Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2#include <linux/init.h>
3
4#include <linux/mm.h>
5#include <linux/spinlock.h>
6#include <linux/smp.h>
7#include <linux/interrupt.h>
8#include <linux/export.h>
9#include <linux/cpu.h>
10#include <linux/debugfs.h>
11
12#include <asm/tlbflush.h>
13#include <asm/mmu_context.h>
14#include <asm/nospec-branch.h>
15#include <asm/cache.h>
16#include <asm/apic.h>
17#include <asm/uv/uv.h>
18
19#include "mm_internal.h"
20
21#ifdef CONFIG_PARAVIRT
22# define STATIC_NOPV
23#else
24# define STATIC_NOPV static
25# define __flush_tlb_local native_flush_tlb_local
26# define __flush_tlb_global native_flush_tlb_global
27# define __flush_tlb_one_user(addr) native_flush_tlb_one_user(addr)
28# define __flush_tlb_others(msk, info) native_flush_tlb_others(msk, info)
29#endif
30
31/*
32 * TLB flushing, formerly SMP-only
33 * c/o Linus Torvalds.
34 *
35 * These mean you can really definitely utterly forget about
36 * writing to user space from interrupts. (Its not allowed anyway).
37 *
38 * Optimizations Manfred Spraul <manfred@colorfullife.com>
39 *
40 * More scalable flush, from Andi Kleen
41 *
42 * Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi
43 */
44
45/*
46 * Use bit 0 to mangle the TIF_SPEC_IB state into the mm pointer which is
47 * stored in cpu_tlb_state.last_user_mm_ibpb.
48 */
49#define LAST_USER_MM_IBPB 0x1UL
50
51/*
52 * The x86 feature is called PCID (Process Context IDentifier). It is similar
53 * to what is traditionally called ASID on the RISC processors.
54 *
55 * We don't use the traditional ASID implementation, where each process/mm gets
56 * its own ASID and flush/restart when we run out of ASID space.
57 *
58 * Instead we have a small per-cpu array of ASIDs and cache the last few mm's
59 * that came by on this CPU, allowing cheaper switch_mm between processes on
60 * this CPU.
61 *
62 * We end up with different spaces for different things. To avoid confusion we
63 * use different names for each of them:
64 *
65 * ASID - [0, TLB_NR_DYN_ASIDS-1]
66 * the canonical identifier for an mm
67 *
68 * kPCID - [1, TLB_NR_DYN_ASIDS]
69 * the value we write into the PCID part of CR3; corresponds to the
70 * ASID+1, because PCID 0 is special.
71 *
72 * uPCID - [2048 + 1, 2048 + TLB_NR_DYN_ASIDS]
73 * for KPTI each mm has two address spaces and thus needs two
74 * PCID values, but we can still do with a single ASID denomination
75 * for each mm. Corresponds to kPCID + 2048.
76 *
77 */
78
79/* There are 12 bits of space for ASIDS in CR3 */
80#define CR3_HW_ASID_BITS 12
81
82/*
83 * When enabled, PAGE_TABLE_ISOLATION consumes a single bit for
84 * user/kernel switches
85 */
86#ifdef CONFIG_PAGE_TABLE_ISOLATION
87# define PTI_CONSUMED_PCID_BITS 1
88#else
89# define PTI_CONSUMED_PCID_BITS 0
90#endif
91
92#define CR3_AVAIL_PCID_BITS (X86_CR3_PCID_BITS - PTI_CONSUMED_PCID_BITS)
93
94/*
95 * ASIDs are zero-based: 0->MAX_AVAIL_ASID are valid. -1 below to account
96 * for them being zero-based. Another -1 is because PCID 0 is reserved for
97 * use by non-PCID-aware users.
98 */
99#define MAX_ASID_AVAILABLE ((1 << CR3_AVAIL_PCID_BITS) - 2)
100
101/*
102 * Given @asid, compute kPCID
103 */
104static inline u16 kern_pcid(u16 asid)
105{
106 VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE);
107
108#ifdef CONFIG_PAGE_TABLE_ISOLATION
109 /*
110 * Make sure that the dynamic ASID space does not confict with the
111 * bit we are using to switch between user and kernel ASIDs.
112 */
113 BUILD_BUG_ON(TLB_NR_DYN_ASIDS >= (1 << X86_CR3_PTI_PCID_USER_BIT));
114
115 /*
116 * The ASID being passed in here should have respected the
117 * MAX_ASID_AVAILABLE and thus never have the switch bit set.
118 */
119 VM_WARN_ON_ONCE(asid & (1 << X86_CR3_PTI_PCID_USER_BIT));
120#endif
121 /*
122 * The dynamically-assigned ASIDs that get passed in are small
123 * (<TLB_NR_DYN_ASIDS). They never have the high switch bit set,
124 * so do not bother to clear it.
125 *
126 * If PCID is on, ASID-aware code paths put the ASID+1 into the
127 * PCID bits. This serves two purposes. It prevents a nasty
128 * situation in which PCID-unaware code saves CR3, loads some other
129 * value (with PCID == 0), and then restores CR3, thus corrupting
130 * the TLB for ASID 0 if the saved ASID was nonzero. It also means
131 * that any bugs involving loading a PCID-enabled CR3 with
132 * CR4.PCIDE off will trigger deterministically.
133 */
134 return asid + 1;
135}
136
137/*
138 * Given @asid, compute uPCID
139 */
140static inline u16 user_pcid(u16 asid)
141{
142 u16 ret = kern_pcid(asid);
143#ifdef CONFIG_PAGE_TABLE_ISOLATION
144 ret |= 1 << X86_CR3_PTI_PCID_USER_BIT;
145#endif
146 return ret;
147}
148
149static inline unsigned long build_cr3(pgd_t *pgd, u16 asid)
150{
151 if (static_cpu_has(X86_FEATURE_PCID)) {
152 return __sme_pa(pgd) | kern_pcid(asid);
153 } else {
154 VM_WARN_ON_ONCE(asid != 0);
155 return __sme_pa(pgd);
156 }
157}
158
159static inline unsigned long build_cr3_noflush(pgd_t *pgd, u16 asid)
160{
161 VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE);
162 /*
163 * Use boot_cpu_has() instead of this_cpu_has() as this function
164 * might be called during early boot. This should work even after
165 * boot because all CPU's the have same capabilities:
166 */
167 VM_WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_PCID));
168 return __sme_pa(pgd) | kern_pcid(asid) | CR3_NOFLUSH;
169}
170
171/*
172 * We get here when we do something requiring a TLB invalidation
173 * but could not go invalidate all of the contexts. We do the
174 * necessary invalidation by clearing out the 'ctx_id' which
175 * forces a TLB flush when the context is loaded.
176 */
177static void clear_asid_other(void)
178{
179 u16 asid;
180
181 /*
182 * This is only expected to be set if we have disabled
183 * kernel _PAGE_GLOBAL pages.
184 */
185 if (!static_cpu_has(X86_FEATURE_PTI)) {
186 WARN_ON_ONCE(1);
187 return;
188 }
189
190 for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
191 /* Do not need to flush the current asid */
192 if (asid == this_cpu_read(cpu_tlbstate.loaded_mm_asid))
193 continue;
194 /*
195 * Make sure the next time we go to switch to
196 * this asid, we do a flush:
197 */
198 this_cpu_write(cpu_tlbstate.ctxs[asid].ctx_id, 0);
199 }
200 this_cpu_write(cpu_tlbstate.invalidate_other, false);
201}
202
203atomic64_t last_mm_ctx_id = ATOMIC64_INIT(1);
204
205
206static void choose_new_asid(struct mm_struct *next, u64 next_tlb_gen,
207 u16 *new_asid, bool *need_flush)
208{
209 u16 asid;
210
211 if (!static_cpu_has(X86_FEATURE_PCID)) {
212 *new_asid = 0;
213 *need_flush = true;
214 return;
215 }
216
217 if (this_cpu_read(cpu_tlbstate.invalidate_other))
218 clear_asid_other();
219
220 for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
221 if (this_cpu_read(cpu_tlbstate.ctxs[asid].ctx_id) !=
222 next->context.ctx_id)
223 continue;
224
225 *new_asid = asid;
226 *need_flush = (this_cpu_read(cpu_tlbstate.ctxs[asid].tlb_gen) <
227 next_tlb_gen);
228 return;
229 }
230
231 /*
232 * We don't currently own an ASID slot on this CPU.
233 * Allocate a slot.
234 */
235 *new_asid = this_cpu_add_return(cpu_tlbstate.next_asid, 1) - 1;
236 if (*new_asid >= TLB_NR_DYN_ASIDS) {
237 *new_asid = 0;
238 this_cpu_write(cpu_tlbstate.next_asid, 1);
239 }
240 *need_flush = true;
241}
242
243/*
244 * Given an ASID, flush the corresponding user ASID. We can delay this
245 * until the next time we switch to it.
246 *
247 * See SWITCH_TO_USER_CR3.
248 */
249static inline void invalidate_user_asid(u16 asid)
250{
251 /* There is no user ASID if address space separation is off */
252 if (!IS_ENABLED(CONFIG_PAGE_TABLE_ISOLATION))
253 return;
254
255 /*
256 * We only have a single ASID if PCID is off and the CR3
257 * write will have flushed it.
