Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.17.
  1/* SPDX-License-Identifier: GPL-2.0 */
  2#ifndef _ASM_POWERPC_MMU_8XX_H_
  3#define _ASM_POWERPC_MMU_8XX_H_
  4/*
  5 * PPC8xx support
  6 */
  7
  8/* Control/status registers for the MPC8xx.
  9 * A write operation to these registers causes serialized access.
 10 * During software tablewalk, the registers used perform mask/shift-add
 11 * operations when written/read.  A TLB entry is created when the Mx_RPN
 12 * is written, and the contents of several registers are used to
 13 * create the entry.
 14 */
 15#define SPRN_MI_CTR	784	/* Instruction TLB control register */
 16#define MI_GPM		0x80000000	/* Set domain manager mode */
 17#define MI_PPM		0x40000000	/* Set subpage protection */
 18#define MI_CIDEF	0x20000000	/* Set cache inhibit when MMU dis */
 19#define MI_RSV4I	0x08000000	/* Reserve 4 TLB entries */
 20#define MI_PPCS		0x02000000	/* Use MI_RPN prob/priv state */
 21#define MI_IDXMASK	0x00001f00	/* TLB index to be loaded */
 22
 23/* These are the Ks and Kp from the PowerPC books.  For proper operation,
 24 * Ks = 0, Kp = 1.
 25 */
 26#define SPRN_MI_AP	786
 27#define MI_Ks		0x80000000	/* Should not be set */
 28#define MI_Kp		0x40000000	/* Should always be set */
 29
 30/*
 31 * All pages' PP data bits are set to either 001 or 011 by copying _PAGE_EXEC
 32 * into bit 21 in the ITLBmiss handler (bit 21 is the middle bit), which means
 33 * respectively NA for All or X for Supervisor and no access for User.
 34 * Then we use the APG to say whether accesses are according to Page rules or
 35 * "all Supervisor" rules (Access to all)
 36 * Therefore, we define 2 APG groups. lsb is _PMD_USER
 37 * 0 => Kernel => 01 (all accesses performed according to page definition)
 38 * 1 => User => 00 (all accesses performed as supervisor iaw page definition)
 39 * 2-15 => Not Used
 40 */
 41#define MI_APG_INIT	0x40000000
 42
 43/*
 44 * 0 => Kernel => 01 (all accesses performed according to page definition)
 45 * 1 => User => 10 (all accesses performed according to swaped page definition)
 46 * 2-15 => Not Used
 47 */
 48#define MI_APG_KUEP	0x60000000
 49
 50/* The effective page number register.  When read, contains the information
 51 * about the last instruction TLB miss.  When MI_RPN is written, bits in
 52 * this register are used to create the TLB entry.
 53 */
 54#define SPRN_MI_EPN	787
 55#define MI_EPNMASK	0xfffff000	/* Effective page number for entry */
 56#define MI_EVALID	0x00000200	/* Entry is valid */
 57#define MI_ASIDMASK	0x0000000f	/* ASID match value */
 58					/* Reset value is undefined */
 59
 60/* A "level 1" or "segment" or whatever you want to call it register.
 61 * For the instruction TLB, it contains bits that get loaded into the
 62 * TLB entry when the MI_RPN is written.
 63 */
 64#define SPRN_MI_TWC	789
 65#define MI_APG		0x000001e0	/* Access protection group (0) */
 66#define MI_GUARDED	0x00000010	/* Guarded storage */
 67#define MI_PSMASK	0x0000000c	/* Mask of page size bits */
 68#define MI_PS8MEG	0x0000000c	/* 8M page size */
 69#define MI_PS512K	0x00000004	/* 512K page size */
 70#define MI_PS4K_16K	0x00000000	/* 4K or 16K page size */
 71#define MI_SVALID	0x00000001	/* Segment entry is valid */
 72					/* Reset value is undefined */
 73
 74/* Real page number.  Defined by the pte.  Writing this register
 75 * causes a TLB entry to be created for the instruction TLB, using
 76 * additional information from the MI_EPN, and MI_TWC registers.
