Linux Audio

Check our new training course

Loading...
v5.9
   1/**************************************************************************
   2 *
   3 * Copyright 2006 Tungsten Graphics, Inc., Bismarck, ND., USA.
   4 * Copyright 2016 Intel Corporation
   5 * All Rights Reserved.
   6 *
   7 * Permission is hereby granted, free of charge, to any person obtaining a
   8 * copy of this software and associated documentation files (the
   9 * "Software"), to deal in the Software without restriction, including
  10 * without limitation the rights to use, copy, modify, merge, publish,
  11 * distribute, sub license, and/or sell copies of the Software, and to
  12 * permit persons to whom the Software is furnished to do so, subject to
  13 * the following conditions:
  14 *
  15 * The above copyright notice and this permission notice (including the
  16 * next paragraph) shall be included in all copies or substantial portions
  17 * of the Software.
  18 *
  19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  21 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
  22 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
  23 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
  24 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
  25 * USE OR OTHER DEALINGS IN THE SOFTWARE.
  26 *
  27 *
  28 **************************************************************************/
  29
  30/*
  31 * Generic simple memory manager implementation. Intended to be used as a base
  32 * class implementation for more advanced memory managers.
  33 *
  34 * Note that the algorithm used is quite simple and there might be substantial
  35 * performance gains if a smarter free list is implemented. Currently it is
  36 * just an unordered stack of free regions. This could easily be improved if
  37 * an RB-tree is used instead. At least if we expect heavy fragmentation.
  38 *
  39 * Aligned allocations can also see improvement.
  40 *
  41 * Authors:
  42 * Thomas Hellström <thomas-at-tungstengraphics-dot-com>
  43 */
  44
 
 
 
 
  45#include <linux/export.h>
  46#include <linux/interval_tree_generic.h>
  47#include <linux/seq_file.h>
  48#include <linux/slab.h>
  49#include <linux/stacktrace.h>
  50
  51#include <drm/drm_mm.h>
  52
  53/**
  54 * DOC: Overview
  55 *
  56 * drm_mm provides a simple range allocator. The drivers are free to use the
  57 * resource allocator from the linux core if it suits them, the upside of drm_mm
  58 * is that it's in the DRM core. Which means that it's easier to extend for
  59 * some of the crazier special purpose needs of gpus.
  60 *
  61 * The main data struct is &drm_mm, allocations are tracked in &drm_mm_node.
  62 * Drivers are free to embed either of them into their own suitable
  63 * datastructures. drm_mm itself will not do any memory allocations of its own,
  64 * so if drivers choose not to embed nodes they need to still allocate them
  65 * themselves.
  66 *
  67 * The range allocator also supports reservation of preallocated blocks. This is
  68 * useful for taking over initial mode setting configurations from the firmware,
  69 * where an object needs to be created which exactly matches the firmware's
  70 * scanout target. As long as the range is still free it can be inserted anytime
  71 * after the allocator is initialized, which helps with avoiding looped
  72 * dependencies in the driver load sequence.
  73 *
  74 * drm_mm maintains a stack of most recently freed holes, which of all
  75 * simplistic datastructures seems to be a fairly decent approach to clustering
  76 * allocations and avoiding too much fragmentation. This means free space
  77 * searches are O(num_holes). Given that all the fancy features drm_mm supports
  78 * something better would be fairly complex and since gfx thrashing is a fairly
  79 * steep cliff not a real concern. Removing a node again is O(1).
  80 *
  81 * drm_mm supports a few features: Alignment and range restrictions can be
  82 * supplied. Furthermore every &drm_mm_node has a color value (which is just an
  83 * opaque unsigned long) which in conjunction with a driver callback can be used
  84 * to implement sophisticated placement restrictions. The i915 DRM driver uses
  85 * this to implement guard pages between incompatible caching domains in the
  86 * graphics TT.
  87 *
  88 * Two behaviors are supported for searching and allocating: bottom-up and
  89 * top-down. The default is bottom-up. Top-down allocation can be used if the
  90 * memory area has different restrictions, or just to reduce fragmentation.
  91 *
  92 * Finally iteration helpers to walk all nodes and all holes are provided as are
  93 * some basic allocator dumpers for debugging.
  94 *
  95 * Note that this range allocator is not thread-safe, drivers need to protect
  96 * modifications with their own locking. The idea behind this is that for a full
  97 * memory manager additional data needs to be protected anyway, hence internal
  98 * locking would be fully redundant.
  99 */
 100
 101#ifdef CONFIG_DRM_DEBUG_MM
 102#include <linux/stackdepot.h>
 103
 104#define STACKDEPTH 32
 105#define BUFSZ 4096
 106
 107static noinline void save_stack(struct drm_mm_node *node)
 108{
 109	unsigned long entries[STACKDEPTH];
 110	unsigned int n;
 111
 112	n = stack_trace_save(entries, ARRAY_SIZE(entries), 1);
 
 
 
 
 
 
 
 113
 114	/* May be called under spinlock, so avoid sleeping */
 115	node->stack = stack_depot_save(entries, n, GFP_NOWAIT);
 116}
 117
 118static void show_leaks(struct drm_mm *mm)
 119{
 120	struct drm_mm_node *node;
 121	unsigned long *entries;
 122	unsigned int nr_entries;
 123	char *buf;
 124
 125	buf = kmalloc(BUFSZ, GFP_KERNEL);
 126	if (!buf)
 127		return;
 128
 129	list_for_each_entry(node, drm_mm_nodes(mm), node_list) {
 
 
 
 
 
 130		if (!node->stack) {
 131			DRM_ERROR("node [%08llx + %08llx]: unknown owner\n",
 132				  node->start, node->size);
 133			continue;
 134		}
 135
 136		nr_entries = stack_depot_fetch(node->stack, &entries);
 137		stack_trace_snprint(buf, BUFSZ, entries, nr_entries, 0);
 138		DRM_ERROR("node [%08llx + %08llx]: inserted at\n%s",
 139			  node->start, node->size, buf);
 140	}
 141
 142	kfree(buf);
 143}
 144
 145#undef STACKDEPTH
 146#undef BUFSZ
 147#else
 148static void save_stack(struct drm_mm_node *node) { }
 149static void show_leaks(struct drm_mm *mm) { }
 150#endif
 151
 152#define START(node) ((node)->start)
 153#define LAST(node)  ((node)->start + (node)->size - 1)
 154
 155INTERVAL_TREE_DEFINE(struct drm_mm_node, rb,
 156		     u64, __subtree_last,
 157		     START, LAST, static inline, drm_mm_interval_tree)
 158
 159struct drm_mm_node *
 160__drm_mm_interval_first(const struct drm_mm *mm, u64 start, u64 last)
 161{
 162	return drm_mm_interval_tree_iter_first((struct rb_root_cached *)&mm->interval_tree,
 163					       start, last) ?: (struct drm_mm_node *)&mm->head_node;
 164}
 165EXPORT_SYMBOL(__drm_mm_interval_first);
 166
 167static void drm_mm_interval_tree_add_node(struct drm_mm_node *hole_node,
 168					  struct drm_mm_node *node)
 169{
 170	struct drm_mm *mm = hole_node->mm;
 171	struct rb_node **link, *rb;
 172	struct drm_mm_node *parent;
 173	bool leftmost;
 174
 175	node->__subtree_last = LAST(node);
 176
 177	if (drm_mm_node_allocated(hole_node)) {
 178		rb = &hole_node->rb;
 179		while (rb) {
 180			parent = rb_entry(rb, struct drm_mm_node, rb);
 181			if (parent->__subtree_last >= node->__subtree_last)
 182				break;
 183
 184			parent->__subtree_last = node->__subtree_last;
 185			rb = rb_parent(rb);
 186		}
 187
 188		rb = &hole_node->rb;
 189		link = &hole_node->rb.rb_right;
 190		leftmost = false;
 191	} else {
 192		rb = NULL;
 193		link = &mm->interval_tree.rb_root.rb_node;
 194		leftmost = true;
 195	}
 196
 197	while (*link) {
 198		rb = *link;
 199		parent = rb_entry(rb, struct drm_mm_node, rb);
 200		if (parent->__subtree_last < node->__subtree_last)
 201			parent->__subtree_last = node->__subtree_last;
 202		if (node->start < parent->start) {
 203			link = &parent->rb.rb_left;
 204		} else {
 205			link = &parent->rb.rb_right;
 206			leftmost = false;
 207		}
 208	}
 209
 210	rb_link_node(&node->rb, rb, link);
 211	rb_insert_augmented_cached(&node->rb, &mm->interval_tree, leftmost,
 212				   &drm_mm_interval_tree_augment);
 213}
 214
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 215#define HOLE_SIZE(NODE) ((NODE)->hole_size)
 216#define HOLE_ADDR(NODE) (__drm_mm_hole_node_start(NODE))
 217
 218static u64 rb_to_hole_size(struct rb_node *rb)
 219{
 220	return rb_entry(rb, struct drm_mm_node, rb_hole_size)->hole_size;
 221}
 222
 223static void insert_hole_size(struct rb_root_cached *root,
 224			     struct drm_mm_node *node)
 225{
 226	struct rb_node **link = &root->rb_root.rb_node, *rb = NULL;
 227	u64 x = node->hole_size;
 228	bool first = true;
 229
 230	while (*link) {
 231		rb = *link;
 232		if (x > rb_to_hole_size(rb)) {
 233			link = &rb->rb_left;
 234		} else {
 235			link = &rb->rb_right;
 236			first = false;
 237		}
 238	}
 239
 240	rb_link_node(&node->rb_hole_size, rb, link);
 241	rb_insert_color_cached(&node->rb_hole_size, root, first);
 242}
 243
 244RB_DECLARE_CALLBACKS_MAX(static, augment_callbacks,
 245			 struct drm_mm_node, rb_hole_addr,
 246			 u64, subtree_max_hole, HOLE_SIZE)
 247
 248static void insert_hole_addr(struct rb_root *root, struct drm_mm_node *node)
 249{
 250	struct rb_node **link = &root->rb_node, *rb_parent = NULL;
 251	u64 start = HOLE_ADDR(node), subtree_max_hole = node->subtree_max_hole;
 252	struct drm_mm_node *parent;
 253
 254	while (*link) {
 255		rb_parent = *link;
 256		parent = rb_entry(rb_parent, struct drm_mm_node, rb_hole_addr);
 257		if (parent->subtree_max_hole < subtree_max_hole)
 258			parent->subtree_max_hole = subtree_max_hole;
 259		if (start < HOLE_ADDR(parent))
 260			link = &parent->rb_hole_addr.rb_left;
 261		else
 262			link = &parent->rb_hole_addr.rb_right;
 263	}
 264
 265	rb_link_node(&node->rb_hole_addr, rb_parent, link);
 266	rb_insert_augmented(&node->rb_hole_addr, root, &augment_callbacks);
 267}
 268
 269static void add_hole(struct drm_mm_node *node)
 270{
 271	struct drm_mm *mm = node->mm;
 272
 273	node->hole_size =
 274		__drm_mm_hole_node_end(node) - __drm_mm_hole_node_start(node);
 275	node->subtree_max_hole = node->hole_size;
 276	DRM_MM_BUG_ON(!drm_mm_hole_follows(node));
 277
 278	insert_hole_size(&mm->holes_size, node);
 279	insert_hole_addr(&mm->holes_addr, node);
 280
 281	list_add(&node->hole_stack, &mm->hole_stack);
 282}
 283
 284static void rm_hole(struct drm_mm_node *node)
 285{
 286	DRM_MM_BUG_ON(!drm_mm_hole_follows(node));
 287
 288	list_del(&node->hole_stack);
 289	rb_erase_cached(&node->rb_hole_size, &node->mm->holes_size);
 290	rb_erase_augmented(&node->rb_hole_addr, &node->mm->holes_addr,
 291			   &augment_callbacks);
 292	node->hole_size = 0;
 293	node->subtree_max_hole = 0;
 294
 295	DRM_MM_BUG_ON(drm_mm_hole_follows(node));
 296}
 297
 298static inline struct drm_mm_node *rb_hole_size_to_node(struct rb_node *rb)
 299{
 300	return rb_entry_safe(rb, struct drm_mm_node, rb_hole_size);
 301}
 302
 303static inline struct drm_mm_node *rb_hole_addr_to_node(struct rb_node *rb)
 304{
 305	return rb_entry_safe(rb, struct drm_mm_node, rb_hole_addr);
 306}
 307
 