258 */
259 if (!cpu_feature_enabled(X86_FEATURE_PCID))
260 return;
261
262 if (!static_cpu_has(X86_FEATURE_PTI))
263 return;
264
265 __set_bit(kern_pcid(asid),
266 (unsigned long *)this_cpu_ptr(&cpu_tlbstate.user_pcid_flush_mask));
267}
268
269static void load_new_mm_cr3(pgd_t *pgdir, u16 new_asid, bool need_flush)
270{
271 unsigned long new_mm_cr3;
272
273 if (need_flush) {
274 invalidate_user_asid(new_asid);
275 new_mm_cr3 = build_cr3(pgdir, new_asid);
276 } else {
277 new_mm_cr3 = build_cr3_noflush(pgdir, new_asid);
278 }
279
280 /*
281 * Caution: many callers of this function expect
282 * that load_cr3() is serializing and orders TLB
283 * fills with respect to the mm_cpumask writes.
284 */
285 write_cr3(new_mm_cr3);
286}
287
288void leave_mm(int cpu)
289{
290 struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
291
292 /*
293 * It's plausible that we're in lazy TLB mode while our mm is init_mm.
294 * If so, our callers still expect us to flush the TLB, but there
295 * aren't any user TLB entries in init_mm to worry about.
296 *
297 * This needs to happen before any other sanity checks due to
298 * intel_idle's shenanigans.
299 */
300 if (loaded_mm == &init_mm)
301 return;
302
303 /* Warn if we're not lazy. */
304 WARN_ON(!this_cpu_read(cpu_tlbstate.is_lazy));
305
306 switch_mm(NULL, &init_mm, NULL);
307}
308EXPORT_SYMBOL_GPL(leave_mm);
309
310void switch_mm(struct mm_struct *prev, struct mm_struct *next,
311 struct task_struct *tsk)
312{
313 unsigned long flags;
314
315 local_irq_save(flags);
316 switch_mm_irqs_off(prev, next, tsk);
317 local_irq_restore(flags);
318}
319
320static inline unsigned long mm_mangle_tif_spec_ib(struct task_struct *next)
321{
322 unsigned long next_tif = task_thread_info(next)->flags;
323 unsigned long ibpb = (next_tif >> TIF_SPEC_IB) & LAST_USER_MM_IBPB;
324
325 return (unsigned long)next->mm | ibpb;
326}
327
328static void cond_ibpb(struct task_struct *next)
329{
330 if (!next || !next->mm)
331 return;
332
333 /*
334 * Both, the conditional and the always IBPB mode use the mm
335 * pointer to avoid the IBPB when switching between tasks of the
336 * same process. Using the mm pointer instead of mm->context.ctx_id
337 * opens a hypothetical hole vs. mm_struct reuse, which is more or
338 * less impossible to control by an attacker. Aside of that it
339 * would only affect the first schedule so the theoretically
340 * exposed data is not really interesting.
341 */
342 if (static_branch_likely(&switch_mm_cond_ibpb)) {
343 unsigned long prev_mm, next_mm;
344
345 /*
346 * This is a bit more complex than the always mode because
347 * it has to handle two cases:
348 *
349 * 1) Switch from a user space task (potential attacker)
350 * which has TIF_SPEC_IB set to a user space task
351 * (potential victim) which has TIF_SPEC_IB not set.
352 *
353 * 2) Switch from a user space task (potential attacker)
354 * which has TIF_SPEC_IB not set to a user space task
355 * (potential victim) which has TIF_SPEC_IB set.
356 *
357 * This could be done by unconditionally issuing IBPB when
358 * a task which has TIF_SPEC_IB set is either scheduled in
359 * or out. Though that results in two flushes when:
360 *
361 * - the same user space task is scheduled out and later
362 * scheduled in again and only a kernel thread ran in
363 * between.
364 *
365 * - a user space task belonging to the same process is
366 * scheduled in after a kernel thread ran in between
367 *
368 * - a user space task belonging to the same process is
369 * scheduled in immediately.
370 *
371 * Optimize this with reasonably small overhead for the
372 * above cases. Mangle the TIF_SPEC_IB bit into the mm
373 * pointer of the incoming task which is stored in
374 * cpu_tlbstate.last_user_mm_ibpb for comparison.
375 */
376 next_mm = mm_mangle_tif_spec_ib(next);
377 prev_mm = this_cpu_read(cpu_tlbstate.last_user_mm_ibpb);
378
379 /*
380 * Issue IBPB only if the mm's are different and one or
381 * both have the IBPB bit set.
382 */
383 if (next_mm != prev_mm &&
384 (next_mm | prev_mm) & LAST_USER_MM_IBPB)
385 indirect_branch_prediction_barrier();
386
387 this_cpu_write(cpu_tlbstate.last_user_mm_ibpb, next_mm);
388 }
389
390 if (static_branch_unlikely(&switch_mm_always_ibpb)) {
391 /*
392 * Only flush when switching to a user space task with a
393 * different context than the user space task which ran
394 * last on this CPU.
395 */
396 if (this_cpu_read(cpu_tlbstate.last_user_mm) != next->mm) {
397 indirect_branch_prediction_barrier();
398 this_cpu_write(cpu_tlbstate.last_user_mm, next->mm);
399 }
400 }
401}
402
403#ifdef CONFIG_PERF_EVENTS
404static inline void cr4_update_pce_mm(struct mm_struct *mm)
405{
406 if (static_branch_unlikely(&rdpmc_always_available_key) ||
407 (!static_branch_unlikely(&rdpmc_never_available_key) &&
408 atomic_read(&mm->context.perf_rdpmc_allowed)))
409 cr4_set_bits_irqsoff(X86_CR4_PCE);
410 else
411 cr4_clear_bits_irqsoff(X86_CR4_PCE);
412}
413
414void cr4_update_pce(void *ignored)
415{
416 cr4_update_pce_mm(this_cpu_read(cpu_tlbstate.loaded_mm));
417}
418
419#else
420static inline void cr4_update_pce_mm(struct mm_struct *mm) { }
421#endif
422
423void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
424 struct task_struct *tsk)
425{
426 struct mm_struct *real_prev = this_cpu_read(cpu_tlbstate.loaded_mm);
427 u16 prev_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
428 bool was_lazy = this_cpu_read(cpu_tlbstate.is_lazy);
429 unsigned cpu = smp_processor_id();
430 u64 next_tlb_gen;
431 bool need_flush;
432 u16 new_asid;
433
434 /*
435 * NB: The scheduler will call us with prev == next when switching
436 * from lazy TLB mode to normal mode if active_mm isn't changing.
437 * When this happens, we don't assume that CR3 (and hence
438 * cpu_tlbstate.loaded_mm) matches next.
439 *
440 * NB: leave_mm() calls us with prev == NULL and tsk == NULL.
441 */
442
443 /* We don't want flush_tlb_func_* to run concurrently with us. */
444 if (IS_ENABLED(CONFIG_PROVE_LOCKING))
445 WARN_ON_ONCE(!irqs_disabled());
446
447 /*
448 * Verify that CR3 is what we think it is. This will catch
449 * hypothetical buggy code that directly switches to swapper_pg_dir
450 * without going through leave_mm() / switch_mm_irqs_off() or that
451 * does something like write_cr3(read_cr3_pa()).
452 *
453 * Only do this check if CONFIG_DEBUG_VM=y because __read_cr3()
454 * isn't free.
455 */
456#ifdef CONFIG_DEBUG_VM
457 if (WARN_ON_ONCE(__read_cr3() != build_cr3(real_prev->pgd, prev_asid))) {
458 /*
459 * If we were to BUG here, we'd be very likely to kill
460 * the system so hard that we don't see the call trace.
461 * Try to recover instead by ignoring the error and doing
462 * a global flush to minimize the chance of corruption.
463 *
464 * (This is far from being a fully correct recovery.
465 * Architecturally, the CPU could prefetch something
466 * back into an incorrect ASID slot and leave it there
467 * to cause trouble down the road. It's better than
468 * nothing, though.)
469 */
470 __flush_tlb_all();
471 }
472#endif
473 this_cpu_write(cpu_tlbstate.is_lazy, false);
474
475 /*
476 * The membarrier system call requires a full memory barrier and
477 * core serialization before returning to user-space, after
478 * storing to rq->curr. Writing to CR3 provides that full
479 * memory barrier and core serializing instruction.
480 */
481 if (real_prev == next) {
482 VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[prev_asid].ctx_id) !=
483 next->context.ctx_id);
484
485 /*
486 * Even in lazy TLB mode, the CPU should stay set in the
487 * mm_cpumask. The TLB shootdown code can figure out from
488 * from cpu_tlbstate.is_lazy whether or not to send an IPI.
489 */
490 if (WARN_ON_ONCE(real_prev != &init_mm &&
491 !cpumask_test_cpu(cpu, mm_cpumask(next))))
492 cpumask_set_cpu(cpu, mm_cpumask(next));
493
494 /*
495 * If the CPU is not in lazy TLB mode, we are just switching
496 * from one thread in a process to another thread in the same
497 * process. No TLB flush required.
498 */
499 if (!was_lazy)
500 return;
501
502 /*
503 * Read the tlb_gen to check whether a flush is needed.
504 * If the TLB is up to date, just use it.
505 * The barrier synchronizes with the tlb_gen increment in
506 * the TLB shootdown code.
