Linux Audio

Check our new training course

Loading...
v5.9
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * PTP 1588 clock support
  4 *
  5 * Copyright (C) 2010 OMICRON electronics GmbH
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  6 */
  7#include <linux/idr.h>
  8#include <linux/device.h>
  9#include <linux/err.h>
 10#include <linux/init.h>
 11#include <linux/kernel.h>
 12#include <linux/module.h>
 13#include <linux/posix-clock.h>
 14#include <linux/pps_kernel.h>
 15#include <linux/slab.h>
 16#include <linux/syscalls.h>
 17#include <linux/uaccess.h>
 18#include <uapi/linux/sched/types.h>
 19
 20#include "ptp_private.h"
 21
 22#define PTP_MAX_ALARMS 4
 23#define PTP_PPS_DEFAULTS (PPS_CAPTUREASSERT | PPS_OFFSETASSERT)
 24#define PTP_PPS_EVENT PPS_CAPTUREASSERT
 25#define PTP_PPS_MODE (PTP_PPS_DEFAULTS | PPS_CANWAIT | PPS_TSFMT_TSPEC)
 26
 27/* private globals */
 28
 29static dev_t ptp_devt;
 30static struct class *ptp_class;
 31
 32static DEFINE_IDA(ptp_clocks_map);
 33
 34/* time stamp event queue operations */
 35
 36static inline int queue_free(struct timestamp_event_queue *q)
 37{
 38	return PTP_MAX_TIMESTAMPS - queue_cnt(q) - 1;
 39}
 40
 41static void enqueue_external_timestamp(struct timestamp_event_queue *queue,
 42				       struct ptp_clock_event *src)
 43{
 44	struct ptp_extts_event *dst;
 45	unsigned long flags;
 46	s64 seconds;
 47	u32 remainder;
 48
 49	seconds = div_u64_rem(src->timestamp, 1000000000, &remainder);
 50
 51	spin_lock_irqsave(&queue->lock, flags);
 52
 53	dst = &queue->buf[queue->tail];
 54	dst->index = src->index;
 55	dst->t.sec = seconds;
 56	dst->t.nsec = remainder;
 57
 58	if (!queue_free(queue))
 59		queue->head = (queue->head + 1) % PTP_MAX_TIMESTAMPS;
 60
 61	queue->tail = (queue->tail + 1) % PTP_MAX_TIMESTAMPS;
 62
 63	spin_unlock_irqrestore(&queue->lock, flags);
 64}
 65
 66s32 scaled_ppm_to_ppb(long ppm)
 67{
 68	/*
 69	 * The 'freq' field in the 'struct timex' is in parts per
 70	 * million, but with a 16 bit binary fractional field.
 71	 *
 72	 * We want to calculate
 73	 *
 74	 *    ppb = scaled_ppm * 1000 / 2^16
 75	 *
 76	 * which simplifies to
 77	 *
 78	 *    ppb = scaled_ppm * 125 / 2^13
 79	 */
 80	s64 ppb = 1 + ppm;
 81	ppb *= 125;
 82	ppb >>= 13;
 83	return (s32) ppb;
 84}
 85EXPORT_SYMBOL(scaled_ppm_to_ppb);
 86
 87/* posix clock implementation */
 88
 89static int ptp_clock_getres(struct posix_clock *pc, struct timespec64 *tp)
 90{
 91	tp->tv_sec = 0;
 92	tp->tv_nsec = 1;
 93	return 0;
 94}
 95
 96static int ptp_clock_settime(struct posix_clock *pc, const struct timespec64 *tp)
 97{
 98	struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
 
 99
100	return  ptp->info->settime64(ptp->info, tp);
101}
102
103static int ptp_clock_gettime(struct posix_clock *pc, struct timespec64 *tp)
104{
105	struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
 