 
 
 
 
 308static struct drm_mm_node *best_hole(struct drm_mm *mm, u64 size)
 309{
 310	struct rb_node *rb = mm->holes_size.rb_root.rb_node;
 311	struct drm_mm_node *best = NULL;
 
 
 
 312
 313	do {
 314		struct drm_mm_node *node =
 315			rb_entry(rb, struct drm_mm_node, rb_hole_size);
 316
 317		if (size <= node->hole_size) {
 318			best = node;
 319			rb = rb->rb_right;
 320		} else {
 321			rb = rb->rb_left;
 322		}
 323	} while (rb);
 324
 325	return best;
 326}
 327
 328static bool usable_hole_addr(struct rb_node *rb, u64 size)
 329{
 330	return rb && rb_hole_addr_to_node(rb)->subtree_max_hole >= size;
 331}
 332
 333static struct drm_mm_node *find_hole_addr(struct drm_mm *mm, u64 addr, u64 size)
 334{
 335	struct rb_node *rb = mm->holes_addr.rb_node;
 336	struct drm_mm_node *node = NULL;
 
 337
 338	while (rb) {
 339		u64 hole_start;
 340
 341		if (!usable_hole_addr(rb, size))
 342			break;
 343
 344		node = rb_hole_addr_to_node(rb);
 345		hole_start = __drm_mm_hole_node_start(node);
 346
 347		if (addr < hole_start)
 348			rb = node->rb_hole_addr.rb_left;
 349		else if (addr > hole_start + node->hole_size)
 350			rb = node->rb_hole_addr.rb_right;
 351		else
 352			break;
 353	}
 354
 355	return node;
 356}
 357
 358static struct drm_mm_node *
 359first_hole(struct drm_mm *mm,
 360	   u64 start, u64 end, u64 size,
 361	   enum drm_mm_insert_mode mode)
 362{
 
 
 
 363	switch (mode) {
 364	default:
 365	case DRM_MM_INSERT_BEST:
 366		return best_hole(mm, size);
 367
 368	case DRM_MM_INSERT_LOW:
 369		return find_hole_addr(mm, start, size);
 370
 371	case DRM_MM_INSERT_HIGH:
 372		return find_hole_addr(mm, end, size);
 373
 374	case DRM_MM_INSERT_EVICT:
 375		return list_first_entry_or_null(&mm->hole_stack,
 376						struct drm_mm_node,
 377						hole_stack);
 378	}
 379}
 380
 381/**
 382 * DECLARE_NEXT_HOLE_ADDR - macro to declare next hole functions
 383 * @name: name of function to declare
 384 * @first: first rb member to traverse (either rb_left or rb_right).
 385 * @last: last rb member to traverse (either rb_right or rb_left).
 386 *
 387 * This macro declares a function to return the next hole of the addr rb tree.
 388 * While traversing the tree we take the searched size into account and only
 389 * visit branches with potential big enough holes.
 390 */
 391
 392#define DECLARE_NEXT_HOLE_ADDR(name, first, last)			\
 393static struct drm_mm_node *name(struct drm_mm_node *entry, u64 size)	\
 394{									\
 395	struct rb_node *parent, *node = &entry->rb_hole_addr;		\
 396									\
 397	if (!entry || RB_EMPTY_NODE(node))				\
 398		return NULL;						\
 399									\
 400	if (usable_hole_addr(node->first, size)) {			\
 401		node = node->first;					\
 402		while (usable_hole_addr(node->last, size))		\
 403			node = node->last;				\
 404		return rb_hole_addr_to_node(node);			\
 405	}								\
 406									\
 407	while ((parent = rb_parent(node)) && node == parent->first)	\
 408		node = parent;						\
 409									\
 410	return rb_hole_addr_to_node(parent);				\
 411}
 412
 413DECLARE_NEXT_HOLE_ADDR(next_hole_high_addr, rb_left, rb_right)
 414DECLARE_NEXT_HOLE_ADDR(next_hole_low_addr, rb_right, rb_left)
 415
 416static struct drm_mm_node *
 417next_hole(struct drm_mm *mm,
 418	  struct drm_mm_node *node,
 419	  u64 size,
 420	  enum drm_mm_insert_mode mode)
 421{
 422	switch (mode) {
 423	default:
 424	case DRM_MM_INSERT_BEST:
 425		return rb_hole_size_to_node(rb_prev(&node->rb_hole_size));
 426
 427	case DRM_MM_INSERT_LOW:
 428		return next_hole_low_addr(node, size);
 429
 430	case DRM_MM_INSERT_HIGH:
 431		return next_hole_high_addr(node, size);
 432
 433	case DRM_MM_INSERT_EVICT:
 434		node = list_next_entry(node, hole_stack);
 435		return &node->hole_stack == &mm->hole_stack ? NULL : node;
 436	}
 437}
 438
 439/**
 440 * drm_mm_reserve_node - insert an pre-initialized node
 441 * @mm: drm_mm allocator to insert @node into
 442 * @node: drm_mm_node to insert
 443 *
 444 * This functions inserts an already set-up &drm_mm_node into the allocator,
 445 * meaning that start, size and color must be set by the caller. All other
 446 * fields must be cleared to 0. This is useful to initialize the allocator with
 447 * preallocated objects which must be set-up before the range allocator can be
 448 * set-up, e.g. when taking over a firmware framebuffer.
 449 *
 450 * Returns:
 451 * 0 on success, -ENOSPC if there's no hole where @node is.
 452 */
 453int drm_mm_reserve_node(struct drm_mm *mm, struct drm_mm_node *node)
 454{
 
 455	struct drm_mm_node *hole;
 456	u64 hole_start, hole_end;
 457	u64 adj_start, adj_end;
 458	u64 end;
 459
 460	end = node->start + node->size;
 461	if (unlikely(end <= node->start))
 462		return -ENOSPC;
 463
 464	/* Find the relevant hole to add our node to */
 465	hole = find_hole_addr(mm, node->start, 0);
 466	if (!hole)
 467		return -ENOSPC;
 468
 469	adj_start = hole_start = __drm_mm_hole_node_start(hole);
 470	adj_end = hole_end = hole_start + hole->hole_size;
 471
 472	if (mm->color_adjust)
 473		mm->color_adjust(hole, node->color, &adj_start, &adj_end);
 474
 475	if (adj_start > node->start || adj_end < end)
 476		return -ENOSPC;
 477
 478	node->mm = mm;
 479
 480	__set_bit(DRM_MM_NODE_ALLOCATED_BIT, &node->flags);
 481	list_add(&node->node_list, &hole->node_list);
 482	drm_mm_interval_tree_add_node(hole, node);
 
