Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.10.11.
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2019 Samsung Electronics Co., Ltd.
   4 * Author: Lukasz Luba <l.luba@partner.samsung.com>
   5 */
   6
   7#include <linux/clk.h>
   8#include <linux/devfreq.h>
   9#include <linux/devfreq-event.h>
  10#include <linux/device.h>
  11#include <linux/interrupt.h>
  12#include <linux/io.h>
  13#include <linux/mfd/syscon.h>
  14#include <linux/module.h>
  15#include <linux/moduleparam.h>
  16#include <linux/of_device.h>
  17#include <linux/pm_opp.h>
  18#include <linux/platform_device.h>
  19#include <linux/regmap.h>
  20#include <linux/regulator/consumer.h>
  21#include <linux/slab.h>
  22#include "../jedec_ddr.h"
  23#include "../of_memory.h"
  24
  25static int irqmode;
  26module_param(irqmode, int, 0644);
  27MODULE_PARM_DESC(irqmode, "Enable IRQ mode (0=off [default], 1=on)");
  28
  29#define EXYNOS5_DREXI_TIMINGAREF		(0x0030)
  30#define EXYNOS5_DREXI_TIMINGROW0		(0x0034)
  31#define EXYNOS5_DREXI_TIMINGDATA0		(0x0038)
  32#define EXYNOS5_DREXI_TIMINGPOWER0		(0x003C)
  33#define EXYNOS5_DREXI_TIMINGROW1		(0x00E4)
  34#define EXYNOS5_DREXI_TIMINGDATA1		(0x00E8)
  35#define EXYNOS5_DREXI_TIMINGPOWER1		(0x00EC)
  36#define CDREX_PAUSE				(0x2091c)
  37#define CDREX_LPDDR3PHY_CON3			(0x20a20)
  38#define CDREX_LPDDR3PHY_CLKM_SRC		(0x20700)
  39#define EXYNOS5_TIMING_SET_SWI			BIT(28)
  40#define USE_MX_MSPLL_TIMINGS			(1)
  41#define USE_BPLL_TIMINGS			(0)
  42#define EXYNOS5_AREF_NORMAL			(0x2e)
  43
  44#define DREX_PPCCLKCON		(0x0130)
  45#define DREX_PEREV2CONFIG	(0x013c)
  46#define DREX_PMNC_PPC		(0xE000)
  47#define DREX_CNTENS_PPC		(0xE010)
  48#define DREX_CNTENC_PPC		(0xE020)
  49#define DREX_INTENS_PPC		(0xE030)
  50#define DREX_INTENC_PPC		(0xE040)
  51#define DREX_FLAG_PPC		(0xE050)
  52#define DREX_PMCNT2_PPC		(0xE130)
  53
  54/*
  55 * A value for register DREX_PMNC_PPC which should be written to reset
  56 * the cycle counter CCNT (a reference wall clock). It sets zero to the
  57 * CCNT counter.
  58 */
  59#define CC_RESET		BIT(2)
  60
  61/*
  62 * A value for register DREX_PMNC_PPC which does the reset of all performance
  63 * counters to zero.
  64 */
  65#define PPC_COUNTER_RESET	BIT(1)
  66
  67/*
  68 * Enables all configured counters (including cycle counter). The value should
  69 * be written to the register DREX_PMNC_PPC.
  70 */
  71#define PPC_ENABLE		BIT(0)
  72
  73/* A value for register DREX_PPCCLKCON which enables performance events clock.
  74 * Must be written before first access to the performance counters register
  75 * set, otherwise it could crash.
  76 */
  77#define PEREV_CLK_EN		BIT(0)
  78
  79/*
  80 * Values which are used to enable counters, interrupts or configure flags of
  81 * the performance counters. They configure counter 2 and cycle counter.
  82 */
  83#define PERF_CNT2		BIT(2)
  84#define PERF_CCNT		BIT(31)
  85
  86/*
  87 * Performance event types which are used for setting the preferred event
  88 * to track in the counters.
  89 * There is a set of different types, the values are from range 0 to 0x6f.
  90 * These settings should be written to the configuration register which manages
  91 * the type of the event (register DREX_PEREV2CONFIG).
  92 */
  93#define READ_TRANSFER_CH0	(0x6d)
  94#define READ_TRANSFER_CH1	(0x6f)
  95
  96#define PERF_COUNTER_START_VALUE 0xff000000
  97#define PERF_EVENT_UP_DOWN_THRESHOLD 900000000ULL
  98
  99/**
 100 * struct dmc_opp_table - Operating level desciption
 101 *
 102 * Covers frequency and voltage settings of the DMC operating mode.
 103 */
 104struct dmc_opp_table {
 105	u32 freq_hz;
 106	u32 volt_uv;
 107};
 108
 109/**
 110 * struct exynos5_dmc - main structure describing DMC device
 111 *
 112 * The main structure for the Dynamic Memory Controller which covers clocks,
 113 * memory regions, HW information, parameters and current operating mode.
 114 */
 115struct exynos5_dmc {
 116	struct device *dev;
 117	struct devfreq *df;
 118	struct devfreq_simple_ondemand_data gov_data;
 119	void __iomem *base_drexi0;
 120	void __iomem *base_drexi1;
 121	struct regmap *clk_regmap;
 122	struct mutex lock;
 123	unsigned long curr_rate;
 124	unsigned long curr_volt;
 125	unsigned long bypass_rate;
 126	struct dmc_opp_table *opp;
 127	struct dmc_opp_table opp_bypass;
 128	int opp_count;
 129	u32 timings_arr_size;
 130	u32 *timing_row;
 131	u32 *timing_data;
 132	u32 *timing_power;
 133	const struct lpddr3_timings *timings;
 134	const struct lpddr3_min_tck *min_tck;
 135	u32 bypass_timing_row;
 136	u32 bypass_timing_data;
 137	u32 bypass_timing_power;
 138	struct regulator *vdd_mif;
 139	struct clk *fout_spll;
 140	struct clk *fout_bpll;
 141	struct clk *mout_spll;
 142	struct clk *mout_bpll;
 143	struct clk *mout_mclk_cdrex;
 144	struct clk *mout_mx_mspll_ccore;
 145	struct clk *mx_mspll_ccore_phy;
 146	struct clk *mout_mx_mspll_ccore_phy;
 147	struct devfreq_event_dev **counter;
 148	int num_counters;
 149	u64 last_overflow_ts[2];
 150	unsigned long load;
 151	unsigned long total;
 152	bool in_irq_mode;
 153};
 154
 155#define TIMING_FIELD(t_name, t_bit_beg, t_bit_end) \
 156	{ .name = t_name, .bit_beg = t_bit_beg, .bit_end = t_bit_end }
 157
 158#define TIMING_VAL2REG(timing, t_val)			\
 159({							\
 160		u32 __val;				\
 161		__val = (t_val) << (timing)->bit_beg;	\
 162		__val;					\
 163})
 164
 165struct timing_reg {
 166	char *name;
 167	int bit_beg;
 168	int bit_end;
 169	unsigned int val;
 170};
 171
 172static const struct timing_reg timing_row[] = {
 173	TIMING_FIELD("tRFC", 24, 31),
 174	TIMING_FIELD("tRRD", 20, 23),
 175	TIMING_FIELD("tRP", 16, 19),
 176	TIMING_FIELD("tRCD", 12, 15),
 177	TIMING_FIELD("tRC", 6, 11),
 178	TIMING_FIELD("tRAS", 0, 5),
 179};
 180
 181static const struct timing_reg timing_data[] = {
 182	TIMING_FIELD("tWTR", 28, 31),
 183	TIMING_FIELD("tWR", 24, 27),
 184	TIMING_FIELD("tRTP", 20, 23),
 185	TIMING_FIELD("tW2W-C2C", 14, 14),
 186	TIMING_FIELD("tR2R-C2C", 12, 12),
 187	TIMING_FIELD("WL", 8, 11),
 188	TIMING_FIELD("tDQSCK", 4, 7),
 189	TIMING_FIELD("RL", 0, 3),
 190};
 191
 192static const struct timing_reg timing_power[] = {
 193	TIMING_FIELD("tFAW", 26, 31),
 194	TIMING_FIELD("tXSR", 16, 25),
 195	TIMING_FIELD("tXP", 8, 15),
 196	TIMING_FIELD("tCKE", 4, 7),
 197	TIMING_FIELD("tMRD", 0, 3),
 198};
 199
 200#define TIMING_COUNT (ARRAY_SIZE(timing_row) + ARRAY_SIZE(timing_data) + \
 201		      ARRAY_SIZE(timing_power))
 202
 203static int exynos5_counters_set_event(struct exynos5_dmc *dmc)
 204{
 205	int i, ret;
 206
 207	for (i = 0; i < dmc->num_counters; i++) {
 208		if (!dmc->counter[i])
 209			continue;
 210		ret = devfreq_event_set_event(dmc->counter[i]);
 211		if (ret < 0)
 212			return ret;
 213	}
 214	return 0;
 215}
 216
 217static int exynos5_counters_enable_edev(struct exynos5_dmc *dmc)
 218{
 219	int i, ret;
 220
 221	for (i = 0; i < dmc->num_counters; i++) {
 222		if (!dmc->counter[i])
 223			continue;
 224		ret = devfreq_event_enable_edev(dmc->counter[i]);
 225		if (ret < 0)
 226			return ret;
 227	}
 228	return 0;
 229}
 230
 231static int exynos5_counters_disable_edev(struct exynos5_dmc *dmc)
 232{
 233	int i, ret;
 234
 235	for (i = 0; i < dmc->num_counters; i++) {
 236		if (!dmc->counter[i])
 237			continue;
 238		ret = devfreq_event_disable_edev(dmc->counter[i]);
 239		if (ret < 0)
 240			return ret;
 241	}
 242	return 0;
 243}
 244
 245/**
 246 * find_target_freq_id() - Finds requested frequency in local DMC configuration
 247 * @dmc:	device for which the information is checked
 248 * @target_rate:	requested frequency in KHz
 249 *
 250 * Seeks in the local DMC driver structure for the requested frequency value
 251 * and returns index or error value.
