Loading...
1/*
2 * Copyright (C) 2017 Spreadtrum Communications Inc.
3 *
4 * SPDX-License-Identifier: GPL-2.0
5 */
6
7#include <linux/clk.h>
8#include <linux/dma-mapping.h>
9#include <linux/dma/sprd-dma.h>
10#include <linux/errno.h>
11#include <linux/init.h>
12#include <linux/interrupt.h>
13#include <linux/io.h>
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/of.h>
17#include <linux/of_dma.h>
18#include <linux/of_device.h>
19#include <linux/pm_runtime.h>
20#include <linux/slab.h>
21
22#include "virt-dma.h"
23
24#define SPRD_DMA_CHN_REG_OFFSET 0x1000
25#define SPRD_DMA_CHN_REG_LENGTH 0x40
26#define SPRD_DMA_MEMCPY_MIN_SIZE 64
27
28/* DMA global registers definition */
29#define SPRD_DMA_GLB_PAUSE 0x0
30#define SPRD_DMA_GLB_FRAG_WAIT 0x4
31#define SPRD_DMA_GLB_REQ_PEND0_EN 0x8
32#define SPRD_DMA_GLB_REQ_PEND1_EN 0xc
33#define SPRD_DMA_GLB_INT_RAW_STS 0x10
34#define SPRD_DMA_GLB_INT_MSK_STS 0x14
35#define SPRD_DMA_GLB_REQ_STS 0x18
36#define SPRD_DMA_GLB_CHN_EN_STS 0x1c
37#define SPRD_DMA_GLB_DEBUG_STS 0x20
38#define SPRD_DMA_GLB_ARB_SEL_STS 0x24
39#define SPRD_DMA_GLB_2STAGE_GRP1 0x28
40#define SPRD_DMA_GLB_2STAGE_GRP2 0x2c
41#define SPRD_DMA_GLB_REQ_UID(uid) (0x4 * ((uid) - 1))
42#define SPRD_DMA_GLB_REQ_UID_OFFSET 0x2000
43
44/* DMA channel registers definition */
45#define SPRD_DMA_CHN_PAUSE 0x0
46#define SPRD_DMA_CHN_REQ 0x4
47#define SPRD_DMA_CHN_CFG 0x8
48#define SPRD_DMA_CHN_INTC 0xc
49#define SPRD_DMA_CHN_SRC_ADDR 0x10
50#define SPRD_DMA_CHN_DES_ADDR 0x14
51#define SPRD_DMA_CHN_FRG_LEN 0x18
52#define SPRD_DMA_CHN_BLK_LEN 0x1c
53#define SPRD_DMA_CHN_TRSC_LEN 0x20
54#define SPRD_DMA_CHN_TRSF_STEP 0x24
55#define SPRD_DMA_CHN_WARP_PTR 0x28
56#define SPRD_DMA_CHN_WARP_TO 0x2c
57#define SPRD_DMA_CHN_LLIST_PTR 0x30
58#define SPRD_DMA_CHN_FRAG_STEP 0x34
59#define SPRD_DMA_CHN_SRC_BLK_STEP 0x38
60#define SPRD_DMA_CHN_DES_BLK_STEP 0x3c
61
62/* SPRD_DMA_GLB_2STAGE_GRP register definition */
63#define SPRD_DMA_GLB_2STAGE_EN BIT(24)
64#define SPRD_DMA_GLB_CHN_INT_MASK GENMASK(23, 20)
65#define SPRD_DMA_GLB_DEST_INT BIT(22)
66#define SPRD_DMA_GLB_SRC_INT BIT(20)
67#define SPRD_DMA_GLB_LIST_DONE_TRG BIT(19)
68#define SPRD_DMA_GLB_TRANS_DONE_TRG BIT(18)
69#define SPRD_DMA_GLB_BLOCK_DONE_TRG BIT(17)
70#define SPRD_DMA_GLB_FRAG_DONE_TRG BIT(16)
71#define SPRD_DMA_GLB_TRG_OFFSET 16
72#define SPRD_DMA_GLB_DEST_CHN_MASK GENMASK(13, 8)
73#define SPRD_DMA_GLB_DEST_CHN_OFFSET 8
74#define SPRD_DMA_GLB_SRC_CHN_MASK GENMASK(5, 0)
75
76/* SPRD_DMA_CHN_INTC register definition */
77#define SPRD_DMA_INT_MASK GENMASK(4, 0)
78#define SPRD_DMA_INT_CLR_OFFSET 24
79#define SPRD_DMA_FRAG_INT_EN BIT(0)
80#define SPRD_DMA_BLK_INT_EN BIT(1)
81#define SPRD_DMA_TRANS_INT_EN BIT(2)
82#define SPRD_DMA_LIST_INT_EN BIT(3)
83#define SPRD_DMA_CFG_ERR_INT_EN BIT(4)
84
85/* SPRD_DMA_CHN_CFG register definition */
86#define SPRD_DMA_CHN_EN BIT(0)
87#define SPRD_DMA_LINKLIST_EN BIT(4)
88#define SPRD_DMA_WAIT_BDONE_OFFSET 24
89#define SPRD_DMA_DONOT_WAIT_BDONE 1
90
91/* SPRD_DMA_CHN_REQ register definition */
92#define SPRD_DMA_REQ_EN BIT(0)
93
94/* SPRD_DMA_CHN_PAUSE register definition */
95#define SPRD_DMA_PAUSE_EN BIT(0)
96#define SPRD_DMA_PAUSE_STS BIT(2)
97#define SPRD_DMA_PAUSE_CNT 0x2000
98
99/* DMA_CHN_WARP_* register definition */
100#define SPRD_DMA_HIGH_ADDR_MASK GENMASK(31, 28)
101#define SPRD_DMA_LOW_ADDR_MASK GENMASK(31, 0)
102#define SPRD_DMA_WRAP_ADDR_MASK GENMASK(27, 0)
103#define SPRD_DMA_HIGH_ADDR_OFFSET 4
104
105/* SPRD_DMA_CHN_INTC register definition */
106#define SPRD_DMA_FRAG_INT_STS BIT(16)
107#define SPRD_DMA_BLK_INT_STS BIT(17)
108#define SPRD_DMA_TRSC_INT_STS BIT(18)
109#define SPRD_DMA_LIST_INT_STS BIT(19)
110#define SPRD_DMA_CFGERR_INT_STS BIT(20)
111#define SPRD_DMA_CHN_INT_STS \
112 (SPRD_DMA_FRAG_INT_STS | SPRD_DMA_BLK_INT_STS | \
113 SPRD_DMA_TRSC_INT_STS | SPRD_DMA_LIST_INT_STS | \
114 SPRD_DMA_CFGERR_INT_STS)
115
116/* SPRD_DMA_CHN_FRG_LEN register definition */
117#define SPRD_DMA_SRC_DATAWIDTH_OFFSET 30
118#define SPRD_DMA_DES_DATAWIDTH_OFFSET 28
119#define SPRD_DMA_SWT_MODE_OFFSET 26
120#define SPRD_DMA_REQ_MODE_OFFSET 24
121#define SPRD_DMA_REQ_MODE_MASK GENMASK(1, 0)
122#define SPRD_DMA_WRAP_SEL_DEST BIT(23)
123#define SPRD_DMA_WRAP_EN BIT(22)
124#define SPRD_DMA_FIX_SEL_OFFSET 21
125#define SPRD_DMA_FIX_EN_OFFSET 20
126#define SPRD_DMA_LLIST_END BIT(19)
127#define SPRD_DMA_FRG_LEN_MASK GENMASK(16, 0)
128
129/* SPRD_DMA_CHN_BLK_LEN register definition */
130#define SPRD_DMA_BLK_LEN_MASK GENMASK(16, 0)
131
132/* SPRD_DMA_CHN_TRSC_LEN register definition */
133#define SPRD_DMA_TRSC_LEN_MASK GENMASK(27, 0)
134
135/* SPRD_DMA_CHN_TRSF_STEP register definition */
136#define SPRD_DMA_DEST_TRSF_STEP_OFFSET 16
137#define SPRD_DMA_SRC_TRSF_STEP_OFFSET 0
138#define SPRD_DMA_TRSF_STEP_MASK GENMASK(15, 0)
139
140/* SPRD DMA_SRC_BLK_STEP register definition */
141#define SPRD_DMA_LLIST_HIGH_MASK GENMASK(31, 28)
142#define SPRD_DMA_LLIST_HIGH_SHIFT 28
143
144/* define DMA channel mode & trigger mode mask */
145#define SPRD_DMA_CHN_MODE_MASK GENMASK(7, 0)
146#define SPRD_DMA_TRG_MODE_MASK GENMASK(7, 0)
147#define SPRD_DMA_INT_TYPE_MASK GENMASK(7, 0)
148
149/* define the DMA transfer step type */
150#define SPRD_DMA_NONE_STEP 0
151#define SPRD_DMA_BYTE_STEP 1
152#define SPRD_DMA_SHORT_STEP 2
153#define SPRD_DMA_WORD_STEP 4
154#define SPRD_DMA_DWORD_STEP 8
155
156#define SPRD_DMA_SOFTWARE_UID 0
157
158/* dma data width values */
159enum sprd_dma_datawidth {
160 SPRD_DMA_DATAWIDTH_1_BYTE,
161 SPRD_DMA_DATAWIDTH_2_BYTES,
162 SPRD_DMA_DATAWIDTH_4_BYTES,
163 SPRD_DMA_DATAWIDTH_8_BYTES,
164};
165
166/* dma channel hardware configuration */
167struct sprd_dma_chn_hw {
168 u32 pause;
169 u32 req;
170 u32 cfg;
171 u32 intc;
172 u32 src_addr;
173 u32 des_addr;
174 u32 frg_len;
175 u32 blk_len;
176 u32 trsc_len;
177 u32 trsf_step;
178 u32 wrap_ptr;
179 u32 wrap_to;
180 u32 llist_ptr;
181 u32 frg_step;
182 u32 src_blk_step;
183 u32 des_blk_step;
184};
185
186/* dma request description */
187struct sprd_dma_desc {
188 struct virt_dma_desc vd;
189 struct sprd_dma_chn_hw chn_hw;
190 enum dma_transfer_direction dir;
191};
192
193/* dma channel description */
194struct sprd_dma_chn {
195 struct virt_dma_chan vc;
196 void __iomem *chn_base;
197 struct sprd_dma_linklist linklist;
198 struct dma_slave_config slave_cfg;
199 u32 chn_num;
200 u32 dev_id;
201 enum sprd_dma_chn_mode chn_mode;
202 enum sprd_dma_trg_mode trg_mode;
203 enum sprd_dma_int_type int_type;
204 struct sprd_dma_desc *cur_desc;
205};
206
207/* SPRD dma device */
208struct sprd_dma_dev {
209 struct dma_device dma_dev;
210 void __iomem *glb_base;
211 struct clk *clk;
212 struct clk *ashb_clk;
213 int irq;
214 u32 total_chns;
215 struct sprd_dma_chn channels[];
216};
217
218static void sprd_dma_free_desc(struct virt_dma_desc *vd);
219static bool sprd_dma_filter_fn(struct dma_chan *chan, void *param);
220static struct of_dma_filter_info sprd_dma_info = {
221 .filter_fn = sprd_dma_filter_fn,
222};
223
224static inline struct sprd_dma_chn *to_sprd_dma_chan(struct dma_chan *c)
225{
226 return container_of(c, struct sprd_dma_chn, vc.chan);
227}
228
229static inline struct sprd_dma_dev *to_sprd_dma_dev(struct dma_chan *c)
230{
231 struct sprd_dma_chn *schan = to_sprd_dma_chan(c);
232
233 return container_of(schan, struct sprd_dma_dev, channels[c->chan_id]);
234}
235
236static inline struct sprd_dma_desc *to_sprd_dma_desc(struct virt_dma_desc *vd)
237{
238 return container_of(vd, struct sprd_dma_desc, vd);
239}
240
241static void sprd_dma_glb_update(struct sprd_dma_dev *sdev, u32 reg,
242 u32 mask, u32 val)
243{
244 u32 orig = readl(sdev->glb_base + reg);
245 u32 tmp;
246
247 tmp = (orig & ~mask) | val;
248 writel(tmp, sdev->glb_base + reg);
249}
250
251static void sprd_dma_chn_update(struct sprd_dma_chn *schan, u32 reg,
252 u32 mask, u32 val)
253{
254 u32 orig = readl(schan->chn_base + reg);
255 u32 tmp;
256
257 tmp = (orig & ~mask) | val;
258 writel(tmp, schan->chn_base + reg);
259}
260
261static int sprd_dma_enable(struct sprd_dma_dev *sdev)
262{
263 int ret;
264
265 ret = clk_prepare_enable(sdev->clk);
266 if (ret)
267 return ret;
268
269 /*
270 * The ashb_clk is optional and only for AGCP DMA controller, so we
271 * need add one condition to check if the ashb_clk need enable.