 483	node->hole_size = 0;
 484
 485	rm_hole(hole);
 486	if (node->start > hole_start)
 487		add_hole(hole);
 488	if (end < hole_end)
 489		add_hole(node);
 490
 491	save_stack(node);
 492	return 0;
 493}
 494EXPORT_SYMBOL(drm_mm_reserve_node);
 495
 496static u64 rb_to_hole_size_or_zero(struct rb_node *rb)
 497{
 498	return rb ? rb_to_hole_size(rb) : 0;
 499}
 500
 501/**
 502 * drm_mm_insert_node_in_range - ranged search for space and insert @node
 503 * @mm: drm_mm to allocate from
 504 * @node: preallocate node to insert
 505 * @size: size of the allocation
 506 * @alignment: alignment of the allocation
 507 * @color: opaque tag value to use for this node
 508 * @range_start: start of the allowed range for this node
 509 * @range_end: end of the allowed range for this node
 510 * @mode: fine-tune the allocation search and placement
 511 *
 512 * The preallocated @node must be cleared to 0.
 513 *
 514 * Returns:
 515 * 0 on success, -ENOSPC if there's no suitable hole.
 516 */
 517int drm_mm_insert_node_in_range(struct drm_mm * const mm,
 518				struct drm_mm_node * const node,
 519				u64 size, u64 alignment,
 520				unsigned long color,
 521				u64 range_start, u64 range_end,
 522				enum drm_mm_insert_mode mode)
 523{
 524	struct drm_mm_node *hole;
 525	u64 remainder_mask;
 526	bool once;
 527
 528	DRM_MM_BUG_ON(range_start > range_end);
 529
 530	if (unlikely(size == 0 || range_end - range_start < size))
 531		return -ENOSPC;
 532
 533	if (rb_to_hole_size_or_zero(rb_first_cached(&mm->holes_size)) < size)
 534		return -ENOSPC;
 535
 536	if (alignment <= 1)
 537		alignment = 0;
 538
 539	once = mode & DRM_MM_INSERT_ONCE;
 540	mode &= ~DRM_MM_INSERT_ONCE;
 541
 542	remainder_mask = is_power_of_2(alignment) ? alignment - 1 : 0;
 543	for (hole = first_hole(mm, range_start, range_end, size, mode);
 544	     hole;
 545	     hole = once ? NULL : next_hole(mm, hole, size, mode)) {
 546		u64 hole_start = __drm_mm_hole_node_start(hole);
 547		u64 hole_end = hole_start + hole->hole_size;
 548		u64 adj_start, adj_end;
 549		u64 col_start, col_end;
 550
 551		if (mode == DRM_MM_INSERT_LOW && hole_start >= range_end)
 552			break;
 553
 554		if (mode == DRM_MM_INSERT_HIGH && hole_end <= range_start)
 555			break;
 556
 557		col_start = hole_start;
 558		col_end = hole_end;
 559		if (mm->color_adjust)
 560			mm->color_adjust(hole, color, &col_start, &col_end);
 561
 562		adj_start = max(col_start, range_start);
 563		adj_end = min(col_end, range_end);
 564
 565		if (adj_end <= adj_start || adj_end - adj_start < size)
 566			continue;
 567
 568		if (mode == DRM_MM_INSERT_HIGH)
 569			adj_start = adj_end - size;
 570
 571		if (alignment) {
 572			u64 rem;
 573
 574			if (likely(remainder_mask))
 575				rem = adj_start & remainder_mask;
 576			else
 577				div64_u64_rem(adj_start, alignment, &rem);
 578			if (rem) {
 579				adj_start -= rem;
 580				if (mode != DRM_MM_INSERT_HIGH)
 581					adj_start += alignment;
 582
 583				if (adj_start < max(col_start, range_start) ||
 584				    min(col_end, range_end) - adj_start < size)
 585					continue;
 586
 587				if (adj_end <= adj_start ||
 588				    adj_end - adj_start < size)
 589					continue;
 590			}
 591		}
 592
 593		node->mm = mm;
 594		node->size = size;
 595		node->start = adj_start;
 596		node->color = color;
 597		node->hole_size = 0;
 598
 599		__set_bit(DRM_MM_NODE_ALLOCATED_BIT, &node->flags);
 600		list_add(&node->node_list, &hole->node_list);
 601		drm_mm_interval_tree_add_node(hole, node);
 
 602
 603		rm_hole(hole);
 604		if (adj_start > hole_start)
 605			add_hole(hole);
 606		if (adj_start + size < hole_end)
 607			add_hole(node);
 608
 609		save_stack(node);
 610		return 0;
 611	}
 612
 613	return -ENOSPC;
 614}
 615EXPORT_SYMBOL(drm_mm_insert_node_in_range);
 616
 617static inline bool drm_mm_node_scanned_block(const struct drm_mm_node *node)
 618{
 619	return test_bit(DRM_MM_NODE_SCANNED_BIT, &node->flags);
 620}
 621
 622/**
 623 * drm_mm_remove_node - Remove a memory node from the allocator.
 624 * @node: drm_mm_node to remove
 625 *
 626 * This just removes a node from its drm_mm allocator. The node does not need to
 627 * be cleared again before it can be re-inserted into this or any other drm_mm
 628 * allocator. It is a bug to call this function on a unallocated node.
 629 */
 630void drm_mm_remove_node(struct drm_mm_node *node)
 631{
 632	struct drm_mm *mm = node->mm;
 633	struct drm_mm_node *prev_node;
 634
 635	DRM_MM_BUG_ON(!drm_mm_node_allocated(node));
 636	DRM_MM_BUG_ON(drm_mm_node_scanned_block(node));
 637
 638	prev_node = list_prev_entry(node, node_list);
 639
 640	if (drm_mm_hole_follows(node))
 641		rm_hole(node);
 642
 643	drm_mm_interval_tree_remove(node, &mm->interval_tree);
 644	list_del(&node->node_list);
 
 645
 646	if (drm_mm_hole_follows(prev_node))
 647		rm_hole(prev_node);
 648	add_hole(prev_node);
 649
 650	clear_bit_unlock(DRM_MM_NODE_ALLOCATED_BIT, &node->flags);
 651}
 652EXPORT_SYMBOL(drm_mm_remove_node);
 653
 654/**
 655 * drm_mm_replace_node - move an allocation from @old to @new
 656 * @old: drm_mm_node to remove from the allocator
 657 * @new: drm_mm_node which should inherit @old's allocation
 658 *
 659 * This is useful for when drivers embed the drm_mm_node structure and hence
 660 * can't move allocations by reassigning pointers. It's a combination of remove
 661 * and insert with the guarantee that the allocation start will match.
 662 */
 663void drm_mm_replace_node(struct drm_mm_node *old, struct drm_mm_node *new)
 664{
 665	struct drm_mm *mm = old->mm;
 666
 667	DRM_MM_BUG_ON(!drm_mm_node_allocated(old));
 668
 669	*new = *old;
 670
 671	__set_bit(DRM_MM_NODE_ALLOCATED_BIT, &new->flags);
 672	list_replace(&old->node_list, &new->node_list);
 673	rb_replace_node_cached(&old->rb, &new->rb, &mm->interval_tree);
 674
 675	if (drm_mm_hole_follows(old)) {
 676		list_replace(&old->hole_stack, &new->hole_stack);
 677		rb_replace_node_cached(&old->rb_hole_size,
 678				       &new->rb_hole_size,
 679				       &mm->holes_size);
 680		rb_replace_node(&old->rb_hole_addr,
 681				&new->rb_hole_addr,
 682				&mm->holes_addr);
 683	}
 684
 685	clear_bit_unlock(DRM_MM_NODE_ALLOCATED_BIT, &old->flags);
 
