Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * S3C24XX DMA handling
   4 *
   5 * Copyright (c) 2013 Heiko Stuebner <heiko@sntech.de>
   6 *
   7 * based on amba-pl08x.c
   8 *
   9 * Copyright (c) 2006 ARM Ltd.
  10 * Copyright (c) 2010 ST-Ericsson SA
  11 *
  12 * Author: Peter Pearse <peter.pearse@arm.com>
  13 * Author: Linus Walleij <linus.walleij@stericsson.com>
  14 *
 
 
 
 
 
  15 * The DMA controllers in S3C24XX SoCs have a varying number of DMA signals
  16 * that can be routed to any of the 4 to 8 hardware-channels.
  17 *
  18 * Therefore on these DMA controllers the number of channels
  19 * and the number of incoming DMA signals are two totally different things.
  20 * It is usually not possible to theoretically handle all physical signals,
  21 * so a multiplexing scheme with possible denial of use is necessary.
  22 *
  23 * Open items:
  24 * - bursts
  25 */
  26
  27#include <linux/platform_device.h>
  28#include <linux/types.h>
  29#include <linux/dmaengine.h>
  30#include <linux/dma-mapping.h>
  31#include <linux/interrupt.h>
  32#include <linux/clk.h>
  33#include <linux/module.h>
  34#include <linux/mod_devicetable.h>
  35#include <linux/slab.h>
  36#include <linux/platform_data/dma-s3c24xx.h>
  37
  38#include "dmaengine.h"
  39#include "virt-dma.h"
  40
  41#define MAX_DMA_CHANNELS	8
  42
  43#define S3C24XX_DISRC			0x00
  44#define S3C24XX_DISRCC			0x04
  45#define S3C24XX_DISRCC_INC_INCREMENT	0
  46#define S3C24XX_DISRCC_INC_FIXED	BIT(0)
  47#define S3C24XX_DISRCC_LOC_AHB		0
  48#define S3C24XX_DISRCC_LOC_APB		BIT(1)
  49
  50#define S3C24XX_DIDST			0x08
  51#define S3C24XX_DIDSTC			0x0c
  52#define S3C24XX_DIDSTC_INC_INCREMENT	0
  53#define S3C24XX_DIDSTC_INC_FIXED	BIT(0)
  54#define S3C24XX_DIDSTC_LOC_AHB		0
  55#define S3C24XX_DIDSTC_LOC_APB		BIT(1)
  56#define S3C24XX_DIDSTC_INT_TC0		0
  57#define S3C24XX_DIDSTC_INT_RELOAD	BIT(2)
  58
  59#define S3C24XX_DCON			0x10
  60
  61#define S3C24XX_DCON_TC_MASK		0xfffff
  62#define S3C24XX_DCON_DSZ_BYTE		(0 << 20)
  63#define S3C24XX_DCON_DSZ_HALFWORD	(1 << 20)
  64#define S3C24XX_DCON_DSZ_WORD		(2 << 20)
  65#define S3C24XX_DCON_DSZ_MASK		(3 << 20)
  66#define S3C24XX_DCON_DSZ_SHIFT		20
  67#define S3C24XX_DCON_AUTORELOAD		0
  68#define S3C24XX_DCON_NORELOAD		BIT(22)
  69#define S3C24XX_DCON_HWTRIG		BIT(23)
  70#define S3C24XX_DCON_HWSRC_SHIFT	24
  71#define S3C24XX_DCON_SERV_SINGLE	0
  72#define S3C24XX_DCON_SERV_WHOLE		BIT(27)
  73#define S3C24XX_DCON_TSZ_UNIT		0
  74#define S3C24XX_DCON_TSZ_BURST4		BIT(28)
  75#define S3C24XX_DCON_INT		BIT(29)
  76#define S3C24XX_DCON_SYNC_PCLK		0
  77#define S3C24XX_DCON_SYNC_HCLK		BIT(30)
  78#define S3C24XX_DCON_DEMAND		0
  79#define S3C24XX_DCON_HANDSHAKE		BIT(31)
  80
  81#define S3C24XX_DSTAT			0x14
  82#define S3C24XX_DSTAT_STAT_BUSY		BIT(20)
  83#define S3C24XX_DSTAT_CURRTC_MASK	0xfffff
  84
  85#define S3C24XX_DMASKTRIG		0x20
  86#define S3C24XX_DMASKTRIG_SWTRIG	BIT(0)
  87#define S3C24XX_DMASKTRIG_ON		BIT(1)
  88#define S3C24XX_DMASKTRIG_STOP		BIT(2)
  89
  90#define S3C24XX_DMAREQSEL		0x24
  91#define S3C24XX_DMAREQSEL_HW		BIT(0)
  92
  93/*
  94 * S3C2410, S3C2440 and S3C2442 SoCs cannot select any physical channel
  95 * for a DMA source. Instead only specific channels are valid.
  96 * All of these SoCs have 4 physical channels and the number of request
  97 * source bits is 3. Additionally we also need 1 bit to mark the channel
  98 * as valid.
  99 * Therefore we separate the chansel element of the channel data into 4
 100 * parts of 4 bits each, to hold the information if the channel is valid
 101 * and the hw request source to use.
 102 *
 103 * Example:
 104 * SDI is valid on channels 0, 2 and 3 - with varying hw request sources.
 105 * For it the chansel field would look like
 106 *
 107 * ((BIT(3) | 1) << 3 * 4) | // channel 3, with request source 1
 108 * ((BIT(3) | 2) << 2 * 4) | // channel 2, with request source 2
 109 * ((BIT(3) | 2) << 0 * 4)   // channel 0, with request source 2
 110 */
 111#define S3C24XX_CHANSEL_WIDTH		4
 112#define S3C24XX_CHANSEL_VALID		BIT(3)
 113#define S3C24XX_CHANSEL_REQ_MASK	7
 114
 115/*
 116 * struct soc_data - vendor-specific config parameters for individual SoCs
 117 * @stride: spacing between the registers of each channel
 118 * @has_reqsel: does the controller use the newer requestselection mechanism
 119 * @has_clocks: are controllable dma-clocks present
 120 */
 121struct soc_data {
 122	int stride;
 123	bool has_reqsel;
 124	bool has_clocks;
 125};
 126
 127/*
 128 * enum s3c24xx_dma_chan_state - holds the virtual channel states
 129 * @S3C24XX_DMA_CHAN_IDLE: the channel is idle
 130 * @S3C24XX_DMA_CHAN_RUNNING: the channel has allocated a physical transport
 131 * channel and is running a transfer on it
 132 * @S3C24XX_DMA_CHAN_WAITING: the channel is waiting for a physical transport
 133 * channel to become available (only pertains to memcpy channels)
 134 */
 135enum s3c24xx_dma_chan_state {
 136	S3C24XX_DMA_CHAN_IDLE,
 137	S3C24XX_DMA_CHAN_RUNNING,
 138	S3C24XX_DMA_CHAN_WAITING,
 139};
 140
 141/*
 142 * struct s3c24xx_sg - structure containing data per sg
 143 * @src_addr: src address of sg
 144 * @dst_addr: dst address of sg
 145 * @len: transfer len in bytes
 146 * @node: node for txd's dsg_list
 147 */
 148struct s3c24xx_sg {
 149	dma_addr_t src_addr;
 150	dma_addr_t dst_addr;
 151	size_t len;
 152	struct list_head node;
 153};
 154
 155/*
 156 * struct s3c24xx_txd - wrapper for struct dma_async_tx_descriptor
 157 * @vd: virtual DMA descriptor
 158 * @dsg_list: list of children sg's
 159 * @at: sg currently being transfered
 160 * @width: transfer width
 161 * @disrcc: value for source control register
 162 * @didstc: value for destination control register
 163 * @dcon: base value for dcon register
 164 * @cyclic: indicate cyclic transfer
 165 */
 166struct s3c24xx_txd {
 167	struct virt_dma_desc vd;
 168	struct list_head dsg_list;
 169	struct list_head *at;
 170	u8 width;
 171	u32 disrcc;
 172	u32 didstc;
 173	u32 dcon;
 174	bool cyclic;
 175};
 176
 177struct s3c24xx_dma_chan;
 178
 179/*
 180 * struct s3c24xx_dma_phy - holder for the physical channels
 181 * @id: physical index to this channel
 182 * @valid: does the channel have all required elements
 183 * @base: virtual memory base (remapped) for the this channel
 184 * @irq: interrupt for this channel
 185 * @clk: clock for this channel
 186 * @lock: a lock to use when altering an instance of this struct
 187 * @serving: virtual channel currently being served by this physicalchannel
 188 * @host: a pointer to the host (internal use)
 189 */
 190struct s3c24xx_dma_phy {
 191	unsigned int			id;
 192	bool				valid;
 193	void __iomem			*base;
 194	int				irq;
 195	struct clk			*clk;
 196	spinlock_t			lock;
 197	struct s3c24xx_dma_chan		*serving;
 198	struct s3c24xx_dma_engine	*host;
 199};
 200
 201/*
 202 * struct s3c24xx_dma_chan - this structure wraps a DMA ENGINE channel
 203 * @id: the id of the channel
 204 * @name: name of the channel
 205 * @vc: wrappped virtual channel
 206 * @phy: the physical channel utilized by this channel, if there is one
 207 * @runtime_addr: address for RX/TX according to the runtime config
 208 * @at: active transaction on this channel
 209 * @lock: a lock for this channel data
 210 * @host: a pointer to the host (internal use)
 211 * @state: whether the channel is idle, running etc
 212 * @slave: whether this channel is a device (slave) or for memcpy
 213 */
 214struct s3c24xx_dma_chan {
 215	int id;
 216	const char *name;
 217	struct virt_dma_chan vc;
 218	struct s3c24xx_dma_phy *phy;
 219	struct dma_slave_config cfg;
 220	struct s3c24xx_txd *at;
 221	struct s3c24xx_dma_engine *host;
 222	enum s3c24xx_dma_chan_state state;
 223	bool slave;
 224};
 225
 226/*
 227 * struct s3c24xx_dma_engine - the local state holder for the S3C24XX
 228 * @pdev: the corresponding platform device
 229 * @pdata: platform data passed in from the platform/machine
 230 * @base: virtual memory base (remapped)
 231 * @slave: slave engine for this instance
 232 * @memcpy: memcpy engine for this instance
 233 * @phy_chans: array of data for the physical channels
 234 */
 235struct s3c24xx_dma_engine {
 236	struct platform_device			*pdev;
 237	const struct s3c24xx_dma_platdata	*pdata;
 238	struct soc_data				*sdata;
 239	void __iomem				*base;
 240	struct dma_device			slave;
 241	struct dma_device			memcpy;
 242	struct s3c24xx_dma_phy			*phy_chans;
 243};
 244
 245/*
 246 * Physical channel handling
 247 */
 248
 249/*
 250 * Check whether a certain channel is busy or not.
 251 */
 252static int s3c24xx_dma_phy_busy(struct s3c24xx_dma_phy *phy)
 253{
 254	unsigned int val = readl(phy->base + S3C24XX_DSTAT);
 255	return val & S3C24XX_DSTAT_STAT_BUSY;
 256}
 257
 258static bool s3c24xx_dma_phy_valid(struct s3c24xx_dma_chan *s3cchan,
 259				  struct s3c24xx_dma_phy *phy)
 260{
 261	struct s3c24xx_dma_engine *s3cdma = s3cchan->host;
 262	const struct s3c24xx_dma_platdata *pdata = s3cdma->pdata;
 263	struct s3c24xx_dma_channel *cdata = &pdata->channels[s3cchan->id];
 264	int phyvalid;
 265
 266	/* every phy is valid for memcopy channels */
 267	if (!s3cchan->slave)
 268		return true;
 269
 270	/* On newer variants all phys can be used for all virtual channels */
 271	if (s3cdma->sdata->has_reqsel)
 272		return true;
 273
 274	phyvalid = (cdata->chansel >> (phy->id * S3C24XX_CHANSEL_WIDTH));
 275	return (phyvalid & S3C24XX_CHANSEL_VALID) ? true : false;
 276}
 277
 278/*
 279 * Allocate a physical channel for a virtual channel
 280 *
 281 * Try to locate a physical channel to be used for this transfer. If all
 282 * are taken return NULL and the requester will have to cope by using
 283 * some fallback PIO mode or retrying later.
 284 */
 285static
 286struct s3c24xx_dma_phy *s3c24xx_dma_get_phy(struct s3c24xx_dma_chan *s3cchan)
 287{
 288	struct s3c24xx_dma_engine *s3cdma = s3cchan->host;
 289	struct s3c24xx_dma_phy *phy = NULL;
 290	unsigned long flags;
 291	int i;
 292	int ret;
 293
 294	for (i = 0; i < s3cdma->pdata->num_phy_channels; i++) {
 295		phy = &s3cdma->phy_chans[i];
 296
 297		if (!phy->valid)
 298			continue;
 299
 300		if (!s3c24xx_dma_phy_valid(s3cchan, phy))
 301			continue;
 302
 303		spin_lock_irqsave(&phy->lock, flags);
 304
 305		if (!phy->serving) {
 306			phy->serving = s3cchan;
 307			spin_unlock_irqrestore(&phy->lock, flags);
 308			break;
 309		}
 310
 311		spin_unlock_irqrestore(&phy->lock, flags);
 312	}
 313
 314	/* No physical channel available, cope with it */
 315	if (i == s3cdma->pdata->num_phy_channels) {
 316		dev_warn(&s3cdma->pdev->dev, "no phy channel available\n");
 317		return NULL;
 318	}
 319
 320	/* start the phy clock */
 321	if (s3cdma->sdata->has_clocks) {
 322		ret = clk_enable(phy->clk);
 323		if (ret) {
 324			dev_err(&s3cdma->pdev->dev, "could not enable clock for channel %d, err %d\n",
 325				phy->id, ret);
 326			phy->serving = NULL;
 327			return NULL;
 328		}
 329	}
 330
 331	return phy;
 332}
 333
 334/*
 335 * Mark the physical channel as free.
 336 *
 337 * This drops the link between the physical and virtual channel.
 338 */
 339static inline void s3c24xx_dma_put_phy(struct s3c24xx_dma_phy *phy)
 340{
 341	struct s3c24xx_dma_engine *s3cdma = phy->host;
 342
 343	if (s3cdma->sdata->has_clocks)
 344		clk_disable(phy->clk);
 345
 346	phy->serving = NULL;
 347}
 348
 349/*
 350 * Stops the channel by writing the stop bit.
 351 * This should not be used for an on-going transfer, but as a method of
 352 * shutting down a channel (eg, when it's no longer used) or terminating a
 353 * transfer.
 354 */
 355static void s3c24xx_dma_terminate_phy(struct s3c24xx_dma_phy *phy)
 356{
 357	writel(S3C24XX_DMASKTRIG_STOP, phy->base + S3C24XX_DMASKTRIG);
 358}
 359
 360/*
 361 * Virtual channel handling
 362 */
 363
 364static inline
 365struct s3c24xx_dma_chan *to_s3c24xx_dma_chan(struct dma_chan *chan)
 366{
 367	return container_of(chan, struct s3c24xx_dma_chan, vc.chan);
 368}
 369
 370static u32 s3c24xx_dma_getbytes_chan(struct s3c24xx_dma_chan *s3cchan)
 371{
 372	struct s3c24xx_dma_phy *phy = s3cchan->phy;
 373	struct s3c24xx_txd *txd = s3cchan->at;
 374	u32 tc = readl(phy->base + S3C24XX_DSTAT) & S3C24XX_DSTAT_CURRTC_MASK;
 375
 376	return tc * txd->width;
 377}
 378
 379static int s3c24xx_dma_set_runtime_config(struct dma_chan *chan,
 380				  struct dma_slave_config *config)
 381{
 382	struct s3c24xx_dma_chan *s3cchan = to_s3c24xx_dma_chan(chan);
 383	unsigned long flags;
 384	int ret = 0;
 385
 386	/* Reject definitely invalid configurations */
 387	if (config->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
 388	    config->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
 389		return -EINVAL;
 390
 391	spin_lock_irqsave(&s3cchan->vc.lock, flags);
 392
 393	if (!s3cchan->slave) {
 394		ret = -EINVAL;
 395		goto out;
 396	}
 397
 398	s3cchan->cfg = *config;
 399
 400out:
 401	spin_unlock_irqrestore(&s3cchan->vc.lock, flags);
 402	return ret;
 403}
 404
 405/*
 406 * Transfer handling
 407 */
 408
 409static inline
 410struct s3c24xx_txd *to_s3c24xx_txd(struct dma_async_tx_descriptor *tx)
 411{
 412	return container_of(tx, struct s3c24xx_txd, vd.tx);
 413}
 414
 415static struct s3c24xx_txd *s3c24xx_dma_get_txd(void)
 416{
 417	struct s3c24xx_txd *txd = kzalloc(sizeof(*txd), GFP_NOWAIT);
 418
 419	if (txd) {
 420		INIT_LIST_HEAD(&txd->dsg_list);
 421		txd->dcon = S3C24XX_DCON_INT | S3C24XX_DCON_NORELOAD;
 422	}
 423
 424	return txd;
 425}
 426
 427static void s3c24xx_dma_free_txd(struct s3c24xx_txd *txd)
 428{
 429	struct s3c24xx_sg *dsg, *_dsg;
 430
 431	list_for_each_entry_safe(dsg, _dsg, &txd->dsg_list, node) {
 432		list_del(&dsg->node);
 433		kfree(dsg);
 434	}
 435
 436	kfree(txd);
 437}
 438
 439static void s3c24xx_dma_start_next_sg(struct s3c24xx_dma_chan *s3cchan,
 440				       struct s3c24xx_txd *txd)
 441{
 442	struct s3c24xx_dma_engine *s3cdma = s3cchan->host;
 443	struct s3c24xx_dma_phy *phy = s3cchan->phy;
 444	const struct s3c24xx_dma_platdata *pdata = s3cdma->pdata;
 445	struct s3c24xx_sg *dsg = list_entry(txd->at, struct s3c24xx_sg, node);
 446	u32 dcon = txd->dcon;
 447	u32 val;
 448
 449	/* transfer-size and -count from len and width */
 450	switch (txd->width) {
 451	case 1:
 452		dcon |= S3C24XX_DCON_DSZ_BYTE | dsg->len;
 453		break;
 454	case 2:
 455		dcon |= S3C24XX_DCON_DSZ_HALFWORD | (dsg->len / 2);
 456		break;
 457	case 4:
 458		dcon |= S3C24XX_DCON_DSZ_WORD | (dsg->len / 4);
 459		break;
 460	}
 461
 462	if (s3cchan->slave) {
 463		struct s3c24xx_dma_channel *cdata =
 464					&pdata->channels[s3cchan->id];
 465
 466		if (s3cdma->sdata->has_reqsel) {
 467			writel_relaxed((cdata->chansel << 1) |
 468							S3C24XX_DMAREQSEL_HW,
 469					phy->base + S3C24XX_DMAREQSEL);
 470		} else {
 471			int csel = cdata->chansel >> (phy->id *
 472							S3C24XX_CHANSEL_WIDTH);
 473
 474			csel &= S3C24XX_CHANSEL_REQ_MASK;
 475			dcon |= csel << S3C24XX_DCON_HWSRC_SHIFT;
 476			dcon |= S3C24XX_DCON_HWTRIG;
 477		}
 478	} else {
 479		if (s3cdma->sdata->has_reqsel)
 480			writel_relaxed(0, phy->base + S3C24XX_DMAREQSEL);
 481	}
 482
 483	writel_relaxed(dsg->src_addr, phy->base + S3C24XX_DISRC);
 484	writel_relaxed(txd->disrcc, phy->base + S3C24XX_DISRCC);
 485	writel_relaxed(dsg->dst_addr, phy->base + S3C24XX_DIDST);
 486	writel_relaxed(txd->didstc, phy->base + S3C24XX_DIDSTC);
 487	writel_relaxed(dcon, phy->base + S3C24XX_DCON);
 488
 489	val = readl_relaxed(phy->base + S3C24XX_DMASKTRIG);
 490	val &= ~S3C24XX_DMASKTRIG_STOP;
 491	val |= S3C24XX_DMASKTRIG_ON;
 492
 493	/* trigger the dma operation for memcpy transfers */
 494	if (!s3cchan->slave)
 495		val |= S3C24XX_DMASKTRIG_SWTRIG;
 496
 497	writel(val, phy->base + S3C24XX_DMASKTRIG);
 498}
 499
 500/*
 501 * Set the initial DMA register values and start first sg.
 502 */
 503static void s3c24xx_dma_start_next_txd(struct s3c24xx_dma_chan *s3cchan)
 504{
 505	struct s3c24xx_dma_phy *phy = s3cchan->phy;
 506	struct virt_dma_desc *vd = vchan_next_desc(&s3cchan->vc);
 507	struct s3c24xx_txd *txd = to_s3c24xx_txd(&vd->tx);
 508
 509	list_del(&txd->vd.node);
 510
 511	s3cchan->at = txd;
 512
 513	/* Wait for channel inactive */
 514	while (s3c24xx_dma_phy_busy(phy))
 515		cpu_relax();
 516
 517	/* point to the first element of the sg list */
 518	txd->at = txd->dsg_list.next;
 519	s3c24xx_dma_start_next_sg(s3cchan, txd);
 520}
 521
 