106	int err;
107
108	if (ptp->info->gettimex64)
109		err = ptp->info->gettimex64(ptp->info, tp, NULL);
110	else
111		err = ptp->info->gettime64(ptp->info, tp);
112	return err;
113}
114
115static int ptp_clock_adjtime(struct posix_clock *pc, struct __kernel_timex *tx)
116{
117	struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
118	struct ptp_clock_info *ops;
119	int err = -EOPNOTSUPP;
120
121	ops = ptp->info;
122
123	if (tx->modes & ADJ_SETOFFSET) {
124		struct timespec64 ts;
125		ktime_t kt;
126		s64 delta;
127
128		ts.tv_sec  = tx->time.tv_sec;
129		ts.tv_nsec = tx->time.tv_usec;
130
131		if (!(tx->modes & ADJ_NANO))
132			ts.tv_nsec *= 1000;
133
134		if ((unsigned long) ts.tv_nsec >= NSEC_PER_SEC)
135			return -EINVAL;
136
137		kt = timespec64_to_ktime(ts);
138		delta = ktime_to_ns(kt);
139		err = ops->adjtime(ops, delta);
140	} else if (tx->modes & ADJ_FREQUENCY) {
141		s32 ppb = scaled_ppm_to_ppb(tx->freq);
142		if (ppb > ops->max_adj || ppb < -ops->max_adj)
143			return -ERANGE;
144		if (ops->adjfine)
145			err = ops->adjfine(ops, tx->freq);
146		else
147			err = ops->adjfreq(ops, ppb);
148		ptp->dialed_frequency = tx->freq;
149	} else if (tx->modes & ADJ_OFFSET) {
150		if (ops->adjphase) {
151			s32 offset = tx->offset;
152
153			if (!(tx->modes & ADJ_NANO))
154				offset *= NSEC_PER_USEC;
155
156			err = ops->adjphase(ops, offset);
157		}
158	} else if (tx->modes == 0) {
159		tx->freq = ptp->dialed_frequency;
160		err = 0;
161	}
162
163	return err;
164}
165
166static struct posix_clock_operations ptp_clock_ops = {
167	.owner		= THIS_MODULE,
168	.clock_adjtime	= ptp_clock_adjtime,
169	.clock_gettime	= ptp_clock_gettime,
170	.clock_getres	= ptp_clock_getres,
171	.clock_settime	= ptp_clock_settime,
172	.ioctl		= ptp_ioctl,
173	.open		= ptp_open,
174	.poll		= ptp_poll,
175	.read		= ptp_read,
176};
177
178static void ptp_clock_release(struct device *dev)
179{
180	struct ptp_clock *ptp = container_of(dev, struct ptp_clock, dev);
181
182	ptp_cleanup_pin_groups(ptp);
183	mutex_destroy(&ptp->tsevq_mux);
184	mutex_destroy(&ptp->pincfg_mux);
185	ida_simple_remove(&ptp_clocks_map, ptp->index);
186	kfree(ptp);
187}
188
189static void ptp_aux_kworker(struct kthread_work *work)
190{
191	struct ptp_clock *ptp = container_of(work, struct ptp_clock,
192					     aux_work.work);
193	struct ptp_clock_info *info = ptp->info;
194	long delay;
195
196	delay = info->do_aux_work(info);
197
198	if (delay >= 0)
199		kthread_queue_delayed_work(ptp->kworker, &ptp->aux_work, delay);
200}
201
202/* public interface */
203
204struct ptp_clock *ptp_clock_register(struct ptp_clock_info *info,
205				     struct device *parent)
206{
207	struct ptp_clock *ptp;
208	int err = 0, index, major = MAJOR(ptp_devt);
209
210	if (info->n_alarm > PTP_MAX_ALARMS)
211		return ERR_PTR(-EINVAL);
212
213	/* Initialize a clock structure. */
214	err = -ENOMEM;
215	ptp = kzalloc(sizeof(struct ptp_clock), GFP_KERNEL);
216	if (ptp == NULL)
217		goto no_memory;
218
219	index = ida_simple_get(&ptp_clocks_map, 0, MINORMASK + 1, GFP_KERNEL);
220	if (index < 0) {
221		err = index;
222		goto no_slot;
223	}
224
225	ptp->clock.ops = ptp_clock_ops;
 
