
 495	if (rq->infix == rq->postfix)
 496		return;
 497
 498	/*
 499	 * As this request likely depends on state from the lost
 500	 * context, clear out all the user operations leaving the
 501	 * breadcrumb at the end (so we get the fence notifications).
 502	 */
 503	__i915_request_fill(rq, 0);
 504	rq->infix = rq->postfix;
 505}
 506
 507void i915_request_set_error_once(struct i915_request *rq, int error)
 508{
 509	int old;
 510
 511	GEM_BUG_ON(!IS_ERR_VALUE((long)error));
 512
 513	if (i915_request_signaled(rq))
 514		return;
 515
 516	old = READ_ONCE(rq->fence.error);
 517	do {
 518		if (fatal_error(old))
 519			return;
 520	} while (!try_cmpxchg(&rq->fence.error, &old, error));
 521}
 522
 523bool __i915_request_submit(struct i915_request *request)
 524{
 525	struct intel_engine_cs *engine = request->engine;
 526	bool result = false;
 527
 528	RQ_TRACE(request, "\n");
 529
 530	GEM_BUG_ON(!irqs_disabled());
 531	lockdep_assert_held(&engine->active.lock);
 532
 533	/*
 534	 * With the advent of preempt-to-busy, we frequently encounter
 535	 * requests that we have unsubmitted from HW, but left running
 536	 * until the next ack and so have completed in the meantime. On
 537	 * resubmission of that completed request, we can skip
 538	 * updating the payload, and execlists can even skip submitting
 539	 * the request.
 540	 *
 541	 * We must remove the request from the caller's priority queue,
 542	 * and the caller must only call us when the request is in their
 543	 * priority queue, under the active.lock. This ensures that the
 544	 * request has *not* yet been retired and we can safely move
 545	 * the request into the engine->active.list where it will be
 546	 * dropped upon retiring. (Otherwise if resubmit a *retired*
 547	 * request, this would be a horrible use-after-free.)
 548	 */
 549	if (i915_request_completed(request))
 550		goto xfer;
 551
 552	if (unlikely(intel_context_is_banned(request->context)))
 553		i915_request_set_error_once(request, -EIO);
 554	if (unlikely(fatal_error(request->fence.error)))
 555		__i915_request_skip(request);
 556
 557	/*
 558	 * Are we using semaphores when the gpu is already saturated?
 559	 *
 560	 * Using semaphores incurs a cost in having the GPU poll a
 561	 * memory location, busywaiting for it to change. The continual
 562	 * memory reads can have a noticeable impact on the rest of the
 563	 * system with the extra bus traffic, stalling the cpu as it too
 564	 * tries to access memory across the bus (perf stat -e bus-cycles).
 565	 *
 566	 * If we installed a semaphore on this request and we only submit
 567	 * the request after the signaler completed, that indicates the
 568	 * system is overloaded and using semaphores at this time only
 569	 * increases the amount of work we are doing. If so, we disable
 570	 * further use of semaphores until we are idle again, whence we
 571	 * optimistically try again.
 572	 */
 573	if (request->sched.semaphores &&
 574	    i915_sw_fence_signaled(&request->semaphore))
 575		engine->saturated |= request->sched.semaphores;
 576
 577	engine->emit_fini_breadcrumb(request,
 578				     request->ring->vaddr + request->postfix);
 579
 580	trace_i915_request_execute(request);
 581	engine->serial++;
 582	result = true;
 583
 584xfer:
 585	if (!test_and_set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags)) {
 586		list_move_tail(&request->sched.link, &engine->active.requests);
 587		clear_bit(I915_FENCE_FLAG_PQUEUE, &request->fence.flags);
 588	}
 589
 590	/* We may be recursing from the signal callback of another i915 fence */
 591	if (!i915_request_signaled(request)) {
 592		spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
 
 
 
 593
 594		__notify_execute_cb(request);
 595		if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
 596			     &request->fence.flags) &&
 597		    !i915_request_enable_breadcrumb(request))
 598			intel_engine_signal_breadcrumbs(engine);
 599
 600		spin_unlock(&request->lock);
 601		GEM_BUG_ON(!llist_empty(&request->execute_cb));
 602	}
 603
 604	return result;
 
 
 605}
 606
 607void i915_request_submit(struct i915_request *request)
 608{
 609	struct intel_engine_cs *engine = request->engine;
 610	unsigned long flags;
 611
 612	/* Will be called from irq-context when using foreign fences. */
 613	spin_lock_irqsave(&engine->active.lock, flags);
 614
 615	__i915_request_submit(request);
 616
 617	spin_unlock_irqrestore(&engine->active.lock, flags);
 618}
 619
 620void __i915_request_unsubmit(struct i915_request *request)
 621{
 622	struct intel_engine_cs *engine = request->engine;
 623
 624	RQ_TRACE(request, "\n");
 625
 626	GEM_BUG_ON(!irqs_disabled());
 627	lockdep_assert_held(&engine->active.lock);
 628
 629	/*
 630	 * Only unwind in reverse order, required so that the per-context list
 631	 * is kept in seqno/ring order.
 632	 */
 
 
 
 
 
 633
 634	/* We may be recursing from the signal callback of another i915 fence */
 635	spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
 636
 637	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
 638		i915_request_cancel_breadcrumb(request);
 639
 640	GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
 641	clear_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
 642
 643	spin_unlock(&request->lock);
 644
 645	/* We've already spun, don't charge on resubmitting. */
 646	if (request->sched.semaphores && i915_request_started(request))
 647		request->sched.semaphores = 0;
 
 
 
 
 648
 649	/*
 650	 * We don't need to wake_up any waiters on request->execute, they
 651	 * will get woken by any other event or us re-adding this request
 652	 * to the engine timeline (__i915_request_submit()). The waiters
 653	 * should be quite adapt at finding that the request now has a new
 654	 * global_seqno to the one they went to sleep on.
 655	 */
 656}
 657
 658void i915_request_unsubmit(struct i915_request *request)
 659{
 660	struct intel_engine_cs *engine = request->engine;
 661	unsigned long flags;
 662
 663	/* Will be called from irq-context when using foreign fences. */
 664	spin_lock_irqsave(&engine->active.lock, flags);
 665
 666	__i915_request_unsubmit(request);
 667
 668	spin_unlock_irqrestore(&engine->active.lock, flags);
 669}
 670
 671static int __i915_sw_fence_call
 672submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
 673{
 674	struct i915_request *request =
 675		container_of(fence, typeof(*request), submit);
 676
 677	switch (state) {
 678	case FENCE_COMPLETE:
 679		trace_i915_request_submit(request);
 680
 681		if (unlikely(fence->error))
 682			i915_request_set_error_once(request, fence->error);
 683
 684		/*
 685		 * We need to serialize use of the submit_request() callback
 686		 * with its hotplugging performed during an emergency
 687		 * i915_gem_set_wedged().  We use the RCU mechanism to mark the
 688		 * critical section in order to force i915_gem_set_wedged() to
 689		 * wait until the submit_request() is completed before
 690		 * proceeding.
 691		 */
 692		rcu_read_lock();
 693		request->engine->submit_request(request);
 694		rcu_read_unlock();
 695		break;
 696
 697	case FENCE_FREE:
 698		i915_request_put(request);
 699		break;
 700	}
 701
 702	return NOTIFY_DONE;
 703}
 704
 705static int __i915_sw_fence_call
 706semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
 707{
 708	struct i915_request *rq = container_of(fence, typeof(*rq), semaphore);
 709
 710	switch (state) {
 711	case FENCE_COMPLETE:
 712		break;
 713
 714	case FENCE_FREE:
 715		i915_request_put(rq);
 716		break;
 717	}
 718
 719	return NOTIFY_DONE;
 720}
 721
 722static void retire_requests(struct intel_timeline *tl)
 723{
 724	struct i915_request *rq, *rn;
 725
 726	list_for_each_entry_safe(rq, rn, &tl->requests, link)
 727		if (!i915_request_retire(rq))
 728			break;
 729}
 730
 731static noinline struct i915_request *
 732request_alloc_slow(struct intel_timeline *tl,
 733		   struct i915_request **rsvd,
 734		   gfp_t gfp)
 735{
 
 736	struct i915_request *rq;
 
 
 737
 738	/* If we cannot wait, dip into our reserves */
 739	if (!gfpflags_allow_blocking(gfp)) {
 740		rq = xchg(rsvd, NULL);
 741		if (!rq) /* Use the normal failure path for one final WARN */
 742			goto out;
 743
 744		return rq;
 745	}
 746
 747	if (list_empty(&tl->requests))
 748		goto out;
 749
 750	/* Move our oldest request to the slab-cache (if not in use!) */
 751	rq = list_first_entry(&tl->requests, typeof(*rq), link);
 752	i915_request_retire(rq);
 753
 754	rq = kmem_cache_alloc(global.slab_requests,
 755			      gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
 756	if (rq)
 757		return rq;
 758
 759	/* Ratelimit ourselves to prevent oom from malicious clients */
 760	rq = list_last_entry(&tl->requests, typeof(*rq), link);
 761	cond_synchronize_rcu(rq->rcustate);
 762
 763	/* Retire our old requests in the hope that we free some */
 764	retire_requests(tl);
 765
 766out:
 767	return kmem_cache_alloc(global.slab_requests, gfp);
 768}
 769
 770static void __i915_request_ctor(void *arg)
 771{
 772	struct i915_request *rq = arg;
 773
 774	spin_lock_init(&rq->lock);
 775	i915_sched_node_init(&rq->sched);
 776	i915_sw_fence_init(&rq->submit, submit_notify);
 777	i915_sw_fence_init(&rq->semaphore, semaphore_notify);
 778
 779	dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock, 0, 0);
 
 
 
 
 
 780
 781	rq->file_priv = NULL;
 782	rq->capture_list = NULL;
 
 
 
 
 783
 784	init_llist_head(&rq->execute_cb);
 785}
 
 
 
 
 
 
 
 786
 787struct i915_request *
 788__i915_request_create(struct intel_context *ce, gfp_t gfp)
 789{
 790	struct intel_timeline *tl = ce->timeline;
 791	struct i915_request *rq;
 792	u32 seqno;
 793	int ret;
 794
 795	might_sleep_if(gfpflags_allow_blocking(gfp));
 
 
 796
 797	/* Check that the caller provided an already pinned context */
 798	__intel_context_pin(ce);
 
 
 
 799
 800	/*
 801	 * Beware: Dragons be flying overhead.
 802	 *
 803	 * We use RCU to look up requests in flight. The lookups may
 804	 * race with the request being allocated from the slab freelist.
 805	 * That is the request we are writing to here, may be in the process
 806	 * of being read by __i915_active_request_get_rcu(). As such,
 807	 * we have to be very careful when overwriting the contents. During
 808	 * the RCU lookup, we change chase the request->engine pointer,
 809	 * read the request->global_seqno and increment the reference count.
 810	 *
 811	 * The reference count is incremented atomically. If it is zero,
 812	 * the lookup knows the request is unallocated and complete. Otherwise,
 813	 * it is either still in use, or has been reallocated and reset
 814	 * with dma_fence_init(). This increment is safe for release as we
 815	 * check that the request we have a reference to and matches the active
 816	 * request.
 817	 *
 818	 * Before we increment the refcount, we chase the request->engine
 819	 * pointer. We must not call kmem_cache_zalloc() or else we set
 820	 * that pointer to NULL and cause a crash during the lookup. If
 821	 * we see the request is completed (based on the value of the
 822	 * old engine and seqno), the lookup is complete and reports NULL.
 823	 * If we decide the request is not completed (new engine or seqno),
 824	 * then we grab a reference and double check that it is still the
 825	 * active request - which it won't be and restart the lookup.
 826	 *
 827	 * Do not use kmem_cache_zalloc() here!
 828	 */
 829	rq = kmem_cache_alloc(global.slab_requests,
 830			      gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
 831	if (unlikely(!rq)) {
 832		rq = request_alloc_slow(tl, &ce->engine->request_pool, gfp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 833		if (!rq) {
 834			ret = -ENOMEM;
 835			goto err_unreserve;
 836		}
 837	}
 838
 839	rq->context = ce;
 840	rq->engine = ce->engine;
 841	rq->ring = ce->ring;
 842	rq->execution_mask = ce->engine->mask;
 843
 844	kref_init(&rq->fence.refcount);
 845	rq->fence.flags = 0;
 846	rq->fence.error = 0;
 847	INIT_LIST_HEAD(&rq->fence.cb_list);
 848
 849	ret = intel_timeline_get_seqno(tl, rq, &seqno);
 850	if (ret)
 851		goto err_free;
 852
 853	rq->fence.context = tl->fence_context;
 854	rq->fence.seqno = seqno;
 855
 856	RCU_INIT_POINTER(rq->timeline, tl);
 857	RCU_INIT_POINTER(rq->hwsp_cacheline, tl->hwsp_cacheline);
 858	rq->hwsp_seqno = tl->hwsp_seqno;
 859	GEM_BUG_ON(i915_request_completed(rq));
 860
 861	rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */
 862
 863	/* We bump the ref for the fence chain */
 864	i915_sw_fence_reinit(&i915_request_get(rq)->submit);
 865	i915_sw_fence_reinit(&i915_request_get(rq)->semaphore);
 866
 867	i915_sched_node_reinit(&rq->sched);
 868
 869	/* No zalloc, everything must be cleared after use */
 