 
 
 
 
 
 
 
 
 522/*
 523 * Try to allocate a physical channel.  When successful, assign it to
 524 * this virtual channel, and initiate the next descriptor.  The
 525 * virtual channel lock must be held at this point.
 526 */
 527static void s3c24xx_dma_phy_alloc_and_start(struct s3c24xx_dma_chan *s3cchan)
 528{
 529	struct s3c24xx_dma_engine *s3cdma = s3cchan->host;
 530	struct s3c24xx_dma_phy *phy;
 531
 532	phy = s3c24xx_dma_get_phy(s3cchan);
 533	if (!phy) {
 534		dev_dbg(&s3cdma->pdev->dev, "no physical channel available for xfer on %s\n",
 535			s3cchan->name);
 536		s3cchan->state = S3C24XX_DMA_CHAN_WAITING;
 537		return;
 538	}
 539
 540	dev_dbg(&s3cdma->pdev->dev, "allocated physical channel %d for xfer on %s\n",
 541		phy->id, s3cchan->name);
 542
 543	s3cchan->phy = phy;
 544	s3cchan->state = S3C24XX_DMA_CHAN_RUNNING;
 545
 546	s3c24xx_dma_start_next_txd(s3cchan);
 547}
 548
 549static void s3c24xx_dma_phy_reassign_start(struct s3c24xx_dma_phy *phy,
 550	struct s3c24xx_dma_chan *s3cchan)
 551{
 552	struct s3c24xx_dma_engine *s3cdma = s3cchan->host;
 553
 554	dev_dbg(&s3cdma->pdev->dev, "reassigned physical channel %d for xfer on %s\n",
 555		phy->id, s3cchan->name);
 556
 557	/*
 558	 * We do this without taking the lock; we're really only concerned
 559	 * about whether this pointer is NULL or not, and we're guaranteed
 560	 * that this will only be called when it _already_ is non-NULL.
 561	 */
 562	phy->serving = s3cchan;
 563	s3cchan->phy = phy;
 564	s3cchan->state = S3C24XX_DMA_CHAN_RUNNING;
 565	s3c24xx_dma_start_next_txd(s3cchan);
 566}
 567
 568/*
 569 * Free a physical DMA channel, potentially reallocating it to another
 570 * virtual channel if we have any pending.
 571 */
 572static void s3c24xx_dma_phy_free(struct s3c24xx_dma_chan *s3cchan)
 573{
 574	struct s3c24xx_dma_engine *s3cdma = s3cchan->host;
 575	struct s3c24xx_dma_chan *p, *next;
 576
 577retry:
 578	next = NULL;
 579
 580	/* Find a waiting virtual channel for the next transfer. */
 581	list_for_each_entry(p, &s3cdma->memcpy.channels, vc.chan.device_node)
 582		if (p->state == S3C24XX_DMA_CHAN_WAITING) {
 583			next = p;
 584			break;
 585		}
 586
 587	if (!next) {
 588		list_for_each_entry(p, &s3cdma->slave.channels,
 589				    vc.chan.device_node)
 590			if (p->state == S3C24XX_DMA_CHAN_WAITING &&
 591				      s3c24xx_dma_phy_valid(p, s3cchan->phy)) {
 592				next = p;
 593				break;
 594			}
 595	}
 596
 597	/* Ensure that the physical channel is stopped */
 598	s3c24xx_dma_terminate_phy(s3cchan->phy);
 599
 600	if (next) {
 601		bool success;
 602
 603		/*
 604		 * Eww.  We know this isn't going to deadlock
 605		 * but lockdep probably doesn't.
 606		 */
 607		spin_lock(&next->vc.lock);
 608		/* Re-check the state now that we have the lock */
 609		success = next->state == S3C24XX_DMA_CHAN_WAITING;
 610		if (success)
 611			s3c24xx_dma_phy_reassign_start(s3cchan->phy, next);
 612		spin_unlock(&next->vc.lock);
 613
 614		/* If the state changed, try to find another channel */
 615		if (!success)
 616			goto retry;
 617	} else {
 618		/* No more jobs, so free up the physical channel */
 619		s3c24xx_dma_put_phy(s3cchan->phy);
 620	}
 621
 622	s3cchan->phy = NULL;
 623	s3cchan->state = S3C24XX_DMA_CHAN_IDLE;
 624}
 625
 626static void s3c24xx_dma_desc_free(struct virt_dma_desc *vd)
 627{
 628	struct s3c24xx_txd *txd = to_s3c24xx_txd(&vd->tx);
 629	struct s3c24xx_dma_chan *s3cchan = to_s3c24xx_dma_chan(vd->tx.chan);
 630
 631	if (!s3cchan->slave)
 632		dma_descriptor_unmap(&vd->tx);
 633
 634	s3c24xx_dma_free_txd(txd);
 635}
 636
 637static irqreturn_t s3c24xx_dma_irq(int irq, void *data)
 638{
 639	struct s3c24xx_dma_phy *phy = data;
 640	struct s3c24xx_dma_chan *s3cchan = phy->serving;
 641	struct s3c24xx_txd *txd;
 642
 643	dev_dbg(&phy->host->pdev->dev, "interrupt on channel %d\n", phy->id);
 644
 645	/*
 646	 * Interrupts happen to notify the completion of a transfer and the
 647	 * channel should have moved into its stop state already on its own.
 648	 * Therefore interrupts on channels not bound to a virtual channel
 649	 * should never happen. Nevertheless send a terminate command to the
 650	 * channel if the unlikely case happens.
 651	 */
 652	if (unlikely(!s3cchan)) {
 653		dev_err(&phy->host->pdev->dev, "interrupt on unused channel %d\n",
 654			phy->id);
 655
 656		s3c24xx_dma_terminate_phy(phy);
 657
 658		return IRQ_HANDLED;
 659	}
 660
 661	spin_lock(&s3cchan->vc.lock);
 662	txd = s3cchan->at;
 663	if (txd) {
 664		/* when more sg's are in this txd, start the next one */
 665		if (!list_is_last(txd->at, &txd->dsg_list)) {
 666			txd->at = txd->at->next;
 667			if (txd->cyclic)
 668				vchan_cyclic_callback(&txd->vd);
 669			s3c24xx_dma_start_next_sg(s3cchan, txd);
 670		} else if (!txd->cyclic) {
 671			s3cchan->at = NULL;
 672			vchan_cookie_complete(&txd->vd);
 673
 674			/*
 675			 * And start the next descriptor (if any),
 676			 * otherwise free this channel.
 677			 */
 678			if (vchan_next_desc(&s3cchan->vc))
 679				s3c24xx_dma_start_next_txd(s3cchan);
 680			else
 681				s3c24xx_dma_phy_free(s3cchan);
 682		} else {
 683			vchan_cyclic_callback(&txd->vd);
 684
 685			/* Cyclic: reset at beginning */
 686			txd->at = txd->dsg_list.next;
 687			s3c24xx_dma_start_next_sg(s3cchan, txd);
 688		}
 689	}
 690	spin_unlock(&s3cchan->vc.lock);
 691
 692	return IRQ_HANDLED;
 693}
 694
 695/*
 696 * The DMA ENGINE API
 697 */
 698
 699static int s3c24xx_dma_terminate_all(struct dma_chan *chan)
 700{
 701	struct s3c24xx_dma_chan *s3cchan = to_s3c24xx_dma_chan(chan);
 702	struct s3c24xx_dma_engine *s3cdma = s3cchan->host;
 703	LIST_HEAD(head);
 704	unsigned long flags;
 705	int ret;
 706
 707	spin_lock_irqsave(&s3cchan->vc.lock, flags);
 708
 709	if (!s3cchan->phy && !s3cchan->at) {
 710		dev_err(&s3cdma->pdev->dev, "trying to terminate already stopped channel %d\n",
 711			s3cchan->id);
 712		ret = -EINVAL;
 713		goto unlock;
 714	}
 715
 716	s3cchan->state = S3C24XX_DMA_CHAN_IDLE;
 717
 718	/* Mark physical channel as free */
 719	if (s3cchan->phy)
 720		s3c24xx_dma_phy_free(s3cchan);
 721
 722	/* Dequeue current job */
 723	if (s3cchan->at) {
 724		vchan_terminate_vdesc(&s3cchan->at->vd);
 725		s3cchan->at = NULL;
 726	}
 727
 728	/* Dequeue jobs not yet fired as well */
 729
 730	vchan_get_all_descriptors(&s3cchan->vc, &head);
 731
 732	spin_unlock_irqrestore(&s3cchan->vc.lock, flags);
 733
 734	vchan_dma_desc_free_list(&s3cchan->vc, &head);
 735
 736	return 0;
 737
 738unlock:
 739	spin_unlock_irqrestore(&s3cchan->vc.lock, flags);
 740
 741	return ret;
 742}
 743
 744static void s3c24xx_dma_synchronize(struct dma_chan *chan)
 745{
 746	struct s3c24xx_dma_chan *s3cchan = to_s3c24xx_dma_chan(chan);
 747
 748	vchan_synchronize(&s3cchan->vc);
 749}
 750
 751static void s3c24xx_dma_free_chan_resources(struct dma_chan *chan)
 752{
 753	/* Ensure all queued descriptors are freed */
 754	vchan_free_chan_resources(to_virt_chan(chan));
 755}
 756
 757static enum dma_status s3c24xx_dma_tx_status(struct dma_chan *chan,
 758		dma_cookie_t cookie, struct dma_tx_state *txstate)
 759{
 760	struct s3c24xx_dma_chan *s3cchan = to_s3c24xx_dma_chan(chan);
 761	struct s3c24xx_txd *txd;
 762	struct s3c24xx_sg *dsg;
 763	struct virt_dma_desc *vd;
 764	unsigned long flags;
 765	enum dma_status ret;
 766	size_t bytes = 0;
 767
 768	spin_lock_irqsave(&s3cchan->vc.lock, flags);
 769	ret = dma_cookie_status(chan, cookie, txstate);
 770
 771	/*
 772	 * There's no point calculating the residue if there's
 773	 * no txstate to store the value.
 774	 */
 775	if (ret == DMA_COMPLETE || !txstate) {
 776		spin_unlock_irqrestore(&s3cchan->vc.lock, flags);
 777		return ret;
 778	}
 779
 780	vd = vchan_find_desc(&s3cchan->vc, cookie);
 781	if (vd) {
 782		/* On the issued list, so hasn't been processed yet */
 783		txd = to_s3c24xx_txd(&vd->tx);
 784
 785		list_for_each_entry(dsg, &txd->dsg_list, node)
 786			bytes += dsg->len;
 787	} else {
 788		/*
 789		 * Currently running, so sum over the pending sg's and
 790		 * the currently active one.
 791		 */
 792		txd = s3cchan->at;
 793
 794		dsg = list_entry(txd->at, struct s3c24xx_sg, node);
 795		list_for_each_entry_from(dsg, &txd->dsg_list, node)
 796			bytes += dsg->len;
 797
 798		bytes += s3c24xx_dma_getbytes_chan(s3cchan);
 799	}
 800	spin_unlock_irqrestore(&s3cchan->vc.lock, flags);
 801
 802	/*
 803	 * This cookie not complete yet
 804	 * Get number of bytes left in the active transactions and queue
 805	 */
 806	dma_set_residue(txstate, bytes);
 807
 808	/* Whether waiting or running, we're in progress */
 809	return ret;
 810}
 811
 812/*
 813 * Initialize a descriptor to be used by memcpy submit
 814 */
 815static struct dma_async_tx_descriptor *s3c24xx_dma_prep_memcpy(
 816		struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
 817		size_t len, unsigned long flags)
 818{
 819	struct s3c24xx_dma_chan *s3cchan = to_s3c24xx_dma_chan(chan);
 820	struct s3c24xx_dma_engine *s3cdma = s3cchan->host;
 821	struct s3c24xx_txd *txd;
 822	struct s3c24xx_sg *dsg;
 823	int src_mod, dest_mod;
 824
 825	dev_dbg(&s3cdma->pdev->dev, "prepare memcpy of %zu bytes from %s\n",
 826			len, s3cchan->name);
 827
 828	if ((len & S3C24XX_DCON_TC_MASK) != len) {
 829		dev_err(&s3cdma->pdev->dev, "memcpy size %zu to large\n", len);
 830		return NULL;
 831	}
 832
 833	txd = s3c24xx_dma_get_txd();
 834	if (!txd)
 835		return NULL;
 836
 837	dsg = kzalloc(sizeof(*dsg), GFP_NOWAIT);
 838	if (!dsg) {
 839		s3c24xx_dma_free_txd(txd);
 840		return NULL;
 841	}
 842	list_add_tail(&dsg->node, &txd->dsg_list);
 843
 844	dsg->src_addr = src;
 845	dsg->dst_addr = dest;
 846	dsg->len = len;
 847
 848	/*
 849	 * Determine a suitable transfer width.
 850	 * The DMA controller cannot fetch/store information which is not
 851	 * naturally aligned on the bus, i.e., a 4 byte fetch must start at
 852	 * an address divisible by 4 - more generally addr % width must be 0.
 853	 */
 854	src_mod = src % 4;
 855	dest_mod = dest % 4;
 856	switch (len % 4) {
 857	case 0:
 858		txd->width = (src_mod == 0 && dest_mod == 0) ? 4 : 1;
 859		break;
 860	case 2:
 861		txd->width = ((src_mod == 2 || src_mod == 0) &&
 862			      (dest_mod == 2 || dest_mod == 0)) ? 2 : 1;
 863		break;
 864	default:
 865		txd->width = 1;
 866		break;
 867	}
 868
 869	txd->disrcc = S3C24XX_DISRCC_LOC_AHB | S3C24XX_DISRCC_INC_INCREMENT;
 870	txd->didstc = S3C24XX_DIDSTC_LOC_AHB | S3C24XX_DIDSTC_INC_INCREMENT;
 871	txd->dcon |= S3C24XX_DCON_DEMAND | S3C24XX_DCON_SYNC_HCLK |
 872		     S3C24XX_DCON_SERV_WHOLE;
 873
 874	return vchan_tx_prep(&s3cchan->vc, &txd->vd, flags);
 875}
 876
 877static struct dma_async_tx_descriptor *s3c24xx_dma_prep_dma_cyclic(
 878	struct dma_chan *chan, dma_addr_t addr, size_t size, size_t period,