226	ptp->info = info;
227	ptp->devid = MKDEV(major, index);
228	ptp->index = index;
229	spin_lock_init(&ptp->tsevq.lock);
230	mutex_init(&ptp->tsevq_mux);
231	mutex_init(&ptp->pincfg_mux);
232	init_waitqueue_head(&ptp->tsev_wq);
233
234	if (ptp->info->do_aux_work) {
235		kthread_init_delayed_work(&ptp->aux_work, ptp_aux_kworker);
236		ptp->kworker = kthread_create_worker(0, "ptp%d", ptp->index);
237		if (IS_ERR(ptp->kworker)) {
238			err = PTR_ERR(ptp->kworker);
239			pr_err("failed to create ptp aux_worker %d\n", err);
240			goto kworker_err;
241		}
242	}
243
244	err = ptp_populate_pin_groups(ptp);
 
 
245	if (err)
246		goto no_pin_groups;
247
248	/* Register a new PPS source. */
249	if (info->pps) {
250		struct pps_source_info pps;
251		memset(&pps, 0, sizeof(pps));
252		snprintf(pps.name, PPS_MAX_NAME_LEN, "ptp%d", index);
253		pps.mode = PTP_PPS_MODE;
254		pps.owner = info->owner;
255		ptp->pps_source = pps_register_source(&pps, PTP_PPS_DEFAULTS);
256		if (IS_ERR(ptp->pps_source)) {
257			err = PTR_ERR(ptp->pps_source);
258			pr_err("failed to register pps source\n");
259			goto no_pps;
260		}
261	}
262
263	/* Initialize a new device of our class in our clock structure. */
264	device_initialize(&ptp->dev);
265	ptp->dev.devt = ptp->devid;
266	ptp->dev.class = ptp_class;
267	ptp->dev.parent = parent;
268	ptp->dev.groups = ptp->pin_attr_groups;
269	ptp->dev.release = ptp_clock_release;
270	dev_set_drvdata(&ptp->dev, ptp);
271	dev_set_name(&ptp->dev, "ptp%d", ptp->index);
272
273	/* Create a posix clock and link it to the device. */
274	err = posix_clock_register(&ptp->clock, &ptp->dev);
275	if (err) {
276		pr_err("failed to create posix clock\n");
277		goto no_clock;
278	}
279
280	return ptp;
281
282no_clock:
283	if (ptp->pps_source)
284		pps_unregister_source(ptp->pps_source);
285no_pps:
286	ptp_cleanup_pin_groups(ptp);
287no_pin_groups:
288	if (ptp->kworker)
289		kthread_destroy_worker(ptp->kworker);
290kworker_err:
291	mutex_destroy(&ptp->tsevq_mux);
292	mutex_destroy(&ptp->pincfg_mux);
293	ida_simple_remove(&ptp_clocks_map, index);
294no_slot:
295	kfree(ptp);
296no_memory:
297	return ERR_PTR(err);
298}
299EXPORT_SYMBOL(ptp_clock_register);
300
301int ptp_clock_unregister(struct ptp_clock *ptp)
302{
303	ptp->defunct = 1;
304	wake_up_interruptible(&ptp->tsev_wq);
305
306	if (ptp->kworker) {
307		kthread_cancel_delayed_work_sync(&ptp->aux_work);
308		kthread_destroy_worker(ptp->kworker);
309	}
310
311	/* Release the clock's resources. */
312	if (ptp->pps_source)
313		pps_unregister_source(ptp->pps_source);
 
 
314
315	posix_clock_unregister(&ptp->clock);
316
317	return 0;
318}
319EXPORT_SYMBOL(ptp_clock_unregister);
320
321void ptp_clock_event(struct ptp_clock *ptp, struct ptp_clock_event *event)
322{
323	struct pps_event_time evt;
324
325	switch (event->type) {
326
327	case PTP_CLOCK_ALARM:
328		break;
329
330	case PTP_CLOCK_EXTTS:
331		enqueue_external_timestamp(&ptp->tsevq, event);
332		wake_up_interruptible(&ptp->tsev_wq);
333		break;
334
335	case PTP_CLOCK_PPS:
336		pps_get_ts(&evt);
337		pps_event(ptp->pps_source, &evt, PTP_PPS_EVENT, NULL);
338		break;
339
340	case PTP_CLOCK_PPSUSR:
341		pps_event(ptp->pps_source, &event->pps_times,
342			  PTP_PPS_EVENT, NULL);
343		break;
344	}
345}
346EXPORT_SYMBOL(ptp_clock_event);
347
348int ptp_clock_index(struct ptp_clock *ptp)
349{
350	return ptp->index;
351}
352EXPORT_SYMBOL(ptp_clock_index);
353
354int ptp_find_pin(struct ptp_clock *ptp,
355		 enum ptp_pin_function func, unsigned int chan)
356{
357	struct ptp_pin_desc *pin = NULL;
358	int i;
359
 