 686}
 687EXPORT_SYMBOL(drm_mm_replace_node);
 688
 689/**
 690 * DOC: lru scan roster
 691 *
 692 * Very often GPUs need to have continuous allocations for a given object. When
 693 * evicting objects to make space for a new one it is therefore not most
 694 * efficient when we simply start to select all objects from the tail of an LRU
 695 * until there's a suitable hole: Especially for big objects or nodes that
 696 * otherwise have special allocation constraints there's a good chance we evict
 697 * lots of (smaller) objects unnecessarily.
 698 *
 699 * The DRM range allocator supports this use-case through the scanning
 700 * interfaces. First a scan operation needs to be initialized with
 701 * drm_mm_scan_init() or drm_mm_scan_init_with_range(). The driver adds
 702 * objects to the roster, probably by walking an LRU list, but this can be
 703 * freely implemented. Eviction candiates are added using
 704 * drm_mm_scan_add_block() until a suitable hole is found or there are no
 705 * further evictable objects. Eviction roster metadata is tracked in &struct
 706 * drm_mm_scan.
 707 *
 708 * The driver must walk through all objects again in exactly the reverse
 709 * order to restore the allocator state. Note that while the allocator is used
 710 * in the scan mode no other operation is allowed.
 711 *
 712 * Finally the driver evicts all objects selected (drm_mm_scan_remove_block()
 713 * reported true) in the scan, and any overlapping nodes after color adjustment
 714 * (drm_mm_scan_color_evict()). Adding and removing an object is O(1), and
 715 * since freeing a node is also O(1) the overall complexity is
 716 * O(scanned_objects). So like the free stack which needs to be walked before a
 717 * scan operation even begins this is linear in the number of objects. It
 718 * doesn't seem to hurt too badly.
 719 */
 720
 721/**
 722 * drm_mm_scan_init_with_range - initialize range-restricted lru scanning
 723 * @scan: scan state
 724 * @mm: drm_mm to scan
 725 * @size: size of the allocation
 726 * @alignment: alignment of the allocation
 727 * @color: opaque tag value to use for the allocation
 728 * @start: start of the allowed range for the allocation
 729 * @end: end of the allowed range for the allocation
 730 * @mode: fine-tune the allocation search and placement
 731 *
 732 * This simply sets up the scanning routines with the parameters for the desired
 733 * hole.
 734 *
 735 * Warning:
 736 * As long as the scan list is non-empty, no other operations than
 737 * adding/removing nodes to/from the scan list are allowed.
 738 */
 739void drm_mm_scan_init_with_range(struct drm_mm_scan *scan,
 740				 struct drm_mm *mm,
 741				 u64 size,
 742				 u64 alignment,
 743				 unsigned long color,
 744				 u64 start,
 745				 u64 end,
 746				 enum drm_mm_insert_mode mode)
 747{
 748	DRM_MM_BUG_ON(start >= end);
 749	DRM_MM_BUG_ON(!size || size > end - start);
 750	DRM_MM_BUG_ON(mm->scan_active);
 751
 752	scan->mm = mm;
 753
 754	if (alignment <= 1)
 755		alignment = 0;
 756
 757	scan->color = color;
 758	scan->alignment = alignment;
 759	scan->remainder_mask = is_power_of_2(alignment) ? alignment - 1 : 0;
 760	scan->size = size;
 761	scan->mode = mode;
 762
 763	DRM_MM_BUG_ON(end <= start);
 764	scan->range_start = start;
 765	scan->range_end = end;
 766
 767	scan->hit_start = U64_MAX;
 768	scan->hit_end = 0;
 769}
 770EXPORT_SYMBOL(drm_mm_scan_init_with_range);
 771
 772/**
 773 * drm_mm_scan_add_block - add a node to the scan list
 774 * @scan: the active drm_mm scanner
 775 * @node: drm_mm_node to add
 776 *
 777 * Add a node to the scan list that might be freed to make space for the desired
 778 * hole.
 779 *
 780 * Returns:
 781 * True if a hole has been found, false otherwise.
 782 */
 783bool drm_mm_scan_add_block(struct drm_mm_scan *scan,
 784			   struct drm_mm_node *node)
 785{
 786	struct drm_mm *mm = scan->mm;
 787	struct drm_mm_node *hole;
 788	u64 hole_start, hole_end;
 789	u64 col_start, col_end;
 790	u64 adj_start, adj_end;
 791
 792	DRM_MM_BUG_ON(node->mm != mm);
 793	DRM_MM_BUG_ON(!drm_mm_node_allocated(node));
 794	DRM_MM_BUG_ON(drm_mm_node_scanned_block(node));
 795	__set_bit(DRM_MM_NODE_SCANNED_BIT, &node->flags);
 796	mm->scan_active++;
 797
 798	/* Remove this block from the node_list so that we enlarge the hole
 799	 * (distance between the end of our previous node and the start of
 800	 * or next), without poisoning the link so that we can restore it
 801	 * later in drm_mm_scan_remove_block().
 802	 */
 803	hole = list_prev_entry(node, node_list);
 804	DRM_MM_BUG_ON(list_next_entry(hole, node_list) != node);
 805	__list_del_entry(&node->node_list);
 806
 807	hole_start = __drm_mm_hole_node_start(hole);
 808	hole_end = __drm_mm_hole_node_end(hole);
 809
 810	col_start = hole_start;
 811	col_end = hole_end;
 812	if (mm->color_adjust)
 813		mm->color_adjust(hole, scan->color, &col_start, &col_end);
 814
 815	adj_start = max(col_start, scan->range_start);
 816	adj_end = min(col_end, scan->range_end);
 817	if (adj_end <= adj_start || adj_end - adj_start < scan->size)
 818		return false;
 819
 820	if (scan->mode == DRM_MM_INSERT_HIGH)
 821		adj_start = adj_end - scan->size;
 822
 823	if (scan->alignment) {
 824		u64 rem;
 825
 826		if (likely(scan->remainder_mask))
 827			rem = adj_start & scan->remainder_mask;
 828		else
 829			div64_u64_rem(adj_start, scan->alignment, &rem);
 830		if (rem) {
 831			adj_start -= rem;
 832			if (scan->mode != DRM_MM_INSERT_HIGH)
 833				adj_start += scan->alignment;
 834			if (adj_start < max(col_start, scan->range_start) ||
 835			    min(col_end, scan->range_end) - adj_start < scan->size)
 836				return false;
 837
 838			if (adj_end <= adj_start ||
 839			    adj_end - adj_start < scan->size)
 840				return false;
 841		}
 842	}
 843
 844	scan->hit_start = adj_start;
 845	scan->hit_end = adj_start + scan->size;
 846
 847	DRM_MM_BUG_ON(scan->hit_start >= scan->hit_end);
 848	DRM_MM_BUG_ON(scan->hit_start < hole_start);
 849	DRM_MM_BUG_ON(scan->hit_end > hole_end);
 850
 851	return true;
 852}
 853EXPORT_SYMBOL(drm_mm_scan_add_block);
 854
 855/**
 856 * drm_mm_scan_remove_block - remove a node from the scan list
 857 * @scan: the active drm_mm scanner
 858 * @node: drm_mm_node to remove
 859 *
 860 * Nodes **must** be removed in exactly the reverse order from the scan list as
 861 * they have been added (e.g. using list_add() as they are added and then
 862 * list_for_each() over that eviction list to remove), otherwise the internal
 863 * state of the memory manager will be corrupted.
 864 *
 865 * When the scan list is empty, the selected memory nodes can be freed. An
 866 * immediately following drm_mm_insert_node_in_range_generic() or one of the
 867 * simpler versions of that function with !DRM_MM_SEARCH_BEST will then return
 868 * the just freed block (because it's at the top of the free_stack list).
 869 *
 870 * Returns:
 871 * True if this block should be evicted, false otherwise. Will always
 872 * return false when no hole has been found.
 873 */
 874bool drm_mm_scan_remove_block(struct drm_mm_scan *scan,
 875			      struct drm_mm_node *node)
 876{
 877	struct drm_mm_node *prev_node;
 878
 879	DRM_MM_BUG_ON(node->mm != scan->mm);
 880	DRM_MM_BUG_ON(!drm_mm_node_scanned_block(node));
 881	__clear_bit(DRM_MM_NODE_SCANNED_BIT, &node->flags);
 882
 883	DRM_MM_BUG_ON(!node->mm->scan_active);
 884	node->mm->scan_active--;
 885
 886	/* During drm_mm_scan_add_block() we decoupled this node leaving
 887	 * its pointers intact. Now that the caller is walking back along
 888	 * the eviction list we can restore this block into its rightful
 889	 * place on the full node_list. To confirm that the caller is walking
 890	 * backwards correctly we check that prev_node->next == node->next,
 891	 * i.e. both believe the same node should be on the other side of the
 892	 * hole.
 893	 */
 894	prev_node = list_prev_entry(node, node_list);
 895	DRM_MM_BUG_ON(list_next_entry(prev_node, node_list) !=
 896		      list_next_entry(node, node_list));
 897	list_add(&node->node_list, &prev_node->node_list);
 898
 899	return (node->start + node->size > scan->hit_start &&
 900		node->start < scan->hit_end);
 901}
 902EXPORT_SYMBOL(drm_mm_scan_remove_block);
 903
 904/**
 905 * drm_mm_scan_color_evict - evict overlapping nodes on either side of hole
 906 * @scan: drm_mm scan with target hole
 907 *
 908 * After completing an eviction scan and removing the selected nodes, we may
 909 * need to remove a few more nodes from either side of the target hole if
 910 * mm.color_adjust is being used.
 911 *
 912 * Returns:
 913 * A node to evict, or NULL if there are no overlapping nodes.
 914 */
 915struct drm_mm_node *drm_mm_scan_color_evict(struct drm_mm_scan *scan)
 916{
 917	struct drm_mm *mm = scan->mm;
 918	struct drm_mm_node *hole;
 919	u64 hole_start, hole_end;
 920
 921	DRM_MM_BUG_ON(list_empty(&mm->hole_stack));
 922
 923	if (!mm->color_adjust)
 924		return NULL;
 925
 926	/*
 927	 * The hole found during scanning should ideally be the first element
 928	 * in the hole_stack list, but due to side-effects in the driver it
 929	 * may not be.
 930	 */
 931	list_for_each_entry(hole, &mm->hole_stack, hole_stack) {
 932		hole_start = __drm_mm_hole_node_start(hole);
 933		hole_end = hole_start + hole->hole_size;
 934
 935		if (hole_start <= scan->hit_start &&
 936		    hole_end >= scan->hit_end)
 937			break;
 938	}
 939
 940	/* We should only be called after we found the hole previously */
 941	DRM_MM_BUG_ON(&hole->hole_stack == &mm->hole_stack);
 942	if (unlikely(&hole->hole_stack == &mm->hole_stack))
 943		return NULL;
 944
 945	DRM_MM_BUG_ON(hole_start > scan->hit_start);
 946	DRM_MM_BUG_ON(hole_end < scan->hit_end);
 947
 948	mm->color_adjust(hole, scan->color, &hole_start, &hole_end);
 949	if (hole_start > scan->hit_start)
 950		return hole;
 951	if (hole_end < scan->hit_end)
 952		return list_next_entry(hole, node_list);
 953
 954	return NULL;
 955}
 956EXPORT_SYMBOL(drm_mm_scan_color_evict);
 957
 958/**
 959 * drm_mm_init - initialize a drm-mm allocator
 960 * @mm: the drm_mm structure to initialize
 961 * @start: start of the range managed by @mm
 962 * @size: end of the range managed by @mm
 963 *
 964 * Note that @mm must be cleared to 0 before calling this function.
 965 */
 966void drm_mm_init(struct drm_mm *mm, u64 start, u64 size)
 967{
 968	DRM_MM_BUG_ON(start + size <= start);
 969
 970	mm->color_adjust = NULL;
 971
 972	INIT_LIST_HEAD(&mm->hole_stack);
 973	mm->interval_tree = RB_ROOT_CACHED;
 974	mm->holes_size = RB_ROOT_CACHED;
 975	mm->holes_addr = RB_ROOT;
 976
 977	/* Clever trick to avoid a special case in the free hole tracking. */
 978	INIT_LIST_HEAD(&mm->head_node.node_list);
 979	mm->head_node.flags = 0;
 980	mm->head_node.mm = mm;
 981	mm->head_node.start = start + size;
 982	mm->head_node.size = -size;
 983	add_hole(&mm->head_node);
 984
 985	mm->scan_active = 0;
 986}
 987EXPORT_SYMBOL(drm_mm_init);
 988
 989/**
 990 * drm_mm_takedown - clean up a drm_mm allocator
 991 * @mm: drm_mm allocator to clean up
 992 *
 993 * Note that it is a bug to call this function on an allocator which is not
 994 * clean.
 995 */
 996void drm_mm_takedown(struct drm_mm *mm)
 997{
 998	if (WARN(!drm_mm_clean(mm),
 999		 "Memory manager not clean during takedown.\n"))
1000		show_leaks(mm);
1001}
1002EXPORT_SYMBOL(drm_mm_takedown);
1003
1004static u64 drm_mm_dump_hole(struct drm_printer *p, const struct drm_mm_node *entry)
1005{
1006	u64 start, size;
1007
1008	size = entry->hole_size;
1009	if (size) {
1010		start = drm_mm_hole_node_start(entry);
1011		drm_printf(p, "%#018llx-%#018llx: %llu: free\n",
1012			   start, start + size, size);
1013	}
1014
1015	return size;
1016}
1017/**
1018 * drm_mm_print - print allocator state
1019 * @mm: drm_mm allocator to print
1020 * @p: DRM printer to use
1021 */
1022void drm_mm_print(const struct drm_mm *mm, struct drm_printer *p)
1023{
1024	const struct drm_mm_node *entry;
1025	u64 total_used = 0, total_free = 0, total = 0;
1026
1027	total_free += drm_mm_dump_hole(p, &mm->head_node);
1028
1029	drm_mm_for_each_node(entry, mm) {
1030		drm_printf(p, "%#018llx-%#018llx: %llu: used\n", entry->start,
1031			   entry->start + entry->size, entry->size);
1032		total_used += entry->size;
1033		total_free += drm_mm_dump_hole(p, entry);
1034	}
1035	total = total_free + total_used;
1036
1037	drm_printf(p, "total: %llu, used %llu free %llu\n", total,
1038		   total_used, total_free);
1039}
1040EXPORT_SYMBOL(drm_mm_print);
v4.17
  1/**************************************************************************
  2 *
  3 * Copyright 2006 Tungsten Graphics, Inc., Bismarck, ND., USA.
  4 * Copyright 2016 Intel Corporation
  5 * All Rights Reserved.
  6 *
  7 * Permission is hereby granted, free of charge, to any person obtaining a
  8 * copy of this software and associated documentation files (the
  9 * "Software"), to deal in the Software without restriction, including
 10 * without limitation the rights to use, copy, modify, merge, publish,
 11 * distribute, sub license, and/or sell copies of the Software, and to
 12 * permit persons to whom the Software is furnished to do so, subject to
 13 * the following conditions:
 14 *
 15 * The above copyright notice and this permission notice (including the
 16 * next paragraph) shall be included in all copies or substantial portions
 17 * of the Software.
 18 *
 19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 21 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
 22 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
 23 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
 24 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
 25 * USE OR OTHER DEALINGS IN THE SOFTWARE.
 26 *
 27 *
 28 **************************************************************************/
 29
 30/*
 31 * Generic simple memory manager implementation. Intended to be used as a base
 32 * class implementation for more advanced memory managers.
 33 *
 34 * Note that the algorithm used is quite simple and there might be substantial
 35 * performance gains if a smarter free list is implemented. Currently it is
 36 * just an unordered stack of free regions. This could easily be improved if
 37 * an RB-tree is used instead. At least if we expect heavy fragmentation.
 38 *
 39 * Aligned allocations can also see improvement.
 40 *
 41 * Authors:
 42 * Thomas Hellström <thomas-at-tungstengraphics-dot-com>
 43 */
 44
 45#include <drm/drmP.h>
 46#include <drm/drm_mm.h>
 47#include <linux/slab.h>
 48#include <linux/seq_file.h>
 49#include <linux/export.h>
 50#include <linux/interval_tree_generic.h>
 