272 */
273 if (!IS_ERR(sdev->ashb_clk))
274 ret = clk_prepare_enable(sdev->ashb_clk);
275
276 return ret;
277}
278
279static void sprd_dma_disable(struct sprd_dma_dev *sdev)
280{
281 clk_disable_unprepare(sdev->clk);
282
283 /*
284 * Need to check if we need disable the optional ashb_clk for AGCP DMA.
285 */
286 if (!IS_ERR(sdev->ashb_clk))
287 clk_disable_unprepare(sdev->ashb_clk);
288}
289
290static void sprd_dma_set_uid(struct sprd_dma_chn *schan)
291{
292 struct sprd_dma_dev *sdev = to_sprd_dma_dev(&schan->vc.chan);
293 u32 dev_id = schan->dev_id;
294
295 if (dev_id != SPRD_DMA_SOFTWARE_UID) {
296 u32 uid_offset = SPRD_DMA_GLB_REQ_UID_OFFSET +
297 SPRD_DMA_GLB_REQ_UID(dev_id);
298
299 writel(schan->chn_num + 1, sdev->glb_base + uid_offset);
300 }
301}
302
303static void sprd_dma_unset_uid(struct sprd_dma_chn *schan)
304{
305 struct sprd_dma_dev *sdev = to_sprd_dma_dev(&schan->vc.chan);
306 u32 dev_id = schan->dev_id;
307
308 if (dev_id != SPRD_DMA_SOFTWARE_UID) {
309 u32 uid_offset = SPRD_DMA_GLB_REQ_UID_OFFSET +
310 SPRD_DMA_GLB_REQ_UID(dev_id);
311
312 writel(0, sdev->glb_base + uid_offset);
313 }
314}
315
316static void sprd_dma_clear_int(struct sprd_dma_chn *schan)
317{
318 sprd_dma_chn_update(schan, SPRD_DMA_CHN_INTC,
319 SPRD_DMA_INT_MASK << SPRD_DMA_INT_CLR_OFFSET,
320 SPRD_DMA_INT_MASK << SPRD_DMA_INT_CLR_OFFSET);
321}
322
323static void sprd_dma_enable_chn(struct sprd_dma_chn *schan)
324{
325 sprd_dma_chn_update(schan, SPRD_DMA_CHN_CFG, SPRD_DMA_CHN_EN,
326 SPRD_DMA_CHN_EN);
327}
328
329static void sprd_dma_disable_chn(struct sprd_dma_chn *schan)
330{
331 sprd_dma_chn_update(schan, SPRD_DMA_CHN_CFG, SPRD_DMA_CHN_EN, 0);
332}
333
334static void sprd_dma_soft_request(struct sprd_dma_chn *schan)
335{
336 sprd_dma_chn_update(schan, SPRD_DMA_CHN_REQ, SPRD_DMA_REQ_EN,
337 SPRD_DMA_REQ_EN);
338}
339
340static void sprd_dma_pause_resume(struct sprd_dma_chn *schan, bool enable)
341{
342 struct sprd_dma_dev *sdev = to_sprd_dma_dev(&schan->vc.chan);
343 u32 pause, timeout = SPRD_DMA_PAUSE_CNT;
344
345 if (enable) {
346 sprd_dma_chn_update(schan, SPRD_DMA_CHN_PAUSE,
347 SPRD_DMA_PAUSE_EN, SPRD_DMA_PAUSE_EN);
348
349 do {
350 pause = readl(schan->chn_base + SPRD_DMA_CHN_PAUSE);
351 if (pause & SPRD_DMA_PAUSE_STS)
352 break;
353
354 cpu_relax();
355 } while (--timeout > 0);
356
357 if (!timeout)
358 dev_warn(sdev->dma_dev.dev,
359 "pause dma controller timeout\n");
360 } else {
361 sprd_dma_chn_update(schan, SPRD_DMA_CHN_PAUSE,
362 SPRD_DMA_PAUSE_EN, 0);
363 }
364}
365
366static void sprd_dma_stop_and_disable(struct sprd_dma_chn *schan)
367{
368 u32 cfg = readl(schan->chn_base + SPRD_DMA_CHN_CFG);
369
370 if (!(cfg & SPRD_DMA_CHN_EN))
371 return;
372
373 sprd_dma_pause_resume(schan, true);
374 sprd_dma_disable_chn(schan);
375}
376
377static unsigned long sprd_dma_get_src_addr(struct sprd_dma_chn *schan)
378{
379 unsigned long addr, addr_high;
380
381 addr = readl(schan->chn_base + SPRD_DMA_CHN_SRC_ADDR);
382 addr_high = readl(schan->chn_base + SPRD_DMA_CHN_WARP_PTR) &
383 SPRD_DMA_HIGH_ADDR_MASK;
384
385 return addr | (addr_high << SPRD_DMA_HIGH_ADDR_OFFSET);
386}
387
388static unsigned long sprd_dma_get_dst_addr(struct sprd_dma_chn *schan)
389{
390 unsigned long addr, addr_high;
391
392 addr = readl(schan->chn_base + SPRD_DMA_CHN_DES_ADDR);
393 addr_high = readl(schan->chn_base + SPRD_DMA_CHN_WARP_TO) &
394 SPRD_DMA_HIGH_ADDR_MASK;
395
396 return addr | (addr_high << SPRD_DMA_HIGH_ADDR_OFFSET);
397}
398
399static enum sprd_dma_int_type sprd_dma_get_int_type(struct sprd_dma_chn *schan)
400{
401 struct sprd_dma_dev *sdev = to_sprd_dma_dev(&schan->vc.chan);
402 u32 intc_sts = readl(schan->chn_base + SPRD_DMA_CHN_INTC) &
403 SPRD_DMA_CHN_INT_STS;
404
405 switch (intc_sts) {
406 case SPRD_DMA_CFGERR_INT_STS:
407 return SPRD_DMA_CFGERR_INT;
408
409 case SPRD_DMA_LIST_INT_STS:
410 return SPRD_DMA_LIST_INT;
411
412 case SPRD_DMA_TRSC_INT_STS:
413 return SPRD_DMA_TRANS_INT;
414
415 case SPRD_DMA_BLK_INT_STS:
416 return SPRD_DMA_BLK_INT;
417
418 case SPRD_DMA_FRAG_INT_STS:
419 return SPRD_DMA_FRAG_INT;
420
421 default:
422 dev_warn(sdev->dma_dev.dev, "incorrect dma interrupt type\n");
423 return SPRD_DMA_NO_INT;
424 }
425}
426
427static enum sprd_dma_req_mode sprd_dma_get_req_type(struct sprd_dma_chn *schan)
428{
429 u32 frag_reg = readl(schan->chn_base + SPRD_DMA_CHN_FRG_LEN);
430
431 return (frag_reg >> SPRD_DMA_REQ_MODE_OFFSET) & SPRD_DMA_REQ_MODE_MASK;
432}
433
434static int sprd_dma_set_2stage_config(struct sprd_dma_chn *schan)
435{
436 struct sprd_dma_dev *sdev = to_sprd_dma_dev(&schan->vc.chan);
437 u32 val, chn = schan->chn_num + 1;
438
439 switch (schan->chn_mode) {
440 case SPRD_DMA_SRC_CHN0:
441 val = chn & SPRD_DMA_GLB_SRC_CHN_MASK;
442 val |= BIT(schan->trg_mode - 1) << SPRD_DMA_GLB_TRG_OFFSET;
443 val |= SPRD_DMA_GLB_2STAGE_EN;
444 if (schan->int_type != SPRD_DMA_NO_INT)
445 val |= SPRD_DMA_GLB_SRC_INT;
446
447 sprd_dma_glb_update(sdev, SPRD_DMA_GLB_2STAGE_GRP1, val, val);
448 break;
449
450 case SPRD_DMA_SRC_CHN1:
451 val = chn & SPRD_DMA_GLB_SRC_CHN_MASK;
452 val |= BIT(schan->trg_mode - 1) << SPRD_DMA_GLB_TRG_OFFSET;
453 val |= SPRD_DMA_GLB_2STAGE_EN;
454 if (schan->int_type != SPRD_DMA_NO_INT)
455 val |= SPRD_DMA_GLB_SRC_INT;
456
457 sprd_dma_glb_update(sdev, SPRD_DMA_GLB_2STAGE_GRP2, val, val);
458 break;
459
460 case SPRD_DMA_DST_CHN0:
461 val = (chn << SPRD_DMA_GLB_DEST_CHN_OFFSET) &
462 SPRD_DMA_GLB_DEST_CHN_MASK;
463 val |= SPRD_DMA_GLB_2STAGE_EN;
464 if (schan->int_type != SPRD_DMA_NO_INT)
465 val |= SPRD_DMA_GLB_DEST_INT;
466
467 sprd_dma_glb_update(sdev, SPRD_DMA_GLB_2STAGE_GRP1, val, val);
468 break;
469
470 case SPRD_DMA_DST_CHN1:
471 val = (chn << SPRD_DMA_GLB_DEST_CHN_OFFSET) &
472 SPRD_DMA_GLB_DEST_CHN_MASK;
473 val |= SPRD_DMA_GLB_2STAGE_EN;
474 if (schan->int_type != SPRD_DMA_NO_INT)
475 val |= SPRD_DMA_GLB_DEST_INT;
476
477 sprd_dma_glb_update(sdev, SPRD_DMA_GLB_2STAGE_GRP2, val, val);
478 break;
479
480 default:
481 dev_err(sdev->dma_dev.dev, "invalid channel mode setting %d\n",
482 schan->chn_mode);
483 return -EINVAL;
484 }
485
486 return 0;
487}
488
489static void sprd_dma_set_pending(struct sprd_dma_chn *schan, bool enable)
490{
491 struct sprd_dma_dev *sdev = to_sprd_dma_dev(&schan->vc.chan);
492 u32 reg, val, req_id;
493
494 if (schan->dev_id == SPRD_DMA_SOFTWARE_UID)
495 return;
496
497 /* The DMA request id always starts from 0. */
498 req_id = schan->dev_id - 1;
499
500 if (req_id < 32) {
501 reg = SPRD_DMA_GLB_REQ_PEND0_EN;
502 val = BIT(req_id);
503 } else {
504 reg = SPRD_DMA_GLB_REQ_PEND1_EN;
505 val = BIT(req_id - 32);
506 }
507
508 sprd_dma_glb_update(sdev, reg, val, enable ? val : 0);
509}
510
511static void sprd_dma_set_chn_config(struct sprd_dma_chn *schan,
512 struct sprd_dma_desc *sdesc)
513{
514 struct sprd_dma_chn_hw *cfg = &sdesc->chn_hw;
515
516 writel(cfg->pause, schan->chn_base + SPRD_DMA_CHN_PAUSE);
517 writel(cfg->cfg, schan->chn_base + SPRD_DMA_CHN_CFG);
518 writel(cfg->intc, schan->chn_base + SPRD_DMA_CHN_INTC);
519 writel(cfg->src_addr, schan->chn_base + SPRD_DMA_CHN_SRC_ADDR);
520 writel(cfg->des_addr, schan->chn_base + SPRD_DMA_CHN_DES_ADDR);
521 writel(cfg->frg_len, schan->chn_base + SPRD_DMA_CHN_FRG_LEN);
522 writel(cfg->blk_len, schan->chn_base + SPRD_DMA_CHN_BLK_LEN);
523 writel(cfg->trsc_len, schan->chn_base + SPRD_DMA_CHN_TRSC_LEN);
524 writel(cfg->trsf_step, schan->chn_base + SPRD_DMA_CHN_TRSF_STEP);
525 writel(cfg->wrap_ptr, schan->chn_base + SPRD_DMA_CHN_WARP_PTR);
526 writel(cfg->wrap_to, schan->chn_base + SPRD_DMA_CHN_WARP_TO);
527 writel(cfg->llist_ptr, schan->chn_base + SPRD_DMA_CHN_LLIST_PTR);
528 writel(cfg->frg_step, schan->chn_base + SPRD_DMA_CHN_FRAG_STEP);
529 writel(cfg->src_blk_step, schan->chn_base + SPRD_DMA_CHN_SRC_BLK_STEP);
530 writel(cfg->des_blk_step, schan->chn_base + SPRD_DMA_CHN_DES_BLK_STEP);
531 writel(cfg->req, schan->chn_base + SPRD_DMA_CHN_REQ);
532}
533
534static void sprd_dma_start(struct sprd_dma_chn *schan)
535{
536 struct virt_dma_desc *vd = vchan_next_desc(&schan->vc);
537
538 if (!vd)
539 return;
540
541 list_del(&vd->node);
542 schan->cur_desc = to_sprd_dma_desc(vd);
543
544 /*
545 * Set 2-stage configuration if the channel starts one 2-stage
546 * transfer.