 
 
 
 
 
 
 
 
 870	rq->batch = NULL;
 871	GEM_BUG_ON(rq->file_priv);
 872	GEM_BUG_ON(rq->capture_list);
 873	GEM_BUG_ON(!llist_empty(&rq->execute_cb));
 874
 875	/*
 876	 * Reserve space in the ring buffer for all the commands required to
 877	 * eventually emit this request. This is to guarantee that the
 878	 * i915_request_add() call can't fail. Note that the reserve may need
 879	 * to be redone if the request is not actually submitted straight
 880	 * away, e.g. because a GPU scheduler has deferred it.
 881	 *
 882	 * Note that due to how we add reserved_space to intel_ring_begin()
 883	 * we need to double our request to ensure that if we need to wrap
 884	 * around inside i915_request_add() there is sufficient space at
 885	 * the beginning of the ring as well.
 886	 */
 887	rq->reserved_space =
 888		2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32);
 889
 890	/*
 891	 * Record the position of the start of the request so that
 892	 * should we detect the updated seqno part-way through the
 893	 * GPU processing the request, we never over-estimate the
 894	 * position of the head.
 895	 */
 896	rq->head = rq->ring->emit;
 897
 898	ret = rq->engine->request_alloc(rq);
 
 899	if (ret)
 900		goto err_unwind;
 901
 902	rq->infix = rq->ring->emit; /* end of header; start of user payload */
 903
 904	intel_context_mark_active(ce);
 905	list_add_tail_rcu(&rq->link, &tl->requests);
 906
 
 
 907	return rq;
 908
 909err_unwind:
 910	ce->ring->emit = rq->head;
 911
 912	/* Make sure we didn't add ourselves to external state before freeing */
 913	GEM_BUG_ON(!list_empty(&rq->sched.signalers_list));
 914	GEM_BUG_ON(!list_empty(&rq->sched.waiters_list));
 
 915
 916err_free:
 917	kmem_cache_free(global.slab_requests, rq);
 918err_unreserve:
 919	intel_context_unpin(ce);
 
 
 920	return ERR_PTR(ret);
 921}
 922
 923struct i915_request *
 924i915_request_create(struct intel_context *ce)
 925{
 926	struct i915_request *rq;
 927	struct intel_timeline *tl;
 928
 929	tl = intel_context_timeline_lock(ce);
 930	if (IS_ERR(tl))
 931		return ERR_CAST(tl);
 932
 933	/* Move our oldest request to the slab-cache (if not in use!) */
 934	rq = list_first_entry(&tl->requests, typeof(*rq), link);
 935	if (!list_is_last(&rq->link, &tl->requests))
 936		i915_request_retire(rq);
 937
 938	intel_context_enter(ce);
 939	rq = __i915_request_create(ce, GFP_KERNEL);
 940	intel_context_exit(ce); /* active reference transferred to request */
 941	if (IS_ERR(rq))
 942		goto err_unlock;
 943
 944	/* Check that we do not interrupt ourselves with a new request */
 945	rq->cookie = lockdep_pin_lock(&tl->mutex);
 946
 947	return rq;
 948
 949err_unlock:
 950	intel_context_timeline_unlock(tl);
 951	return rq;
 952}
 953
 954static int
 955i915_request_await_start(struct i915_request *rq, struct i915_request *signal)
 956{
 957	struct dma_fence *fence;
 958	int err;
 959
 960	if (i915_request_timeline(rq) == rcu_access_pointer(signal->timeline))
 961		return 0;
 962
 963	if (i915_request_started(signal))
 964		return 0;
 965
 966	fence = NULL;
 967	rcu_read_lock();
 968	spin_lock_irq(&signal->lock);
 969	do {
 970		struct list_head *pos = READ_ONCE(signal->link.prev);
 971		struct i915_request *prev;
 972
 973		/* Confirm signal has not been retired, the link is valid */
 974		if (unlikely(i915_request_started(signal)))
 975			break;
 976
 977		/* Is signal the earliest request on its timeline? */
 978		if (pos == &rcu_dereference(signal->timeline)->requests)
 979			break;
 980
 981		/*
 982		 * Peek at the request before us in the timeline. That
 983		 * request will only be valid before it is retired, so
 984		 * after acquiring a reference to it, confirm that it is
 985		 * still part of the signaler's timeline.
 986		 */
 987		prev = list_entry(pos, typeof(*prev), link);
 988		if (!i915_request_get_rcu(prev))
 989			break;
 990
 991		/* After the strong barrier, confirm prev is still attached */
 992		if (unlikely(READ_ONCE(prev->link.next) != &signal->link)) {
 993			i915_request_put(prev);
 994			break;
 995		}
 996
 997		fence = &prev->fence;
 998	} while (0);
 999	spin_unlock_irq(&signal->lock);
1000	rcu_read_unlock();
1001	if (!fence)
1002		return 0;
1003
1004	err = 0;
1005	if (!intel_timeline_sync_is_later(i915_request_timeline(rq), fence))
1006		err = i915_sw_fence_await_dma_fence(&rq->submit,
1007						    fence, 0,
1008						    I915_FENCE_GFP);
1009	dma_fence_put(fence);
1010
1011	return err;
1012}
1013
1014static intel_engine_mask_t
1015already_busywaiting(struct i915_request *rq)
1016{
1017	/*
1018	 * Polling a semaphore causes bus traffic, delaying other users of
1019	 * both the GPU and CPU. We want to limit the impact on others,
1020	 * while taking advantage of early submission to reduce GPU
1021	 * latency. Therefore we restrict ourselves to not using more
1022	 * than one semaphore from each source, and not using a semaphore
1023	 * if we have detected the engine is saturated (i.e. would not be
1024	 * submitted early and cause bus traffic reading an already passed
1025	 * semaphore).
1026	 *
1027	 * See the are-we-too-late? check in __i915_request_submit().
1028	 */
1029	return rq->sched.semaphores | READ_ONCE(rq->engine->saturated);
1030}
1031
1032static int
1033__emit_semaphore_wait(struct i915_request *to,
1034		      struct i915_request *from,
1035		      u32 seqno)
1036{
1037	const int has_token = INTEL_GEN(to->engine->i915) >= 12;
1038	u32 hwsp_offset;
1039	int len, err;
1040	u32 *cs;
1041
1042	GEM_BUG_ON(INTEL_GEN(to->engine->i915) < 8);
1043	GEM_BUG_ON(i915_request_has_initial_breadcrumb(to));
1044
1045	/* We need to pin the signaler's HWSP until we are finished reading. */
1046	err = intel_timeline_read_hwsp(from, to, &hwsp_offset);
1047	if (err)
1048		return err;
1049
1050	len = 4;
1051	if (has_token)
1052		len += 2;
1053
1054	cs = intel_ring_begin(to, len);
1055	if (IS_ERR(cs))
1056		return PTR_ERR(cs);
1057
1058	/*
1059	 * Using greater-than-or-equal here means we have to worry
1060	 * about seqno wraparound. To side step that issue, we swap
1061	 * the timeline HWSP upon wrapping, so that everyone listening
1062	 * for the old (pre-wrap) values do not see the much smaller
1063	 * (post-wrap) values than they were expecting (and so wait
1064	 * forever).
1065	 */
1066	*cs++ = (MI_SEMAPHORE_WAIT |
1067		 MI_SEMAPHORE_GLOBAL_GTT |
1068		 MI_SEMAPHORE_POLL |
1069		 MI_SEMAPHORE_SAD_GTE_SDD) +
1070		has_token;
1071	*cs++ = seqno;
1072	*cs++ = hwsp_offset;
1073	*cs++ = 0;
1074	if (has_token) {
1075		*cs++ = 0;
1076		*cs++ = MI_NOOP;
1077	}
1078
1079	intel_ring_advance(to, cs);
1080	return 0;
1081}
1082
1083static int
1084emit_semaphore_wait(struct i915_request *to,
1085		    struct i915_request *from,
1086		    gfp_t gfp)
1087{
1088	const intel_engine_mask_t mask = READ_ONCE(from->engine)->mask;
1089	struct i915_sw_fence *wait = &to->submit;
1090
1091	if (!intel_context_use_semaphores(to->context))
1092		goto await_fence;
1093
1094	if (i915_request_has_initial_breadcrumb(to))
1095		goto await_fence;
1096
1097	if (!rcu_access_pointer(from->hwsp_cacheline))
1098		goto await_fence;
1099
1100	/*
1101	 * If this or its dependents are waiting on an external fence
1102	 * that may fail catastrophically, then we want to avoid using
1103	 * sempahores as they bypass the fence signaling metadata, and we
1104	 * lose the fence->error propagation.
1105	 */
1106	if (from->sched.flags & I915_SCHED_HAS_EXTERNAL_CHAIN)
1107		goto await_fence;
1108
1109	/* Just emit the first semaphore we see as request space is limited. */
1110	if (already_busywaiting(to) & mask)
1111		goto await_fence;
1112
1113	if (i915_request_await_start(to, from) < 0)
1114		goto await_fence;
1115
1116	/* Only submit our spinner after the signaler is running! */
1117	if (__await_execution(to, from, NULL, gfp))
1118		goto await_fence;
1119
1120	if (__emit_semaphore_wait(to, from, from->fence.seqno))
1121		goto await_fence;
1122
1123	to->sched.semaphores |= mask;
1124	wait = &to->semaphore;
1125
1126await_fence:
1127	return i915_sw_fence_await_dma_fence(wait,
1128					     &from->fence, 0,
1129					     I915_FENCE_GFP);
1130}
1131
1132static bool intel_timeline_sync_has_start(struct intel_timeline *tl,
1133					  struct dma_fence *fence)
1134{
1135	return __intel_timeline_sync_is_later(tl,
1136					      fence->context,
1137					      fence->seqno - 1);
1138}
1139
1140static int intel_timeline_sync_set_start(struct intel_timeline *tl,
1141					 const struct dma_fence *fence)
1142{
1143	return __intel_timeline_sync_set(tl, fence->context, fence->seqno - 1);
1144}
1145
1146static int
1147__i915_request_await_execution(struct i915_request *to,
1148			       struct i915_request *from,
1149			       void (*hook)(struct i915_request *rq,
1150					    struct dma_fence *signal))
1151{
1152	int err;
1153
1154	GEM_BUG_ON(intel_context_is_barrier(from->context));
 