 
 
 
 
 51
 52/**
 53 * DOC: Overview
 54 *
 55 * drm_mm provides a simple range allocator. The drivers are free to use the
 56 * resource allocator from the linux core if it suits them, the upside of drm_mm
 57 * is that it's in the DRM core. Which means that it's easier to extend for
 58 * some of the crazier special purpose needs of gpus.
 59 *
 60 * The main data struct is &drm_mm, allocations are tracked in &drm_mm_node.
 61 * Drivers are free to embed either of them into their own suitable
 62 * datastructures. drm_mm itself will not do any memory allocations of its own,
 63 * so if drivers choose not to embed nodes they need to still allocate them
 64 * themselves.
 65 *
 66 * The range allocator also supports reservation of preallocated blocks. This is
 67 * useful for taking over initial mode setting configurations from the firmware,
 68 * where an object needs to be created which exactly matches the firmware's
 69 * scanout target. As long as the range is still free it can be inserted anytime
 70 * after the allocator is initialized, which helps with avoiding looped
 71 * dependencies in the driver load sequence.
 72 *
 73 * drm_mm maintains a stack of most recently freed holes, which of all
 74 * simplistic datastructures seems to be a fairly decent approach to clustering
 75 * allocations and avoiding too much fragmentation. This means free space
 76 * searches are O(num_holes). Given that all the fancy features drm_mm supports
 77 * something better would be fairly complex and since gfx thrashing is a fairly
 78 * steep cliff not a real concern. Removing a node again is O(1).
 79 *
 80 * drm_mm supports a few features: Alignment and range restrictions can be
 81 * supplied. Furthermore every &drm_mm_node has a color value (which is just an
 82 * opaque unsigned long) which in conjunction with a driver callback can be used
 83 * to implement sophisticated placement restrictions. The i915 DRM driver uses
 84 * this to implement guard pages between incompatible caching domains in the
 85 * graphics TT.
 86 *
 87 * Two behaviors are supported for searching and allocating: bottom-up and
 88 * top-down. The default is bottom-up. Top-down allocation can be used if the
 89 * memory area has different restrictions, or just to reduce fragmentation.
 90 *
 91 * Finally iteration helpers to walk all nodes and all holes are provided as are
 92 * some basic allocator dumpers for debugging.
 93 *
 94 * Note that this range allocator is not thread-safe, drivers need to protect
 95 * modifications with their own locking. The idea behind this is that for a full
 96 * memory manager additional data needs to be protected anyway, hence internal
 97 * locking would be fully redundant.
 98 */
 99
100#ifdef CONFIG_DRM_DEBUG_MM
101#include <linux/stackdepot.h>
102
103#define STACKDEPTH 32
104#define BUFSZ 4096
105
106static noinline void save_stack(struct drm_mm_node *node)
107{
108	unsigned long entries[STACKDEPTH];
109	struct stack_trace trace = {
110		.entries = entries,
111		.max_entries = STACKDEPTH,
112		.skip = 1
113	};
114
115	save_stack_trace(&trace);
116	if (trace.nr_entries != 0 &&
117	    trace.entries[trace.nr_entries-1] == ULONG_MAX)
118		trace.nr_entries--;
119
120	/* May be called under spinlock, so avoid sleeping */
121	node->stack = depot_save_stack(&trace, GFP_NOWAIT);
122}
123
124static void show_leaks(struct drm_mm *mm)
125{
126	struct drm_mm_node *node;
127	unsigned long entries[STACKDEPTH];
 