547 */
548 if (schan->chn_mode && sprd_dma_set_2stage_config(schan))
549 return;
550
551 /*
552 * Copy the DMA configuration from DMA descriptor to this hardware
553 * channel.
554 */
555 sprd_dma_set_chn_config(schan, schan->cur_desc);
556 sprd_dma_set_uid(schan);
557 sprd_dma_set_pending(schan, true);
558 sprd_dma_enable_chn(schan);
559
560 if (schan->dev_id == SPRD_DMA_SOFTWARE_UID &&
561 schan->chn_mode != SPRD_DMA_DST_CHN0 &&
562 schan->chn_mode != SPRD_DMA_DST_CHN1)
563 sprd_dma_soft_request(schan);
564}
565
566static void sprd_dma_stop(struct sprd_dma_chn *schan)
567{
568 sprd_dma_stop_and_disable(schan);
569 sprd_dma_set_pending(schan, false);
570 sprd_dma_unset_uid(schan);
571 sprd_dma_clear_int(schan);
572 schan->cur_desc = NULL;
573}
574
575static bool sprd_dma_check_trans_done(struct sprd_dma_desc *sdesc,
576 enum sprd_dma_int_type int_type,
577 enum sprd_dma_req_mode req_mode)
578{
579 if (int_type == SPRD_DMA_NO_INT)
580 return false;
581
582 if (int_type >= req_mode + 1)
583 return true;
584 else
585 return false;
586}
587
588static irqreturn_t dma_irq_handle(int irq, void *dev_id)
589{
590 struct sprd_dma_dev *sdev = (struct sprd_dma_dev *)dev_id;
591 u32 irq_status = readl(sdev->glb_base + SPRD_DMA_GLB_INT_MSK_STS);
592 struct sprd_dma_chn *schan;
593 struct sprd_dma_desc *sdesc;
594 enum sprd_dma_req_mode req_type;
595 enum sprd_dma_int_type int_type;
596 bool trans_done = false, cyclic = false;
597 u32 i;
598
599 while (irq_status) {
600 i = __ffs(irq_status);
601 irq_status &= (irq_status - 1);
602 schan = &sdev->channels[i];
603
604 spin_lock(&schan->vc.lock);
605
606 sdesc = schan->cur_desc;
607 if (!sdesc) {
608 spin_unlock(&schan->vc.lock);
609 return IRQ_HANDLED;
610 }
611
612 int_type = sprd_dma_get_int_type(schan);
613 req_type = sprd_dma_get_req_type(schan);
614 sprd_dma_clear_int(schan);
615
616 /* cyclic mode schedule callback */
617 cyclic = schan->linklist.phy_addr ? true : false;
618 if (cyclic == true) {
619 vchan_cyclic_callback(&sdesc->vd);
620 } else {
621 /* Check if the dma request descriptor is done. */
622 trans_done = sprd_dma_check_trans_done(sdesc, int_type,
623 req_type);
624 if (trans_done == true) {
625 vchan_cookie_complete(&sdesc->vd);
626 schan->cur_desc = NULL;
627 sprd_dma_start(schan);
628 }
629 }
630 spin_unlock(&schan->vc.lock);
631 }
632
633 return IRQ_HANDLED;
634}
635
636static int sprd_dma_alloc_chan_resources(struct dma_chan *chan)
637{
638 return pm_runtime_get_sync(chan->device->dev);
639}
640
641static void sprd_dma_free_chan_resources(struct dma_chan *chan)
642{
643 struct sprd_dma_chn *schan = to_sprd_dma_chan(chan);
644 struct virt_dma_desc *cur_vd = NULL;
645 unsigned long flags;
646
647 spin_lock_irqsave(&schan->vc.lock, flags);
648 if (schan->cur_desc)
649 cur_vd = &schan->cur_desc->vd;
650
651 sprd_dma_stop(schan);
652 spin_unlock_irqrestore(&schan->vc.lock, flags);
653
654 if (cur_vd)
655 sprd_dma_free_desc(cur_vd);
656
657 vchan_free_chan_resources(&schan->vc);
658 pm_runtime_put(chan->device->dev);
659}
660
661static enum dma_status sprd_dma_tx_status(struct dma_chan *chan,
662 dma_cookie_t cookie,
663 struct dma_tx_state *txstate)
664{
665 struct sprd_dma_chn *schan = to_sprd_dma_chan(chan);
666 struct virt_dma_desc *vd;
667 unsigned long flags;
668 enum dma_status ret;
669 u32 pos;
670
671 ret = dma_cookie_status(chan, cookie, txstate);
672 if (ret == DMA_COMPLETE || !txstate)
673 return ret;
674
675 spin_lock_irqsave(&schan->vc.lock, flags);
676 vd = vchan_find_desc(&schan->vc, cookie);
677 if (vd) {
678 struct sprd_dma_desc *sdesc = to_sprd_dma_desc(vd);
679 struct sprd_dma_chn_hw *hw = &sdesc->chn_hw;
680
681 if (hw->trsc_len > 0)
682 pos = hw->trsc_len;
683 else if (hw->blk_len > 0)
684 pos = hw->blk_len;
685 else if (hw->frg_len > 0)
686 pos = hw->frg_len;
687 else
688 pos = 0;
689 } else if (schan->cur_desc && schan->cur_desc->vd.tx.cookie == cookie) {
690 struct sprd_dma_desc *sdesc = schan->cur_desc;
691
692 if (sdesc->dir == DMA_DEV_TO_MEM)
693 pos = sprd_dma_get_dst_addr(schan);
694 else
695 pos = sprd_dma_get_src_addr(schan);
696 } else {
697 pos = 0;
698 }
699 spin_unlock_irqrestore(&schan->vc.lock, flags);
700
701 dma_set_residue(txstate, pos);
702 return ret;
703}
704
705static void sprd_dma_issue_pending(struct dma_chan *chan)
706{
707 struct sprd_dma_chn *schan = to_sprd_dma_chan(chan);
708 unsigned long flags;
709
710 spin_lock_irqsave(&schan->vc.lock, flags);
711 if (vchan_issue_pending(&schan->vc) && !schan->cur_desc)
712 sprd_dma_start(schan);
713 spin_unlock_irqrestore(&schan->vc.lock, flags);
714}
715
716static int sprd_dma_get_datawidth(enum dma_slave_buswidth buswidth)
717{
718 switch (buswidth) {
719 case DMA_SLAVE_BUSWIDTH_1_BYTE:
720 case DMA_SLAVE_BUSWIDTH_2_BYTES:
721 case DMA_SLAVE_BUSWIDTH_4_BYTES:
722 case DMA_SLAVE_BUSWIDTH_8_BYTES:
723 return ffs(buswidth) - 1;
724
725 default:
726 return -EINVAL;
727 }
728}
729
730static int sprd_dma_get_step(enum dma_slave_buswidth buswidth)
731{
732 switch (buswidth) {
733 case DMA_SLAVE_BUSWIDTH_1_BYTE:
734 case DMA_SLAVE_BUSWIDTH_2_BYTES:
735 case DMA_SLAVE_BUSWIDTH_4_BYTES:
736 case DMA_SLAVE_BUSWIDTH_8_BYTES:
737 return buswidth;
738
739 default:
740 return -EINVAL;
741 }
742}
743
744static int sprd_dma_fill_desc(struct dma_chan *chan,
745 struct sprd_dma_chn_hw *hw,
746 unsigned int sglen, int sg_index,
747 dma_addr_t src, dma_addr_t dst, u32 len,
748 enum dma_transfer_direction dir,
749 unsigned long flags,
750 struct dma_slave_config *slave_cfg)
751{
752 struct sprd_dma_dev *sdev = to_sprd_dma_dev(chan);
753 struct sprd_dma_chn *schan = to_sprd_dma_chan(chan);
754 enum sprd_dma_chn_mode chn_mode = schan->chn_mode;
755 u32 req_mode = (flags >> SPRD_DMA_REQ_SHIFT) & SPRD_DMA_REQ_MODE_MASK;
756 u32 int_mode = flags & SPRD_DMA_INT_MASK;
757 int src_datawidth, dst_datawidth, src_step, dst_step;
758 u32 temp, fix_mode = 0, fix_en = 0;
759 phys_addr_t llist_ptr;
760
761 if (dir == DMA_MEM_TO_DEV) {
762 src_step = sprd_dma_get_step(slave_cfg->src_addr_width);
763 if (src_step < 0) {
764 dev_err(sdev->dma_dev.dev, "invalid source step\n");
765 return src_step;
766 }
767
768 /*
769 * For 2-stage transfer, destination channel step can not be 0,
770 * since destination device is AON IRAM.
771 */
772 if (chn_mode == SPRD_DMA_DST_CHN0 ||
773 chn_mode == SPRD_DMA_DST_CHN1)
774 dst_step = src_step;
775 else
776 dst_step = SPRD_DMA_NONE_STEP;
777 } else {
778 dst_step = sprd_dma_get_step(slave_cfg->dst_addr_width);
779 if (dst_step < 0) {
780 dev_err(sdev->dma_dev.dev, "invalid destination step\n");
781 return dst_step;
782 }
783 src_step = SPRD_DMA_NONE_STEP;
784 }
785
786 src_datawidth = sprd_dma_get_datawidth(slave_cfg->src_addr_width);
787 if (src_datawidth < 0) {
788 dev_err(sdev->dma_dev.dev, "invalid source datawidth\n");
789 return src_datawidth;
790 }
791
792 dst_datawidth = sprd_dma_get_datawidth(slave_cfg->dst_addr_width);
793 if (dst_datawidth < 0) {
794 dev_err(sdev->dma_dev.dev, "invalid destination datawidth\n");
795 return dst_datawidth;
796 }
797
798 if (slave_cfg->slave_id)
799 schan->dev_id = slave_cfg->slave_id;
800
801 hw->cfg = SPRD_DMA_DONOT_WAIT_BDONE << SPRD_DMA_WAIT_BDONE_OFFSET;
802
803 /*
804 * wrap_ptr and wrap_to will save the high 4 bits source address and
805 * destination address.
806 */
807 hw->wrap_ptr = (src >> SPRD_DMA_HIGH_ADDR_OFFSET) & SPRD_DMA_HIGH_ADDR_MASK;
808 hw->wrap_to = (dst >> SPRD_DMA_HIGH_ADDR_OFFSET) & SPRD_DMA_HIGH_ADDR_MASK;
809 hw->src_addr = src & SPRD_DMA_LOW_ADDR_MASK;
810 hw->des_addr = dst & SPRD_DMA_LOW_ADDR_MASK;
811
812 /*
813 * If the src step and dst step both are 0 or both are not 0, that means
814 * we can not enable the fix mode. If one is 0 and another one is not,
815 * we can enable the fix mode.
816 */
817 if ((src_step != 0 && dst_step != 0) || (src_step | dst_step) == 0) {
818 fix_en = 0;
819 } else {
820 fix_en = 1;
821 if (src_step)
822 fix_mode = 1;
823 else
824 fix_mode = 0;
825 }
826
827 hw->intc = int_mode | SPRD_DMA_CFG_ERR_INT_EN;
828
829 temp = src_datawidth << SPRD_DMA_SRC_DATAWIDTH_OFFSET;
830 temp |= dst_datawidth << SPRD_DMA_DES_DATAWIDTH_OFFSET;
831 temp |= req_mode << SPRD_DMA_REQ_MODE_OFFSET;
832 temp |= fix_mode << SPRD_DMA_FIX_SEL_OFFSET;
833 temp |= fix_en << SPRD_DMA_FIX_EN_OFFSET;
834 temp |= schan->linklist.wrap_addr ?