1155
1156	/* Submit both requests at the same time */
1157	err = __await_execution(to, from, hook, I915_FENCE_GFP);
1158	if (err)
1159		return err;
1160
1161	/* Squash repeated depenendices to the same timelines */
1162	if (intel_timeline_sync_has_start(i915_request_timeline(to),
1163					  &from->fence))
1164		return 0;
1165
1166	/*
1167	 * Wait until the start of this request.
1168	 *
1169	 * The execution cb fires when we submit the request to HW. But in
1170	 * many cases this may be long before the request itself is ready to
1171	 * run (consider that we submit 2 requests for the same context, where
1172	 * the request of interest is behind an indefinite spinner). So we hook
1173	 * up to both to reduce our queues and keep the execution lag minimised
1174	 * in the worst case, though we hope that the await_start is elided.
1175	 */
1176	err = i915_request_await_start(to, from);
1177	if (err < 0)
1178		return err;
1179
1180	/*
1181	 * Ensure both start together [after all semaphores in signal]
1182	 *
1183	 * Now that we are queued to the HW at roughly the same time (thanks
1184	 * to the execute cb) and are ready to run at roughly the same time
1185	 * (thanks to the await start), our signaler may still be indefinitely
1186	 * delayed by waiting on a semaphore from a remote engine. If our
1187	 * signaler depends on a semaphore, so indirectly do we, and we do not
1188	 * want to start our payload until our signaler also starts theirs.
1189	 * So we wait.
1190	 *
1191	 * However, there is also a second condition for which we need to wait
1192	 * for the precise start of the signaler. Consider that the signaler
1193	 * was submitted in a chain of requests following another context
1194	 * (with just an ordinary intra-engine fence dependency between the
1195	 * two). In this case the signaler is queued to HW, but not for
1196	 * immediate execution, and so we must wait until it reaches the
1197	 * active slot.
1198	 */
1199	if (intel_engine_has_semaphores(to->engine) &&
1200	    !i915_request_has_initial_breadcrumb(to)) {
1201		err = __emit_semaphore_wait(to, from, from->fence.seqno - 1);
1202		if (err < 0)
1203			return err;
1204	}
1205
1206	/* Couple the dependency tree for PI on this exposed to->fence */
1207	if (to->engine->schedule) {
1208		err = i915_sched_node_add_dependency(&to->sched,
1209						     &from->sched,
1210						     I915_DEPENDENCY_WEAK);
1211		if (err < 0)
1212			return err;
1213	}
1214
1215	return intel_timeline_sync_set_start(i915_request_timeline(to),
1216					     &from->fence);
1217}
1218
1219static void mark_external(struct i915_request *rq)
1220{
1221	/*
1222	 * The downside of using semaphores is that we lose metadata passing
1223	 * along the signaling chain. This is particularly nasty when we
1224	 * need to pass along a fatal error such as EFAULT or EDEADLK. For
1225	 * fatal errors we want to scrub the request before it is executed,
1226	 * which means that we cannot preload the request onto HW and have
1227	 * it wait upon a semaphore.
1228	 */
1229	rq->sched.flags |= I915_SCHED_HAS_EXTERNAL_CHAIN;
1230}
1231
1232static int
1233__i915_request_await_external(struct i915_request *rq, struct dma_fence *fence)
1234{
1235	mark_external(rq);
1236	return i915_sw_fence_await_dma_fence(&rq->submit, fence,
1237					     i915_fence_context_timeout(rq->engine->i915,
1238									fence->context),
1239					     I915_FENCE_GFP);
1240}
1241
1242static int
1243i915_request_await_external(struct i915_request *rq, struct dma_fence *fence)
1244{
1245	struct dma_fence *iter;
1246	int err = 0;
1247
1248	if (!to_dma_fence_chain(fence))
1249		return __i915_request_await_external(rq, fence);
1250
1251	dma_fence_chain_for_each(iter, fence) {
1252		struct dma_fence_chain *chain = to_dma_fence_chain(iter);
1253
1254		if (!dma_fence_is_i915(chain->fence)) {
1255			err = __i915_request_await_external(rq, iter);
1256			break;
1257		}
1258
1259		err = i915_request_await_dma_fence(rq, chain->fence);
1260		if (err < 0)
1261			break;
1262	}
1263
1264	dma_fence_put(iter);
1265	return err;
1266}
1267
1268int
1269i915_request_await_execution(struct i915_request *rq,
1270			     struct dma_fence *fence,
1271			     void (*hook)(struct i915_request *rq,
1272					  struct dma_fence *signal))
1273{
1274	struct dma_fence **child = &fence;
1275	unsigned int nchild = 1;
1276	int ret;
1277
1278	if (dma_fence_is_array(fence)) {
1279		struct dma_fence_array *array = to_dma_fence_array(fence);
1280
1281		/* XXX Error for signal-on-any fence arrays */
1282
1283		child = array->fences;
1284		nchild = array->num_fences;
1285		GEM_BUG_ON(!nchild);
1286	}
1287
1288	do {
1289		fence = *child++;
1290		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
1291			i915_sw_fence_set_error_once(&rq->submit, fence->error);
1292			continue;
1293		}
1294
1295		if (fence->context == rq->fence.context)
1296			continue;
1297
1298		/*
1299		 * We don't squash repeated fence dependencies here as we
1300		 * want to run our callback in all cases.
1301		 */
1302
1303		if (dma_fence_is_i915(fence))
1304			ret = __i915_request_await_execution(rq,
1305							     to_request(fence),
1306							     hook);
1307		else
1308			ret = i915_request_await_external(rq, fence);
1309		if (ret < 0)
1310			return ret;
1311	} while (--nchild);
1312
1313	return 0;
1314}
1315
1316static int
1317await_request_submit(struct i915_request *to, struct i915_request *from)
1318{
1319	/*
1320	 * If we are waiting on a virtual engine, then it may be
1321	 * constrained to execute on a single engine *prior* to submission.
1322	 * When it is submitted, it will be first submitted to the virtual
1323	 * engine and then passed to the physical engine. We cannot allow
1324	 * the waiter to be submitted immediately to the physical engine
1325	 * as it may then bypass the virtual request.
1326	 */
1327	if (to->engine == READ_ONCE(from->engine))
1328		return i915_sw_fence_await_sw_fence_gfp(&to->submit,
1329							&from->submit,
1330							I915_FENCE_GFP);
1331	else
1332		return __i915_request_await_execution(to, from, NULL);
1333}
1334
1335static int
1336i915_request_await_request(struct i915_request *to, struct i915_request *from)
1337{
1338	int ret;
1339
1340	GEM_BUG_ON(to == from);
1341	GEM_BUG_ON(to->timeline == from->timeline);
1342
1343	if (i915_request_completed(from)) {
1344		i915_sw_fence_set_error_once(&to->submit, from->fence.error);
1345		return 0;
1346	}
1347
1348	if (to->engine->schedule) {
1349		ret = i915_sched_node_add_dependency(&to->sched,
1350						     &from->sched,
1351						     I915_DEPENDENCY_EXTERNAL);
1352		if (ret < 0)
1353			return ret;
1354	}
1355
1356	if (is_power_of_2(to->execution_mask | READ_ONCE(from->execution_mask)))
1357		ret = await_request_submit(to, from);
1358	else
1359		ret = emit_semaphore_wait(to, from, I915_FENCE_GFP);
1360	if (ret < 0)
1361		return ret;
1362
1363	return 0;
1364}
1365
1366int
1367i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence)
1368{
1369	struct dma_fence **child = &fence;
1370	unsigned int nchild = 1;
1371	int ret;
1372
1373	/*
1374	 * Note that if the fence-array was created in signal-on-any mode,
1375	 * we should *not* decompose it into its individual fences. However,
1376	 * we don't currently store which mode the fence-array is operating
1377	 * in. Fortunately, the only user of signal-on-any is private to
1378	 * amdgpu and we should not see any incoming fence-array from
1379	 * sync-file being in signal-on-any mode.
1380	 */
1381	if (dma_fence_is_array(fence)) {
1382		struct dma_fence_array *array = to_dma_fence_array(fence);
1383
1384		child = array->fences;
1385		nchild = array->num_fences;
1386		GEM_BUG_ON(!nchild);
1387	}
1388
1389	do {
1390		fence = *child++;
1391		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
1392			i915_sw_fence_set_error_once(&rq->submit, fence->error);
1393			continue;
1394		}
1395
1396		/*
1397		 * Requests on the same timeline are explicitly ordered, along
1398		 * with their dependencies, by i915_request_add() which ensures
1399		 * that requests are submitted in-order through each ring.
1400		 */
1401		if (fence->context == rq->fence.context)
1402			continue;
1403
1404		/* Squash repeated waits to the same timelines */
1405		if (fence->context &&
1406		    intel_timeline_sync_is_later(i915_request_timeline(rq),
1407						 fence))
1408			continue;
1409
1410		if (dma_fence_is_i915(fence))
1411			ret = i915_request_await_request(rq, to_request(fence));
1412		else
1413			ret = i915_request_await_external(rq, fence);
 
 
1414		if (ret < 0)
1415			return ret;
1416
1417		/* Record the latest fence used against each timeline */
1418		if (fence->context)
1419			intel_timeline_sync_set(i915_request_timeline(rq),
1420						fence);
1421	} while (--nchild);
1422
1423	return 0;
1424}
1425
1426/**
1427 * i915_request_await_object - set this request to (async) wait upon a bo
1428 * @to: request we are wishing to use
1429 * @obj: object which may be in use on another ring.
1430 * @write: whether the wait is on behalf of a writer
1431 *
1432 * This code is meant to abstract object synchronization with the GPU.
1433 * Conceptually we serialise writes between engines inside the GPU.
1434 * We only allow one engine to write into a buffer at any time, but
1435 * multiple readers. To ensure each has a coherent view of memory, we must:
1436 *
1437 * - If there is an outstanding write request to the object, the new
1438 *   request must wait for it to complete (either CPU or in hw, requests
1439 *   on the same ring will be naturally ordered).
1440 *
1441 * - If we are a write request (pending_write_domain is set), the new
1442 *   request must wait for outstanding read requests to complete.
1443 *
1444 * Returns 0 if successful, else propagates up the lower layer error.
1445 */
1446int
1447i915_request_await_object(struct i915_request *to,
1448			  struct drm_i915_gem_object *obj,
1449			  bool write)
1450{
1451	struct dma_fence *excl;
1452	int ret = 0;
1453
1454	if (write) {
1455		struct dma_fence **shared;
1456		unsigned int count, i;
1457
1458		ret = dma_resv_get_fences_rcu(obj->base.resv,
1459							&excl, &count, &shared);
1460		if (ret)
1461			return ret;
1462
1463		for (i = 0; i < count; i++) {
1464			ret = i915_request_await_dma_fence(to, shared[i]);
1465			if (ret)
1466				break;
1467
1468			dma_fence_put(shared[i]);
1469		}
1470
1471		for (; i < count; i++)
1472			dma_fence_put(shared[i]);
1473		kfree(shared);
1474	} else {
1475		excl = dma_resv_get_excl_rcu(obj->base.resv);
1476	}
1477
1478	if (excl) {
1479		if (ret == 0)
1480			ret = i915_request_await_dma_fence(to, excl);
1481
1482		dma_fence_put(excl);
1483	}
1484
1485	return ret;
1486}
1487
1488static struct i915_request *
1489__i915_request_add_to_timeline(struct i915_request *rq)
 
 
 
 
1490{
1491	struct intel_timeline *timeline = i915_request_timeline(rq);
 
 
1492	struct i915_request *prev;
 
 
1493
1494	/*
1495	 * Dependency tracking and request ordering along the timeline
1496	 * is special cased so that we can eliminate redundant ordering
1497	 * operations while building the request (we know that the timeline
1498	 * itself is ordered, and here we guarantee it).
1499	 *
1500	 * As we know we will need to emit tracking along the timeline,
1501	 * we embed the hooks into our request struct -- at the cost of
1502	 * having to have specialised no-allocation interfaces (which will
1503	 * be beneficial elsewhere).
1504	 *
1505	 * A second benefit to open-coding i915_request_await_request is
1506	 * that we can apply a slight variant of the rules specialised
1507	 * for timelines that jump between engines (such as virtual engines).
1508	 * If we consider the case of virtual engine, we must emit a dma-fence
1509	 * to prevent scheduling of the second request until the first is
1510	 * complete (to maximise our greedy late load balancing) and this
1511	 * precludes optimising to use semaphores serialisation of a single
1512	 * timeline across engines.
1513	 */
1514	prev = to_request(__i915_active_fence_set(&timeline->last_request,
1515						  &rq->fence));
1516	if (prev && !i915_request_completed(prev)) {
1517		/*
1518		 * The requests are supposed to be kept in order. However,
1519		 * we need to be wary in case the timeline->last_request
1520		 * is used as a barrier for external modification to this
1521		 * context.
1522		 */
1523		GEM_BUG_ON(prev->context == rq->context &&
1524			   i915_seqno_passed(prev->fence.seqno,
1525					     rq->fence.seqno));
1526
1527		if (is_power_of_2(READ_ONCE(prev->engine)->mask | rq->engine->mask))
1528			i915_sw_fence_await_sw_fence(&rq->submit,
1529						     &prev->submit,
1530						     &rq->submitq);
1531		else
1532			__i915_sw_fence_await_dma_fence(&rq->submit,
1533							&prev->fence,
1534							&rq->dmaq);
1535		if (rq->engine->schedule)
1536			__i915_sched_node_add_dependency(&rq->sched,
1537							 &prev->sched,
1538							 &rq->dep,
1539							 0);
1540	}
1541
1542	/*
1543	 * Make sure that no request gazumped us - if it was allocated after
1544	 * our i915_request_alloc() and called __i915_request_add() before
1545	 * us, the timeline will hold its seqno which is later than ours.
1546	 */
1547	GEM_BUG_ON(timeline->seqno != rq->fence.seqno);
1548
1549	return prev;
1550}
1551
1552/*
1553 * NB: This function is not allowed to fail. Doing so would mean the the
1554 * request is not being tracked for completion but the work itself is
1555 * going to happen on the hardware. This would be a Bad Thing(tm).
1556 */
1557struct i915_request *__i915_request_commit(struct i915_request *rq)
1558{
1559	struct intel_engine_cs *engine = rq->engine;
1560	struct intel_ring *ring = rq->ring;
1561	u32 *cs;
1562
1563	RQ_TRACE(rq, "\n");
1564
1565	/*
1566	 * To ensure that this call will not fail, space for its emissions
1567	 * should already have been reserved in the ring buffer. Let the ring
1568	 * know that it is time to use that space up.
1569	 */
1570	GEM_BUG_ON(rq->reserved_space > ring->space);
1571	rq->reserved_space = 0;
1572	rq->emitted_jiffies = jiffies;
 
