Linux Audio

Check our new training course

Loading...
Note: File does not exist in v5.9.
    1/*
    2 * Copyright © 2006-2007 Intel Corporation
    3 *
    4 * Permission is hereby granted, free of charge, to any person obtaining a
    5 * copy of this software and associated documentation files (the "Software"),
    6 * to deal in the Software without restriction, including without limitation
    7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
    8 * and/or sell copies of the Software, and to permit persons to whom the
    9 * Software is furnished to do so, subject to the following conditions:
   10 *
   11 * The above copyright notice and this permission notice (including the next
   12 * paragraph) shall be included in all copies or substantial portions of the
   13 * Software.
   14 *
   15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
   16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
   17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
   18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
   19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
   20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
   21 * DEALINGS IN THE SOFTWARE.
   22 *
   23 * Authors:
   24 *	Eric Anholt <eric@anholt.net>
   25 */
   26
   27#include <linux/dmi.h>
   28#include <linux/module.h>
   29#include <linux/input.h>
   30#include <linux/i2c.h>
   31#include <linux/kernel.h>
   32#include <linux/slab.h>
   33#include <linux/vgaarb.h>
   34#include <drm/drm_edid.h>
   35#include <drm/drmP.h>
   36#include "intel_drv.h"
   37#include "intel_frontbuffer.h"
   38#include <drm/i915_drm.h>
   39#include "i915_drv.h"
   40#include "intel_dsi.h"
   41#include "i915_trace.h"
   42#include <drm/drm_atomic.h>
   43#include <drm/drm_atomic_helper.h>
   44#include <drm/drm_dp_helper.h>
   45#include <drm/drm_crtc_helper.h>
   46#include <drm/drm_plane_helper.h>
   47#include <drm/drm_rect.h>
   48#include <linux/dma_remapping.h>
   49#include <linux/reservation.h>
   50
   51static bool is_mmio_work(struct intel_flip_work *work)
   52{
   53	return work->mmio_work.func;
   54}
   55
   56/* Primary plane formats for gen <= 3 */
   57static const uint32_t i8xx_primary_formats[] = {
   58	DRM_FORMAT_C8,
   59	DRM_FORMAT_RGB565,
   60	DRM_FORMAT_XRGB1555,
   61	DRM_FORMAT_XRGB8888,
   62};
   63
   64/* Primary plane formats for gen >= 4 */
   65static const uint32_t i965_primary_formats[] = {
   66	DRM_FORMAT_C8,
   67	DRM_FORMAT_RGB565,
   68	DRM_FORMAT_XRGB8888,
   69	DRM_FORMAT_XBGR8888,
   70	DRM_FORMAT_XRGB2101010,
   71	DRM_FORMAT_XBGR2101010,
   72};
   73
   74static const uint32_t skl_primary_formats[] = {
   75	DRM_FORMAT_C8,
   76	DRM_FORMAT_RGB565,
   77	DRM_FORMAT_XRGB8888,
   78	DRM_FORMAT_XBGR8888,
   79	DRM_FORMAT_ARGB8888,
   80	DRM_FORMAT_ABGR8888,
   81	DRM_FORMAT_XRGB2101010,
   82	DRM_FORMAT_XBGR2101010,
   83	DRM_FORMAT_YUYV,
   84	DRM_FORMAT_YVYU,
   85	DRM_FORMAT_UYVY,
   86	DRM_FORMAT_VYUY,
   87};
   88
   89/* Cursor formats */
   90static const uint32_t intel_cursor_formats[] = {
   91	DRM_FORMAT_ARGB8888,
   92};
   93
   94static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
   95				struct intel_crtc_state *pipe_config);
   96static void ironlake_pch_clock_get(struct intel_crtc *crtc,
   97				   struct intel_crtc_state *pipe_config);
   98
   99static int intel_framebuffer_init(struct drm_device *dev,
  100				  struct intel_framebuffer *ifb,
  101				  struct drm_mode_fb_cmd2 *mode_cmd,
  102				  struct drm_i915_gem_object *obj);
  103static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
  104static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
  105static void intel_set_pipe_src_size(struct intel_crtc *intel_crtc);
  106static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
  107					 struct intel_link_m_n *m_n,
  108					 struct intel_link_m_n *m2_n2);
  109static void ironlake_set_pipeconf(struct drm_crtc *crtc);
  110static void haswell_set_pipeconf(struct drm_crtc *crtc);
  111static void haswell_set_pipemisc(struct drm_crtc *crtc);
  112static void vlv_prepare_pll(struct intel_crtc *crtc,
  113			    const struct intel_crtc_state *pipe_config);
  114static void chv_prepare_pll(struct intel_crtc *crtc,
  115			    const struct intel_crtc_state *pipe_config);
  116static void intel_begin_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
  117static void intel_finish_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
  118static void skl_init_scalers(struct drm_i915_private *dev_priv,
  119			     struct intel_crtc *crtc,
  120			     struct intel_crtc_state *crtc_state);
  121static void skylake_pfit_enable(struct intel_crtc *crtc);
  122static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force);
  123static void ironlake_pfit_enable(struct intel_crtc *crtc);
  124static void intel_modeset_setup_hw_state(struct drm_device *dev);
  125static void intel_pre_disable_primary_noatomic(struct drm_crtc *crtc);
  126static int ilk_max_pixel_rate(struct drm_atomic_state *state);
  127static int bxt_calc_cdclk(int max_pixclk);
  128
  129struct intel_limit {
  130	struct {
  131		int min, max;
  132	} dot, vco, n, m, m1, m2, p, p1;
  133
  134	struct {
  135		int dot_limit;
  136		int p2_slow, p2_fast;
  137	} p2;
  138};
  139
  140/* returns HPLL frequency in kHz */
  141static int valleyview_get_vco(struct drm_i915_private *dev_priv)
  142{
  143	int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
  144
  145	/* Obtain SKU information */
  146	mutex_lock(&dev_priv->sb_lock);
  147	hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
  148		CCK_FUSE_HPLL_FREQ_MASK;
  149	mutex_unlock(&dev_priv->sb_lock);
  150
  151	return vco_freq[hpll_freq] * 1000;
  152}
  153
  154int vlv_get_cck_clock(struct drm_i915_private *dev_priv,
  155		      const char *name, u32 reg, int ref_freq)
  156{
  157	u32 val;
  158	int divider;
  159
  160	mutex_lock(&dev_priv->sb_lock);
  161	val = vlv_cck_read(dev_priv, reg);
  162	mutex_unlock(&dev_priv->sb_lock);
  163
  164	divider = val & CCK_FREQUENCY_VALUES;
  165
  166	WARN((val & CCK_FREQUENCY_STATUS) !=
  167	     (divider << CCK_FREQUENCY_STATUS_SHIFT),
  168	     "%s change in progress\n", name);
  169
  170	return DIV_ROUND_CLOSEST(ref_freq << 1, divider + 1);
  171}
  172
  173static int vlv_get_cck_clock_hpll(struct drm_i915_private *dev_priv,
  174				  const char *name, u32 reg)
  175{
  176	if (dev_priv->hpll_freq == 0)
  177		dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
  178
  179	return vlv_get_cck_clock(dev_priv, name, reg,
  180				 dev_priv->hpll_freq);
  181}
  182
  183static int
  184intel_pch_rawclk(struct drm_i915_private *dev_priv)
  185{
  186	return (I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK) * 1000;
  187}
  188
  189static int
  190intel_vlv_hrawclk(struct drm_i915_private *dev_priv)
  191{
  192	/* RAWCLK_FREQ_VLV register updated from power well code */
  193	return vlv_get_cck_clock_hpll(dev_priv, "hrawclk",
  194				      CCK_DISPLAY_REF_CLOCK_CONTROL);
  195}
  196
  197static int
  198intel_g4x_hrawclk(struct drm_i915_private *dev_priv)
  199{
  200	uint32_t clkcfg;
  201
  202	/* hrawclock is 1/4 the FSB frequency */
  203	clkcfg = I915_READ(CLKCFG);
  204	switch (clkcfg & CLKCFG_FSB_MASK) {
  205	case CLKCFG_FSB_400:
  206		return 100000;
  207	case CLKCFG_FSB_533:
  208		return 133333;
  209	case CLKCFG_FSB_667:
  210		return 166667;
  211	case CLKCFG_FSB_800:
  212		return 200000;
  213	case CLKCFG_FSB_1067:
  214		return 266667;
  215	case CLKCFG_FSB_1333:
  216		return 333333;
  217	/* these two are just a guess; one of them might be right */
  218	case CLKCFG_FSB_1600:
  219	case CLKCFG_FSB_1600_ALT:
  220		return 400000;
  221	default:
  222		return 133333;
  223	}
  224}
  225
  226void intel_update_rawclk(struct drm_i915_private *dev_priv)
  227{
  228	if (HAS_PCH_SPLIT(dev_priv))
  229		dev_priv->rawclk_freq = intel_pch_rawclk(dev_priv);
  230	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
  231		dev_priv->rawclk_freq = intel_vlv_hrawclk(dev_priv);
  232	else if (IS_G4X(dev_priv) || IS_PINEVIEW(dev_priv))
  233		dev_priv->rawclk_freq = intel_g4x_hrawclk(dev_priv);
  234	else
  235		return; /* no rawclk on other platforms, or no need to know it */
  236
  237	DRM_DEBUG_DRIVER("rawclk rate: %d kHz\n", dev_priv->rawclk_freq);
  238}
  239
  240static void intel_update_czclk(struct drm_i915_private *dev_priv)
  241{
  242	if (!(IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)))
  243		return;
  244
  245	dev_priv->czclk_freq = vlv_get_cck_clock_hpll(dev_priv, "czclk",
  246						      CCK_CZ_CLOCK_CONTROL);
  247
  248	DRM_DEBUG_DRIVER("CZ clock rate: %d kHz\n", dev_priv->czclk_freq);
  249}
  250
  251static inline u32 /* units of 100MHz */
  252intel_fdi_link_freq(struct drm_i915_private *dev_priv,
  253		    const struct intel_crtc_state *pipe_config)
  254{
  255	if (HAS_DDI(dev_priv))
  256		return pipe_config->port_clock; /* SPLL */
  257	else if (IS_GEN5(dev_priv))
  258		return ((I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2) * 10000;
  259	else
  260		return 270000;
  261}
  262
  263static const struct intel_limit intel_limits_i8xx_dac = {
  264	.dot = { .min = 25000, .max = 350000 },
  265	.vco = { .min = 908000, .max = 1512000 },
  266	.n = { .min = 2, .max = 16 },
  267	.m = { .min = 96, .max = 140 },
  268	.m1 = { .min = 18, .max = 26 },
  269	.m2 = { .min = 6, .max = 16 },
  270	.p = { .min = 4, .max = 128 },
  271	.p1 = { .min = 2, .max = 33 },
  272	.p2 = { .dot_limit = 165000,
  273		.p2_slow = 4, .p2_fast = 2 },
  274};
  275
  276static const struct intel_limit intel_limits_i8xx_dvo = {
  277	.dot = { .min = 25000, .max = 350000 },
  278	.vco = { .min = 908000, .max = 1512000 },
  279	.n = { .min = 2, .max = 16 },
  280	.m = { .min = 96, .max = 140 },
  281	.m1 = { .min = 18, .max = 26 },
  282	.m2 = { .min = 6, .max = 16 },
  283	.p = { .min = 4, .max = 128 },
  284	.p1 = { .min = 2, .max = 33 },
  285	.p2 = { .dot_limit = 165000,
  286		.p2_slow = 4, .p2_fast = 4 },
  287};
  288
  289static const struct intel_limit intel_limits_i8xx_lvds = {
  290	.dot = { .min = 25000, .max = 350000 },
  291	.vco = { .min = 908000, .max = 1512000 },
  292	.n = { .min = 2, .max = 16 },
  293	.m = { .min = 96, .max = 140 },
  294	.m1 = { .min = 18, .max = 26 },
  295	.m2 = { .min = 6, .max = 16 },
  296	.p = { .min = 4, .max = 128 },
  297	.p1 = { .min = 1, .max = 6 },
  298	.p2 = { .dot_limit = 165000,
  299		.p2_slow = 14, .p2_fast = 7 },
  300};
  301
  302static const struct intel_limit intel_limits_i9xx_sdvo = {
  303	.dot = { .min = 20000, .max = 400000 },
  304	.vco = { .min = 1400000, .max = 2800000 },
  305	.n = { .min = 1, .max = 6 },
  306	.m = { .min = 70, .max = 120 },
  307	.m1 = { .min = 8, .max = 18 },
  308	.m2 = { .min = 3, .max = 7 },
  309	.p = { .min = 5, .max = 80 },
  310	.p1 = { .min = 1, .max = 8 },
  311	.p2 = { .dot_limit = 200000,
  312		.p2_slow = 10, .p2_fast = 5 },
  313};
  314
  315static const struct intel_limit intel_limits_i9xx_lvds = {
  316	.dot = { .min = 20000, .max = 400000 },
  317	.vco = { .min = 1400000, .max = 2800000 },
  318	.n = { .min = 1, .max = 6 },
  319	.m = { .min = 70, .max = 120 },
  320	.m1 = { .min = 8, .max = 18 },
  321	.m2 = { .min = 3, .max = 7 },
  322	.p = { .min = 7, .max = 98 },
  323	.p1 = { .min = 1, .max = 8 },
  324	.p2 = { .dot_limit = 112000,
  325		.p2_slow = 14, .p2_fast = 7 },
  326};
  327
  328
  329static const struct intel_limit intel_limits_g4x_sdvo = {
  330	.dot = { .min = 25000, .max = 270000 },
  331	.vco = { .min = 1750000, .max = 3500000},
  332	.n = { .min = 1, .max = 4 },
  333	.m = { .min = 104, .max = 138 },
  334	.m1 = { .min = 17, .max = 23 },
  335	.m2 = { .min = 5, .max = 11 },
  336	.p = { .min = 10, .max = 30 },
  337	.p1 = { .min = 1, .max = 3},
  338	.p2 = { .dot_limit = 270000,
  339		.p2_slow = 10,
  340		.p2_fast = 10
  341	},
  342};
  343
  344static const struct intel_limit intel_limits_g4x_hdmi = {
  345	.dot = { .min = 22000, .max = 400000 },
  346	.vco = { .min = 1750000, .max = 3500000},
  347	.n = { .min = 1, .max = 4 },
  348	.m = { .min = 104, .max = 138 },
  349	.m1 = { .min = 16, .max = 23 },
  350	.m2 = { .min = 5, .max = 11 },
  351	.p = { .min = 5, .max = 80 },
  352	.p1 = { .min = 1, .max = 8},
  353	.p2 = { .dot_limit = 165000,
  354		.p2_slow = 10, .p2_fast = 5 },
  355};
  356
  357static const struct intel_limit intel_limits_g4x_single_channel_lvds = {
  358	.dot = { .min = 20000, .max = 115000 },
  359	.vco = { .min = 1750000, .max = 3500000 },
  360	.n = { .min = 1, .max = 3 },
  361	.m = { .min = 104, .max = 138 },
  362	.m1 = { .min = 17, .max = 23 },
  363	.m2 = { .min = 5, .max = 11 },
  364	.p = { .min = 28, .max = 112 },
  365	.p1 = { .min = 2, .max = 8 },
  366	.p2 = { .dot_limit = 0,
  367		.p2_slow = 14, .p2_fast = 14
  368	},
  369};
  370
  371static const struct intel_limit intel_limits_g4x_dual_channel_lvds = {
  372	.dot = { .min = 80000, .max = 224000 },
  373	.vco = { .min = 1750000, .max = 3500000 },
  374	.n = { .min = 1, .max = 3 },
  375	.m = { .min = 104, .max = 138 },
  376	.m1 = { .min = 17, .max = 23 },
  377	.m2 = { .min = 5, .max = 11 },
  378	.p = { .min = 14, .max = 42 },
  379	.p1 = { .min = 2, .max = 6 },
  380	.p2 = { .dot_limit = 0,
  381		.p2_slow = 7, .p2_fast = 7
  382	},
  383};
  384
  385static const struct intel_limit intel_limits_pineview_sdvo = {
  386	.dot = { .min = 20000, .max = 400000},
  387	.vco = { .min = 1700000, .max = 3500000 },
  388	/* Pineview's Ncounter is a ring counter */
  389	.n = { .min = 3, .max = 6 },
  390	.m = { .min = 2, .max = 256 },
  391	/* Pineview only has one combined m divider, which we treat as m2. */
  392	.m1 = { .min = 0, .max = 0 },
  393	.m2 = { .min = 0, .max = 254 },
  394	.p = { .min = 5, .max = 80 },
  395	.p1 = { .min = 1, .max = 8 },
  396	.p2 = { .dot_limit = 200000,
  397		.p2_slow = 10, .p2_fast = 5 },
  398};
  399
  400static const struct intel_limit intel_limits_pineview_lvds = {
  401	.dot = { .min = 20000, .max = 400000 },
  402	.vco = { .min = 1700000, .max = 3500000 },
  403	.n = { .min = 3, .max = 6 },
  404	.m = { .min = 2, .max = 256 },
  405	.m1 = { .min = 0, .max = 0 },
  406	.m2 = { .min = 0, .max = 254 },
  407	.p = { .min = 7, .max = 112 },
  408	.p1 = { .min = 1, .max = 8 },
  409	.p2 = { .dot_limit = 112000,
  410		.p2_slow = 14, .p2_fast = 14 },
  411};
  412
  413/* Ironlake / Sandybridge
  414 *
  415 * We calculate clock using (register_value + 2) for N/M1/M2, so here
  416 * the range value for them is (actual_value - 2).
  417 */
  418static const struct intel_limit intel_limits_ironlake_dac = {
  419	.dot = { .min = 25000, .max = 350000 },
  420	.vco = { .min = 1760000, .max = 3510000 },
  421	.n = { .min = 1, .max = 5 },
  422	.m = { .min = 79, .max = 127 },
  423	.m1 = { .min = 12, .max = 22 },
  424	.m2 = { .min = 5, .max = 9 },
  425	.p = { .min = 5, .max = 80 },
  426	.p1 = { .min = 1, .max = 8 },
  427	.p2 = { .dot_limit = 225000,
  428		.p2_slow = 10, .p2_fast = 5 },
  429};
  430
  431static const struct intel_limit intel_limits_ironlake_single_lvds = {
  432	.dot = { .min = 25000, .max = 350000 },
  433	.vco = { .min = 1760000, .max = 3510000 },
  434	.n = { .min = 1, .max = 3 },
  435	.m = { .min = 79, .max = 118 },
  436	.m1 = { .min = 12, .max = 22 },
  437	.m2 = { .min = 5, .max = 9 },
  438	.p = { .min = 28, .max = 112 },
  439	.p1 = { .min = 2, .max = 8 },
  440	.p2 = { .dot_limit = 225000,
  441		.p2_slow = 14, .p2_fast = 14 },
  442};
  443
  444static const struct intel_limit intel_limits_ironlake_dual_lvds = {
  445	.dot = { .min = 25000, .max = 350000 },
  446	.vco = { .min = 1760000, .max = 3510000 },
  447	.n = { .min = 1, .max = 3 },
  448	.m = { .min = 79, .max = 127 },
  449	.m1 = { .min = 12, .max = 22 },
  450	.m2 = { .min = 5, .max = 9 },
  451	.p = { .min = 14, .max = 56 },
  452	.p1 = { .min = 2, .max = 8 },
  453	.p2 = { .dot_limit = 225000,
  454		.p2_slow = 7, .p2_fast = 7 },
  455};
  456
  457/* LVDS 100mhz refclk limits. */
  458static const struct intel_limit intel_limits_ironlake_single_lvds_100m = {
  459	.dot = { .min = 25000, .max = 350000 },
  460	.vco = { .min = 1760000, .max = 3510000 },
  461	.n = { .min = 1, .max = 2 },
  462	.m = { .min = 79, .max = 126 },
  463	.m1 = { .min = 12, .max = 22 },
  464	.m2 = { .min = 5, .max = 9 },
  465	.p = { .min = 28, .max = 112 },
  466	.p1 = { .min = 2, .max = 8 },
  467	.p2 = { .dot_limit = 225000,
  468		.p2_slow = 14, .p2_fast = 14 },
  469};
  470
  471static const struct intel_limit intel_limits_ironlake_dual_lvds_100m = {
  472	.dot = { .min = 25000, .max = 350000 },
  473	.vco = { .min = 1760000, .max = 3510000 },
  474	.n = { .min = 1, .max = 3 },
  475	.m = { .min = 79, .max = 126 },
  476	.m1 = { .min = 12, .max = 22 },
  477	.m2 = { .min = 5, .max = 9 },
  478	.p = { .min = 14, .max = 42 },
  479	.p1 = { .min = 2, .max = 6 },
  480	.p2 = { .dot_limit = 225000,
  481		.p2_slow = 7, .p2_fast = 7 },
  482};
  483
  484static const struct intel_limit intel_limits_vlv = {
  485	 /*
  486	  * These are the data rate limits (measured in fast clocks)
  487	  * since those are the strictest limits we have. The fast
  488	  * clock and actual rate limits are more relaxed, so checking
  489	  * them would make no difference.
  490	  */
  491	.dot = { .min = 25000 * 5, .max = 270000 * 5 },
  492	.vco = { .min = 4000000, .max = 6000000 },
  493	.n = { .min = 1, .max = 7 },
  494	.m1 = { .min = 2, .max = 3 },
  495	.m2 = { .min = 11, .max = 156 },
  496	.p1 = { .min = 2, .max = 3 },
  497	.p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
  498};
  499
  500static const struct intel_limit intel_limits_chv = {
  501	/*
  502	 * These are the data rate limits (measured in fast clocks)
  503	 * since those are the strictest limits we have.  The fast
  504	 * clock and actual rate limits are more relaxed, so checking
  505	 * them would make no difference.