 879	enum dma_transfer_direction direction, unsigned long flags)
 880{
 881	struct s3c24xx_dma_chan *s3cchan = to_s3c24xx_dma_chan(chan);
 882	struct s3c24xx_dma_engine *s3cdma = s3cchan->host;
 883	const struct s3c24xx_dma_platdata *pdata = s3cdma->pdata;
 884	struct s3c24xx_dma_channel *cdata = &pdata->channels[s3cchan->id];
 885	struct s3c24xx_txd *txd;
 886	struct s3c24xx_sg *dsg;
 887	unsigned sg_len;
 888	dma_addr_t slave_addr;
 889	u32 hwcfg = 0;
 890	int i;
 891
 892	dev_dbg(&s3cdma->pdev->dev,
 893		"prepare cyclic transaction of %zu bytes with period %zu from %s\n",
 894		size, period, s3cchan->name);
 895
 896	if (!is_slave_direction(direction)) {
 897		dev_err(&s3cdma->pdev->dev,
 898			"direction %d unsupported\n", direction);
 899		return NULL;
 900	}
 901
 902	txd = s3c24xx_dma_get_txd();
 903	if (!txd)
 904		return NULL;
 905
 906	txd->cyclic = 1;
 907
 908	if (cdata->handshake)
 909		txd->dcon |= S3C24XX_DCON_HANDSHAKE;
 910
 911	switch (cdata->bus) {
 912	case S3C24XX_DMA_APB:
 913		txd->dcon |= S3C24XX_DCON_SYNC_PCLK;
 914		hwcfg |= S3C24XX_DISRCC_LOC_APB;
 915		break;
 916	case S3C24XX_DMA_AHB:
 917		txd->dcon |= S3C24XX_DCON_SYNC_HCLK;
 918		hwcfg |= S3C24XX_DISRCC_LOC_AHB;
 919		break;
 920	}
 921
 922	/*
 923	 * Always assume our peripheral desintation is a fixed
 924	 * address in memory.
 925	 */
 926	hwcfg |= S3C24XX_DISRCC_INC_FIXED;
 927
 928	/*
 929	 * Individual dma operations are requested by the slave,
 930	 * so serve only single atomic operations (S3C24XX_DCON_SERV_SINGLE).
 931	 */
 932	txd->dcon |= S3C24XX_DCON_SERV_SINGLE;
 933
 934	if (direction == DMA_MEM_TO_DEV) {
 935		txd->disrcc = S3C24XX_DISRCC_LOC_AHB |
 936			      S3C24XX_DISRCC_INC_INCREMENT;
 937		txd->didstc = hwcfg;
 938		slave_addr = s3cchan->cfg.dst_addr;
 939		txd->width = s3cchan->cfg.dst_addr_width;
 940	} else {
 941		txd->disrcc = hwcfg;
 942		txd->didstc = S3C24XX_DIDSTC_LOC_AHB |
 943			      S3C24XX_DIDSTC_INC_INCREMENT;
 944		slave_addr = s3cchan->cfg.src_addr;
 945		txd->width = s3cchan->cfg.src_addr_width;
 946	}
 947
 948	sg_len = size / period;
 949
 950	for (i = 0; i < sg_len; i++) {
 951		dsg = kzalloc(sizeof(*dsg), GFP_NOWAIT);
 952		if (!dsg) {
 953			s3c24xx_dma_free_txd(txd);
 954			return NULL;
 955		}
 956		list_add_tail(&dsg->node, &txd->dsg_list);
 957
 958		dsg->len = period;
 959		/* Check last period length */
 960		if (i == sg_len - 1)
 961			dsg->len = size - period * i;
 962		if (direction == DMA_MEM_TO_DEV) {
 963			dsg->src_addr = addr + period * i;
 964			dsg->dst_addr = slave_addr;
 965		} else { /* DMA_DEV_TO_MEM */
 966			dsg->src_addr = slave_addr;
 967			dsg->dst_addr = addr + period * i;
 968		}
 969	}
 970
 971	return vchan_tx_prep(&s3cchan->vc, &txd->vd, flags);
 972}
 973
 974static struct dma_async_tx_descriptor *s3c24xx_dma_prep_slave_sg(
 975		struct dma_chan *chan, struct scatterlist *sgl,
 976		unsigned int sg_len, enum dma_transfer_direction direction,
 977		unsigned long flags, void *context)
 978{
 979	struct s3c24xx_dma_chan *s3cchan = to_s3c24xx_dma_chan(chan);
 980	struct s3c24xx_dma_engine *s3cdma = s3cchan->host;
 981	const struct s3c24xx_dma_platdata *pdata = s3cdma->pdata;
 982	struct s3c24xx_dma_channel *cdata = &pdata->channels[s3cchan->id];
 983	struct s3c24xx_txd *txd;
 984	struct s3c24xx_sg *dsg;
 985	struct scatterlist *sg;
 986	dma_addr_t slave_addr;
 987	u32 hwcfg = 0;
 988	int tmp;
 989
 990	dev_dbg(&s3cdma->pdev->dev, "prepare transaction of %d bytes from %s\n",
 991			sg_dma_len(sgl), s3cchan->name);
 992
 993	txd = s3c24xx_dma_get_txd();
 994	if (!txd)
 995		return NULL;
 996
 997	if (cdata->handshake)
 998		txd->dcon |= S3C24XX_DCON_HANDSHAKE;
 999
1000	switch (cdata->bus) {
1001	case S3C24XX_DMA_APB:
1002		txd->dcon |= S3C24XX_DCON_SYNC_PCLK;
1003		hwcfg |= S3C24XX_DISRCC_LOC_APB;
1004		break;
1005	case S3C24XX_DMA_AHB:
1006		txd->dcon |= S3C24XX_DCON_SYNC_HCLK;
1007		hwcfg |= S3C24XX_DISRCC_LOC_AHB;
1008		break;
1009	}
1010
1011	/*
1012	 * Always assume our peripheral desintation is a fixed
1013	 * address in memory.
1014	 */
1015	hwcfg |= S3C24XX_DISRCC_INC_FIXED;
1016
1017	/*
1018	 * Individual dma operations are requested by the slave,
1019	 * so serve only single atomic operations (S3C24XX_DCON_SERV_SINGLE).
1020	 */
1021	txd->dcon |= S3C24XX_DCON_SERV_SINGLE;
1022
1023	if (direction == DMA_MEM_TO_DEV) {
1024		txd->disrcc = S3C24XX_DISRCC_LOC_AHB |
1025			      S3C24XX_DISRCC_INC_INCREMENT;
1026		txd->didstc = hwcfg;
1027		slave_addr = s3cchan->cfg.dst_addr;
1028		txd->width = s3cchan->cfg.dst_addr_width;
1029	} else if (direction == DMA_DEV_TO_MEM) {
1030		txd->disrcc = hwcfg;
1031		txd->didstc = S3C24XX_DIDSTC_LOC_AHB |
1032			      S3C24XX_DIDSTC_INC_INCREMENT;
1033		slave_addr = s3cchan->cfg.src_addr;
1034		txd->width = s3cchan->cfg.src_addr_width;
1035	} else {
1036		s3c24xx_dma_free_txd(txd);
1037		dev_err(&s3cdma->pdev->dev,
1038			"direction %d unsupported\n", direction);
1039		return NULL;
1040	}
1041
1042	for_each_sg(sgl, sg, sg_len, tmp) {
1043		dsg = kzalloc(sizeof(*dsg), GFP_NOWAIT);
1044		if (!dsg) {
1045			s3c24xx_dma_free_txd(txd);
1046			return NULL;
1047		}
1048		list_add_tail(&dsg->node, &txd->dsg_list);
1049
1050		dsg->len = sg_dma_len(sg);
1051		if (direction == DMA_MEM_TO_DEV) {
1052			dsg->src_addr = sg_dma_address(sg);
1053			dsg->dst_addr = slave_addr;
1054		} else { /* DMA_DEV_TO_MEM */
1055			dsg->src_addr = slave_addr;
1056			dsg->dst_addr = sg_dma_address(sg);
1057		}
1058	}
1059
1060	return vchan_tx_prep(&s3cchan->vc, &txd->vd, flags);
1061}
1062
1063/*
1064 * Slave transactions callback to the slave device to allow
1065 * synchronization of slave DMA signals with the DMAC enable
1066 */
1067static void s3c24xx_dma_issue_pending(struct dma_chan *chan)
1068{
1069	struct s3c24xx_dma_chan *s3cchan = to_s3c24xx_dma_chan(chan);
1070	unsigned long flags;
1071
1072	spin_lock_irqsave(&s3cchan->vc.lock, flags);
1073	if (vchan_issue_pending(&s3cchan->vc)) {
1074		if (!s3cchan->phy && s3cchan->state != S3C24XX_DMA_CHAN_WAITING)
1075			s3c24xx_dma_phy_alloc_and_start(s3cchan);
1076	}
1077	spin_unlock_irqrestore(&s3cchan->vc.lock, flags);
1078}
1079
1080/*
1081 * Bringup and teardown
1082 */
1083
1084/*
1085 * Initialise the DMAC memcpy/slave channels.
1086 * Make a local wrapper to hold required data
1087 */
1088static int s3c24xx_dma_init_virtual_channels(struct s3c24xx_dma_engine *s3cdma,
1089		struct dma_device *dmadev, unsigned int channels, bool slave)
1090{
1091	struct s3c24xx_dma_chan *chan;
1092	int i;
1093
1094	INIT_LIST_HEAD(&dmadev->channels);
1095
1096	/*
1097	 * Register as many many memcpy as we have physical channels,
1098	 * we won't always be able to use all but the code will have
1099	 * to cope with that situation.
1100	 */
1101	for (i = 0; i < channels; i++) {
1102		chan = devm_kzalloc(dmadev->dev, sizeof(*chan), GFP_KERNEL);
1103		if (!chan)
1104			return -ENOMEM;
1105
1106		chan->id = i;
1107		chan->host = s3cdma;
1108		chan->state = S3C24XX_DMA_CHAN_IDLE;
1109
1110		if (slave) {
1111			chan->slave = true;
1112			chan->name = kasprintf(GFP_KERNEL, "slave%d", i);
1113			if (!chan->name)
1114				return -ENOMEM;
1115		} else {
1116			chan->name = kasprintf(GFP_KERNEL, "memcpy%d", i);
1117			if (!chan->name)
1118				return -ENOMEM;
1119		}
1120		dev_dbg(dmadev->dev,
1121			 "initialize virtual channel \"%s\"\n",
1122			 chan->name);
1123
1124		chan->vc.desc_free = s3c24xx_dma_desc_free;
1125		vchan_init(&chan->vc, dmadev);
1126	}
1127	dev_info(dmadev->dev, "initialized %d virtual %s channels\n",
1128		 i, slave ? "slave" : "memcpy");
1129	return i;
1130}
1131
1132static void s3c24xx_dma_free_virtual_channels(struct dma_device *dmadev)
1133{
1134	struct s3c24xx_dma_chan *chan = NULL;
1135	struct s3c24xx_dma_chan *next;
1136
1137	list_for_each_entry_safe(chan,
1138				 next, &dmadev->channels, vc.chan.device_node) {
1139		list_del(&chan->vc.chan.device_node);
1140		tasklet_kill(&chan->vc.task);
1141	}
1142}
1143
1144/* s3c2410, s3c2440 and s3c2442 have a 0x40 stride without separate clocks */
1145static struct soc_data soc_s3c2410 = {
1146	.stride = 0x40,
1147	.has_reqsel = false,
1148	.has_clocks = false,
1149};
1150
1151/* s3c2412 and s3c2413 have a 0x40 stride and dmareqsel mechanism */
1152static struct soc_data soc_s3c2412 = {
1153	.stride = 0x40,
1154	.has_reqsel = true,
1155	.has_clocks = true,
1156};
1157
1158/* s3c2443 and following have a 0x100 stride and dmareqsel mechanism */
1159static struct soc_data soc_s3c2443 = {
1160	.stride = 0x100,
1161	.has_reqsel = true,
1162	.has_clocks = true,
1163};
1164
1165static const struct platform_device_id s3c24xx_dma_driver_ids[] = {
1166	{
1167		.name		= "s3c2410-dma",
1168		.driver_data	= (kernel_ulong_t)&soc_s3c2410,
1169	}, {
1170		.name		= "s3c2412-dma",
1171		.driver_data	= (kernel_ulong_t)&soc_s3c2412,
1172	}, {
1173		.name		= "s3c2443-dma",
1174		.driver_data	= (kernel_ulong_t)&soc_s3c2443,
1175	},
1176	{ },
1177};
1178
1179static struct soc_data *s3c24xx_dma_get_soc_data(struct platform_device *pdev)
1180{
1181	return (struct soc_data *)
1182			 platform_get_device_id(pdev)->driver_data;
1183}
1184
1185static int s3c24xx_dma_probe(struct platform_device *pdev)
1186{
1187	const struct s3c24xx_dma_platdata *pdata = dev_get_platdata(&pdev->dev);
1188	struct s3c24xx_dma_engine *s3cdma;
1189	struct soc_data *sdata;
1190	struct resource *res;
1191	int ret;
1192	int i;
1193
1194	if (!pdata) {
1195		dev_err(&pdev->dev, "platform data missing\n");
1196		return -ENODEV;
1197	}
1198
1199	/* Basic sanity check */
1200	if (pdata->num_phy_channels > MAX_DMA_CHANNELS) {
1201		dev_err(&pdev->dev, "too many dma channels %d, max %d\n",
1202			pdata->num_phy_channels, MAX_DMA_CHANNELS);
1203		return -EINVAL;
1204	}
1205
1206	sdata = s3c24xx_dma_get_soc_data(pdev);
1207	if (!sdata)
1208		return -EINVAL;
1209
1210	s3cdma = devm_kzalloc(&pdev->dev, sizeof(*s3cdma), GFP_KERNEL);
1211	if (!s3cdma)
1212		return -ENOMEM;
1213
1214	s3cdma->pdev = pdev;
1215	s3cdma->pdata = pdata;
1216	s3cdma->sdata = sdata;
1217
1218	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1219	s3cdma->base = devm_ioremap_resource(&pdev->dev, res);
1220	if (IS_ERR(s3cdma->base))
1221		return PTR_ERR(s3cdma->base);
1222
1223	s3cdma->phy_chans = devm_kcalloc(&pdev->dev,
1224					      pdata->num_phy_channels,
1225					      sizeof(struct s3c24xx_dma_phy),
1226					      GFP_KERNEL);
1227	if (!s3cdma->phy_chans)
1228		return -ENOMEM;
1229
1230	/* acquire irqs and clocks for all physical channels */
1231	for (i = 0; i < pdata->num_phy_channels; i++) {
1232		struct s3c24xx_dma_phy *phy = &s3cdma->phy_chans[i];
1233		char clk_name[6];
1234
1235		phy->id = i;
1236		phy->base = s3cdma->base + (i * sdata->stride);
1237		phy->host = s3cdma;
1238
1239		phy->irq = platform_get_irq(pdev, i);
1240		if (phy->irq < 0)
 