 252 */
 253static int find_target_freq_idx(struct exynos5_dmc *dmc,
 254				unsigned long target_rate)
 255{
 256	int i;
 257
 258	for (i = dmc->opp_count - 1; i >= 0; i--)
 259		if (dmc->opp[i].freq_hz <= target_rate)
 260			return i;
 261
 262	return -EINVAL;
 263}
 264
 265/**
 266 * exynos5_switch_timing_regs() - Changes bank register set for DRAM timings
 267 * @dmc:	device for which the new settings is going to be applied
 268 * @set:	boolean variable passing set value
 269 *
 270 * Changes the register set, which holds timing parameters.
 271 * There is two register sets: 0 and 1. The register set 0
 272 * is used in normal operation when the clock is provided from main PLL.
 273 * The bank register set 1 is used when the main PLL frequency is going to be
 274 * changed and the clock is taken from alternative, stable source.
 275 * This function switches between these banks according to the
 276 * currently used clock source.
 277 */
 278static int exynos5_switch_timing_regs(struct exynos5_dmc *dmc, bool set)
 279{
 280	unsigned int reg;
 281	int ret;
 282
 283	ret = regmap_read(dmc->clk_regmap, CDREX_LPDDR3PHY_CON3, &reg);
 284	if (ret)
 285		return ret;
 286
 287	if (set)
 288		reg |= EXYNOS5_TIMING_SET_SWI;
 289	else
 290		reg &= ~EXYNOS5_TIMING_SET_SWI;
 291
 292	regmap_write(dmc->clk_regmap, CDREX_LPDDR3PHY_CON3, reg);
 293
 294	return 0;
 295}
 296
 297/**
 298 * exynos5_init_freq_table() - Initialized PM OPP framework
 299 * @dmc:	DMC device for which the frequencies are used for OPP init
 300 * @profile:	devfreq device's profile
 301 *
 302 * Populate the devfreq device's OPP table based on current frequency, voltage.
 303 */
 304static int exynos5_init_freq_table(struct exynos5_dmc *dmc,
 305				   struct devfreq_dev_profile *profile)
 306{
 307	int i, ret;
 308	int idx;
 309	unsigned long freq;
 310
 311	ret = dev_pm_opp_of_add_table(dmc->dev);
 312	if (ret < 0) {
 313		dev_err(dmc->dev, "Failed to get OPP table\n");
 314		return ret;
 315	}
 316
 317	dmc->opp_count = dev_pm_opp_get_opp_count(dmc->dev);
 318
 319	dmc->opp = devm_kmalloc_array(dmc->dev, dmc->opp_count,
 320				      sizeof(struct dmc_opp_table), GFP_KERNEL);
 321	if (!dmc->opp)
 322		goto err_opp;
 323
 324	idx = dmc->opp_count - 1;
 325	for (i = 0, freq = ULONG_MAX; i < dmc->opp_count; i++, freq--) {
 326		struct dev_pm_opp *opp;
 327
 328		opp = dev_pm_opp_find_freq_floor(dmc->dev, &freq);
 329		if (IS_ERR(opp))
 330			goto err_opp;
 331
 332		dmc->opp[idx - i].freq_hz = freq;
 333		dmc->opp[idx - i].volt_uv = dev_pm_opp_get_voltage(opp);
 334
 335		dev_pm_opp_put(opp);
 336	}
 337
 338	return 0;
 339
 340err_opp:
 341	dev_pm_opp_of_remove_table(dmc->dev);
 342
 343	return -EINVAL;
 344}
 345
 346/**
 347 * exynos5_set_bypass_dram_timings() - Low-level changes of the DRAM timings
 348 * @dmc:	device for which the new settings is going to be applied
 349 * @param:	DRAM parameters which passes timing data
 350 *
 351 * Low-level function for changing timings for DRAM memory clocking from
 352 * 'bypass' clock source (fixed frequency @400MHz).
 353 * It uses timing bank registers set 1.
 354 */
 355static void exynos5_set_bypass_dram_timings(struct exynos5_dmc *dmc)
 356{
 357	writel(EXYNOS5_AREF_NORMAL,
 358	       dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGAREF);
 359
 360	writel(dmc->bypass_timing_row,
 361	       dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGROW1);
 362	writel(dmc->bypass_timing_row,
 363	       dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGROW1);
 364	writel(dmc->bypass_timing_data,
 365	       dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGDATA1);
 366	writel(dmc->bypass_timing_data,
 367	       dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGDATA1);
 368	writel(dmc->bypass_timing_power,
 369	       dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGPOWER1);
 370	writel(dmc->bypass_timing_power,
 371	       dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGPOWER1);
 372}
 373
 374/**
 375 * exynos5_dram_change_timings() - Low-level changes of the DRAM final timings
 376 * @dmc:	device for which the new settings is going to be applied
 377 * @target_rate:	target frequency of the DMC
 378 *
 379 * Low-level function for changing timings for DRAM memory operating from main
 380 * clock source (BPLL), which can have different frequencies. Thus, each
 381 * frequency must have corresponding timings register values in order to keep
 382 * the needed delays.
 383 * It uses timing bank registers set 0.
 384 */
 385static int exynos5_dram_change_timings(struct exynos5_dmc *dmc,
 386				       unsigned long target_rate)
 387{
 388	int idx;
 389
 390	for (idx = dmc->opp_count - 1; idx >= 0; idx--)
 391		if (dmc->opp[idx].freq_hz <= target_rate)
 392			break;
 393
 394	if (idx < 0)
 395		return -EINVAL;
 396
 397	writel(EXYNOS5_AREF_NORMAL,
 398	       dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGAREF);
 399
 400	writel(dmc->timing_row[idx],
 401	       dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGROW0);
 402	writel(dmc->timing_row[idx],
 403	       dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGROW0);
 404	writel(dmc->timing_data[idx],
 405	       dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGDATA0);
 406	writel(dmc->timing_data[idx],
 407	       dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGDATA0);
 408	writel(dmc->timing_power[idx],
 409	       dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGPOWER0);
 410	writel(dmc->timing_power[idx],
 411	       dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGPOWER0);
 412
 413	return 0;
 414}
 415
 416/**
 417 * exynos5_dmc_align_target_voltage() - Sets the final voltage for the DMC
 418 * @dmc:	device for which it is going to be set
 419 * @target_volt:	new voltage which is chosen to be final
 420 *
 421 * Function tries to align voltage to the safe level for 'normal' mode.