  506	 */
  507	.dot = { .min = 25000 * 5, .max = 540000 * 5},
  508	.vco = { .min = 4800000, .max = 6480000 },
  509	.n = { .min = 1, .max = 1 },
  510	.m1 = { .min = 2, .max = 2 },
  511	.m2 = { .min = 24 << 22, .max = 175 << 22 },
  512	.p1 = { .min = 2, .max = 4 },
  513	.p2 = {	.p2_slow = 1, .p2_fast = 14 },
  514};
  515
  516static const struct intel_limit intel_limits_bxt = {
  517	/* FIXME: find real dot limits */
  518	.dot = { .min = 0, .max = INT_MAX },
  519	.vco = { .min = 4800000, .max = 6700000 },
  520	.n = { .min = 1, .max = 1 },
  521	.m1 = { .min = 2, .max = 2 },
  522	/* FIXME: find real m2 limits */
  523	.m2 = { .min = 2 << 22, .max = 255 << 22 },
  524	.p1 = { .min = 2, .max = 4 },
  525	.p2 = { .p2_slow = 1, .p2_fast = 20 },
  526};
  527
  528static bool
  529needs_modeset(struct drm_crtc_state *state)
  530{
  531	return drm_atomic_crtc_needs_modeset(state);
  532}
  533
  534/*
  535 * Platform specific helpers to calculate the port PLL loopback- (clock.m),
  536 * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast
  537 * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic.
  538 * The helpers' return value is the rate of the clock that is fed to the
  539 * display engine's pipe which can be the above fast dot clock rate or a
  540 * divided-down version of it.
  541 */
  542/* m1 is reserved as 0 in Pineview, n is a ring counter */
  543static int pnv_calc_dpll_params(int refclk, struct dpll *clock)
  544{
  545	clock->m = clock->m2 + 2;
  546	clock->p = clock->p1 * clock->p2;
  547	if (WARN_ON(clock->n == 0 || clock->p == 0))
  548		return 0;
  549	clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
  550	clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
  551
  552	return clock->dot;
  553}
  554
  555static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
  556{
  557	return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
  558}
  559
  560static int i9xx_calc_dpll_params(int refclk, struct dpll *clock)
  561{
  562	clock->m = i9xx_dpll_compute_m(clock);
  563	clock->p = clock->p1 * clock->p2;
  564	if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
  565		return 0;
  566	clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
  567	clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
  568
  569	return clock->dot;
  570}
  571
  572static int vlv_calc_dpll_params(int refclk, struct dpll *clock)
  573{
  574	clock->m = clock->m1 * clock->m2;
  575	clock->p = clock->p1 * clock->p2;
  576	if (WARN_ON(clock->n == 0 || clock->p == 0))
  577		return 0;
  578	clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
  579	clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
  580
  581	return clock->dot / 5;
  582}
  583
  584int chv_calc_dpll_params(int refclk, struct dpll *clock)
  585{
  586	clock->m = clock->m1 * clock->m2;
  587	clock->p = clock->p1 * clock->p2;
  588	if (WARN_ON(clock->n == 0 || clock->p == 0))
  589		return 0;
  590	clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
  591			clock->n << 22);
  592	clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
  593
  594	return clock->dot / 5;
  595}
  596
  597#define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
  598/**
  599 * Returns whether the given set of divisors are valid for a given refclk with
  600 * the given connectors.
  601 */
  602
  603static bool intel_PLL_is_valid(struct drm_i915_private *dev_priv,
  604			       const struct intel_limit *limit,
  605			       const struct dpll *clock)
  606{
  607	if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
  608		INTELPllInvalid("n out of range\n");
  609	if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
  610		INTELPllInvalid("p1 out of range\n");
  611	if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
  612		INTELPllInvalid("m2 out of range\n");
  613	if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
  614		INTELPllInvalid("m1 out of range\n");
  615
  616	if (!IS_PINEVIEW(dev_priv) && !IS_VALLEYVIEW(dev_priv) &&
  617	    !IS_CHERRYVIEW(dev_priv) && !IS_BROXTON(dev_priv))
  618		if (clock->m1 <= clock->m2)
  619			INTELPllInvalid("m1 <= m2\n");
  620
  621	if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
  622	    !IS_BROXTON(dev_priv)) {
  623		if (clock->p < limit->p.min || limit->p.max < clock->p)
  624			INTELPllInvalid("p out of range\n");
  625		if (clock->m < limit->m.min || limit->m.max < clock->m)
  626			INTELPllInvalid("m out of range\n");
  627	}
  628
  629	if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
  630		INTELPllInvalid("vco out of range\n");
  631	/* XXX: We may need to be checking "Dot clock" depending on the multiplier,
  632	 * connector, etc., rather than just a single range.
  633	 */
  634	if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
  635		INTELPllInvalid("dot out of range\n");
  636
  637	return true;
  638}
  639
  640static int
  641i9xx_select_p2_div(const struct intel_limit *limit,
  642		   const struct intel_crtc_state *crtc_state,
  643		   int target)
  644{
  645	struct drm_device *dev = crtc_state->base.crtc->dev;
  646
  647	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
  648		/*
  649		 * For LVDS just rely on its current settings for dual-channel.
  650		 * We haven't figured out how to reliably set up different
  651		 * single/dual channel state, if we even can.
  652		 */
  653		if (intel_is_dual_link_lvds(dev))
  654			return limit->p2.p2_fast;
  655		else
  656			return limit->p2.p2_slow;
  657	} else {
  658		if (target < limit->p2.dot_limit)
  659			return limit->p2.p2_slow;
  660		else
  661			return limit->p2.p2_fast;
  662	}
  663}
  664
  665/*
  666 * Returns a set of divisors for the desired target clock with the given
  667 * refclk, or FALSE.  The returned values represent the clock equation:
  668 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
  669 *
  670 * Target and reference clocks are specified in kHz.
  671 *
  672 * If match_clock is provided, then best_clock P divider must match the P
  673 * divider from @match_clock used for LVDS downclocking.
  674 */
  675static bool
  676i9xx_find_best_dpll(const struct intel_limit *limit,
  677		    struct intel_crtc_state *crtc_state,
  678		    int target, int refclk, struct dpll *match_clock,
  679		    struct dpll *best_clock)
  680{
  681	struct drm_device *dev = crtc_state->base.crtc->dev;
  682	struct dpll clock;
  683	int err = target;
  684
  685	memset(best_clock, 0, sizeof(*best_clock));
  686
  687	clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
  688
  689	for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
  690	     clock.m1++) {
  691		for (clock.m2 = limit->m2.min;
  692		     clock.m2 <= limit->m2.max; clock.m2++) {
  693			if (clock.m2 >= clock.m1)
  694				break;
  695			for (clock.n = limit->n.min;
  696			     clock.n <= limit->n.max; clock.n++) {
  697				for (clock.p1 = limit->p1.min;
  698					clock.p1 <= limit->p1.max; clock.p1++) {
  699					int this_err;
  700
  701					i9xx_calc_dpll_params(refclk, &clock);
  702					if (!intel_PLL_is_valid(to_i915(dev),
  703								limit,
  704								&clock))
  705						continue;
  706					if (match_clock &&
  707					    clock.p != match_clock->p)
  708						continue;
  709
  710					this_err = abs(clock.dot - target);
  711					if (this_err < err) {
  712						*best_clock = clock;
  713						err = this_err;
  714					}
  715				}
  716			}
  717		}
  718	}
  719
  720	return (err != target);
  721}
  722
  723/*
  724 * Returns a set of divisors for the desired target clock with the given
  725 * refclk, or FALSE.  The returned values represent the clock equation:
  726 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
  727 *
  728 * Target and reference clocks are specified in kHz.
  729 *
  730 * If match_clock is provided, then best_clock P divider must match the P
  731 * divider from @match_clock used for LVDS downclocking.
  732 */
  733static bool
  734pnv_find_best_dpll(const struct intel_limit *limit,
  735		   struct intel_crtc_state *crtc_state,
  736		   int target, int refclk, struct dpll *match_clock,
  737		   struct dpll *best_clock)
  738{
  739	struct drm_device *dev = crtc_state->base.crtc->dev;
  740	struct dpll clock;
  741	int err = target;
  742
  743	memset(best_clock, 0, sizeof(*best_clock));
  744
  745	clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
  746
  747	for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
  748	     clock.m1++) {
  749		for (clock.m2 = limit->m2.min;
  750		     clock.m2 <= limit->m2.max; clock.m2++) {
  751			for (clock.n = limit->n.min;
  752			     clock.n <= limit->n.max; clock.n++) {
  753				for (clock.p1 = limit->p1.min;
  754					clock.p1 <= limit->p1.max; clock.p1++) {
  755					int this_err;
  756
  757					pnv_calc_dpll_params(refclk, &clock);
  758					if (!intel_PLL_is_valid(to_i915(dev),
  759								limit,
  760								&clock))
  761						continue;
  762					if (match_clock &&
  763					    clock.p != match_clock->p)
  764						continue;
  765
  766					this_err = abs(clock.dot - target);
  767					if (this_err < err) {
  768						*best_clock = clock;
  769						err = this_err;
  770					}
  771				}
  772			}
  773		}
  774	}
  775
  776	return (err != target);
  777}
  778
  779/*
  780 * Returns a set of divisors for the desired target clock with the given
  781 * refclk, or FALSE.  The returned values represent the clock equation:
  782 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
  783 *
  784 * Target and reference clocks are specified in kHz.
  785 *
  786 * If match_clock is provided, then best_clock P divider must match the P
  787 * divider from @match_clock used for LVDS downclocking.
  788 */
  789static bool
  790g4x_find_best_dpll(const struct intel_limit *limit,
  791		   struct intel_crtc_state *crtc_state,
  792		   int target, int refclk, struct dpll *match_clock,
  793		   struct dpll *best_clock)
  794{
  795	struct drm_device *dev = crtc_state->base.crtc->dev;
  796	struct dpll clock;
  797	int max_n;
  798	bool found = false;
  799	/* approximately equals target * 0.00585 */
  800	int err_most = (target >> 8) + (target >> 9);
  801
  802	memset(best_clock, 0, sizeof(*best_clock));
  803
  804	clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
  805
  806	max_n = limit->n.max;
  807	/* based on hardware requirement, prefer smaller n to precision */
  808	for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
  809		/* based on hardware requirement, prefere larger m1,m2 */
  810		for (clock.m1 = limit->m1.max;
  811		     clock.m1 >= limit->m1.min; clock.m1--) {
  812			for (clock.m2 = limit->m2.max;
  813			     clock.m2 >= limit->m2.min; clock.m2--) {
  814				for (clock.p1 = limit->p1.max;
  815				     clock.p1 >= limit->p1.min; clock.p1--) {
  816					int this_err;
  817
  818					i9xx_calc_dpll_params(refclk, &clock);
  819					if (!intel_PLL_is_valid(to_i915(dev),
  820								limit,
  821								&clock))
  822						continue;
  823
  824					this_err = abs(clock.dot - target);
  825					if (this_err < err_most) {
  826						*best_clock = clock;
  827						err_most = this_err;
  828						max_n = clock.n;
  829						found = true;
  830					}
  831				}
  832			}
  833		}
  834	}
  835	return found;
  836}
  837
  838/*
  839 * Check if the calculated PLL configuration is more optimal compared to the
  840 * best configuration and error found so far. Return the calculated error.
  841 */
  842static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
  843			       const struct dpll *calculated_clock,
  844			       const struct dpll *best_clock,
  845			       unsigned int best_error_ppm,
  846			       unsigned int *error_ppm)
  847{
  848	/*
  849	 * For CHV ignore the error and consider only the P value.
  850	 * Prefer a bigger P value based on HW requirements.
  851	 */
  852	if (IS_CHERRYVIEW(to_i915(dev))) {
  853		*error_ppm = 0;
  854
  855		return calculated_clock->p > best_clock->p;
  856	}
  857
  858	if (WARN_ON_ONCE(!target_freq))
  859		return false;
  860
  861	*error_ppm = div_u64(1000000ULL *
  862				abs(target_freq - calculated_clock->dot),
  863			     target_freq);
  864	/*
  865	 * Prefer a better P value over a better (smaller) error if the error
  866	 * is small. Ensure this preference for future configurations too by
  867	 * setting the error to 0.
  868	 */
  869	if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
  870		*error_ppm = 0;
  871
  872		return true;
  873	}
  874
  875	return *error_ppm + 10 < best_error_ppm;
  876}
  877
  878/*
  879 * Returns a set of divisors for the desired target clock with the given
  880 * refclk, or FALSE.  The returned values represent the clock equation:
  881 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
  882 */
  883static bool
  884vlv_find_best_dpll(const struct intel_limit *limit,
  885		   struct intel_crtc_state *crtc_state,
  886		   int target, int refclk, struct dpll *match_clock,
  887		   struct dpll *best_clock)
  888{
  889	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
  890	struct drm_device *dev = crtc->base.dev;
  891	struct dpll clock;
  892	unsigned int bestppm = 1000000;
  893	/* min update 19.2 MHz */
  894	int max_n = min(limit->n.max, refclk / 19200);
  895	bool found = false;
  896
  897	target *= 5; /* fast clock */
  898
  899	memset(best_clock, 0, sizeof(*best_clock));
  900
  901	/* based on hardware requirement, prefer smaller n to precision */
  902	for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
  903		for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
  904			for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
  905			     clock.p2 -= clock.p2 > 10 ? 2 : 1) {
  906				clock.p = clock.p1 * clock.p2;
  907				/* based on hardware requirement, prefer bigger m1,m2 values */
  908				for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
  909					unsigned int ppm;
  910
  911					clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
  912								     refclk * clock.m1);
  913
  914					vlv_calc_dpll_params(refclk, &clock);
  915
  916					if (!intel_PLL_is_valid(to_i915(dev),
  917								limit,
  918								&clock))
  919						continue;
  920
  921					if (!vlv_PLL_is_optimal(dev, target,
  922								&clock,
  923								best_clock,
  924								bestppm, &ppm))
  925						continue;
  926
  927					*best_clock = clock;
  928					bestppm = ppm;
  929					found = true;
  930				}
  931			}
  932		}
  933	}
  934
  935	return found;
  936}
  937
  938/*
  939 * Returns a set of divisors for the desired target clock with the given
  940 * refclk, or FALSE.  The returned values represent the clock equation:
  941 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
  942 */
  943static bool
  944chv_find_best_dpll(const struct intel_limit *limit,
  945		   struct intel_crtc_state *crtc_state,
  946		   int target, int refclk, struct dpll *match_clock,
  947		   struct dpll *best_clock)
  948{
  949	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
  950	struct drm_device *dev = crtc->base.dev;
  951	unsigned int best_error_ppm;
  952	struct dpll clock;
  953	uint64_t m2;
  954	int found = false;
  955
  956	memset(best_clock, 0, sizeof(*best_clock));
  957	best_error_ppm = 1000000;
  958
  959	/*
  960	 * Based on hardware doc, the n always set to 1, and m1 always
  961	 * set to 2.  If requires to support 200Mhz refclk, we need to
  962	 * revisit this because n may not 1 anymore.
  963	 */
  964	clock.n = 1, clock.m1 = 2;
  965	target *= 5;	/* fast clock */
  966
  967	for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
  968		for (clock.p2 = limit->p2.p2_fast;
  969				clock.p2 >= limit->p2.p2_slow;
  970				clock.p2 -= clock.p2 > 10 ? 2 : 1) {
  971			unsigned int error_ppm;
  972
  973			clock.p = clock.p1 * clock.p2;
  974
  975			m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
  976					clock.n) << 22, refclk * clock.m1);
  977
  978			if (m2 > INT_MAX/clock.m1)
  979				continue;
  980
  981			clock.m2 = m2;
  982
  983			chv_calc_dpll_params(refclk, &clock);
  984
  985			if (!intel_PLL_is_valid(to_i915(dev), limit, &clock))
  986				continue;
  987
  988			if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
  989						best_error_ppm, &error_ppm))
  990				continue;
  991
  992			*best_clock = clock;
  993			best_error_ppm = error_ppm;
  994			found = true;
  995		}
  996	}
  997
  998	return found;
  999}
 1000
 1001bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, int target_clock,
 1002			struct dpll *best_clock)
 1003{
 1004	int refclk = 100000;
 1005	const struct intel_limit *limit = &intel_limits_bxt;
 1006
 1007	return chv_find_best_dpll(limit, crtc_state,
 1008				  target_clock, refclk, NULL, best_clock);
 1009}
 1010
 1011bool intel_crtc_active(struct intel_crtc *crtc)
 1012{
 1013	/* Be paranoid as we can arrive here with only partial
 1014	 * state retrieved from the hardware during setup.
 1015	 *
 1016	 * We can ditch the adjusted_mode.crtc_clock check as soon
 1017	 * as Haswell has gained clock readout/fastboot support.
 1018	 *
 1019	 * We can ditch the crtc->primary->fb check as soon as we can
 1020	 * properly reconstruct framebuffers.
 1021	 *
 1022	 * FIXME: The intel_crtc->active here should be switched to
 1023	 * crtc->state->active once we have proper CRTC states wired up
 1024	 * for atomic.
 1025	 */
 1026	return crtc->active && crtc->base.primary->state->fb &&
 1027		crtc->config->base.adjusted_mode.crtc_clock;
 1028}
 1029
 1030enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
 1031					     enum pipe pipe)
 1032{
 1033	struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
 1034
 1035	return crtc->config->cpu_transcoder;
 1036}
 1037
 1038static bool pipe_dsl_stopped(struct drm_i915_private *dev_priv, enum pipe pipe)
 1039{
 1040	i915_reg_t reg = PIPEDSL(pipe);
 1041	u32 line1, line2;
 1042	u32 line_mask;
 1043
 1044	if (IS_GEN2(dev_priv))
 1045		line_mask = DSL_LINEMASK_GEN2;
 1046	else
 1047		line_mask = DSL_LINEMASK_GEN3;
 1048
 1049	line1 = I915_READ(reg) & line_mask;
 1050	msleep(5);
 1051	line2 = I915_READ(reg) & line_mask;
 1052
 1053	return line1 == line2;
 1054}
 1055
 1056/*
 1057 * intel_wait_for_pipe_off - wait for pipe to turn off
 1058 * @crtc: crtc whose pipe to wait for
 1059 *
 1060 * After disabling a pipe, we can't wait for vblank in the usual way,
 1061 * spinning on the vblank interrupt status bit, since we won't actually
 1062 * see an interrupt when the pipe is disabled.
 1063 *
 1064 * On Gen4 and above:
 1065 *   wait for the pipe register state bit to turn off
 1066 *
 1067 * Otherwise:
 1068 *   wait for the display line value to settle (it usually
 1069 *   ends up stopping at the start of the next frame).