 
1241			continue;
 
1242
1243		ret = devm_request_irq(&pdev->dev, phy->irq, s3c24xx_dma_irq,
1244				       0, pdev->name, phy);
1245		if (ret) {
1246			dev_err(&pdev->dev, "Unable to request irq for channel %d, error %d\n",
1247				i, ret);
1248			continue;
1249		}
1250
1251		if (sdata->has_clocks) {
1252			sprintf(clk_name, "dma.%d", i);
1253			phy->clk = devm_clk_get(&pdev->dev, clk_name);
1254			if (IS_ERR(phy->clk) && sdata->has_clocks) {
1255				dev_err(&pdev->dev, "unable to acquire clock for channel %d, error %lu\n",
1256					i, PTR_ERR(phy->clk));
1257				continue;
1258			}
1259
1260			ret = clk_prepare(phy->clk);
1261			if (ret) {
1262				dev_err(&pdev->dev, "clock for phy %d failed, error %d\n",
1263					i, ret);
1264				continue;
1265			}
1266		}
1267
1268		spin_lock_init(&phy->lock);
1269		phy->valid = true;
1270
1271		dev_dbg(&pdev->dev, "physical channel %d is %s\n",
1272			i, s3c24xx_dma_phy_busy(phy) ? "BUSY" : "FREE");
1273	}
1274
1275	/* Initialize memcpy engine */
1276	dma_cap_set(DMA_MEMCPY, s3cdma->memcpy.cap_mask);
1277	dma_cap_set(DMA_PRIVATE, s3cdma->memcpy.cap_mask);
1278	s3cdma->memcpy.dev = &pdev->dev;
1279	s3cdma->memcpy.device_free_chan_resources =
1280					s3c24xx_dma_free_chan_resources;
1281	s3cdma->memcpy.device_prep_dma_memcpy = s3c24xx_dma_prep_memcpy;
1282	s3cdma->memcpy.device_tx_status = s3c24xx_dma_tx_status;
1283	s3cdma->memcpy.device_issue_pending = s3c24xx_dma_issue_pending;
1284	s3cdma->memcpy.device_config = s3c24xx_dma_set_runtime_config;
1285	s3cdma->memcpy.device_terminate_all = s3c24xx_dma_terminate_all;
1286	s3cdma->memcpy.device_synchronize = s3c24xx_dma_synchronize;
1287
1288	/* Initialize slave engine for SoC internal dedicated peripherals */
1289	dma_cap_set(DMA_SLAVE, s3cdma->slave.cap_mask);
1290	dma_cap_set(DMA_CYCLIC, s3cdma->slave.cap_mask);
1291	dma_cap_set(DMA_PRIVATE, s3cdma->slave.cap_mask);
1292	s3cdma->slave.dev = &pdev->dev;
1293	s3cdma->slave.device_free_chan_resources =
1294					s3c24xx_dma_free_chan_resources;
1295	s3cdma->slave.device_tx_status = s3c24xx_dma_tx_status;
1296	s3cdma->slave.device_issue_pending = s3c24xx_dma_issue_pending;
1297	s3cdma->slave.device_prep_slave_sg = s3c24xx_dma_prep_slave_sg;
1298	s3cdma->slave.device_prep_dma_cyclic = s3c24xx_dma_prep_dma_cyclic;
1299	s3cdma->slave.device_config = s3c24xx_dma_set_runtime_config;
1300	s3cdma->slave.device_terminate_all = s3c24xx_dma_terminate_all;
1301	s3cdma->slave.device_synchronize = s3c24xx_dma_synchronize;
1302	s3cdma->slave.filter.map = pdata->slave_map;
1303	s3cdma->slave.filter.mapcnt = pdata->slavecnt;
1304	s3cdma->slave.filter.fn = s3c24xx_dma_filter;
1305
1306	/* Register as many memcpy channels as there are physical channels */
1307	ret = s3c24xx_dma_init_virtual_channels(s3cdma, &s3cdma->memcpy,
1308						pdata->num_phy_channels, false);
1309	if (ret <= 0) {
1310		dev_warn(&pdev->dev,
1311			 "%s failed to enumerate memcpy channels - %d\n",
1312			 __func__, ret);
1313		goto err_memcpy;
1314	}
1315
1316	/* Register slave channels */
1317	ret = s3c24xx_dma_init_virtual_channels(s3cdma, &s3cdma->slave,
1318				pdata->num_channels, true);
1319	if (ret <= 0) {
1320		dev_warn(&pdev->dev,
1321			"%s failed to enumerate slave channels - %d\n",
1322				__func__, ret);
1323		goto err_slave;
1324	}
1325
1326	ret = dma_async_device_register(&s3cdma->memcpy);
1327	if (ret) {
1328		dev_warn(&pdev->dev,
1329			"%s failed to register memcpy as an async device - %d\n",
1330			__func__, ret);
1331		goto err_memcpy_reg;
1332	}
1333
1334	ret = dma_async_device_register(&s3cdma->slave);
1335	if (ret) {
1336		dev_warn(&pdev->dev,
1337			"%s failed to register slave as an async device - %d\n",
1338			__func__, ret);
1339		goto err_slave_reg;
1340	}
1341
1342	platform_set_drvdata(pdev, s3cdma);
1343	dev_info(&pdev->dev, "Loaded dma driver with %d physical channels\n",
1344		 pdata->num_phy_channels);
1345
1346	return 0;
1347
1348err_slave_reg:
1349	dma_async_device_unregister(&s3cdma->memcpy);
1350err_memcpy_reg:
1351	s3c24xx_dma_free_virtual_channels(&s3cdma->slave);
1352err_slave:
1353	s3c24xx_dma_free_virtual_channels(&s3cdma->memcpy);
1354err_memcpy:
1355	if (sdata->has_clocks)
1356		for (i = 0; i < pdata->num_phy_channels; i++) {
1357			struct s3c24xx_dma_phy *phy = &s3cdma->phy_chans[i];
1358			if (phy->valid)
1359				clk_unprepare(phy->clk);
1360		}
1361
1362	return ret;
1363}
1364
1365static void s3c24xx_dma_free_irq(struct platform_device *pdev,
1366				struct s3c24xx_dma_engine *s3cdma)
1367{
1368	int i;
1369
1370	for (i = 0; i < s3cdma->pdata->num_phy_channels; i++) {
1371		struct s3c24xx_dma_phy *phy = &s3cdma->phy_chans[i];
1372
1373		devm_free_irq(&pdev->dev, phy->irq, phy);
1374	}
1375}
1376
1377static int s3c24xx_dma_remove(struct platform_device *pdev)
1378{
1379	const struct s3c24xx_dma_platdata *pdata = dev_get_platdata(&pdev->dev);
1380	struct s3c24xx_dma_engine *s3cdma = platform_get_drvdata(pdev);
1381	struct soc_data *sdata = s3c24xx_dma_get_soc_data(pdev);
1382	int i;
1383
1384	dma_async_device_unregister(&s3cdma->slave);
1385	dma_async_device_unregister(&s3cdma->memcpy);
1386
1387	s3c24xx_dma_free_irq(pdev, s3cdma);
1388
1389	s3c24xx_dma_free_virtual_channels(&s3cdma->slave);
1390	s3c24xx_dma_free_virtual_channels(&s3cdma->memcpy);
1391
1392	if (sdata->has_clocks)
1393		for (i = 0; i < pdata->num_phy_channels; i++) {
1394			struct s3c24xx_dma_phy *phy = &s3cdma->phy_chans[i];
1395			if (phy->valid)
1396				clk_unprepare(phy->clk);
1397		}
1398
1399	return 0;
1400}
1401
1402static struct platform_driver s3c24xx_dma_driver = {
1403	.driver		= {
1404		.name	= "s3c24xx-dma",
1405	},
1406	.id_table	= s3c24xx_dma_driver_ids,
1407	.probe		= s3c24xx_dma_probe,
1408	.remove		= s3c24xx_dma_remove,
1409};
1410
1411module_platform_driver(s3c24xx_dma_driver);
1412
1413bool s3c24xx_dma_filter(struct dma_chan *chan, void *param)
1414{
1415	struct s3c24xx_dma_chan *s3cchan;
1416
1417	if (chan->device->dev->driver != &s3c24xx_dma_driver.driver)
1418		return false;
1419
1420	s3cchan = to_s3c24xx_dma_chan(chan);
1421
1422	return s3cchan->id == (uintptr_t)param;
1423}
1424EXPORT_SYMBOL(s3c24xx_dma_filter);
1425
1426MODULE_DESCRIPTION("S3C24XX DMA Driver");
1427MODULE_AUTHOR("Heiko Stuebner");
1428MODULE_LICENSE("GPL v2");
v4.17
 