507 */
508 smp_mb();
509 next_tlb_gen = atomic64_read(&next->context.tlb_gen);
510 if (this_cpu_read(cpu_tlbstate.ctxs[prev_asid].tlb_gen) ==
511 next_tlb_gen)
512 return;
513
514 /*
515 * TLB contents went out of date while we were in lazy
516 * mode. Fall through to the TLB switching code below.
517 */
518 new_asid = prev_asid;
519 need_flush = true;
520 } else {
521 /*
522 * Avoid user/user BTB poisoning by flushing the branch
523 * predictor when switching between processes. This stops
524 * one process from doing Spectre-v2 attacks on another.
525 */
526 cond_ibpb(tsk);
527
528 /*
529 * Stop remote flushes for the previous mm.
530 * Skip kernel threads; we never send init_mm TLB flushing IPIs,
531 * but the bitmap manipulation can cause cache line contention.
532 */
533 if (real_prev != &init_mm) {
534 VM_WARN_ON_ONCE(!cpumask_test_cpu(cpu,
535 mm_cpumask(real_prev)));
536 cpumask_clear_cpu(cpu, mm_cpumask(real_prev));
537 }
538
539 /*
540 * Start remote flushes and then read tlb_gen.
541 */
542 if (next != &init_mm)
543 cpumask_set_cpu(cpu, mm_cpumask(next));
544 next_tlb_gen = atomic64_read(&next->context.tlb_gen);
545
546 choose_new_asid(next, next_tlb_gen, &new_asid, &need_flush);
547
548 /* Let nmi_uaccess_okay() know that we're changing CR3. */
549 this_cpu_write(cpu_tlbstate.loaded_mm, LOADED_MM_SWITCHING);
550 barrier();
551 }
552
553 if (need_flush) {
554 this_cpu_write(cpu_tlbstate.ctxs[new_asid].ctx_id, next->context.ctx_id);
555 this_cpu_write(cpu_tlbstate.ctxs[new_asid].tlb_gen, next_tlb_gen);
556 load_new_mm_cr3(next->pgd, new_asid, true);
557
558 trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
559 } else {
560 /* The new ASID is already up to date. */
561 load_new_mm_cr3(next->pgd, new_asid, false);
562
563 trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, 0);
564 }
565
566 /* Make sure we write CR3 before loaded_mm. */
567 barrier();
568
569 this_cpu_write(cpu_tlbstate.loaded_mm, next);
570 this_cpu_write(cpu_tlbstate.loaded_mm_asid, new_asid);
571
572 if (next != real_prev) {
573 cr4_update_pce_mm(next);
574 switch_ldt(real_prev, next);
575 }
576}
577
578/*
579 * Please ignore the name of this function. It should be called
580 * switch_to_kernel_thread().
581 *
582 * enter_lazy_tlb() is a hint from the scheduler that we are entering a
583 * kernel thread or other context without an mm. Acceptable implementations
584 * include doing nothing whatsoever, switching to init_mm, or various clever
585 * lazy tricks to try to minimize TLB flushes.
586 *
587 * The scheduler reserves the right to call enter_lazy_tlb() several times
588 * in a row. It will notify us that we're going back to a real mm by
589 * calling switch_mm_irqs_off().
590 */
591void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk)
592{
593 if (this_cpu_read(cpu_tlbstate.loaded_mm) == &init_mm)
594 return;
595
596 this_cpu_write(cpu_tlbstate.is_lazy, true);
597}
598
599/*
600 * Call this when reinitializing a CPU. It fixes the following potential
601 * problems:
602 *
603 * - The ASID changed from what cpu_tlbstate thinks it is (most likely
604 * because the CPU was taken down and came back up with CR3's PCID
605 * bits clear. CPU hotplug can do this.
606 *
607 * - The TLB contains junk in slots corresponding to inactive ASIDs.
608 *
609 * - The CPU went so far out to lunch that it may have missed a TLB
610 * flush.
611 */
612void initialize_tlbstate_and_flush(void)
613{
614 int i;
615 struct mm_struct *mm = this_cpu_read(cpu_tlbstate.loaded_mm);
616 u64 tlb_gen = atomic64_read(&init_mm.context.tlb_gen);
617 unsigned long cr3 = __read_cr3();
618
619 /* Assert that CR3 already references the right mm. */
620 WARN_ON((cr3 & CR3_ADDR_MASK) != __pa(mm->pgd));
621
622 /*
623 * Assert that CR4.PCIDE is set if needed. (CR4.PCIDE initialization
624 * doesn't work like other CR4 bits because it can only be set from
625 * long mode.)
626 */
627 WARN_ON(boot_cpu_has(X86_FEATURE_PCID) &&
628 !(cr4_read_shadow() & X86_CR4_PCIDE));
629
630 /* Force ASID 0 and force a TLB flush. */
631 write_cr3(build_cr3(mm->pgd, 0));
632
633 /* Reinitialize tlbstate. */
634 this_cpu_write(cpu_tlbstate.last_user_mm_ibpb, LAST_USER_MM_IBPB);
635 this_cpu_write(cpu_tlbstate.loaded_mm_asid, 0);
636 this_cpu_write(cpu_tlbstate.next_asid, 1);
637 this_cpu_write(cpu_tlbstate.ctxs[0].ctx_id, mm->context.ctx_id);
638 this_cpu_write(cpu_tlbstate.ctxs[0].tlb_gen, tlb_gen);
639
640 for (i = 1; i < TLB_NR_DYN_ASIDS; i++)
641 this_cpu_write(cpu_tlbstate.ctxs[i].ctx_id, 0);
642}
643
644/*
645 * flush_tlb_func_common()'s memory ordering requirement is that any
646 * TLB fills that happen after we flush the TLB are ordered after we
647 * read active_mm's tlb_gen. We don't need any explicit barriers
648 * because all x86 flush operations are serializing and the
649 * atomic64_read operation won't be reordered by the compiler.
650 */
651static void flush_tlb_func_common(const struct flush_tlb_info *f,
652 bool local, enum tlb_flush_reason reason)
653{
654 /*
655 * We have three different tlb_gen values in here. They are:
656 *
657 * - mm_tlb_gen: the latest generation.
658 * - local_tlb_gen: the generation that this CPU has already caught
659 * up to.
660 * - f->new_tlb_gen: the generation that the requester of the flush
661 * wants us to catch up to.
662 */
663 struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
664 u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
665 u64 mm_tlb_gen = atomic64_read(&loaded_mm->context.tlb_gen);
666 u64 local_tlb_gen = this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen);
667
668 /* This code cannot presently handle being reentered. */
669 VM_WARN_ON(!irqs_disabled());
670
671 if (unlikely(loaded_mm == &init_mm))
672 return;
673
674 VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].ctx_id) !=
675 loaded_mm->context.ctx_id);
676
677 if (this_cpu_read(cpu_tlbstate.is_lazy)) {
678 /*
679 * We're in lazy mode. We need to at least flush our
680 * paging-structure cache to avoid speculatively reading
681 * garbage into our TLB. Since switching to init_mm is barely
682 * slower than a minimal flush, just switch to init_mm.
683 *
684 * This should be rare, with native_flush_tlb_others skipping
685 * IPIs to lazy TLB mode CPUs.
686 */
687 switch_mm_irqs_off(NULL, &init_mm, NULL);
688 return;
689 }
690
691 if (unlikely(local_tlb_gen == mm_tlb_gen)) {
692 /*
693 * There's nothing to do: we're already up to date. This can
694 * happen if two concurrent flushes happen -- the first flush to
695 * be handled can catch us all the way up, leaving no work for
696 * the second flush.
697 */
698 trace_tlb_flush(reason, 0);
699 return;
700 }
701
702 WARN_ON_ONCE(local_tlb_gen > mm_tlb_gen);
703 WARN_ON_ONCE(f->new_tlb_gen > mm_tlb_gen);
704
705 /*
706 * If we get to this point, we know that our TLB is out of date.
707 * This does not strictly imply that we need to flush (it's
708 * possible that f->new_tlb_gen <= local_tlb_gen), but we're
709 * going to need to flush in the very near future, so we might
710 * as well get it over with.
711 *
712 * The only question is whether to do a full or partial flush.
713 *
714 * We do a partial flush if requested and two extra conditions
715 * are met:
716 *
717 * 1. f->new_tlb_gen == local_tlb_gen + 1. We have an invariant that
718 * we've always done all needed flushes to catch up to
719 * local_tlb_gen. If, for example, local_tlb_gen == 2 and
720 * f->new_tlb_gen == 3, then we know that the flush needed to bring
721 * us up to date for tlb_gen 3 is the partial flush we're
722 * processing.
723 *
724 * As an example of why this check is needed, suppose that there
725 * are two concurrent flushes. The first is a full flush that
726 * changes context.tlb_gen from 1 to 2. The second is a partial
727 * flush that changes context.tlb_gen from 2 to 3. If they get
728 * processed on this CPU in reverse order, we'll see
729 * local_tlb_gen == 1, mm_tlb_gen == 3, and end != TLB_FLUSH_ALL.
730 * If we were to use __flush_tlb_one_user() and set local_tlb_gen to
731 * 3, we'd be break the invariant: we'd update local_tlb_gen above
732 * 1 without the full flush that's needed for tlb_gen 2.