835 SPRD_DMA_WRAP_EN | SPRD_DMA_WRAP_SEL_DEST : 0;
836 temp |= slave_cfg->src_maxburst & SPRD_DMA_FRG_LEN_MASK;
837 hw->frg_len = temp;
838
839 hw->blk_len = slave_cfg->src_maxburst & SPRD_DMA_BLK_LEN_MASK;
840 hw->trsc_len = len & SPRD_DMA_TRSC_LEN_MASK;
841
842 temp = (dst_step & SPRD_DMA_TRSF_STEP_MASK) << SPRD_DMA_DEST_TRSF_STEP_OFFSET;
843 temp |= (src_step & SPRD_DMA_TRSF_STEP_MASK) << SPRD_DMA_SRC_TRSF_STEP_OFFSET;
844 hw->trsf_step = temp;
845
846 /* link-list configuration */
847 if (schan->linklist.phy_addr) {
848 hw->cfg |= SPRD_DMA_LINKLIST_EN;
849
850 /* link-list index */
851 temp = sglen ? (sg_index + 1) % sglen : 0;
852
853 /* Next link-list configuration's physical address offset */
854 temp = temp * sizeof(*hw) + SPRD_DMA_CHN_SRC_ADDR;
855 /*
856 * Set the link-list pointer point to next link-list
857 * configuration's physical address.
858 */
859 llist_ptr = schan->linklist.phy_addr + temp;
860 hw->llist_ptr = lower_32_bits(llist_ptr);
861 hw->src_blk_step = (upper_32_bits(llist_ptr) << SPRD_DMA_LLIST_HIGH_SHIFT) &
862 SPRD_DMA_LLIST_HIGH_MASK;
863
864 if (schan->linklist.wrap_addr) {
865 hw->wrap_ptr |= schan->linklist.wrap_addr &
866 SPRD_DMA_WRAP_ADDR_MASK;
867 hw->wrap_to |= dst & SPRD_DMA_WRAP_ADDR_MASK;
868 }
869 } else {
870 hw->llist_ptr = 0;
871 hw->src_blk_step = 0;
872 }
873
874 hw->frg_step = 0;
875 hw->des_blk_step = 0;
876 return 0;
877}
878
879static int sprd_dma_fill_linklist_desc(struct dma_chan *chan,
880 unsigned int sglen, int sg_index,
881 dma_addr_t src, dma_addr_t dst, u32 len,
882 enum dma_transfer_direction dir,
883 unsigned long flags,
884 struct dma_slave_config *slave_cfg)
885{
886 struct sprd_dma_chn *schan = to_sprd_dma_chan(chan);
887 struct sprd_dma_chn_hw *hw;
888
889 if (!schan->linklist.virt_addr)
890 return -EINVAL;
891
892 hw = (struct sprd_dma_chn_hw *)(schan->linklist.virt_addr +
893 sg_index * sizeof(*hw));
894
895 return sprd_dma_fill_desc(chan, hw, sglen, sg_index, src, dst, len,
896 dir, flags, slave_cfg);
897}
898
899static struct dma_async_tx_descriptor *
900sprd_dma_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
901 size_t len, unsigned long flags)
902{
903 struct sprd_dma_chn *schan = to_sprd_dma_chan(chan);
904 struct sprd_dma_desc *sdesc;
905 struct sprd_dma_chn_hw *hw;
906 enum sprd_dma_datawidth datawidth;
907 u32 step, temp;
908
909 sdesc = kzalloc(sizeof(*sdesc), GFP_NOWAIT);
910 if (!sdesc)
911 return NULL;
912
913 hw = &sdesc->chn_hw;
914
915 hw->cfg = SPRD_DMA_DONOT_WAIT_BDONE << SPRD_DMA_WAIT_BDONE_OFFSET;
916 hw->intc = SPRD_DMA_TRANS_INT | SPRD_DMA_CFG_ERR_INT_EN;
917 hw->src_addr = src & SPRD_DMA_LOW_ADDR_MASK;
918 hw->des_addr = dest & SPRD_DMA_LOW_ADDR_MASK;
919 hw->wrap_ptr = (src >> SPRD_DMA_HIGH_ADDR_OFFSET) &
920 SPRD_DMA_HIGH_ADDR_MASK;
921 hw->wrap_to = (dest >> SPRD_DMA_HIGH_ADDR_OFFSET) &
922 SPRD_DMA_HIGH_ADDR_MASK;
923
924 if (IS_ALIGNED(len, 8)) {
925 datawidth = SPRD_DMA_DATAWIDTH_8_BYTES;
926 step = SPRD_DMA_DWORD_STEP;
927 } else if (IS_ALIGNED(len, 4)) {
928 datawidth = SPRD_DMA_DATAWIDTH_4_BYTES;
929 step = SPRD_DMA_WORD_STEP;
930 } else if (IS_ALIGNED(len, 2)) {
931 datawidth = SPRD_DMA_DATAWIDTH_2_BYTES;
932 step = SPRD_DMA_SHORT_STEP;
933 } else {
934 datawidth = SPRD_DMA_DATAWIDTH_1_BYTE;
935 step = SPRD_DMA_BYTE_STEP;
936 }
937
938 temp = datawidth << SPRD_DMA_SRC_DATAWIDTH_OFFSET;
939 temp |= datawidth << SPRD_DMA_DES_DATAWIDTH_OFFSET;
940 temp |= SPRD_DMA_TRANS_REQ << SPRD_DMA_REQ_MODE_OFFSET;
941 temp |= len & SPRD_DMA_FRG_LEN_MASK;
942 hw->frg_len = temp;
943
944 hw->blk_len = len & SPRD_DMA_BLK_LEN_MASK;
945 hw->trsc_len = len & SPRD_DMA_TRSC_LEN_MASK;
946
947 temp = (step & SPRD_DMA_TRSF_STEP_MASK) << SPRD_DMA_DEST_TRSF_STEP_OFFSET;
948 temp |= (step & SPRD_DMA_TRSF_STEP_MASK) << SPRD_DMA_SRC_TRSF_STEP_OFFSET;
949 hw->trsf_step = temp;
950
951 return vchan_tx_prep(&schan->vc, &sdesc->vd, flags);
952}
953
954static struct dma_async_tx_descriptor *
955sprd_dma_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
956 unsigned int sglen, enum dma_transfer_direction dir,
957 unsigned long flags, void *context)
958{
959 struct sprd_dma_chn *schan = to_sprd_dma_chan(chan);
960 struct dma_slave_config *slave_cfg = &schan->slave_cfg;
961 dma_addr_t src = 0, dst = 0;
962 dma_addr_t start_src = 0, start_dst = 0;
963 struct sprd_dma_desc *sdesc;
964 struct scatterlist *sg;
965 u32 len = 0;
966 int ret, i;
967
968 if (!is_slave_direction(dir))
969 return NULL;
970
971 if (context) {
972 struct sprd_dma_linklist *ll_cfg =
973 (struct sprd_dma_linklist *)context;
974
975 schan->linklist.phy_addr = ll_cfg->phy_addr;
976 schan->linklist.virt_addr = ll_cfg->virt_addr;
977 schan->linklist.wrap_addr = ll_cfg->wrap_addr;
978 } else {
979 schan->linklist.phy_addr = 0;
980 schan->linklist.virt_addr = 0;
981 schan->linklist.wrap_addr = 0;
982 }
983
984 /*
985 * Set channel mode, interrupt mode and trigger mode for 2-stage
986 * transfer.
987 */
988 schan->chn_mode =
989 (flags >> SPRD_DMA_CHN_MODE_SHIFT) & SPRD_DMA_CHN_MODE_MASK;
990 schan->trg_mode =
991 (flags >> SPRD_DMA_TRG_MODE_SHIFT) & SPRD_DMA_TRG_MODE_MASK;
992 schan->int_type = flags & SPRD_DMA_INT_TYPE_MASK;
993
994 sdesc = kzalloc(sizeof(*sdesc), GFP_NOWAIT);
995 if (!sdesc)
996 return NULL;
997
998 sdesc->dir = dir;
999
1000 for_each_sg(sgl, sg, sglen, i) {
1001 len = sg_dma_len(sg);
1002
1003 if (dir == DMA_MEM_TO_DEV) {
1004 src = sg_dma_address(sg);
1005 dst = slave_cfg->dst_addr;
1006 } else {
1007 src = slave_cfg->src_addr;
1008 dst = sg_dma_address(sg);
1009 }
1010
1011 if (!i) {
1012 start_src = src;
1013 start_dst = dst;
1014 }
1015
1016 /*
1017 * The link-list mode needs at least 2 link-list
1018 * configurations. If there is only one sg, it doesn't
1019 * need to fill the link-list configuration.
1020 */
1021 if (sglen < 2)
1022 break;
1023
1024 ret = sprd_dma_fill_linklist_desc(chan, sglen, i, src, dst, len,
1025 dir, flags, slave_cfg);
1026 if (ret) {
1027 kfree(sdesc);
1028 return NULL;
1029 }
1030 }
1031
1032 ret = sprd_dma_fill_desc(chan, &sdesc->chn_hw, 0, 0, start_src,
1033 start_dst, len, dir, flags, slave_cfg);
1034 if (ret) {
1035 kfree(sdesc);
1036 return NULL;
1037 }
1038
1039 return vchan_tx_prep(&schan->vc, &sdesc->vd, flags);
1040}
1041
1042static int sprd_dma_slave_config(struct dma_chan *chan,
1043 struct dma_slave_config *config)
1044{
1045 struct sprd_dma_chn *schan = to_sprd_dma_chan(chan);
1046 struct dma_slave_config *slave_cfg = &schan->slave_cfg;
1047
1048 memcpy(slave_cfg, config, sizeof(*config));
1049 return 0;
1050}
1051
1052static int sprd_dma_pause(struct dma_chan *chan)
1053{
1054 struct sprd_dma_chn *schan = to_sprd_dma_chan(chan);
1055 unsigned long flags;
1056
1057 spin_lock_irqsave(&schan->vc.lock, flags);
1058 sprd_dma_pause_resume(schan, true);
1059 spin_unlock_irqrestore(&schan->vc.lock, flags);
1060
1061 return 0;
1062}
1063
1064static int sprd_dma_resume(struct dma_chan *chan)
1065{
1066 struct sprd_dma_chn *schan = to_sprd_dma_chan(chan);
1067 unsigned long flags;
1068
1069 spin_lock_irqsave(&schan->vc.lock, flags);
1070 sprd_dma_pause_resume(schan, false);
1071 spin_unlock_irqrestore(&schan->vc.lock, flags);
1072
1073 return 0;
1074}
1075
1076static int sprd_dma_terminate_all(struct dma_chan *chan)
1077{
1078 struct sprd_dma_chn *schan = to_sprd_dma_chan(chan);
1079 struct virt_dma_desc *cur_vd = NULL;
1080 unsigned long flags;
1081 LIST_HEAD(head);
1082
1083 spin_lock_irqsave(&schan->vc.lock, flags);
1084 if (schan->cur_desc)
1085 cur_vd = &schan->cur_desc->vd;
1086
1087 sprd_dma_stop(schan);
1088
1089 vchan_get_all_descriptors(&schan->vc, &head);
1090 spin_unlock_irqrestore(&schan->vc.lock, flags);
1091
1092 if (cur_vd)
1093 sprd_dma_free_desc(cur_vd);
1094
1095 vchan_dma_desc_free_list(&schan->vc, &head);
1096 return 0;
1097}
1098
1099static void sprd_dma_free_desc(struct virt_dma_desc *vd)
1100{
1101 struct sprd_dma_desc *sdesc = to_sprd_dma_desc(vd);
1102
1103 kfree(sdesc);
1104}
1105
1106static bool sprd_dma_filter_fn(struct dma_chan *chan, void *param)
1107{
1108 struct sprd_dma_chn *schan = to_sprd_dma_chan(chan);
1109 u32 slave_id = *(u32 *)param;
1110
1111 schan->dev_id = slave_id;
1112 return true;
1113}
1114
1115static int sprd_dma_probe(struct platform_device *pdev)
1116{
1117 struct device_node *np = pdev->dev.of_node;
1118 struct sprd_dma_dev *sdev;
1119 struct sprd_dma_chn *dma_chn;
1120 u32 chn_count;
1121 int ret, i;
1122
1123 ret = device_property_read_u32(&pdev->dev, "#dma-channels", &chn_count);
1124 if (ret) {
1125 dev_err(&pdev->dev, "get dma channels count failed\n");
1126 return ret;
1127 }
1128
1129 sdev = devm_kzalloc(&pdev->dev,
1130 struct_size(sdev, channels, chn_count),
1131 GFP_KERNEL);
1132 if (!sdev)
1133 return -ENOMEM;
1134
1135 sdev->clk = devm_clk_get(&pdev->dev, "enable");
1136 if (IS_ERR(sdev->clk)) {
1137 dev_err(&pdev->dev, "get enable clock failed\n");
1138 return PTR_ERR(sdev->clk);
1139 }
1140
1141 /* ashb clock is optional for AGCP DMA */
1142 sdev->ashb_clk = devm_clk_get(&pdev->dev, "ashb_eb");
1143 if (IS_ERR(sdev->ashb_clk))
1144 dev_warn(&pdev->dev, "no optional ashb eb clock\n");
1145
1146 /*
1147 * We have three DMA controllers: AP DMA, AON DMA and AGCP DMA. For AGCP
1148 * DMA controller, it can or do not request the irq, which will save
1149 * system power without resuming system by DMA interrupts if AGCP DMA
1150 * does not request the irq. Thus the DMA interrupts property should
1151 * be optional.