360	for (i = 0; i < ptp->info->n_pins; i++) {
361		if (ptp->info->pin_config[i].func == func &&
362		    ptp->info->pin_config[i].chan == chan) {
363			pin = &ptp->info->pin_config[i];
364			break;
365		}
366	}
 
367
368	return pin ? i : -1;
369}
370EXPORT_SYMBOL(ptp_find_pin);
371
372int ptp_find_pin_unlocked(struct ptp_clock *ptp,
373			  enum ptp_pin_function func, unsigned int chan)
374{
375	int result;
376
377	mutex_lock(&ptp->pincfg_mux);
378
379	result = ptp_find_pin(ptp, func, chan);
380
381	mutex_unlock(&ptp->pincfg_mux);
382
383	return result;
384}
385EXPORT_SYMBOL(ptp_find_pin_unlocked);
386
387int ptp_schedule_worker(struct ptp_clock *ptp, unsigned long delay)
388{
389	return kthread_mod_delayed_work(ptp->kworker, &ptp->aux_work, delay);
390}
391EXPORT_SYMBOL(ptp_schedule_worker);
392
393void ptp_cancel_worker_sync(struct ptp_clock *ptp)
394{
395	kthread_cancel_delayed_work_sync(&ptp->aux_work);
396}
397EXPORT_SYMBOL(ptp_cancel_worker_sync);
398
399/* module operations */
400
401static void __exit ptp_exit(void)
402{
403	class_destroy(ptp_class);
404	unregister_chrdev_region(ptp_devt, MINORMASK + 1);
405	ida_destroy(&ptp_clocks_map);
406}
407
408static int __init ptp_init(void)
409{
410	int err;
411
412	ptp_class = class_create(THIS_MODULE, "ptp");
413	if (IS_ERR(ptp_class)) {
414		pr_err("ptp: failed to allocate class\n");
415		return PTR_ERR(ptp_class);
416	}
417
418	err = alloc_chrdev_region(&ptp_devt, 0, MINORMASK + 1, "ptp");
419	if (err < 0) {
420		pr_err("ptp: failed to allocate device region\n");
421		goto no_region;
422	}
423
424	ptp_class->dev_groups = ptp_groups;
425	pr_info("PTP clock support registered\n");
426	return 0;
427
428no_region:
429	class_destroy(ptp_class);
430	return err;
431}
432
433subsys_initcall(ptp_init);
434module_exit(ptp_exit);
435
436MODULE_AUTHOR("Richard Cochran <richardcochran@gmail.com>");
437MODULE_DESCRIPTION("PTP clocks support");
438MODULE_LICENSE("GPL");
v4.10.11
 
  1/*
  2 * PTP 1588 clock support
  3 *
  4 * Copyright (C) 2010 OMICRON electronics GmbH
  5 *
  6 *  This program is free software; you can redistribute it and/or modify
  7 *  it under the terms of the GNU General Public License as published by
  8 *  the Free Software Foundation; either version 2 of the License, or
  9 *  (at your option) any later version.
 10 *
 11 *  This program is distributed in the hope that it will be useful,
 12 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 13 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 14 *  GNU General Public License for more details.
 15 *
 16 *  You should have received a copy of the GNU General Public License
 17 *  along with this program; if not, write to the Free Software
 18 *  Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 19 */
 20#include <linux/idr.h>
 21#include <linux/device.h>
 22#include <linux/err.h>
 23#include <linux/init.h>
 24#include <linux/kernel.h>
 25#include <linux/module.h>
 26#include <linux/posix-clock.h>
 27#include <linux/pps_kernel.h>
 28#include <linux/slab.h>
 29#include <linux/syscalls.h>
 30#include <linux/uaccess.h>
 