 1070 *
 1071 */
 1072static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
 1073{
 1074	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
 1075	enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
 1076	enum pipe pipe = crtc->pipe;
 1077
 1078	if (INTEL_GEN(dev_priv) >= 4) {
 1079		i915_reg_t reg = PIPECONF(cpu_transcoder);
 1080
 1081		/* Wait for the Pipe State to go off */
 1082		if (intel_wait_for_register(dev_priv,
 1083					    reg, I965_PIPECONF_ACTIVE, 0,
 1084					    100))
 1085			WARN(1, "pipe_off wait timed out\n");
 1086	} else {
 1087		/* Wait for the display line to settle */
 1088		if (wait_for(pipe_dsl_stopped(dev_priv, pipe), 100))
 1089			WARN(1, "pipe_off wait timed out\n");
 1090	}
 1091}
 1092
 1093/* Only for pre-ILK configs */
 1094void assert_pll(struct drm_i915_private *dev_priv,
 1095		enum pipe pipe, bool state)
 1096{
 1097	u32 val;
 1098	bool cur_state;
 1099
 1100	val = I915_READ(DPLL(pipe));
 1101	cur_state = !!(val & DPLL_VCO_ENABLE);
 1102	I915_STATE_WARN(cur_state != state,
 1103	     "PLL state assertion failure (expected %s, current %s)\n",
 1104			onoff(state), onoff(cur_state));
 1105}
 1106
 1107/* XXX: the dsi pll is shared between MIPI DSI ports */
 1108void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
 1109{
 1110	u32 val;
 1111	bool cur_state;
 1112
 1113	mutex_lock(&dev_priv->sb_lock);
 1114	val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
 1115	mutex_unlock(&dev_priv->sb_lock);
 1116
 1117	cur_state = val & DSI_PLL_VCO_EN;
 1118	I915_STATE_WARN(cur_state != state,
 1119	     "DSI PLL state assertion failure (expected %s, current %s)\n",
 1120			onoff(state), onoff(cur_state));
 1121}
 1122
 1123static void assert_fdi_tx(struct drm_i915_private *dev_priv,
 1124			  enum pipe pipe, bool state)
 1125{
 1126	bool cur_state;
 1127	enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
 1128								      pipe);
 1129
 1130	if (HAS_DDI(dev_priv)) {
 1131		/* DDI does not have a specific FDI_TX register */
 1132		u32 val = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
 1133		cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
 1134	} else {
 1135		u32 val = I915_READ(FDI_TX_CTL(pipe));
 1136		cur_state = !!(val & FDI_TX_ENABLE);
 1137	}
 1138	I915_STATE_WARN(cur_state != state,
 1139	     "FDI TX state assertion failure (expected %s, current %s)\n",
 1140			onoff(state), onoff(cur_state));
 1141}
 1142#define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
 1143#define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
 1144
 1145static void assert_fdi_rx(struct drm_i915_private *dev_priv,
 1146			  enum pipe pipe, bool state)
 1147{
 1148	u32 val;
 1149	bool cur_state;
 1150
 1151	val = I915_READ(FDI_RX_CTL(pipe));
 1152	cur_state = !!(val & FDI_RX_ENABLE);
 1153	I915_STATE_WARN(cur_state != state,
 1154	     "FDI RX state assertion failure (expected %s, current %s)\n",
 1155			onoff(state), onoff(cur_state));
 1156}
 1157#define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
 1158#define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
 1159
 1160static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
 1161				      enum pipe pipe)
 1162{
 1163	u32 val;
 1164
 1165	/* ILK FDI PLL is always enabled */
 1166	if (IS_GEN5(dev_priv))
 1167		return;
 1168
 1169	/* On Haswell, DDI ports are responsible for the FDI PLL setup */
 1170	if (HAS_DDI(dev_priv))
 1171		return;
 1172
 1173	val = I915_READ(FDI_TX_CTL(pipe));
 1174	I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
 1175}
 1176
 1177void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
 1178		       enum pipe pipe, bool state)
 1179{
 1180	u32 val;
 1181	bool cur_state;
 1182
 1183	val = I915_READ(FDI_RX_CTL(pipe));
 1184	cur_state = !!(val & FDI_RX_PLL_ENABLE);
 1185	I915_STATE_WARN(cur_state != state,
 1186	     "FDI RX PLL assertion failure (expected %s, current %s)\n",
 1187			onoff(state), onoff(cur_state));
 1188}
 1189
 1190void assert_panel_unlocked(struct drm_i915_private *dev_priv, enum pipe pipe)
 1191{
 1192	i915_reg_t pp_reg;
 1193	u32 val;
 1194	enum pipe panel_pipe = PIPE_A;
 1195	bool locked = true;
 1196
 1197	if (WARN_ON(HAS_DDI(dev_priv)))
 1198		return;
 1199
 1200	if (HAS_PCH_SPLIT(dev_priv)) {
 1201		u32 port_sel;
 1202
 1203		pp_reg = PP_CONTROL(0);
 1204		port_sel = I915_READ(PP_ON_DELAYS(0)) & PANEL_PORT_SELECT_MASK;
 1205
 1206		if (port_sel == PANEL_PORT_SELECT_LVDS &&
 1207		    I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
 1208			panel_pipe = PIPE_B;
 1209		/* XXX: else fix for eDP */
 1210	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
 1211		/* presumably write lock depends on pipe, not port select */
 1212		pp_reg = PP_CONTROL(pipe);
 1213		panel_pipe = pipe;
 1214	} else {
 1215		pp_reg = PP_CONTROL(0);
 1216		if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
 1217			panel_pipe = PIPE_B;
 1218	}
 1219
 1220	val = I915_READ(pp_reg);
 1221	if (!(val & PANEL_POWER_ON) ||
 1222	    ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
 1223		locked = false;
 1224
 1225	I915_STATE_WARN(panel_pipe == pipe && locked,
 1226	     "panel assertion failure, pipe %c regs locked\n",
 1227	     pipe_name(pipe));
 1228}
 1229
 1230static void assert_cursor(struct drm_i915_private *dev_priv,
 1231			  enum pipe pipe, bool state)
 1232{
 1233	bool cur_state;
 1234
 1235	if (IS_845G(dev_priv) || IS_I865G(dev_priv))
 1236		cur_state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
 1237	else
 1238		cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
 1239
 1240	I915_STATE_WARN(cur_state != state,
 1241	     "cursor on pipe %c assertion failure (expected %s, current %s)\n",
 1242			pipe_name(pipe), onoff(state), onoff(cur_state));
 1243}
 1244#define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
 1245#define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
 1246
 1247void assert_pipe(struct drm_i915_private *dev_priv,
 1248		 enum pipe pipe, bool state)
 1249{
 1250	bool cur_state;
 1251	enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
 1252								      pipe);
 1253	enum intel_display_power_domain power_domain;
 1254
 1255	/* if we need the pipe quirk it must be always on */
 1256	if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
 1257	    (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
 1258		state = true;
 1259
 1260	power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
 1261	if (intel_display_power_get_if_enabled(dev_priv, power_domain)) {
 1262		u32 val = I915_READ(PIPECONF(cpu_transcoder));
 1263		cur_state = !!(val & PIPECONF_ENABLE);
 1264
 1265		intel_display_power_put(dev_priv, power_domain);
 1266	} else {
 1267		cur_state = false;
 1268	}
 1269
 1270	I915_STATE_WARN(cur_state != state,
 1271	     "pipe %c assertion failure (expected %s, current %s)\n",
 1272			pipe_name(pipe), onoff(state), onoff(cur_state));
 1273}
 1274
 1275static void assert_plane(struct drm_i915_private *dev_priv,
 1276			 enum plane plane, bool state)
 1277{
 1278	u32 val;
 1279	bool cur_state;
 1280
 1281	val = I915_READ(DSPCNTR(plane));
 1282	cur_state = !!(val & DISPLAY_PLANE_ENABLE);
 1283	I915_STATE_WARN(cur_state != state,
 1284	     "plane %c assertion failure (expected %s, current %s)\n",
 1285			plane_name(plane), onoff(state), onoff(cur_state));
 1286}
 1287
 1288#define assert_plane_enabled(d, p) assert_plane(d, p, true)
 1289#define assert_plane_disabled(d, p) assert_plane(d, p, false)
 1290
 1291static void assert_planes_disabled(struct drm_i915_private *dev_priv,
 1292				   enum pipe pipe)
 1293{
 1294	int i;
 1295
 1296	/* Primary planes are fixed to pipes on gen4+ */
 1297	if (INTEL_GEN(dev_priv) >= 4) {
 1298		u32 val = I915_READ(DSPCNTR(pipe));
 1299		I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
 1300		     "plane %c assertion failure, should be disabled but not\n",
 1301		     plane_name(pipe));
 1302		return;
 1303	}
 1304
 1305	/* Need to check both planes against the pipe */
 1306	for_each_pipe(dev_priv, i) {
 1307		u32 val = I915_READ(DSPCNTR(i));
 1308		enum pipe cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
 1309			DISPPLANE_SEL_PIPE_SHIFT;
 1310		I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
 1311		     "plane %c assertion failure, should be off on pipe %c but is still active\n",
 1312		     plane_name(i), pipe_name(pipe));
 1313	}
 1314}
 1315
 1316static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
 1317				    enum pipe pipe)
 1318{
 1319	int sprite;
 1320
 1321	if (INTEL_GEN(dev_priv) >= 9) {
 1322		for_each_sprite(dev_priv, pipe, sprite) {
 1323			u32 val = I915_READ(PLANE_CTL(pipe, sprite));
 1324			I915_STATE_WARN(val & PLANE_CTL_ENABLE,
 1325			     "plane %d assertion failure, should be off on pipe %c but is still active\n",
 1326			     sprite, pipe_name(pipe));
 1327		}
 1328	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
 1329		for_each_sprite(dev_priv, pipe, sprite) {
 1330			u32 val = I915_READ(SPCNTR(pipe, sprite));
 1331			I915_STATE_WARN(val & SP_ENABLE,
 1332			     "sprite %c assertion failure, should be off on pipe %c but is still active\n",
 1333			     sprite_name(pipe, sprite), pipe_name(pipe));
 1334		}
 1335	} else if (INTEL_GEN(dev_priv) >= 7) {
 1336		u32 val = I915_READ(SPRCTL(pipe));
 1337		I915_STATE_WARN(val & SPRITE_ENABLE,
 1338		     "sprite %c assertion failure, should be off on pipe %c but is still active\n",
 1339		     plane_name(pipe), pipe_name(pipe));
 1340	} else if (INTEL_GEN(dev_priv) >= 5) {
 1341		u32 val = I915_READ(DVSCNTR(pipe));
 1342		I915_STATE_WARN(val & DVS_ENABLE,
 1343		     "sprite %c assertion failure, should be off on pipe %c but is still active\n",
 1344		     plane_name(pipe), pipe_name(pipe));
 1345	}
 1346}
 1347
 1348static void assert_vblank_disabled(struct drm_crtc *crtc)
 1349{
 1350	if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
 1351		drm_crtc_vblank_put(crtc);
 1352}
 1353
 1354void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
 1355				    enum pipe pipe)
 1356{
 1357	u32 val;
 1358	bool enabled;
 1359
 1360	val = I915_READ(PCH_TRANSCONF(pipe));
 1361	enabled = !!(val & TRANS_ENABLE);
 1362	I915_STATE_WARN(enabled,
 1363	     "transcoder assertion failed, should be off on pipe %c but is still active\n",
 1364	     pipe_name(pipe));
 1365}
 1366
 1367static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
 1368			    enum pipe pipe, u32 port_sel, u32 val)
 1369{
 1370	if ((val & DP_PORT_EN) == 0)
 1371		return false;
 1372
 1373	if (HAS_PCH_CPT(dev_priv)) {
 1374		u32 trans_dp_ctl = I915_READ(TRANS_DP_CTL(pipe));
 1375		if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
 1376			return false;
 1377	} else if (IS_CHERRYVIEW(dev_priv)) {
 1378		if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
 1379			return false;
 1380	} else {
 1381		if ((val & DP_PIPE_MASK) != (pipe << 30))
 1382			return false;
 1383	}
 1384	return true;
 1385}
 1386
 1387static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
 1388			      enum pipe pipe, u32 val)
 1389{
 1390	if ((val & SDVO_ENABLE) == 0)
 1391		return false;
 1392
 1393	if (HAS_PCH_CPT(dev_priv)) {
 1394		if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
 1395			return false;
 1396	} else if (IS_CHERRYVIEW(dev_priv)) {
 1397		if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
 1398			return false;
 1399	} else {
 1400		if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
 1401			return false;
 1402	}
 1403	return true;
 1404}
 1405
 1406static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
 1407			      enum pipe pipe, u32 val)
 1408{
 1409	if ((val & LVDS_PORT_EN) == 0)
 1410		return false;
 1411
 1412	if (HAS_PCH_CPT(dev_priv)) {
 1413		if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
 1414			return false;
 1415	} else {
 1416		if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
 1417			return false;
 1418	}
 1419	return true;
 1420}
 1421
 1422static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
 1423			      enum pipe pipe, u32 val)
 1424{
 1425	if ((val & ADPA_DAC_ENABLE) == 0)
 1426		return false;
 1427	if (HAS_PCH_CPT(dev_priv)) {
 1428		if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
 1429			return false;
 1430	} else {
 1431		if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
 1432			return false;
 1433	}
 1434	return true;
 1435}
 1436
 1437static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
 1438				   enum pipe pipe, i915_reg_t reg,
 1439				   u32 port_sel)
 1440{
 1441	u32 val = I915_READ(reg);
 1442	I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
 1443	     "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
 1444	     i915_mmio_reg_offset(reg), pipe_name(pipe));
 1445
 1446	I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && (val & DP_PORT_EN) == 0
 1447	     && (val & DP_PIPEB_SELECT),
 1448	     "IBX PCH dp port still using transcoder B\n");
 1449}
 1450
 1451static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
 1452				     enum pipe pipe, i915_reg_t reg)
 1453{
 1454	u32 val = I915_READ(reg);
 1455	I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
 1456	     "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
 1457	     i915_mmio_reg_offset(reg), pipe_name(pipe));
 1458
 1459	I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && (val & SDVO_ENABLE) == 0
 1460	     && (val & SDVO_PIPE_B_SELECT),
 1461	     "IBX PCH hdmi port still using transcoder B\n");
 1462}
 1463
 1464static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
 1465				      enum pipe pipe)
 1466{
 1467	u32 val;
 1468
 1469	assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
 1470	assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
 1471	assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
 1472
 1473	val = I915_READ(PCH_ADPA);
 1474	I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
 1475	     "PCH VGA enabled on transcoder %c, should be disabled\n",
 1476	     pipe_name(pipe));
 1477
 1478	val = I915_READ(PCH_LVDS);
 1479	I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
 1480	     "PCH LVDS enabled on transcoder %c, should be disabled\n",
 1481	     pipe_name(pipe));
 1482
 1483	assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
 1484	assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
 1485	assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
 1486}
 1487
 1488static void _vlv_enable_pll(struct intel_crtc *crtc,
 1489			    const struct intel_crtc_state *pipe_config)
 1490{
 1491	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
 1492	enum pipe pipe = crtc->pipe;
 1493
 1494	I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
 1495	POSTING_READ(DPLL(pipe));
 1496	udelay(150);
 1497
 1498	if (intel_wait_for_register(dev_priv,
 1499				    DPLL(pipe),
 1500				    DPLL_LOCK_VLV,
 1501				    DPLL_LOCK_VLV,
 1502				    1))
 1503		DRM_ERROR("DPLL %d failed to lock\n", pipe);
 1504}
 1505
 1506static void vlv_enable_pll(struct intel_crtc *crtc,
 1507			   const struct intel_crtc_state *pipe_config)
 1508{
 1509	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
 1510	enum pipe pipe = crtc->pipe;
 1511
 1512	assert_pipe_disabled(dev_priv, pipe);
 1513
 1514	/* PLL is protected by panel, make sure we can write it */
 1515	assert_panel_unlocked(dev_priv, pipe);
 1516
 1517	if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
 1518		_vlv_enable_pll(crtc, pipe_config);
 1519
 1520	I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
 1521	POSTING_READ(DPLL_MD(pipe));
 1522}
 1523
 1524
 1525static void _chv_enable_pll(struct intel_crtc *crtc,
 1526			    const struct intel_crtc_state *pipe_config)
 1527{
 1528	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
 1529	enum pipe pipe = crtc->pipe;
 1530	enum dpio_channel port = vlv_pipe_to_channel(pipe);
 1531	u32 tmp;
 1532
 1533	mutex_lock(&dev_priv->sb_lock);
 1534
 1535	/* Enable back the 10bit clock to display controller */
 1536	tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
 1537	tmp |= DPIO_DCLKP_EN;
 1538	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
 1539
 1540	mutex_unlock(&dev_priv->sb_lock);
 1541
 1542	/*
 1543	 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
 1544	 */
 1545	udelay(1);
 1546
 1547	/* Enable PLL */
 1548	I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
 1549
 1550	/* Check PLL is locked */
 1551	if (intel_wait_for_register(dev_priv,
 1552				    DPLL(pipe), DPLL_LOCK_VLV, DPLL_LOCK_VLV,
 1553				    1))
 1554		DRM_ERROR("PLL %d failed to lock\n", pipe);
 1555}
 1556
 1557static void chv_enable_pll(struct intel_crtc *crtc,
 1558			   const struct intel_crtc_state *pipe_config)
 1559{
 1560	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
 1561	enum pipe pipe = crtc->pipe;
 1562
 1563	assert_pipe_disabled(dev_priv, pipe);
 1564
 1565	/* PLL is protected by panel, make sure we can write it */
 1566	assert_panel_unlocked(dev_priv, pipe);
 1567
 1568	if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
 1569		_chv_enable_pll(crtc, pipe_config);
 1570
 1571	if (pipe != PIPE_A) {
 1572		/*
 1573		 * WaPixelRepeatModeFixForC0:chv
 1574		 *
 1575		 * DPLLCMD is AWOL. Use chicken bits to propagate
 1576		 * the value from DPLLBMD to either pipe B or C.
 1577		 */
 1578		I915_WRITE(CBR4_VLV, pipe == PIPE_B ? CBR_DPLLBMD_PIPE_B : CBR_DPLLBMD_PIPE_C);
 1579		I915_WRITE(DPLL_MD(PIPE_B), pipe_config->dpll_hw_state.dpll_md);
 1580		I915_WRITE(CBR4_VLV, 0);
 1581		dev_priv->chv_dpll_md[pipe] = pipe_config->dpll_hw_state.dpll_md;
 1582
 1583		/*
 1584		 * DPLLB VGA mode also seems to cause problems.
 1585		 * We should always have it disabled.
 1586		 */
 1587		WARN_ON((I915_READ(DPLL(PIPE_B)) & DPLL_VGA_MODE_DIS) == 0);
 1588	} else {
 1589		I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
 1590		POSTING_READ(DPLL_MD(pipe));
 1591	}
 1592}
 1593
 1594static int intel_num_dvo_pipes(struct drm_i915_private *dev_priv)
 1595{
 1596	struct intel_crtc *crtc;
 1597	int count = 0;
 1598
 1599	for_each_intel_crtc(&dev_priv->drm, crtc) {
 1600		count += crtc->base.state->active &&
 1601			intel_crtc_has_type(crtc->config, INTEL_OUTPUT_DVO);
 1602	}
 1603
 1604	return count;
 1605}
 1606
 1607static void i9xx_enable_pll(struct intel_crtc *crtc)
 1608{
 1609	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
 1610	i915_reg_t reg = DPLL(crtc->pipe);
 1611	u32 dpll = crtc->config->dpll_hw_state.dpll;
 1612
 1613	assert_pipe_disabled(dev_priv, crtc->pipe);
 1614
 1615	/* PLL is protected by panel, make sure we can write it */
 1616	if (IS_MOBILE(dev_priv) && !IS_I830(dev_priv))
 1617		assert_panel_unlocked(dev_priv, crtc->pipe);
 1618
 1619	/* Enable DVO 2x clock on both PLLs if necessary */
 1620	if (IS_I830(dev_priv) && intel_num_dvo_pipes(dev_priv) > 0) {
 1621		/*
 1622		 * It appears to be important that we don't enable this
 1623		 * for the current pipe before otherwise configuring the
 1624		 * PLL. No idea how this should be handled if multiple
 1625		 * DVO outputs are enabled simultaneosly.
 1626		 */
 1627		dpll |= DPLL_DVO_2X_MODE;
 1628		I915_WRITE(DPLL(!crtc->pipe),
 1629			   I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
 1630	}
 1631
 1632	/*
 1633	 * Apparently we need to have VGA mode enabled prior to changing
 1634	 * the P1/P2 dividers. Otherwise the DPLL will keep using the old
 1635	 * dividers, even though the register value does change.
 1636	 */
 1637	I915_WRITE(reg, 0);
 1638
 1639	I915_WRITE(reg, dpll);
 1640
 1641	/* Wait for the clocks to stabilize. */
 1642	POSTING_READ(reg);
 1643	udelay(150);
 1644
 1645	if (INTEL_GEN(dev_priv) >= 4) {
 1646		I915_WRITE(DPLL_MD(crtc->pipe),
 1647			   crtc->config->dpll_hw_state.dpll_md);
 1648	} else {
 1649		/* The pixel multiplier can only be updated once the
 1650		 * DPLL is enabled and the clocks are stable.
 1651		 *
 1652		 * So write it again.
 1653		 */
 1654		I915_WRITE(reg, dpll);
 1655	}
 1656
 1657	/* We do this three times for luck */
 1658	I915_WRITE(reg, dpll);
 1659	POSTING_READ(reg);
 1660	udelay(150); /* wait for warmup */
 1661	I915_WRITE(reg, dpll);
 1662	POSTING_READ(reg);
 1663	udelay(150); /* wait for warmup */
 1664	I915_WRITE(reg, dpll);
 1665	POSTING_READ(reg);
 1666	udelay(150); /* wait for warmup */
 1667}
 1668
 1669/**
 1670 * i9xx_disable_pll - disable a PLL
 1671 * @dev_priv: i915 private structure
 1672 * @pipe: pipe PLL to disable
 1673 *
 1674 * Disable the PLL for @pipe, making sure the pipe is off first.
 1675 *
 1676 * Note!  This is for pre-ILK only.
 1677 */
 1678static void i9xx_disable_pll(struct intel_crtc *crtc)
 1679{
 1680	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
 1681	enum pipe pipe = crtc->pipe;
 1682
 1683	/* Disable DVO 2x clock on both PLLs if necessary */
 1684	if (IS_I830(dev_priv) &&
 1685	    intel_crtc_has_type(crtc->config, INTEL_OUTPUT_DVO) &&
 1686	    !intel_num_dvo_pipes(dev_priv)) {
 1687		I915_WRITE(DPLL(PIPE_B),
 1688			   I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
 1689		I915_WRITE(DPLL(PIPE_A),
 1690			   I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
 1691	}
 1692
 1693	/* Don't disable pipe or pipe PLLs if needed */
 1694	if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
 1695	    (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
 1696		return;
 1697
 1698	/* Make sure the pipe isn't still relying on us */
 1699	assert_pipe_disabled(dev_priv, pipe);
 1700
 1701	I915_WRITE(DPLL(pipe), DPLL_VGA_MODE_DIS);
 1702	POSTING_READ(DPLL(pipe));
 1703}
 1704
 1705static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
 1706{
 1707	u32 val;
 1708
 1709	/* Make sure the pipe isn't still relying on us */
 1710	assert_pipe_disabled(dev_priv, pipe);
 1711
 1712	val = DPLL_INTEGRATED_REF_CLK_VLV |
 1713		DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
 1714	if (pipe != PIPE_A)
 1715		val |= DPLL_INTEGRATED_CRI_CLK_VLV;
 1716
 1717	I915_WRITE(DPLL(pipe), val);
 1718	POSTING_READ(DPLL(pipe));
 1719}
 1720
 1721static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
 1722{
 1723	enum dpio_channel port = vlv_pipe_to_channel(pipe);
 1724	u32 val;
 1725
 1726	/* Make sure the pipe isn't still relying on us */
 1727	assert_pipe_disabled(dev_priv, pipe);
 1728
 1729	val = DPLL_SSC_REF_CLK_CHV |
 1730		DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
 1731	if (pipe != PIPE_A)
 1732		val |= DPLL_INTEGRATED_CRI_CLK_VLV;
 1733
 1734	I915_WRITE(DPLL(pipe), val);
 1735	POSTING_READ(DPLL(pipe));
 1736
 1737	mutex_lock(&dev_priv->sb_lock);
 1738
 1739	/* Disable 10bit clock to display controller */
 1740	val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
 1741	val &= ~DPIO_DCLKP_EN;
 1742	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
 1743
 1744	mutex_unlock(&dev_priv->sb_lock);
 1745}
 1746
 1747void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
 1748			 struct intel_digital_port *dport,
 1749			 unsigned int expected_mask)
 1750{
 1751	u32 port_mask;
 1752	i915_reg_t dpll_reg;
 1753
 1754	switch (dport->port) {
 1755	case PORT_B:
 1756		port_mask = DPLL_PORTB_READY_MASK;
 1757		dpll_reg = DPLL(0);
 1758		break;
 1759	case PORT_C:
 1760		port_mask = DPLL_PORTC_READY_MASK;
 1761		dpll_reg = DPLL(0);
 1762		expected_mask <<= 4;
 1763		break;
 1764	case PORT_D:
 1765		port_mask = DPLL_PORTD_READY_MASK;
 1766		dpll_reg = DPIO_PHY_STATUS;
 1767		break;
 1768	default:
 1769		BUG();
 1770	}
 1771
 1772	if (intel_wait_for_register(dev_priv,
 1773				    dpll_reg, port_mask, expected_mask,
 1774				    1000))
 1775		WARN(1, "timed out waiting for port %c ready: got 0x%x, expected 0x%x\n",
 1776		     port_name(dport->port), I915_READ(dpll_reg) & port_mask, expected_mask);
 1777}
 1778
 1779static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
 1780					   enum pipe pipe)
 1781{
 1782	struct intel_crtc *intel_crtc = intel_get_crtc_for_pipe(dev_priv,
 1783								pipe);
 1784	i915_reg_t reg;
 1785	uint32_t val, pipeconf_val;
 1786
 1787	/* Make sure PCH DPLL is enabled */
 1788	assert_shared_dpll_enabled(dev_priv, intel_crtc->config->shared_dpll);
 1789
 1790	/* FDI must be feeding us bits for PCH ports */
 1791	assert_fdi_tx_enabled(dev_priv, pipe);
 1792	assert_fdi_rx_enabled(dev_priv, pipe);
 1793
 1794	if (HAS_PCH_CPT(dev_priv)) {
 1795		/* Workaround: Set the timing override bit before enabling the
 1796		 * pch transcoder. */
 1797		reg = TRANS_CHICKEN2(pipe);
 1798		val = I915_READ(reg);
 1799		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
 1800		I915_WRITE(reg, val);
 1801	}
 1802
 1803	reg = PCH_TRANSCONF(pipe);
 1804	val = I915_READ(reg);
 1805	pipeconf_val = I915_READ(PIPECONF(pipe));
 1806
 1807	if (HAS_PCH_IBX(dev_priv)) {
 1808		/*
 1809		 * Make the BPC in transcoder be consistent with
 1810		 * that in pipeconf reg. For HDMI we must use 8bpc
 1811		 * here for both 8bpc and 12bpc.