 
 
 
 
 
 
 
 
 
 
 
1573
1574	/*
1575	 * Record the position of the start of the breadcrumb so that
1576	 * should we detect the updated seqno part-way through the
1577	 * GPU processing the request, we never over-estimate the
1578	 * position of the ring's HEAD.
1579	 */
1580	cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw);
1581	GEM_BUG_ON(IS_ERR(cs));
1582	rq->postfix = intel_ring_offset(rq, cs);
1583
1584	return __i915_request_add_to_timeline(rq);
1585}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1586
1587void __i915_request_queue(struct i915_request *rq,
1588			  const struct i915_sched_attr *attr)
1589{
1590	/*
1591	 * Let the backend know a new request has arrived that may need
1592	 * to adjust the existing execution schedule due to a high priority
1593	 * request - i.e. we may want to preempt the current request in order
1594	 * to run a high priority dependency chain *before* we can execute this
1595	 * request.
1596	 *
1597	 * This is called before the request is ready to run so that we can
1598	 * decide whether to preempt the entire chain so that it is ready to
1599	 * run at the earliest possible convenience.
1600	 */
1601	if (attr && rq->engine->schedule)
1602		rq->engine->schedule(rq, attr);
1603	i915_sw_fence_commit(&rq->semaphore);
1604	i915_sw_fence_commit(&rq->submit);
1605}
1606
1607void i915_request_add(struct i915_request *rq)
1608{
1609	struct intel_timeline * const tl = i915_request_timeline(rq);
1610	struct i915_sched_attr attr = {};
1611	struct i915_gem_context *ctx;
1612
1613	lockdep_assert_held(&tl->mutex);
1614	lockdep_unpin_lock(&tl->mutex, rq->cookie);
1615
1616	trace_i915_request_add(rq);
1617	__i915_request_commit(rq);
1618
1619	/* XXX placeholder for selftests */
1620	rcu_read_lock();
1621	ctx = rcu_dereference(rq->context->gem_context);
1622	if (ctx)
1623		attr = ctx->sched;
1624	rcu_read_unlock();
1625
1626	__i915_request_queue(rq, &attr);
1627
1628	mutex_unlock(&tl->mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1629}
1630
1631static unsigned long local_clock_ns(unsigned int *cpu)
1632{
1633	unsigned long t;
1634
1635	/*
1636	 * Cheaply and approximately convert from nanoseconds to microseconds.
1637	 * The result and subsequent calculations are also defined in the same
1638	 * approximate microseconds units. The principal source of timing
1639	 * error here is from the simple truncation.
1640	 *
1641	 * Note that local_clock() is only defined wrt to the current CPU;
1642	 * the comparisons are no longer valid if we switch CPUs. Instead of
1643	 * blocking preemption for the entire busywait, we can detect the CPU
1644	 * switch and use that as indicator of system load and a reason to
1645	 * stop busywaiting, see busywait_stop().
1646	 */
1647	*cpu = get_cpu();
1648	t = local_clock();
1649	put_cpu();
1650
1651	return t;
1652}
1653
1654static bool busywait_stop(unsigned long timeout, unsigned int cpu)
1655{
1656	unsigned int this_cpu;
1657
1658	if (time_after(local_clock_ns(&this_cpu), timeout))
1659		return true;
1660
1661	return this_cpu != cpu;
1662}
1663
1664static bool __i915_spin_request(const struct i915_request * const rq, int state)
 
1665{
1666	unsigned long timeout_ns;
1667	unsigned int cpu;
 
 
1668
1669	/*
1670	 * Only wait for the request if we know it is likely to complete.
1671	 *
1672	 * We don't track the timestamps around requests, nor the average
1673	 * request length, so we do not have a good indicator that this
1674	 * request will complete within the timeout. What we do know is the
1675	 * order in which requests are executed by the context and so we can
1676	 * tell if the request has been started. If the request is not even
1677	 * running yet, it is a fair assumption that it will not complete
1678	 * within our relatively short timeout.
1679	 */
1680	if (!i915_request_is_running(rq))
1681		return false;
1682
1683	/*
1684	 * When waiting for high frequency requests, e.g. during synchronous
1685	 * rendering split between the CPU and GPU, the finite amount of time
1686	 * required to set up the irq and wait upon it limits the response
1687	 * rate. By busywaiting on the request completion for a short while we
1688	 * can service the high frequency waits as quick as possible. However,
1689	 * if it is a slow request, we want to sleep as quickly as possible.
1690	 * The tradeoff between waiting and sleeping is roughly the time it
1691	 * takes to sleep on a request, on the order of a microsecond.
1692	 */
1693
1694	timeout_ns = READ_ONCE(rq->engine->props.max_busywait_duration_ns);
1695	timeout_ns += local_clock_ns(&cpu);
1696	do {
1697		if (i915_request_completed(rq))
1698			return true;
 
 
 
 
 
 
 
 
 
1699
1700		if (signal_pending_state(state, current))
1701			break;
1702
1703		if (busywait_stop(timeout_ns, cpu))
1704			break;
1705
1706		cpu_relax();
1707	} while (!need_resched());
1708
1709	return false;
1710}
1711
1712struct request_wait {
1713	struct dma_fence_cb cb;
1714	struct task_struct *tsk;
1715};
1716
1717static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb)
1718{
1719	struct request_wait *wait = container_of(cb, typeof(*wait), cb);
 
1720
1721	wake_up_process(wait->tsk);
 
 
1722}
1723
1724/**
1725 * i915_request_wait - wait until execution of request has finished
1726 * @rq: the request to wait upon
1727 * @flags: how to wait
1728 * @timeout: how long to wait in jiffies
1729 *
1730 * i915_request_wait() waits for the request to be completed, for a
1731 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
1732 * unbounded wait).
1733 *
 
 
 
 
1734 * Returns the remaining time (in jiffies) if the request completed, which may
1735 * be zero or -ETIME if the request is unfinished after the timeout expires.
1736 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
1737 * pending before the request completes.
1738 */
1739long i915_request_wait(struct i915_request *rq,
1740		       unsigned int flags,
1741		       long timeout)
1742{
1743	const int state = flags & I915_WAIT_INTERRUPTIBLE ?
1744		TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1745	struct request_wait wait;
 
 
 
1746
1747	might_sleep();
 
 
 
 
 
1748	GEM_BUG_ON(timeout < 0);
1749
1750	if (dma_fence_is_signaled(&rq->fence))
1751		return timeout;
1752
1753	if (!timeout)
1754		return -ETIME;
1755
1756	trace_i915_request_wait_begin(rq, flags);
1757
1758	/*
1759	 * We must never wait on the GPU while holding a lock as we
1760	 * may need to perform a GPU reset. So while we don't need to
1761	 * serialise wait/reset with an explicit lock, we do want
1762	 * lockdep to detect potential dependency cycles.
1763	 */
1764	mutex_acquire(&rq->engine->gt->reset.mutex.dep_map, 0, 0, _THIS_IP_);
1765
1766	/*
1767	 * Optimistic spin before touching IRQs.
1768	 *
1769	 * We may use a rather large value here to offset the penalty of
1770	 * switching away from the active task. Frequently, the client will
1771	 * wait upon an old swapbuffer to throttle itself to remain within a
1772	 * frame of the gpu. If the client is running in lockstep with the gpu,
1773	 * then it should not be waiting long at all, and a sleep now will incur
1774	 * extra scheduler latency in producing the next frame. To try to
1775	 * avoid adding the cost of enabling/disabling the interrupt to the
1776	 * short wait, we first spin to see if the request would have completed
1777	 * in the time taken to setup the interrupt.
1778	 *
1779	 * We need upto 5us to enable the irq, and upto 20us to hide the
1780	 * scheduler latency of a context switch, ignoring the secondary
1781	 * impacts from a context switch such as cache eviction.
1782	 *
1783	 * The scheme used for low-latency IO is called "hybrid interrupt
1784	 * polling". The suggestion there is to sleep until just before you
1785	 * expect to be woken by the device interrupt and then poll for its
1786	 * completion. That requires having a good predictor for the request
1787	 * duration, which we currently lack.
1788	 */
1789	if (IS_ACTIVE(CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT) &&
1790	    __i915_spin_request(rq, state)) {
1791		dma_fence_signal(&rq->fence);
1792		goto out;
1793	}
1794
1795	/*
1796	 * This client is about to stall waiting for the GPU. In many cases
1797	 * this is undesirable and limits the throughput of the system, as
1798	 * many clients cannot continue processing user input/output whilst
1799	 * blocked. RPS autotuning may take tens of milliseconds to respond
1800	 * to the GPU load and thus incurs additional latency for the client.
1801	 * We can circumvent that by promoting the GPU frequency to maximum
1802	 * before we sleep. This makes the GPU throttle up much more quickly
1803	 * (good for benchmarks and user experience, e.g. window animations),
1804	 * but at a cost of spending more power processing the workload
1805	 * (bad for battery).
1806	 */
1807	if (flags & I915_WAIT_PRIORITY) {
1808		if (!i915_request_started(rq) &&
1809		    INTEL_GEN(rq->engine->i915) >= 6)
1810			intel_rps_boost(rq);
1811	}
1812
1813	wait.tsk = current;
1814	if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake))
1815		goto out;
1816
1817	for (;;) {
 
1818		set_current_state(state);
1819
1820		if (i915_request_completed(rq)) {
1821			dma_fence_signal(&rq->fence);
1822			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
1823		}
1824
1825		intel_engine_flush_submission(rq->engine);
 
1826
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1827		if (signal_pending_state(state, current)) {
1828			timeout = -ERESTARTSYS;
1829			break;
1830		}
1831
1832		if (!timeout) {
1833			timeout = -ETIME;
1834			break;
1835		}
1836
1837		timeout = io_schedule_timeout(timeout);
1838	}
1839	__set_current_state(TASK_RUNNING);
1840
1841	dma_fence_remove_callback(&rq->fence, &wait.cb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1842
1843out:
1844	mutex_release(&rq->engine->gt->reset.mutex.dep_map, _THIS_IP_);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1845	trace_i915_request_wait_end(rq);
 
1846	return timeout;
1847}
1848
1849#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1850#include "selftests/mock_request.c"
1851#include "selftests/i915_request.c"
1852#endif
1853
1854static void i915_global_request_shrink(void)
1855{
1856	kmem_cache_shrink(global.slab_execute_cbs);
1857	kmem_cache_shrink(global.slab_requests);
1858}
 
 
 
 
 
 
1859
1860static void i915_global_request_exit(void)
1861{
1862	kmem_cache_destroy(global.slab_execute_cbs);
1863	kmem_cache_destroy(global.slab_requests);
1864}
1865
1866static struct i915_global_request global = { {
1867	.shrink = i915_global_request_shrink,
1868	.exit = i915_global_request_exit,
1869} };
1870
1871int __init i915_global_request_init(void)
1872{
1873	global.slab_requests =
1874		kmem_cache_create("i915_request",
1875				  sizeof(struct i915_request),
1876				  __alignof__(struct i915_request),
1877				  SLAB_HWCACHE_ALIGN |
1878				  SLAB_RECLAIM_ACCOUNT |
1879				  SLAB_TYPESAFE_BY_RCU,
1880				  __i915_request_ctor);
1881	if (!global.slab_requests)
1882		return -ENOMEM;
1883
1884	global.slab_execute_cbs = KMEM_CACHE(execute_cb,
1885					     SLAB_HWCACHE_ALIGN |
1886					     SLAB_RECLAIM_ACCOUNT |
1887					     SLAB_TYPESAFE_BY_RCU);
1888	if (!global.slab_execute_cbs)
1889		goto err_requests;
1890
1891	i915_global_register(&global.base);
1892	return 0;
1893
1894err_requests:
1895	kmem_cache_destroy(global.slab_requests);
1896	return -ENOMEM;
1897}
v4.17
   1/*
   2 * Copyright © 2008-2015 Intel Corporation
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice (including the next
  12 * paragraph) shall be included in all copies or substantial portions of the
  13 * Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21 * IN THE SOFTWARE.
  22 *
  23 */
  24
 
 
 
  25#include <linux/prefetch.h>
  26#include <linux/dma-fence-array.h>
  27#include <linux/sched.h>
  28#include <linux/sched/clock.h>
  29#include <linux/sched/signal.h>
  30
 
 
 
 
 
 
  31#include "i915_drv.h"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  32
  33static const char *i915_fence_get_driver_name(struct dma_fence *fence)
  34{
  35	return "i915";
  36}
  37
  38static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
  39{
 