 31
 32#include "ptp_private.h"
 33
 34#define PTP_MAX_ALARMS 4
 35#define PTP_PPS_DEFAULTS (PPS_CAPTUREASSERT | PPS_OFFSETASSERT)
 36#define PTP_PPS_EVENT PPS_CAPTUREASSERT
 37#define PTP_PPS_MODE (PTP_PPS_DEFAULTS | PPS_CANWAIT | PPS_TSFMT_TSPEC)
 38
 39/* private globals */
 40
 41static dev_t ptp_devt;
 42static struct class *ptp_class;
 43
 44static DEFINE_IDA(ptp_clocks_map);
 45
 46/* time stamp event queue operations */
 47
 48static inline int queue_free(struct timestamp_event_queue *q)
 49{
 50	return PTP_MAX_TIMESTAMPS - queue_cnt(q) - 1;
 51}
 52
 53static void enqueue_external_timestamp(struct timestamp_event_queue *queue,
 54				       struct ptp_clock_event *src)
 55{
 56	struct ptp_extts_event *dst;
 57	unsigned long flags;
 58	s64 seconds;
 59	u32 remainder;
 60
 61	seconds = div_u64_rem(src->timestamp, 1000000000, &remainder);
 62
 63	spin_lock_irqsave(&queue->lock, flags);
 64
 65	dst = &queue->buf[queue->tail];
 66	dst->index = src->index;
 67	dst->t.sec = seconds;
 68	dst->t.nsec = remainder;
 69
 70	if (!queue_free(queue))
 71		queue->head = (queue->head + 1) % PTP_MAX_TIMESTAMPS;
 72
 73	queue->tail = (queue->tail + 1) % PTP_MAX_TIMESTAMPS;
 74
 75	spin_unlock_irqrestore(&queue->lock, flags);
 76}
 77
 78static s32 scaled_ppm_to_ppb(long ppm)
 79{
 80	/*
 81	 * The 'freq' field in the 'struct timex' is in parts per
 82	 * million, but with a 16 bit binary fractional field.
 83	 *
 84	 * We want to calculate
 85	 *
 86	 *    ppb = scaled_ppm * 1000 / 2^16
 87	 *
 88	 * which simplifies to
 89	 *
 90	 *    ppb = scaled_ppm * 125 / 2^13
 91	 */
 92	s64 ppb = 1 + ppm;
 93	ppb *= 125;
 94	ppb >>= 13;
 95	return (s32) ppb;
 96}
 
 97
 98/* posix clock implementation */
 99
100static int ptp_clock_getres(struct posix_clock *pc, struct timespec *tp)
101{
102	tp->tv_sec = 0;
103	tp->tv_nsec = 1;
104	return 0;
105}
106
107static int ptp_clock_settime(struct posix_clock *pc, const struct timespec *tp)
108{
109	struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
110	struct timespec64 ts = timespec_to_timespec64(*tp);
111
112	return  ptp->info->settime64(ptp->info, &ts);
113}
114
115static int ptp_clock_gettime(struct posix_clock *pc, struct timespec *tp)
116{
117	struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
118	struct timespec64 ts;
119	int err;
120
121	err = ptp->info->gettime64(ptp->info, &ts);
122	if (!err)
123		*tp = timespec64_to_timespec(ts);
 
124	return err;
125}
126
127static int ptp_clock_adjtime(struct posix_clock *pc, struct timex *tx)
128{
129	struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
130	struct ptp_clock_info *ops;
131	int err = -EOPNOTSUPP;
132
133	ops = ptp->info;
134
135	if (tx->modes & ADJ_SETOFFSET) {
136		struct timespec ts;
137		ktime_t kt;
138		s64 delta;
139
140		ts.tv_sec  = tx->time.tv_sec;
141		ts.tv_nsec = tx->time.tv_usec;
142
143		if (!(tx->modes & ADJ_NANO))
144			ts.tv_nsec *= 1000;
145
146		if ((unsigned long) ts.tv_nsec >= NSEC_PER_SEC)
147			return -EINVAL;
148
149		kt = timespec_to_ktime(ts);
150		delta = ktime_to_ns(kt);
151		err = ops->adjtime(ops, delta);
152	} else if (tx->modes & ADJ_FREQUENCY) {
153		s32 ppb = scaled_ppm_to_ppb(tx->freq);
154		if (ppb > ops->max_adj || ppb < -ops->max_adj)
155			return -ERANGE;
156		if (ops->adjfine)
157			err = ops->adjfine(ops, tx->freq);
158		else
159			err = ops->adjfreq(ops, ppb);
160		ptp->dialed_frequency = tx->freq;
 