 1812		 */
 1813		val &= ~PIPECONF_BPC_MASK;
 1814		if (intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_HDMI))
 1815			val |= PIPECONF_8BPC;
 1816		else
 1817			val |= pipeconf_val & PIPECONF_BPC_MASK;
 1818	}
 1819
 1820	val &= ~TRANS_INTERLACE_MASK;
 1821	if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
 1822		if (HAS_PCH_IBX(dev_priv) &&
 1823		    intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_SDVO))
 1824			val |= TRANS_LEGACY_INTERLACED_ILK;
 1825		else
 1826			val |= TRANS_INTERLACED;
 1827	else
 1828		val |= TRANS_PROGRESSIVE;
 1829
 1830	I915_WRITE(reg, val | TRANS_ENABLE);
 1831	if (intel_wait_for_register(dev_priv,
 1832				    reg, TRANS_STATE_ENABLE, TRANS_STATE_ENABLE,
 1833				    100))
 1834		DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
 1835}
 1836
 1837static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
 1838				      enum transcoder cpu_transcoder)
 1839{
 1840	u32 val, pipeconf_val;
 1841
 1842	/* FDI must be feeding us bits for PCH ports */
 1843	assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
 1844	assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
 1845
 1846	/* Workaround: set timing override bit. */
 1847	val = I915_READ(TRANS_CHICKEN2(PIPE_A));
 1848	val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
 1849	I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
 1850
 1851	val = TRANS_ENABLE;
 1852	pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
 1853
 1854	if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
 1855	    PIPECONF_INTERLACED_ILK)
 1856		val |= TRANS_INTERLACED;
 1857	else
 1858		val |= TRANS_PROGRESSIVE;
 1859
 1860	I915_WRITE(LPT_TRANSCONF, val);
 1861	if (intel_wait_for_register(dev_priv,
 1862				    LPT_TRANSCONF,
 1863				    TRANS_STATE_ENABLE,
 1864				    TRANS_STATE_ENABLE,
 1865				    100))
 1866		DRM_ERROR("Failed to enable PCH transcoder\n");
 1867}
 1868
 1869static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
 1870					    enum pipe pipe)
 1871{
 1872	i915_reg_t reg;
 1873	uint32_t val;
 1874
 1875	/* FDI relies on the transcoder */
 1876	assert_fdi_tx_disabled(dev_priv, pipe);
 1877	assert_fdi_rx_disabled(dev_priv, pipe);
 1878
 1879	/* Ports must be off as well */
 1880	assert_pch_ports_disabled(dev_priv, pipe);
 1881
 1882	reg = PCH_TRANSCONF(pipe);
 1883	val = I915_READ(reg);
 1884	val &= ~TRANS_ENABLE;
 1885	I915_WRITE(reg, val);
 1886	/* wait for PCH transcoder off, transcoder state */
 1887	if (intel_wait_for_register(dev_priv,
 1888				    reg, TRANS_STATE_ENABLE, 0,
 1889				    50))
 1890		DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
 1891
 1892	if (HAS_PCH_CPT(dev_priv)) {
 1893		/* Workaround: Clear the timing override chicken bit again. */
 1894		reg = TRANS_CHICKEN2(pipe);
 1895		val = I915_READ(reg);
 1896		val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
 1897		I915_WRITE(reg, val);
 1898	}
 1899}
 1900
 1901void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
 1902{
 1903	u32 val;
 1904
 1905	val = I915_READ(LPT_TRANSCONF);
 1906	val &= ~TRANS_ENABLE;
 1907	I915_WRITE(LPT_TRANSCONF, val);
 1908	/* wait for PCH transcoder off, transcoder state */
 1909	if (intel_wait_for_register(dev_priv,
 1910				    LPT_TRANSCONF, TRANS_STATE_ENABLE, 0,
 1911				    50))
 1912		DRM_ERROR("Failed to disable PCH transcoder\n");
 1913
 1914	/* Workaround: clear timing override bit. */
 1915	val = I915_READ(TRANS_CHICKEN2(PIPE_A));
 1916	val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
 1917	I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
 1918}
 1919
 1920enum transcoder intel_crtc_pch_transcoder(struct intel_crtc *crtc)
 1921{
 1922	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
 1923
 1924	WARN_ON(!crtc->config->has_pch_encoder);
 1925
 1926	if (HAS_PCH_LPT(dev_priv))
 1927		return TRANSCODER_A;
 1928	else
 1929		return (enum transcoder) crtc->pipe;
 1930}
 1931
 1932/**
 1933 * intel_enable_pipe - enable a pipe, asserting requirements
 1934 * @crtc: crtc responsible for the pipe
 1935 *
 1936 * Enable @crtc's pipe, making sure that various hardware specific requirements
 1937 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
 1938 */
 1939static void intel_enable_pipe(struct intel_crtc *crtc)
 1940{
 1941	struct drm_device *dev = crtc->base.dev;
 1942	struct drm_i915_private *dev_priv = to_i915(dev);
 1943	enum pipe pipe = crtc->pipe;
 1944	enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
 1945	i915_reg_t reg;
 1946	u32 val;
 1947
 1948	DRM_DEBUG_KMS("enabling pipe %c\n", pipe_name(pipe));
 1949
 1950	assert_planes_disabled(dev_priv, pipe);
 1951	assert_cursor_disabled(dev_priv, pipe);
 1952	assert_sprites_disabled(dev_priv, pipe);
 1953
 1954	/*
 1955	 * A pipe without a PLL won't actually be able to drive bits from
 1956	 * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
 1957	 * need the check.
 1958	 */
 1959	if (HAS_GMCH_DISPLAY(dev_priv)) {
 1960		if (intel_crtc_has_type(crtc->config, INTEL_OUTPUT_DSI))
 1961			assert_dsi_pll_enabled(dev_priv);
 1962		else
 1963			assert_pll_enabled(dev_priv, pipe);
 1964	} else {
 1965		if (crtc->config->has_pch_encoder) {
 1966			/* if driving the PCH, we need FDI enabled */
 1967			assert_fdi_rx_pll_enabled(dev_priv,
 1968						  (enum pipe) intel_crtc_pch_transcoder(crtc));
 1969			assert_fdi_tx_pll_enabled(dev_priv,
 1970						  (enum pipe) cpu_transcoder);
 1971		}
 1972		/* FIXME: assert CPU port conditions for SNB+ */
 1973	}
 1974
 1975	reg = PIPECONF(cpu_transcoder);
 1976	val = I915_READ(reg);
 1977	if (val & PIPECONF_ENABLE) {
 1978		WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
 1979			  (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
 1980		return;
 1981	}
 1982
 1983	I915_WRITE(reg, val | PIPECONF_ENABLE);
 1984	POSTING_READ(reg);
 1985
 1986	/*
 1987	 * Until the pipe starts DSL will read as 0, which would cause
 1988	 * an apparent vblank timestamp jump, which messes up also the
 1989	 * frame count when it's derived from the timestamps. So let's
 1990	 * wait for the pipe to start properly before we call
 1991	 * drm_crtc_vblank_on()
 1992	 */
 1993	if (dev->max_vblank_count == 0 &&
 1994	    wait_for(intel_get_crtc_scanline(crtc) != crtc->scanline_offset, 50))
 1995		DRM_ERROR("pipe %c didn't start\n", pipe_name(pipe));
 1996}
 1997
 1998/**
 1999 * intel_disable_pipe - disable a pipe, asserting requirements
 2000 * @crtc: crtc whose pipes is to be disabled
 2001 *
 2002 * Disable the pipe of @crtc, making sure that various hardware
 2003 * specific requirements are met, if applicable, e.g. plane
 2004 * disabled, panel fitter off, etc.
 2005 *
 2006 * Will wait until the pipe has shut down before returning.
 2007 */
 2008static void intel_disable_pipe(struct intel_crtc *crtc)
 2009{
 2010	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
 2011	enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
 2012	enum pipe pipe = crtc->pipe;
 2013	i915_reg_t reg;
 2014	u32 val;
 2015
 2016	DRM_DEBUG_KMS("disabling pipe %c\n", pipe_name(pipe));
 2017
 2018	/*
 2019	 * Make sure planes won't keep trying to pump pixels to us,
 2020	 * or we might hang the display.
 2021	 */
 2022	assert_planes_disabled(dev_priv, pipe);
 2023	assert_cursor_disabled(dev_priv, pipe);
 2024	assert_sprites_disabled(dev_priv, pipe);
 2025
 2026	reg = PIPECONF(cpu_transcoder);
 2027	val = I915_READ(reg);
 2028	if ((val & PIPECONF_ENABLE) == 0)
 2029		return;
 2030
 2031	/*
 2032	 * Double wide has implications for planes
 2033	 * so best keep it disabled when not needed.
 2034	 */
 2035	if (crtc->config->double_wide)
 2036		val &= ~PIPECONF_DOUBLE_WIDE;
 2037
 2038	/* Don't disable pipe or pipe PLLs if needed */
 2039	if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
 2040	    !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
 2041		val &= ~PIPECONF_ENABLE;
 2042
 2043	I915_WRITE(reg, val);
 2044	if ((val & PIPECONF_ENABLE) == 0)
 2045		intel_wait_for_pipe_off(crtc);
 2046}
 2047
 2048static unsigned int intel_tile_size(const struct drm_i915_private *dev_priv)
 2049{
 2050	return IS_GEN2(dev_priv) ? 2048 : 4096;
 2051}
 2052
 2053static unsigned int intel_tile_width_bytes(const struct drm_i915_private *dev_priv,
 2054					   uint64_t fb_modifier, unsigned int cpp)
 2055{
 2056	switch (fb_modifier) {
 2057	case DRM_FORMAT_MOD_NONE:
 2058		return cpp;
 2059	case I915_FORMAT_MOD_X_TILED:
 2060		if (IS_GEN2(dev_priv))
 2061			return 128;
 2062		else
 2063			return 512;
 2064	case I915_FORMAT_MOD_Y_TILED:
 2065		if (IS_GEN2(dev_priv) || HAS_128_BYTE_Y_TILING(dev_priv))
 2066			return 128;
 2067		else
 2068			return 512;
 2069	case I915_FORMAT_MOD_Yf_TILED:
 2070		switch (cpp) {
 2071		case 1:
 2072			return 64;
 2073		case 2:
 2074		case 4:
 2075			return 128;
 2076		case 8:
 2077		case 16:
 2078			return 256;
 2079		default:
 2080			MISSING_CASE(cpp);
 2081			return cpp;
 2082		}
 2083		break;
 2084	default:
 2085		MISSING_CASE(fb_modifier);
 2086		return cpp;
 2087	}
 2088}
 2089
 2090unsigned int intel_tile_height(const struct drm_i915_private *dev_priv,
 2091			       uint64_t fb_modifier, unsigned int cpp)
 2092{
 2093	if (fb_modifier == DRM_FORMAT_MOD_NONE)
 2094		return 1;
 2095	else
 2096		return intel_tile_size(dev_priv) /
 2097			intel_tile_width_bytes(dev_priv, fb_modifier, cpp);
 2098}
 2099
 2100/* Return the tile dimensions in pixel units */
 2101static void intel_tile_dims(const struct drm_i915_private *dev_priv,
 2102			    unsigned int *tile_width,
 2103			    unsigned int *tile_height,
 2104			    uint64_t fb_modifier,
 2105			    unsigned int cpp)
 2106{
 2107	unsigned int tile_width_bytes =
 2108		intel_tile_width_bytes(dev_priv, fb_modifier, cpp);
 2109
 2110	*tile_width = tile_width_bytes / cpp;
 2111	*tile_height = intel_tile_size(dev_priv) / tile_width_bytes;
 2112}
 2113
 2114unsigned int
 2115intel_fb_align_height(struct drm_device *dev, unsigned int height,
 2116		      uint32_t pixel_format, uint64_t fb_modifier)
 2117{
 2118	unsigned int cpp = drm_format_plane_cpp(pixel_format, 0);
 2119	unsigned int tile_height = intel_tile_height(to_i915(dev), fb_modifier, cpp);
 2120
 2121	return ALIGN(height, tile_height);
 2122}
 2123
 2124unsigned int intel_rotation_info_size(const struct intel_rotation_info *rot_info)
 2125{
 2126	unsigned int size = 0;
 2127	int i;
 2128
 2129	for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++)
 2130		size += rot_info->plane[i].width * rot_info->plane[i].height;
 2131
 2132	return size;
 2133}
 2134
 2135static void
 2136intel_fill_fb_ggtt_view(struct i915_ggtt_view *view,
 2137			const struct drm_framebuffer *fb,
 2138			unsigned int rotation)
 2139{
 2140	if (drm_rotation_90_or_270(rotation)) {
 2141		*view = i915_ggtt_view_rotated;
 2142		view->params.rotated = to_intel_framebuffer(fb)->rot_info;
 2143	} else {
 2144		*view = i915_ggtt_view_normal;
 2145	}
 2146}
 2147
 2148static unsigned int intel_linear_alignment(const struct drm_i915_private *dev_priv)
 2149{
 2150	if (INTEL_INFO(dev_priv)->gen >= 9)
 2151		return 256 * 1024;
 2152	else if (IS_BROADWATER(dev_priv) || IS_CRESTLINE(dev_priv) ||
 2153		 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
 2154		return 128 * 1024;
 2155	else if (INTEL_INFO(dev_priv)->gen >= 4)
 2156		return 4 * 1024;
 2157	else
 2158		return 0;
 2159}
 2160
 2161static unsigned int intel_surf_alignment(const struct drm_i915_private *dev_priv,
 2162					 uint64_t fb_modifier)
 2163{
 2164	switch (fb_modifier) {
 2165	case DRM_FORMAT_MOD_NONE:
 2166		return intel_linear_alignment(dev_priv);
 2167	case I915_FORMAT_MOD_X_TILED:
 2168		if (INTEL_INFO(dev_priv)->gen >= 9)
 2169			return 256 * 1024;
 2170		return 0;
 2171	case I915_FORMAT_MOD_Y_TILED:
 2172	case I915_FORMAT_MOD_Yf_TILED:
 2173		return 1 * 1024 * 1024;
 2174	default:
 2175		MISSING_CASE(fb_modifier);
 2176		return 0;
 2177	}
 2178}
 2179
 2180struct i915_vma *
 2181intel_pin_and_fence_fb_obj(struct drm_framebuffer *fb, unsigned int rotation)
 2182{
 2183	struct drm_device *dev = fb->dev;
 2184	struct drm_i915_private *dev_priv = to_i915(dev);
 2185	struct drm_i915_gem_object *obj = intel_fb_obj(fb);
 2186	struct i915_ggtt_view view;
 2187	struct i915_vma *vma;
 2188	u32 alignment;
 2189
 2190	WARN_ON(!mutex_is_locked(&dev->struct_mutex));
 2191
 2192	alignment = intel_surf_alignment(dev_priv, fb->modifier);
 2193
 2194	intel_fill_fb_ggtt_view(&view, fb, rotation);
 2195
 2196	/* Note that the w/a also requires 64 PTE of padding following the
 2197	 * bo. We currently fill all unused PTE with the shadow page and so
 2198	 * we should always have valid PTE following the scanout preventing
 2199	 * the VT-d warning.
 2200	 */
 2201	if (intel_scanout_needs_vtd_wa(dev_priv) && alignment < 256 * 1024)
 2202		alignment = 256 * 1024;
 2203
 2204	/*
 2205	 * Global gtt pte registers are special registers which actually forward
 2206	 * writes to a chunk of system memory. Which means that there is no risk
 2207	 * that the register values disappear as soon as we call
 2208	 * intel_runtime_pm_put(), so it is correct to wrap only the
 2209	 * pin/unpin/fence and not more.
 2210	 */
 2211	intel_runtime_pm_get(dev_priv);
 2212
 2213	vma = i915_gem_object_pin_to_display_plane(obj, alignment, &view);
 2214	if (IS_ERR(vma))
 2215		goto err;
 2216
 2217	if (i915_vma_is_map_and_fenceable(vma)) {
 2218		/* Install a fence for tiled scan-out. Pre-i965 always needs a
 2219		 * fence, whereas 965+ only requires a fence if using
 2220		 * framebuffer compression.  For simplicity, we always, when
 2221		 * possible, install a fence as the cost is not that onerous.
 2222		 *
 2223		 * If we fail to fence the tiled scanout, then either the
 2224		 * modeset will reject the change (which is highly unlikely as
 2225		 * the affected systems, all but one, do not have unmappable
 2226		 * space) or we will not be able to enable full powersaving
 2227		 * techniques (also likely not to apply due to various limits
 2228		 * FBC and the like impose on the size of the buffer, which
 2229		 * presumably we violated anyway with this unmappable buffer).
 2230		 * Anyway, it is presumably better to stumble onwards with
 2231		 * something and try to run the system in a "less than optimal"
 2232		 * mode that matches the user configuration.
 2233		 */
 2234		if (i915_vma_get_fence(vma) == 0)
 2235			i915_vma_pin_fence(vma);
 2236	}
 2237
 2238	i915_vma_get(vma);
 2239err:
 2240	intel_runtime_pm_put(dev_priv);
 2241	return vma;
 2242}
 2243
 2244void intel_unpin_fb_vma(struct i915_vma *vma)
 2245{
 2246	lockdep_assert_held(&vma->vm->dev->struct_mutex);
 2247
 2248	if (WARN_ON_ONCE(!vma))
 2249		return;
 2250
 2251	i915_vma_unpin_fence(vma);
 2252	i915_gem_object_unpin_from_display_plane(vma);
 2253	i915_vma_put(vma);
 2254}
 2255
 2256static int intel_fb_pitch(const struct drm_framebuffer *fb, int plane,
 2257			  unsigned int rotation)
 2258{
 2259	if (drm_rotation_90_or_270(rotation))
 2260		return to_intel_framebuffer(fb)->rotated[plane].pitch;
 2261	else
 2262		return fb->pitches[plane];
 2263}
 2264
 2265/*
 2266 * Convert the x/y offsets into a linear offset.
 2267 * Only valid with 0/180 degree rotation, which is fine since linear
 2268 * offset is only used with linear buffers on pre-hsw and tiled buffers
 2269 * with gen2/3, and 90/270 degree rotations isn't supported on any of them.
 2270 */
 2271u32 intel_fb_xy_to_linear(int x, int y,
 2272			  const struct intel_plane_state *state,
 2273			  int plane)
 2274{
 2275	const struct drm_framebuffer *fb = state->base.fb;
 2276	unsigned int cpp = drm_format_plane_cpp(fb->pixel_format, plane);
 2277	unsigned int pitch = fb->pitches[plane];
 2278
 2279	return y * pitch + x * cpp;
 2280}
 2281
 2282/*
 2283 * Add the x/y offsets derived from fb->offsets[] to the user
 2284 * specified plane src x/y offsets. The resulting x/y offsets
 2285 * specify the start of scanout from the beginning of the gtt mapping.
 2286 */
 2287void intel_add_fb_offsets(int *x, int *y,
 2288			  const struct intel_plane_state *state,
 2289			  int plane)
 2290
 2291{
 2292	const struct intel_framebuffer *intel_fb = to_intel_framebuffer(state->base.fb);
 2293	unsigned int rotation = state->base.rotation;
 2294
 2295	if (drm_rotation_90_or_270(rotation)) {
 2296		*x += intel_fb->rotated[plane].x;
 2297		*y += intel_fb->rotated[plane].y;
 2298	} else {
 2299		*x += intel_fb->normal[plane].x;
 2300		*y += intel_fb->normal[plane].y;
 2301	}
 2302}
 2303
 2304/*
 2305 * Input tile dimensions and pitch must already be
 2306 * rotated to match x and y, and in pixel units.
 2307 */
 2308static u32 _intel_adjust_tile_offset(int *x, int *y,
 2309				     unsigned int tile_width,
 2310				     unsigned int tile_height,
 2311				     unsigned int tile_size,
 2312				     unsigned int pitch_tiles,
 2313				     u32 old_offset,
 2314				     u32 new_offset)
 2315{
 2316	unsigned int pitch_pixels = pitch_tiles * tile_width;
 2317	unsigned int tiles;
 2318
 2319	WARN_ON(old_offset & (tile_size - 1));
 2320	WARN_ON(new_offset & (tile_size - 1));
 2321	WARN_ON(new_offset > old_offset);
 2322
 2323	tiles = (old_offset - new_offset) / tile_size;
 2324
 2325	*y += tiles / pitch_tiles * tile_height;
 2326	*x += tiles % pitch_tiles * tile_width;
 2327
 2328	/* minimize x in case it got needlessly big */
 2329	*y += *x / pitch_pixels * tile_height;
 2330	*x %= pitch_pixels;
 2331
 2332	return new_offset;
 2333}
 2334
 2335/*
 2336 * Adjust the tile offset by moving the difference into
 2337 * the x/y offsets.