733 *
734 * 2. f->new_tlb_gen == mm_tlb_gen. This is purely an optimiation.
735 * Partial TLB flushes are not all that much cheaper than full TLB
736 * flushes, so it seems unlikely that it would be a performance win
737 * to do a partial flush if that won't bring our TLB fully up to
738 * date. By doing a full flush instead, we can increase
739 * local_tlb_gen all the way to mm_tlb_gen and we can probably
740 * avoid another flush in the very near future.
741 */
742 if (f->end != TLB_FLUSH_ALL &&
743 f->new_tlb_gen == local_tlb_gen + 1 &&
744 f->new_tlb_gen == mm_tlb_gen) {
745 /* Partial flush */
746 unsigned long nr_invalidate = (f->end - f->start) >> f->stride_shift;
747 unsigned long addr = f->start;
748
749 while (addr < f->end) {
750 flush_tlb_one_user(addr);
751 addr += 1UL << f->stride_shift;
752 }
753 if (local)
754 count_vm_tlb_events(NR_TLB_LOCAL_FLUSH_ONE, nr_invalidate);
755 trace_tlb_flush(reason, nr_invalidate);
756 } else {
757 /* Full flush. */
758 flush_tlb_local();
759 if (local)
760 count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
761 trace_tlb_flush(reason, TLB_FLUSH_ALL);
762 }
763
764 /* Both paths above update our state to mm_tlb_gen. */
765 this_cpu_write(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen, mm_tlb_gen);
766}
767
768static void flush_tlb_func_local(const void *info, enum tlb_flush_reason reason)
769{
770 const struct flush_tlb_info *f = info;
771
772 flush_tlb_func_common(f, true, reason);
773}
774
775static void flush_tlb_func_remote(void *info)
776{
777 const struct flush_tlb_info *f = info;
778
779 inc_irq_stat(irq_tlb_count);
780
781 if (f->mm && f->mm != this_cpu_read(cpu_tlbstate.loaded_mm))
782 return;
783
784 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
785 flush_tlb_func_common(f, false, TLB_REMOTE_SHOOTDOWN);
786}
787
788static bool tlb_is_not_lazy(int cpu, void *data)
789{
790 return !per_cpu(cpu_tlbstate.is_lazy, cpu);
791}
792
793STATIC_NOPV void native_flush_tlb_others(const struct cpumask *cpumask,
794 const struct flush_tlb_info *info)
795{
796 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
797 if (info->end == TLB_FLUSH_ALL)
798 trace_tlb_flush(TLB_REMOTE_SEND_IPI, TLB_FLUSH_ALL);
799 else
800 trace_tlb_flush(TLB_REMOTE_SEND_IPI,
801 (info->end - info->start) >> PAGE_SHIFT);
802
803 if (is_uv_system()) {
804 /*
805 * This whole special case is confused. UV has a "Broadcast
806 * Assist Unit", which seems to be a fancy way to send IPIs.
807 * Back when x86 used an explicit TLB flush IPI, UV was
808 * optimized to use its own mechanism. These days, x86 uses
809 * smp_call_function_many(), but UV still uses a manual IPI,
810 * and that IPI's action is out of date -- it does a manual
811 * flush instead of calling flush_tlb_func_remote(). This
812 * means that the percpu tlb_gen variables won't be updated
813 * and we'll do pointless flushes on future context switches.
814 *
815 * Rather than hooking native_flush_tlb_others() here, I think
816 * that UV should be updated so that smp_call_function_many(),
817 * etc, are optimal on UV.
818 */
819 cpumask = uv_flush_tlb_others(cpumask, info);
820 if (cpumask)
821 smp_call_function_many(cpumask, flush_tlb_func_remote,
822 (void *)info, 1);
823 return;
824 }
825
826 /*
827 * If no page tables were freed, we can skip sending IPIs to
828 * CPUs in lazy TLB mode. They will flush the CPU themselves
829 * at the next context switch.
830 *
831 * However, if page tables are getting freed, we need to send the
832 * IPI everywhere, to prevent CPUs in lazy TLB mode from tripping
833 * up on the new contents of what used to be page tables, while
834 * doing a speculative memory access.
835 */
836 if (info->freed_tables)
837 smp_call_function_many(cpumask, flush_tlb_func_remote,
838 (void *)info, 1);
839 else
840 on_each_cpu_cond_mask(tlb_is_not_lazy, flush_tlb_func_remote,
841 (void *)info, 1, cpumask);
842}
843
844void flush_tlb_others(const struct cpumask *cpumask,
845 const struct flush_tlb_info *info)
846{
847 __flush_tlb_others(cpumask, info);
848}
849
850/*
851 * See Documentation/x86/tlb.rst for details. We choose 33
852 * because it is large enough to cover the vast majority (at
853 * least 95%) of allocations, and is small enough that we are
854 * confident it will not cause too much overhead. Each single
855 * flush is about 100 ns, so this caps the maximum overhead at
856 * _about_ 3,000 ns.
857 *
858 * This is in units of pages.
859 */
860unsigned long tlb_single_page_flush_ceiling __read_mostly = 33;
861
862static DEFINE_PER_CPU_SHARED_ALIGNED(struct flush_tlb_info, flush_tlb_info);
863
864#ifdef CONFIG_DEBUG_VM
865static DEFINE_PER_CPU(unsigned int, flush_tlb_info_idx);
866#endif
867
868static inline struct flush_tlb_info *get_flush_tlb_info(struct mm_struct *mm,
869 unsigned long start, unsigned long end,
870 unsigned int stride_shift, bool freed_tables,
871 u64 new_tlb_gen)
872{
873 struct flush_tlb_info *info = this_cpu_ptr(&flush_tlb_info);
874
875#ifdef CONFIG_DEBUG_VM
876 /*
877 * Ensure that the following code is non-reentrant and flush_tlb_info
878 * is not overwritten. This means no TLB flushing is initiated by
879 * interrupt handlers and machine-check exception handlers.
880 */
881 BUG_ON(this_cpu_inc_return(flush_tlb_info_idx) != 1);
882#endif
883
884 info->start = start;
885 info->end = end;
886 info->mm = mm;
887 info->stride_shift = stride_shift;
888 info->freed_tables = freed_tables;
889 info->new_tlb_gen = new_tlb_gen;
890
891 return info;
892}
893
894static inline void put_flush_tlb_info(void)
895{
896#ifdef CONFIG_DEBUG_VM
897 /* Complete reentrency prevention checks */
898 barrier();
899 this_cpu_dec(flush_tlb_info_idx);
900#endif
901}
902
903void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
904 unsigned long end, unsigned int stride_shift,
905 bool freed_tables)
906{
907 struct flush_tlb_info *info;
908 u64 new_tlb_gen;
909 int cpu;
910
911 cpu = get_cpu();
912
913 /* Should we flush just the requested range? */
914 if ((end == TLB_FLUSH_ALL) ||
915 ((end - start) >> stride_shift) > tlb_single_page_flush_ceiling) {
916 start = 0;
917 end = TLB_FLUSH_ALL;
918 }
919
920 /* This is also a barrier that synchronizes with switch_mm(). */
921 new_tlb_gen = inc_mm_tlb_gen(mm);
922
923 info = get_flush_tlb_info(mm, start, end, stride_shift, freed_tables,
924 new_tlb_gen);
925
926 if (mm == this_cpu_read(cpu_tlbstate.loaded_mm)) {
927 lockdep_assert_irqs_enabled();
928 local_irq_disable();
929 flush_tlb_func_local(info, TLB_LOCAL_MM_SHOOTDOWN);
930 local_irq_enable();
931 }
932
933 if (cpumask_any_but(mm_cpumask(mm), cpu) < nr_cpu_ids)
934 flush_tlb_others(mm_cpumask(mm), info);
935
936 put_flush_tlb_info();
937 put_cpu();
938}
939
940
941static void do_flush_tlb_all(void *info)
942{
943 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
944 __flush_tlb_all();
945}
946
947void flush_tlb_all(void)
948{
949 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
950 on_each_cpu(do_flush_tlb_all, NULL, 1);
951}
952
953static void do_kernel_range_flush(void *info)
954{
955 struct flush_tlb_info *f = info;
956 unsigned long addr;
957
958 /* flush range by one by one 'invlpg' */
959 for (addr = f->start; addr < f->end; addr += PAGE_SIZE)
960 flush_tlb_one_kernel(addr);
961}
962
963void flush_tlb_kernel_range(unsigned long start, unsigned long end)
964{
965 /* Balance as user space task's flush, a bit conservative */
966 if (end == TLB_FLUSH_ALL ||
967 (end - start) > tlb_single_page_flush_ceiling << PAGE_SHIFT) {
968 on_each_cpu(do_flush_tlb_all, NULL, 1);
969 } else {
970 struct flush_tlb_info *info;
971
972 preempt_disable();
973 info = get_flush_tlb_info(NULL, start, end, 0, false, 0);
974
975 on_each_cpu(do_kernel_range_flush, info, 1);
976
977 put_flush_tlb_info();
978 preempt_enable();
979 }
980}
981
982/*
983 * This can be used from process context to figure out what the value of
984 * CR3 is without needing to do a (slow) __read_cr3().
985 *
986 * It's intended to be used for code like KVM that sneakily changes CR3
987 * and needs to restore it. It needs to be used very carefully.