 
 
 
 
 
 
 
 
161	} else if (tx->modes == 0) {
162		tx->freq = ptp->dialed_frequency;
163		err = 0;
164	}
165
166	return err;
167}
168
169static struct posix_clock_operations ptp_clock_ops = {
170	.owner		= THIS_MODULE,
171	.clock_adjtime	= ptp_clock_adjtime,
172	.clock_gettime	= ptp_clock_gettime,
173	.clock_getres	= ptp_clock_getres,
174	.clock_settime	= ptp_clock_settime,
175	.ioctl		= ptp_ioctl,
176	.open		= ptp_open,
177	.poll		= ptp_poll,
178	.read		= ptp_read,
179};
180
181static void delete_ptp_clock(struct posix_clock *pc)
182{
183	struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
184
 
185	mutex_destroy(&ptp->tsevq_mux);
186	mutex_destroy(&ptp->pincfg_mux);
187	ida_simple_remove(&ptp_clocks_map, ptp->index);
188	kfree(ptp);
189}
190
 
 
 
 
 
 
 
 
 
 
 
 
 
191/* public interface */
192
193struct ptp_clock *ptp_clock_register(struct ptp_clock_info *info,
194				     struct device *parent)
195{
196	struct ptp_clock *ptp;
197	int err = 0, index, major = MAJOR(ptp_devt);
198
199	if (info->n_alarm > PTP_MAX_ALARMS)
200		return ERR_PTR(-EINVAL);
201
202	/* Initialize a clock structure. */
203	err = -ENOMEM;
204	ptp = kzalloc(sizeof(struct ptp_clock), GFP_KERNEL);
205	if (ptp == NULL)
206		goto no_memory;
207
208	index = ida_simple_get(&ptp_clocks_map, 0, MINORMASK + 1, GFP_KERNEL);
209	if (index < 0) {
210		err = index;
211		goto no_slot;
212	}
213
214	ptp->clock.ops = ptp_clock_ops;
215	ptp->clock.release = delete_ptp_clock;
216	ptp->info = info;
217	ptp->devid = MKDEV(major, index);
218	ptp->index = index;
219	spin_lock_init(&ptp->tsevq.lock);
220	mutex_init(&ptp->tsevq_mux);
221	mutex_init(&ptp->pincfg_mux);
222	init_waitqueue_head(&ptp->tsev_wq);
223
224	/* Create a new device in our class. */
225	ptp->dev = device_create(ptp_class, parent, ptp->devid, ptp,
226				 "ptp%d", ptp->index);
227	if (IS_ERR(ptp->dev))
228		goto no_device;
 
 
 
 
229
230	dev_set_drvdata(ptp->dev, ptp);
231
232	err = ptp_populate_sysfs(ptp);
233	if (err)
234		goto no_sysfs;
235
236	/* Register a new PPS source. */
237	if (info->pps) {
238		struct pps_source_info pps;
239		memset(&pps, 0, sizeof(pps));
240		snprintf(pps.name, PPS_MAX_NAME_LEN, "ptp%d", index);
241		pps.mode = PTP_PPS_MODE;
242		pps.owner = info->owner;
243		ptp->pps_source = pps_register_source(&pps, PTP_PPS_DEFAULTS);
244		if (!ptp->pps_source) {
 
245			pr_err("failed to register pps source\n");
246			goto no_pps;
247		}
248	}
249
250	/* Create a posix clock. */
251	err = posix_clock_register(&ptp->clock, ptp->devid);
 
 
 
 
 
 
 
 
 
 
252	if (err) {
253		pr_err("failed to create posix clock\n");
254		goto no_clock;
255	}
256
257	return ptp;
258
259no_clock:
260	if (ptp->pps_source)
261		pps_unregister_source(ptp->pps_source);
262no_pps:
263	ptp_cleanup_sysfs(ptp);
264no_sysfs:
265	device_destroy(ptp_class, ptp->devid);
266no_device:
 