128	char *buf;
129
130	buf = kmalloc(BUFSZ, GFP_KERNEL);
131	if (!buf)
132		return;
133
134	list_for_each_entry(node, drm_mm_nodes(mm), node_list) {
135		struct stack_trace trace = {
136			.entries = entries,
137			.max_entries = STACKDEPTH
138		};
139
140		if (!node->stack) {
141			DRM_ERROR("node [%08llx + %08llx]: unknown owner\n",
142				  node->start, node->size);
143			continue;
144		}
145
146		depot_fetch_stack(node->stack, &trace);
147		snprint_stack_trace(buf, BUFSZ, &trace, 0);
148		DRM_ERROR("node [%08llx + %08llx]: inserted at\n%s",
149			  node->start, node->size, buf);
150	}
151
152	kfree(buf);
153}
154
155#undef STACKDEPTH
156#undef BUFSZ
157#else
158static void save_stack(struct drm_mm_node *node) { }
159static void show_leaks(struct drm_mm *mm) { }
160#endif
161
162#define START(node) ((node)->start)
163#define LAST(node)  ((node)->start + (node)->size - 1)
164
165INTERVAL_TREE_DEFINE(struct drm_mm_node, rb,
166		     u64, __subtree_last,
167		     START, LAST, static inline, drm_mm_interval_tree)
168
169struct drm_mm_node *
170__drm_mm_interval_first(const struct drm_mm *mm, u64 start, u64 last)
171{
172	return drm_mm_interval_tree_iter_first((struct rb_root_cached *)&mm->interval_tree,
173					       start, last) ?: (struct drm_mm_node *)&mm->head_node;
174}
175EXPORT_SYMBOL(__drm_mm_interval_first);
176
177static void drm_mm_interval_tree_add_node(struct drm_mm_node *hole_node,
178					  struct drm_mm_node *node)
179{
180	struct drm_mm *mm = hole_node->mm;
181	struct rb_node **link, *rb;
182	struct drm_mm_node *parent;
183	bool leftmost;
184
185	node->__subtree_last = LAST(node);
186
187	if (hole_node->allocated) {
188		rb = &hole_node->rb;
189		while (rb) {
190			parent = rb_entry(rb, struct drm_mm_node, rb);
191			if (parent->__subtree_last >= node->__subtree_last)
192				break;
193
194			parent->__subtree_last = node->__subtree_last;
195			rb = rb_parent(rb);
196		}
197
198		rb = &hole_node->rb;
199		link = &hole_node->rb.rb_right;
200		leftmost = false;
201	} else {
202		rb = NULL;
203		link = &mm->interval_tree.rb_root.rb_node;
204		leftmost = true;
205	}
206
207	while (*link) {
208		rb = *link;
209		parent = rb_entry(rb, struct drm_mm_node, rb);
210		if (parent->__subtree_last < node->__subtree_last)
211			parent->__subtree_last = node->__subtree_last;
212		if (node->start < parent->start) {
213			link = &parent->rb.rb_left;
214		} else {
215			link = &parent->rb.rb_right;
216			leftmost = false;
217		}
218	}
219
220	rb_link_node(&node->rb, rb, link);
221	rb_insert_augmented_cached(&node->rb, &mm->interval_tree, leftmost,
222				   &drm_mm_interval_tree_augment);
223}
224
225#define RB_INSERT(root, member, expr) do { \
226	struct rb_node **link = &root.rb_node, *rb = NULL; \
227	u64 x = expr(node); \
228	while (*link) { \
229		rb = *link; \
230		if (x < expr(rb_entry(rb, struct drm_mm_node, member))) \
231			link = &rb->rb_left; \
232		else \
233			link = &rb->rb_right; \
234	} \
235	rb_link_node(&node->member, rb, link); \
236	rb_insert_color(&node->member, &root); \
237} while (0)
238
239#define HOLE_SIZE(NODE) ((NODE)->hole_size)
240#define HOLE_ADDR(NODE) (__drm_mm_hole_node_start(NODE))
241
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
242static void add_hole(struct drm_mm_node *node)
243{
244	struct drm_mm *mm = node->mm;
245
246	node->hole_size =
247		__drm_mm_hole_node_end(node) - __drm_mm_hole_node_start(node);
 
248	DRM_MM_BUG_ON(!drm_mm_hole_follows(node));
249
250	RB_INSERT(mm->holes_size, rb_hole_size, HOLE_SIZE);
251	RB_INSERT(mm->holes_addr, rb_hole_addr, HOLE_ADDR);
252
253	list_add(&node->hole_stack, &mm->hole_stack);
254}
255
256static void rm_hole(struct drm_mm_node *node)
257{
258	DRM_MM_BUG_ON(!drm_mm_hole_follows(node));
259
260	list_del(&node->hole_stack);
261	rb_erase(&node->rb_hole_size, &node->mm->holes_size);
262	rb_erase(&node->rb_hole_addr, &node->mm->holes_addr);
 
263	node->hole_size = 0;
 
264
265	DRM_MM_BUG_ON(drm_mm_hole_follows(node));
266}
267
268static inline struct drm_mm_node *rb_hole_size_to_node(struct rb_node *rb)
269{
270	return rb_entry_safe(rb, struct drm_mm_node, rb_hole_size);
271}
272
273static inline struct drm_mm_node *rb_hole_addr_to_node(struct rb_node *rb)
274{
275	return rb_entry_safe(rb, struct drm_mm_node, rb_hole_addr);
276}
277
278static inline u64 rb_hole_size(struct rb_node *rb)
279{
280	return rb_entry(rb, struct drm_mm_node, rb_hole_size)->hole_size;
281}
282
283static struct drm_mm_node *best_hole(struct drm_mm *mm, u64 size)
284{
285	struct rb_node *best = NULL;
286	struct rb_node **link = &mm->holes_size.rb_node;
287
288	while (*link) {
289		struct rb_node *rb = *link;
290
291		if (size <= rb_hole_size(rb)) {
292			link = &rb->rb_left;
293			best = rb;
 
 
 
 
294		} else {
295			link = &rb->rb_right;
296		}
297	}
 
 
 
298
299	return rb_hole_size_to_node(best);
 
 
300}
301
302static struct drm_mm_node *find_hole(struct drm_mm *mm, u64 addr)
303{
 
304	struct drm_mm_node *node = NULL;
305	struct rb_node **link = &mm->holes_addr.rb_node;
306
307	while (*link) {
308		u64 hole_start;
309
310		node = rb_hole_addr_to_node(*link);
 
 
 
311		hole_start = __drm_mm_hole_node_start(node);
312
313		if (addr < hole_start)
314			link = &node->rb_hole_addr.rb_left;
315		else if (addr > hole_start + node->hole_size)
316			link = &node->rb_hole_addr.rb_right;
317		else
318			break;
319	}
320
321	return node;
322}
323
324static struct drm_mm_node *
325first_hole(struct drm_mm *mm,
326	   u64 start, u64 end, u64 size,
327	   enum drm_mm_insert_mode mode)
328{
329	if (RB_EMPTY_ROOT(&mm->holes_size))
330		return NULL;
331
332	switch (mode) {
333	default:
334	case DRM_MM_INSERT_BEST:
335		return best_hole(mm, size);
336
337	case DRM_MM_INSERT_LOW:
338		return find_hole(mm, start);
339
340	case DRM_MM_INSERT_HIGH:
341		return find_hole(mm, end);
342
343	case DRM_MM_INSERT_EVICT:
344		return list_first_entry_or_null(&mm->hole_stack,
345						struct drm_mm_node,
346						hole_stack);
347	}
348}
349
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
350static struct drm_mm_node *
351next_hole(struct drm_mm *mm,
352	  struct drm_mm_node *node,
 
353	  enum drm_mm_insert_mode mode)
354{
355	switch (mode) {
356	default:
357	case DRM_MM_INSERT_BEST:
358		return rb_hole_size_to_node(rb_next(&node->rb_hole_size));
359
360	case DRM_MM_INSERT_LOW:
361		return rb_hole_addr_to_node(rb_next(&node->rb_hole_addr));
362
363	case DRM_MM_INSERT_HIGH:
364		return rb_hole_addr_to_node(rb_prev(&node->rb_hole_addr));
365
366	case DRM_MM_INSERT_EVICT:
367		node = list_next_entry(node, hole_stack);
368		return &node->hole_stack == &mm->hole_stack ? NULL : node;
369	}
370}
371
372/**
373 * drm_mm_reserve_node - insert an pre-initialized node
374 * @mm: drm_mm allocator to insert @node into
375 * @node: drm_mm_node to insert
376 *
377 * This functions inserts an already set-up &drm_mm_node into the allocator,
378 * meaning that start, size and color must be set by the caller. All other
379 * fields must be cleared to 0. This is useful to initialize the allocator with
380 * preallocated objects which must be set-up before the range allocator can be
381 * set-up, e.g. when taking over a firmware framebuffer.
382 *
383 * Returns:
384 * 0 on success, -ENOSPC if there's no hole where @node is.
385 */
386int drm_mm_reserve_node(struct drm_mm *mm, struct drm_mm_node *node)
387{
388	u64 end = node->start + node->size;
389	struct drm_mm_node *hole;
390	u64 hole_start, hole_end;
391	u64 adj_start, adj_end;
 
392
393	end = node->start + node->size;
394	if (unlikely(end <= node->start))
395		return -ENOSPC;
396
397	/* Find the relevant hole to add our node to */
398	hole = find_hole(mm, node->start);
399	if (!hole)
400		return -ENOSPC;
401
402	adj_start = hole_start = __drm_mm_hole_node_start(hole);
403	adj_end = hole_end = hole_start + hole->hole_size;
404
405	if (mm->color_adjust)
406		mm->color_adjust(hole, node->color, &adj_start, &adj_end);
407
408	if (adj_start > node->start || adj_end < end)
409		return -ENOSPC;
410
411	node->mm = mm;
412
 
413	list_add(&node->node_list, &hole->node_list);
414	drm_mm_interval_tree_add_node(hole, node);
415	node->allocated = true;
416	node->hole_size = 0;
417
418	rm_hole(hole);
419	if (node->start > hole_start)
420		add_hole(hole);
421	if (end < hole_end)
422		add_hole(node);
423
424	save_stack(node);
425	return 0;
426}
427EXPORT_SYMBOL(drm_mm_reserve_node);
428
 
 
 
 
 