 422 * It checks the need of higher voltage and changes the value. The target
 423 * voltage might be lower that currently set and still the system will be
 424 * stable.
 425 */
 426static int exynos5_dmc_align_target_voltage(struct exynos5_dmc *dmc,
 427					    unsigned long target_volt)
 428{
 429	int ret = 0;
 430
 431	if (dmc->curr_volt <= target_volt)
 432		return 0;
 433
 434	ret = regulator_set_voltage(dmc->vdd_mif, target_volt,
 435				    target_volt);
 436	if (!ret)
 437		dmc->curr_volt = target_volt;
 438
 439	return ret;
 440}
 441
 442/**
 443 * exynos5_dmc_align_bypass_voltage() - Sets the voltage for the DMC
 444 * @dmc:	device for which it is going to be set
 445 * @target_volt:	new voltage which is chosen to be final
 446 *
 447 * Function tries to align voltage to the safe level for the 'bypass' mode.
 448 * It checks the need of higher voltage and changes the value.
 449 * The target voltage must not be less than currently needed, because
 450 * for current frequency the device might become unstable.
 451 */
 452static int exynos5_dmc_align_bypass_voltage(struct exynos5_dmc *dmc,
 453					    unsigned long target_volt)
 454{
 455	int ret = 0;
 456	unsigned long bypass_volt = dmc->opp_bypass.volt_uv;
 457
 458	target_volt = max(bypass_volt, target_volt);
 459
 460	if (dmc->curr_volt >= target_volt)
 461		return 0;
 462
 463	ret = regulator_set_voltage(dmc->vdd_mif, target_volt,
 464				    target_volt);
 465	if (!ret)
 466		dmc->curr_volt = target_volt;
 467
 468	return ret;
 469}
 470
 471/**
 472 * exynos5_dmc_align_bypass_dram_timings() - Chooses and sets DRAM timings
 473 * @dmc:	device for which it is going to be set
 474 * @target_rate:	new frequency which is chosen to be final
 475 *
 476 * Function changes the DRAM timings for the temporary 'bypass' mode.
 477 */
 478static int exynos5_dmc_align_bypass_dram_timings(struct exynos5_dmc *dmc,
 479						 unsigned long target_rate)
 480{
 481	int idx = find_target_freq_idx(dmc, target_rate);
 482
 483	if (idx < 0)
 484		return -EINVAL;
 485
 486	exynos5_set_bypass_dram_timings(dmc);
 487
 488	return 0;
 489}
 490
 491/**
 492 * exynos5_dmc_switch_to_bypass_configuration() - Switching to temporary clock
 493 * @dmc:	DMC device for which the switching is going to happen
 494 * @target_rate:	new frequency which is going to be set as a final
 495 * @target_volt:	new voltage which is going to be set as a final
 496 *
 497 * Function configures DMC and clocks for operating in temporary 'bypass' mode.
 498 * This mode is used only temporary but if required, changes voltage and timings
 499 * for DRAM chips. It switches the main clock to stable clock source for the
 500 * period of the main PLL reconfiguration.
 501 */
 502static int
 503exynos5_dmc_switch_to_bypass_configuration(struct exynos5_dmc *dmc,
 504					   unsigned long target_rate,
 505					   unsigned long target_volt)
 506{
 507	int ret;
 508
 509	/*
 510	 * Having higher voltage for a particular frequency does not harm
 511	 * the chip. Use it for the temporary frequency change when one
 512	 * voltage manipulation might be avoided.
 513	 */
 514	ret = exynos5_dmc_align_bypass_voltage(dmc, target_volt);
 515	if (ret)
 516		return ret;
 517
 518	/*
 519	 * Longer delays for DRAM does not cause crash, the opposite does.
 520	 */
 521	ret = exynos5_dmc_align_bypass_dram_timings(dmc, target_rate);
 522	if (ret)
 523		return ret;
 524
 525	/*
 526	 * Delays are long enough, so use them for the new coming clock.
 527	 */
 528	ret = exynos5_switch_timing_regs(dmc, USE_MX_MSPLL_TIMINGS);
 529
 530	return ret;
 531}
 532
 533/**
 534 * exynos5_dmc_change_freq_and_volt() - Changes voltage and frequency of the DMC
 535 * using safe procedure
 536 * @dmc:	device for which the frequency is going to be changed
 537 * @target_rate:	requested new frequency
 538 * @target_volt:	requested voltage which corresponds to the new frequency
 539 *
 540 * The DMC frequency change procedure requires a few steps.
 541 * The main requirement is to change the clock source in the clk mux
 542 * for the time of main clock PLL locking. The assumption is that the
 543 * alternative clock source set as parent is stable.
 544 * The second parent's clock frequency is fixed to 400MHz, it is named 'bypass'
 545 * clock. This requires alignment in DRAM timing parameters for the new
 546 * T-period. There is two bank sets for keeping DRAM
 547 * timings: set 0 and set 1. The set 0 is used when main clock source is
 548 * chosen. The 2nd set of regs is used for 'bypass' clock. Switching between
 549 * the two bank sets is part of the process.
 550 * The voltage must also be aligned to the minimum required level. There is
 551 * this intermediate step with switching to 'bypass' parent clock source.
 552 * if the old voltage is lower, it requires an increase of the voltage level.
 553 * The complexity of the voltage manipulation is hidden in low level function.
 554 * In this function there is last alignment of the voltage level at the end.
 555 */
 556static int
 557exynos5_dmc_change_freq_and_volt(struct exynos5_dmc *dmc,
 558				 unsigned long target_rate,
 559				 unsigned long target_volt)
 560{
 561	int ret;
 562
 563	ret = exynos5_dmc_switch_to_bypass_configuration(dmc, target_rate,
 564							 target_volt);
 565	if (ret)
 566		return ret;
 567
 568	/*
 569	 * Voltage is set at least to a level needed for this frequency,
 570	 * so switching clock source is safe now.
 571	 */
 572	clk_prepare_enable(dmc->fout_spll);
 573	clk_prepare_enable(dmc->mout_spll);
 574	clk_prepare_enable(dmc->mout_mx_mspll_ccore);
 575
 576	ret = clk_set_parent(dmc->mout_mclk_cdrex, dmc->mout_mx_mspll_ccore);
 577	if (ret)
 578		goto disable_clocks;
 579
 580	/*
 581	 * We are safe to increase the timings for current bypass frequency.
 582	 * Thanks to this the settings will be ready for the upcoming clock
 583	 * source change.
 584	 */
 585	exynos5_dram_change_timings(dmc, target_rate);
 586
 587	clk_set_rate(dmc->fout_bpll, target_rate);
 588
 589	ret = exynos5_switch_timing_regs(dmc, USE_BPLL_TIMINGS);
 590	if (ret)
 591		goto disable_clocks;
 592
 593	ret = clk_set_parent(dmc->mout_mclk_cdrex, dmc->mout_bpll);
 594	if (ret)
 595		goto disable_clocks;
 596
 597	/*
 598	 * Make sure if the voltage is not from 'bypass' settings and align to
 599	 * the right level for power efficiency.
 600	 */
 601	ret = exynos5_dmc_align_target_voltage(dmc, target_volt);
 602
 603disable_clocks:
 604	clk_disable_unprepare(dmc->mout_mx_mspll_ccore);
 605	clk_disable_unprepare(dmc->mout_spll);
 606	clk_disable_unprepare(dmc->fout_spll);
 607
 608	return ret;
 609}
 610
 611/**
 612 * exynos5_dmc_get_volt_freq() - Gets the frequency and voltage from the OPP
 613 * table.