 77 */
 78#define SPRN_MI_RPN	790
 79#define MI_SPS16K	0x00000008	/* Small page size (0 = 4k, 1 = 16k) */
 80
 81/* Define an RPN value for mapping kernel memory to large virtual
 82 * pages for boot initialization.  This has real page number of 0,
 83 * large page size, shared page, cache enabled, and valid.
 84 * Also mark all subpages valid and write access.
 85 */
 86#define MI_BOOTINIT	0x000001fd
 87
 88#define SPRN_MD_CTR	792	/* Data TLB control register */
 89#define MD_GPM		0x80000000	/* Set domain manager mode */
 90#define MD_PPM		0x40000000	/* Set subpage protection */
 91#define MD_CIDEF	0x20000000	/* Set cache inhibit when MMU dis */
 92#define MD_WTDEF	0x10000000	/* Set writethrough when MMU dis */
 93#define MD_RSV4I	0x08000000	/* Reserve 4 TLB entries */
 94#define MD_TWAM		0x04000000	/* Use 4K page hardware assist */
 95#define MD_PPCS		0x02000000	/* Use MI_RPN prob/priv state */
 96#define MD_IDXMASK	0x00001f00	/* TLB index to be loaded */
 97
 98#define SPRN_M_CASID	793	/* Address space ID (context) to match */
 99#define MC_ASIDMASK	0x0000000f	/* Bits used for ASID value */
100
101
102/* These are the Ks and Kp from the PowerPC books.  For proper operation,
103 * Ks = 0, Kp = 1.
104 */
105#define SPRN_MD_AP	794
106#define MD_Ks		0x80000000	/* Should not be set */
107#define MD_Kp		0x40000000	/* Should always be set */
108
109/*
110 * All pages' PP data bits are set to either 000 or 011 or 001, which means
111 * respectively RW for Supervisor and no access for User, or RO for
112 * Supervisor and no access for user and NA for ALL.
113 * Then we use the APG to say whether accesses are according to Page rules or
114 * "all Supervisor" rules (Access to all)
115 * Therefore, we define 2 APG groups. lsb is _PMD_USER
116 * 0 => Kernel => 01 (all accesses performed according to page definition)
117 * 1 => User => 00 (all accesses performed as supervisor iaw page definition)
118 * 2-15 => Not Used
119 */
120#define MD_APG_INIT	0x40000000
121
122/*
123 * 0 => No user => 01 (all accesses performed according to page definition)
124 * 1 => User => 10 (all accesses performed according to swaped page definition)
125 * 2-15 => Not Used
126 */
127#define MD_APG_KUAP	0x60000000
128
129/* The effective page number register.  When read, contains the information
130 * about the last instruction TLB miss.  When MD_RPN is written, bits in
131 * this register are used to create the TLB entry.
132 */
133#define SPRN_MD_EPN	795
134#define MD_EPNMASK	0xfffff000	/* Effective page number for entry */
135#define MD_EVALID	0x00000200	/* Entry is valid */
136#define MD_ASIDMASK	0x0000000f	/* ASID match value */
137					/* Reset value is undefined */
138
139/* The pointer to the base address of the first level page table.
140 * During a software tablewalk, reading this register provides the address
141 * of the entry associated with MD_EPN.
142 */
143#define SPRN_M_TWB	796
144#define	M_L1TB		0xfffff000	/* Level 1 table base address */
145#define M_L1INDX	0x00000ffc	/* Level 1 index, when read */
146					/* Reset value is undefined */
147
148/* A "level 1" or "segment" or whatever you want to call it register.
149 * For the data TLB, it contains bits that get loaded into the TLB entry
150 * when the MD_RPN is written.  It is also provides the hardware assist
151 * for finding the PTE address during software tablewalk.