429/**
430 * drm_mm_insert_node_in_range - ranged search for space and insert @node
431 * @mm: drm_mm to allocate from
432 * @node: preallocate node to insert
433 * @size: size of the allocation
434 * @alignment: alignment of the allocation
435 * @color: opaque tag value to use for this node
436 * @range_start: start of the allowed range for this node
437 * @range_end: end of the allowed range for this node
438 * @mode: fine-tune the allocation search and placement
439 *
440 * The preallocated @node must be cleared to 0.
441 *
442 * Returns:
443 * 0 on success, -ENOSPC if there's no suitable hole.
444 */
445int drm_mm_insert_node_in_range(struct drm_mm * const mm,
446				struct drm_mm_node * const node,
447				u64 size, u64 alignment,
448				unsigned long color,
449				u64 range_start, u64 range_end,
450				enum drm_mm_insert_mode mode)
451{
452	struct drm_mm_node *hole;
453	u64 remainder_mask;
 
454
455	DRM_MM_BUG_ON(range_start >= range_end);
456
457	if (unlikely(size == 0 || range_end - range_start < size))
458		return -ENOSPC;
459
 
 
 
460	if (alignment <= 1)
461		alignment = 0;
462
 
 
 
463	remainder_mask = is_power_of_2(alignment) ? alignment - 1 : 0;
464	for (hole = first_hole(mm, range_start, range_end, size, mode); hole;
465	     hole = next_hole(mm, hole, mode)) {
 
466		u64 hole_start = __drm_mm_hole_node_start(hole);
467		u64 hole_end = hole_start + hole->hole_size;
468		u64 adj_start, adj_end;
469		u64 col_start, col_end;
470
471		if (mode == DRM_MM_INSERT_LOW && hole_start >= range_end)
472			break;
473
474		if (mode == DRM_MM_INSERT_HIGH && hole_end <= range_start)
475			break;
476
477		col_start = hole_start;
478		col_end = hole_end;
479		if (mm->color_adjust)
480			mm->color_adjust(hole, color, &col_start, &col_end);
481
482		adj_start = max(col_start, range_start);
483		adj_end = min(col_end, range_end);
484
485		if (adj_end <= adj_start || adj_end - adj_start < size)
486			continue;
487
488		if (mode == DRM_MM_INSERT_HIGH)
489			adj_start = adj_end - size;
490
491		if (alignment) {
492			u64 rem;
493
494			if (likely(remainder_mask))
495				rem = adj_start & remainder_mask;
496			else
497				div64_u64_rem(adj_start, alignment, &rem);
498			if (rem) {
499				adj_start -= rem;
500				if (mode != DRM_MM_INSERT_HIGH)
501					adj_start += alignment;
502
503				if (adj_start < max(col_start, range_start) ||
504				    min(col_end, range_end) - adj_start < size)
505					continue;
506
507				if (adj_end <= adj_start ||
508				    adj_end - adj_start < size)
509					continue;
510			}
511		}
512
513		node->mm = mm;
514		node->size = size;
515		node->start = adj_start;
516		node->color = color;
517		node->hole_size = 0;
518
 
519		list_add(&node->node_list, &hole->node_list);
520		drm_mm_interval_tree_add_node(hole, node);
521		node->allocated = true;
522
523		rm_hole(hole);
524		if (adj_start > hole_start)
525			add_hole(hole);
526		if (adj_start + size < hole_end)
527			add_hole(node);
528
529		save_stack(node);
530		return 0;
531	}
532
533	return -ENOSPC;
534}
535EXPORT_SYMBOL(drm_mm_insert_node_in_range);
536
 
 
 
 
 
537/**
538 * drm_mm_remove_node - Remove a memory node from the allocator.
539 * @node: drm_mm_node to remove
540 *
541 * This just removes a node from its drm_mm allocator. The node does not need to
542 * be cleared again before it can be re-inserted into this or any other drm_mm
543 * allocator. It is a bug to call this function on a unallocated node.
544 */
545void drm_mm_remove_node(struct drm_mm_node *node)
546{
547	struct drm_mm *mm = node->mm;
548	struct drm_mm_node *prev_node;
549
550	DRM_MM_BUG_ON(!node->allocated);
551	DRM_MM_BUG_ON(node->scanned_block);
552
553	prev_node = list_prev_entry(node, node_list);
554
555	if (drm_mm_hole_follows(node))
556		rm_hole(node);
557
558	drm_mm_interval_tree_remove(node, &mm->interval_tree);
559	list_del(&node->node_list);
560	node->allocated = false;
561
562	if (drm_mm_hole_follows(prev_node))
563		rm_hole(prev_node);
564	add_hole(prev_node);
 
 
565}
566EXPORT_SYMBOL(drm_mm_remove_node);
567
568/**
569 * drm_mm_replace_node - move an allocation from @old to @new
570 * @old: drm_mm_node to remove from the allocator
571 * @new: drm_mm_node which should inherit @old's allocation
572 *
573 * This is useful for when drivers embed the drm_mm_node structure and hence
574 * can't move allocations by reassigning pointers. It's a combination of remove
575 * and insert with the guarantee that the allocation start will match.
576 */
577void drm_mm_replace_node(struct drm_mm_node *old, struct drm_mm_node *new)
578{
579	struct drm_mm *mm = old->mm;
580
581	DRM_MM_BUG_ON(!old->allocated);
582
583	*new = *old;
584
 