1152 */
1153 sdev->irq = platform_get_irq(pdev, 0);
1154 if (sdev->irq > 0) {
1155 ret = devm_request_irq(&pdev->dev, sdev->irq, dma_irq_handle,
1156 0, "sprd_dma", (void *)sdev);
1157 if (ret < 0) {
1158 dev_err(&pdev->dev, "request dma irq failed\n");
1159 return ret;
1160 }
1161 } else {
1162 dev_warn(&pdev->dev, "no interrupts for the dma controller\n");
1163 }
1164
1165 sdev->glb_base = devm_platform_ioremap_resource(pdev, 0);
1166 if (IS_ERR(sdev->glb_base))
1167 return PTR_ERR(sdev->glb_base);
1168
1169 dma_cap_set(DMA_MEMCPY, sdev->dma_dev.cap_mask);
1170 sdev->total_chns = chn_count;
1171 sdev->dma_dev.chancnt = chn_count;
1172 INIT_LIST_HEAD(&sdev->dma_dev.channels);
1173 INIT_LIST_HEAD(&sdev->dma_dev.global_node);
1174 sdev->dma_dev.dev = &pdev->dev;
1175 sdev->dma_dev.device_alloc_chan_resources = sprd_dma_alloc_chan_resources;
1176 sdev->dma_dev.device_free_chan_resources = sprd_dma_free_chan_resources;
1177 sdev->dma_dev.device_tx_status = sprd_dma_tx_status;
1178 sdev->dma_dev.device_issue_pending = sprd_dma_issue_pending;
1179 sdev->dma_dev.device_prep_dma_memcpy = sprd_dma_prep_dma_memcpy;
1180 sdev->dma_dev.device_prep_slave_sg = sprd_dma_prep_slave_sg;
1181 sdev->dma_dev.device_config = sprd_dma_slave_config;
1182 sdev->dma_dev.device_pause = sprd_dma_pause;
1183 sdev->dma_dev.device_resume = sprd_dma_resume;
1184 sdev->dma_dev.device_terminate_all = sprd_dma_terminate_all;
1185
1186 for (i = 0; i < chn_count; i++) {
1187 dma_chn = &sdev->channels[i];
1188 dma_chn->chn_num = i;
1189 dma_chn->cur_desc = NULL;
1190 /* get each channel's registers base address. */
1191 dma_chn->chn_base = sdev->glb_base + SPRD_DMA_CHN_REG_OFFSET +
1192 SPRD_DMA_CHN_REG_LENGTH * i;
1193
1194 dma_chn->vc.desc_free = sprd_dma_free_desc;
1195 vchan_init(&dma_chn->vc, &sdev->dma_dev);
1196 }
1197
1198 platform_set_drvdata(pdev, sdev);
1199 ret = sprd_dma_enable(sdev);
1200 if (ret)
1201 return ret;
1202
1203 pm_runtime_set_active(&pdev->dev);
1204 pm_runtime_enable(&pdev->dev);
1205
1206 ret = pm_runtime_get_sync(&pdev->dev);
1207 if (ret < 0)
1208 goto err_rpm;
1209
1210 ret = dma_async_device_register(&sdev->dma_dev);
1211 if (ret < 0) {
1212 dev_err(&pdev->dev, "register dma device failed:%d\n", ret);
1213 goto err_register;
1214 }
1215
1216 sprd_dma_info.dma_cap = sdev->dma_dev.cap_mask;
1217 ret = of_dma_controller_register(np, of_dma_simple_xlate,
1218 &sprd_dma_info);
1219 if (ret)
1220 goto err_of_register;
1221
1222 pm_runtime_put(&pdev->dev);
1223 return 0;
1224
1225err_of_register:
1226 dma_async_device_unregister(&sdev->dma_dev);
1227err_register:
1228 pm_runtime_put_noidle(&pdev->dev);
1229 pm_runtime_disable(&pdev->dev);
1230err_rpm:
1231 sprd_dma_disable(sdev);
1232 return ret;
1233}
1234
1235static int sprd_dma_remove(struct platform_device *pdev)
1236{
1237 struct sprd_dma_dev *sdev = platform_get_drvdata(pdev);
1238 struct sprd_dma_chn *c, *cn;
1239 int ret;
1240
1241 ret = pm_runtime_get_sync(&pdev->dev);
1242 if (ret < 0)
1243 return ret;
1244
1245 /* explicitly free the irq */
1246 if (sdev->irq > 0)
1247 devm_free_irq(&pdev->dev, sdev->irq, sdev);
1248
1249 list_for_each_entry_safe(c, cn, &sdev->dma_dev.channels,
1250 vc.chan.device_node) {
1251 list_del(&c->vc.chan.device_node);
1252 tasklet_kill(&c->vc.task);
1253 }
1254
1255 of_dma_controller_free(pdev->dev.of_node);
1256 dma_async_device_unregister(&sdev->dma_dev);
1257 sprd_dma_disable(sdev);
1258
1259 pm_runtime_put_noidle(&pdev->dev);
1260 pm_runtime_disable(&pdev->dev);
1261 return 0;
1262}
1263
1264static const struct of_device_id sprd_dma_match[] = {
1265 { .compatible = "sprd,sc9860-dma", },
1266 {},
1267};
1268
1269static int __maybe_unused sprd_dma_runtime_suspend(struct device *dev)
1270{
1271 struct sprd_dma_dev *sdev = dev_get_drvdata(dev);
1272
1273 sprd_dma_disable(sdev);
1274 return 0;
1275}
1276
1277static int __maybe_unused sprd_dma_runtime_resume(struct device *dev)
1278{
1279 struct sprd_dma_dev *sdev = dev_get_drvdata(dev);
1280 int ret;
1281
1282 ret = sprd_dma_enable(sdev);
1283 if (ret)
1284 dev_err(sdev->dma_dev.dev, "enable dma failed\n");
1285
1286 return ret;
1287}
1288
1289static const struct dev_pm_ops sprd_dma_pm_ops = {
1290 SET_RUNTIME_PM_OPS(sprd_dma_runtime_suspend,
1291 sprd_dma_runtime_resume,
1292 NULL)
1293};
1294
1295static struct platform_driver sprd_dma_driver = {
1296 .probe = sprd_dma_probe,
1297 .remove = sprd_dma_remove,
1298 .driver = {
1299 .name = "sprd-dma",
1300 .of_match_table = sprd_dma_match,
1301 .pm = &sprd_dma_pm_ops,
1302 },
1303};
1304module_platform_driver(sprd_dma_driver);
1305
1306MODULE_LICENSE("GPL v2");
1307MODULE_DESCRIPTION("DMA driver for Spreadtrum");
1308MODULE_AUTHOR("Baolin Wang <baolin.wang@spreadtrum.com>");
1309MODULE_AUTHOR("Eric Long <eric.long@spreadtrum.com>");
1310MODULE_ALIAS("platform:sprd-dma");
1/*
2 * Copyright (C) 2017 Spreadtrum Communications Inc.
3 *
4 * SPDX-License-Identifier: GPL-2.0
5 */
6
7#include <linux/clk.h>
8#include <linux/dma-mapping.h>
9#include <linux/errno.h>
10#include <linux/init.h>
11#include <linux/interrupt.h>
12#include <linux/io.h>
13#include <linux/kernel.h>
14#include <linux/module.h>
15#include <linux/of.h>
16#include <linux/of_dma.h>
17#include <linux/of_device.h>
18#include <linux/pm_runtime.h>
19#include <linux/slab.h>
20
21#include "virt-dma.h"
22
23#define SPRD_DMA_CHN_REG_OFFSET 0x1000
24#define SPRD_DMA_CHN_REG_LENGTH 0x40
25#define SPRD_DMA_MEMCPY_MIN_SIZE 64
26
27/* DMA global registers definition */
28#define SPRD_DMA_GLB_PAUSE 0x0
29#define SPRD_DMA_GLB_FRAG_WAIT 0x4
30#define SPRD_DMA_GLB_REQ_PEND0_EN 0x8
31#define SPRD_DMA_GLB_REQ_PEND1_EN 0xc
32#define SPRD_DMA_GLB_INT_RAW_STS 0x10
33#define SPRD_DMA_GLB_INT_MSK_STS 0x14
34#define SPRD_DMA_GLB_REQ_STS 0x18
35#define SPRD_DMA_GLB_CHN_EN_STS 0x1c
36#define SPRD_DMA_GLB_DEBUG_STS 0x20
37#define SPRD_DMA_GLB_ARB_SEL_STS 0x24
38#define SPRD_DMA_GLB_REQ_UID(uid) (0x4 * ((uid) - 1))
39#define SPRD_DMA_GLB_REQ_UID_OFFSET 0x2000
40
41/* DMA channel registers definition */
42#define SPRD_DMA_CHN_PAUSE 0x0
43#define SPRD_DMA_CHN_REQ 0x4
44#define SPRD_DMA_CHN_CFG 0x8
45#define SPRD_DMA_CHN_INTC 0xc
46#define SPRD_DMA_CHN_SRC_ADDR 0x10
47#define SPRD_DMA_CHN_DES_ADDR 0x14
48#define SPRD_DMA_CHN_FRG_LEN 0x18
49#define SPRD_DMA_CHN_BLK_LEN 0x1c
50#define SPRD_DMA_CHN_TRSC_LEN 0x20
51#define SPRD_DMA_CHN_TRSF_STEP 0x24
52#define SPRD_DMA_CHN_WARP_PTR 0x28
53#define SPRD_DMA_CHN_WARP_TO 0x2c
54#define SPRD_DMA_CHN_LLIST_PTR 0x30
55#define SPRD_DMA_CHN_FRAG_STEP 0x34
56#define SPRD_DMA_CHN_SRC_BLK_STEP 0x38
57#define SPRD_DMA_CHN_DES_BLK_STEP 0x3c
58
59/* SPRD_DMA_CHN_INTC register definition */
60#define SPRD_DMA_INT_MASK GENMASK(4, 0)
61#define SPRD_DMA_INT_CLR_OFFSET 24
62#define SPRD_DMA_FRAG_INT_EN BIT(0)
63#define SPRD_DMA_BLK_INT_EN BIT(1)
64#define SPRD_DMA_TRANS_INT_EN BIT(2)
65#define SPRD_DMA_LIST_INT_EN BIT(3)
66#define SPRD_DMA_CFG_ERR_INT_EN BIT(4)
67
68/* SPRD_DMA_CHN_CFG register definition */
69#define SPRD_DMA_CHN_EN BIT(0)
70#define SPRD_DMA_WAIT_BDONE_OFFSET 24
71#define SPRD_DMA_DONOT_WAIT_BDONE 1
72
73/* SPRD_DMA_CHN_REQ register definition */
74#define SPRD_DMA_REQ_EN BIT(0)
75
76/* SPRD_DMA_CHN_PAUSE register definition */
77#define SPRD_DMA_PAUSE_EN BIT(0)
78#define SPRD_DMA_PAUSE_STS BIT(2)
79#define SPRD_DMA_PAUSE_CNT 0x2000
80
81/* DMA_CHN_WARP_* register definition */
82#define SPRD_DMA_HIGH_ADDR_MASK GENMASK(31, 28)
83#define SPRD_DMA_LOW_ADDR_MASK GENMASK(31, 0)
84#define SPRD_DMA_HIGH_ADDR_OFFSET 4
85
86/* SPRD_DMA_CHN_INTC register definition */
87#define SPRD_DMA_FRAG_INT_STS BIT(16)
88#define SPRD_DMA_BLK_INT_STS BIT(17)
89#define SPRD_DMA_TRSC_INT_STS BIT(18)
90#define SPRD_DMA_LIST_INT_STS BIT(19)
91#define SPRD_DMA_CFGERR_INT_STS BIT(20)
92#define SPRD_DMA_CHN_INT_STS \
93 (SPRD_DMA_FRAG_INT_STS | SPRD_DMA_BLK_INT_STS | \
94 SPRD_DMA_TRSC_INT_STS | SPRD_DMA_LIST_INT_STS | \
95 SPRD_DMA_CFGERR_INT_STS)
96
97/* SPRD_DMA_CHN_FRG_LEN register definition */
98#define SPRD_DMA_SRC_DATAWIDTH_OFFSET 30
99#define SPRD_DMA_DES_DATAWIDTH_OFFSET 28
100#define SPRD_DMA_SWT_MODE_OFFSET 26
101#define SPRD_DMA_REQ_MODE_OFFSET 24
102#define SPRD_DMA_REQ_MODE_MASK GENMASK(1, 0)
103#define SPRD_DMA_FIX_SEL_OFFSET 21
104#define SPRD_DMA_FIX_EN_OFFSET 20
105#define SPRD_DMA_LLIST_END_OFFSET 19
106#define SPRD_DMA_FRG_LEN_MASK GENMASK(16, 0)
107
108/* SPRD_DMA_CHN_BLK_LEN register definition */
109#define SPRD_DMA_BLK_LEN_MASK GENMASK(16, 0)
110
111/* SPRD_DMA_CHN_TRSC_LEN register definition */
112#define SPRD_DMA_TRSC_LEN_MASK GENMASK(27, 0)
113
114/* SPRD_DMA_CHN_TRSF_STEP register definition */
115#define SPRD_DMA_DEST_TRSF_STEP_OFFSET 16
116#define SPRD_DMA_SRC_TRSF_STEP_OFFSET 0
117#define SPRD_DMA_TRSF_STEP_MASK GENMASK(15, 0)
118
119#define SPRD_DMA_SOFTWARE_UID 0
120
121/*
122 * enum sprd_dma_req_mode: define the DMA request mode
123 * @SPRD_DMA_FRAG_REQ: fragment request mode
124 * @SPRD_DMA_BLK_REQ: block request mode
125 * @SPRD_DMA_TRANS_REQ: transaction request mode
126 * @SPRD_DMA_LIST_REQ: link-list request mode
127 *
128 * We have 4 types request mode: fragment mode, block mode, transaction mode
129 * and linklist mode. One transaction can contain several blocks, one block can
130 * contain several fragments. Link-list mode means we can save several DMA
131 * configuration into one reserved memory, then DMA can fetch each DMA
132 * configuration automatically to start transfer.