 614 * @dmc:	device for which the frequency is going to be changed
 615 * @freq:       requested frequency in KHz
 616 * @target_rate:	returned frequency which is the same or lower than
 617 *			requested
 618 * @target_volt:	returned voltage which corresponds to the returned
 619 *			frequency
 620 *
 621 * Function gets requested frequency and checks OPP framework for needed
 622 * frequency and voltage. It populates the values 'target_rate' and
 623 * 'target_volt' or returns error value when OPP framework fails.
 624 */
 625static int exynos5_dmc_get_volt_freq(struct exynos5_dmc *dmc,
 626				     unsigned long *freq,
 627				     unsigned long *target_rate,
 628				     unsigned long *target_volt, u32 flags)
 629{
 630	struct dev_pm_opp *opp;
 631
 632	opp = devfreq_recommended_opp(dmc->dev, freq, flags);
 633	if (IS_ERR(opp))
 634		return PTR_ERR(opp);
 635
 636	*target_rate = dev_pm_opp_get_freq(opp);
 637	*target_volt = dev_pm_opp_get_voltage(opp);
 638	dev_pm_opp_put(opp);
 639
 640	return 0;
 641}
 642
 643/**
 644 * exynos5_dmc_target() - Function responsible for changing frequency of DMC
 645 * @dev:	device for which the frequency is going to be changed
 646 * @freq:	requested frequency in KHz
 647 * @flags:	flags provided for this frequency change request
 648 *
 649 * An entry function provided to the devfreq framework which provides frequency
 650 * change of the DMC. The function gets the possible rate from OPP table based
 651 * on requested frequency. It calls the next function responsible for the
 652 * frequency and voltage change. In case of failure, does not set 'curr_rate'
 653 * and returns error value to the framework.
 654 */
 655static int exynos5_dmc_target(struct device *dev, unsigned long *freq,
 656			      u32 flags)
 657{
 658	struct exynos5_dmc *dmc = dev_get_drvdata(dev);
 659	unsigned long target_rate = 0;
 660	unsigned long target_volt = 0;
 661	int ret;
 662
 663	ret = exynos5_dmc_get_volt_freq(dmc, freq, &target_rate, &target_volt,
 664					flags);
 665
 666	if (ret)
 667		return ret;
 668
 669	if (target_rate == dmc->curr_rate)
 670		return 0;
 671
 672	mutex_lock(&dmc->lock);
 673
 674	ret = exynos5_dmc_change_freq_and_volt(dmc, target_rate, target_volt);
 675
 676	if (ret) {
 677		mutex_unlock(&dmc->lock);
 678		return ret;
 679	}
 680
 681	dmc->curr_rate = target_rate;
 682
 683	mutex_unlock(&dmc->lock);
 684	return 0;
 685}
 686
 687/**
 688 * exynos5_counters_get() - Gets the performance counters values.
 689 * @dmc:	device for which the counters are going to be checked
 690 * @load_count:	variable which is populated with counter value
 691 * @total_count:	variable which is used as 'wall clock' reference
 692 *
 693 * Function which provides performance counters values. It sums up counters for
 694 * two DMC channels. The 'total_count' is used as a reference and max value.
 695 * The ratio 'load_count/total_count' shows the busy percentage [0%, 100%].
 696 */
 697static int exynos5_counters_get(struct exynos5_dmc *dmc,
 698				unsigned long *load_count,
 699				unsigned long *total_count)
 700{
 701	unsigned long total = 0;
 702	struct devfreq_event_data event;
 703	int ret, i;
 704
 705	*load_count = 0;
 706
 707	/* Take into account only read+write counters, but stop all */
 708	for (i = 0; i < dmc->num_counters; i++) {
 709		if (!dmc->counter[i])
 710			continue;
 711
 712		ret = devfreq_event_get_event(dmc->counter[i], &event);
 713		if (ret < 0)
 714			return ret;
 715
 716		*load_count += event.load_count;
 717
 718		if (total < event.total_count)
 719			total = event.total_count;
 720	}
 721
 722	*total_count = total;
 723
 724	return 0;
 725}
 726
 727/**
 728 * exynos5_dmc_start_perf_events() - Setup and start performance event counters
 729 * @dmc:	device for which the counters are going to be checked
 730 * @beg_value:	initial value for the counter
 731 *
 732 * Function which enables needed counters, interrupts and sets initial values
 733 * then starts the counters.
 734 */
 735static void exynos5_dmc_start_perf_events(struct exynos5_dmc *dmc,
 736					  u32 beg_value)
 737{
 738	/* Enable interrupts for counter 2 */
 739	writel(PERF_CNT2, dmc->base_drexi0 + DREX_INTENS_PPC);
 740	writel(PERF_CNT2, dmc->base_drexi1 + DREX_INTENS_PPC);
 741
 742	/* Enable counter 2 and CCNT  */
 743	writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi0 + DREX_CNTENS_PPC);
 744	writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi1 + DREX_CNTENS_PPC);
 745
 746	/* Clear overflow flag for all counters */
 747	writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi0 + DREX_FLAG_PPC);
 748	writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi1 + DREX_FLAG_PPC);
 749
 750	/* Reset all counters */
 751	writel(CC_RESET | PPC_COUNTER_RESET, dmc->base_drexi0 + DREX_PMNC_PPC);
 752	writel(CC_RESET | PPC_COUNTER_RESET, dmc->base_drexi1 + DREX_PMNC_PPC);
 753
 754	/*
 755	 * Set start value for the counters, the number of samples that
 756	 * will be gathered is calculated as: 0xffffffff - beg_value
 757	 */
 758	writel(beg_value, dmc->base_drexi0 + DREX_PMCNT2_PPC);
 759	writel(beg_value, dmc->base_drexi1 + DREX_PMCNT2_PPC);
 760
 761	/* Start all counters */
 762	writel(PPC_ENABLE, dmc->base_drexi0 + DREX_PMNC_PPC);
 763	writel(PPC_ENABLE, dmc->base_drexi1 + DREX_PMNC_PPC);
 764}
 765
 766/**
 767 * exynos5_dmc_perf_events_calc() - Calculate utilization
 768 * @dmc:	device for which the counters are going to be checked
 769 * @diff_ts:	time between last interrupt and current one
 770 *
 771 * Function which calculates needed utilization for the devfreq governor.
 772 * It prepares values for 'busy_time' and 'total_time' based on elapsed time
 773 * between interrupts, which approximates utilization.
 774 */
 775static void exynos5_dmc_perf_events_calc(struct exynos5_dmc *dmc, u64 diff_ts)
 776{
 777	/*
 778	 * This is a simple algorithm for managing traffic on DMC.
 779	 * When there is almost no load the counters overflow every 4s,
 780	 * no mater the DMC frequency.
 781	 * The high load might be approximated using linear function.
 782	 * Knowing that, simple calculation can provide 'busy_time' and
 783	 * 'total_time' to the devfreq governor which picks up target
 784	 * frequency.
 785	 * We want a fast ramp up and slow decay in frequency change function.
 786	 */
 787	if (diff_ts < PERF_EVENT_UP_DOWN_THRESHOLD) {
 788		/*
 789		 * Set higher utilization for the simple_ondemand governor.
 790		 * The governor should increase the frequency of the DMC.
 791		 */
 792		dmc->load = 70;
 793		dmc->total = 100;
 794	} else {
 795		/*
 796		 * Set low utilization for the simple_ondemand governor.
 797		 * The governor should decrease the frequency of the DMC.
 798		 */
 799		dmc->load = 35;
 800		dmc->total = 100;
 801	}
 802
 803	dev_dbg(dmc->dev, "diff_ts=%llu\n", diff_ts);
 804}
 805
 806/**
 807 * exynos5_dmc_perf_events_check() - Checks the status of the counters
 808 * @dmc:	device for which the counters are going to be checked
 809 *
 810 * Function which is called from threaded IRQ to check the counters state
 811 * and to call approximation for the needed utilization.