988 */
989unsigned long __get_current_cr3_fast(void)
990{
991 unsigned long cr3 = build_cr3(this_cpu_read(cpu_tlbstate.loaded_mm)->pgd,
992 this_cpu_read(cpu_tlbstate.loaded_mm_asid));
993
994 /* For now, be very restrictive about when this can be called. */
995 VM_WARN_ON(in_nmi() || preemptible());
996
997 VM_BUG_ON(cr3 != __read_cr3());
998 return cr3;
999}
1000EXPORT_SYMBOL_GPL(__get_current_cr3_fast);
1001
1002/*
1003 * Flush one page in the kernel mapping
1004 */
1005void flush_tlb_one_kernel(unsigned long addr)
1006{
1007 count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ONE);
1008
1009 /*
1010 * If PTI is off, then __flush_tlb_one_user() is just INVLPG or its
1011 * paravirt equivalent. Even with PCID, this is sufficient: we only
1012 * use PCID if we also use global PTEs for the kernel mapping, and
1013 * INVLPG flushes global translations across all address spaces.
1014 *
1015 * If PTI is on, then the kernel is mapped with non-global PTEs, and
1016 * __flush_tlb_one_user() will flush the given address for the current
1017 * kernel address space and for its usermode counterpart, but it does
1018 * not flush it for other address spaces.
1019 */
1020 flush_tlb_one_user(addr);
1021
1022 if (!static_cpu_has(X86_FEATURE_PTI))
1023 return;
1024
1025 /*
1026 * See above. We need to propagate the flush to all other address
1027 * spaces. In principle, we only need to propagate it to kernelmode
1028 * address spaces, but the extra bookkeeping we would need is not
1029 * worth it.
1030 */
1031 this_cpu_write(cpu_tlbstate.invalidate_other, true);
1032}
1033
1034/*
1035 * Flush one page in the user mapping
1036 */
1037STATIC_NOPV void native_flush_tlb_one_user(unsigned long addr)
1038{
1039 u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
1040
1041 asm volatile("invlpg (%0)" ::"r" (addr) : "memory");
1042
1043 if (!static_cpu_has(X86_FEATURE_PTI))
1044 return;
1045
1046 /*
1047 * Some platforms #GP if we call invpcid(type=1/2) before CR4.PCIDE=1.
1048 * Just use invalidate_user_asid() in case we are called early.
1049 */
1050 if (!this_cpu_has(X86_FEATURE_INVPCID_SINGLE))
1051 invalidate_user_asid(loaded_mm_asid);
1052 else
1053 invpcid_flush_one(user_pcid(loaded_mm_asid), addr);
1054}
1055
1056void flush_tlb_one_user(unsigned long addr)
1057{
1058 __flush_tlb_one_user(addr);
1059}
1060
1061/*
1062 * Flush everything
1063 */
1064STATIC_NOPV void native_flush_tlb_global(void)
1065{
1066 unsigned long cr4, flags;
1067
1068 if (static_cpu_has(X86_FEATURE_INVPCID)) {
1069 /*
1070 * Using INVPCID is considerably faster than a pair of writes
1071 * to CR4 sandwiched inside an IRQ flag save/restore.
1072 *
1073 * Note, this works with CR4.PCIDE=0 or 1.
1074 */
1075 invpcid_flush_all();
1076 return;
1077 }
1078
1079 /*
1080 * Read-modify-write to CR4 - protect it from preemption and
1081 * from interrupts. (Use the raw variant because this code can
1082 * be called from deep inside debugging code.)
1083 */
1084 raw_local_irq_save(flags);
1085
1086 cr4 = this_cpu_read(cpu_tlbstate.cr4);
1087 /* toggle PGE */
1088 native_write_cr4(cr4 ^ X86_CR4_PGE);
1089 /* write old PGE again and flush TLBs */
1090 native_write_cr4(cr4);
1091
1092 raw_local_irq_restore(flags);
1093}
1094
1095/*
1096 * Flush the entire current user mapping
1097 */
1098STATIC_NOPV void native_flush_tlb_local(void)
1099{
1100 /*
1101 * Preemption or interrupts must be disabled to protect the access
1102 * to the per CPU variable and to prevent being preempted between
1103 * read_cr3() and write_cr3().
1104 */
1105 WARN_ON_ONCE(preemptible());
1106
1107 invalidate_user_asid(this_cpu_read(cpu_tlbstate.loaded_mm_asid));
1108
1109 /* If current->mm == NULL then the read_cr3() "borrows" an mm */
1110 native_write_cr3(__native_read_cr3());
1111}
1112
1113void flush_tlb_local(void)
1114{
1115 __flush_tlb_local();
1116}
1117
1118/*
1119 * Flush everything
1120 */
1121void __flush_tlb_all(void)
1122{
1123 /*
1124 * This is to catch users with enabled preemption and the PGE feature
1125 * and don't trigger the warning in __native_flush_tlb().
1126 */
1127 VM_WARN_ON_ONCE(preemptible());
1128
1129 if (boot_cpu_has(X86_FEATURE_PGE)) {
1130 __flush_tlb_global();
1131 } else {
1132 /*
1133 * !PGE -> !PCID (setup_pcid()), thus every flush is total.
1134 */
1135 flush_tlb_local();
1136 }
1137}
1138EXPORT_SYMBOL_GPL(__flush_tlb_all);
1139
1140/*
1141 * arch_tlbbatch_flush() performs a full TLB flush regardless of the active mm.
1142 * This means that the 'struct flush_tlb_info' that describes which mappings to
1143 * flush is actually fixed. We therefore set a single fixed struct and use it in
1144 * arch_tlbbatch_flush().
1145 */
1146static const struct flush_tlb_info full_flush_tlb_info = {
1147 .mm = NULL,
1148 .start = 0,
1149 .end = TLB_FLUSH_ALL,
1150};
1151
1152void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch)
1153{
1154 int cpu = get_cpu();
1155
1156 if (cpumask_test_cpu(cpu, &batch->cpumask)) {
1157 lockdep_assert_irqs_enabled();
1158 local_irq_disable();
1159 flush_tlb_func_local(&full_flush_tlb_info, TLB_LOCAL_SHOOTDOWN);
1160 local_irq_enable();
1161 }
1162
1163 if (cpumask_any_but(&batch->cpumask, cpu) < nr_cpu_ids)
1164 flush_tlb_others(&batch->cpumask, &full_flush_tlb_info);
1165
1166 cpumask_clear(&batch->cpumask);
1167
1168 put_cpu();
1169}
1170
1171/*
1172 * Blindly accessing user memory from NMI context can be dangerous
1173 * if we're in the middle of switching the current user task or
1174 * switching the loaded mm. It can also be dangerous if we
1175 * interrupted some kernel code that was temporarily using a
1176 * different mm.
1177 */
1178bool nmi_uaccess_okay(void)
1179{
1180 struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
1181 struct mm_struct *current_mm = current->mm;
1182
1183 VM_WARN_ON_ONCE(!loaded_mm);
1184
1185 /*
1186 * The condition we want to check is
1187 * current_mm->pgd == __va(read_cr3_pa()). This may be slow, though,
1188 * if we're running in a VM with shadow paging, and nmi_uaccess_okay()
1189 * is supposed to be reasonably fast.
1190 *
1191 * Instead, we check the almost equivalent but somewhat conservative
1192 * condition below, and we rely on the fact that switch_mm_irqs_off()
1193 * sets loaded_mm to LOADED_MM_SWITCHING before writing to CR3.
1194 */
1195 if (loaded_mm != current_mm)
1196 return false;
1197
1198 VM_WARN_ON_ONCE(current_mm->pgd != __va(read_cr3_pa()));
1199
1200 return true;
1201}
1202
1203static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf,
1204 size_t count, loff_t *ppos)
1205{
1206 char buf[32];
1207 unsigned int len;
1208
1209 len = sprintf(buf, "%ld\n", tlb_single_page_flush_ceiling);
1210 return simple_read_from_buffer(user_buf, count, ppos, buf, len);
1211}
1212
1213static ssize_t tlbflush_write_file(struct file *file,
1214 const char __user *user_buf, size_t count, loff_t *ppos)
1215{
1216 char buf[32];
1217 ssize_t len;
1218 int ceiling;
1219
1220 len = min(count, sizeof(buf) - 1);
1221 if (copy_from_user(buf, user_buf, len))
1222 return -EFAULT;
1223
1224 buf[len] = '\0';
1225 if (kstrtoint(buf, 0, &ceiling))
1226 return -EINVAL;
1227
1228 if (ceiling < 0)
1229 return -EINVAL;
1230
1231 tlb_single_page_flush_ceiling = ceiling;
1232 return count;
1233}
1234
1235static const struct file_operations fops_tlbflush = {
1236 .read = tlbflush_read_file,
1237 .write = tlbflush_write_file,
1238 .llseek = default_llseek,
1239};
1240
1241static int __init create_tlb_single_page_flush_ceiling(void)
1242{
1243 debugfs_create_file("tlb_single_page_flush_ceiling", S_IRUSR | S_IWUSR,
1244 arch_debugfs_dir, NULL, &fops_tlbflush);
1245 return 0;
1246}
1247late_initcall(create_tlb_single_page_flush_ceiling);
1#include <linux/init.h>
2
3#include <linux/mm.h>
4#include <linux/spinlock.h>
5#include <linux/smp.h>
6#include <linux/interrupt.h>
7#include <linux/export.h>
8#include <linux/cpu.h>
9#include <linux/debugfs.h>
10
11#include <asm/tlbflush.h>
12#include <asm/mmu_context.h>
13#include <asm/nospec-branch.h>
14#include <asm/cache.h>
15#include <asm/apic.h>
16#include <asm/uv/uv.h>
17
18/*
19 * TLB flushing, formerly SMP-only
20 * c/o Linus Torvalds.