 2338 */
 2339static u32 intel_adjust_tile_offset(int *x, int *y,
 2340				    const struct intel_plane_state *state, int plane,
 2341				    u32 old_offset, u32 new_offset)
 2342{
 2343	const struct drm_i915_private *dev_priv = to_i915(state->base.plane->dev);
 2344	const struct drm_framebuffer *fb = state->base.fb;
 2345	unsigned int cpp = drm_format_plane_cpp(fb->pixel_format, plane);
 2346	unsigned int rotation = state->base.rotation;
 2347	unsigned int pitch = intel_fb_pitch(fb, plane, rotation);
 2348
 2349	WARN_ON(new_offset > old_offset);
 2350
 2351	if (fb->modifier != DRM_FORMAT_MOD_NONE) {
 2352		unsigned int tile_size, tile_width, tile_height;
 2353		unsigned int pitch_tiles;
 2354
 2355		tile_size = intel_tile_size(dev_priv);
 2356		intel_tile_dims(dev_priv, &tile_width, &tile_height,
 2357				fb->modifier, cpp);
 2358
 2359		if (drm_rotation_90_or_270(rotation)) {
 2360			pitch_tiles = pitch / tile_height;
 2361			swap(tile_width, tile_height);
 2362		} else {
 2363			pitch_tiles = pitch / (tile_width * cpp);
 2364		}
 2365
 2366		_intel_adjust_tile_offset(x, y, tile_width, tile_height,
 2367					  tile_size, pitch_tiles,
 2368					  old_offset, new_offset);
 2369	} else {
 2370		old_offset += *y * pitch + *x * cpp;
 2371
 2372		*y = (old_offset - new_offset) / pitch;
 2373		*x = ((old_offset - new_offset) - *y * pitch) / cpp;
 2374	}
 2375
 2376	return new_offset;
 2377}
 2378
 2379/*
 2380 * Computes the linear offset to the base tile and adjusts
 2381 * x, y. bytes per pixel is assumed to be a power-of-two.
 2382 *
 2383 * In the 90/270 rotated case, x and y are assumed
 2384 * to be already rotated to match the rotated GTT view, and
 2385 * pitch is the tile_height aligned framebuffer height.
 2386 *
 2387 * This function is used when computing the derived information
 2388 * under intel_framebuffer, so using any of that information
 2389 * here is not allowed. Anything under drm_framebuffer can be
 2390 * used. This is why the user has to pass in the pitch since it
 2391 * is specified in the rotated orientation.
 2392 */
 2393static u32 _intel_compute_tile_offset(const struct drm_i915_private *dev_priv,
 2394				      int *x, int *y,
 2395				      const struct drm_framebuffer *fb, int plane,
 2396				      unsigned int pitch,
 2397				      unsigned int rotation,
 2398				      u32 alignment)
 2399{
 2400	uint64_t fb_modifier = fb->modifier;
 2401	unsigned int cpp = drm_format_plane_cpp(fb->pixel_format, plane);
 2402	u32 offset, offset_aligned;
 2403
 2404	if (alignment)
 2405		alignment--;
 2406
 2407	if (fb_modifier != DRM_FORMAT_MOD_NONE) {
 2408		unsigned int tile_size, tile_width, tile_height;
 2409		unsigned int tile_rows, tiles, pitch_tiles;
 2410
 2411		tile_size = intel_tile_size(dev_priv);
 2412		intel_tile_dims(dev_priv, &tile_width, &tile_height,
 2413				fb_modifier, cpp);
 2414
 2415		if (drm_rotation_90_or_270(rotation)) {
 2416			pitch_tiles = pitch / tile_height;
 2417			swap(tile_width, tile_height);
 2418		} else {
 2419			pitch_tiles = pitch / (tile_width * cpp);
 2420		}
 2421
 2422		tile_rows = *y / tile_height;
 2423		*y %= tile_height;
 2424
 2425		tiles = *x / tile_width;
 2426		*x %= tile_width;
 2427
 2428		offset = (tile_rows * pitch_tiles + tiles) * tile_size;
 2429		offset_aligned = offset & ~alignment;
 2430
 2431		_intel_adjust_tile_offset(x, y, tile_width, tile_height,
 2432					  tile_size, pitch_tiles,
 2433					  offset, offset_aligned);
 2434	} else {
 2435		offset = *y * pitch + *x * cpp;
 2436		offset_aligned = offset & ~alignment;
 2437
 2438		*y = (offset & alignment) / pitch;
 2439		*x = ((offset & alignment) - *y * pitch) / cpp;
 2440	}
 2441
 2442	return offset_aligned;
 2443}
 2444
 2445u32 intel_compute_tile_offset(int *x, int *y,
 2446			      const struct intel_plane_state *state,
 2447			      int plane)
 2448{
 2449	const struct drm_i915_private *dev_priv = to_i915(state->base.plane->dev);
 2450	const struct drm_framebuffer *fb = state->base.fb;
 2451	unsigned int rotation = state->base.rotation;
 2452	int pitch = intel_fb_pitch(fb, plane, rotation);
 2453	u32 alignment;
 2454
 2455	/* AUX_DIST needs only 4K alignment */
 2456	if (fb->pixel_format == DRM_FORMAT_NV12 && plane == 1)
 2457		alignment = 4096;
 2458	else
 2459		alignment = intel_surf_alignment(dev_priv, fb->modifier);
 2460
 2461	return _intel_compute_tile_offset(dev_priv, x, y, fb, plane, pitch,
 2462					  rotation, alignment);
 2463}
 2464
 2465/* Convert the fb->offset[] linear offset into x/y offsets */
 2466static void intel_fb_offset_to_xy(int *x, int *y,
 2467				  const struct drm_framebuffer *fb, int plane)
 2468{
 2469	unsigned int cpp = drm_format_plane_cpp(fb->pixel_format, plane);
 2470	unsigned int pitch = fb->pitches[plane];
 2471	u32 linear_offset = fb->offsets[plane];
 2472
 2473	*y = linear_offset / pitch;
 2474	*x = linear_offset % pitch / cpp;
 2475}
 2476
 2477static unsigned int intel_fb_modifier_to_tiling(uint64_t fb_modifier)
 2478{
 2479	switch (fb_modifier) {
 2480	case I915_FORMAT_MOD_X_TILED:
 2481		return I915_TILING_X;
 2482	case I915_FORMAT_MOD_Y_TILED:
 2483		return I915_TILING_Y;
 2484	default:
 2485		return I915_TILING_NONE;
 2486	}
 2487}
 2488
 2489static int
 2490intel_fill_fb_info(struct drm_i915_private *dev_priv,
 2491		   struct drm_framebuffer *fb)
 2492{
 2493	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
 2494	struct intel_rotation_info *rot_info = &intel_fb->rot_info;
 2495	u32 gtt_offset_rotated = 0;
 2496	unsigned int max_size = 0;
 2497	uint32_t format = fb->pixel_format;
 2498	int i, num_planes = drm_format_num_planes(format);
 2499	unsigned int tile_size = intel_tile_size(dev_priv);
 2500
 2501	for (i = 0; i < num_planes; i++) {
 2502		unsigned int width, height;
 2503		unsigned int cpp, size;
 2504		u32 offset;
 2505		int x, y;
 2506
 2507		cpp = drm_format_plane_cpp(format, i);
 2508		width = drm_format_plane_width(fb->width, format, i);
 2509		height = drm_format_plane_height(fb->height, format, i);
 2510
 2511		intel_fb_offset_to_xy(&x, &y, fb, i);
 2512
 2513		/*
 2514		 * The fence (if used) is aligned to the start of the object
 2515		 * so having the framebuffer wrap around across the edge of the
 2516		 * fenced region doesn't really work. We have no API to configure
 2517		 * the fence start offset within the object (nor could we probably
 2518		 * on gen2/3). So it's just easier if we just require that the
 2519		 * fb layout agrees with the fence layout. We already check that the
 2520		 * fb stride matches the fence stride elsewhere.
 2521		 */
 2522		if (i915_gem_object_is_tiled(intel_fb->obj) &&
 2523		    (x + width) * cpp > fb->pitches[i]) {
 2524			DRM_DEBUG("bad fb plane %d offset: 0x%x\n",
 2525				  i, fb->offsets[i]);
 2526			return -EINVAL;
 2527		}
 2528
 2529		/*
 2530		 * First pixel of the framebuffer from
 2531		 * the start of the normal gtt mapping.
 2532		 */
 2533		intel_fb->normal[i].x = x;
 2534		intel_fb->normal[i].y = y;
 2535
 2536		offset = _intel_compute_tile_offset(dev_priv, &x, &y,
 2537						    fb, 0, fb->pitches[i],
 2538						    DRM_ROTATE_0, tile_size);
 2539		offset /= tile_size;
 2540
 2541		if (fb->modifier != DRM_FORMAT_MOD_NONE) {
 2542			unsigned int tile_width, tile_height;
 2543			unsigned int pitch_tiles;
 2544			struct drm_rect r;
 2545
 2546			intel_tile_dims(dev_priv, &tile_width, &tile_height,
 2547					fb->modifier, cpp);
 2548
 2549			rot_info->plane[i].offset = offset;
 2550			rot_info->plane[i].stride = DIV_ROUND_UP(fb->pitches[i], tile_width * cpp);
 2551			rot_info->plane[i].width = DIV_ROUND_UP(x + width, tile_width);
 2552			rot_info->plane[i].height = DIV_ROUND_UP(y + height, tile_height);
 2553
 2554			intel_fb->rotated[i].pitch =
 2555				rot_info->plane[i].height * tile_height;
 2556
 2557			/* how many tiles does this plane need */
 2558			size = rot_info->plane[i].stride * rot_info->plane[i].height;
 2559			/*
 2560			 * If the plane isn't horizontally tile aligned,
 2561			 * we need one more tile.
 2562			 */
 2563			if (x != 0)
 2564				size++;
 2565
 2566			/* rotate the x/y offsets to match the GTT view */
 2567			r.x1 = x;
 2568			r.y1 = y;
 2569			r.x2 = x + width;
 2570			r.y2 = y + height;
 2571			drm_rect_rotate(&r,
 2572					rot_info->plane[i].width * tile_width,
 2573					rot_info->plane[i].height * tile_height,
 2574					DRM_ROTATE_270);
 2575			x = r.x1;
 2576			y = r.y1;
 2577
 2578			/* rotate the tile dimensions to match the GTT view */
 2579			pitch_tiles = intel_fb->rotated[i].pitch / tile_height;
 2580			swap(tile_width, tile_height);
 2581
 2582			/*
 2583			 * We only keep the x/y offsets, so push all of the
 2584			 * gtt offset into the x/y offsets.
 2585			 */
 2586			_intel_adjust_tile_offset(&x, &y,
 2587						  tile_width, tile_height,
 2588						  tile_size, pitch_tiles,
 2589						  gtt_offset_rotated * tile_size, 0);
 2590
 2591			gtt_offset_rotated += rot_info->plane[i].width * rot_info->plane[i].height;
 2592
 2593			/*
 2594			 * First pixel of the framebuffer from
 2595			 * the start of the rotated gtt mapping.
 2596			 */
 2597			intel_fb->rotated[i].x = x;
 2598			intel_fb->rotated[i].y = y;
 2599		} else {
 2600			size = DIV_ROUND_UP((y + height) * fb->pitches[i] +
 2601					    x * cpp, tile_size);
 2602		}
 2603
 2604		/* how many tiles in total needed in the bo */
 2605		max_size = max(max_size, offset + size);
 2606	}
 2607
 2608	if (max_size * tile_size > to_intel_framebuffer(fb)->obj->base.size) {
 2609		DRM_DEBUG("fb too big for bo (need %u bytes, have %zu bytes)\n",
 2610			  max_size * tile_size, to_intel_framebuffer(fb)->obj->base.size);
 2611		return -EINVAL;
 2612	}
 2613
 2614	return 0;
 2615}
 2616
 2617static int i9xx_format_to_fourcc(int format)
 2618{
 2619	switch (format) {
 2620	case DISPPLANE_8BPP:
 2621		return DRM_FORMAT_C8;
 2622	case DISPPLANE_BGRX555:
 2623		return DRM_FORMAT_XRGB1555;
 2624	case DISPPLANE_BGRX565:
 2625		return DRM_FORMAT_RGB565;
 2626	default:
 2627	case DISPPLANE_BGRX888:
 2628		return DRM_FORMAT_XRGB8888;
 2629	case DISPPLANE_RGBX888:
 2630		return DRM_FORMAT_XBGR8888;
 2631	case DISPPLANE_BGRX101010:
 2632		return DRM_FORMAT_XRGB2101010;
 2633	case DISPPLANE_RGBX101010:
 2634		return DRM_FORMAT_XBGR2101010;
 2635	}
 2636}
 2637
 2638static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
 2639{
 2640	switch (format) {
 2641	case PLANE_CTL_FORMAT_RGB_565:
 2642		return DRM_FORMAT_RGB565;
 2643	default:
 2644	case PLANE_CTL_FORMAT_XRGB_8888:
 2645		if (rgb_order) {
 2646			if (alpha)
 2647				return DRM_FORMAT_ABGR8888;
 2648			else
 2649				return DRM_FORMAT_XBGR8888;
 2650		} else {
 2651			if (alpha)
 2652				return DRM_FORMAT_ARGB8888;
 2653			else
 2654				return DRM_FORMAT_XRGB8888;
 2655		}
 2656	case PLANE_CTL_FORMAT_XRGB_2101010:
 2657		if (rgb_order)
 2658			return DRM_FORMAT_XBGR2101010;
 2659		else
 2660			return DRM_FORMAT_XRGB2101010;
 2661	}
 2662}
 2663
 2664static bool
 2665intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
 2666			      struct intel_initial_plane_config *plane_config)
 2667{
 2668	struct drm_device *dev = crtc->base.dev;
 2669	struct drm_i915_private *dev_priv = to_i915(dev);
 2670	struct i915_ggtt *ggtt = &dev_priv->ggtt;
 2671	struct drm_i915_gem_object *obj = NULL;
 2672	struct drm_mode_fb_cmd2 mode_cmd = { 0 };
 2673	struct drm_framebuffer *fb = &plane_config->fb->base;
 2674	u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
 2675	u32 size_aligned = round_up(plane_config->base + plane_config->size,
 2676				    PAGE_SIZE);
 2677
 2678	size_aligned -= base_aligned;
 2679
 2680	if (plane_config->size == 0)
 2681		return false;
 2682
 2683	/* If the FB is too big, just don't use it since fbdev is not very
 2684	 * important and we should probably use that space with FBC or other
 2685	 * features. */
 2686	if (size_aligned * 2 > ggtt->stolen_usable_size)
 2687		return false;
 2688
 2689	mutex_lock(&dev->struct_mutex);
 2690
 2691	obj = i915_gem_object_create_stolen_for_preallocated(dev,
 2692							     base_aligned,
 2693							     base_aligned,
 2694							     size_aligned);
 2695	if (!obj) {
 2696		mutex_unlock(&dev->struct_mutex);
 2697		return false;
 2698	}
 2699
 2700	if (plane_config->tiling == I915_TILING_X)
 2701		obj->tiling_and_stride = fb->pitches[0] | I915_TILING_X;
 2702
 2703	mode_cmd.pixel_format = fb->pixel_format;
 2704	mode_cmd.width = fb->width;
 2705	mode_cmd.height = fb->height;
 2706	mode_cmd.pitches[0] = fb->pitches[0];
 2707	mode_cmd.modifier[0] = fb->modifier;
 2708	mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
 2709
 2710	if (intel_framebuffer_init(dev, to_intel_framebuffer(fb),
 2711				   &mode_cmd, obj)) {
 2712		DRM_DEBUG_KMS("intel fb init failed\n");
 2713		goto out_unref_obj;
 2714	}
 2715
 2716	mutex_unlock(&dev->struct_mutex);
 2717
 2718	DRM_DEBUG_KMS("initial plane fb obj %p\n", obj);
 2719	return true;
 2720
 2721out_unref_obj:
 2722	i915_gem_object_put(obj);
 2723	mutex_unlock(&dev->struct_mutex);
 2724	return false;
 2725}
 2726
 2727/* Update plane->state->fb to match plane->fb after driver-internal updates */
 2728static void
 2729update_state_fb(struct drm_plane *plane)
 2730{
 2731	if (plane->fb == plane->state->fb)
 2732		return;
 2733
 2734	if (plane->state->fb)
 2735		drm_framebuffer_unreference(plane->state->fb);
 2736	plane->state->fb = plane->fb;
 2737	if (plane->state->fb)
 2738		drm_framebuffer_reference(plane->state->fb);
 2739}
 2740
 2741static void
 2742intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
 2743			     struct intel_initial_plane_config *plane_config)
 2744{
 2745	struct drm_device *dev = intel_crtc->base.dev;
 2746	struct drm_i915_private *dev_priv = to_i915(dev);
 2747	struct drm_crtc *c;
 2748	struct drm_i915_gem_object *obj;
 2749	struct drm_plane *primary = intel_crtc->base.primary;
 2750	struct drm_plane_state *plane_state = primary->state;
 2751	struct drm_crtc_state *crtc_state = intel_crtc->base.state;
 2752	struct intel_plane *intel_plane = to_intel_plane(primary);
 2753	struct intel_plane_state *intel_state =
 2754		to_intel_plane_state(plane_state);
 2755	struct drm_framebuffer *fb;
 2756
 2757	if (!plane_config->fb)
 2758		return;
 2759
 2760	if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
 2761		fb = &plane_config->fb->base;
 2762		goto valid_fb;
 2763	}
 2764
 2765	kfree(plane_config->fb);
 2766
 2767	/*
 2768	 * Failed to alloc the obj, check to see if we should share
 2769	 * an fb with another CRTC instead
 2770	 */
 2771	for_each_crtc(dev, c) {
 2772		struct intel_plane_state *state;
 2773
 2774		if (c == &intel_crtc->base)
 2775			continue;
 2776
 2777		if (!to_intel_crtc(c)->active)
 2778			continue;
 2779
 2780		state = to_intel_plane_state(c->primary->state);
 2781		if (!state->vma)
 2782			continue;
 2783
 2784		if (intel_plane_ggtt_offset(state) == plane_config->base) {
 2785			fb = c->primary->fb;
 2786			drm_framebuffer_reference(fb);
 2787			goto valid_fb;
 2788		}
 2789	}
 2790
 2791	/*
 2792	 * We've failed to reconstruct the BIOS FB.  Current display state
 2793	 * indicates that the primary plane is visible, but has a NULL FB,
 2794	 * which will lead to problems later if we don't fix it up.  The
 2795	 * simplest solution is to just disable the primary plane now and
 2796	 * pretend the BIOS never had it enabled.
 2797	 */
 2798	to_intel_plane_state(plane_state)->base.visible = false;
 2799	crtc_state->plane_mask &= ~(1 << drm_plane_index(primary));
 2800	intel_pre_disable_primary_noatomic(&intel_crtc->base);
 2801	intel_plane->disable_plane(primary, &intel_crtc->base);
 2802
 2803	return;
 2804
 2805valid_fb:
 2806	mutex_lock(&dev->struct_mutex);
 2807	intel_state->vma =
 2808		intel_pin_and_fence_fb_obj(fb, primary->state->rotation);
 2809	mutex_unlock(&dev->struct_mutex);
 2810	if (IS_ERR(intel_state->vma)) {
 2811		DRM_ERROR("failed to pin boot fb on pipe %d: %li\n",
 2812			  intel_crtc->pipe, PTR_ERR(intel_state->vma));
 2813
 2814		intel_state->vma = NULL;
 2815		drm_framebuffer_unreference(fb);
 2816		return;
 2817	}
 2818
 2819	plane_state->src_x = 0;
 2820	plane_state->src_y = 0;
 2821	plane_state->src_w = fb->width << 16;
 2822	plane_state->src_h = fb->height << 16;
 2823
 2824	plane_state->crtc_x = 0;
 2825	plane_state->crtc_y = 0;
 2826	plane_state->crtc_w = fb->width;
 2827	plane_state->crtc_h = fb->height;
 2828
 2829	intel_state->base.src = drm_plane_state_src(plane_state);
 2830	intel_state->base.dst = drm_plane_state_dest(plane_state);
 2831
 2832	obj = intel_fb_obj(fb);
 2833	if (i915_gem_object_is_tiled(obj))
 2834		dev_priv->preserve_bios_swizzle = true;
 2835
 2836	drm_framebuffer_reference(fb);
 2837	primary->fb = primary->state->fb = fb;
 2838	primary->crtc = primary->state->crtc = &intel_crtc->base;
 2839	intel_crtc->base.state->plane_mask |= (1 << drm_plane_index(primary));
 2840	atomic_or(to_intel_plane(primary)->frontbuffer_bit,
 2841		  &obj->frontbuffer_bits);
 2842}
 2843
 2844static int skl_max_plane_width(const struct drm_framebuffer *fb, int plane,
 2845			       unsigned int rotation)
 2846{
 2847	int cpp = drm_format_plane_cpp(fb->pixel_format, plane);
 2848
 2849	switch (fb->modifier) {
 2850	case DRM_FORMAT_MOD_NONE:
 2851	case I915_FORMAT_MOD_X_TILED:
 2852		switch (cpp) {
 2853		case 8:
 2854			return 4096;
 2855		case 4:
 2856		case 2:
 2857		case 1:
 2858			return 8192;
 2859		default:
 2860			MISSING_CASE(cpp);
 2861			break;
 2862		}
 2863		break;
 2864	case I915_FORMAT_MOD_Y_TILED:
 2865	case I915_FORMAT_MOD_Yf_TILED:
 2866		switch (cpp) {
 2867		case 8:
 2868			return 2048;
 2869		case 4:
 2870			return 4096;
 2871		case 2:
 2872		case 1:
 2873			return 8192;
 2874		default:
 2875			MISSING_CASE(cpp);
 2876			break;
 2877		}
 2878		break;
 2879	default:
 2880		MISSING_CASE(fb->modifier);
 2881	}
 2882
 2883	return 2048;
 2884}
 2885
 2886static int skl_check_main_surface(struct intel_plane_state *plane_state)
 2887{
 2888	const struct drm_i915_private *dev_priv = to_i915(plane_state->base.plane->dev);
 2889	const struct drm_framebuffer *fb = plane_state->base.fb;
 2890	unsigned int rotation = plane_state->base.rotation;
 2891	int x = plane_state->base.src.x1 >> 16;
 2892	int y = plane_state->base.src.y1 >> 16;
 2893	int w = drm_rect_width(&plane_state->base.src) >> 16;
 2894	int h = drm_rect_height(&plane_state->base.src) >> 16;
 2895	int max_width = skl_max_plane_width(fb, 0, rotation);
 2896	int max_height = 4096;
 2897	u32 alignment, offset, aux_offset = plane_state->aux.offset;
 2898
 2899	if (w > max_width || h > max_height) {
 2900		DRM_DEBUG_KMS("requested Y/RGB source size %dx%d too big (limit %dx%d)\n",
 2901			      w, h, max_width, max_height);
 2902		return -EINVAL;
 2903	}
 2904
 2905	intel_add_fb_offsets(&x, &y, plane_state, 0);
 2906	offset = intel_compute_tile_offset(&x, &y, plane_state, 0);
 2907
 2908	alignment = intel_surf_alignment(dev_priv, fb->modifier);
 2909
 2910	/*
 2911	 * AUX surface offset is specified as the distance from the
 2912	 * main surface offset, and it must be non-negative. Make
 2913	 * sure that is what we will get.