 
  40	/*
  41	 * The timeline struct (as part of the ppgtt underneath a context)
  42	 * may be freed when the request is no longer in use by the GPU.
  43	 * We could extend the life of a context to beyond that of all
  44	 * fences, possibly keeping the hw resource around indefinitely,
  45	 * or we just give them a false name. Since
  46	 * dma_fence_ops.get_timeline_name is a debug feature, the occasional
  47	 * lie seems justifiable.
  48	 */
  49	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
  50		return "signaled";
  51
  52	return to_request(fence)->timeline->common->name;
 
 
 
 
  53}
  54
  55static bool i915_fence_signaled(struct dma_fence *fence)
  56{
  57	return i915_request_completed(to_request(fence));
  58}
  59
  60static bool i915_fence_enable_signaling(struct dma_fence *fence)
  61{
  62	if (i915_fence_signaled(fence))
  63		return false;
  64
  65	intel_engine_enable_signaling(to_request(fence), true);
  66	return !i915_fence_signaled(fence);
  67}
  68
  69static signed long i915_fence_wait(struct dma_fence *fence,
  70				   bool interruptible,
  71				   signed long timeout)
  72{
  73	return i915_request_wait(to_request(fence), interruptible, timeout);
 
 
 
 
 
 
 
  74}
  75
  76static void i915_fence_release(struct dma_fence *fence)
  77{
  78	struct i915_request *rq = to_request(fence);
  79
  80	/*
  81	 * The request is put onto a RCU freelist (i.e. the address
  82	 * is immediately reused), mark the fences as being freed now.
  83	 * Otherwise the debugobjects for the fences are only marked as
  84	 * freed when the slab cache itself is freed, and so we would get
  85	 * caught trying to reuse dead objects.
  86	 */
  87	i915_sw_fence_fini(&rq->submit);
 
  88
  89	kmem_cache_free(rq->i915->requests, rq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  90}
  91
  92const struct dma_fence_ops i915_fence_ops = {
  93	.get_driver_name = i915_fence_get_driver_name,
  94	.get_timeline_name = i915_fence_get_timeline_name,
  95	.enable_signaling = i915_fence_enable_signaling,
  96	.signaled = i915_fence_signaled,
  97	.wait = i915_fence_wait,
  98	.release = i915_fence_release,
  99};
 100
 101static inline void
 102i915_request_remove_from_client(struct i915_request *request)
 103{
 104	struct drm_i915_file_private *file_priv;
 105
 106	file_priv = request->file_priv;
 107	if (!file_priv)
 108		return;
 109
 110	spin_lock(&file_priv->mm.lock);
 111	if (request->file_priv) {
 112		list_del(&request->client_link);
 113		request->file_priv = NULL;
 114	}
 115	spin_unlock(&file_priv->mm.lock);
 116}
 117
 118static struct i915_dependency *
 119i915_dependency_alloc(struct drm_i915_private *i915)
 120{
 121	return kmem_cache_alloc(i915->dependencies, GFP_KERNEL);
 122}
 123
 124static void
 125i915_dependency_free(struct drm_i915_private *i915,
 126		     struct i915_dependency *dep)
 127{
 128	kmem_cache_free(i915->dependencies, dep);
 129}
 130
 131static void
 132__i915_priotree_add_dependency(struct i915_priotree *pt,
 133			       struct i915_priotree *signal,
 134			       struct i915_dependency *dep,
 135			       unsigned long flags)
 136{
 137	INIT_LIST_HEAD(&dep->dfs_link);
 138	list_add(&dep->wait_link, &signal->waiters_list);
 139	list_add(&dep->signal_link, &pt->signalers_list);
 140	dep->signaler = signal;
 141	dep->flags = flags;
 142}
 143
 144static int
 145i915_priotree_add_dependency(struct drm_i915_private *i915,
 146			     struct i915_priotree *pt,
 147			     struct i915_priotree *signal)
 148{
 149	struct i915_dependency *dep;
 150
 151	dep = i915_dependency_alloc(i915);
 152	if (!dep)
 153		return -ENOMEM;
 154
 155	__i915_priotree_add_dependency(pt, signal, dep, I915_DEPENDENCY_ALLOC);
 156	return 0;
 157}
 158
 159static void
 160i915_priotree_fini(struct drm_i915_private *i915, struct i915_priotree *pt)
 161{
 162	struct i915_dependency *dep, *next;
 163
 164	GEM_BUG_ON(!list_empty(&pt->link));
 165
 166	/*
 167	 * Everyone we depended upon (the fences we wait to be signaled)
 168	 * should retire before us and remove themselves from our list.
 169	 * However, retirement is run independently on each timeline and
 170	 * so we may be called out-of-order.
 
 
 
 
 171	 */
 172	list_for_each_entry_safe(dep, next, &pt->signalers_list, signal_link) {
 173		GEM_BUG_ON(!i915_priotree_signaled(dep->signaler));
 174		GEM_BUG_ON(!list_empty(&dep->dfs_link));
 175
 176		list_del(&dep->wait_link);
 177		if (dep->flags & I915_DEPENDENCY_ALLOC)
 178			i915_dependency_free(i915, dep);
 179	}
 180
 181	/* Remove ourselves from everyone who depends upon us */
 182	list_for_each_entry_safe(dep, next, &pt->waiters_list, wait_link) {
 183		GEM_BUG_ON(dep->signaler != pt);
 184		GEM_BUG_ON(!list_empty(&dep->dfs_link));
 185
 186		list_del(&dep->signal_link);
 187		if (dep->flags & I915_DEPENDENCY_ALLOC)
 188			i915_dependency_free(i915, dep);
 
 
 
 189	}
 
 190}
 191
 192static void
 193i915_priotree_init(struct i915_priotree *pt)
 194{
 195	INIT_LIST_HEAD(&pt->signalers_list);
 196	INIT_LIST_HEAD(&pt->waiters_list);
 197	INIT_LIST_HEAD(&pt->link);
 198	pt->priority = I915_PRIORITY_INVALID;
 199}
 200
 201static int reset_all_global_seqno(struct drm_i915_private *i915, u32 seqno)
 202{
 203	struct intel_engine_cs *engine;
 204	enum intel_engine_id id;
 205	int ret;
 206
 207	/* Carefully retire all requests without writing to the rings */
 208	ret = i915_gem_wait_for_idle(i915,
 209				     I915_WAIT_INTERRUPTIBLE |
 210				     I915_WAIT_LOCKED);
 211	if (ret)
 212		return ret;
 213
 214	/* If the seqno wraps around, we need to clear the breadcrumb rbtree */
 215	for_each_engine(engine, i915, id) {
 216		struct i915_gem_timeline *timeline;
 217		struct intel_timeline *tl = engine->timeline;
 218
 219		if (!i915_seqno_passed(seqno, tl->seqno)) {
 220			/* Flush any waiters before we reuse the seqno */
 221			intel_engine_disarm_breadcrumbs(engine);
 222			GEM_BUG_ON(!list_empty(&engine->breadcrumbs.signals));
 223		}
 224
 225		/* Check we are idle before we fiddle with hw state! */
 226		GEM_BUG_ON(!intel_engine_is_idle(engine));
 227		GEM_BUG_ON(i915_gem_active_isset(&engine->timeline->last_request));
 228
 229		/* Finally reset hw state */
 230		intel_engine_init_global_seqno(engine, seqno);
 231		tl->seqno = seqno;
 232
 233		list_for_each_entry(timeline, &i915->gt.timelines, link)
 234			memset(timeline->engine[id].global_sync, 0,
 235			       sizeof(timeline->engine[id].global_sync));
 236	}
 237
 238	return 0;
 239}
 240
 241int i915_gem_set_global_seqno(struct drm_device *dev, u32 seqno)
 242{
 243	struct drm_i915_private *i915 = to_i915(dev);
 
 244
 245	lockdep_assert_held(&i915->drm.struct_mutex);
 246
 247	if (seqno == 0)
 248		return -EINVAL;
 249
 250	/* HWS page needs to be set less than what we will inject to ring */
 251	return reset_all_global_seqno(i915, seqno - 1);
 252}
 253
 254static void mark_busy(struct drm_i915_private *i915)
 255{
 256	if (i915->gt.awake)
 257		return;
 258
 259	GEM_BUG_ON(!i915->gt.active_requests);
 260
 261	intel_runtime_pm_get_noresume(i915);
 262
 263	/*
 264	 * It seems that the DMC likes to transition between the DC states a lot
 265	 * when there are no connected displays (no active power domains) during
 266	 * command submission.
 267	 *
 268	 * This activity has negative impact on the performance of the chip with
 269	 * huge latencies observed in the interrupt handler and elsewhere.
 270	 *
 271	 * Work around it by grabbing a GT IRQ power domain whilst there is any
 272	 * GT activity, preventing any DC state transitions.
 273	 */
 274	intel_display_power_get(i915, POWER_DOMAIN_GT_IRQ);
 275
 276	i915->gt.awake = true;
 277	if (unlikely(++i915->gt.epoch == 0)) /* keep 0 as invalid */
 278		i915->gt.epoch = 1;
 279
 280	intel_enable_gt_powersave(i915);
 281	i915_update_gfx_val(i915);
 282	if (INTEL_GEN(i915) >= 6)
 283		gen6_rps_busy(i915);
 284	i915_pmu_gt_unparked(i915);
 285
 286	intel_engines_unpark(i915);
 287
 288	i915_queue_hangcheck(i915);
 289
 290	queue_delayed_work(i915->wq,
 291			   &i915->gt.retire_work,
 292			   round_jiffies_up_relative(HZ));
 293}
 294
 295static int reserve_engine(struct intel_engine_cs *engine)
 296{
 297	struct drm_i915_private *i915 = engine->i915;
 298	u32 active = ++engine->timeline->inflight_seqnos;
 299	u32 seqno = engine->timeline->seqno;
 300	int ret;
 301
 302	/* Reservation is fine until we need to wrap around */
 303	if (unlikely(add_overflows(seqno, active))) {
 304		ret = reset_all_global_seqno(i915, 0);
 305		if (ret) {
 306			engine->timeline->inflight_seqnos--;
 307			return ret;
 308		}
 309	}
 310
 311	if (!i915->gt.active_requests++)
 312		mark_busy(i915);
 313
 314	return 0;
 315}
 316
 317static void unreserve_engine(struct intel_engine_cs *engine)
 318{
 319	struct drm_i915_private *i915 = engine->i915;
 
 320
 321	if (!--i915->gt.active_requests) {
 322		/* Cancel the mark_busy() from our reserve_engine() */
 323		GEM_BUG_ON(!i915->gt.awake);
 324		mod_delayed_work(i915->wq,
 325				 &i915->gt.idle_work,
 326				 msecs_to_jiffies(100));
 327	}
 328
 329	GEM_BUG_ON(!engine->timeline->inflight_seqnos);
 330	engine->timeline->inflight_seqnos--;
 331}
 332
 333void i915_gem_retire_noop(struct i915_gem_active *active,
 334			  struct i915_request *request)
 335{
 336	/* Space left intentionally blank */
 337}
 338
 339static void advance_ring(struct i915_request *request)
 340{
 341	unsigned int tail;
 342
 343	/*
 344	 * We know the GPU must have read the request to have
 345	 * sent us the seqno + interrupt, so use the position
 346	 * of tail of the request to update the last known position
 347	 * of the GPU head.
 348	 *
 349	 * Note this requires that we are always called in request
 350	 * completion order.
 351	 */
 352	if (list_is_last(&request->ring_link, &request->ring->request_list)) {
 353		/*
 354		 * We may race here with execlists resubmitting this request
 355		 * as we retire it. The resubmission will move the ring->tail
 356		 * forwards (to request->wa_tail). We either read the
 357		 * current value that was written to hw, or the value that
 358		 * is just about to be. Either works, if we miss the last two
 359		 * noops - they are safe to be replayed on a reset.
 360		 */
 361		tail = READ_ONCE(request->ring->tail);
 362	} else {
 363		tail = request->postfix;
 364	}
 365	list_del(&request->ring_link);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 366
 367	request->ring->head = tail;
 368}
 369
 370static void free_capture_list(struct i915_request *request)
 371{
 372	struct i915_capture_list *capture;
 
 
 
 373
 374	capture = request->capture_list;
 375	while (capture) {
 376		struct i915_capture_list *next = capture->next;
 377
 378		kfree(capture);
 379		capture = next;
 380	}
 381}
 382
 383static void i915_request_retire(struct i915_request *request)
 384{
 385	struct intel_engine_cs *engine = request->engine;
 386	struct i915_gem_active *active, *next;
 
 387
 388	lockdep_assert_held(&request->i915->drm.struct_mutex);
 389	GEM_BUG_ON(!i915_sw_fence_signaled(&request->submit));
 390	GEM_BUG_ON(!i915_request_completed(request));
 391	GEM_BUG_ON(!request->i915->gt.active_requests);
 
 392
 393	trace_i915_request_retire(request);
 
 
 
 394
 395	spin_lock_irq(&engine->timeline->lock);
 396	list_del_init(&request->link);
 397	spin_unlock_irq(&engine->timeline->lock);
 398
 399	unreserve_engine(request->engine);
 400	advance_ring(request);
 401
 402	free_capture_list(request);
 403
 404	/*
 405	 * Walk through the active list, calling retire on each. This allows
 406	 * objects to track their GPU activity and mark themselves as idle
 407	 * when their *last* active request is completed (updating state
 408	 * tracking lists for eviction, active references for GEM, etc).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 409	 *
 410	 * As the ->retire() may free the node, we decouple it first and
 411	 * pass along the auxiliary information (to avoid dereferencing
 412	 * the node after the callback).
 