 812 */
 813static void exynos5_dmc_perf_events_check(struct exynos5_dmc *dmc)
 814{
 815	u32 val;
 816	u64 diff_ts, ts;
 817
 818	ts = ktime_get_ns();
 819
 820	/* Stop all counters */
 821	writel(0, dmc->base_drexi0 + DREX_PMNC_PPC);
 822	writel(0, dmc->base_drexi1 + DREX_PMNC_PPC);
 823
 824	/* Check the source in interrupt flag registers (which channel) */
 825	val = readl(dmc->base_drexi0 + DREX_FLAG_PPC);
 826	if (val) {
 827		diff_ts = ts - dmc->last_overflow_ts[0];
 828		dmc->last_overflow_ts[0] = ts;
 829		dev_dbg(dmc->dev, "drex0 0xE050 val= 0x%08x\n",  val);
 830	} else {
 831		val = readl(dmc->base_drexi1 + DREX_FLAG_PPC);
 832		diff_ts = ts - dmc->last_overflow_ts[1];
 833		dmc->last_overflow_ts[1] = ts;
 834		dev_dbg(dmc->dev, "drex1 0xE050 val= 0x%08x\n",  val);
 835	}
 836
 837	exynos5_dmc_perf_events_calc(dmc, diff_ts);
 838
 839	exynos5_dmc_start_perf_events(dmc, PERF_COUNTER_START_VALUE);
 840}
 841
 842/**
 843 * exynos5_dmc_enable_perf_events() - Enable performance events
 844 * @dmc:	device for which the counters are going to be checked
 845 *
 846 * Function which is setup needed environment and enables counters.
 847 */
 848static void exynos5_dmc_enable_perf_events(struct exynos5_dmc *dmc)
 849{
 850	u64 ts;
 851
 852	/* Enable Performance Event Clock */
 853	writel(PEREV_CLK_EN, dmc->base_drexi0 + DREX_PPCCLKCON);
 854	writel(PEREV_CLK_EN, dmc->base_drexi1 + DREX_PPCCLKCON);
 855
 856	/* Select read transfers as performance event2 */
 857	writel(READ_TRANSFER_CH0, dmc->base_drexi0 + DREX_PEREV2CONFIG);
 858	writel(READ_TRANSFER_CH1, dmc->base_drexi1 + DREX_PEREV2CONFIG);
 859
 860	ts = ktime_get_ns();
 861	dmc->last_overflow_ts[0] = ts;
 862	dmc->last_overflow_ts[1] = ts;
 863
 864	/* Devfreq shouldn't be faster than initialization, play safe though. */
 865	dmc->load = 99;
 866	dmc->total = 100;
 867}
 868
 869/**
 870 * exynos5_dmc_disable_perf_events() - Disable performance events
 871 * @dmc:	device for which the counters are going to be checked
 872 *
 873 * Function which stops, disables performance event counters and interrupts.
 874 */
 875static void exynos5_dmc_disable_perf_events(struct exynos5_dmc *dmc)
 876{
 877	/* Stop all counters */
 878	writel(0, dmc->base_drexi0 + DREX_PMNC_PPC);
 879	writel(0, dmc->base_drexi1 + DREX_PMNC_PPC);
 880
 881	/* Disable interrupts for counter 2 */
 882	writel(PERF_CNT2, dmc->base_drexi0 + DREX_INTENC_PPC);
 883	writel(PERF_CNT2, dmc->base_drexi1 + DREX_INTENC_PPC);
 884
 885	/* Disable counter 2 and CCNT  */
 886	writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi0 + DREX_CNTENC_PPC);
 887	writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi1 + DREX_CNTENC_PPC);
 888
 889	/* Clear overflow flag for all counters */
 890	writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi0 + DREX_FLAG_PPC);
 891	writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi1 + DREX_FLAG_PPC);
 892}
 893
 894/**
 895 * exynos5_dmc_get_status() - Read current DMC performance statistics.
 896 * @dev:	device for which the statistics are requested
 897 * @stat:	structure which has statistic fields
 898 *
 899 * Function reads the DMC performance counters and calculates 'busy_time'
 900 * and 'total_time'. To protect from overflow, the values are shifted right
 901 * by 10. After read out the counters are setup to count again.
 902 */
 903static int exynos5_dmc_get_status(struct device *dev,
 904				  struct devfreq_dev_status *stat)
 905{
 906	struct exynos5_dmc *dmc = dev_get_drvdata(dev);
 907	unsigned long load, total;
 908	int ret;
 909
 910	if (dmc->in_irq_mode) {
 911		stat->current_frequency = dmc->curr_rate;
 912		stat->busy_time = dmc->load;
 913		stat->total_time = dmc->total;
 914	} else {
 915		ret = exynos5_counters_get(dmc, &load, &total);
 916		if (ret < 0)
 917			return -EINVAL;
 918
 919		/* To protect from overflow, divide by 1024 */
 920		stat->busy_time = load >> 10;
 921		stat->total_time = total >> 10;
 922
 923		ret = exynos5_counters_set_event(dmc);
 924		if (ret < 0) {
 925			dev_err(dev, "could not set event counter\n");
 926			return ret;
 927		}
 928	}
 929
 930	return 0;
 931}
 932
 933/**
 934 * exynos5_dmc_get_cur_freq() - Function returns current DMC frequency
 935 * @dev:	device for which the framework checks operating frequency
 936 * @freq:	returned frequency value
 937 *
 938 * It returns the currently used frequency of the DMC. The real operating
 939 * frequency might be lower when the clock source value could not be divided
 940 * to the requested value.
 941 */
 942static int exynos5_dmc_get_cur_freq(struct device *dev, unsigned long *freq)
 943{
 944	struct exynos5_dmc *dmc = dev_get_drvdata(dev);
 945
 946	mutex_lock(&dmc->lock);
 947	*freq = dmc->curr_rate;
 948	mutex_unlock(&dmc->lock);
 949
 950	return 0;
 951}
 952
 953/**
 954 * exynos5_dmc_df_profile - Devfreq governor's profile structure
 955 *
 956 * It provides to the devfreq framework needed functions and polling period.
 957 */
 958static struct devfreq_dev_profile exynos5_dmc_df_profile = {
 959	.timer = DEVFREQ_TIMER_DELAYED,
 960	.target = exynos5_dmc_target,
 961	.get_dev_status = exynos5_dmc_get_status,
 962	.get_cur_freq = exynos5_dmc_get_cur_freq,
 963};
 964
 965/**
 966 * exynos5_dmc_align_initial_frequency() - Align initial frequency value
 967 * @dmc:	device for which the frequency is going to be set
 968 * @bootloader_init_freq:	initial frequency set by the bootloader in KHz
 969 *
 970 * The initial bootloader frequency, which is present during boot, might be
 971 * different that supported frequency values in the driver. It is possible
 972 * due to different PLL settings or used PLL as a source.
 973 * This function provides the 'initial_freq' for the devfreq framework
 974 * statistics engine which supports only registered values. Thus, some alignment
 975 * must be made.
 976 */
 977static unsigned long
 978exynos5_dmc_align_init_freq(struct exynos5_dmc *dmc,
 979			    unsigned long bootloader_init_freq)
 980{
 981	unsigned long aligned_freq;
 982	int idx;
 983
 984	idx = find_target_freq_idx(dmc, bootloader_init_freq);
 985	if (idx >= 0)
 986		aligned_freq = dmc->opp[idx].freq_hz;
 987	else
 988		aligned_freq = dmc->opp[dmc->opp_count - 1].freq_hz;
 989
 990	return aligned_freq;
 991}
 992
 993/**
 994 * create_timings_aligned() - Create register values and align with standard
 995 * @dmc:	device for which the frequency is going to be set
 996 * @idx:	speed bin in the OPP table
 997 * @clk_period_ps:	the period of the clock, known as tCK
 998 *
 999 * The function calculates timings and creates a register value ready for
1000 * a frequency transition. The register contains a few timings. They are
1001 * shifted by a known offset. The timing value is calculated based on memory
1002 * specyfication: minimal time required and minimal cycles required.