 2914	 */
 2915	if (offset > aux_offset)
 2916		offset = intel_adjust_tile_offset(&x, &y, plane_state, 0,
 2917						  offset, aux_offset & ~(alignment - 1));
 2918
 2919	/*
 2920	 * When using an X-tiled surface, the plane blows up
 2921	 * if the x offset + width exceed the stride.
 2922	 *
 2923	 * TODO: linear and Y-tiled seem fine, Yf untested,
 2924	 */
 2925	if (fb->modifier == I915_FORMAT_MOD_X_TILED) {
 2926		int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
 2927
 2928		while ((x + w) * cpp > fb->pitches[0]) {
 2929			if (offset == 0) {
 2930				DRM_DEBUG_KMS("Unable to find suitable display surface offset\n");
 2931				return -EINVAL;
 2932			}
 2933
 2934			offset = intel_adjust_tile_offset(&x, &y, plane_state, 0,
 2935							  offset, offset - alignment);
 2936		}
 2937	}
 2938
 2939	plane_state->main.offset = offset;
 2940	plane_state->main.x = x;
 2941	plane_state->main.y = y;
 2942
 2943	return 0;
 2944}
 2945
 2946static int skl_check_nv12_aux_surface(struct intel_plane_state *plane_state)
 2947{
 2948	const struct drm_framebuffer *fb = plane_state->base.fb;
 2949	unsigned int rotation = plane_state->base.rotation;
 2950	int max_width = skl_max_plane_width(fb, 1, rotation);
 2951	int max_height = 4096;
 2952	int x = plane_state->base.src.x1 >> 17;
 2953	int y = plane_state->base.src.y1 >> 17;
 2954	int w = drm_rect_width(&plane_state->base.src) >> 17;
 2955	int h = drm_rect_height(&plane_state->base.src) >> 17;
 2956	u32 offset;
 2957
 2958	intel_add_fb_offsets(&x, &y, plane_state, 1);
 2959	offset = intel_compute_tile_offset(&x, &y, plane_state, 1);
 2960
 2961	/* FIXME not quite sure how/if these apply to the chroma plane */
 2962	if (w > max_width || h > max_height) {
 2963		DRM_DEBUG_KMS("CbCr source size %dx%d too big (limit %dx%d)\n",
 2964			      w, h, max_width, max_height);
 2965		return -EINVAL;
 2966	}
 2967
 2968	plane_state->aux.offset = offset;
 2969	plane_state->aux.x = x;
 2970	plane_state->aux.y = y;
 2971
 2972	return 0;
 2973}
 2974
 2975int skl_check_plane_surface(struct intel_plane_state *plane_state)
 2976{
 2977	const struct drm_framebuffer *fb = plane_state->base.fb;
 2978	unsigned int rotation = plane_state->base.rotation;
 2979	int ret;
 2980
 2981	if (!plane_state->base.visible)
 2982		return 0;
 2983
 2984	/* Rotate src coordinates to match rotated GTT view */
 2985	if (drm_rotation_90_or_270(rotation))
 2986		drm_rect_rotate(&plane_state->base.src,
 2987				fb->width << 16, fb->height << 16,
 2988				DRM_ROTATE_270);
 2989
 2990	/*
 2991	 * Handle the AUX surface first since
 2992	 * the main surface setup depends on it.
 2993	 */
 2994	if (fb->pixel_format == DRM_FORMAT_NV12) {
 2995		ret = skl_check_nv12_aux_surface(plane_state);
 2996		if (ret)
 2997			return ret;
 2998	} else {
 2999		plane_state->aux.offset = ~0xfff;
 3000		plane_state->aux.x = 0;
 3001		plane_state->aux.y = 0;
 3002	}
 3003
 3004	ret = skl_check_main_surface(plane_state);
 3005	if (ret)
 3006		return ret;
 3007
 3008	return 0;
 3009}
 3010
 3011static void i9xx_update_primary_plane(struct drm_plane *primary,
 3012				      const struct intel_crtc_state *crtc_state,
 3013				      const struct intel_plane_state *plane_state)
 3014{
 3015	struct drm_i915_private *dev_priv = to_i915(primary->dev);
 3016	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
 3017	struct drm_framebuffer *fb = plane_state->base.fb;
 3018	int plane = intel_crtc->plane;
 3019	u32 linear_offset;
 3020	u32 dspcntr;
 3021	i915_reg_t reg = DSPCNTR(plane);
 3022	unsigned int rotation = plane_state->base.rotation;
 3023	int x = plane_state->base.src.x1 >> 16;
 3024	int y = plane_state->base.src.y1 >> 16;
 3025
 3026	dspcntr = DISPPLANE_GAMMA_ENABLE;
 3027
 3028	dspcntr |= DISPLAY_PLANE_ENABLE;
 3029
 3030	if (INTEL_GEN(dev_priv) < 4) {
 3031		if (intel_crtc->pipe == PIPE_B)
 3032			dspcntr |= DISPPLANE_SEL_PIPE_B;
 3033
 3034		/* pipesrc and dspsize control the size that is scaled from,
 3035		 * which should always be the user's requested size.
 3036		 */
 3037		I915_WRITE(DSPSIZE(plane),
 3038			   ((crtc_state->pipe_src_h - 1) << 16) |
 3039			   (crtc_state->pipe_src_w - 1));
 3040		I915_WRITE(DSPPOS(plane), 0);
 3041	} else if (IS_CHERRYVIEW(dev_priv) && plane == PLANE_B) {
 3042		I915_WRITE(PRIMSIZE(plane),
 3043			   ((crtc_state->pipe_src_h - 1) << 16) |
 3044			   (crtc_state->pipe_src_w - 1));
 3045		I915_WRITE(PRIMPOS(plane), 0);
 3046		I915_WRITE(PRIMCNSTALPHA(plane), 0);
 3047	}
 3048
 3049	switch (fb->pixel_format) {
 3050	case DRM_FORMAT_C8:
 3051		dspcntr |= DISPPLANE_8BPP;
 3052		break;
 3053	case DRM_FORMAT_XRGB1555:
 3054		dspcntr |= DISPPLANE_BGRX555;
 3055		break;
 3056	case DRM_FORMAT_RGB565:
 3057		dspcntr |= DISPPLANE_BGRX565;
 3058		break;
 3059	case DRM_FORMAT_XRGB8888:
 3060		dspcntr |= DISPPLANE_BGRX888;
 3061		break;
 3062	case DRM_FORMAT_XBGR8888:
 3063		dspcntr |= DISPPLANE_RGBX888;
 3064		break;
 3065	case DRM_FORMAT_XRGB2101010:
 3066		dspcntr |= DISPPLANE_BGRX101010;
 3067		break;
 3068	case DRM_FORMAT_XBGR2101010:
 3069		dspcntr |= DISPPLANE_RGBX101010;
 3070		break;
 3071	default:
 3072		BUG();
 3073	}
 3074
 3075	if (INTEL_GEN(dev_priv) >= 4 &&
 3076	    fb->modifier == I915_FORMAT_MOD_X_TILED)
 3077		dspcntr |= DISPPLANE_TILED;
 3078
 3079	if (rotation & DRM_ROTATE_180)
 3080		dspcntr |= DISPPLANE_ROTATE_180;
 3081
 3082	if (rotation & DRM_REFLECT_X)
 3083		dspcntr |= DISPPLANE_MIRROR;
 3084
 3085	if (IS_G4X(dev_priv))
 3086		dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
 3087
 3088	intel_add_fb_offsets(&x, &y, plane_state, 0);
 3089
 3090	if (INTEL_GEN(dev_priv) >= 4)
 3091		intel_crtc->dspaddr_offset =
 3092			intel_compute_tile_offset(&x, &y, plane_state, 0);
 3093
 3094	if (rotation & DRM_ROTATE_180) {
 3095		x += crtc_state->pipe_src_w - 1;
 3096		y += crtc_state->pipe_src_h - 1;
 3097	} else if (rotation & DRM_REFLECT_X) {
 3098		x += crtc_state->pipe_src_w - 1;
 3099	}
 3100
 3101	linear_offset = intel_fb_xy_to_linear(x, y, plane_state, 0);
 3102
 3103	if (INTEL_GEN(dev_priv) < 4)
 3104		intel_crtc->dspaddr_offset = linear_offset;
 3105
 3106	intel_crtc->adjusted_x = x;
 3107	intel_crtc->adjusted_y = y;
 3108
 3109	I915_WRITE(reg, dspcntr);
 3110
 3111	I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
 3112	if (INTEL_GEN(dev_priv) >= 4) {
 3113		I915_WRITE(DSPSURF(plane),
 3114			   intel_plane_ggtt_offset(plane_state) +
 3115			   intel_crtc->dspaddr_offset);
 3116		I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
 3117		I915_WRITE(DSPLINOFF(plane), linear_offset);
 3118	} else {
 3119		I915_WRITE(DSPADDR(plane),
 3120			   intel_plane_ggtt_offset(plane_state) +
 3121			   intel_crtc->dspaddr_offset);
 3122	}
 3123	POSTING_READ(reg);
 3124}
 3125
 3126static void i9xx_disable_primary_plane(struct drm_plane *primary,
 3127				       struct drm_crtc *crtc)
 3128{
 3129	struct drm_device *dev = crtc->dev;
 3130	struct drm_i915_private *dev_priv = to_i915(dev);
 3131	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
 3132	int plane = intel_crtc->plane;
 3133
 3134	I915_WRITE(DSPCNTR(plane), 0);
 3135	if (INTEL_INFO(dev_priv)->gen >= 4)
 3136		I915_WRITE(DSPSURF(plane), 0);
 3137	else
 3138		I915_WRITE(DSPADDR(plane), 0);
 3139	POSTING_READ(DSPCNTR(plane));
 3140}
 3141
 3142static void ironlake_update_primary_plane(struct drm_plane *primary,
 3143					  const struct intel_crtc_state *crtc_state,
 3144					  const struct intel_plane_state *plane_state)
 3145{
 3146	struct drm_device *dev = primary->dev;
 3147	struct drm_i915_private *dev_priv = to_i915(dev);
 3148	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
 3149	struct drm_framebuffer *fb = plane_state->base.fb;
 3150	int plane = intel_crtc->plane;
 3151	u32 linear_offset;
 3152	u32 dspcntr;
 3153	i915_reg_t reg = DSPCNTR(plane);
 3154	unsigned int rotation = plane_state->base.rotation;
 3155	int x = plane_state->base.src.x1 >> 16;
 3156	int y = plane_state->base.src.y1 >> 16;
 3157
 3158	dspcntr = DISPPLANE_GAMMA_ENABLE;
 3159	dspcntr |= DISPLAY_PLANE_ENABLE;
 3160
 3161	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
 3162		dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
 3163
 3164	switch (fb->pixel_format) {
 3165	case DRM_FORMAT_C8:
 3166		dspcntr |= DISPPLANE_8BPP;
 3167		break;
 3168	case DRM_FORMAT_RGB565:
 3169		dspcntr |= DISPPLANE_BGRX565;
 3170		break;
 3171	case DRM_FORMAT_XRGB8888:
 3172		dspcntr |= DISPPLANE_BGRX888;
 3173		break;
 3174	case DRM_FORMAT_XBGR8888:
 3175		dspcntr |= DISPPLANE_RGBX888;
 3176		break;
 3177	case DRM_FORMAT_XRGB2101010:
 3178		dspcntr |= DISPPLANE_BGRX101010;
 3179		break;
 3180	case DRM_FORMAT_XBGR2101010:
 3181		dspcntr |= DISPPLANE_RGBX101010;
 3182		break;
 3183	default:
 3184		BUG();
 3185	}
 3186
 3187	if (fb->modifier == I915_FORMAT_MOD_X_TILED)
 3188		dspcntr |= DISPPLANE_TILED;
 3189
 3190	if (rotation & DRM_ROTATE_180)
 3191		dspcntr |= DISPPLANE_ROTATE_180;
 3192
 3193	if (!IS_HASWELL(dev_priv) && !IS_BROADWELL(dev_priv))
 3194		dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
 3195
 3196	intel_add_fb_offsets(&x, &y, plane_state, 0);
 3197
 3198	intel_crtc->dspaddr_offset =
 3199		intel_compute_tile_offset(&x, &y, plane_state, 0);
 3200
 3201	/* HSW+ does this automagically in hardware */
 3202	if (!IS_HASWELL(dev_priv) && !IS_BROADWELL(dev_priv) &&
 3203	    rotation & DRM_ROTATE_180) {
 3204		x += crtc_state->pipe_src_w - 1;
 3205		y += crtc_state->pipe_src_h - 1;
 3206	}
 3207
 3208	linear_offset = intel_fb_xy_to_linear(x, y, plane_state, 0);
 3209
 3210	intel_crtc->adjusted_x = x;
 3211	intel_crtc->adjusted_y = y;
 3212
 3213	I915_WRITE(reg, dspcntr);
 3214
 3215	I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
 3216	I915_WRITE(DSPSURF(plane),
 3217		   intel_plane_ggtt_offset(plane_state) +
 3218		   intel_crtc->dspaddr_offset);
 3219	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
 3220		I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
 3221	} else {
 3222		I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
 3223		I915_WRITE(DSPLINOFF(plane), linear_offset);
 3224	}
 3225	POSTING_READ(reg);
 3226}
 3227
 3228u32 intel_fb_stride_alignment(const struct drm_i915_private *dev_priv,
 3229			      uint64_t fb_modifier, uint32_t pixel_format)
 3230{
 3231	if (fb_modifier == DRM_FORMAT_MOD_NONE) {
 3232		return 64;
 3233	} else {
 3234		int cpp = drm_format_plane_cpp(pixel_format, 0);
 3235
 3236		return intel_tile_width_bytes(dev_priv, fb_modifier, cpp);
 3237	}
 3238}
 3239
 3240static void skl_detach_scaler(struct intel_crtc *intel_crtc, int id)
 3241{
 3242	struct drm_device *dev = intel_crtc->base.dev;
 3243	struct drm_i915_private *dev_priv = to_i915(dev);
 3244
 3245	I915_WRITE(SKL_PS_CTRL(intel_crtc->pipe, id), 0);
 3246	I915_WRITE(SKL_PS_WIN_POS(intel_crtc->pipe, id), 0);
 3247	I915_WRITE(SKL_PS_WIN_SZ(intel_crtc->pipe, id), 0);
 3248}
 3249
 3250/*
 3251 * This function detaches (aka. unbinds) unused scalers in hardware
 3252 */
 3253static void skl_detach_scalers(struct intel_crtc *intel_crtc)
 3254{
 3255	struct intel_crtc_scaler_state *scaler_state;
 3256	int i;
 3257
 3258	scaler_state = &intel_crtc->config->scaler_state;
 3259
 3260	/* loop through and disable scalers that aren't in use */
 3261	for (i = 0; i < intel_crtc->num_scalers; i++) {
 3262		if (!scaler_state->scalers[i].in_use)
 3263			skl_detach_scaler(intel_crtc, i);
 3264	}
 3265}
 3266
 3267u32 skl_plane_stride(const struct drm_framebuffer *fb, int plane,
 3268		     unsigned int rotation)
 3269{
 3270	const struct drm_i915_private *dev_priv = to_i915(fb->dev);
 3271	u32 stride = intel_fb_pitch(fb, plane, rotation);
 3272
 3273	/*
 3274	 * The stride is either expressed as a multiple of 64 bytes chunks for
 3275	 * linear buffers or in number of tiles for tiled buffers.
 3276	 */
 3277	if (drm_rotation_90_or_270(rotation)) {
 3278		int cpp = drm_format_plane_cpp(fb->pixel_format, plane);
 3279
 3280		stride /= intel_tile_height(dev_priv, fb->modifier, cpp);
 3281	} else {
 3282		stride /= intel_fb_stride_alignment(dev_priv, fb->modifier,
 3283						    fb->pixel_format);
 3284	}
 3285
 3286	return stride;
 3287}
 3288
 3289u32 skl_plane_ctl_format(uint32_t pixel_format)
 3290{
 3291	switch (pixel_format) {
 3292	case DRM_FORMAT_C8:
 3293		return PLANE_CTL_FORMAT_INDEXED;
 3294	case DRM_FORMAT_RGB565:
 3295		return PLANE_CTL_FORMAT_RGB_565;
 3296	case DRM_FORMAT_XBGR8888:
 3297		return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX;
 3298	case DRM_FORMAT_XRGB8888:
 3299		return PLANE_CTL_FORMAT_XRGB_8888;
 3300	/*
 3301	 * XXX: For ARBG/ABGR formats we default to expecting scanout buffers
 3302	 * to be already pre-multiplied. We need to add a knob (or a different
 3303	 * DRM_FORMAT) for user-space to configure that.
 3304	 */
 3305	case DRM_FORMAT_ABGR8888:
 3306		return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX |
 3307			PLANE_CTL_ALPHA_SW_PREMULTIPLY;
 3308	case DRM_FORMAT_ARGB8888:
 3309		return PLANE_CTL_FORMAT_XRGB_8888 |
 3310			PLANE_CTL_ALPHA_SW_PREMULTIPLY;
 3311	case DRM_FORMAT_XRGB2101010:
 3312		return PLANE_CTL_FORMAT_XRGB_2101010;
 3313	case DRM_FORMAT_XBGR2101010:
 3314		return PLANE_CTL_ORDER_RGBX | PLANE_CTL_FORMAT_XRGB_2101010;
 3315	case DRM_FORMAT_YUYV:
 3316		return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV;
 3317	case DRM_FORMAT_YVYU:
 3318		return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU;
 3319	case DRM_FORMAT_UYVY:
 3320		return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY;
 3321	case DRM_FORMAT_VYUY:
 3322		return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY;
 3323	default:
 3324		MISSING_CASE(pixel_format);
 3325	}
 3326
 3327	return 0;
 3328}
 3329
 3330u32 skl_plane_ctl_tiling(uint64_t fb_modifier)
 3331{
 3332	switch (fb_modifier) {
 3333	case DRM_FORMAT_MOD_NONE:
 3334		break;
 3335	case I915_FORMAT_MOD_X_TILED:
 3336		return PLANE_CTL_TILED_X;
 3337	case I915_FORMAT_MOD_Y_TILED:
 3338		return PLANE_CTL_TILED_Y;
 3339	case I915_FORMAT_MOD_Yf_TILED:
 3340		return PLANE_CTL_TILED_YF;
 3341	default:
 3342		MISSING_CASE(fb_modifier);
 3343	}
 3344
 3345	return 0;
 3346}
 3347
 3348u32 skl_plane_ctl_rotation(unsigned int rotation)
 3349{
 3350	switch (rotation) {
 3351	case DRM_ROTATE_0:
 3352		break;
 3353	/*
 3354	 * DRM_ROTATE_ is counter clockwise to stay compatible with Xrandr
 3355	 * while i915 HW rotation is clockwise, thats why this swapping.