133 */
134enum sprd_dma_req_mode {
135 SPRD_DMA_FRAG_REQ,
136 SPRD_DMA_BLK_REQ,
137 SPRD_DMA_TRANS_REQ,
138 SPRD_DMA_LIST_REQ,
139};
140
141/*
142 * enum sprd_dma_int_type: define the DMA interrupt type
143 * @SPRD_DMA_NO_INT: do not need generate DMA interrupts.
144 * @SPRD_DMA_FRAG_INT: fragment done interrupt when one fragment request
145 * is done.
146 * @SPRD_DMA_BLK_INT: block done interrupt when one block request is done.
147 * @SPRD_DMA_BLK_FRAG_INT: block and fragment interrupt when one fragment
148 * or one block request is done.
149 * @SPRD_DMA_TRANS_INT: tansaction done interrupt when one transaction
150 * request is done.
151 * @SPRD_DMA_TRANS_FRAG_INT: transaction and fragment interrupt when one
152 * transaction request or fragment request is done.
153 * @SPRD_DMA_TRANS_BLK_INT: transaction and block interrupt when one
154 * transaction request or block request is done.
155 * @SPRD_DMA_LIST_INT: link-list done interrupt when one link-list request
156 * is done.
157 * @SPRD_DMA_CFGERR_INT: configure error interrupt when configuration is
158 * incorrect.
159 */
160enum sprd_dma_int_type {
161 SPRD_DMA_NO_INT,
162 SPRD_DMA_FRAG_INT,
163 SPRD_DMA_BLK_INT,
164 SPRD_DMA_BLK_FRAG_INT,
165 SPRD_DMA_TRANS_INT,
166 SPRD_DMA_TRANS_FRAG_INT,
167 SPRD_DMA_TRANS_BLK_INT,
168 SPRD_DMA_LIST_INT,
169 SPRD_DMA_CFGERR_INT,
170};
171
172/* dma channel hardware configuration */
173struct sprd_dma_chn_hw {
174 u32 pause;
175 u32 req;
176 u32 cfg;
177 u32 intc;
178 u32 src_addr;
179 u32 des_addr;
180 u32 frg_len;
181 u32 blk_len;
182 u32 trsc_len;
183 u32 trsf_step;
184 u32 wrap_ptr;
185 u32 wrap_to;
186 u32 llist_ptr;
187 u32 frg_step;
188 u32 src_blk_step;
189 u32 des_blk_step;
190};
191
192/* dma request description */
193struct sprd_dma_desc {
194 struct virt_dma_desc vd;
195 struct sprd_dma_chn_hw chn_hw;
196};
197
198/* dma channel description */
199struct sprd_dma_chn {
200 struct virt_dma_chan vc;
201 void __iomem *chn_base;
202 u32 chn_num;
203 u32 dev_id;
204 struct sprd_dma_desc *cur_desc;
205};
206
207/* SPRD dma device */
208struct sprd_dma_dev {
209 struct dma_device dma_dev;
210 void __iomem *glb_base;
211 struct clk *clk;
212 struct clk *ashb_clk;
213 int irq;
214 u32 total_chns;
215 struct sprd_dma_chn channels[0];
216};
217
218static bool sprd_dma_filter_fn(struct dma_chan *chan, void *param);
219static struct of_dma_filter_info sprd_dma_info = {
220 .filter_fn = sprd_dma_filter_fn,
221};
222
223static inline struct sprd_dma_chn *to_sprd_dma_chan(struct dma_chan *c)
224{
225 return container_of(c, struct sprd_dma_chn, vc.chan);
226}
227
228static inline struct sprd_dma_dev *to_sprd_dma_dev(struct dma_chan *c)
229{
230 struct sprd_dma_chn *schan = to_sprd_dma_chan(c);
231
232 return container_of(schan, struct sprd_dma_dev, channels[c->chan_id]);
233}
234
235static inline struct sprd_dma_desc *to_sprd_dma_desc(struct virt_dma_desc *vd)
236{
237 return container_of(vd, struct sprd_dma_desc, vd);
238}
239
240static void sprd_dma_chn_update(struct sprd_dma_chn *schan, u32 reg,
241 u32 mask, u32 val)
242{
243 u32 orig = readl(schan->chn_base + reg);
244 u32 tmp;
245
246 tmp = (orig & ~mask) | val;
247 writel(tmp, schan->chn_base + reg);
248}
249
250static int sprd_dma_enable(struct sprd_dma_dev *sdev)
251{
252 int ret;
253
254 ret = clk_prepare_enable(sdev->clk);
255 if (ret)
256 return ret;
257
258 /*
259 * The ashb_clk is optional and only for AGCP DMA controller, so we
260 * need add one condition to check if the ashb_clk need enable.
261 */
262 if (!IS_ERR(sdev->ashb_clk))
263 ret = clk_prepare_enable(sdev->ashb_clk);
264
265 return ret;
266}
267
268static void sprd_dma_disable(struct sprd_dma_dev *sdev)
269{
270 clk_disable_unprepare(sdev->clk);
271
272 /*
273 * Need to check if we need disable the optional ashb_clk for AGCP DMA.
274 */
275 if (!IS_ERR(sdev->ashb_clk))
276 clk_disable_unprepare(sdev->ashb_clk);
277}
278
279static void sprd_dma_set_uid(struct sprd_dma_chn *schan)
280{
281 struct sprd_dma_dev *sdev = to_sprd_dma_dev(&schan->vc.chan);
282 u32 dev_id = schan->dev_id;
283
284 if (dev_id != SPRD_DMA_SOFTWARE_UID) {
285 u32 uid_offset = SPRD_DMA_GLB_REQ_UID_OFFSET +
286 SPRD_DMA_GLB_REQ_UID(dev_id);
287
288 writel(schan->chn_num + 1, sdev->glb_base + uid_offset);
289 }
290}
291
292static void sprd_dma_unset_uid(struct sprd_dma_chn *schan)
293{
294 struct sprd_dma_dev *sdev = to_sprd_dma_dev(&schan->vc.chan);
295 u32 dev_id = schan->dev_id;
296
297 if (dev_id != SPRD_DMA_SOFTWARE_UID) {
298 u32 uid_offset = SPRD_DMA_GLB_REQ_UID_OFFSET +
299 SPRD_DMA_GLB_REQ_UID(dev_id);
300
301 writel(0, sdev->glb_base + uid_offset);
302 }
303}
304
305static void sprd_dma_clear_int(struct sprd_dma_chn *schan)
306{
307 sprd_dma_chn_update(schan, SPRD_DMA_CHN_INTC,
308 SPRD_DMA_INT_MASK << SPRD_DMA_INT_CLR_OFFSET,
309 SPRD_DMA_INT_MASK << SPRD_DMA_INT_CLR_OFFSET);
310}
311
312static void sprd_dma_enable_chn(struct sprd_dma_chn *schan)
313{
314 sprd_dma_chn_update(schan, SPRD_DMA_CHN_CFG, SPRD_DMA_CHN_EN,
315 SPRD_DMA_CHN_EN);
316}
317
318static void sprd_dma_disable_chn(struct sprd_dma_chn *schan)
319{
320 sprd_dma_chn_update(schan, SPRD_DMA_CHN_CFG, SPRD_DMA_CHN_EN, 0);
321}
322
323static void sprd_dma_soft_request(struct sprd_dma_chn *schan)
324{
325 sprd_dma_chn_update(schan, SPRD_DMA_CHN_REQ, SPRD_DMA_REQ_EN,
326 SPRD_DMA_REQ_EN);
327}
328
329static void sprd_dma_pause_resume(struct sprd_dma_chn *schan, bool enable)
330{
331 struct sprd_dma_dev *sdev = to_sprd_dma_dev(&schan->vc.chan);
332 u32 pause, timeout = SPRD_DMA_PAUSE_CNT;
333
334 if (enable) {
335 sprd_dma_chn_update(schan, SPRD_DMA_CHN_PAUSE,
336 SPRD_DMA_PAUSE_EN, SPRD_DMA_PAUSE_EN);
337
338 do {
339 pause = readl(schan->chn_base + SPRD_DMA_CHN_PAUSE);
340 if (pause & SPRD_DMA_PAUSE_STS)
341 break;
342
343 cpu_relax();
344 } while (--timeout > 0);
345
346 if (!timeout)
347 dev_warn(sdev->dma_dev.dev,
348 "pause dma controller timeout\n");
349 } else {
350 sprd_dma_chn_update(schan, SPRD_DMA_CHN_PAUSE,
351 SPRD_DMA_PAUSE_EN, 0);
352 }
353}
354
355static void sprd_dma_stop_and_disable(struct sprd_dma_chn *schan)
356{
357 u32 cfg = readl(schan->chn_base + SPRD_DMA_CHN_CFG);
358
359 if (!(cfg & SPRD_DMA_CHN_EN))
360 return;
361
362 sprd_dma_pause_resume(schan, true);
363 sprd_dma_disable_chn(schan);
364}
365
366static unsigned long sprd_dma_get_dst_addr(struct sprd_dma_chn *schan)
367{
368 unsigned long addr, addr_high;
369
370 addr = readl(schan->chn_base + SPRD_DMA_CHN_DES_ADDR);
371 addr_high = readl(schan->chn_base + SPRD_DMA_CHN_WARP_TO) &
372 SPRD_DMA_HIGH_ADDR_MASK;
373
374 return addr | (addr_high << SPRD_DMA_HIGH_ADDR_OFFSET);
375}
376
377static enum sprd_dma_int_type sprd_dma_get_int_type(struct sprd_dma_chn *schan)
378{
379 struct sprd_dma_dev *sdev = to_sprd_dma_dev(&schan->vc.chan);
380 u32 intc_sts = readl(schan->chn_base + SPRD_DMA_CHN_INTC) &
381 SPRD_DMA_CHN_INT_STS;
382
383 switch (intc_sts) {
384 case SPRD_DMA_CFGERR_INT_STS:
385 return SPRD_DMA_CFGERR_INT;
386
387 case SPRD_DMA_LIST_INT_STS:
388 return SPRD_DMA_LIST_INT;
389
390 case SPRD_DMA_TRSC_INT_STS:
391 return SPRD_DMA_TRANS_INT;
392
393 case SPRD_DMA_BLK_INT_STS:
394 return SPRD_DMA_BLK_INT;
395
396 case SPRD_DMA_FRAG_INT_STS:
397 return SPRD_DMA_FRAG_INT;
398
399 default:
400 dev_warn(sdev->dma_dev.dev, "incorrect dma interrupt type\n");
401 return SPRD_DMA_NO_INT;
402 }
403}
404
405static enum sprd_dma_req_mode sprd_dma_get_req_type(struct sprd_dma_chn *schan)
406{
407 u32 frag_reg = readl(schan->chn_base + SPRD_DMA_CHN_FRG_LEN);
408
409 return (frag_reg >> SPRD_DMA_REQ_MODE_OFFSET) & SPRD_DMA_REQ_MODE_MASK;
410}
411
412static void sprd_dma_set_chn_config(struct sprd_dma_chn *schan,
413 struct sprd_dma_desc *sdesc)
414{
415 struct sprd_dma_chn_hw *cfg = &sdesc->chn_hw;
416
417 writel(cfg->pause, schan->chn_base + SPRD_DMA_CHN_PAUSE);
418 writel(cfg->cfg, schan->chn_base + SPRD_DMA_CHN_CFG);
419 writel(cfg->intc, schan->chn_base + SPRD_DMA_CHN_INTC);
420 writel(cfg->src_addr, schan->chn_base + SPRD_DMA_CHN_SRC_ADDR);
421 writel(cfg->des_addr, schan->chn_base + SPRD_DMA_CHN_DES_ADDR);