   1/*
   2 * S3C24XX DMA handling
   3 *
   4 * Copyright (c) 2013 Heiko Stuebner <heiko@sntech.de>
   5 *
   6 * based on amba-pl08x.c
   7 *
   8 * Copyright (c) 2006 ARM Ltd.
   9 * Copyright (c) 2010 ST-Ericsson SA
  10 *
  11 * Author: Peter Pearse <peter.pearse@arm.com>
  12 * Author: Linus Walleij <linus.walleij@stericsson.com>
  13 *
  14 * This program is free software; you can redistribute it and/or modify it
  15 * under the terms of the GNU General Public License as published by the Free
  16 * Software Foundation; either version 2 of the License, or (at your option)
  17 * any later version.
  18 *
  19 * The DMA controllers in S3C24XX SoCs have a varying number of DMA signals
  20 * that can be routed to any of the 4 to 8 hardware-channels.
  21 *
  22 * Therefore on these DMA controllers the number of channels
  23 * and the number of incoming DMA signals are two totally different things.
  24 * It is usually not possible to theoretically handle all physical signals,
  25 * so a multiplexing scheme with possible denial of use is necessary.
  26 *
  27 * Open items:
  28 * - bursts
  29 */
  30
  31#include <linux/platform_device.h>
  32#include <linux/types.h>
  33#include <linux/dmaengine.h>
  34#include <linux/dma-mapping.h>
  35#include <linux/interrupt.h>
  36#include <linux/clk.h>
  37#include <linux/module.h>
 