 3356	 */
 3357	case DRM_ROTATE_90:
 3358		return PLANE_CTL_ROTATE_270;
 3359	case DRM_ROTATE_180:
 3360		return PLANE_CTL_ROTATE_180;
 3361	case DRM_ROTATE_270:
 3362		return PLANE_CTL_ROTATE_90;
 3363	default:
 3364		MISSING_CASE(rotation);
 3365	}
 3366
 3367	return 0;
 3368}
 3369
 3370static void skylake_update_primary_plane(struct drm_plane *plane,
 3371					 const struct intel_crtc_state *crtc_state,
 3372					 const struct intel_plane_state *plane_state)
 3373{
 3374	struct drm_device *dev = plane->dev;
 3375	struct drm_i915_private *dev_priv = to_i915(dev);
 3376	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
 3377	struct drm_framebuffer *fb = plane_state->base.fb;
 3378	int pipe = intel_crtc->pipe;
 3379	u32 plane_ctl;
 3380	unsigned int rotation = plane_state->base.rotation;
 3381	u32 stride = skl_plane_stride(fb, 0, rotation);
 3382	u32 surf_addr = plane_state->main.offset;
 3383	int scaler_id = plane_state->scaler_id;
 3384	int src_x = plane_state->main.x;
 3385	int src_y = plane_state->main.y;
 3386	int src_w = drm_rect_width(&plane_state->base.src) >> 16;
 3387	int src_h = drm_rect_height(&plane_state->base.src) >> 16;
 3388	int dst_x = plane_state->base.dst.x1;
 3389	int dst_y = plane_state->base.dst.y1;
 3390	int dst_w = drm_rect_width(&plane_state->base.dst);
 3391	int dst_h = drm_rect_height(&plane_state->base.dst);
 3392
 3393	plane_ctl = PLANE_CTL_ENABLE |
 3394		    PLANE_CTL_PIPE_GAMMA_ENABLE |
 3395		    PLANE_CTL_PIPE_CSC_ENABLE;
 3396
 3397	plane_ctl |= skl_plane_ctl_format(fb->pixel_format);
 3398	plane_ctl |= skl_plane_ctl_tiling(fb->modifier);
 3399	plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
 3400	plane_ctl |= skl_plane_ctl_rotation(rotation);
 3401
 3402	/* Sizes are 0 based */
 3403	src_w--;
 3404	src_h--;
 3405	dst_w--;
 3406	dst_h--;
 3407
 3408	intel_crtc->dspaddr_offset = surf_addr;
 3409
 3410	intel_crtc->adjusted_x = src_x;
 3411	intel_crtc->adjusted_y = src_y;
 3412
 3413	I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
 3414	I915_WRITE(PLANE_OFFSET(pipe, 0), (src_y << 16) | src_x);
 3415	I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
 3416	I915_WRITE(PLANE_SIZE(pipe, 0), (src_h << 16) | src_w);
 3417
 3418	if (scaler_id >= 0) {
 3419		uint32_t ps_ctrl = 0;
 3420
 3421		WARN_ON(!dst_w || !dst_h);
 3422		ps_ctrl = PS_SCALER_EN | PS_PLANE_SEL(0) |
 3423			crtc_state->scaler_state.scalers[scaler_id].mode;
 3424		I915_WRITE(SKL_PS_CTRL(pipe, scaler_id), ps_ctrl);
 3425		I915_WRITE(SKL_PS_PWR_GATE(pipe, scaler_id), 0);
 3426		I915_WRITE(SKL_PS_WIN_POS(pipe, scaler_id), (dst_x << 16) | dst_y);
 3427		I915_WRITE(SKL_PS_WIN_SZ(pipe, scaler_id), (dst_w << 16) | dst_h);
 3428		I915_WRITE(PLANE_POS(pipe, 0), 0);
 3429	} else {
 3430		I915_WRITE(PLANE_POS(pipe, 0), (dst_y << 16) | dst_x);
 3431	}
 3432
 3433	I915_WRITE(PLANE_SURF(pipe, 0),
 3434		   intel_plane_ggtt_offset(plane_state) + surf_addr);
 3435
 3436	POSTING_READ(PLANE_SURF(pipe, 0));
 3437}
 3438
 3439static void skylake_disable_primary_plane(struct drm_plane *primary,
 3440					  struct drm_crtc *crtc)
 3441{
 3442	struct drm_device *dev = crtc->dev;
 3443	struct drm_i915_private *dev_priv = to_i915(dev);
 3444	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
 3445	int pipe = intel_crtc->pipe;
 3446
 3447	I915_WRITE(PLANE_CTL(pipe, 0), 0);
 3448	I915_WRITE(PLANE_SURF(pipe, 0), 0);
 3449	POSTING_READ(PLANE_SURF(pipe, 0));
 3450}
 3451
 3452/* Assume fb object is pinned & idle & fenced and just update base pointers */
 3453static int
 3454intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
 3455			   int x, int y, enum mode_set_atomic state)
 3456{
 3457	/* Support for kgdboc is disabled, this needs a major rework. */
 3458	DRM_ERROR("legacy panic handler not supported any more.\n");
 3459
 3460	return -ENODEV;
 3461}
 3462
 3463static void intel_complete_page_flips(struct drm_i915_private *dev_priv)
 3464{
 3465	struct intel_crtc *crtc;
 3466
 3467	for_each_intel_crtc(&dev_priv->drm, crtc)
 3468		intel_finish_page_flip_cs(dev_priv, crtc->pipe);
 3469}
 3470
 3471static void intel_update_primary_planes(struct drm_device *dev)
 3472{
 3473	struct drm_crtc *crtc;
 3474
 3475	for_each_crtc(dev, crtc) {
 3476		struct intel_plane *plane = to_intel_plane(crtc->primary);
 3477		struct intel_plane_state *plane_state =
 3478			to_intel_plane_state(plane->base.state);
 3479
 3480		if (plane_state->base.visible)
 3481			plane->update_plane(&plane->base,
 3482					    to_intel_crtc_state(crtc->state),
 3483					    plane_state);
 3484	}
 3485}
 3486
 3487static int
 3488__intel_display_resume(struct drm_device *dev,
 3489		       struct drm_atomic_state *state)
 3490{
 3491	struct drm_crtc_state *crtc_state;
 3492	struct drm_crtc *crtc;
 3493	int i, ret;
 3494
 3495	intel_modeset_setup_hw_state(dev);
 3496	i915_redisable_vga(to_i915(dev));
 3497
 3498	if (!state)
 3499		return 0;
 3500
 3501	for_each_crtc_in_state(state, crtc, crtc_state, i) {
 3502		/*
 3503		 * Force recalculation even if we restore
 3504		 * current state. With fast modeset this may not result
 3505		 * in a modeset when the state is compatible.
 3506		 */
 3507		crtc_state->mode_changed = true;
 3508	}
 3509
 3510	/* ignore any reset values/BIOS leftovers in the WM registers */
 3511	to_intel_atomic_state(state)->skip_intermediate_wm = true;
 3512
 3513	ret = drm_atomic_commit(state);
 3514
 3515	WARN_ON(ret == -EDEADLK);
 3516	return ret;
 3517}
 3518
 3519static bool gpu_reset_clobbers_display(struct drm_i915_private *dev_priv)
 3520{
 3521	return intel_has_gpu_reset(dev_priv) &&
 3522		INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv);
 3523}
 3524
 3525void intel_prepare_reset(struct drm_i915_private *dev_priv)
 3526{
 3527	struct drm_device *dev = &dev_priv->drm;
 3528	struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx;
 3529	struct drm_atomic_state *state;
 3530	int ret;
 3531
 3532	/*
 3533	 * Need mode_config.mutex so that we don't
 3534	 * trample ongoing ->detect() and whatnot.
 3535	 */
 3536	mutex_lock(&dev->mode_config.mutex);
 3537	drm_modeset_acquire_init(ctx, 0);
 3538	while (1) {
 3539		ret = drm_modeset_lock_all_ctx(dev, ctx);
 3540		if (ret != -EDEADLK)
 3541			break;
 3542
 3543		drm_modeset_backoff(ctx);
 3544	}
 3545
 3546	/* reset doesn't touch the display, but flips might get nuked anyway, */
 3547	if (!i915.force_reset_modeset_test &&
 3548	    !gpu_reset_clobbers_display(dev_priv))
 3549		return;
 3550
 3551	/*
 3552	 * Disabling the crtcs gracefully seems nicer. Also the
 3553	 * g33 docs say we should at least disable all the planes.
 3554	 */
 3555	state = drm_atomic_helper_duplicate_state(dev, ctx);
 3556	if (IS_ERR(state)) {
 3557		ret = PTR_ERR(state);
 3558		state = NULL;
 3559		DRM_ERROR("Duplicating state failed with %i\n", ret);
 3560		goto err;
 3561	}
 3562
 3563	ret = drm_atomic_helper_disable_all(dev, ctx);
 3564	if (ret) {
 3565		DRM_ERROR("Suspending crtc's failed with %i\n", ret);
 3566		goto err;
 3567	}
 3568
 3569	dev_priv->modeset_restore_state = state;
 3570	state->acquire_ctx = ctx;
 3571	return;
 3572
 3573err:
 3574	drm_atomic_state_put(state);
 3575}
 3576
 3577void intel_finish_reset(struct drm_i915_private *dev_priv)
 3578{
 3579	struct drm_device *dev = &dev_priv->drm;
 3580	struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx;
 3581	struct drm_atomic_state *state = dev_priv->modeset_restore_state;
 3582	int ret;
 3583
 3584	/*
 3585	 * Flips in the rings will be nuked by the reset,
 3586	 * so complete all pending flips so that user space
 3587	 * will get its events and not get stuck.
 3588	 */
 3589	intel_complete_page_flips(dev_priv);
 3590
 3591	dev_priv->modeset_restore_state = NULL;
 3592
 3593	/* reset doesn't touch the display */
 3594	if (!gpu_reset_clobbers_display(dev_priv)) {
 3595		if (!state) {
 3596			/*
 3597			 * Flips in the rings have been nuked by the reset,
 3598			 * so update the base address of all primary
 3599			 * planes to the the last fb to make sure we're
 3600			 * showing the correct fb after a reset.
 3601			 *
 3602			 * FIXME: Atomic will make this obsolete since we won't schedule
 3603			 * CS-based flips (which might get lost in gpu resets) any more.
 3604			 */
 3605			intel_update_primary_planes(dev);
 3606		} else {
 3607			ret = __intel_display_resume(dev, state);
 3608			if (ret)
 3609				DRM_ERROR("Restoring old state failed with %i\n", ret);
 3610		}
 3611	} else {
 3612		/*
 3613		 * The display has been reset as well,
 3614		 * so need a full re-initialization.
 3615		 */
 3616		intel_runtime_pm_disable_interrupts(dev_priv);
 3617		intel_runtime_pm_enable_interrupts(dev_priv);
 3618
 3619		intel_pps_unlock_regs_wa(dev_priv);
 3620		intel_modeset_init_hw(dev);
 3621
 3622		spin_lock_irq(&dev_priv->irq_lock);
 3623		if (dev_priv->display.hpd_irq_setup)
 3624			dev_priv->display.hpd_irq_setup(dev_priv);
 3625		spin_unlock_irq(&dev_priv->irq_lock);
 3626
 3627		ret = __intel_display_resume(dev, state);
 3628		if (ret)
 3629			DRM_ERROR("Restoring old state failed with %i\n", ret);
 3630
 3631		intel_hpd_init(dev_priv);
 3632	}
 3633
 3634	if (state)
 3635		drm_atomic_state_put(state);
 3636	drm_modeset_drop_locks(ctx);
 3637	drm_modeset_acquire_fini(ctx);
 3638	mutex_unlock(&dev->mode_config.mutex);
 3639}
 3640
 3641static bool abort_flip_on_reset(struct intel_crtc *crtc)
 3642{
 3643	struct i915_gpu_error *error = &to_i915(crtc->base.dev)->gpu_error;
 3644
 3645	if (i915_reset_in_progress(error))
 3646		return true;
 3647
 3648	if (crtc->reset_count != i915_reset_count(error))
 3649		return true;
 3650
 3651	return false;
 3652}
 3653
 3654static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
 3655{
 3656	struct drm_device *dev = crtc->dev;
 3657	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
 3658	bool pending;
 3659
 3660	if (abort_flip_on_reset(intel_crtc))
 3661		return false;
 3662
 3663	spin_lock_irq(&dev->event_lock);
 3664	pending = to_intel_crtc(crtc)->flip_work != NULL;
 3665	spin_unlock_irq(&dev->event_lock);
 3666
 3667	return pending;
 3668}
 3669
 3670static void intel_update_pipe_config(struct intel_crtc *crtc,
 3671				     struct intel_crtc_state *old_crtc_state)
 3672{
 3673	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
 3674	struct intel_crtc_state *pipe_config =
 3675		to_intel_crtc_state(crtc->base.state);
 3676
 3677	/* drm_atomic_helper_update_legacy_modeset_state might not be called. */
 3678	crtc->base.mode = crtc->base.state->mode;
 3679
 3680	/*
 3681	 * Update pipe size and adjust fitter if needed: the reason for this is
 3682	 * that in compute_mode_changes we check the native mode (not the pfit
 3683	 * mode) to see if we can flip rather than do a full mode set. In the
 3684	 * fastboot case, we'll flip, but if we don't update the pipesrc and
 3685	 * pfit state, we'll end up with a big fb scanned out into the wrong
 3686	 * sized surface.
 3687	 */
 3688
 3689	I915_WRITE(PIPESRC(crtc->pipe),
 3690		   ((pipe_config->pipe_src_w - 1) << 16) |
 3691		   (pipe_config->pipe_src_h - 1));
 3692
 3693	/* on skylake this is done by detaching scalers */
 3694	if (INTEL_GEN(dev_priv) >= 9) {
 3695		skl_detach_scalers(crtc);
 3696
 3697		if (pipe_config->pch_pfit.enabled)
 3698			skylake_pfit_enable(crtc);
 3699	} else if (HAS_PCH_SPLIT(dev_priv)) {
 3700		if (pipe_config->pch_pfit.enabled)
 3701			ironlake_pfit_enable(crtc);
 3702		else if (old_crtc_state->pch_pfit.enabled)
 3703			ironlake_pfit_disable(crtc, true);
 3704	}
 3705}
 3706
 3707static void intel_fdi_normal_train(struct drm_crtc *crtc)
 3708{
 3709	struct drm_device *dev = crtc->dev;
 3710	struct drm_i915_private *dev_priv = to_i915(dev);
 3711	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
 3712	int pipe = intel_crtc->pipe;
 3713	i915_reg_t reg;
 3714	u32 temp;
 3715
 3716	/* enable normal train */
 3717	reg = FDI_TX_CTL(pipe);
 3718	temp = I915_READ(reg);
 3719	if (IS_IVYBRIDGE(dev_priv)) {
 3720		temp &= ~FDI_LINK_TRAIN_NONE_IVB;
 3721		temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
 3722	} else {
 3723		temp &= ~FDI_LINK_TRAIN_NONE;
 3724		temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
 3725	}
 3726	I915_WRITE(reg, temp);
 3727
 3728	reg = FDI_RX_CTL(pipe);
 3729	temp = I915_READ(reg);
 3730	if (HAS_PCH_CPT(dev_priv)) {
 3731		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
 3732		temp |= FDI_LINK_TRAIN_NORMAL_CPT;
 3733	} else {
 3734		temp &= ~FDI_LINK_TRAIN_NONE;
 3735		temp |= FDI_LINK_TRAIN_NONE;
 3736	}
 3737	I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
 3738
 3739	/* wait one idle pattern time */
 3740	POSTING_READ(reg);
 3741	udelay(1000);
 3742
 3743	/* IVB wants error correction enabled */
 3744	if (IS_IVYBRIDGE(dev_priv))
 3745		I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
 3746			   FDI_FE_ERRC_ENABLE);
 3747}
 3748
 3749/* The FDI link training functions for ILK/Ibexpeak. */
 3750static void ironlake_fdi_link_train(struct drm_crtc *crtc)
 3751{
 3752	struct drm_device *dev = crtc->dev;
 3753	struct drm_i915_private *dev_priv = to_i915(dev);
 3754	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
 3755	int pipe = intel_crtc->pipe;
 3756	i915_reg_t reg;
 3757	u32 temp, tries;
 3758
 3759	/* FDI needs bits from pipe first */
 3760	assert_pipe_enabled(dev_priv, pipe);
 3761
 3762	/* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
 3763	   for train result */
 3764	reg = FDI_RX_IMR(pipe);
 3765	temp = I915_READ(reg);
 3766	temp &= ~FDI_RX_SYMBOL_LOCK;
 3767	temp &= ~FDI_RX_BIT_LOCK;
 3768	I915_WRITE(reg, temp);
 3769	I915_READ(reg);
 3770	udelay(150);
 3771
 3772	/* enable CPU FDI TX and PCH FDI RX */
 3773	reg = FDI_TX_CTL(pipe);
 3774	temp = I915_READ(reg);
 3775	temp &= ~FDI_DP_PORT_WIDTH_MASK;
 3776	temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
 3777	temp &= ~FDI_LINK_TRAIN_NONE;
 3778	temp |= FDI_LINK_TRAIN_PATTERN_1;
 3779	I915_WRITE(reg, temp | FDI_TX_ENABLE);
 3780
 3781	reg = FDI_RX_CTL(pipe);
 3782	temp = I915_READ(reg);
 3783	temp &= ~FDI_LINK_TRAIN_NONE;
 3784	temp |= FDI_LINK_TRAIN_PATTERN_1;
 3785	I915_WRITE(reg, temp | FDI_RX_ENABLE);
 3786
 3787	POSTING_READ(reg);
 3788	udelay(150);
 3789
 3790	/* Ironlake workaround, enable clock pointer after FDI enable*/
 3791	I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
 3792	I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
 3793		   FDI_RX_PHASE_SYNC_POINTER_EN);
 3794
 3795	reg = FDI_RX_IIR(pipe);
 3796	for (tries = 0; tries < 5; tries++) {
 3797		temp = I915_READ(reg);
 3798		DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
 3799
 3800		if ((temp & FDI_RX_BIT_LOCK)) {
 3801			DRM_DEBUG_KMS("FDI train 1 done.\n");
 3802			I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
 3803			break;
 3804		}
 3805	}
 3806	if (tries == 5)
 3807		DRM_ERROR("FDI train 1 fail!\n");
 3808
 3809	/* Train 2 */
 3810	reg = FDI_TX_CTL(pipe);
 3811	temp = I915_READ(reg);
 3812	temp &= ~FDI_LINK_TRAIN_NONE;
 3813	temp |= FDI_LINK_TRAIN_PATTERN_2;
 3814	I915_WRITE(reg, temp);
 3815
 3816	reg = FDI_RX_CTL(pipe);
 3817	temp = I915_READ(reg);
 3818	temp &= ~FDI_LINK_TRAIN_NONE;
 3819	temp |= FDI_LINK_TRAIN_PATTERN_2;
 3820	I915_WRITE(reg, temp);
 3821
 3822	POSTING_READ(reg);
 3823	udelay(150);
 3824
 3825	reg = FDI_RX_IIR(pipe);
 3826	for (tries = 0; tries < 5; tries++) {
 3827		temp = I915_READ(reg);
 3828		DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
 3829
 3830		if (temp & FDI_RX_SYMBOL_LOCK) {
 3831			I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
 3832			DRM_DEBUG_KMS("FDI train 2 done.\n");
 3833			break;
 3834		}
 3835	}
 3836	if (tries == 5)
 3837		DRM_ERROR("FDI train 2 fail!\n");
 3838
 3839	DRM_DEBUG_KMS("FDI train done\n");
 3840
 3841}
 3842
 3843static const int snb_b_fdi_train_param[] = {
 3844	FDI_LINK_TRAIN_400MV_0DB_SNB_B,
 3845	FDI_LINK_TRAIN_400MV_6DB_SNB_B,
 3846	FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
 3847	FDI_LINK_TRAIN_800MV_0DB_SNB_B,
 3848};
 3849
 3850/* The FDI link training functions for SNB/Cougarpoint. */
 3851static void gen6_fdi_link_train(struct drm_crtc *crtc)
 3852{
 3853	struct drm_device *dev = crtc->dev;
 3854	struct drm_i915_private *dev_priv = to_i915(dev);
 3855	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
 3856	int pipe = intel_crtc->pipe;
 3857	i915_reg_t reg;
 3858	u32 temp, i, retry;
 3859
 3860	/* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
 3861	   for train result */
 3862	reg = FDI_RX_IMR(pipe);
 3863	temp = I915_READ(reg);
 3864	temp &= ~FDI_RX_SYMBOL_LOCK;
 3865	temp &= ~FDI_RX_BIT_LOCK;
 3866	I915_WRITE(reg, temp);
 3867
 3868	POSTING_READ(reg);
 3869	udelay(150);
 3870
 3871	/* enable CPU FDI TX and PCH FDI RX */
 3872	reg = FDI_TX_CTL(pipe);
 3873	temp = I915_READ(reg);
 3874	temp &= ~FDI_DP_PORT_WIDTH_MASK;
 3875	temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
 3876	temp &= ~FDI_LINK_TRAIN_NONE;
 3877	temp |= FDI_LINK_TRAIN_PATTERN_1;
 3878	temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
 3879	/* SNB-B */
 3880	temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
 3881	I915_WRITE(reg, temp | FDI_TX_ENABLE);
 3882
 3883	I915_WRITE(FDI_RX_MISC(pipe),
 3884		   FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
 3885
 3886	reg = FDI_RX_CTL(pipe);
 3887	temp = I915_READ(reg);
 3888	if (HAS_PCH_CPT(dev_priv)) {
 3889		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
 3890		temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
 3891	} else {
 3892		temp &= ~FDI_LINK_TRAIN_NONE;
 3893		temp |= FDI_LINK_TRAIN_PATTERN_1;
 3894	}
 3895	I915_WRITE(reg, temp | FDI_RX_ENABLE);
 3896
 3897	POSTING_READ(reg);
 3898	udelay(150);
 3899
 3900	for (i = 0; i < 4; i++) {
 3901		reg = FDI_TX_CTL(pipe);
 3902		temp = I915_READ(reg);
 3903		temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
 3904		temp |= snb_b_fdi_train_param[i];
 3905		I915_WRITE(reg, temp);
 3906
 3907		POSTING_READ(reg);
 3908		udelay(500);
 3909
 3910		for (retry = 0; retry < 5; retry++) {
 3911			reg = FDI_RX_IIR(pipe);
 3912			temp = I915_READ(reg);
 3913			DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
 3914			if (temp & FDI_RX_BIT_LOCK) {
 3915				I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
 3916				DRM_DEBUG_KMS("FDI train 1 done.\n");
 3917				break;
 3918			}
 3919			udelay(50);
 3920		}
 3921		if (retry < 5)
 3922			break;
 3923	}
 3924	if (i == 4)
 3925		DRM_ERROR("FDI train 1 fail!\n");
 3926
 3927	/* Train 2 */
 3928	reg = FDI_TX_CTL(pipe);
 3929	temp = I915_READ(reg);
 3930	temp &= ~FDI_LINK_TRAIN_NONE;
 3931	temp |= FDI_LINK_TRAIN_PATTERN_2;
 3932	if (IS_GEN6(dev_priv)) {
 3933		temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
 3934		/* SNB-B */
 3935		temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
 3936	}
 3937	I915_WRITE(reg, temp);
 3938
 3939	reg = FDI_RX_CTL(pipe);
 3940	temp = I915_READ(reg);
 3941	if (HAS_PCH_CPT(dev_priv)) {
 3942		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
 3943		temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
 3944	} else {
 3945		temp &= ~FDI_LINK_TRAIN_NONE;
 3946		temp |= FDI_LINK_TRAIN_PATTERN_2;
 3947	}
 3948	I915_WRITE(reg, temp);
 3949
 3950	POSTING_READ(reg);
 3951	udelay(150);
 3952
 3953	for (i = 0; i < 4; i++) {
 3954		reg = FDI_TX_CTL(pipe);
 3955		temp = I915_READ(reg);
 3956		temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
 3957		temp |= snb_b_fdi_train_param[i];
 3958		I915_WRITE(reg, temp);
 3959
 3960		POSTING_READ(reg);
 3961		udelay(500);
 3962
 3963		for (retry = 0; retry < 5; retry++) {
 3964			reg = FDI_RX_IIR(pipe);
 3965			temp = I915_READ(reg);
 3966			DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
 3967			if (temp & FDI_RX_SYMBOL_LOCK) {
 3968				I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
 3969				DRM_DEBUG_KMS("FDI train 2 done.\n");
 3970				break;
 3971			}
 3972			udelay(50);
 3973		}
 3974		if (retry < 5)
 3975			break;
 3976	}
 3977	if (i == 4)
 3978		DRM_ERROR("FDI train 2 fail!\n");
 3979
 3980	DRM_DEBUG_KMS("FDI train done.\n");
 3981}
 3982
 3983/* Manual link training for Ivy Bridge A0 parts */
 3984static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
 3985{
 3986	struct drm_device *dev = crtc->dev;
 3987	struct drm_i915_private *dev_priv = to_i915(dev);
 3988	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