1003 */
1004static int create_timings_aligned(struct exynos5_dmc *dmc, u32 *reg_timing_row,
1005				  u32 *reg_timing_data, u32 *reg_timing_power,
1006				  u32 clk_period_ps)
1007{
1008	u32 val;
1009	const struct timing_reg *reg;
1010
1011	if (clk_period_ps == 0)
1012		return -EINVAL;
1013
1014	*reg_timing_row = 0;
1015	*reg_timing_data = 0;
1016	*reg_timing_power = 0;
1017
1018	val = dmc->timings->tRFC / clk_period_ps;
1019	val += dmc->timings->tRFC % clk_period_ps ? 1 : 0;
1020	val = max(val, dmc->min_tck->tRFC);
1021	reg = &timing_row[0];
1022	*reg_timing_row |= TIMING_VAL2REG(reg, val);
1023
1024	val = dmc->timings->tRRD / clk_period_ps;
1025	val += dmc->timings->tRRD % clk_period_ps ? 1 : 0;
1026	val = max(val, dmc->min_tck->tRRD);
1027	reg = &timing_row[1];
1028	*reg_timing_row |= TIMING_VAL2REG(reg, val);
1029
1030	val = dmc->timings->tRPab / clk_period_ps;
1031	val += dmc->timings->tRPab % clk_period_ps ? 1 : 0;
1032	val = max(val, dmc->min_tck->tRPab);
1033	reg = &timing_row[2];
1034	*reg_timing_row |= TIMING_VAL2REG(reg, val);
1035
1036	val = dmc->timings->tRCD / clk_period_ps;
1037	val += dmc->timings->tRCD % clk_period_ps ? 1 : 0;
1038	val = max(val, dmc->min_tck->tRCD);
1039	reg = &timing_row[3];
1040	*reg_timing_row |= TIMING_VAL2REG(reg, val);
1041
1042	val = dmc->timings->tRC / clk_period_ps;
1043	val += dmc->timings->tRC % clk_period_ps ? 1 : 0;
1044	val = max(val, dmc->min_tck->tRC);
1045	reg = &timing_row[4];
1046	*reg_timing_row |= TIMING_VAL2REG(reg, val);
1047
1048	val = dmc->timings->tRAS / clk_period_ps;
1049	val += dmc->timings->tRAS % clk_period_ps ? 1 : 0;
1050	val = max(val, dmc->min_tck->tRAS);
1051	reg = &timing_row[5];
1052	*reg_timing_row |= TIMING_VAL2REG(reg, val);
1053
1054	/* data related timings */
1055	val = dmc->timings->tWTR / clk_period_ps;
1056	val += dmc->timings->tWTR % clk_period_ps ? 1 : 0;
1057	val = max(val, dmc->min_tck->tWTR);
1058	reg = &timing_data[0];
1059	*reg_timing_data |= TIMING_VAL2REG(reg, val);
1060
1061	val = dmc->timings->tWR / clk_period_ps;
1062	val += dmc->timings->tWR % clk_period_ps ? 1 : 0;
1063	val = max(val, dmc->min_tck->tWR);
1064	reg = &timing_data[1];
1065	*reg_timing_data |= TIMING_VAL2REG(reg, val);
1066
1067	val = dmc->timings->tRTP / clk_period_ps;
1068	val += dmc->timings->tRTP % clk_period_ps ? 1 : 0;
1069	val = max(val, dmc->min_tck->tRTP);
1070	reg = &timing_data[2];
1071	*reg_timing_data |= TIMING_VAL2REG(reg, val);
1072
1073	val = dmc->timings->tW2W_C2C / clk_period_ps;
1074	val += dmc->timings->tW2W_C2C % clk_period_ps ? 1 : 0;
1075	val = max(val, dmc->min_tck->tW2W_C2C);
1076	reg = &timing_data[3];
1077	*reg_timing_data |= TIMING_VAL2REG(reg, val);
1078
1079	val = dmc->timings->tR2R_C2C / clk_period_ps;
1080	val += dmc->timings->tR2R_C2C % clk_period_ps ? 1 : 0;
1081	val = max(val, dmc->min_tck->tR2R_C2C);
1082	reg = &timing_data[4];
1083	*reg_timing_data |= TIMING_VAL2REG(reg, val);
1084
1085	val = dmc->timings->tWL / clk_period_ps;
1086	val += dmc->timings->tWL % clk_period_ps ? 1 : 0;
1087	val = max(val, dmc->min_tck->tWL);
1088	reg = &timing_data[5];
1089	*reg_timing_data |= TIMING_VAL2REG(reg, val);
1090
1091	val = dmc->timings->tDQSCK / clk_period_ps;
1092	val += dmc->timings->tDQSCK % clk_period_ps ? 1 : 0;
1093	val = max(val, dmc->min_tck->tDQSCK);
1094	reg = &timing_data[6];
1095	*reg_timing_data |= TIMING_VAL2REG(reg, val);
1096
1097	val = dmc->timings->tRL / clk_period_ps;
1098	val += dmc->timings->tRL % clk_period_ps ? 1 : 0;
1099	val = max(val, dmc->min_tck->tRL);
1100	reg = &timing_data[7];
1101	*reg_timing_data |= TIMING_VAL2REG(reg, val);
1102
1103	/* power related timings */
1104	val = dmc->timings->tFAW / clk_period_ps;
1105	val += dmc->timings->tFAW % clk_period_ps ? 1 : 0;
1106	val = max(val, dmc->min_tck->tFAW);
1107	reg = &timing_power[0];
1108	*reg_timing_power |= TIMING_VAL2REG(reg, val);
1109
1110	val = dmc->timings->tXSR / clk_period_ps;
1111	val += dmc->timings->tXSR % clk_period_ps ? 1 : 0;
1112	val = max(val, dmc->min_tck->tXSR);
1113	reg = &timing_power[1];
1114	*reg_timing_power |= TIMING_VAL2REG(reg, val);
1115
1116	val = dmc->timings->tXP / clk_period_ps;
1117	val += dmc->timings->tXP % clk_period_ps ? 1 : 0;
1118	val = max(val, dmc->min_tck->tXP);
1119	reg = &timing_power[2];
1120	*reg_timing_power |= TIMING_VAL2REG(reg, val);
1121
1122	val = dmc->timings->tCKE / clk_period_ps;
1123	val += dmc->timings->tCKE % clk_period_ps ? 1 : 0;
1124	val = max(val, dmc->min_tck->tCKE);
1125	reg = &timing_power[3];
1126	*reg_timing_power |= TIMING_VAL2REG(reg, val);
1127
1128	val = dmc->timings->tMRD / clk_period_ps;
1129	val += dmc->timings->tMRD % clk_period_ps ? 1 : 0;
1130	val = max(val, dmc->min_tck->tMRD);
1131	reg = &timing_power[4];
1132	*reg_timing_power |= TIMING_VAL2REG(reg, val);
1133
1134	return 0;
1135}
1136
1137/**
1138 * of_get_dram_timings() - helper function for parsing DT settings for DRAM
1139 * @dmc:        device for which the frequency is going to be set
1140 *
1141 * The function parses DT entries with DRAM information.