  38#include <linux/slab.h>
  39#include <linux/platform_data/dma-s3c24xx.h>
  40
  41#include "dmaengine.h"
  42#include "virt-dma.h"
  43
  44#define MAX_DMA_CHANNELS	8
  45
  46#define S3C24XX_DISRC			0x00
  47#define S3C24XX_DISRCC			0x04
  48#define S3C24XX_DISRCC_INC_INCREMENT	0
  49#define S3C24XX_DISRCC_INC_FIXED	BIT(0)
  50#define S3C24XX_DISRCC_LOC_AHB		0
  51#define S3C24XX_DISRCC_LOC_APB		BIT(1)
  52
  53#define S3C24XX_DIDST			0x08
  54#define S3C24XX_DIDSTC			0x0c
  55#define S3C24XX_DIDSTC_INC_INCREMENT	0
  56#define S3C24XX_DIDSTC_INC_FIXED	BIT(0)
  57#define S3C24XX_DIDSTC_LOC_AHB		0
  58#define S3C24XX_DIDSTC_LOC_APB		BIT(1)
  59#define S3C24XX_DIDSTC_INT_TC0		0
  60#define S3C24XX_DIDSTC_INT_RELOAD	BIT(2)
  61
  62#define S3C24XX_DCON			0x10
  63
  64#define S3C24XX_DCON_TC_MASK		0xfffff
  65#define S3C24XX_DCON_DSZ_BYTE		(0 << 20)
  66#define S3C24XX_DCON_DSZ_HALFWORD	(1 << 20)
  67#define S3C24XX_DCON_DSZ_WORD		(2 << 20)
  68#define S3C24XX_DCON_DSZ_MASK		(3 << 20)
  69#define S3C24XX_DCON_DSZ_SHIFT		20
  70#define S3C24XX_DCON_AUTORELOAD		0
  71#define S3C24XX_DCON_NORELOAD		BIT(22)
  72#define S3C24XX_DCON_HWTRIG		BIT(23)
  73#define S3C24XX_DCON_HWSRC_SHIFT	24
  74#define S3C24XX_DCON_SERV_SINGLE	0
  75#define S3C24XX_DCON_SERV_WHOLE		BIT(27)
  76#define S3C24XX_DCON_TSZ_UNIT		0
  77#define S3C24XX_DCON_TSZ_BURST4		BIT(28)
  78#define S3C24XX_DCON_INT		BIT(29)
  79#define S3C24XX_DCON_SYNC_PCLK		0
  80#define S3C24XX_DCON_SYNC_HCLK		BIT(30)
  81#define S3C24XX_DCON_DEMAND		0
  82#define S3C24XX_DCON_HANDSHAKE		BIT(31)
  83
  84#define S3C24XX_DSTAT			0x14
  85#define S3C24XX_DSTAT_STAT_BUSY		BIT(20)
  86#define S3C24XX_DSTAT_CURRTC_MASK	0xfffff
  87
  88#define S3C24XX_DMASKTRIG		0x20
  89#define S3C24XX_DMASKTRIG_SWTRIG	BIT(0)
  90#define S3C24XX_DMASKTRIG_ON		BIT(1)
  91#define S3C24XX_DMASKTRIG_STOP		BIT(2)
  92
  93#define S3C24XX_DMAREQSEL		0x24
  94#define S3C24XX_DMAREQSEL_HW		BIT(0)
  95
  96/*
  97 * S3C2410, S3C2440 and S3C2442 SoCs cannot select any physical channel
  98 * for a DMA source. Instead only specific channels are valid.
  99 * All of these SoCs have 4 physical channels and the number of request
 100 * source bits is 3. Additionally we also need 1 bit to mark the channel
 101 * as valid.
 102 * Therefore we separate the chansel element of the channel data into 4
 103 * parts of 4 bits each, to hold the information if the channel is valid
 104 * and the hw request source to use.
 105 *
 106 * Example:
 107 * SDI is valid on channels 0, 2 and 3 - with varying hw request sources.
 108 * For it the chansel field would look like
 109 *
 110 * ((BIT(3) | 1) << 3 * 4) | // channel 3, with request source 1
 111 * ((BIT(3) | 2) << 2 * 4) | // channel 2, with request source 2
 112 * ((BIT(3) | 2) << 0 * 4)   // channel 0, with request source 2
 113 */
 114#define S3C24XX_CHANSEL_WIDTH		4
 115#define S3C24XX_CHANSEL_VALID		BIT(3)
 116#define S3C24XX_CHANSEL_REQ_MASK	7
 117
 118/*
 119 * struct soc_data - vendor-specific config parameters for individual SoCs
 120 * @stride: spacing between the registers of each channel
 121 * @has_reqsel: does the controller use the newer requestselection mechanism
 122 * @has_clocks: are controllable dma-clocks present
 123 */
 124struct soc_data {
 125	int stride;
 126	bool has_reqsel;
 127	bool has_clocks;
 128};
 129
 130/*
 131 * enum s3c24xx_dma_chan_state - holds the virtual channel states
 132 * @S3C24XX_DMA_CHAN_IDLE: the channel is idle
 133 * @S3C24XX_DMA_CHAN_RUNNING: the channel has allocated a physical transport
 134 * channel and is running a transfer on it
 135 * @S3C24XX_DMA_CHAN_WAITING: the channel is waiting for a physical transport
 136 * channel to become available (only pertains to memcpy channels)
 137 */
 138enum s3c24xx_dma_chan_state {
 139	S3C24XX_DMA_CHAN_IDLE,
 140	S3C24XX_DMA_CHAN_RUNNING,
 141	S3C24XX_DMA_CHAN_WAITING,
 142};
 143
 144/*
 145 * struct s3c24xx_sg - structure containing data per sg
 146 * @src_addr: src address of sg
 147 * @dst_addr: dst address of sg
 148 * @len: transfer len in bytes
 149 * @node: node for txd's dsg_list
 150 */
 151struct s3c24xx_sg {
 152	dma_addr_t src_addr;
 153	dma_addr_t dst_addr;
 154	size_t len;
 155	struct list_head node;
 156};
 157
 158/*
 159 * struct s3c24xx_txd - wrapper for struct dma_async_tx_descriptor
 160 * @vd: virtual DMA descriptor
 161 * @dsg_list: list of children sg's
 162 * @at: sg currently being transfered
 163 * @width: transfer width
 164 * @disrcc: value for source control register
 165 * @didstc: value for destination control register
 166 * @dcon: base value for dcon register
 167 * @cyclic: indicate cyclic transfer
 168 */
 169struct s3c24xx_txd {
 170	struct virt_dma_desc vd;
 171	struct list_head dsg_list;
 172	struct list_head *at;
 173	u8 width;
 174	u32 disrcc;
 175	u32 didstc;
 176	u32 dcon;
 177	bool cyclic;
 178};
 179
 180struct s3c24xx_dma_chan;
 181
 182/*
 183 * struct s3c24xx_dma_phy - holder for the physical channels
 184 * @id: physical index to this channel
 185 * @valid: does the channel have all required elements
 186 * @base: virtual memory base (remapped) for the this channel
 187 * @irq: interrupt for this channel
 188 * @clk: clock for this channel
 189 * @lock: a lock to use when altering an instance of this struct
 190 * @serving: virtual channel currently being served by this physicalchannel
 191 * @host: a pointer to the host (internal use)
 192 */
 193struct s3c24xx_dma_phy {
 194	unsigned int			id;
 195	bool				valid;
 196	void __iomem			*base;
 197	int				irq;
 198	struct clk			*clk;
 199	spinlock_t			lock;
 200	struct s3c24xx_dma_chan		*serving;
 201	struct s3c24xx_dma_engine	*host;
 202};
 203
 204/*
 205 * struct s3c24xx_dma_chan - this structure wraps a DMA ENGINE channel
 206 * @id: the id of the channel
 207 * @name: name of the channel
 208 * @vc: wrappped virtual channel
 209 * @phy: the physical channel utilized by this channel, if there is one
 210 * @runtime_addr: address for RX/TX according to the runtime config
 211 * @at: active transaction on this channel
 212 * @lock: a lock for this channel data
 213 * @host: a pointer to the host (internal use)
 214 * @state: whether the channel is idle, running etc
 215 * @slave: whether this channel is a device (slave) or for memcpy
 216 */
 217struct s3c24xx_dma_chan {
 218	int id;
 219	const char *name;
 220	struct virt_dma_chan vc;
 221	struct s3c24xx_dma_phy *phy;
 222	struct dma_slave_config cfg;
 223	struct s3c24xx_txd *at;
 224	struct s3c24xx_dma_engine *host;
 225	enum s3c24xx_dma_chan_state state;
 226	bool slave;
 227};
 228
 229/*
 230 * struct s3c24xx_dma_engine - the local state holder for the S3C24XX
 231 * @pdev: the corresponding platform device
 232 * @pdata: platform data passed in from the platform/machine
 233 * @base: virtual memory base (remapped)
 234 * @slave: slave engine for this instance
 235 * @memcpy: memcpy engine for this instance
 236 * @phy_chans: array of data for the physical channels
 237 */
 238struct s3c24xx_dma_engine {
 239	struct platform_device			*pdev;
 240	const struct s3c24xx_dma_platdata	*pdata;
 241	struct soc_data				*sdata;
 242	void __iomem				*base;
 243	struct dma_device			slave;
 244	struct dma_device			memcpy;
 245	struct s3c24xx_dma_phy			*phy_chans;
 246};
 247
 248/*
 249 * Physical channel handling
 250 */
 251
 252/*
 253 * Check whether a certain channel is busy or not.
 254 */
 255static int s3c24xx_dma_phy_busy(struct s3c24xx_dma_phy *phy)
 256{
 257	unsigned int val = readl(phy->base + S3C24XX_DSTAT);
 258	return val & S3C24XX_DSTAT_STAT_BUSY;
 259}
 260
 261static bool s3c24xx_dma_phy_valid(struct s3c24xx_dma_chan *s3cchan,
 262				  struct s3c24xx_dma_phy *phy)
 263{
 264	struct s3c24xx_dma_engine *s3cdma = s3cchan->host;
 265	const struct s3c24xx_dma_platdata *pdata = s3cdma->pdata;
 266	struct s3c24xx_dma_channel *cdata = &pdata->channels[s3cchan->id];
 267	int phyvalid;
 268
 269	/* every phy is valid for memcopy channels */
 270	if (!s3cchan->slave)
 271		return true;
 272
 273	/* On newer variants all phys can be used for all virtual channels */
 274	if (s3cdma->sdata->has_reqsel)
 275		return true;
 276
 277	phyvalid = (cdata->chansel >> (phy->id * S3C24XX_CHANSEL_WIDTH));
 278	return (phyvalid & S3C24XX_CHANSEL_VALID) ? true : false;
 279}
 280
 281/*
 282 * Allocate a physical channel for a virtual channel
 283 *
 284 * Try to locate a physical channel to be used for this transfer. If all
 285 * are taken return NULL and the requester will have to cope by using
 286 * some fallback PIO mode or retrying later.
 287 */
 288static
 289struct s3c24xx_dma_phy *s3c24xx_dma_get_phy(struct s3c24xx_dma_chan *s3cchan)
 290{
 291	struct s3c24xx_dma_engine *s3cdma = s3cchan->host;
 292	struct s3c24xx_dma_phy *phy = NULL;
 293	unsigned long flags;
 294	int i;
 295	int ret;
 296
 297	for (i = 0; i < s3cdma->pdata->num_phy_channels; i++) {
 298		phy = &s3cdma->phy_chans[i];
 299
 300		if (!phy->valid)
 301			continue;
 302
 303		if (!s3c24xx_dma_phy_valid(s3cchan, phy))
 304			continue;
 305
 306		spin_lock_irqsave(&phy->lock, flags);
 307
 308		if (!phy->serving) {
 309			phy->serving = s3cchan;
 310			spin_unlock_irqrestore(&phy->lock, flags);
 311			break;
 312		}
 313
 314		spin_unlock_irqrestore(&phy->lock, flags);
 315	}
 316
 317	/* No physical channel available, cope with it */
 318	if (i == s3cdma->pdata->num_phy_channels) {
 319		dev_warn(&s3cdma->pdev->dev, "no phy channel available\n");
 320		return NULL;
 321	}
 322
 323	/* start the phy clock */
 324	if (s3cdma->sdata->has_clocks) {
 325		ret = clk_enable(phy->clk);
 326		if (ret) {
 327			dev_err(&s3cdma->pdev->dev, "could not enable clock for channel %d, err %d\n",
 328				phy->id, ret);
 329			phy->serving = NULL;
 330			return NULL;
 331		}
 332	}
 333
 334	return phy;
 335}
 336
 337/*
 338 * Mark the physical channel as free.
 339 *
 340 * This drops the link between the physical and virtual channel.
 341 */
 342static inline void s3c24xx_dma_put_phy(struct s3c24xx_dma_phy *phy)
 343{
 344	struct s3c24xx_dma_engine *s3cdma = phy->host;
 345
 346	if (s3cdma->sdata->has_clocks)
 347		clk_disable(phy->clk);
 348
 349	phy->serving = NULL;
 350}
 351
 352/*
 353 * Stops the channel by writing the stop bit.
 354 * This should not be used for an on-going transfer, but as a method of
 355 * shutting down a channel (eg, when it's no longer used) or terminating a
 356 * transfer.
 357 */
 358static void s3c24xx_dma_terminate_phy(struct s3c24xx_dma_phy *phy)
 359{
 360	writel(S3C24XX_DMASKTRIG_STOP, phy->base + S3C24XX_DMASKTRIG);
 361}
 362
 363/*
 364 * Virtual channel handling
 365 */
 366
 367static inline
 368struct s3c24xx_dma_chan *to_s3c24xx_dma_chan(struct dma_chan *chan)
 369{
 370	return container_of(chan, struct s3c24xx_dma_chan, vc.chan);
 371}
 372
 373static u32 s3c24xx_dma_getbytes_chan(struct s3c24xx_dma_chan *s3cchan)
 374{
 375	struct s3c24xx_dma_phy *phy = s3cchan->phy;
 376	struct s3c24xx_txd *txd = s3cchan->at;
 377	u32 tc = readl(phy->base + S3C24XX_DSTAT) & S3C24XX_DSTAT_CURRTC_MASK;
 378
 379	return tc * txd->width;
 380}
 381
 382static int s3c24xx_dma_set_runtime_config(struct dma_chan *chan,
 383				  struct dma_slave_config *config)
 384{
 385	struct s3c24xx_dma_chan *s3cchan = to_s3c24xx_dma_chan(chan);
 386	unsigned long flags;
 387	int ret = 0;
 388
 389	/* Reject definitely invalid configurations */
 390	if (config->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
 391	    config->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
 392		return -EINVAL;
 393
 394	spin_lock_irqsave(&s3cchan->vc.lock, flags);
 395
 396	if (!s3cchan->slave) {
 397		ret = -EINVAL;
 398		goto out;
 399	}
 400
 401	s3cchan->cfg = *config;
 402
 403out:
 404	spin_unlock_irqrestore(&s3cchan->vc.lock, flags);
 405	return ret;
 406}
 407
 408/*
 409 * Transfer handling
 410 */
 411
 412static inline
 413struct s3c24xx_txd *to_s3c24xx_txd(struct dma_async_tx_descriptor *tx)
 414{
 415	return container_of(tx, struct s3c24xx_txd, vd.tx);
 416}
 417
 418static struct s3c24xx_txd *s3c24xx_dma_get_txd(void)
 419{
 420	struct s3c24xx_txd *txd = kzalloc(sizeof(*txd), GFP_NOWAIT);
 421
 422	if (txd) {
 423		INIT_LIST_HEAD(&txd->dsg_list);
 424		txd->dcon = S3C24XX_DCON_INT | S3C24XX_DCON_NORELOAD;
 425	}
 426
 427	return txd;
 428}
 429
 430static void s3c24xx_dma_free_txd(struct s3c24xx_txd *txd)
 431{
 432	struct s3c24xx_sg *dsg, *_dsg;
 433
 434	list_for_each_entry_safe(dsg, _dsg, &txd->dsg_list, node) {
 435		list_del(&dsg->node);
 436		kfree(dsg);
 437	}
 438
 439	kfree(txd);
 440}
 441
 442static void s3c24xx_dma_start_next_sg(struct s3c24xx_dma_chan *s3cchan,
 443				       struct s3c24xx_txd *txd)
 444{
 445	struct s3c24xx_dma_engine *s3cdma = s3cchan->host;
 446	struct s3c24xx_dma_phy *phy = s3cchan->phy;
 447	const struct s3c24xx_dma_platdata *pdata = s3cdma->pdata;
 448	struct s3c24xx_sg *dsg = list_entry(txd->at, struct s3c24xx_sg, node);
 449	u32 dcon = txd->dcon;
 450	u32 val;
 451
 452	/* transfer-size and -count from len and width */
 453	switch (txd->width) {
 454	case 1:
 455		dcon |= S3C24XX_DCON_DSZ_BYTE | dsg->len;
 456		break;
 457	case 2:
 458		dcon |= S3C24XX_DCON_DSZ_HALFWORD | (dsg->len / 2);
 459		break;
 460	case 4:
 461		dcon |= S3C24XX_DCON_DSZ_WORD | (dsg->len / 4);
 462		break;
 463	}
 464
 465	if (s3cchan->slave) {
 466		struct s3c24xx_dma_channel *cdata =
 467					&pdata->channels[s3cchan->id];
 468
 469		if (s3cdma->sdata->has_reqsel) {
 470			writel_relaxed((cdata->chansel << 1) |
 471							S3C24XX_DMAREQSEL_HW,
 472					phy->base + S3C24XX_DMAREQSEL);
 473		} else {
 474			int csel = cdata->chansel >> (phy->id *
 475							S3C24XX_CHANSEL_WIDTH);
 476
 477			csel &= S3C24XX_CHANSEL_REQ_MASK;
 478			dcon |= csel << S3C24XX_DCON_HWSRC_SHIFT;
 479			dcon |= S3C24XX_DCON_HWTRIG;
 480		}
 481	} else {
 482		if (s3cdma->sdata->has_reqsel)
 483			writel_relaxed(0, phy->base + S3C24XX_DMAREQSEL);
 484	}
 485
 486	writel_relaxed(dsg->src_addr, phy->base + S3C24XX_DISRC);
 487	writel_relaxed(txd->disrcc, phy->base + S3C24XX_DISRCC);
 488	writel_relaxed(dsg->dst_addr, phy->base + S3C24XX_DIDST);
 489	writel_relaxed(txd->didstc, phy->base + S3C24XX_DIDSTC);
 490	writel_relaxed(dcon, phy->base + S3C24XX_DCON);
 491
 492	val = readl_relaxed(phy->base + S3C24XX_DMASKTRIG);
 493	val &= ~S3C24XX_DMASKTRIG_STOP;
 494	val |= S3C24XX_DMASKTRIG_ON;
 495
 496	/* trigger the dma operation for memcpy transfers */
 497	if (!s3cchan->slave)
 498		val |= S3C24XX_DMASKTRIG_SWTRIG;
 499
 500	writel(val, phy->base + S3C24XX_DMASKTRIG);
 501}
 502
 503/*
 504 * Set the initial DMA register values and start first sg.
 505 */
 506static void s3c24xx_dma_start_next_txd(struct s3c24xx_dma_chan *s3cchan)
 507{
 508	struct s3c24xx_dma_phy *phy = s3cchan->phy;
 509	struct virt_dma_desc *vd = vchan_next_desc(&s3cchan->vc);
 510	struct s3c24xx_txd *txd = to_s3c24xx_txd(&vd->tx);
 511
 512	list_del(&txd->vd.node);
 513
 514	s3cchan->at = txd;
 515
 516	/* Wait for channel inactive */
 517	while (s3c24xx_dma_phy_busy(phy))
 518		cpu_relax();
 519
 520	/* point to the first element of the sg list */
 521	txd->at = txd->dsg_list.next;
 522	s3c24xx_dma_start_next_sg(s3cchan, txd);
 523}
 524
 525static void s3c24xx_dma_free_txd_list(struct s3c24xx_dma_engine *s3cdma,
 526				struct s3c24xx_dma_chan *s3cchan)
 527{
 528	LIST_HEAD(head);
 529
 530	vchan_get_all_descriptors(&s3cchan->vc, &head);
 531	vchan_dma_desc_free_list(&s3cchan->vc, &head);
 532}
 533
 534/*
 535 * Try to allocate a physical channel.  When successful, assign it to
 536 * this virtual channel, and initiate the next descriptor.  The
 537 * virtual channel lock must be held at this point.
 538 */
 539static void s3c24xx_dma_phy_alloc_and_start(struct s3c24xx_dma_chan *s3cchan)
 540{
 541	struct s3c24xx_dma_engine *s3cdma = s3cchan->host;
 542	struct s3c24xx_dma_phy *phy;
 543
 544	phy = s3c24xx_dma_get_phy(s3cchan);
 545	if (!phy) {
 546		dev_dbg(&s3cdma->pdev->dev, "no physical channel available for xfer on %s\n",
 547			s3cchan->name);
 548		s3cchan->state = S3C24XX_DMA_CHAN_WAITING;
 549		return;
 550	}
 551
 552	dev_dbg(&s3cdma->pdev->dev, "allocated physical channel %d for xfer on %s\n",
 553		phy->id, s3cchan->name);
 554
 555	s3cchan->phy = phy;
 556	s3cchan->state = S3C24XX_DMA_CHAN_RUNNING;
 557
 558	s3c24xx_dma_start_next_txd(s3cchan);
 559}
 560
 561static void s3c24xx_dma_phy_reassign_start(struct s3c24xx_dma_phy *phy,
 562	struct s3c24xx_dma_chan *s3cchan)
 563{
 564	struct s3c24xx_dma_engine *s3cdma = s3cchan->host;
 565
 566	dev_dbg(&s3cdma->pdev->dev, "reassigned physical channel %d for xfer on %s\n",
 567		phy->id, s3cchan->name);
 568
 569	/*
 570	 * We do this without taking the lock; we're really only concerned
 571	 * about whether this pointer is NULL or not, and we're guaranteed
 572	 * that this will only be called when it _already_ is non-NULL.
 573	 */
 574	phy->serving = s3cchan;
 575	s3cchan->phy = phy;
 576	s3cchan->state = S3C24XX_DMA_CHAN_RUNNING;
 577	s3c24xx_dma_start_next_txd(s3cchan);
 578}
 579
 580/*
 581 * Free a physical DMA channel, potentially reallocating it to another
 582 * virtual channel if we have any pending.
 583 */
 584static void s3c24xx_dma_phy_free(struct s3c24xx_dma_chan *s3cchan)
 585{
 586	struct s3c24xx_dma_engine *s3cdma = s3cchan->host;
 587	struct s3c24xx_dma_chan *p, *next;
 588
 589retry:
 590	next = NULL;
 591
 592	/* Find a waiting virtual channel for the next transfer. */
 593	list_for_each_entry(p, &s3cdma->memcpy.channels, vc.chan.device_node)
 594		if (p->state == S3C24XX_DMA_CHAN_WAITING) {
 595			next = p;
 596			break;
 597		}
 598
 599	if (!next) {
 600		list_for_each_entry(p, &s3cdma->slave.channels,
 601				    vc.chan.device_node)
 602			if (p->state == S3C24XX_DMA_CHAN_WAITING &&
 603				      s3c24xx_dma_phy_valid(p, s3cchan->phy)) {
 604				next = p;
 605				break;
 606			}
 607	}
 608
 609	/* Ensure that the physical channel is stopped */
 610	s3c24xx_dma_terminate_phy(s3cchan->phy);
 611
 612	if (next) {
 613		bool success;
 614
 615		/*
 616		 * Eww.  We know this isn't going to deadlock
 617		 * but lockdep probably doesn't.
 618		 */
 619		spin_lock(&next->vc.lock);
 620		/* Re-check the state now that we have the lock */
 621		success = next->state == S3C24XX_DMA_CHAN_WAITING;
 622		if (success)
 623			s3c24xx_dma_phy_reassign_start(s3cchan->phy, next);
 624		spin_unlock(&next->vc.lock);
 625
 626		/* If the state changed, try to find another channel */
 627		if (!success)
 628			goto retry;
 629	} else {
 630		/* No more jobs, so free up the physical channel */
 631		s3c24xx_dma_put_phy(s3cchan->phy);
 632	}
 633
 634	s3cchan->phy = NULL;
 635	s3cchan->state = S3C24XX_DMA_CHAN_IDLE;
 636}
 637
 638static void s3c24xx_dma_desc_free(struct virt_dma_desc *vd)
 639{
 640	struct s3c24xx_txd *txd = to_s3c24xx_txd(&vd->tx);
 641	struct s3c24xx_dma_chan *s3cchan = to_s3c24xx_dma_chan(vd->tx.chan);
 642
 643	if (!s3cchan->slave)
 644		dma_descriptor_unmap(&vd->tx);
 645
 646	s3c24xx_dma_free_txd(txd);
 647}
 648
 649static irqreturn_t s3c24xx_dma_irq(int irq, void *data)
 650{
 651	struct s3c24xx_dma_phy *phy = data;
 652	struct s3c24xx_dma_chan *s3cchan = phy->serving;
 653	struct s3c24xx_txd *txd;
 654
 655	dev_dbg(&phy->host->pdev->dev, "interrupt on channel %d\n", phy->id);
 656
 657	/*
 658	 * Interrupts happen to notify the completion of a transfer and the
 659	 * channel should have moved into its stop state already on its own.
 660	 * Therefore interrupts on channels not bound to a virtual channel
 661	 * should never happen. Nevertheless send a terminate command to the
 662	 * channel if the unlikely case happens.
 663	 */
 664	if (unlikely(!s3cchan)) {
 665		dev_err(&phy->host->pdev->dev, "interrupt on unused channel %d\n",
 666			phy->id);
 667
 668		s3c24xx_dma_terminate_phy(phy);
 669
 670		return IRQ_HANDLED;
 671	}
 672
 673	spin_lock(&s3cchan->vc.lock);
 674	txd = s3cchan->at;
 675	if (txd) {
 676		/* when more sg's are in this txd, start the next one */
 677		if (!list_is_last(txd->at, &txd->dsg_list)) {
 678			txd->at = txd->at->next;
 679			if (txd->cyclic)
 680				vchan_cyclic_callback(&txd->vd);
 681			s3c24xx_dma_start_next_sg(s3cchan, txd);
 682		} else if (!txd->cyclic) {
 683			s3cchan->at = NULL;
 684			vchan_cookie_complete(&txd->vd);
 685
 686			/*
 687			 * And start the next descriptor (if any),
 688			 * otherwise free this channel.
 689			 */
 690			if (vchan_next_desc(&s3cchan->vc))
 691				s3c24xx_dma_start_next_txd(s3cchan);
 692			else
 693				s3c24xx_dma_phy_free(s3cchan);
 694		} else {
 695			vchan_cyclic_callback(&txd->vd);
 696
 697			/* Cyclic: reset at beginning */
 698			txd->at = txd->dsg_list.next;
 699			s3c24xx_dma_start_next_sg(s3cchan, txd);
 700		}
 701	}
 702	spin_unlock(&s3cchan->vc.lock);
 703
 704	return IRQ_HANDLED;
 705}
 706
 707/*
 708 * The DMA ENGINE API
 709 */
 710
 711static int s3c24xx_dma_terminate_all(struct dma_chan *chan)
 712{
 713	struct s3c24xx_dma_chan *s3cchan = to_s3c24xx_dma_chan(chan);
 714	struct s3c24xx_dma_engine *s3cdma = s3cchan->host;
 
 715	unsigned long flags;
 716	int ret = 0;
 717
 718	spin_lock_irqsave(&s3cchan->vc.lock, flags);
 719
 720	if (!s3cchan->phy && !s3cchan->at) {
 721		dev_err(&s3cdma->pdev->dev, "trying to terminate already stopped channel %d\n",
 722			s3cchan->id);
 723		ret = -EINVAL;
 724		goto unlock;
 725	}
 726
 727	s3cchan->state = S3C24XX_DMA_CHAN_IDLE;
 728
 729	/* Mark physical channel as free */
 730	if (s3cchan->phy)
 731		s3c24xx_dma_phy_free(s3cchan);
 732
 733	/* Dequeue current job */
 734	if (s3cchan->at) {
 735		vchan_terminate_vdesc(&s3cchan->at->vd);
 736		s3cchan->at = NULL;
 737	}
 738
 739	/* Dequeue jobs not yet fired as well */
 740	s3c24xx_dma_free_txd_list(s3cdma, s3cchan);
 