 
 
 
 413	 */
 414	list_for_each_entry_safe(active, next, &request->active_list, link) {
 415		/*
 416		 * In microbenchmarks or focusing upon time inside the kernel,
 417		 * we may spend an inordinate amount of time simply handling
 418		 * the retirement of requests and processing their callbacks.
 419		 * Of which, this loop itself is particularly hot due to the
 420		 * cache misses when jumping around the list of i915_gem_active.
 421		 * So we try to keep this loop as streamlined as possible and
 422		 * also prefetch the next i915_gem_active to try and hide
 423		 * the likely cache miss.
 424		 */
 425		prefetchw(next);
 426
 427		INIT_LIST_HEAD(&active->link);
 428		RCU_INIT_POINTER(active->request, NULL);
 
 
 
 
 
 
 
 
 
 429
 430		active->retire(active, request);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 431	}
 432
 433	i915_request_remove_from_client(request);
 
 
 434
 435	/* Retirement decays the ban score as it is a sign of ctx progress */
 436	atomic_dec_if_positive(&request->ctx->ban_score);
 
 
 
 
 
 
 
 437
 438	/*
 439	 * The backing object for the context is done after switching to the
 440	 * *next* context. Therefore we cannot retire the previous context until
 441	 * the next context has already started running. However, since we
 442	 * cannot take the required locks at i915_request_submit() we
 443	 * defer the unpinning of the active context to now, retirement of
 444	 * the subsequent request.
 445	 */
 446	if (engine->last_retired_context)
 447		engine->context_unpin(engine, engine->last_retired_context);
 448	engine->last_retired_context = request->ctx;
 449
 450	spin_lock_irq(&request->lock);
 451	if (!test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &request->fence.flags))
 452		dma_fence_signal_locked(&request->fence);
 453	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
 454		intel_engine_cancel_signaling(request);
 455	if (request->waitboost) {
 456		GEM_BUG_ON(!atomic_read(&request->i915->gt_pm.rps.num_waiters));
 457		atomic_dec(&request->i915->gt_pm.rps.num_waiters);
 458	}
 459	spin_unlock_irq(&request->lock);
 460
 461	i915_priotree_fini(request->i915, &request->priotree);
 462	i915_request_put(request);
 463}
 464
 465void i915_request_retire_upto(struct i915_request *rq)
 466{
 467	struct intel_engine_cs *engine = rq->engine;
 468	struct i915_request *tmp;
 
 
 
 
 
 
 
 469
 470	lockdep_assert_held(&rq->i915->drm.struct_mutex);
 471	GEM_BUG_ON(!i915_request_completed(rq));
 
 472
 473	if (list_empty(&rq->link))
 474		return;
 475
 476	do {
 477		tmp = list_first_entry(&engine->timeline->requests,
 478				       typeof(*tmp), link);
 479
 480		i915_request_retire(tmp);
 481	} while (tmp != rq);
 
 482}
 483
 484static u32 timeline_get_seqno(struct intel_timeline *tl)
 485{
 486	return ++tl->seqno;
 
 
 
 
 
 
 
 
 
 
 
 487}
 488
 489void __i915_request_submit(struct i915_request *request)
 490{
 491	struct intel_engine_cs *engine = request->engine;
 492	struct intel_timeline *timeline;
 493	u32 seqno;
 
 494
 495	GEM_BUG_ON(!irqs_disabled());
 496	lockdep_assert_held(&engine->timeline->lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 497
 498	/* Transfer from per-context onto the global per-engine timeline */
 499	timeline = engine->timeline;
 500	GEM_BUG_ON(timeline == request->timeline);
 501	GEM_BUG_ON(request->global_seqno);
 502
 503	seqno = timeline_get_seqno(timeline);
 504	GEM_BUG_ON(!seqno);
 505	GEM_BUG_ON(i915_seqno_passed(intel_engine_get_seqno(engine), seqno));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 506
 507	/* We may be recursing from the signal callback of another i915 fence */
 508	spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
 509	request->global_seqno = seqno;
 510	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
 511		intel_engine_enable_signaling(request, false);
 512	spin_unlock(&request->lock);
 513
 514	engine->emit_breadcrumb(request,
 515				request->ring->vaddr + request->postfix);
 
 
 
 516
 517	spin_lock(&request->timeline->lock);
 518	list_move_tail(&request->link, &timeline->requests);
 519	spin_unlock(&request->timeline->lock);
 520
 521	trace_i915_request_execute(request);
 522
 523	wake_up_all(&request->execute);
 524}
 525
 526void i915_request_submit(struct i915_request *request)
 527{
 528	struct intel_engine_cs *engine = request->engine;
 529	unsigned long flags;
 530
 531	/* Will be called from irq-context when using foreign fences. */
 532	spin_lock_irqsave(&engine->timeline->lock, flags);
 533
 534	__i915_request_submit(request);
 535
 536	spin_unlock_irqrestore(&engine->timeline->lock, flags);
 537}
 538
 539void __i915_request_unsubmit(struct i915_request *request)
 540{
 541	struct intel_engine_cs *engine = request->engine;
 542	struct intel_timeline *timeline;
 
 543
 544	GEM_BUG_ON(!irqs_disabled());
 545	lockdep_assert_held(&engine->timeline->lock);
 546
 547	/*
 548	 * Only unwind in reverse order, required so that the per-context list
 549	 * is kept in seqno/ring order.
 550	 */
 551	GEM_BUG_ON(!request->global_seqno);
 552	GEM_BUG_ON(request->global_seqno != engine->timeline->seqno);
 553	GEM_BUG_ON(i915_seqno_passed(intel_engine_get_seqno(engine),
 554				     request->global_seqno));
 555	engine->timeline->seqno--;
 556
 557	/* We may be recursing from the signal callback of another i915 fence */
 558	spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
 559	request->global_seqno = 0;
 560	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
 561		intel_engine_cancel_signaling(request);
 
 
 
 
 562	spin_unlock(&request->lock);
 563
 564	/* Transfer back from the global per-engine timeline to per-context */
 565	timeline = request->timeline;
 566	GEM_BUG_ON(timeline == engine->timeline);
 567
 568	spin_lock(&timeline->lock);
 569	list_move(&request->link, &timeline->requests);
 570	spin_unlock(&timeline->lock);
 571
 572	/*
 573	 * We don't need to wake_up any waiters on request->execute, they
 574	 * will get woken by any other event or us re-adding this request
 575	 * to the engine timeline (__i915_request_submit()). The waiters
 576	 * should be quite adapt at finding that the request now has a new
 577	 * global_seqno to the one they went to sleep on.
 578	 */
 579}
 580
 581void i915_request_unsubmit(struct i915_request *request)
 582{
 583	struct intel_engine_cs *engine = request->engine;
 584	unsigned long flags;
 585
 586	/* Will be called from irq-context when using foreign fences. */
 587	spin_lock_irqsave(&engine->timeline->lock, flags);
 588
 589	__i915_request_unsubmit(request);
 590
 591	spin_unlock_irqrestore(&engine->timeline->lock, flags);
 592}
 593
 594static int __i915_sw_fence_call
 595submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
 596{
 597	struct i915_request *request =
 598		container_of(fence, typeof(*request), submit);
 599
 600	switch (state) {
 601	case FENCE_COMPLETE:
 602		trace_i915_request_submit(request);
 
 
 
 
 603		/*
 604		 * We need to serialize use of the submit_request() callback
 605		 * with its hotplugging performed during an emergency
 606		 * i915_gem_set_wedged().  We use the RCU mechanism to mark the
 607		 * critical section in order to force i915_gem_set_wedged() to
 608		 * wait until the submit_request() is completed before
 609		 * proceeding.
 610		 */
 611		rcu_read_lock();
 612		request->engine->submit_request(request);
 613		rcu_read_unlock();
 614		break;
 615
 616	case FENCE_FREE:
 617		i915_request_put(request);
 618		break;
 619	}
 620
 621	return NOTIFY_DONE;
 622}
 623
 624/**
 625 * i915_request_alloc - allocate a request structure
 626 *
 627 * @engine: engine that we wish to issue the request on.
 628 * @ctx: context that the request will be associated with.
 629 *
 630 * Returns a pointer to the allocated request if successful,
 631 * or an error code if not.
 632 */
 633struct i915_request *
 634i915_request_alloc(struct intel_engine_cs *engine, struct i915_gem_context *ctx)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 635{
 636	struct drm_i915_private *i915 = engine->i915;
 637	struct i915_request *rq;
 638	struct intel_ring *ring;
 639	int ret;
 640
 641	lockdep_assert_held(&i915->drm.struct_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 642
 643	/*
 644	 * Preempt contexts are reserved for exclusive use to inject a
 645	 * preemption context switch. They are never to be used for any trivial
 646	 * request!
 647	 */
 648	GEM_BUG_ON(ctx == i915->preempt_context);
 649
 650	/*
 651	 * ABI: Before userspace accesses the GPU (e.g. execbuffer), report
 652	 * EIO if the GPU is already wedged.
 653	 */
 654	if (i915_terminally_wedged(&i915->gpu_error))
 655		return ERR_PTR(-EIO);
 656
 657	/*
 658	 * Pinning the contexts may generate requests in order to acquire
 659	 * GGTT space, so do this first before we reserve a seqno for
 660	 * ourselves.
 661	 */
 662	ring = engine->context_pin(engine, ctx);
 663	if (IS_ERR(ring))
 664		return ERR_CAST(ring);
 665	GEM_BUG_ON(!ring);
 666
 667	ret = reserve_engine(engine);
 668	if (ret)
 669		goto err_unpin;
 
 
 
 
 670
 671	ret = intel_ring_wait_for_space(ring, MIN_SPACE_FOR_ADD_REQUEST);
 672	if (ret)
 673		goto err_unreserve;
 674
 675	/* Move the oldest request to the slab-cache (if not in use!) */
 676	rq = list_first_entry_or_null(&engine->timeline->requests,
 677				      typeof(*rq), link);
 678	if (rq && i915_request_completed(rq))
 679		i915_request_retire(rq);
 680
 681	/*
 682	 * Beware: Dragons be flying overhead.
 683	 *
 684	 * We use RCU to look up requests in flight. The lookups may
 685	 * race with the request being allocated from the slab freelist.
 686	 * That is the request we are writing to here, may be in the process
 687	 * of being read by __i915_gem_active_get_rcu(). As such,
 688	 * we have to be very careful when overwriting the contents. During
 689	 * the RCU lookup, we change chase the request->engine pointer,
 690	 * read the request->global_seqno and increment the reference count.
 691	 *
 692	 * The reference count is incremented atomically. If it is zero,
 693	 * the lookup knows the request is unallocated and complete. Otherwise,
 694	 * it is either still in use, or has been reallocated and reset
 695	 * with dma_fence_init(). This increment is safe for release as we
 696	 * check that the request we have a reference to and matches the active
 697	 * request.
 698	 *
 699	 * Before we increment the refcount, we chase the request->engine
 700	 * pointer. We must not call kmem_cache_zalloc() or else we set
 701	 * that pointer to NULL and cause a crash during the lookup. If
 702	 * we see the request is completed (based on the value of the
 703	 * old engine and seqno), the lookup is complete and reports NULL.
 704	 * If we decide the request is not completed (new engine or seqno),
 705	 * then we grab a reference and double check that it is still the
 706	 * active request - which it won't be and restart the lookup.
 707	 *
 708	 * Do not use kmem_cache_zalloc() here!
 709	 */
 710	rq = kmem_cache_alloc(i915->requests,
 711			      GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
 712	if (unlikely(!rq)) {
 713		/* Ratelimit ourselves to prevent oom from malicious clients */
 714		ret = i915_gem_wait_for_idle(i915,
 715					     I915_WAIT_LOCKED |
 716					     I915_WAIT_INTERRUPTIBLE);
 717		if (ret)
 718			goto err_unreserve;
 719
 720		/*
 721		 * We've forced the client to stall and catch up with whatever
 722		 * backlog there might have been. As we are assuming that we
 723		 * caused the mempressure, now is an opportune time to
 724		 * recover as much memory from the request pool as is possible.
 725		 * Having already penalized the client to stall, we spend
 726		 * a little extra time to re-optimise page allocation.
 727		 */
 728		kmem_cache_shrink(i915->requests);
 729		rcu_barrier(); /* Recover the TYPESAFE_BY_RCU pages */
 730
 731		rq = kmem_cache_alloc(i915->requests, GFP_KERNEL);
 732		if (!rq) {
 733			ret = -ENOMEM;
 734			goto err_unreserve;
 735		}
 736	}
 737
 738	rq->timeline = i915_gem_context_lookup_timeline(ctx, engine);
 739	GEM_BUG_ON(rq->timeline == engine->timeline);
 