152 */
153#define SPRN_MD_TWC	797
154#define MD_L2TB		0xfffff000	/* Level 2 table base address */
155#define MD_L2INDX	0xfffffe00	/* Level 2 index (*pte), when read */
156#define MD_APG		0x000001e0	/* Access protection group (0) */
157#define MD_GUARDED	0x00000010	/* Guarded storage */
158#define MD_PSMASK	0x0000000c	/* Mask of page size bits */
159#define MD_PS8MEG	0x0000000c	/* 8M page size */
160#define MD_PS512K	0x00000004	/* 512K page size */
161#define MD_PS4K_16K	0x00000000	/* 4K or 16K page size */
162#define MD_WT		0x00000002	/* Use writethrough page attribute */
163#define MD_SVALID	0x00000001	/* Segment entry is valid */
164					/* Reset value is undefined */
165
166
167/* Real page number.  Defined by the pte.  Writing this register
168 * causes a TLB entry to be created for the data TLB, using
169 * additional information from the MD_EPN, and MD_TWC registers.
170 */
171#define SPRN_MD_RPN	798
172#define MD_SPS16K	0x00000008	/* Small page size (0 = 4k, 1 = 16k) */
173
174/* This is a temporary storage register that could be used to save
175 * a processor working register during a tablewalk.
176 */
177#define SPRN_M_TW	799
178
179#if defined(CONFIG_PPC_4K_PAGES)
180#define mmu_virtual_psize	MMU_PAGE_4K
181#elif defined(CONFIG_PPC_16K_PAGES)
182#define mmu_virtual_psize	MMU_PAGE_16K
183#define PTE_FRAG_NR		4
184#define PTE_FRAG_SIZE_SHIFT	12
185#define PTE_FRAG_SIZE		(1UL << 12)
186#else
187#error "Unsupported PAGE_SIZE"
188#endif
189
190#define mmu_linear_psize	MMU_PAGE_8M
191
192#ifndef __ASSEMBLY__
193
194#include <linux/mmdebug.h>
195
196void mmu_pin_tlb(unsigned long top, bool readonly);
197
198typedef struct {
199	unsigned int id;
200	unsigned int active;
201	unsigned long vdso_base;
202	void *pte_frag;
203} mm_context_t;
204
205#define PHYS_IMMR_BASE (mfspr(SPRN_IMMR) & 0xfff80000)
206#define VIRT_IMMR_BASE (__fix_to_virt(FIX_IMMR_BASE))
207
208/* Page size definitions, common between 32 and 64-bit
209 *
210 *    shift : is the "PAGE_SHIFT" value for that page size
211 *    penc  : is the pte encoding mask
212 *
213 */
214struct mmu_psize_def {
215	unsigned int	shift;	/* number of bits */
216	unsigned int	enc;	/* PTE encoding */
217	unsigned int    ind;    /* Corresponding indirect page size shift */
218	unsigned int	flags;
219#define MMU_PAGE_SIZE_DIRECT	0x1	/* Supported as a direct size */
220#define MMU_PAGE_SIZE_INDIRECT	0x2	/* Supported as an indirect size */
221};
222
223extern struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT];
224
225static inline int shift_to_mmu_psize(unsigned int shift)
226{
227	int psize;
228
229	for (psize = 0; psize < MMU_PAGE_COUNT; ++psize)
230		if (mmu_psize_defs[psize].shift == shift)
231			return psize;
232	return -1;
233}
234
235static inline unsigned int mmu_psize_to_shift(unsigned int mmu_psize)
236{
237	if (mmu_psize_defs[mmu_psize].shift)
238		return mmu_psize_defs[mmu_psize].shift;
239	BUG();
240}
241
242/* patch sites */
243extern s32 patch__itlbmiss_exit_1, patch__dtlbmiss_exit_1;
244extern s32 patch__itlbmiss_perf, patch__dtlbmiss_perf;
245
246#endif /* !__ASSEMBLY__ */
247
248#endif /* _ASM_POWERPC_MMU_8XX_H_ */