 
 
 
 
 
 
 
 741unlock:
 742	spin_unlock_irqrestore(&s3cchan->vc.lock, flags);
 743
 744	return ret;
 745}
 746
 747static void s3c24xx_dma_synchronize(struct dma_chan *chan)
 748{
 749	struct s3c24xx_dma_chan *s3cchan = to_s3c24xx_dma_chan(chan);
 750
 751	vchan_synchronize(&s3cchan->vc);
 752}
 753
 754static void s3c24xx_dma_free_chan_resources(struct dma_chan *chan)
 755{
 756	/* Ensure all queued descriptors are freed */
 757	vchan_free_chan_resources(to_virt_chan(chan));
 758}
 759
 760static enum dma_status s3c24xx_dma_tx_status(struct dma_chan *chan,
 761		dma_cookie_t cookie, struct dma_tx_state *txstate)
 762{
 763	struct s3c24xx_dma_chan *s3cchan = to_s3c24xx_dma_chan(chan);
 764	struct s3c24xx_txd *txd;
 765	struct s3c24xx_sg *dsg;
 766	struct virt_dma_desc *vd;
 767	unsigned long flags;
 768	enum dma_status ret;
 769	size_t bytes = 0;
 770
 771	spin_lock_irqsave(&s3cchan->vc.lock, flags);
 772	ret = dma_cookie_status(chan, cookie, txstate);
 773
 774	/*
 775	 * There's no point calculating the residue if there's
 776	 * no txstate to store the value.
 777	 */
 778	if (ret == DMA_COMPLETE || !txstate) {
 779		spin_unlock_irqrestore(&s3cchan->vc.lock, flags);
 780		return ret;
 781	}
 782
 783	vd = vchan_find_desc(&s3cchan->vc, cookie);
 784	if (vd) {
 785		/* On the issued list, so hasn't been processed yet */
 786		txd = to_s3c24xx_txd(&vd->tx);
 787
 788		list_for_each_entry(dsg, &txd->dsg_list, node)
 789			bytes += dsg->len;
 790	} else {
 791		/*
 792		 * Currently running, so sum over the pending sg's and
 793		 * the currently active one.
 794		 */
 795		txd = s3cchan->at;
 796
 797		dsg = list_entry(txd->at, struct s3c24xx_sg, node);
 798		list_for_each_entry_from(dsg, &txd->dsg_list, node)
 799			bytes += dsg->len;
 800
 801		bytes += s3c24xx_dma_getbytes_chan(s3cchan);
 802	}
 803	spin_unlock_irqrestore(&s3cchan->vc.lock, flags);
 804
 805	/*
 806	 * This cookie not complete yet
 807	 * Get number of bytes left in the active transactions and queue
 808	 */
 809	dma_set_residue(txstate, bytes);
 810
 811	/* Whether waiting or running, we're in progress */
 812	return ret;
 813}
 814
 815/*
 816 * Initialize a descriptor to be used by memcpy submit
 817 */
 818static struct dma_async_tx_descriptor *s3c24xx_dma_prep_memcpy(
 819		struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
 820		size_t len, unsigned long flags)
 821{
 822	struct s3c24xx_dma_chan *s3cchan = to_s3c24xx_dma_chan(chan);
 823	struct s3c24xx_dma_engine *s3cdma = s3cchan->host;
 824	struct s3c24xx_txd *txd;
 825	struct s3c24xx_sg *dsg;
 826	int src_mod, dest_mod;
 827
 828	dev_dbg(&s3cdma->pdev->dev, "prepare memcpy of %zu bytes from %s\n",
 829			len, s3cchan->name);
 830
 831	if ((len & S3C24XX_DCON_TC_MASK) != len) {
 832		dev_err(&s3cdma->pdev->dev, "memcpy size %zu to large\n", len);
 833		return NULL;
 834	}
 835
 836	txd = s3c24xx_dma_get_txd();
 837	if (!txd)
 838		return NULL;
 839
 840	dsg = kzalloc(sizeof(*dsg), GFP_NOWAIT);
 841	if (!dsg) {
 842		s3c24xx_dma_free_txd(txd);
 843		return NULL;
 844	}
 845	list_add_tail(&dsg->node, &txd->dsg_list);
 846
 847	dsg->src_addr = src;
 848	dsg->dst_addr = dest;
 849	dsg->len = len;
 850
 851	/*
 852	 * Determine a suitable transfer width.
 853	 * The DMA controller cannot fetch/store information which is not
 854	 * naturally aligned on the bus, i.e., a 4 byte fetch must start at
 855	 * an address divisible by 4 - more generally addr % width must be 0.
 856	 */
 857	src_mod = src % 4;
 858	dest_mod = dest % 4;
 859	switch (len % 4) {
 860	case 0:
 861		txd->width = (src_mod == 0 && dest_mod == 0) ? 4 : 1;
 862		break;
 863	case 2:
 864		txd->width = ((src_mod == 2 || src_mod == 0) &&
 865			      (dest_mod == 2 || dest_mod == 0)) ? 2 : 1;
 866		break;
 867	default:
 868		txd->width = 1;
 869		break;
 870	}
 871
 872	txd->disrcc = S3C24XX_DISRCC_LOC_AHB | S3C24XX_DISRCC_INC_INCREMENT;
 873	txd->didstc = S3C24XX_DIDSTC_LOC_AHB | S3C24XX_DIDSTC_INC_INCREMENT;
 874	txd->dcon |= S3C24XX_DCON_DEMAND | S3C24XX_DCON_SYNC_HCLK |
 875		     S3C24XX_DCON_SERV_WHOLE;
 876
 877	return vchan_tx_prep(&s3cchan->vc, &txd->vd, flags);
 878}
 879
 880static struct dma_async_tx_descriptor *s3c24xx_dma_prep_dma_cyclic(
 881	struct dma_chan *chan, dma_addr_t addr, size_t size, size_t period,
 882	enum dma_transfer_direction direction, unsigned long flags)
 883{
 884	struct s3c24xx_dma_chan *s3cchan = to_s3c24xx_dma_chan(chan);
 885	struct s3c24xx_dma_engine *s3cdma = s3cchan->host;
 886	const struct s3c24xx_dma_platdata *pdata = s3cdma->pdata;
 887	struct s3c24xx_dma_channel *cdata = &pdata->channels[s3cchan->id];
 888	struct s3c24xx_txd *txd;
 889	struct s3c24xx_sg *dsg;
 890	unsigned sg_len;
 891	dma_addr_t slave_addr;
 892	u32 hwcfg = 0;
 893	int i;
 894
 895	dev_dbg(&s3cdma->pdev->dev,
 896		"prepare cyclic transaction of %zu bytes with period %zu from %s\n",
 897		size, period, s3cchan->name);
 898
 899	if (!is_slave_direction(direction)) {
 900		dev_err(&s3cdma->pdev->dev,
 901			"direction %d unsupported\n", direction);
 902		return NULL;
 903	}
 904
 905	txd = s3c24xx_dma_get_txd();
 906	if (!txd)
 907		return NULL;
 908
 909	txd->cyclic = 1;
 910
 911	if (cdata->handshake)
 912		txd->dcon |= S3C24XX_DCON_HANDSHAKE;
 913
 914	switch (cdata->bus) {
 915	case S3C24XX_DMA_APB:
 916		txd->dcon |= S3C24XX_DCON_SYNC_PCLK;
 917		hwcfg |= S3C24XX_DISRCC_LOC_APB;
 918		break;
 919	case S3C24XX_DMA_AHB:
 920		txd->dcon |= S3C24XX_DCON_SYNC_HCLK;
 921		hwcfg |= S3C24XX_DISRCC_LOC_AHB;
 922		break;
 923	}
 924
 925	/*
 926	 * Always assume our peripheral desintation is a fixed
 927	 * address in memory.
 928	 */
 929	hwcfg |= S3C24XX_DISRCC_INC_FIXED;
 930
 931	/*
 932	 * Individual dma operations are requested by the slave,
 933	 * so serve only single atomic operations (S3C24XX_DCON_SERV_SINGLE).
 934	 */
 935	txd->dcon |= S3C24XX_DCON_SERV_SINGLE;
 936
 937	if (direction == DMA_MEM_TO_DEV) {
 938		txd->disrcc = S3C24XX_DISRCC_LOC_AHB |
 939			      S3C24XX_DISRCC_INC_INCREMENT;
 940		txd->didstc = hwcfg;
 941		slave_addr = s3cchan->cfg.dst_addr;
 942		txd->width = s3cchan->cfg.dst_addr_width;
 943	} else {
 944		txd->disrcc = hwcfg;
 945		txd->didstc = S3C24XX_DIDSTC_LOC_AHB |
 946			      S3C24XX_DIDSTC_INC_INCREMENT;
 947		slave_addr = s3cchan->cfg.src_addr;
 948		txd->width = s3cchan->cfg.src_addr_width;
 949	}
 950
 951	sg_len = size / period;
 952
 953	for (i = 0; i < sg_len; i++) {
 954		dsg = kzalloc(sizeof(*dsg), GFP_NOWAIT);
 955		if (!dsg) {
 956			s3c24xx_dma_free_txd(txd);
 957			return NULL;
 958		}
 959		list_add_tail(&dsg->node, &txd->dsg_list);
 960
 961		dsg->len = period;
 962		/* Check last period length */
 963		if (i == sg_len - 1)
 964			dsg->len = size - period * i;
 965		if (direction == DMA_MEM_TO_DEV) {
 966			dsg->src_addr = addr + period * i;
 967			dsg->dst_addr = slave_addr;
 968		} else { /* DMA_DEV_TO_MEM */
 969			dsg->src_addr = slave_addr;
 970			dsg->dst_addr = addr + period * i;
 971		}
 972	}
 973
 974	return vchan_tx_prep(&s3cchan->vc, &txd->vd, flags);
 975}
 976
 977static struct dma_async_tx_descriptor *s3c24xx_dma_prep_slave_sg(
 978		struct dma_chan *chan, struct scatterlist *sgl,
 979		unsigned int sg_len, enum dma_transfer_direction direction,
 980		unsigned long flags, void *context)
 981{
 982	struct s3c24xx_dma_chan *s3cchan = to_s3c24xx_dma_chan(chan);
 983	struct s3c24xx_dma_engine *s3cdma = s3cchan->host;
 984	const struct s3c24xx_dma_platdata *pdata = s3cdma->pdata;
 985	struct s3c24xx_dma_channel *cdata = &pdata->channels[s3cchan->id];
 986	struct s3c24xx_txd *txd;
 987	struct s3c24xx_sg *dsg;
 988	struct scatterlist *sg;
 989	dma_addr_t slave_addr;
 990	u32 hwcfg = 0;
 991	int tmp;
 992
 993	dev_dbg(&s3cdma->pdev->dev, "prepare transaction of %d bytes from %s\n",
 994			sg_dma_len(sgl), s3cchan->name);
 995
 996	txd = s3c24xx_dma_get_txd();
 997	if (!txd)
 998		return NULL;
 999
1000	if (cdata->handshake)
1001		txd->dcon |= S3C24XX_DCON_HANDSHAKE;
1002
1003	switch (cdata->bus) {
1004	case S3C24XX_DMA_APB:
1005		txd->dcon |= S3C24XX_DCON_SYNC_PCLK;
1006		hwcfg |= S3C24XX_DISRCC_LOC_APB;
1007		break;
1008	case S3C24XX_DMA_AHB:
1009		txd->dcon |= S3C24XX_DCON_SYNC_HCLK;
1010		hwcfg |= S3C24XX_DISRCC_LOC_AHB;
1011		break;
1012	}
1013
1014	/*
1015	 * Always assume our peripheral desintation is a fixed
1016	 * address in memory.
1017	 */
1018	hwcfg |= S3C24XX_DISRCC_INC_FIXED;
1019
1020	/*
1021	 * Individual dma operations are requested by the slave,
1022	 * so serve only single atomic operations (S3C24XX_DCON_SERV_SINGLE).
1023	 */
1024	txd->dcon |= S3C24XX_DCON_SERV_SINGLE;
1025
1026	if (direction == DMA_MEM_TO_DEV) {
1027		txd->disrcc = S3C24XX_DISRCC_LOC_AHB |
1028			      S3C24XX_DISRCC_INC_INCREMENT;
1029		txd->didstc = hwcfg;
1030		slave_addr = s3cchan->cfg.dst_addr;
1031		txd->width = s3cchan->cfg.dst_addr_width;
1032	} else if (direction == DMA_DEV_TO_MEM) {
1033		txd->disrcc = hwcfg;
1034		txd->didstc = S3C24XX_DIDSTC_LOC_AHB |
1035			      S3C24XX_DIDSTC_INC_INCREMENT;
1036		slave_addr = s3cchan->cfg.src_addr;
1037		txd->width = s3cchan->cfg.src_addr_width;
1038	} else {
1039		s3c24xx_dma_free_txd(txd);
1040		dev_err(&s3cdma->pdev->dev,
1041			"direction %d unsupported\n", direction);
1042		return NULL;
1043	}
1044
1045	for_each_sg(sgl, sg, sg_len, tmp) {
1046		dsg = kzalloc(sizeof(*dsg), GFP_NOWAIT);
1047		if (!dsg) {
1048			s3c24xx_dma_free_txd(txd);
1049			return NULL;
1050		}
1051		list_add_tail(&dsg->node, &txd->dsg_list);
1052
1053		dsg->len = sg_dma_len(sg);
1054		if (direction == DMA_MEM_TO_DEV) {
1055			dsg->src_addr = sg_dma_address(sg);
1056			dsg->dst_addr = slave_addr;
1057		} else { /* DMA_DEV_TO_MEM */
1058			dsg->src_addr = slave_addr;
1059			dsg->dst_addr = sg_dma_address(sg);
1060		}
1061	}
1062
1063	return vchan_tx_prep(&s3cchan->vc, &txd->vd, flags);
1064}
1065
1066/*
1067 * Slave transactions callback to the slave device to allow
1068 * synchronization of slave DMA signals with the DMAC enable
1069 */
1070static void s3c24xx_dma_issue_pending(struct dma_chan *chan)
1071{
1072	struct s3c24xx_dma_chan *s3cchan = to_s3c24xx_dma_chan(chan);
1073	unsigned long flags;
1074
1075	spin_lock_irqsave(&s3cchan->vc.lock, flags);
1076	if (vchan_issue_pending(&s3cchan->vc)) {
1077		if (!s3cchan->phy && s3cchan->state != S3C24XX_DMA_CHAN_WAITING)
1078			s3c24xx_dma_phy_alloc_and_start(s3cchan);
1079	}
1080	spin_unlock_irqrestore(&s3cchan->vc.lock, flags);
1081}
1082
1083/*
1084 * Bringup and teardown
1085 */
1086
1087/*
1088 * Initialise the DMAC memcpy/slave channels.
1089 * Make a local wrapper to hold required data
1090 */
1091static int s3c24xx_dma_init_virtual_channels(struct s3c24xx_dma_engine *s3cdma,
1092		struct dma_device *dmadev, unsigned int channels, bool slave)