 
 
 
 
 
 
 740
 741	spin_lock_init(&rq->lock);
 742	dma_fence_init(&rq->fence,
 743		       &i915_fence_ops,
 744		       &rq->lock,
 745		       rq->timeline->fence_context,
 746		       timeline_get_seqno(rq->timeline));
 
 
 
 
 
 
 
 747
 748	/* We bump the ref for the fence chain */
 749	i915_sw_fence_init(&i915_request_get(rq)->submit, submit_notify);
 750	init_waitqueue_head(&rq->execute);
 751
 752	i915_priotree_init(&rq->priotree);
 753
 754	INIT_LIST_HEAD(&rq->active_list);
 755	rq->i915 = i915;
 756	rq->engine = engine;
 757	rq->ctx = ctx;
 758	rq->ring = ring;
 759
 760	/* No zalloc, must clear what we need by hand */
 761	rq->global_seqno = 0;
 762	rq->signaling.wait.seqno = 0;
 763	rq->file_priv = NULL;
 764	rq->batch = NULL;
 765	rq->capture_list = NULL;
 766	rq->waitboost = false;
 
 767
 768	/*
 769	 * Reserve space in the ring buffer for all the commands required to
 770	 * eventually emit this request. This is to guarantee that the
 771	 * i915_request_add() call can't fail. Note that the reserve may need
 772	 * to be redone if the request is not actually submitted straight
 773	 * away, e.g. because a GPU scheduler has deferred it.
 
 
 
 
 
 774	 */
 775	rq->reserved_space = MIN_SPACE_FOR_ADD_REQUEST;
 776	GEM_BUG_ON(rq->reserved_space < engine->emit_breadcrumb_sz);
 777
 778	/*
 779	 * Record the position of the start of the request so that
 780	 * should we detect the updated seqno part-way through the
 781	 * GPU processing the request, we never over-estimate the
 782	 * position of the head.
 783	 */
 784	rq->head = rq->ring->emit;
 785
 786	/* Unconditionally invalidate GPU caches and TLBs. */
 787	ret = engine->emit_flush(rq, EMIT_INVALIDATE);
 788	if (ret)
 789		goto err_unwind;
 790
 791	ret = engine->request_alloc(rq);
 792	if (ret)
 793		goto err_unwind;
 
 794
 795	/* Check that we didn't interrupt ourselves with a new request */
 796	GEM_BUG_ON(rq->timeline->seqno != rq->fence.seqno);
 797	return rq;
 798
 799err_unwind:
 800	rq->ring->emit = rq->head;
 801
 802	/* Make sure we didn't add ourselves to external state before freeing */
 803	GEM_BUG_ON(!list_empty(&rq->active_list));
 804	GEM_BUG_ON(!list_empty(&rq->priotree.signalers_list));
 805	GEM_BUG_ON(!list_empty(&rq->priotree.waiters_list));
 806
 807	kmem_cache_free(i915->requests, rq);
 
 808err_unreserve:
 809	unreserve_engine(engine);
 810err_unpin:
 811	engine->context_unpin(engine, ctx);
 812	return ERR_PTR(ret);
 813}
 814
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 815static int
 816i915_request_await_request(struct i915_request *to, struct i915_request *from)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 817{
 818	int ret;
 819
 820	GEM_BUG_ON(to == from);
 821	GEM_BUG_ON(to->timeline == from->timeline);
 822
 823	if (i915_request_completed(from))
 
 
 
 
 
 
 
 824		return 0;
 825
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 826	if (to->engine->schedule) {
 827		ret = i915_priotree_add_dependency(to->i915,
 828						   &to->priotree,
 829						   &from->priotree);
 830		if (ret < 0)
 831			return ret;
 832	}
 833
 834	if (to->engine == from->engine) {
 835		ret = i915_sw_fence_await_sw_fence_gfp(&to->submit,
 836						       &from->submit,
 837						       I915_FENCE_GFP);
 838		return ret < 0 ? ret : 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 839	}
 840
 841	if (to->engine->semaphore.sync_to) {
 842		u32 seqno;
 
 843
 844		GEM_BUG_ON(!from->engine->semaphore.signal);
 
 
 
 
 
 
 
 
 845
 846		seqno = i915_request_global_seqno(from);
 847		if (!seqno)
 848			goto await_dma_fence;
 
 849
 850		if (seqno <= to->timeline->global_sync[from->engine->id])
 851			return 0;
 
 
 852
 853		trace_i915_gem_ring_sync_to(to, from);
 854		ret = to->engine->semaphore.sync_to(to, from);
 855		if (ret)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 856			return ret;
 
 
 
 
 857
 858		to->timeline->global_sync[from->engine->id] = seqno;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 859		return 0;
 860	}
 861
 862await_dma_fence:
 863	ret = i915_sw_fence_await_dma_fence(&to->submit,
 864					    &from->fence, 0,
 865					    I915_FENCE_GFP);
 866	return ret < 0 ? ret : 0;
 
 
 
 
 
 
 
 
 
 
 
 867}
 868
 869int
 870i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence)
 871{
 872	struct dma_fence **child = &fence;
 873	unsigned int nchild = 1;
 874	int ret;
 875
 876	/*
 877	 * Note that if the fence-array was created in signal-on-any mode,
 878	 * we should *not* decompose it into its individual fences. However,
 879	 * we don't currently store which mode the fence-array is operating
 880	 * in. Fortunately, the only user of signal-on-any is private to
 881	 * amdgpu and we should not see any incoming fence-array from
 882	 * sync-file being in signal-on-any mode.
 883	 */
 884	if (dma_fence_is_array(fence)) {
 885		struct dma_fence_array *array = to_dma_fence_array(fence);
 886
 887		child = array->fences;
 888		nchild = array->num_fences;
 889		GEM_BUG_ON(!nchild);
 890	}
 891
 892	do {
 893		fence = *child++;
 894		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
 
 895			continue;
 
 896
 897		/*
 898		 * Requests on the same timeline are explicitly ordered, along
 899		 * with their dependencies, by i915_request_add() which ensures
 900		 * that requests are submitted in-order through each ring.
 901		 */
 902		if (fence->context == rq->fence.context)
 903			continue;
 904
 905		/* Squash repeated waits to the same timelines */
 906		if (fence->context != rq->i915->mm.unordered_timeline &&
 907		    intel_timeline_sync_is_later(rq->timeline, fence))
 
 908			continue;
 909
 910		if (dma_fence_is_i915(fence))
 911			ret = i915_request_await_request(rq, to_request(fence));
 912		else
 913			ret = i915_sw_fence_await_dma_fence(&rq->submit, fence,
 914							    I915_FENCE_TIMEOUT,
 915							    I915_FENCE_GFP);
 916		if (ret < 0)
 917			return ret;
 918
 919		/* Record the latest fence used against each timeline */
 920		if (fence->context != rq->i915->mm.unordered_timeline)
 921			intel_timeline_sync_set(rq->timeline, fence);
 
 922	} while (--nchild);
 923
 924	return 0;
 925}
 926
 927/**
 928 * i915_request_await_object - set this request to (async) wait upon a bo
 929 * @to: request we are wishing to use
 930 * @obj: object which may be in use on another ring.
 931 * @write: whether the wait is on behalf of a writer
 932 *
 933 * This code is meant to abstract object synchronization with the GPU.
 934 * Conceptually we serialise writes between engines inside the GPU.
 935 * We only allow one engine to write into a buffer at any time, but
 936 * multiple readers. To ensure each has a coherent view of memory, we must:
 937 *
 938 * - If there is an outstanding write request to the object, the new
 939 *   request must wait for it to complete (either CPU or in hw, requests
 940 *   on the same ring will be naturally ordered).
 941 *
 942 * - If we are a write request (pending_write_domain is set), the new
 943 *   request must wait for outstanding read requests to complete.
 944 *
 945 * Returns 0 if successful, else propagates up the lower layer error.
 946 */
 947int
 948i915_request_await_object(struct i915_request *to,
 949			  struct drm_i915_gem_object *obj,
 950			  bool write)
 951{
 952	struct dma_fence *excl;
 953	int ret = 0;
 954
 955	if (write) {
 956		struct dma_fence **shared;
 957		unsigned int count, i;
 958
 959		ret = reservation_object_get_fences_rcu(obj->resv,
 960							&excl, &count, &shared);
 961		if (ret)
 962			return ret;
 963
 964		for (i = 0; i < count; i++) {
 965			ret = i915_request_await_dma_fence(to, shared[i]);
 966			if (ret)
 967				break;
 968
 969			dma_fence_put(shared[i]);
 970		}
 971
 972		for (; i < count; i++)
 973			dma_fence_put(shared[i]);
 974		kfree(shared);
 975	} else {
 976		excl = reservation_object_get_excl_rcu(obj->resv);
 977	}
 978
 979	if (excl) {
 980		if (ret == 0)
 981			ret = i915_request_await_dma_fence(to, excl);
 982
 983		dma_fence_put(excl);
 984	}
 985
 986	return ret;
 987}
 988
 989/*
 990 * NB: This function is not allowed to fail. Doing so would mean the the
 991 * request is not being tracked for completion but the work itself is
 992 * going to happen on the hardware. This would be a Bad Thing(tm).
 993 */
 994void __i915_request_add(struct i915_request *request, bool flush_caches)
 995{
 996	struct intel_engine_cs *engine = request->engine;
 997	struct intel_ring *ring = request->ring;
 998	struct intel_timeline *timeline = request->timeline;
 999	struct i915_request *prev;
1000	u32 *cs;
1001	int err;
1002
1003	lockdep_assert_held(&request->i915->drm.struct_mutex);
1004	trace_i915_request_add(request);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1005
1006	/*
1007	 * Make sure that no request gazumped us - if it was allocated after
1008	 * our i915_request_alloc() and called __i915_request_add() before
1009	 * us, the timeline will hold its seqno which is later than ours.
1010	 */
1011	GEM_BUG_ON(timeline->seqno != request->fence.seqno);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1012
1013	/*
1014	 * To ensure that this call will not fail, space for its emissions
1015	 * should already have been reserved in the ring buffer. Let the ring
1016	 * know that it is time to use that space up.
1017	 */
1018	request->reserved_space = 0;
1019
1020	/*
1021	 * Emit any outstanding flushes - execbuf can fail to emit the flush
1022	 * after having emitted the batchbuffer command. Hence we need to fix
1023	 * things up similar to emitting the lazy request. The difference here
1024	 * is that the flush _must_ happen before the next request, no matter
1025	 * what.
1026	 */
1027	if (flush_caches) {
1028		err = engine->emit_flush(request, EMIT_FLUSH);
1029
1030		/* Not allowed to fail! */
1031		WARN(err, "engine->emit_flush() failed: %d!\n", err);
1032	}
1033
1034	/*
1035	 * Record the position of the start of the breadcrumb so that
1036	 * should we detect the updated seqno part-way through the
1037	 * GPU processing the request, we never over-estimate the
1038	 * position of the ring's HEAD.
1039	 */
1040	cs = intel_ring_begin(request, engine->emit_breadcrumb_sz);
1041	GEM_BUG_ON(IS_ERR(cs));
1042	request->postfix = intel_ring_offset(request, cs);
1043
1044	/*
1045	 * Seal the request and mark it as pending execution. Note that
1046	 * we may inspect this state, without holding any locks, during
1047	 * hangcheck. Hence we apply the barrier to ensure that we do not
1048	 * see a more recent value in the hws than we are tracking.
1049	 */
1050
1051	prev = i915_gem_active_raw(&timeline->last_request,
1052				   &request->i915->drm.struct_mutex);
1053	if (prev && !i915_request_completed(prev)) {
1054		i915_sw_fence_await_sw_fence(&request->submit, &prev->submit,
1055					     &request->submitq);
1056		if (engine->schedule)
1057			__i915_priotree_add_dependency(&request->priotree,
1058						       &prev->priotree,
1059						       &request->dep,
1060						       0);
1061	}
1062
1063	spin_lock_irq(&timeline->lock);
1064	list_add_tail(&request->link, &timeline->requests);
1065	spin_unlock_irq(&timeline->lock);
1066
1067	GEM_BUG_ON(timeline->seqno != request->fence.seqno);
1068	i915_gem_active_set(&timeline->last_request, request);
1069
1070	list_add_tail(&request->ring_link, &ring->request_list);
1071	request->emitted_jiffies = jiffies;
1072
 