21 *
22 * These mean you can really definitely utterly forget about
23 * writing to user space from interrupts. (Its not allowed anyway).
24 *
25 * Optimizations Manfred Spraul <manfred@colorfullife.com>
26 *
27 * More scalable flush, from Andi Kleen
28 *
29 * Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi
30 */
31
32/*
33 * We get here when we do something requiring a TLB invalidation
34 * but could not go invalidate all of the contexts. We do the
35 * necessary invalidation by clearing out the 'ctx_id' which
36 * forces a TLB flush when the context is loaded.
37 */
38void clear_asid_other(void)
39{
40 u16 asid;
41
42 /*
43 * This is only expected to be set if we have disabled
44 * kernel _PAGE_GLOBAL pages.
45 */
46 if (!static_cpu_has(X86_FEATURE_PTI)) {
47 WARN_ON_ONCE(1);
48 return;
49 }
50
51 for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
52 /* Do not need to flush the current asid */
53 if (asid == this_cpu_read(cpu_tlbstate.loaded_mm_asid))
54 continue;
55 /*
56 * Make sure the next time we go to switch to
57 * this asid, we do a flush:
58 */
59 this_cpu_write(cpu_tlbstate.ctxs[asid].ctx_id, 0);
60 }
61 this_cpu_write(cpu_tlbstate.invalidate_other, false);
62}
63
64atomic64_t last_mm_ctx_id = ATOMIC64_INIT(1);
65
66
67static void choose_new_asid(struct mm_struct *next, u64 next_tlb_gen,
68 u16 *new_asid, bool *need_flush)
69{
70 u16 asid;
71
72 if (!static_cpu_has(X86_FEATURE_PCID)) {
73 *new_asid = 0;
74 *need_flush = true;
75 return;
76 }
77
78 if (this_cpu_read(cpu_tlbstate.invalidate_other))
79 clear_asid_other();
80
81 for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
82 if (this_cpu_read(cpu_tlbstate.ctxs[asid].ctx_id) !=
83 next->context.ctx_id)
84 continue;
85
86 *new_asid = asid;
87 *need_flush = (this_cpu_read(cpu_tlbstate.ctxs[asid].tlb_gen) <
88 next_tlb_gen);
89 return;
90 }
91
92 /*
93 * We don't currently own an ASID slot on this CPU.
94 * Allocate a slot.
95 */
96 *new_asid = this_cpu_add_return(cpu_tlbstate.next_asid, 1) - 1;
97 if (*new_asid >= TLB_NR_DYN_ASIDS) {
98 *new_asid = 0;
99 this_cpu_write(cpu_tlbstate.next_asid, 1);
100 }
101 *need_flush = true;
102}
103
104static void load_new_mm_cr3(pgd_t *pgdir, u16 new_asid, bool need_flush)
105{
106 unsigned long new_mm_cr3;
107
108 if (need_flush) {
109 invalidate_user_asid(new_asid);
110 new_mm_cr3 = build_cr3(pgdir, new_asid);
111 } else {
112 new_mm_cr3 = build_cr3_noflush(pgdir, new_asid);
113 }
114
115 /*
116 * Caution: many callers of this function expect
117 * that load_cr3() is serializing and orders TLB
118 * fills with respect to the mm_cpumask writes.
119 */
120 write_cr3(new_mm_cr3);
121}
122
123void leave_mm(int cpu)
124{
125 struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
126
127 /*
128 * It's plausible that we're in lazy TLB mode while our mm is init_mm.
129 * If so, our callers still expect us to flush the TLB, but there
130 * aren't any user TLB entries in init_mm to worry about.
131 *
132 * This needs to happen before any other sanity checks due to
133 * intel_idle's shenanigans.
134 */
135 if (loaded_mm == &init_mm)
136 return;
137
138 /* Warn if we're not lazy. */
139 WARN_ON(!this_cpu_read(cpu_tlbstate.is_lazy));
140
141 switch_mm(NULL, &init_mm, NULL);
142}
143EXPORT_SYMBOL_GPL(leave_mm);
144
145void switch_mm(struct mm_struct *prev, struct mm_struct *next,
146 struct task_struct *tsk)
147{
148 unsigned long flags;
149
150 local_irq_save(flags);
151 switch_mm_irqs_off(prev, next, tsk);
152 local_irq_restore(flags);
153}
154
155static void sync_current_stack_to_mm(struct mm_struct *mm)
156{
157 unsigned long sp = current_stack_pointer;
158 pgd_t *pgd = pgd_offset(mm, sp);
159
160 if (pgtable_l5_enabled) {
161 if (unlikely(pgd_none(*pgd))) {
162 pgd_t *pgd_ref = pgd_offset_k(sp);
163
164 set_pgd(pgd, *pgd_ref);
165 }
166 } else {
167 /*
168 * "pgd" is faked. The top level entries are "p4d"s, so sync
169 * the p4d. This compiles to approximately the same code as
170 * the 5-level case.
171 */
172 p4d_t *p4d = p4d_offset(pgd, sp);
173
174 if (unlikely(p4d_none(*p4d))) {
175 pgd_t *pgd_ref = pgd_offset_k(sp);
176 p4d_t *p4d_ref = p4d_offset(pgd_ref, sp);
177
178 set_p4d(p4d, *p4d_ref);
179 }
180 }
181}
182
183void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
184 struct task_struct *tsk)
185{
186 struct mm_struct *real_prev = this_cpu_read(cpu_tlbstate.loaded_mm);
187 u16 prev_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
188 unsigned cpu = smp_processor_id();
189 u64 next_tlb_gen;
190
191 /*
192 * NB: The scheduler will call us with prev == next when switching
193 * from lazy TLB mode to normal mode if active_mm isn't changing.
194 * When this happens, we don't assume that CR3 (and hence
195 * cpu_tlbstate.loaded_mm) matches next.
196 *
197 * NB: leave_mm() calls us with prev == NULL and tsk == NULL.
198 */
199
200 /* We don't want flush_tlb_func_* to run concurrently with us. */
201 if (IS_ENABLED(CONFIG_PROVE_LOCKING))
202 WARN_ON_ONCE(!irqs_disabled());
203
204 /*
205 * Verify that CR3 is what we think it is. This will catch
206 * hypothetical buggy code that directly switches to swapper_pg_dir
207 * without going through leave_mm() / switch_mm_irqs_off() or that
208 * does something like write_cr3(read_cr3_pa()).
209 *
210 * Only do this check if CONFIG_DEBUG_VM=y because __read_cr3()
211 * isn't free.
212 */
213#ifdef CONFIG_DEBUG_VM
214 if (WARN_ON_ONCE(__read_cr3() != build_cr3(real_prev->pgd, prev_asid))) {
215 /*
216 * If we were to BUG here, we'd be very likely to kill
217 * the system so hard that we don't see the call trace.
218 * Try to recover instead by ignoring the error and doing
219 * a global flush to minimize the chance of corruption.
220 *
221 * (This is far from being a fully correct recovery.
222 * Architecturally, the CPU could prefetch something
223 * back into an incorrect ASID slot and leave it there
224 * to cause trouble down the road. It's better than
225 * nothing, though.)
226 */
227 __flush_tlb_all();
228 }
229#endif
230 this_cpu_write(cpu_tlbstate.is_lazy, false);
231
232 /*
233 * The membarrier system call requires a full memory barrier and
234 * core serialization before returning to user-space, after
235 * storing to rq->curr. Writing to CR3 provides that full
236 * memory barrier and core serializing instruction.
237 */
238 if (real_prev == next) {
239 VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[prev_asid].ctx_id) !=
240 next->context.ctx_id);
241
242 /*
243 * We don't currently support having a real mm loaded without
244 * our cpu set in mm_cpumask(). We have all the bookkeeping
245 * in place to figure out whether we would need to flush
246 * if our cpu were cleared in mm_cpumask(), but we don't
247 * currently use it.
248 */
249 if (WARN_ON_ONCE(real_prev != &init_mm &&
250 !cpumask_test_cpu(cpu, mm_cpumask(next))))
251 cpumask_set_cpu(cpu, mm_cpumask(next));
252
253 return;
254 } else {
255 u16 new_asid;
256 bool need_flush;
257 u64 last_ctx_id = this_cpu_read(cpu_tlbstate.last_ctx_id);
258
259 /*
260 * Avoid user/user BTB poisoning by flushing the branch
261 * predictor when switching between processes. This stops
262 * one process from doing Spectre-v2 attacks on another.
263 *
264 * As an optimization, flush indirect branches only when
265 * switching into processes that disable dumping. This
266 * protects high value processes like gpg, without having
267 * too high performance overhead. IBPB is *expensive*!
268 *
269 * This will not flush branches when switching into kernel
270 * threads. It will also not flush if we switch to idle
271 * thread and back to the same process. It will flush if we
272 * switch to a different non-dumpable process.