267	mutex_destroy(&ptp->tsevq_mux);
268	mutex_destroy(&ptp->pincfg_mux);
269	ida_simple_remove(&ptp_clocks_map, index);
270no_slot:
271	kfree(ptp);
272no_memory:
273	return ERR_PTR(err);
274}
275EXPORT_SYMBOL(ptp_clock_register);
276
277int ptp_clock_unregister(struct ptp_clock *ptp)
278{
279	ptp->defunct = 1;
280	wake_up_interruptible(&ptp->tsev_wq);
281
 
 
 
 
 
282	/* Release the clock's resources. */
283	if (ptp->pps_source)
284		pps_unregister_source(ptp->pps_source);
285	ptp_cleanup_sysfs(ptp);
286	device_destroy(ptp_class, ptp->devid);
287
288	posix_clock_unregister(&ptp->clock);
 
289	return 0;
290}
291EXPORT_SYMBOL(ptp_clock_unregister);
292
293void ptp_clock_event(struct ptp_clock *ptp, struct ptp_clock_event *event)
294{
295	struct pps_event_time evt;
296
297	switch (event->type) {
298
299	case PTP_CLOCK_ALARM:
300		break;
301
302	case PTP_CLOCK_EXTTS:
303		enqueue_external_timestamp(&ptp->tsevq, event);
304		wake_up_interruptible(&ptp->tsev_wq);
305		break;
306
307	case PTP_CLOCK_PPS:
308		pps_get_ts(&evt);
309		pps_event(ptp->pps_source, &evt, PTP_PPS_EVENT, NULL);
310		break;
311
312	case PTP_CLOCK_PPSUSR:
313		pps_event(ptp->pps_source, &event->pps_times,
314			  PTP_PPS_EVENT, NULL);
315		break;
316	}
317}
318EXPORT_SYMBOL(ptp_clock_event);
319
320int ptp_clock_index(struct ptp_clock *ptp)
321{
322	return ptp->index;
323}
324EXPORT_SYMBOL(ptp_clock_index);
325
326int ptp_find_pin(struct ptp_clock *ptp,
327		 enum ptp_pin_function func, unsigned int chan)
328{
329	struct ptp_pin_desc *pin = NULL;
330	int i;
331
332	mutex_lock(&ptp->pincfg_mux);
333	for (i = 0; i < ptp->info->n_pins; i++) {
334		if (ptp->info->pin_config[i].func == func &&
335		    ptp->info->pin_config[i].chan == chan) {
336			pin = &ptp->info->pin_config[i];
337			break;
338		}
339	}
340	mutex_unlock(&ptp->pincfg_mux);
341
342	return pin ? i : -1;
343}
344EXPORT_SYMBOL(ptp_find_pin);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
345
346/* module operations */
347
348static void __exit ptp_exit(void)
349{
350	class_destroy(ptp_class);
351	unregister_chrdev_region(ptp_devt, MINORMASK + 1);
352	ida_destroy(&ptp_clocks_map);
353}
354
355static int __init ptp_init(void)
356{
357	int err;
358
359	ptp_class = class_create(THIS_MODULE, "ptp");
360	if (IS_ERR(ptp_class)) {
361		pr_err("ptp: failed to allocate class\n");
362		return PTR_ERR(ptp_class);
363	}
364
365	err = alloc_chrdev_region(&ptp_devt, 0, MINORMASK + 1, "ptp");
366	if (err < 0) {
367		pr_err("ptp: failed to allocate device region\n");
368		goto no_region;
369	}
370
371	ptp_class->dev_groups = ptp_groups;
372	pr_info("PTP clock support registered\n");
373	return 0;
374
375no_region:
376	class_destroy(ptp_class);
377	return err;
378}
379
380subsys_initcall(ptp_init);
381module_exit(ptp_exit);
382
383MODULE_AUTHOR("Richard Cochran <richardcochran@gmail.com>");
384MODULE_DESCRIPTION("PTP clocks support");
385MODULE_LICENSE("GPL");