 
 
1073	/*
1074	 * Let the backend know a new request has arrived that may need
1075	 * to adjust the existing execution schedule due to a high priority
1076	 * request - i.e. we may want to preempt the current request in order
1077	 * to run a high priority dependency chain *before* we can execute this
1078	 * request.
1079	 *
1080	 * This is called before the request is ready to run so that we can
1081	 * decide whether to preempt the entire chain so that it is ready to
1082	 * run at the earliest possible convenience.
1083	 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1084	rcu_read_lock();
1085	if (engine->schedule)
1086		engine->schedule(request, request->ctx->priority);
 
1087	rcu_read_unlock();
1088
1089	local_bh_disable();
1090	i915_sw_fence_commit(&request->submit);
1091	local_bh_enable(); /* Kick the execlists tasklet if just scheduled */
1092
1093	/*
1094	 * In typical scenarios, we do not expect the previous request on
1095	 * the timeline to be still tracked by timeline->last_request if it
1096	 * has been completed. If the completed request is still here, that
1097	 * implies that request retirement is a long way behind submission,
1098	 * suggesting that we haven't been retiring frequently enough from
1099	 * the combination of retire-before-alloc, waiters and the background
1100	 * retirement worker. So if the last request on this timeline was
1101	 * already completed, do a catch up pass, flushing the retirement queue
1102	 * up to this client. Since we have now moved the heaviest operations
1103	 * during retirement onto secondary workers, such as freeing objects
1104	 * or contexts, retiring a bunch of requests is mostly list management
1105	 * (and cache misses), and so we should not be overly penalizing this
1106	 * client by performing excess work, though we may still performing
1107	 * work on behalf of others -- but instead we should benefit from
1108	 * improved resource management. (Well, that's the theory at least.)
1109	 */
1110	if (prev && i915_request_completed(prev))
1111		i915_request_retire_upto(prev);
1112}
1113
1114static unsigned long local_clock_us(unsigned int *cpu)
1115{
1116	unsigned long t;
1117
1118	/*
1119	 * Cheaply and approximately convert from nanoseconds to microseconds.
1120	 * The result and subsequent calculations are also defined in the same
1121	 * approximate microseconds units. The principal source of timing
1122	 * error here is from the simple truncation.
1123	 *
1124	 * Note that local_clock() is only defined wrt to the current CPU;
1125	 * the comparisons are no longer valid if we switch CPUs. Instead of
1126	 * blocking preemption for the entire busywait, we can detect the CPU
1127	 * switch and use that as indicator of system load and a reason to
1128	 * stop busywaiting, see busywait_stop().
1129	 */
1130	*cpu = get_cpu();
1131	t = local_clock() >> 10;
1132	put_cpu();
1133
1134	return t;
1135}
1136
1137static bool busywait_stop(unsigned long timeout, unsigned int cpu)
1138{
1139	unsigned int this_cpu;
1140
1141	if (time_after(local_clock_us(&this_cpu), timeout))
1142		return true;
1143
1144	return this_cpu != cpu;
1145}
1146
1147static bool __i915_spin_request(const struct i915_request *rq,
1148				u32 seqno, int state, unsigned long timeout_us)
1149{
1150	struct intel_engine_cs *engine = rq->engine;
1151	unsigned int irq, cpu;
1152
1153	GEM_BUG_ON(!seqno);
1154
1155	/*
1156	 * Only wait for the request if we know it is likely to complete.
1157	 *
1158	 * We don't track the timestamps around requests, nor the average
1159	 * request length, so we do not have a good indicator that this
1160	 * request will complete within the timeout. What we do know is the
1161	 * order in which requests are executed by the engine and so we can
1162	 * tell if the request has started. If the request hasn't started yet,
1163	 * it is a fair assumption that it will not complete within our
1164	 * relatively short timeout.
1165	 */
1166	if (!i915_seqno_passed(intel_engine_get_seqno(engine), seqno - 1))
1167		return false;
1168
1169	/*
1170	 * When waiting for high frequency requests, e.g. during synchronous
1171	 * rendering split between the CPU and GPU, the finite amount of time
1172	 * required to set up the irq and wait upon it limits the response
1173	 * rate. By busywaiting on the request completion for a short while we
1174	 * can service the high frequency waits as quick as possible. However,
1175	 * if it is a slow request, we want to sleep as quickly as possible.
1176	 * The tradeoff between waiting and sleeping is roughly the time it
1177	 * takes to sleep on a request, on the order of a microsecond.
1178	 */
1179
1180	irq = atomic_read(&engine->irq_count);
1181	timeout_us += local_clock_us(&cpu);
1182	do {
1183		if (i915_seqno_passed(intel_engine_get_seqno(engine), seqno))
1184			return seqno == i915_request_global_seqno(rq);
1185
1186		/*
1187		 * Seqno are meant to be ordered *before* the interrupt. If
1188		 * we see an interrupt without a corresponding seqno advance,
1189		 * assume we won't see one in the near future but require
1190		 * the engine->seqno_barrier() to fixup coherency.
1191		 */
1192		if (atomic_read(&engine->irq_count) != irq)
1193			break;
1194
1195		if (signal_pending_state(state, current))
1196			break;
1197
1198		if (busywait_stop(timeout_us, cpu))
1199			break;
1200
1201		cpu_relax();
1202	} while (!need_resched());
1203
1204	return false;
1205}
1206
1207static bool __i915_wait_request_check_and_reset(struct i915_request *request)
 
 
 
 
 
1208{
1209	if (likely(!i915_reset_handoff(&request->i915->gpu_error)))
1210		return false;
1211
1212	__set_current_state(TASK_RUNNING);
1213	i915_reset(request->i915, 0);
1214	return true;
1215}
1216
1217/**
1218 * i915_request_wait - wait until execution of request has finished
1219 * @rq: the request to wait upon
1220 * @flags: how to wait
1221 * @timeout: how long to wait in jiffies
1222 *
1223 * i915_request_wait() waits for the request to be completed, for a
1224 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
1225 * unbounded wait).
1226 *
1227 * If the caller holds the struct_mutex, the caller must pass I915_WAIT_LOCKED
1228 * in via the flags, and vice versa if the struct_mutex is not held, the caller
1229 * must not specify that the wait is locked.
1230 *
1231 * Returns the remaining time (in jiffies) if the request completed, which may
1232 * be zero or -ETIME if the request is unfinished after the timeout expires.
1233 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
1234 * pending before the request completes.
1235 */
1236long i915_request_wait(struct i915_request *rq,
1237		       unsigned int flags,
1238		       long timeout)
1239{
1240	const int state = flags & I915_WAIT_INTERRUPTIBLE ?
1241		TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1242	wait_queue_head_t *errq = &rq->i915->gpu_error.wait_queue;
1243	DEFINE_WAIT_FUNC(reset, default_wake_function);
1244	DEFINE_WAIT_FUNC(exec, default_wake_function);
1245	struct intel_wait wait;
1246
1247	might_sleep();
1248#if IS_ENABLED(CONFIG_LOCKDEP)
1249	GEM_BUG_ON(debug_locks &&
1250		   !!lockdep_is_held(&rq->i915->drm.struct_mutex) !=
1251		   !!(flags & I915_WAIT_LOCKED));
1252#endif
1253	GEM_BUG_ON(timeout < 0);
1254
1255	if (i915_request_completed(rq))
1256		return timeout;
1257
1258	if (!timeout)
1259		return -ETIME;
1260
1261	trace_i915_request_wait_begin(rq, flags);
1262
1263	add_wait_queue(&rq->execute, &exec);
1264	if (flags & I915_WAIT_LOCKED)
1265		add_wait_queue(errq, &reset);
 
 
 
 
1266
1267	intel_wait_init(&wait, rq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1268
1269restart:
1270	do {
1271		set_current_state(state);
1272		if (intel_wait_update_request(&wait, rq))
 
 
1273			break;
1274
1275		if (flags & I915_WAIT_LOCKED &&
1276		    __i915_wait_request_check_and_reset(rq))
1277			continue;
1278
1279		if (signal_pending_state(state, current)) {
1280			timeout = -ERESTARTSYS;
1281			goto complete;
1282		}
1283
1284		if (!timeout) {
1285			timeout = -ETIME;
1286			goto complete;
1287		}
1288
1289		timeout = io_schedule_timeout(timeout);
1290	} while (1);
1291
1292	GEM_BUG_ON(!intel_wait_has_seqno(&wait));
1293	GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
1294
1295	/* Optimistic short spin before touching IRQs */
1296	if (__i915_spin_request(rq, wait.seqno, state, 5))
1297		goto complete;
1298
1299	set_current_state(state);
1300	if (intel_engine_add_wait(rq->engine, &wait))
1301		/*
1302		 * In order to check that we haven't missed the interrupt
1303		 * as we enabled it, we need to kick ourselves to do a
1304		 * coherent check on the seqno before we sleep.
1305		 */
1306		goto wakeup;
1307
1308	if (flags & I915_WAIT_LOCKED)
1309		__i915_wait_request_check_and_reset(rq);
1310
1311	for (;;) {
1312		if (signal_pending_state(state, current)) {
1313			timeout = -ERESTARTSYS;
1314			break;
1315		}
1316
1317		if (!timeout) {
1318			timeout = -ETIME;
1319			break;
1320		}
1321
1322		timeout = io_schedule_timeout(timeout);
 
 
1323
1324		if (intel_wait_complete(&wait) &&
1325		    intel_wait_check_request(&wait, rq))
1326			break;
1327
1328		set_current_state(state);
1329
1330wakeup:
1331		/*
1332		 * Carefully check if the request is complete, giving time
1333		 * for the seqno to be visible following the interrupt.
1334		 * We also have to check in case we are kicked by the GPU
1335		 * reset in order to drop the struct_mutex.
1336		 */
1337		if (__i915_request_irq_complete(rq))
1338			break;
1339
1340		/*
1341		 * If the GPU is hung, and we hold the lock, reset the GPU
1342		 * and then check for completion. On a full reset, the engine's
1343		 * HW seqno will be advanced passed us and we are complete.
1344		 * If we do a partial reset, we have to wait for the GPU to
1345		 * resume and update the breadcrumb.
1346		 *
1347		 * If we don't hold the mutex, we can just wait for the worker
1348		 * to come along and update the breadcrumb (either directly
1349		 * itself, or indirectly by recovering the GPU).
1350		 */
1351		if (flags & I915_WAIT_LOCKED &&
1352		    __i915_wait_request_check_and_reset(rq))
1353			continue;
1354
1355		/* Only spin if we know the GPU is processing this request */
1356		if (__i915_spin_request(rq, wait.seqno, state, 2))
1357			break;
1358
1359		if (!intel_wait_check_request(&wait, rq)) {
1360			intel_engine_remove_wait(rq->engine, &wait);
1361			goto restart;
1362		}
1363	}
1364
1365	intel_engine_remove_wait(rq->engine, &wait);
1366complete:
1367	__set_current_state(TASK_RUNNING);
1368	if (flags & I915_WAIT_LOCKED)
1369		remove_wait_queue(errq, &reset);
1370	remove_wait_queue(&rq->execute, &exec);
1371	trace_i915_request_wait_end(rq);
1372
1373	return timeout;
1374}
1375
1376static void engine_retire_requests(struct intel_engine_cs *engine)
 
 
 
 
 
1377{
1378	struct i915_request *request, *next;
1379	u32 seqno = intel_engine_get_seqno(engine);
1380	LIST_HEAD(retire);
1381
1382	spin_lock_irq(&engine->timeline->lock);
1383	list_for_each_entry_safe(request, next,
1384				 &engine->timeline->requests, link) {
1385		if (!i915_seqno_passed(seqno, request->global_seqno))
1386			break;
1387
1388		list_move_tail(&request->link, &retire);
1389	}
1390	spin_unlock_irq(&engine->timeline->lock);
 
 
1391
1392	list_for_each_entry_safe(request, next, &retire, link)
1393		i915_request_retire(request);
1394}
 
1395
1396void i915_retire_requests(struct drm_i915_private *i915)
1397{
1398	struct intel_engine_cs *engine;
1399	enum intel_engine_id id;
 
 
 
 
 
 
 
 
1400
1401	lockdep_assert_held(&i915->drm.struct_mutex);
 
 
 
 
 
1402
1403	if (!i915->gt.active_requests)
1404		return;
1405
1406	for_each_engine(engine, i915, id)
1407		engine_retire_requests(engine);
 
1408}
1409
1410#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1411#include "selftests/mock_request.c"
1412#include "selftests/i915_request.c"
1413#endif