273 */
274 if (tsk && tsk->mm &&
275 tsk->mm->context.ctx_id != last_ctx_id &&
276 get_dumpable(tsk->mm) != SUID_DUMP_USER)
277 indirect_branch_prediction_barrier();
278
279 if (IS_ENABLED(CONFIG_VMAP_STACK)) {
280 /*
281 * If our current stack is in vmalloc space and isn't
282 * mapped in the new pgd, we'll double-fault. Forcibly
283 * map it.
284 */
285 sync_current_stack_to_mm(next);
286 }
287
288 /* Stop remote flushes for the previous mm */
289 VM_WARN_ON_ONCE(!cpumask_test_cpu(cpu, mm_cpumask(real_prev)) &&
290 real_prev != &init_mm);
291 cpumask_clear_cpu(cpu, mm_cpumask(real_prev));
292
293 /*
294 * Start remote flushes and then read tlb_gen.
295 */
296 cpumask_set_cpu(cpu, mm_cpumask(next));
297 next_tlb_gen = atomic64_read(&next->context.tlb_gen);
298
299 choose_new_asid(next, next_tlb_gen, &new_asid, &need_flush);
300
301 if (need_flush) {
302 this_cpu_write(cpu_tlbstate.ctxs[new_asid].ctx_id, next->context.ctx_id);
303 this_cpu_write(cpu_tlbstate.ctxs[new_asid].tlb_gen, next_tlb_gen);
304 load_new_mm_cr3(next->pgd, new_asid, true);
305
306 /*
307 * NB: This gets called via leave_mm() in the idle path
308 * where RCU functions differently. Tracing normally
309 * uses RCU, so we need to use the _rcuidle variant.
310 *
311 * (There is no good reason for this. The idle code should
312 * be rearranged to call this before rcu_idle_enter().)
313 */
314 trace_tlb_flush_rcuidle(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
315 } else {
316 /* The new ASID is already up to date. */
317 load_new_mm_cr3(next->pgd, new_asid, false);
318
319 /* See above wrt _rcuidle. */
320 trace_tlb_flush_rcuidle(TLB_FLUSH_ON_TASK_SWITCH, 0);
321 }
322
323 /*
324 * Record last user mm's context id, so we can avoid
325 * flushing branch buffer with IBPB if we switch back
326 * to the same user.
327 */
328 if (next != &init_mm)
329 this_cpu_write(cpu_tlbstate.last_ctx_id, next->context.ctx_id);
330
331 this_cpu_write(cpu_tlbstate.loaded_mm, next);
332 this_cpu_write(cpu_tlbstate.loaded_mm_asid, new_asid);
333 }
334
335 load_mm_cr4(next);
336 switch_ldt(real_prev, next);
337}
338
339/*
340 * Please ignore the name of this function. It should be called
341 * switch_to_kernel_thread().
342 *
343 * enter_lazy_tlb() is a hint from the scheduler that we are entering a
344 * kernel thread or other context without an mm. Acceptable implementations
345 * include doing nothing whatsoever, switching to init_mm, or various clever
346 * lazy tricks to try to minimize TLB flushes.
347 *
348 * The scheduler reserves the right to call enter_lazy_tlb() several times
349 * in a row. It will notify us that we're going back to a real mm by
350 * calling switch_mm_irqs_off().
351 */
352void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk)
353{
354 if (this_cpu_read(cpu_tlbstate.loaded_mm) == &init_mm)
355 return;
356
357 if (tlb_defer_switch_to_init_mm()) {
358 /*
359 * There's a significant optimization that may be possible
360 * here. We have accurate enough TLB flush tracking that we
361 * don't need to maintain coherence of TLB per se when we're
362 * lazy. We do, however, need to maintain coherence of
363 * paging-structure caches. We could, in principle, leave our
364 * old mm loaded and only switch to init_mm when
365 * tlb_remove_page() happens.
366 */
367 this_cpu_write(cpu_tlbstate.is_lazy, true);
368 } else {
369 switch_mm(NULL, &init_mm, NULL);
370 }
371}
372
373/*
374 * Call this when reinitializing a CPU. It fixes the following potential
375 * problems:
376 *
377 * - The ASID changed from what cpu_tlbstate thinks it is (most likely
378 * because the CPU was taken down and came back up with CR3's PCID
379 * bits clear. CPU hotplug can do this.
380 *
381 * - The TLB contains junk in slots corresponding to inactive ASIDs.
382 *
383 * - The CPU went so far out to lunch that it may have missed a TLB
384 * flush.
385 */
386void initialize_tlbstate_and_flush(void)
387{
388 int i;
389 struct mm_struct *mm = this_cpu_read(cpu_tlbstate.loaded_mm);
390 u64 tlb_gen = atomic64_read(&init_mm.context.tlb_gen);
391 unsigned long cr3 = __read_cr3();
392
393 /* Assert that CR3 already references the right mm. */
394 WARN_ON((cr3 & CR3_ADDR_MASK) != __pa(mm->pgd));
395
396 /*
397 * Assert that CR4.PCIDE is set if needed. (CR4.PCIDE initialization
398 * doesn't work like other CR4 bits because it can only be set from
399 * long mode.)
400 */
401 WARN_ON(boot_cpu_has(X86_FEATURE_PCID) &&
402 !(cr4_read_shadow() & X86_CR4_PCIDE));
403
404 /* Force ASID 0 and force a TLB flush. */
405 write_cr3(build_cr3(mm->pgd, 0));
406
407 /* Reinitialize tlbstate. */
408 this_cpu_write(cpu_tlbstate.last_ctx_id, mm->context.ctx_id);
409 this_cpu_write(cpu_tlbstate.loaded_mm_asid, 0);
410 this_cpu_write(cpu_tlbstate.next_asid, 1);
411 this_cpu_write(cpu_tlbstate.ctxs[0].ctx_id, mm->context.ctx_id);
412 this_cpu_write(cpu_tlbstate.ctxs[0].tlb_gen, tlb_gen);
413
414 for (i = 1; i < TLB_NR_DYN_ASIDS; i++)
415 this_cpu_write(cpu_tlbstate.ctxs[i].ctx_id, 0);
416}
417
418/*
419 * flush_tlb_func_common()'s memory ordering requirement is that any
420 * TLB fills that happen after we flush the TLB are ordered after we
421 * read active_mm's tlb_gen. We don't need any explicit barriers
422 * because all x86 flush operations are serializing and the
423 * atomic64_read operation won't be reordered by the compiler.
424 */
425static void flush_tlb_func_common(const struct flush_tlb_info *f,
426 bool local, enum tlb_flush_reason reason)
427{
428 /*
429 * We have three different tlb_gen values in here. They are:
430 *
431 * - mm_tlb_gen: the latest generation.
432 * - local_tlb_gen: the generation that this CPU has already caught
433 * up to.
434 * - f->new_tlb_gen: the generation that the requester of the flush
435 * wants us to catch up to.
436 */
437 struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
438 u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
439 u64 mm_tlb_gen = atomic64_read(&loaded_mm->context.tlb_gen);
440 u64 local_tlb_gen = this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen);
441
442 /* This code cannot presently handle being reentered. */
443 VM_WARN_ON(!irqs_disabled());
444
445 if (unlikely(loaded_mm == &init_mm))
446 return;
447
448 VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].ctx_id) !=
449 loaded_mm->context.ctx_id);
450
451 if (this_cpu_read(cpu_tlbstate.is_lazy)) {
452 /*
453 * We're in lazy mode. We need to at least flush our
454 * paging-structure cache to avoid speculatively reading
455 * garbage into our TLB. Since switching to init_mm is barely
456 * slower than a minimal flush, just switch to init_mm.
457 */
458 switch_mm_irqs_off(NULL, &init_mm, NULL);
459 return;
460 }
461
462 if (unlikely(local_tlb_gen == mm_tlb_gen)) {
463 /*
464 * There's nothing to do: we're already up to date. This can
465 * happen if two concurrent flushes happen -- the first flush to
466 * be handled can catch us all the way up, leaving no work for
467 * the second flush.
468 */
469 trace_tlb_flush(reason, 0);
470 return;
471 }
472
473 WARN_ON_ONCE(local_tlb_gen > mm_tlb_gen);
474 WARN_ON_ONCE(f->new_tlb_gen > mm_tlb_gen);
475
476 /*
477 * If we get to this point, we know that our TLB is out of date.
478 * This does not strictly imply that we need to flush (it's
479 * possible that f->new_tlb_gen <= local_tlb_gen), but we're
480 * going to need to flush in the very near future, so we might
481 * as well get it over with.
482 *
483 * The only question is whether to do a full or partial flush.
484 *
485 * We do a partial flush if requested and two extra conditions
486 * are met:
487 *
488 * 1. f->new_tlb_gen == local_tlb_gen + 1. We have an invariant that
489 * we've always done all needed flushes to catch up to
490 * local_tlb_gen. If, for example, local_tlb_gen == 2 and
491 * f->new_tlb_gen == 3, then we know that the flush needed to bring
492 * us up to date for tlb_gen 3 is the partial flush we're
493 * processing.