585	list_replace(&old->node_list, &new->node_list);
586	rb_replace_node_cached(&old->rb, &new->rb, &mm->interval_tree);
587
588	if (drm_mm_hole_follows(old)) {
589		list_replace(&old->hole_stack, &new->hole_stack);
590		rb_replace_node(&old->rb_hole_size,
591				&new->rb_hole_size,
592				&mm->holes_size);
593		rb_replace_node(&old->rb_hole_addr,
594				&new->rb_hole_addr,
595				&mm->holes_addr);
596	}
597
598	old->allocated = false;
599	new->allocated = true;
600}
601EXPORT_SYMBOL(drm_mm_replace_node);
602
603/**
604 * DOC: lru scan roster
605 *
606 * Very often GPUs need to have continuous allocations for a given object. When
607 * evicting objects to make space for a new one it is therefore not most
608 * efficient when we simply start to select all objects from the tail of an LRU
609 * until there's a suitable hole: Especially for big objects or nodes that
610 * otherwise have special allocation constraints there's a good chance we evict
611 * lots of (smaller) objects unnecessarily.
612 *
613 * The DRM range allocator supports this use-case through the scanning
614 * interfaces. First a scan operation needs to be initialized with
615 * drm_mm_scan_init() or drm_mm_scan_init_with_range(). The driver adds
616 * objects to the roster, probably by walking an LRU list, but this can be
617 * freely implemented. Eviction candiates are added using
618 * drm_mm_scan_add_block() until a suitable hole is found or there are no
619 * further evictable objects. Eviction roster metadata is tracked in &struct
620 * drm_mm_scan.
621 *
622 * The driver must walk through all objects again in exactly the reverse
623 * order to restore the allocator state. Note that while the allocator is used
624 * in the scan mode no other operation is allowed.
625 *
626 * Finally the driver evicts all objects selected (drm_mm_scan_remove_block()
627 * reported true) in the scan, and any overlapping nodes after color adjustment
628 * (drm_mm_scan_color_evict()). Adding and removing an object is O(1), and
629 * since freeing a node is also O(1) the overall complexity is
630 * O(scanned_objects). So like the free stack which needs to be walked before a
631 * scan operation even begins this is linear in the number of objects. It
632 * doesn't seem to hurt too badly.
633 */
634
635/**
636 * drm_mm_scan_init_with_range - initialize range-restricted lru scanning
637 * @scan: scan state
638 * @mm: drm_mm to scan
639 * @size: size of the allocation
640 * @alignment: alignment of the allocation
641 * @color: opaque tag value to use for the allocation
642 * @start: start of the allowed range for the allocation
643 * @end: end of the allowed range for the allocation
644 * @mode: fine-tune the allocation search and placement
645 *
646 * This simply sets up the scanning routines with the parameters for the desired
647 * hole.
648 *
649 * Warning:
650 * As long as the scan list is non-empty, no other operations than
651 * adding/removing nodes to/from the scan list are allowed.
652 */
653void drm_mm_scan_init_with_range(struct drm_mm_scan *scan,
654				 struct drm_mm *mm,
655				 u64 size,
656				 u64 alignment,
657				 unsigned long color,
658				 u64 start,
659				 u64 end,
660				 enum drm_mm_insert_mode mode)
661{
662	DRM_MM_BUG_ON(start >= end);
663	DRM_MM_BUG_ON(!size || size > end - start);
664	DRM_MM_BUG_ON(mm->scan_active);
665
666	scan->mm = mm;
667
668	if (alignment <= 1)
669		alignment = 0;
670
671	scan->color = color;
672	scan->alignment = alignment;
673	scan->remainder_mask = is_power_of_2(alignment) ? alignment - 1 : 0;
674	scan->size = size;
675	scan->mode = mode;
676
677	DRM_MM_BUG_ON(end <= start);
678	scan->range_start = start;
679	scan->range_end = end;
680
681	scan->hit_start = U64_MAX;
682	scan->hit_end = 0;
683}
684EXPORT_SYMBOL(drm_mm_scan_init_with_range);
685
686/**
687 * drm_mm_scan_add_block - add a node to the scan list
688 * @scan: the active drm_mm scanner
689 * @node: drm_mm_node to add
690 *
691 * Add a node to the scan list that might be freed to make space for the desired
692 * hole.
693 *
694 * Returns:
695 * True if a hole has been found, false otherwise.
696 */
697bool drm_mm_scan_add_block(struct drm_mm_scan *scan,
698			   struct drm_mm_node *node)
699{
700	struct drm_mm *mm = scan->mm;
701	struct drm_mm_node *hole;
702	u64 hole_start, hole_end;
703	u64 col_start, col_end;
704	u64 adj_start, adj_end;
705
706	DRM_MM_BUG_ON(node->mm != mm);
707	DRM_MM_BUG_ON(!node->allocated);
708	DRM_MM_BUG_ON(node->scanned_block);
709	node->scanned_block = true;
710	mm->scan_active++;
711
712	/* Remove this block from the node_list so that we enlarge the hole
713	 * (distance between the end of our previous node and the start of
714	 * or next), without poisoning the link so that we can restore it
715	 * later in drm_mm_scan_remove_block().
716	 */
717	hole = list_prev_entry(node, node_list);
718	DRM_MM_BUG_ON(list_next_entry(hole, node_list) != node);
719	__list_del_entry(&node->node_list);
720
721	hole_start = __drm_mm_hole_node_start(hole);
722	hole_end = __drm_mm_hole_node_end(hole);
723
724	col_start = hole_start;
725	col_end = hole_end;
726	if (mm->color_adjust)
727		mm->color_adjust(hole, scan->color, &col_start, &col_end);
728
729	adj_start = max(col_start, scan->range_start);
730	adj_end = min(col_end, scan->range_end);
731	if (adj_end <= adj_start || adj_end - adj_start < scan->size)
732		return false;
733
734	if (scan->mode == DRM_MM_INSERT_HIGH)
735		adj_start = adj_end - scan->size;
736
737	if (scan->alignment) {
738		u64 rem;
739
740		if (likely(scan->remainder_mask))
741			rem = adj_start & scan->remainder_mask;
742		else
743			div64_u64_rem(adj_start, scan->alignment, &rem);
744		if (rem) {
745			adj_start -= rem;
746			if (scan->mode != DRM_MM_INSERT_HIGH)
747				adj_start += scan->alignment;
748			if (adj_start < max(col_start, scan->range_start) ||
749			    min(col_end, scan->range_end) - adj_start < scan->size)
750				return false;
751
752			if (adj_end <= adj_start ||
753			    adj_end - adj_start < scan->size)
754				return false;
755		}
756	}
757
758	scan->hit_start = adj_start;
759	scan->hit_end = adj_start + scan->size;
760
761	DRM_MM_BUG_ON(scan->hit_start >= scan->hit_end);
762	DRM_MM_BUG_ON(scan->hit_start < hole_start);
763	DRM_MM_BUG_ON(scan->hit_end > hole_end);
764
765	return true;
766}
767EXPORT_SYMBOL(drm_mm_scan_add_block);
768
769/**
770 * drm_mm_scan_remove_block - remove a node from the scan list
771 * @scan: the active drm_mm scanner
772 * @node: drm_mm_node to remove
773 *
774 * Nodes **must** be removed in exactly the reverse order from the scan list as
775 * they have been added (e.g. using list_add() as they are added and then
776 * list_for_each() over that eviction list to remove), otherwise the internal
777 * state of the memory manager will be corrupted.
778 *
779 * When the scan list is empty, the selected memory nodes can be freed. An
780 * immediately following drm_mm_insert_node_in_range_generic() or one of the
781 * simpler versions of that function with !DRM_MM_SEARCH_BEST will then return
782 * the just freed block (because its at the top of the free_stack list).
783 *
784 * Returns:
785 * True if this block should be evicted, false otherwise. Will always
786 * return false when no hole has been found.
787 */
788bool drm_mm_scan_remove_block(struct drm_mm_scan *scan,
789			      struct drm_mm_node *node)
790{
791	struct drm_mm_node *prev_node;
792
793	DRM_MM_BUG_ON(node->mm != scan->mm);
794	DRM_MM_BUG_ON(!node->scanned_block);
795	node->scanned_block = false;
796
797	DRM_MM_BUG_ON(!node->mm->scan_active);
798	node->mm->scan_active--;
799
800	/* During drm_mm_scan_add_block() we decoupled this node leaving
801	 * its pointers intact. Now that the caller is walking back along
802	 * the eviction list we can restore this block into its rightful
803	 * place on the full node_list. To confirm that the caller is walking
804	 * backwards correctly we check that prev_node->next == node->next,
805	 * i.e. both believe the same node should be on the other side of the
806	 * hole.
807	 */
808	prev_node = list_prev_entry(node, node_list);
809	DRM_MM_BUG_ON(list_next_entry(prev_node, node_list) !=
810		      list_next_entry(node, node_list));
811	list_add(&node->node_list, &prev_node->node_list);
812
813	return (node->start + node->size > scan->hit_start &&
814		node->start < scan->hit_end);
815}
816EXPORT_SYMBOL(drm_mm_scan_remove_block);
817
818/**
819 * drm_mm_scan_color_evict - evict overlapping nodes on either side of hole
820 * @scan: drm_mm scan with target hole
821 *
822 * After completing an eviction scan and removing the selected nodes, we may
823 * need to remove a few more nodes from either side of the target hole if
824 * mm.color_adjust is being used.
825 *
826 * Returns:
827 * A node to evict, or NULL if there are no overlapping nodes.
828 */
829struct drm_mm_node *drm_mm_scan_color_evict(struct drm_mm_scan *scan)
830{
831	struct drm_mm *mm = scan->mm;
832	struct drm_mm_node *hole;
833	u64 hole_start, hole_end;
834
835	DRM_MM_BUG_ON(list_empty(&mm->hole_stack));
836
837	if (!mm->color_adjust)
838		return NULL;
839
840	/*
841	 * The hole found during scanning should ideally be the first element
842	 * in the hole_stack list, but due to side-effects in the driver it
843	 * may not be.
844	 */
845	list_for_each_entry(hole, &mm->hole_stack, hole_stack) {
846		hole_start = __drm_mm_hole_node_start(hole);
847		hole_end = hole_start + hole->hole_size;
848
849		if (hole_start <= scan->hit_start &&
850		    hole_end >= scan->hit_end)
851			break;
852	}
853
854	/* We should only be called after we found the hole previously */
855	DRM_MM_BUG_ON(&hole->hole_stack == &mm->hole_stack);
856	if (unlikely(&hole->hole_stack == &mm->hole_stack))
857		return NULL;
858
859	DRM_MM_BUG_ON(hole_start > scan->hit_start);
860	DRM_MM_BUG_ON(hole_end < scan->hit_end);
861
862	mm->color_adjust(hole, scan->color, &hole_start, &hole_end);
863	if (hole_start > scan->hit_start)
864		return hole;
865	if (hole_end < scan->hit_end)
866		return list_next_entry(hole, node_list);
867
868	return NULL;
869}
870EXPORT_SYMBOL(drm_mm_scan_color_evict);
871
872/**
873 * drm_mm_init - initialize a drm-mm allocator
874 * @mm: the drm_mm structure to initialize
875 * @start: start of the range managed by @mm
876 * @size: end of the range managed by @mm
877 *
878 * Note that @mm must be cleared to 0 before calling this function.
879 */
880void drm_mm_init(struct drm_mm *mm, u64 start, u64 size)
881{
882	DRM_MM_BUG_ON(start + size <= start);
883
884	mm->color_adjust = NULL;
885
886	INIT_LIST_HEAD(&mm->hole_stack);
887	mm->interval_tree = RB_ROOT_CACHED;
888	mm->holes_size = RB_ROOT;
889	mm->holes_addr = RB_ROOT;
890
891	/* Clever trick to avoid a special case in the free hole tracking. */
892	INIT_LIST_HEAD(&mm->head_node.node_list);
893	mm->head_node.allocated = false;
894	mm->head_node.mm = mm;
895	mm->head_node.start = start + size;
896	mm->head_node.size = -size;
897	add_hole(&mm->head_node);
898
899	mm->scan_active = 0;
900}
901EXPORT_SYMBOL(drm_mm_init);
902
903/**
904 * drm_mm_takedown - clean up a drm_mm allocator
905 * @mm: drm_mm allocator to clean up
906 *
907 * Note that it is a bug to call this function on an allocator which is not
908 * clean.
909 */
910void drm_mm_takedown(struct drm_mm *mm)
911{
912	if (WARN(!drm_mm_clean(mm),
913		 "Memory manager not clean during takedown.\n"))
914		show_leaks(mm);
915}
916EXPORT_SYMBOL(drm_mm_takedown);
917
918static u64 drm_mm_dump_hole(struct drm_printer *p, const struct drm_mm_node *entry)
919{
920	u64 start, size;
921
922	size = entry->hole_size;
923	if (size) {
924		start = drm_mm_hole_node_start(entry);
925		drm_printf(p, "%#018llx-%#018llx: %llu: free\n",
926			   start, start + size, size);
927	}
928
929	return size;
930}
931/**
932 * drm_mm_print - print allocator state
933 * @mm: drm_mm allocator to print
934 * @p: DRM printer to use
935 */
936void drm_mm_print(const struct drm_mm *mm, struct drm_printer *p)
937{
938	const struct drm_mm_node *entry;
939	u64 total_used = 0, total_free = 0, total = 0;
940
941	total_free += drm_mm_dump_hole(p, &mm->head_node);
942
943	drm_mm_for_each_node(entry, mm) {
944		drm_printf(p, "%#018llx-%#018llx: %llu: used\n", entry->start,
945			   entry->start + entry->size, entry->size);
946		total_used += entry->size;
947		total_free += drm_mm_dump_hole(p, entry);
948	}
949	total = total_free + total_used;
950
951	drm_printf(p, "total: %llu, used %llu free %llu\n", total,
952		   total_used, total_free);
953}
954EXPORT_SYMBOL(drm_mm_print);