422 writel(cfg->frg_len, schan->chn_base + SPRD_DMA_CHN_FRG_LEN);
423 writel(cfg->blk_len, schan->chn_base + SPRD_DMA_CHN_BLK_LEN);
424 writel(cfg->trsc_len, schan->chn_base + SPRD_DMA_CHN_TRSC_LEN);
425 writel(cfg->trsf_step, schan->chn_base + SPRD_DMA_CHN_TRSF_STEP);
426 writel(cfg->wrap_ptr, schan->chn_base + SPRD_DMA_CHN_WARP_PTR);
427 writel(cfg->wrap_to, schan->chn_base + SPRD_DMA_CHN_WARP_TO);
428 writel(cfg->llist_ptr, schan->chn_base + SPRD_DMA_CHN_LLIST_PTR);
429 writel(cfg->frg_step, schan->chn_base + SPRD_DMA_CHN_FRAG_STEP);
430 writel(cfg->src_blk_step, schan->chn_base + SPRD_DMA_CHN_SRC_BLK_STEP);
431 writel(cfg->des_blk_step, schan->chn_base + SPRD_DMA_CHN_DES_BLK_STEP);
432 writel(cfg->req, schan->chn_base + SPRD_DMA_CHN_REQ);
433}
434
435static void sprd_dma_start(struct sprd_dma_chn *schan)
436{
437 struct virt_dma_desc *vd = vchan_next_desc(&schan->vc);
438
439 if (!vd)
440 return;
441
442 list_del(&vd->node);
443 schan->cur_desc = to_sprd_dma_desc(vd);
444
445 /*
446 * Copy the DMA configuration from DMA descriptor to this hardware
447 * channel.
448 */
449 sprd_dma_set_chn_config(schan, schan->cur_desc);
450 sprd_dma_set_uid(schan);
451 sprd_dma_enable_chn(schan);
452
453 if (schan->dev_id == SPRD_DMA_SOFTWARE_UID)
454 sprd_dma_soft_request(schan);
455}
456
457static void sprd_dma_stop(struct sprd_dma_chn *schan)
458{
459 sprd_dma_stop_and_disable(schan);
460 sprd_dma_unset_uid(schan);
461 sprd_dma_clear_int(schan);
462}
463
464static bool sprd_dma_check_trans_done(struct sprd_dma_desc *sdesc,
465 enum sprd_dma_int_type int_type,
466 enum sprd_dma_req_mode req_mode)
467{
468 if (int_type == SPRD_DMA_NO_INT)
469 return false;
470
471 if (int_type >= req_mode + 1)
472 return true;
473 else
474 return false;
475}
476
477static irqreturn_t dma_irq_handle(int irq, void *dev_id)
478{
479 struct sprd_dma_dev *sdev = (struct sprd_dma_dev *)dev_id;
480 u32 irq_status = readl(sdev->glb_base + SPRD_DMA_GLB_INT_MSK_STS);
481 struct sprd_dma_chn *schan;
482 struct sprd_dma_desc *sdesc;
483 enum sprd_dma_req_mode req_type;
484 enum sprd_dma_int_type int_type;
485 bool trans_done = false;
486 u32 i;
487
488 while (irq_status) {
489 i = __ffs(irq_status);
490 irq_status &= (irq_status - 1);
491 schan = &sdev->channels[i];
492
493 spin_lock(&schan->vc.lock);
494 int_type = sprd_dma_get_int_type(schan);
495 req_type = sprd_dma_get_req_type(schan);
496 sprd_dma_clear_int(schan);
497
498 sdesc = schan->cur_desc;
499
500 /* Check if the dma request descriptor is done. */
501 trans_done = sprd_dma_check_trans_done(sdesc, int_type,
502 req_type);
503 if (trans_done == true) {
504 vchan_cookie_complete(&sdesc->vd);
505 schan->cur_desc = NULL;
506 sprd_dma_start(schan);
507 }
508 spin_unlock(&schan->vc.lock);
509 }
510
511 return IRQ_HANDLED;
512}
513
514static int sprd_dma_alloc_chan_resources(struct dma_chan *chan)
515{
516 struct sprd_dma_chn *schan = to_sprd_dma_chan(chan);
517 int ret;
518
519 ret = pm_runtime_get_sync(chan->device->dev);
520 if (ret < 0)
521 return ret;
522
523 schan->dev_id = SPRD_DMA_SOFTWARE_UID;
524 return 0;
525}
526
527static void sprd_dma_free_chan_resources(struct dma_chan *chan)
528{
529 struct sprd_dma_chn *schan = to_sprd_dma_chan(chan);
530 unsigned long flags;
531
532 spin_lock_irqsave(&schan->vc.lock, flags);
533 sprd_dma_stop(schan);
534 spin_unlock_irqrestore(&schan->vc.lock, flags);
535
536 vchan_free_chan_resources(&schan->vc);
537 pm_runtime_put(chan->device->dev);
538}
539
540static enum dma_status sprd_dma_tx_status(struct dma_chan *chan,
541 dma_cookie_t cookie,
542 struct dma_tx_state *txstate)
543{
544 struct sprd_dma_chn *schan = to_sprd_dma_chan(chan);
545 struct virt_dma_desc *vd;
546 unsigned long flags;
547 enum dma_status ret;
548 u32 pos;
549
550 ret = dma_cookie_status(chan, cookie, txstate);
551 if (ret == DMA_COMPLETE || !txstate)
552 return ret;
553
554 spin_lock_irqsave(&schan->vc.lock, flags);
555 vd = vchan_find_desc(&schan->vc, cookie);
556 if (vd) {
557 struct sprd_dma_desc *sdesc = to_sprd_dma_desc(vd);
558 struct sprd_dma_chn_hw *hw = &sdesc->chn_hw;
559
560 if (hw->trsc_len > 0)
561 pos = hw->trsc_len;
562 else if (hw->blk_len > 0)
563 pos = hw->blk_len;
564 else if (hw->frg_len > 0)
565 pos = hw->frg_len;
566 else
567 pos = 0;
568 } else if (schan->cur_desc && schan->cur_desc->vd.tx.cookie == cookie) {
569 pos = sprd_dma_get_dst_addr(schan);
570 } else {
571 pos = 0;
572 }
573 spin_unlock_irqrestore(&schan->vc.lock, flags);
574
575 dma_set_residue(txstate, pos);
576 return ret;
577}
578
579static void sprd_dma_issue_pending(struct dma_chan *chan)
580{
581 struct sprd_dma_chn *schan = to_sprd_dma_chan(chan);
582 unsigned long flags;
583
584 spin_lock_irqsave(&schan->vc.lock, flags);
585 if (vchan_issue_pending(&schan->vc) && !schan->cur_desc)
586 sprd_dma_start(schan);
587 spin_unlock_irqrestore(&schan->vc.lock, flags);
588}
589
590static int sprd_dma_config(struct dma_chan *chan, struct sprd_dma_desc *sdesc,
591 dma_addr_t dest, dma_addr_t src, size_t len)
592{
593 struct sprd_dma_dev *sdev = to_sprd_dma_dev(chan);
594 struct sprd_dma_chn_hw *hw = &sdesc->chn_hw;
595 u32 datawidth, src_step, des_step, fragment_len;
596 u32 block_len, req_mode, irq_mode, transcation_len;
597 u32 fix_mode = 0, fix_en = 0;
598
599 if (IS_ALIGNED(len, 4)) {
600 datawidth = 2;
601 src_step = 4;
602 des_step = 4;
603 } else if (IS_ALIGNED(len, 2)) {
604 datawidth = 1;
605 src_step = 2;
606 des_step = 2;
607 } else {
608 datawidth = 0;
609 src_step = 1;
610 des_step = 1;
611 }
612
613 fragment_len = SPRD_DMA_MEMCPY_MIN_SIZE;
614 if (len <= SPRD_DMA_BLK_LEN_MASK) {
615 block_len = len;
616 transcation_len = 0;
617 req_mode = SPRD_DMA_BLK_REQ;
618 irq_mode = SPRD_DMA_BLK_INT;
619 } else {
620 block_len = SPRD_DMA_MEMCPY_MIN_SIZE;
621 transcation_len = len;
622 req_mode = SPRD_DMA_TRANS_REQ;
623 irq_mode = SPRD_DMA_TRANS_INT;
624 }
625
626 hw->cfg = SPRD_DMA_DONOT_WAIT_BDONE << SPRD_DMA_WAIT_BDONE_OFFSET;
627 hw->wrap_ptr = (u32)((src >> SPRD_DMA_HIGH_ADDR_OFFSET) &
628 SPRD_DMA_HIGH_ADDR_MASK);
629 hw->wrap_to = (u32)((dest >> SPRD_DMA_HIGH_ADDR_OFFSET) &
630 SPRD_DMA_HIGH_ADDR_MASK);
631
632 hw->src_addr = (u32)(src & SPRD_DMA_LOW_ADDR_MASK);
633 hw->des_addr = (u32)(dest & SPRD_DMA_LOW_ADDR_MASK);
634
635 if ((src_step != 0 && des_step != 0) || (src_step | des_step) == 0) {
636 fix_en = 0;
637 } else {
638 fix_en = 1;
639 if (src_step)
640 fix_mode = 1;
641 else
642 fix_mode = 0;
643 }
644
645 hw->frg_len = datawidth << SPRD_DMA_SRC_DATAWIDTH_OFFSET |
646 datawidth << SPRD_DMA_DES_DATAWIDTH_OFFSET |
647 req_mode << SPRD_DMA_REQ_MODE_OFFSET |
648 fix_mode << SPRD_DMA_FIX_SEL_OFFSET |
649 fix_en << SPRD_DMA_FIX_EN_OFFSET |
650 (fragment_len & SPRD_DMA_FRG_LEN_MASK);
651 hw->blk_len = block_len & SPRD_DMA_BLK_LEN_MASK;
652
653 hw->intc = SPRD_DMA_CFG_ERR_INT_EN;
654
655 switch (irq_mode) {
656 case SPRD_DMA_NO_INT:
657 break;
658
659 case SPRD_DMA_FRAG_INT:
660 hw->intc |= SPRD_DMA_FRAG_INT_EN;
661 break;
662
663 case SPRD_DMA_BLK_INT:
664 hw->intc |= SPRD_DMA_BLK_INT_EN;
665 break;
666
667 case SPRD_DMA_BLK_FRAG_INT:
668 hw->intc |= SPRD_DMA_BLK_INT_EN | SPRD_DMA_FRAG_INT_EN;
669 break;
670
671 case SPRD_DMA_TRANS_INT:
672 hw->intc |= SPRD_DMA_TRANS_INT_EN;
673 break;
674
675 case SPRD_DMA_TRANS_FRAG_INT:
676 hw->intc |= SPRD_DMA_TRANS_INT_EN | SPRD_DMA_FRAG_INT_EN;
677 break;
678
679 case SPRD_DMA_TRANS_BLK_INT:
680 hw->intc |= SPRD_DMA_TRANS_INT_EN | SPRD_DMA_BLK_INT_EN;
681 break;
682
683 case SPRD_DMA_LIST_INT:
684 hw->intc |= SPRD_DMA_LIST_INT_EN;
685 break;
686
687 case SPRD_DMA_CFGERR_INT:
688 hw->intc |= SPRD_DMA_CFG_ERR_INT_EN;
689 break;
690
691 default:
692 dev_err(sdev->dma_dev.dev, "invalid irq mode\n");
693 return -EINVAL;
694 }
695
696 if (transcation_len == 0)
697 hw->trsc_len = block_len & SPRD_DMA_TRSC_LEN_MASK;
698 else
699 hw->trsc_len = transcation_len & SPRD_DMA_TRSC_LEN_MASK;
700
701 hw->trsf_step = (des_step & SPRD_DMA_TRSF_STEP_MASK) <<
702 SPRD_DMA_DEST_TRSF_STEP_OFFSET |
703 (src_step & SPRD_DMA_TRSF_STEP_MASK) <<