1142 */
1143static int of_get_dram_timings(struct exynos5_dmc *dmc)
1144{
1145	int ret = 0;
1146	int idx;
1147	struct device_node *np_ddr;
1148	u32 freq_mhz, clk_period_ps;
1149
1150	np_ddr = of_parse_phandle(dmc->dev->of_node, "device-handle", 0);
1151	if (!np_ddr) {
1152		dev_warn(dmc->dev, "could not find 'device-handle' in DT\n");
1153		return -EINVAL;
1154	}
1155
1156	dmc->timing_row = devm_kmalloc_array(dmc->dev, TIMING_COUNT,
1157					     sizeof(u32), GFP_KERNEL);
1158	if (!dmc->timing_row)
1159		return -ENOMEM;
1160
1161	dmc->timing_data = devm_kmalloc_array(dmc->dev, TIMING_COUNT,
1162					      sizeof(u32), GFP_KERNEL);
1163	if (!dmc->timing_data)
1164		return -ENOMEM;
1165
1166	dmc->timing_power = devm_kmalloc_array(dmc->dev, TIMING_COUNT,
1167					       sizeof(u32), GFP_KERNEL);
1168	if (!dmc->timing_power)
1169		return -ENOMEM;
1170
1171	dmc->timings = of_lpddr3_get_ddr_timings(np_ddr, dmc->dev,
1172						 DDR_TYPE_LPDDR3,
1173						 &dmc->timings_arr_size);
1174	if (!dmc->timings) {
1175		of_node_put(np_ddr);
1176		dev_warn(dmc->dev, "could not get timings from DT\n");
1177		return -EINVAL;
1178	}
1179
1180	dmc->min_tck = of_lpddr3_get_min_tck(np_ddr, dmc->dev);
1181	if (!dmc->min_tck) {
1182		of_node_put(np_ddr);
1183		dev_warn(dmc->dev, "could not get tck from DT\n");
1184		return -EINVAL;
1185	}
1186
1187	/* Sorted array of OPPs with frequency ascending */
1188	for (idx = 0; idx < dmc->opp_count; idx++) {
1189		freq_mhz = dmc->opp[idx].freq_hz / 1000000;
1190		clk_period_ps = 1000000 / freq_mhz;
1191
1192		ret = create_timings_aligned(dmc, &dmc->timing_row[idx],
1193					     &dmc->timing_data[idx],
1194					     &dmc->timing_power[idx],
1195					     clk_period_ps);
1196	}
1197
1198	of_node_put(np_ddr);
1199
1200	/* Take the highest frequency's timings as 'bypass' */
1201	dmc->bypass_timing_row = dmc->timing_row[idx - 1];
1202	dmc->bypass_timing_data = dmc->timing_data[idx - 1];
1203	dmc->bypass_timing_power = dmc->timing_power[idx - 1];
1204
1205	return ret;
1206}
1207
1208/**
1209 * exynos5_dmc_init_clks() - Initialize clocks needed for DMC operation.
1210 * @dmc:	DMC structure containing needed fields
1211 *
1212 * Get the needed clocks defined in DT device, enable and set the right parents.
1213 * Read current frequency and initialize the initial rate for governor.
1214 */
1215static int exynos5_dmc_init_clks(struct exynos5_dmc *dmc)
1216{
1217	int ret;
1218	unsigned long target_volt = 0;
1219	unsigned long target_rate = 0;
1220	unsigned int tmp;
1221
1222	dmc->fout_spll = devm_clk_get(dmc->dev, "fout_spll");
1223	if (IS_ERR(dmc->fout_spll))
1224		return PTR_ERR(dmc->fout_spll);
1225
1226	dmc->fout_bpll = devm_clk_get(dmc->dev, "fout_bpll");
1227	if (IS_ERR(dmc->fout_bpll))
1228		return PTR_ERR(dmc->fout_bpll);
1229
1230	dmc->mout_mclk_cdrex = devm_clk_get(dmc->dev, "mout_mclk_cdrex");
1231	if (IS_ERR(dmc->mout_mclk_cdrex))
1232		return PTR_ERR(dmc->mout_mclk_cdrex);
1233
1234	dmc->mout_bpll = devm_clk_get(dmc->dev, "mout_bpll");
1235	if (IS_ERR(dmc->mout_bpll))
1236		return PTR_ERR(dmc->mout_bpll);
1237
1238	dmc->mout_mx_mspll_ccore = devm_clk_get(dmc->dev,
1239						"mout_mx_mspll_ccore");
1240	if (IS_ERR(dmc->mout_mx_mspll_ccore))
1241		return PTR_ERR(dmc->mout_mx_mspll_ccore);
1242
1243	dmc->mout_spll = devm_clk_get(dmc->dev, "ff_dout_spll2");
1244	if (IS_ERR(dmc->mout_spll)) {
1245		dmc->mout_spll = devm_clk_get(dmc->dev, "mout_sclk_spll");
1246		if (IS_ERR(dmc->mout_spll))
1247			return PTR_ERR(dmc->mout_spll);
1248	}
1249
1250	/*
1251	 * Convert frequency to KHz values and set it for the governor.
1252	 */
1253	dmc->curr_rate = clk_get_rate(dmc->mout_mclk_cdrex);
1254	dmc->curr_rate = exynos5_dmc_align_init_freq(dmc, dmc->curr_rate);
1255	exynos5_dmc_df_profile.initial_freq = dmc->curr_rate;
1256
1257	ret = exynos5_dmc_get_volt_freq(dmc, &dmc->curr_rate, &target_rate,
1258					&target_volt, 0);
1259	if (ret)
1260		return ret;
1261
1262	dmc->curr_volt = target_volt;
1263
1264	clk_set_parent(dmc->mout_mx_mspll_ccore, dmc->mout_spll);
1265
1266	dmc->bypass_rate = clk_get_rate(dmc->mout_mx_mspll_ccore);
1267
1268	clk_prepare_enable(dmc->fout_bpll);
1269	clk_prepare_enable(dmc->mout_bpll);
1270
1271	/*
1272	 * Some bootloaders do not set clock routes correctly.
1273	 * Stop one path in clocks to PHY.
1274	 */
1275	regmap_read(dmc->clk_regmap, CDREX_LPDDR3PHY_CLKM_SRC, &tmp);
1276	tmp &= ~(BIT(1) | BIT(0));
1277	regmap_write(dmc->clk_regmap, CDREX_LPDDR3PHY_CLKM_SRC, tmp);
1278
1279	return 0;
1280}
1281
1282/**
1283 * exynos5_performance_counters_init() - Initializes performance DMC's counters
1284 * @dmc:	DMC for which it does the setup
1285 *
1286 * Initialization of performance counters in DMC for estimating usage.
1287 * The counter's values are used for calculation of a memory bandwidth and based
1288 * on that the governor changes the frequency.
1289 * The counters are not used when the governor is GOVERNOR_USERSPACE.
1290 */
1291static int exynos5_performance_counters_init(struct exynos5_dmc *dmc)
1292{
1293	int counters_size;
1294	int ret, i;
1295
1296	dmc->num_counters = devfreq_event_get_edev_count(dmc->dev);
1297	if (dmc->num_counters < 0) {
1298		dev_err(dmc->dev, "could not get devfreq-event counters\n");
1299		return dmc->num_counters;
1300	}
1301
1302	counters_size = sizeof(struct devfreq_event_dev) * dmc->num_counters;
1303	dmc->counter = devm_kzalloc(dmc->dev, counters_size, GFP_KERNEL);
1304	if (!dmc->counter)
1305		return -ENOMEM;
1306
1307	for (i = 0; i < dmc->num_counters; i++) {
1308		dmc->counter[i] =
1309			devfreq_event_get_edev_by_phandle(dmc->dev, i);
1310		if (IS_ERR_OR_NULL(dmc->counter[i]))
1311			return -EPROBE_DEFER;
1312	}
1313
1314	ret = exynos5_counters_enable_edev(dmc);
1315	if (ret < 0) {
1316		dev_err(dmc->dev, "could not enable event counter\n");
1317		return ret;
1318	}
1319
1320	ret = exynos5_counters_set_event(dmc);
1321	if (ret < 0) {
1322		exynos5_counters_disable_edev(dmc);
1323		dev_err(dmc->dev, "could not set event counter\n");
1324		return ret;
1325	}
1326
1327	return 0;
1328}
1329
1330/**
1331 * exynos5_dmc_set_pause_on_switching() - Controls a pause feature in DMC
1332 * @dmc:	device which is used for changing this feature
1333 * @set:	a boolean state passing enable/disable request
1334 *
1335 * There is a need of pausing DREX DMC when divider or MUX in clock tree
1336 * changes its configuration. In such situation access to the memory is blocked
1337 * in DMC automatically. This feature is used when clock frequency change
1338 * request appears and touches clock tree.