494 *
495 * As an example of why this check is needed, suppose that there
496 * are two concurrent flushes. The first is a full flush that
497 * changes context.tlb_gen from 1 to 2. The second is a partial
498 * flush that changes context.tlb_gen from 2 to 3. If they get
499 * processed on this CPU in reverse order, we'll see
500 * local_tlb_gen == 1, mm_tlb_gen == 3, and end != TLB_FLUSH_ALL.
501 * If we were to use __flush_tlb_one_user() and set local_tlb_gen to
502 * 3, we'd be break the invariant: we'd update local_tlb_gen above
503 * 1 without the full flush that's needed for tlb_gen 2.
504 *
505 * 2. f->new_tlb_gen == mm_tlb_gen. This is purely an optimiation.
506 * Partial TLB flushes are not all that much cheaper than full TLB
507 * flushes, so it seems unlikely that it would be a performance win
508 * to do a partial flush if that won't bring our TLB fully up to
509 * date. By doing a full flush instead, we can increase
510 * local_tlb_gen all the way to mm_tlb_gen and we can probably
511 * avoid another flush in the very near future.
512 */
513 if (f->end != TLB_FLUSH_ALL &&
514 f->new_tlb_gen == local_tlb_gen + 1 &&
515 f->new_tlb_gen == mm_tlb_gen) {
516 /* Partial flush */
517 unsigned long addr;
518 unsigned long nr_pages = (f->end - f->start) >> PAGE_SHIFT;
519
520 addr = f->start;
521 while (addr < f->end) {
522 __flush_tlb_one_user(addr);
523 addr += PAGE_SIZE;
524 }
525 if (local)
526 count_vm_tlb_events(NR_TLB_LOCAL_FLUSH_ONE, nr_pages);
527 trace_tlb_flush(reason, nr_pages);
528 } else {
529 /* Full flush. */
530 local_flush_tlb();
531 if (local)
532 count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
533 trace_tlb_flush(reason, TLB_FLUSH_ALL);
534 }
535
536 /* Both paths above update our state to mm_tlb_gen. */
537 this_cpu_write(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen, mm_tlb_gen);
538}
539
540static void flush_tlb_func_local(void *info, enum tlb_flush_reason reason)
541{
542 const struct flush_tlb_info *f = info;
543
544 flush_tlb_func_common(f, true, reason);
545}
546
547static void flush_tlb_func_remote(void *info)
548{
549 const struct flush_tlb_info *f = info;
550
551 inc_irq_stat(irq_tlb_count);
552
553 if (f->mm && f->mm != this_cpu_read(cpu_tlbstate.loaded_mm))
554 return;
555
556 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
557 flush_tlb_func_common(f, false, TLB_REMOTE_SHOOTDOWN);
558}
559
560void native_flush_tlb_others(const struct cpumask *cpumask,
561 const struct flush_tlb_info *info)
562{
563 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
564 if (info->end == TLB_FLUSH_ALL)
565 trace_tlb_flush(TLB_REMOTE_SEND_IPI, TLB_FLUSH_ALL);
566 else
567 trace_tlb_flush(TLB_REMOTE_SEND_IPI,
568 (info->end - info->start) >> PAGE_SHIFT);
569
570 if (is_uv_system()) {
571 /*
572 * This whole special case is confused. UV has a "Broadcast
573 * Assist Unit", which seems to be a fancy way to send IPIs.
574 * Back when x86 used an explicit TLB flush IPI, UV was
575 * optimized to use its own mechanism. These days, x86 uses
576 * smp_call_function_many(), but UV still uses a manual IPI,
577 * and that IPI's action is out of date -- it does a manual
578 * flush instead of calling flush_tlb_func_remote(). This
579 * means that the percpu tlb_gen variables won't be updated
580 * and we'll do pointless flushes on future context switches.
581 *
582 * Rather than hooking native_flush_tlb_others() here, I think
583 * that UV should be updated so that smp_call_function_many(),
584 * etc, are optimal on UV.
585 */
586 unsigned int cpu;
587
588 cpu = smp_processor_id();
589 cpumask = uv_flush_tlb_others(cpumask, info);
590 if (cpumask)
591 smp_call_function_many(cpumask, flush_tlb_func_remote,
592 (void *)info, 1);
593 return;
594 }
595 smp_call_function_many(cpumask, flush_tlb_func_remote,
596 (void *)info, 1);
597}
598
599/*
600 * See Documentation/x86/tlb.txt for details. We choose 33
601 * because it is large enough to cover the vast majority (at
602 * least 95%) of allocations, and is small enough that we are
603 * confident it will not cause too much overhead. Each single
604 * flush is about 100 ns, so this caps the maximum overhead at
605 * _about_ 3,000 ns.
606 *
607 * This is in units of pages.
608 */
609static unsigned long tlb_single_page_flush_ceiling __read_mostly = 33;
610
611void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
612 unsigned long end, unsigned long vmflag)
613{
614 int cpu;
615
616 struct flush_tlb_info info __aligned(SMP_CACHE_BYTES) = {
617 .mm = mm,
618 };
619
620 cpu = get_cpu();
621
622 /* This is also a barrier that synchronizes with switch_mm(). */
623 info.new_tlb_gen = inc_mm_tlb_gen(mm);
624
625 /* Should we flush just the requested range? */
626 if ((end != TLB_FLUSH_ALL) &&
627 !(vmflag & VM_HUGETLB) &&
628 ((end - start) >> PAGE_SHIFT) <= tlb_single_page_flush_ceiling) {
629 info.start = start;
630 info.end = end;
631 } else {
632 info.start = 0UL;
633 info.end = TLB_FLUSH_ALL;
634 }
635
636 if (mm == this_cpu_read(cpu_tlbstate.loaded_mm)) {
637 VM_WARN_ON(irqs_disabled());
638 local_irq_disable();
639 flush_tlb_func_local(&info, TLB_LOCAL_MM_SHOOTDOWN);
640 local_irq_enable();
641 }
642
643 if (cpumask_any_but(mm_cpumask(mm), cpu) < nr_cpu_ids)
644 flush_tlb_others(mm_cpumask(mm), &info);
645
646 put_cpu();
647}
648
649
650static void do_flush_tlb_all(void *info)
651{
652 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
653 __flush_tlb_all();
654}
655
656void flush_tlb_all(void)
657{
658 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
659 on_each_cpu(do_flush_tlb_all, NULL, 1);
660}
661
662static void do_kernel_range_flush(void *info)
663{
664 struct flush_tlb_info *f = info;
665 unsigned long addr;
666
667 /* flush range by one by one 'invlpg' */
668 for (addr = f->start; addr < f->end; addr += PAGE_SIZE)
669 __flush_tlb_one_kernel(addr);
670}
671
672void flush_tlb_kernel_range(unsigned long start, unsigned long end)
673{
674
675 /* Balance as user space task's flush, a bit conservative */
676 if (end == TLB_FLUSH_ALL ||
677 (end - start) > tlb_single_page_flush_ceiling << PAGE_SHIFT) {
678 on_each_cpu(do_flush_tlb_all, NULL, 1);
679 } else {
680 struct flush_tlb_info info;
681 info.start = start;
682 info.end = end;
683 on_each_cpu(do_kernel_range_flush, &info, 1);
684 }
685}
686
687void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch)
688{
689 struct flush_tlb_info info = {
690 .mm = NULL,
691 .start = 0UL,
692 .end = TLB_FLUSH_ALL,
693 };
694
695 int cpu = get_cpu();
696
697 if (cpumask_test_cpu(cpu, &batch->cpumask)) {
698 VM_WARN_ON(irqs_disabled());
699 local_irq_disable();
700 flush_tlb_func_local(&info, TLB_LOCAL_SHOOTDOWN);
701 local_irq_enable();
702 }
703
704 if (cpumask_any_but(&batch->cpumask, cpu) < nr_cpu_ids)
705 flush_tlb_others(&batch->cpumask, &info);
706
707 cpumask_clear(&batch->cpumask);
708
709 put_cpu();
710}
711
712static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf,
713 size_t count, loff_t *ppos)
714{
715 char buf[32];
716 unsigned int len;
717
718 len = sprintf(buf, "%ld\n", tlb_single_page_flush_ceiling);
719 return simple_read_from_buffer(user_buf, count, ppos, buf, len);
720}
721
722static ssize_t tlbflush_write_file(struct file *file,
723 const char __user *user_buf, size_t count, loff_t *ppos)
724{
725 char buf[32];
726 ssize_t len;
727 int ceiling;
728
729 len = min(count, sizeof(buf) - 1);
730 if (copy_from_user(buf, user_buf, len))
731 return -EFAULT;
732
733 buf[len] = '\0';
734 if (kstrtoint(buf, 0, &ceiling))
735 return -EINVAL;
736
737 if (ceiling < 0)
738 return -EINVAL;
739
740 tlb_single_page_flush_ceiling = ceiling;
741 return count;
742}
743
744static const struct file_operations fops_tlbflush = {
745 .read = tlbflush_read_file,
746 .write = tlbflush_write_file,
747 .llseek = default_llseek,
748};
749
750static int __init create_tlb_single_page_flush_ceiling(void)
751{
752 debugfs_create_file("tlb_single_page_flush_ceiling", S_IRUSR | S_IWUSR,
753 arch_debugfs_dir, NULL, &fops_tlbflush);
754 return 0;
755}
756late_initcall(create_tlb_single_page_flush_ceiling);