1093{
1094	struct s3c24xx_dma_chan *chan;
1095	int i;
1096
1097	INIT_LIST_HEAD(&dmadev->channels);
1098
1099	/*
1100	 * Register as many many memcpy as we have physical channels,
1101	 * we won't always be able to use all but the code will have
1102	 * to cope with that situation.
1103	 */
1104	for (i = 0; i < channels; i++) {
1105		chan = devm_kzalloc(dmadev->dev, sizeof(*chan), GFP_KERNEL);
1106		if (!chan)
1107			return -ENOMEM;
1108
1109		chan->id = i;
1110		chan->host = s3cdma;
1111		chan->state = S3C24XX_DMA_CHAN_IDLE;
1112
1113		if (slave) {
1114			chan->slave = true;
1115			chan->name = kasprintf(GFP_KERNEL, "slave%d", i);
1116			if (!chan->name)
1117				return -ENOMEM;
1118		} else {
1119			chan->name = kasprintf(GFP_KERNEL, "memcpy%d", i);
1120			if (!chan->name)
1121				return -ENOMEM;
1122		}
1123		dev_dbg(dmadev->dev,
1124			 "initialize virtual channel \"%s\"\n",
1125			 chan->name);
1126
1127		chan->vc.desc_free = s3c24xx_dma_desc_free;
1128		vchan_init(&chan->vc, dmadev);
1129	}
1130	dev_info(dmadev->dev, "initialized %d virtual %s channels\n",
1131		 i, slave ? "slave" : "memcpy");
1132	return i;
1133}
1134
1135static void s3c24xx_dma_free_virtual_channels(struct dma_device *dmadev)
1136{
1137	struct s3c24xx_dma_chan *chan = NULL;
1138	struct s3c24xx_dma_chan *next;
1139
1140	list_for_each_entry_safe(chan,
1141				 next, &dmadev->channels, vc.chan.device_node) {
1142		list_del(&chan->vc.chan.device_node);
1143		tasklet_kill(&chan->vc.task);
1144	}
1145}
1146
1147/* s3c2410, s3c2440 and s3c2442 have a 0x40 stride without separate clocks */
1148static struct soc_data soc_s3c2410 = {
1149	.stride = 0x40,
1150	.has_reqsel = false,
1151	.has_clocks = false,
1152};
1153
1154/* s3c2412 and s3c2413 have a 0x40 stride and dmareqsel mechanism */
1155static struct soc_data soc_s3c2412 = {
1156	.stride = 0x40,
1157	.has_reqsel = true,
1158	.has_clocks = true,
1159};
1160
1161/* s3c2443 and following have a 0x100 stride and dmareqsel mechanism */
1162static struct soc_data soc_s3c2443 = {
1163	.stride = 0x100,
1164	.has_reqsel = true,
1165	.has_clocks = true,
1166};
1167
1168static const struct platform_device_id s3c24xx_dma_driver_ids[] = {
1169	{
1170		.name		= "s3c2410-dma",
1171		.driver_data	= (kernel_ulong_t)&soc_s3c2410,
1172	}, {
1173		.name		= "s3c2412-dma",
1174		.driver_data	= (kernel_ulong_t)&soc_s3c2412,
1175	}, {
1176		.name		= "s3c2443-dma",
1177		.driver_data	= (kernel_ulong_t)&soc_s3c2443,
1178	},
1179	{ },
1180};
1181
1182static struct soc_data *s3c24xx_dma_get_soc_data(struct platform_device *pdev)
1183{
1184	return (struct soc_data *)
1185			 platform_get_device_id(pdev)->driver_data;
1186}
1187
1188static int s3c24xx_dma_probe(struct platform_device *pdev)
1189{
1190	const struct s3c24xx_dma_platdata *pdata = dev_get_platdata(&pdev->dev);
1191	struct s3c24xx_dma_engine *s3cdma;
1192	struct soc_data *sdata;
1193	struct resource *res;
1194	int ret;
1195	int i;
1196
1197	if (!pdata) {
1198		dev_err(&pdev->dev, "platform data missing\n");
1199		return -ENODEV;
1200	}
1201
1202	/* Basic sanity check */
1203	if (pdata->num_phy_channels > MAX_DMA_CHANNELS) {
1204		dev_err(&pdev->dev, "to many dma channels %d, max %d\n",
1205			pdata->num_phy_channels, MAX_DMA_CHANNELS);
1206		return -EINVAL;
1207	}
1208
1209	sdata = s3c24xx_dma_get_soc_data(pdev);
1210	if (!sdata)
1211		return -EINVAL;
1212
1213	s3cdma = devm_kzalloc(&pdev->dev, sizeof(*s3cdma), GFP_KERNEL);
1214	if (!s3cdma)
1215		return -ENOMEM;
1216
1217	s3cdma->pdev = pdev;
1218	s3cdma->pdata = pdata;
1219	s3cdma->sdata = sdata;
1220
1221	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1222	s3cdma->base = devm_ioremap_resource(&pdev->dev, res);
1223	if (IS_ERR(s3cdma->base))
1224		return PTR_ERR(s3cdma->base);
1225
1226	s3cdma->phy_chans = devm_kzalloc(&pdev->dev,
1227					      sizeof(struct s3c24xx_dma_phy) *
1228							pdata->num_phy_channels,
1229					      GFP_KERNEL);
1230	if (!s3cdma->phy_chans)
1231		return -ENOMEM;
1232
1233	/* acquire irqs and clocks for all physical channels */
1234	for (i = 0; i < pdata->num_phy_channels; i++) {
1235		struct s3c24xx_dma_phy *phy = &s3cdma->phy_chans[i];
1236		char clk_name[6];
1237
1238		phy->id = i;
1239		phy->base = s3cdma->base + (i * sdata->stride);
1240		phy->host = s3cdma;
1241
1242		phy->irq = platform_get_irq(pdev, i);
1243		if (phy->irq < 0) {
1244			dev_err(&pdev->dev, "failed to get irq %d, err %d\n",
1245				i, phy->irq);
1246			continue;
1247		}
1248
1249		ret = devm_request_irq(&pdev->dev, phy->irq, s3c24xx_dma_irq,
1250				       0, pdev->name, phy);
1251		if (ret) {
1252			dev_err(&pdev->dev, "Unable to request irq for channel %d, error %d\n",
1253				i, ret);
1254			continue;
1255		}
1256
1257		if (sdata->has_clocks) {
1258			sprintf(clk_name, "dma.%d", i);
1259			phy->clk = devm_clk_get(&pdev->dev, clk_name);
1260			if (IS_ERR(phy->clk) && sdata->has_clocks) {
1261				dev_err(&pdev->dev, "unable to acquire clock for channel %d, error %lu\n",
1262					i, PTR_ERR(phy->clk));
1263				continue;
1264			}
1265
1266			ret = clk_prepare(phy->clk);
1267			if (ret) {
1268				dev_err(&pdev->dev, "clock for phy %d failed, error %d\n",
1269					i, ret);
1270				continue;
1271			}
1272		}
1273
1274		spin_lock_init(&phy->lock);
1275		phy->valid = true;
1276
1277		dev_dbg(&pdev->dev, "physical channel %d is %s\n",
1278			i, s3c24xx_dma_phy_busy(phy) ? "BUSY" : "FREE");
1279	}
1280
1281	/* Initialize memcpy engine */
1282	dma_cap_set(DMA_MEMCPY, s3cdma->memcpy.cap_mask);
1283	dma_cap_set(DMA_PRIVATE, s3cdma->memcpy.cap_mask);
1284	s3cdma->memcpy.dev = &pdev->dev;
1285	s3cdma->memcpy.device_free_chan_resources =
1286					s3c24xx_dma_free_chan_resources;
1287	s3cdma->memcpy.device_prep_dma_memcpy = s3c24xx_dma_prep_memcpy;
1288	s3cdma->memcpy.device_tx_status = s3c24xx_dma_tx_status;
1289	s3cdma->memcpy.device_issue_pending = s3c24xx_dma_issue_pending;
1290	s3cdma->memcpy.device_config = s3c24xx_dma_set_runtime_config;
1291	s3cdma->memcpy.device_terminate_all = s3c24xx_dma_terminate_all;
1292	s3cdma->memcpy.device_synchronize = s3c24xx_dma_synchronize;
1293
1294	/* Initialize slave engine for SoC internal dedicated peripherals */
1295	dma_cap_set(DMA_SLAVE, s3cdma->slave.cap_mask);
1296	dma_cap_set(DMA_CYCLIC, s3cdma->slave.cap_mask);
1297	dma_cap_set(DMA_PRIVATE, s3cdma->slave.cap_mask);
1298	s3cdma->slave.dev = &pdev->dev;
1299	s3cdma->slave.device_free_chan_resources =
1300					s3c24xx_dma_free_chan_resources;
1301	s3cdma->slave.device_tx_status = s3c24xx_dma_tx_status;
1302	s3cdma->slave.device_issue_pending = s3c24xx_dma_issue_pending;
1303	s3cdma->slave.device_prep_slave_sg = s3c24xx_dma_prep_slave_sg;
1304	s3cdma->slave.device_prep_dma_cyclic = s3c24xx_dma_prep_dma_cyclic;
1305	s3cdma->slave.device_config = s3c24xx_dma_set_runtime_config;
1306	s3cdma->slave.device_terminate_all = s3c24xx_dma_terminate_all;
1307	s3cdma->slave.device_synchronize = s3c24xx_dma_synchronize;
1308	s3cdma->slave.filter.map = pdata->slave_map;
1309	s3cdma->slave.filter.mapcnt = pdata->slavecnt;
1310	s3cdma->slave.filter.fn = s3c24xx_dma_filter;
1311
1312	/* Register as many memcpy channels as there are physical channels */
1313	ret = s3c24xx_dma_init_virtual_channels(s3cdma, &s3cdma->memcpy,
1314						pdata->num_phy_channels, false);
1315	if (ret <= 0) {
1316		dev_warn(&pdev->dev,
1317			 "%s failed to enumerate memcpy channels - %d\n",
1318			 __func__, ret);
1319		goto err_memcpy;
1320	}
1321
1322	/* Register slave channels */
1323	ret = s3c24xx_dma_init_virtual_channels(s3cdma, &s3cdma->slave,
1324				pdata->num_channels, true);
1325	if (ret <= 0) {
1326		dev_warn(&pdev->dev,
1327			"%s failed to enumerate slave channels - %d\n",
1328				__func__, ret);
1329		goto err_slave;
1330	}
1331
1332	ret = dma_async_device_register(&s3cdma->memcpy);
1333	if (ret) {
1334		dev_warn(&pdev->dev,
1335			"%s failed to register memcpy as an async device - %d\n",
1336			__func__, ret);
1337		goto err_memcpy_reg;
1338	}
1339
1340	ret = dma_async_device_register(&s3cdma->slave);
1341	if (ret) {
1342		dev_warn(&pdev->dev,
1343			"%s failed to register slave as an async device - %d\n",
1344			__func__, ret);
1345		goto err_slave_reg;
1346	}
1347
1348	platform_set_drvdata(pdev, s3cdma);
1349	dev_info(&pdev->dev, "Loaded dma driver with %d physical channels\n",
1350		 pdata->num_phy_channels);
1351
1352	return 0;
1353
1354err_slave_reg:
1355	dma_async_device_unregister(&s3cdma->memcpy);
1356err_memcpy_reg:
1357	s3c24xx_dma_free_virtual_channels(&s3cdma->slave);
1358err_slave:
1359	s3c24xx_dma_free_virtual_channels(&s3cdma->memcpy);
1360err_memcpy:
1361	if (sdata->has_clocks)
1362		for (i = 0; i < pdata->num_phy_channels; i++) {
1363			struct s3c24xx_dma_phy *phy = &s3cdma->phy_chans[i];
1364			if (phy->valid)
1365				clk_unprepare(phy->clk);
1366		}
1367
1368	return ret;
1369}
1370
1371static void s3c24xx_dma_free_irq(struct platform_device *pdev,
1372				struct s3c24xx_dma_engine *s3cdma)
1373{
1374	int i;
1375
1376	for (i = 0; i < s3cdma->pdata->num_phy_channels; i++) {
1377		struct s3c24xx_dma_phy *phy = &s3cdma->phy_chans[i];
1378
1379		devm_free_irq(&pdev->dev, phy->irq, phy);
1380	}
1381}
1382
1383static int s3c24xx_dma_remove(struct platform_device *pdev)
1384{
1385	const struct s3c24xx_dma_platdata *pdata = dev_get_platdata(&pdev->dev);
1386	struct s3c24xx_dma_engine *s3cdma = platform_get_drvdata(pdev);
1387	struct soc_data *sdata = s3c24xx_dma_get_soc_data(pdev);
1388	int i;
1389
1390	dma_async_device_unregister(&s3cdma->slave);
1391	dma_async_device_unregister(&s3cdma->memcpy);
1392
1393	s3c24xx_dma_free_irq(pdev, s3cdma);
1394
1395	s3c24xx_dma_free_virtual_channels(&s3cdma->slave);
1396	s3c24xx_dma_free_virtual_channels(&s3cdma->memcpy);
1397
1398	if (sdata->has_clocks)
1399		for (i = 0; i < pdata->num_phy_channels; i++) {
1400			struct s3c24xx_dma_phy *phy = &s3cdma->phy_chans[i];
1401			if (phy->valid)
1402				clk_unprepare(phy->clk);
1403		}
1404
1405	return 0;
1406}
1407
1408static struct platform_driver s3c24xx_dma_driver = {
1409	.driver		= {
1410		.name	= "s3c24xx-dma",
1411	},
1412	.id_table	= s3c24xx_dma_driver_ids,
1413	.probe		= s3c24xx_dma_probe,
1414	.remove		= s3c24xx_dma_remove,
1415};
1416
1417module_platform_driver(s3c24xx_dma_driver);
1418
1419bool s3c24xx_dma_filter(struct dma_chan *chan, void *param)
1420{
1421	struct s3c24xx_dma_chan *s3cchan;
1422
1423	if (chan->device->dev->driver != &s3c24xx_dma_driver.driver)
1424		return false;
1425
1426	s3cchan = to_s3c24xx_dma_chan(chan);
1427
1428	return s3cchan->id == (uintptr_t)param;
1429}
1430EXPORT_SYMBOL(s3c24xx_dma_filter);
1431
1432MODULE_DESCRIPTION("S3C24XX DMA Driver");
1433MODULE_AUTHOR("Heiko Stuebner");
1434MODULE_LICENSE("GPL v2");