1339 */
1340static inline int exynos5_dmc_set_pause_on_switching(struct exynos5_dmc *dmc)
1341{
1342	unsigned int val;
1343	int ret;
1344
1345	ret = regmap_read(dmc->clk_regmap, CDREX_PAUSE, &val);
1346	if (ret)
1347		return ret;
1348
1349	val |= 1UL;
1350	regmap_write(dmc->clk_regmap, CDREX_PAUSE, val);
1351
1352	return 0;
1353}
1354
1355static irqreturn_t dmc_irq_thread(int irq, void *priv)
1356{
1357	int res;
1358	struct exynos5_dmc *dmc = priv;
1359
1360	mutex_lock(&dmc->df->lock);
1361	exynos5_dmc_perf_events_check(dmc);
1362	res = update_devfreq(dmc->df);
1363	mutex_unlock(&dmc->df->lock);
1364
1365	if (res)
1366		dev_warn(dmc->dev, "devfreq failed with %d\n", res);
1367
1368	return IRQ_HANDLED;
1369}
1370
1371/**
1372 * exynos5_dmc_probe() - Probe function for the DMC driver
1373 * @pdev:	platform device for which the driver is going to be initialized
1374 *
1375 * Initialize basic components: clocks, regulators, performance counters, etc.
1376 * Read out product version and based on the information setup
1377 * internal structures for the controller (frequency and voltage) and for DRAM
1378 * memory parameters: timings for each operating frequency.
1379 * Register new devfreq device for controlling DVFS of the DMC.
1380 */
1381static int exynos5_dmc_probe(struct platform_device *pdev)
1382{
1383	int ret = 0;
1384	struct device *dev = &pdev->dev;
1385	struct device_node *np = dev->of_node;
1386	struct exynos5_dmc *dmc;
1387	int irq[2];
1388
1389	dmc = devm_kzalloc(dev, sizeof(*dmc), GFP_KERNEL);
1390	if (!dmc)
1391		return -ENOMEM;
1392
1393	mutex_init(&dmc->lock);
1394
1395	dmc->dev = dev;
1396	platform_set_drvdata(pdev, dmc);
1397
1398	dmc->base_drexi0 = devm_platform_ioremap_resource(pdev, 0);
1399	if (IS_ERR(dmc->base_drexi0))
1400		return PTR_ERR(dmc->base_drexi0);
1401
1402	dmc->base_drexi1 = devm_platform_ioremap_resource(pdev, 1);
1403	if (IS_ERR(dmc->base_drexi1))
1404		return PTR_ERR(dmc->base_drexi1);
1405
1406	dmc->clk_regmap = syscon_regmap_lookup_by_phandle(np,
1407							  "samsung,syscon-clk");
1408	if (IS_ERR(dmc->clk_regmap))
1409		return PTR_ERR(dmc->clk_regmap);
1410
1411	ret = exynos5_init_freq_table(dmc, &exynos5_dmc_df_profile);
1412	if (ret) {
1413		dev_warn(dev, "couldn't initialize frequency settings\n");
1414		return ret;
1415	}
1416
1417	dmc->vdd_mif = devm_regulator_get(dev, "vdd");
1418	if (IS_ERR(dmc->vdd_mif)) {
1419		ret = PTR_ERR(dmc->vdd_mif);
1420		return ret;
1421	}
1422
1423	ret = exynos5_dmc_init_clks(dmc);
1424	if (ret)
1425		return ret;
1426
1427	ret = of_get_dram_timings(dmc);
1428	if (ret) {
1429		dev_warn(dev, "couldn't initialize timings settings\n");
1430		goto remove_clocks;
1431	}
1432
1433	ret = exynos5_dmc_set_pause_on_switching(dmc);
1434	if (ret) {
1435		dev_warn(dev, "couldn't get access to PAUSE register\n");
1436		goto remove_clocks;
1437	}
1438
1439	/* There is two modes in which the driver works: polling or IRQ */
1440	irq[0] = platform_get_irq_byname(pdev, "drex_0");
1441	irq[1] = platform_get_irq_byname(pdev, "drex_1");
1442	if (irq[0] > 0 && irq[1] > 0 && irqmode) {
1443		ret = devm_request_threaded_irq(dev, irq[0], NULL,
1444						dmc_irq_thread, IRQF_ONESHOT,
1445						dev_name(dev), dmc);
1446		if (ret) {
1447			dev_err(dev, "couldn't grab IRQ\n");
1448			goto remove_clocks;
1449		}
1450
1451		ret = devm_request_threaded_irq(dev, irq[1], NULL,
1452						dmc_irq_thread, IRQF_ONESHOT,
1453						dev_name(dev), dmc);
1454		if (ret) {
1455			dev_err(dev, "couldn't grab IRQ\n");
1456			goto remove_clocks;
1457		}
1458
1459		/*
1460		 * Setup default thresholds for the devfreq governor.
1461		 * The values are chosen based on experiments.
1462		 */
1463		dmc->gov_data.upthreshold = 55;
1464		dmc->gov_data.downdifferential = 5;
1465
1466		exynos5_dmc_enable_perf_events(dmc);
1467
1468		dmc->in_irq_mode = 1;
1469	} else {
1470		ret = exynos5_performance_counters_init(dmc);
1471		if (ret) {
1472			dev_warn(dev, "couldn't probe performance counters\n");
1473			goto remove_clocks;
1474		}
1475
1476		/*
1477		 * Setup default thresholds for the devfreq governor.
1478		 * The values are chosen based on experiments.
1479		 */
1480		dmc->gov_data.upthreshold = 10;
1481		dmc->gov_data.downdifferential = 5;
1482
1483		exynos5_dmc_df_profile.polling_ms = 100;
1484	}
1485
1486	dmc->df = devm_devfreq_add_device(dev, &exynos5_dmc_df_profile,
1487					  DEVFREQ_GOV_SIMPLE_ONDEMAND,
1488					  &dmc->gov_data);
1489
1490	if (IS_ERR(dmc->df)) {
1491		ret = PTR_ERR(dmc->df);
1492		goto err_devfreq_add;
1493	}
1494
1495	if (dmc->in_irq_mode)
1496		exynos5_dmc_start_perf_events(dmc, PERF_COUNTER_START_VALUE);
1497
1498	dev_info(dev, "DMC initialized, in irq mode: %d\n", dmc->in_irq_mode);
1499
1500	return 0;
1501
1502err_devfreq_add:
1503	if (dmc->in_irq_mode)
1504		exynos5_dmc_disable_perf_events(dmc);
1505	else
1506		exynos5_counters_disable_edev(dmc);
1507remove_clocks:
1508	clk_disable_unprepare(dmc->mout_bpll);
1509	clk_disable_unprepare(dmc->fout_bpll);
1510
1511	return ret;
1512}
1513
1514/**
1515 * exynos5_dmc_remove() - Remove function for the platform device
1516 * @pdev:	platform device which is going to be removed
1517 *
1518 * The function relies on 'devm' framework function which automatically
1519 * clean the device's resources. It just calls explicitly disable function for
1520 * the performance counters.
1521 */
1522static int exynos5_dmc_remove(struct platform_device *pdev)
1523{
1524	struct exynos5_dmc *dmc = dev_get_drvdata(&pdev->dev);
1525
1526	if (dmc->in_irq_mode)
1527		exynos5_dmc_disable_perf_events(dmc);
1528	else
1529		exynos5_counters_disable_edev(dmc);
1530
1531	clk_disable_unprepare(dmc->mout_bpll);
1532	clk_disable_unprepare(dmc->fout_bpll);
1533
1534	dev_pm_opp_remove_table(dmc->dev);
1535
1536	return 0;
1537}
1538
1539static const struct of_device_id exynos5_dmc_of_match[] = {
1540	{ .compatible = "samsung,exynos5422-dmc", },
1541	{ },
1542};
1543MODULE_DEVICE_TABLE(of, exynos5_dmc_of_match);
1544
1545static struct platform_driver exynos5_dmc_platdrv = {
1546	.probe	= exynos5_dmc_probe,
1547	.remove = exynos5_dmc_remove,
1548	.driver = {
1549		.name	= "exynos5-dmc",
1550		.of_match_table = exynos5_dmc_of_match,
1551	},
1552};
1553module_platform_driver(exynos5_dmc_platdrv);
1554MODULE_DESCRIPTION("Driver for Exynos5422 Dynamic Memory Controller dynamic frequency and voltage change");
1555MODULE_LICENSE("GPL v2");
1556MODULE_AUTHOR("Lukasz Luba");