704 SPRD_DMA_SRC_TRSF_STEP_OFFSET;
705
706 hw->frg_step = 0;
707 hw->src_blk_step = 0;
708 hw->des_blk_step = 0;
709 hw->src_blk_step = 0;
710 return 0;
711}
712
713static struct dma_async_tx_descriptor *
714sprd_dma_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
715 size_t len, unsigned long flags)
716{
717 struct sprd_dma_chn *schan = to_sprd_dma_chan(chan);
718 struct sprd_dma_desc *sdesc;
719 int ret;
720
721 sdesc = kzalloc(sizeof(*sdesc), GFP_NOWAIT);
722 if (!sdesc)
723 return NULL;
724
725 ret = sprd_dma_config(chan, sdesc, dest, src, len);
726 if (ret) {
727 kfree(sdesc);
728 return NULL;
729 }
730
731 return vchan_tx_prep(&schan->vc, &sdesc->vd, flags);
732}
733
734static int sprd_dma_pause(struct dma_chan *chan)
735{
736 struct sprd_dma_chn *schan = to_sprd_dma_chan(chan);
737 unsigned long flags;
738
739 spin_lock_irqsave(&schan->vc.lock, flags);
740 sprd_dma_pause_resume(schan, true);
741 spin_unlock_irqrestore(&schan->vc.lock, flags);
742
743 return 0;
744}
745
746static int sprd_dma_resume(struct dma_chan *chan)
747{
748 struct sprd_dma_chn *schan = to_sprd_dma_chan(chan);
749 unsigned long flags;
750
751 spin_lock_irqsave(&schan->vc.lock, flags);
752 sprd_dma_pause_resume(schan, false);
753 spin_unlock_irqrestore(&schan->vc.lock, flags);
754
755 return 0;
756}
757
758static int sprd_dma_terminate_all(struct dma_chan *chan)
759{
760 struct sprd_dma_chn *schan = to_sprd_dma_chan(chan);
761 unsigned long flags;
762 LIST_HEAD(head);
763
764 spin_lock_irqsave(&schan->vc.lock, flags);
765 sprd_dma_stop(schan);
766
767 vchan_get_all_descriptors(&schan->vc, &head);
768 spin_unlock_irqrestore(&schan->vc.lock, flags);
769
770 vchan_dma_desc_free_list(&schan->vc, &head);
771 return 0;
772}
773
774static void sprd_dma_free_desc(struct virt_dma_desc *vd)
775{
776 struct sprd_dma_desc *sdesc = to_sprd_dma_desc(vd);
777
778 kfree(sdesc);
779}
780
781static bool sprd_dma_filter_fn(struct dma_chan *chan, void *param)
782{
783 struct sprd_dma_chn *schan = to_sprd_dma_chan(chan);
784 struct sprd_dma_dev *sdev = to_sprd_dma_dev(&schan->vc.chan);
785 u32 req = *(u32 *)param;
786
787 if (req < sdev->total_chns)
788 return req == schan->chn_num + 1;
789 else
790 return false;
791}
792
793static int sprd_dma_probe(struct platform_device *pdev)
794{
795 struct device_node *np = pdev->dev.of_node;
796 struct sprd_dma_dev *sdev;
797 struct sprd_dma_chn *dma_chn;
798 struct resource *res;
799 u32 chn_count;
800 int ret, i;
801
802 ret = device_property_read_u32(&pdev->dev, "#dma-channels", &chn_count);
803 if (ret) {
804 dev_err(&pdev->dev, "get dma channels count failed\n");
805 return ret;
806 }
807
808 sdev = devm_kzalloc(&pdev->dev, sizeof(*sdev) +
809 sizeof(*dma_chn) * chn_count,
810 GFP_KERNEL);
811 if (!sdev)
812 return -ENOMEM;
813
814 sdev->clk = devm_clk_get(&pdev->dev, "enable");
815 if (IS_ERR(sdev->clk)) {
816 dev_err(&pdev->dev, "get enable clock failed\n");
817 return PTR_ERR(sdev->clk);
818 }
819
820 /* ashb clock is optional for AGCP DMA */
821 sdev->ashb_clk = devm_clk_get(&pdev->dev, "ashb_eb");
822 if (IS_ERR(sdev->ashb_clk))
823 dev_warn(&pdev->dev, "no optional ashb eb clock\n");
824
825 /*
826 * We have three DMA controllers: AP DMA, AON DMA and AGCP DMA. For AGCP
827 * DMA controller, it can or do not request the irq, which will save
828 * system power without resuming system by DMA interrupts if AGCP DMA
829 * does not request the irq. Thus the DMA interrupts property should
830 * be optional.
831 */
832 sdev->irq = platform_get_irq(pdev, 0);
833 if (sdev->irq > 0) {
834 ret = devm_request_irq(&pdev->dev, sdev->irq, dma_irq_handle,
835 0, "sprd_dma", (void *)sdev);
836 if (ret < 0) {
837 dev_err(&pdev->dev, "request dma irq failed\n");
838 return ret;
839 }
840 } else {
841 dev_warn(&pdev->dev, "no interrupts for the dma controller\n");
842 }
843
844 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
845 sdev->glb_base = devm_ioremap_nocache(&pdev->dev, res->start,
846 resource_size(res));
847 if (!sdev->glb_base)
848 return -ENOMEM;
849
850 dma_cap_set(DMA_MEMCPY, sdev->dma_dev.cap_mask);
851 sdev->total_chns = chn_count;
852 sdev->dma_dev.chancnt = chn_count;
853 INIT_LIST_HEAD(&sdev->dma_dev.channels);
854 INIT_LIST_HEAD(&sdev->dma_dev.global_node);
855 sdev->dma_dev.dev = &pdev->dev;
856 sdev->dma_dev.device_alloc_chan_resources = sprd_dma_alloc_chan_resources;
857 sdev->dma_dev.device_free_chan_resources = sprd_dma_free_chan_resources;
858 sdev->dma_dev.device_tx_status = sprd_dma_tx_status;
859 sdev->dma_dev.device_issue_pending = sprd_dma_issue_pending;
860 sdev->dma_dev.device_prep_dma_memcpy = sprd_dma_prep_dma_memcpy;
861 sdev->dma_dev.device_pause = sprd_dma_pause;
862 sdev->dma_dev.device_resume = sprd_dma_resume;
863 sdev->dma_dev.device_terminate_all = sprd_dma_terminate_all;
864
865 for (i = 0; i < chn_count; i++) {
866 dma_chn = &sdev->channels[i];
867 dma_chn->chn_num = i;
868 dma_chn->cur_desc = NULL;
869 /* get each channel's registers base address. */
870 dma_chn->chn_base = sdev->glb_base + SPRD_DMA_CHN_REG_OFFSET +
871 SPRD_DMA_CHN_REG_LENGTH * i;
872
873 dma_chn->vc.desc_free = sprd_dma_free_desc;
874 vchan_init(&dma_chn->vc, &sdev->dma_dev);
875 }
876
877 platform_set_drvdata(pdev, sdev);
878 ret = sprd_dma_enable(sdev);
879 if (ret)
880 return ret;
881
882 pm_runtime_set_active(&pdev->dev);
883 pm_runtime_enable(&pdev->dev);
884
885 ret = pm_runtime_get_sync(&pdev->dev);
886 if (ret < 0)
887 goto err_rpm;
888
889 ret = dma_async_device_register(&sdev->dma_dev);
890 if (ret < 0) {
891 dev_err(&pdev->dev, "register dma device failed:%d\n", ret);
892 goto err_register;
893 }
894
895 sprd_dma_info.dma_cap = sdev->dma_dev.cap_mask;
896 ret = of_dma_controller_register(np, of_dma_simple_xlate,
897 &sprd_dma_info);
898 if (ret)
899 goto err_of_register;
900
901 pm_runtime_put(&pdev->dev);
902 return 0;
903
904err_of_register:
905 dma_async_device_unregister(&sdev->dma_dev);
906err_register:
907 pm_runtime_put_noidle(&pdev->dev);
908 pm_runtime_disable(&pdev->dev);
909err_rpm:
910 sprd_dma_disable(sdev);
911 return ret;
912}
913
914static int sprd_dma_remove(struct platform_device *pdev)
915{
916 struct sprd_dma_dev *sdev = platform_get_drvdata(pdev);
917 struct sprd_dma_chn *c, *cn;
918 int ret;
919
920 ret = pm_runtime_get_sync(&pdev->dev);
921 if (ret < 0)
922 return ret;
923
924 /* explicitly free the irq */
925 if (sdev->irq > 0)
926 devm_free_irq(&pdev->dev, sdev->irq, sdev);
927
928 list_for_each_entry_safe(c, cn, &sdev->dma_dev.channels,
929 vc.chan.device_node) {
930 list_del(&c->vc.chan.device_node);
931 tasklet_kill(&c->vc.task);
932 }
933
934 of_dma_controller_free(pdev->dev.of_node);
935 dma_async_device_unregister(&sdev->dma_dev);
936 sprd_dma_disable(sdev);
937
938 pm_runtime_put_noidle(&pdev->dev);
939 pm_runtime_disable(&pdev->dev);
940 return 0;
941}
942
943static const struct of_device_id sprd_dma_match[] = {
944 { .compatible = "sprd,sc9860-dma", },
945 {},
946};
947
948static int __maybe_unused sprd_dma_runtime_suspend(struct device *dev)
949{
950 struct sprd_dma_dev *sdev = dev_get_drvdata(dev);
951
952 sprd_dma_disable(sdev);
953 return 0;
954}
955
956static int __maybe_unused sprd_dma_runtime_resume(struct device *dev)
957{
958 struct sprd_dma_dev *sdev = dev_get_drvdata(dev);
959 int ret;
960
961 ret = sprd_dma_enable(sdev);
962 if (ret)
963 dev_err(sdev->dma_dev.dev, "enable dma failed\n");
964
965 return ret;
966}
967
968static const struct dev_pm_ops sprd_dma_pm_ops = {
969 SET_RUNTIME_PM_OPS(sprd_dma_runtime_suspend,
970 sprd_dma_runtime_resume,
971 NULL)
972};
973
974static struct platform_driver sprd_dma_driver = {
975 .probe = sprd_dma_probe,
976 .remove = sprd_dma_remove,
977 .driver = {
978 .name = "sprd-dma",
979 .of_match_table = sprd_dma_match,
980 .pm = &sprd_dma_pm_ops,
981 },
982};
983module_platform_driver(sprd_dma_driver);
984
985MODULE_LICENSE("GPL v2");
986MODULE_DESCRIPTION("DMA driver for Spreadtrum");
987MODULE_AUTHOR("Baolin Wang <baolin.wang@spreadtrum.com>");
988MODULE_ALIAS("platform:sprd-dma");