 3989	int pipe = intel_crtc->pipe;
 3990	i915_reg_t reg;
 3991	u32 temp, i, j;
 3992
 3993	/* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
 3994	   for train result */
 3995	reg = FDI_RX_IMR(pipe);
 3996	temp = I915_READ(reg);
 3997	temp &= ~FDI_RX_SYMBOL_LOCK;
 3998	temp &= ~FDI_RX_BIT_LOCK;
 3999	I915_WRITE(reg, temp);
 4000
 4001	POSTING_READ(reg);
 4002	udelay(150);
 4003
 4004	DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
 4005		      I915_READ(FDI_RX_IIR(pipe)));
 4006
 4007	/* Try each vswing and preemphasis setting twice before moving on */
 4008	for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
 4009		/* disable first in case we need to retry */
 4010		reg = FDI_TX_CTL(pipe);
 4011		temp = I915_READ(reg);
 4012		temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
 4013		temp &= ~FDI_TX_ENABLE;
 4014		I915_WRITE(reg, temp);
 4015
 4016		reg = FDI_RX_CTL(pipe);
 4017		temp = I915_READ(reg);
 4018		temp &= ~FDI_LINK_TRAIN_AUTO;
 4019		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
 4020		temp &= ~FDI_RX_ENABLE;
 4021		I915_WRITE(reg, temp);
 4022
 4023		/* enable CPU FDI TX and PCH FDI RX */
 4024		reg = FDI_TX_CTL(pipe);
 4025		temp = I915_READ(reg);
 4026		temp &= ~FDI_DP_PORT_WIDTH_MASK;
 4027		temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
 4028		temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
 4029		temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
 4030		temp |= snb_b_fdi_train_param[j/2];
 4031		temp |= FDI_COMPOSITE_SYNC;
 4032		I915_WRITE(reg, temp | FDI_TX_ENABLE);
 4033
 4034		I915_WRITE(FDI_RX_MISC(pipe),
 4035			   FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
 4036
 4037		reg = FDI_RX_CTL(pipe);
 4038		temp = I915_READ(reg);
 4039		temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
 4040		temp |= FDI_COMPOSITE_SYNC;
 4041		I915_WRITE(reg, temp | FDI_RX_ENABLE);
 4042
 4043		POSTING_READ(reg);
 4044		udelay(1); /* should be 0.5us */
 4045
 4046		for (i = 0; i < 4; i++) {
 4047			reg = FDI_RX_IIR(pipe);
 4048			temp = I915_READ(reg);
 4049			DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
 4050
 4051			if (temp & FDI_RX_BIT_LOCK ||
 4052			    (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
 4053				I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
 4054				DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
 4055					      i);
 4056				break;
 4057			}
 4058			udelay(1); /* should be 0.5us */
 4059		}
 4060		if (i == 4) {
 4061			DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
 4062			continue;
 4063		}
 4064
 4065		/* Train 2 */
 4066		reg = FDI_TX_CTL(pipe);
 4067		temp = I915_READ(reg);
 4068		temp &= ~FDI_LINK_TRAIN_NONE_IVB;
 4069		temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
 4070		I915_WRITE(reg, temp);
 4071
 4072		reg = FDI_RX_CTL(pipe);
 4073		temp = I915_READ(reg);
 4074		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
 4075		temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
 4076		I915_WRITE(reg, temp);
 4077
 4078		POSTING_READ(reg);
 4079		udelay(2); /* should be 1.5us */
 4080
 4081		for (i = 0; i < 4; i++) {
 4082			reg = FDI_RX_IIR(pipe);
 4083			temp = I915_READ(reg);
 4084			DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
 4085
 4086			if (temp & FDI_RX_SYMBOL_LOCK ||
 4087			    (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
 4088				I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
 4089				DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
 4090					      i);
 4091				goto train_done;
 4092			}
 4093			udelay(2); /* should be 1.5us */
 4094		}
 4095		if (i == 4)
 4096			DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
 4097	}
 4098
 4099train_done:
 4100	DRM_DEBUG_KMS("FDI train done.\n");
 4101}
 4102
 4103static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
 4104{
 4105	struct drm_device *dev = intel_crtc->base.dev;
 4106	struct drm_i915_private *dev_priv = to_i915(dev);
 4107	int pipe = intel_crtc->pipe;
 4108	i915_reg_t reg;
 4109	u32 temp;
 4110
 4111	/* enable PCH FDI RX PLL, wait warmup plus DMI latency */
 4112	reg = FDI_RX_CTL(pipe);
 4113	temp = I915_READ(reg);
 4114	temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
 4115	temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
 4116	temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
 4117	I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
 4118
 4119	POSTING_READ(reg);
 4120	udelay(200);
 4121
 4122	/* Switch from Rawclk to PCDclk */
 4123	temp = I915_READ(reg);
 4124	I915_WRITE(reg, temp | FDI_PCDCLK);
 4125
 4126	POSTING_READ(reg);
 4127	udelay(200);
 4128
 4129	/* Enable CPU FDI TX PLL, always on for Ironlake */
 4130	reg = FDI_TX_CTL(pipe);
 4131	temp = I915_READ(reg);
 4132	if ((temp & FDI_TX_PLL_ENABLE) == 0) {
 4133		I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
 4134
 4135		POSTING_READ(reg);
 4136		udelay(100);
 4137	}
 4138}
 4139
 4140static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
 4141{
 4142	struct drm_device *dev = intel_crtc->base.dev;
 4143	struct drm_i915_private *dev_priv = to_i915(dev);
 4144	int pipe = intel_crtc->pipe;
 4145	i915_reg_t reg;
 4146	u32 temp;
 4147
 4148	/* Switch from PCDclk to Rawclk */
 4149	reg = FDI_RX_CTL(pipe);
 4150	temp = I915_READ(reg);
 4151	I915_WRITE(reg, temp & ~FDI_PCDCLK);
 4152
 4153	/* Disable CPU FDI TX PLL */
 4154	reg = FDI_TX_CTL(pipe);
 4155	temp = I915_READ(reg);
 4156	I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
 4157
 4158	POSTING_READ(reg);
 4159	udelay(100);
 4160
 4161	reg = FDI_RX_CTL(pipe);
 4162	temp = I915_READ(reg);
 4163	I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
 4164
 4165	/* Wait for the clocks to turn off. */
 4166	POSTING_READ(reg);
 4167	udelay(100);
 4168}
 4169
 4170static void ironlake_fdi_disable(struct drm_crtc *crtc)
 4171{
 4172	struct drm_device *dev = crtc->dev;
 4173	struct drm_i915_private *dev_priv = to_i915(dev);
 4174	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
 4175	int pipe = intel_crtc->pipe;
 4176	i915_reg_t reg;
 4177	u32 temp;
 4178
 4179	/* disable CPU FDI tx and PCH FDI rx */
 4180	reg = FDI_TX_CTL(pipe);
 4181	temp = I915_READ(reg);
 4182	I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
 4183	POSTING_READ(reg);
 4184
 4185	reg = FDI_RX_CTL(pipe);
 4186	temp = I915_READ(reg);
 4187	temp &= ~(0x7 << 16);
 4188	temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
 4189	I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
 4190
 4191	POSTING_READ(reg);
 4192	udelay(100);
 4193
 4194	/* Ironlake workaround, disable clock pointer after downing FDI */
 4195	if (HAS_PCH_IBX(dev_priv))
 4196		I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
 4197
 4198	/* still set train pattern 1 */
 4199	reg = FDI_TX_CTL(pipe);
 4200	temp = I915_READ(reg);
 4201	temp &= ~FDI_LINK_TRAIN_NONE;
 4202	temp |= FDI_LINK_TRAIN_PATTERN_1;
 4203	I915_WRITE(reg, temp);
 4204
 4205	reg = FDI_RX_CTL(pipe);
 4206	temp = I915_READ(reg);
 4207	if (HAS_PCH_CPT(dev_priv)) {
 4208		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
 4209		temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
 4210	} else {
 4211		temp &= ~FDI_LINK_TRAIN_NONE;
 4212		temp |= FDI_LINK_TRAIN_PATTERN_1;
 4213	}
 4214	/* BPC in FDI rx is consistent with that in PIPECONF */
 4215	temp &= ~(0x07 << 16);
 4216	temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
 4217	I915_WRITE(reg, temp);
 4218
 4219	POSTING_READ(reg);
 4220	udelay(100);
 4221}
 4222
 4223bool intel_has_pending_fb_unpin(struct drm_device *dev)
 4224{
 4225	struct drm_i915_private *dev_priv = to_i915(dev);
 4226	struct intel_crtc *crtc;
 4227
 4228	/* Note that we don't need to be called with mode_config.lock here
 4229	 * as our list of CRTC objects is static for the lifetime of the
 4230	 * device and so cannot disappear as we iterate. Similarly, we can
 4231	 * happily treat the predicates as racy, atomic checks as userspace
 4232	 * cannot claim and pin a new fb without at least acquring the
 4233	 * struct_mutex and so serialising with us.
 4234	 */
 4235	for_each_intel_crtc(dev, crtc) {
 4236		if (atomic_read(&crtc->unpin_work_count) == 0)
 4237			continue;
 4238
 4239		if (crtc->flip_work)
 4240			intel_wait_for_vblank(dev_priv, crtc->pipe);
 4241
 4242		return true;
 4243	}
 4244
 4245	return false;
 4246}
 4247
 4248static void page_flip_completed(struct intel_crtc *intel_crtc)
 4249{
 4250	struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
 4251	struct intel_flip_work *work = intel_crtc->flip_work;
 4252
 4253	intel_crtc->flip_work = NULL;
 4254
 4255	if (work->event)
 4256		drm_crtc_send_vblank_event(&intel_crtc->base, work->event);
 4257
 4258	drm_crtc_vblank_put(&intel_crtc->base);
 4259
 4260	wake_up_all(&dev_priv->pending_flip_queue);
 4261	trace_i915_flip_complete(intel_crtc->plane,
 4262				 work->pending_flip_obj);
 4263
 4264	queue_work(dev_priv->wq, &work->unpin_work);
 4265}
 4266
 4267static int intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
 4268{
 4269	struct drm_device *dev = crtc->dev;
 4270	struct drm_i915_private *dev_priv = to_i915(dev);
 4271	long ret;
 4272
 4273	WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
 4274
 4275	ret = wait_event_interruptible_timeout(
 4276					dev_priv->pending_flip_queue,
 4277					!intel_crtc_has_pending_flip(crtc),
 4278					60*HZ);
 4279
 4280	if (ret < 0)
 4281		return ret;
 4282
 4283	if (ret == 0) {
 4284		struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
 4285		struct intel_flip_work *work;
 4286
 4287		spin_lock_irq(&dev->event_lock);
 4288		work = intel_crtc->flip_work;
 4289		if (work && !is_mmio_work(work)) {
 4290			WARN_ONCE(1, "Removing stuck page flip\n");
 4291			page_flip_completed(intel_crtc);
 4292		}
 4293		spin_unlock_irq(&dev->event_lock);
 4294	}
 4295
 4296	return 0;
 4297}
 4298
 4299void lpt_disable_iclkip(struct drm_i915_private *dev_priv)
 4300{
 4301	u32 temp;
 4302
 4303	I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
 4304
 4305	mutex_lock(&dev_priv->sb_lock);
 4306
 4307	temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
 4308	temp |= SBI_SSCCTL_DISABLE;
 4309	intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
 4310
 4311	mutex_unlock(&dev_priv->sb_lock);
 4312}
 4313
 4314/* Program iCLKIP clock to the desired frequency */
 4315static void lpt_program_iclkip(struct drm_crtc *crtc)
 4316{
 4317	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
 4318	int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock;
 4319	u32 divsel, phaseinc, auxdiv, phasedir = 0;
 4320	u32 temp;
 4321
 4322	lpt_disable_iclkip(dev_priv);
 4323
 4324	/* The iCLK virtual clock root frequency is in MHz,
 4325	 * but the adjusted_mode->crtc_clock in in KHz. To get the
 4326	 * divisors, it is necessary to divide one by another, so we
 4327	 * convert the virtual clock precision to KHz here for higher
 4328	 * precision.
 4329	 */
 4330	for (auxdiv = 0; auxdiv < 2; auxdiv++) {
 4331		u32 iclk_virtual_root_freq = 172800 * 1000;
 4332		u32 iclk_pi_range = 64;
 4333		u32 desired_divisor;
 4334
 4335		desired_divisor = DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
 4336						    clock << auxdiv);
 4337		divsel = (desired_divisor / iclk_pi_range) - 2;
 4338		phaseinc = desired_divisor % iclk_pi_range;
 4339
 4340		/*
 4341		 * Near 20MHz is a corner case which is
 4342		 * out of range for the 7-bit divisor
 4343		 */
 4344		if (divsel <= 0x7f)
 4345			break;
 4346	}
 4347
 4348	/* This should not happen with any sane values */
 4349	WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
 4350		~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
 4351	WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
 4352		~SBI_SSCDIVINTPHASE_INCVAL_MASK);
 4353
 4354	DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
 4355			clock,
 4356			auxdiv,
 4357			divsel,
 4358			phasedir,
 4359			phaseinc);
 4360
 4361	mutex_lock(&dev_priv->sb_lock);
 4362
 4363	/* Program SSCDIVINTPHASE6 */
 4364	temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
 4365	temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
 4366	temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
 4367	temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
 4368	temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
 4369	temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
 4370	temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
 4371	intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
 4372
 4373	/* Program SSCAUXDIV */
 4374	temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
 4375	temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
 4376	temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
 4377	intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
 4378
 4379	/* Enable modulator and associated divider */
 4380	temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
 4381	temp &= ~SBI_SSCCTL_DISABLE;
 4382	intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
 4383
 4384	mutex_unlock(&dev_priv->sb_lock);
 4385
 4386	/* Wait for initialization time */
 4387	udelay(24);
 4388
 4389	I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
 4390}
 4391
 4392int lpt_get_iclkip(struct drm_i915_private *dev_priv)
 4393{
 4394	u32 divsel, phaseinc, auxdiv;
 4395	u32 iclk_virtual_root_freq = 172800 * 1000;
 4396	u32 iclk_pi_range = 64;
 4397	u32 desired_divisor;
 4398	u32 temp;
 4399
 4400	if ((I915_READ(PIXCLK_GATE) & PIXCLK_GATE_UNGATE) == 0)
 4401		return 0;
 4402
 4403	mutex_lock(&dev_priv->sb_lock);
 4404
 4405	temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
 4406	if (temp & SBI_SSCCTL_DISABLE) {
 4407		mutex_unlock(&dev_priv->sb_lock);
 4408		return 0;
 4409	}
 4410
 4411	temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
 4412	divsel = (temp & SBI_SSCDIVINTPHASE_DIVSEL_MASK) >>
 4413		SBI_SSCDIVINTPHASE_DIVSEL_SHIFT;
 4414	phaseinc = (temp & SBI_SSCDIVINTPHASE_INCVAL_MASK) >>
 4415		SBI_SSCDIVINTPHASE_INCVAL_SHIFT;
 4416
 4417	temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
 4418	auxdiv = (temp & SBI_SSCAUXDIV_FINALDIV2SEL_MASK) >>
 4419		SBI_SSCAUXDIV_FINALDIV2SEL_SHIFT;
 4420
 4421	mutex_unlock(&dev_priv->sb_lock);
 4422
 4423	desired_divisor = (divsel + 2) * iclk_pi_range + phaseinc;
 4424
 4425	return DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
 4426				 desired_divisor << auxdiv);
 4427}
 4428
 4429static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
 4430						enum pipe pch_transcoder)
 4431{
 4432	struct drm_device *dev = crtc->base.dev;
 4433	struct drm_i915_private *dev_priv = to_i915(dev);
 4434	enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
 4435
 4436	I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
 4437		   I915_READ(HTOTAL(cpu_transcoder)));
 4438	I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
 4439		   I915_READ(HBLANK(cpu_transcoder)));
 4440	I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
 4441		   I915_READ(HSYNC(cpu_transcoder)));
 4442
 4443	I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
 4444		   I915_READ(VTOTAL(cpu_transcoder)));
 4445	I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
 4446		   I915_READ(VBLANK(cpu_transcoder)));
 4447	I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
 4448		   I915_READ(VSYNC(cpu_transcoder)));
 4449	I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
 4450		   I915_READ(VSYNCSHIFT(cpu_transcoder)));
 4451}
 4452
 4453static void cpt_set_fdi_bc_bifurcation(struct drm_device *dev, bool enable)
 4454{
 4455	struct drm_i915_private *dev_priv = to_i915(dev);
 4456	uint32_t temp;
 4457
 4458	temp = I915_READ(SOUTH_CHICKEN1);
 4459	if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
 4460		return;
 4461
 4462	WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
 4463	WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
 4464
 4465	temp &= ~FDI_BC_BIFURCATION_SELECT;
 4466	if (enable)
 4467		temp |= FDI_BC_BIFURCATION_SELECT;
 4468
 4469	DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis");
 4470	I915_WRITE(SOUTH_CHICKEN1, temp);
 4471	POSTING_READ(SOUTH_CHICKEN1);
 4472}
 4473
 4474static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
 4475{
 4476	struct drm_device *dev = intel_crtc->base.dev;
 4477
 4478	switch (intel_crtc->pipe) {
 4479	case PIPE_A:
 4480		break;
 4481	case PIPE_B:
 4482		if (intel_crtc->config->fdi_lanes > 2)
 4483			cpt_set_fdi_bc_bifurcation(dev, false);
 4484		else
 4485			cpt_set_fdi_bc_bifurcation(dev, true);
 4486
 4487		break;
 4488	case PIPE_C:
 4489		cpt_set_fdi_bc_bifurcation(dev, true);
 4490
 4491		break;
 4492	default:
 4493		BUG();
 4494	}
 4495}
 4496
 4497/* Return which DP Port should be selected for Transcoder DP control */
 4498static enum port
 4499intel_trans_dp_port_sel(struct drm_crtc *crtc)
 4500{
 4501	struct drm_device *dev = crtc->dev;
 4502	struct intel_encoder *encoder;
 4503
 4504	for_each_encoder_on_crtc(dev, crtc, encoder) {
 4505		if (encoder->type == INTEL_OUTPUT_DP ||
 4506		    encoder->type == INTEL_OUTPUT_EDP)
 4507			return enc_to_dig_port(&encoder->base)->port;
 4508	}
 4509
 4510	return -1;
 4511}
 4512
 4513/*
 4514 * Enable PCH resources required for PCH ports:
 4515 *   - PCH PLLs
 4516 *   - FDI training & RX/TX
 4517 *   - update transcoder timings
 4518 *   - DP transcoding bits
 4519 *   - transcoder
 4520 */
 4521static void ironlake_pch_enable(struct drm_crtc *crtc)
 4522{
 4523	struct drm_device *dev = crtc->dev;
 4524	struct drm_i915_private *dev_priv = to_i915(dev);
 4525	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
 4526	int pipe = intel_crtc->pipe;
 4527	u32 temp;
 4528
 4529	assert_pch_transcoder_disabled(dev_priv, pipe);
 4530
 4531	if (IS_IVYBRIDGE(dev_priv))
 4532		ivybridge_update_fdi_bc_bifurcation(intel_crtc);
 4533
 4534	/* Write the TU size bits before fdi link training, so that error
 4535	 * detection works. */
 4536	I915_WRITE(FDI_RX_TUSIZE1(pipe),
 4537		   I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
 4538
 4539	/* For PCH output, training FDI link */
 4540	dev_priv->display.fdi_link_train(crtc);
 4541
 4542	/* We need to program the right clock selection before writing the pixel
 4543	 * mutliplier into the DPLL. */
 4544	if (HAS_PCH_CPT(dev_priv)) {
 4545		u32 sel;
 4546
 4547		temp = I915_READ(PCH_DPLL_SEL);
 4548		temp |= TRANS_DPLL_ENABLE(pipe);
 4549		sel = TRANS_DPLLB_SEL(pipe);
 4550		if (intel_crtc->config->shared_dpll ==
 4551		    intel_get_shared_dpll_by_id(dev_priv, DPLL_ID_PCH_PLL_B))
 4552			temp |= sel;
 4553		else
 4554			temp &= ~sel;
 4555		I915_WRITE(PCH_DPLL_SEL, temp);
 4556	}
 4557
 4558	/* XXX: pch pll's can be enabled any time before we enable the PCH
 4559	 * transcoder, and we actually should do this to not upset any PCH
 4560	 * transcoder that already use the clock when we share it.
 4561	 *
 4562	 * Note that enable_shared_dpll tries to do the right thing, but
 4563	 * get_shared_dpll unconditionally resets the pll - we need that to have
 4564	 * the right LVDS enable sequence. */
 4565	intel_enable_shared_dpll(intel_crtc);
 4566
 4567	/* set transcoder timing, panel must allow it */
 4568	assert_panel_unlocked(dev_priv, pipe);
 4569	ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
 4570
 4571	intel_fdi_normal_train(crtc);
 4572
 4573	/* For PCH DP, enable TRANS_DP_CTL */
 4574	if (HAS_PCH_CPT(dev_priv) &&
 4575	    intel_crtc_has_dp_encoder(intel_crtc->config)) {
 4576		const struct drm_display_mode *adjusted_mode =
 4577			&intel_crtc->config->base.adjusted_mode;
 4578		u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
 4579		i915_reg_t reg = TRANS_DP_CTL(pipe);
 4580		temp = I915_READ(reg);
 4581		temp &= ~(TRANS_DP_PORT_SEL_MASK |
 4582			  TRANS_DP_SYNC_MASK |
 4583			  TRANS_DP_BPC_MASK);
 4584		temp |= TRANS_DP_OUTPUT_ENABLE;
 4585		temp |= bpc << 9; /* same format but at 11:9 */
 4586
 4587		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
 4588			temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
 4589		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
 4590			temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
 4591
 4592		switch (intel_trans_dp_port_sel(crtc)) {
 4593		case PORT_B:
 4594			temp |= TRANS_DP_PORT_SEL_B;
 4595			break;
 4596		case PORT_C:
 4597			temp |= TRANS_DP_PORT_SEL_C;
 4598			break;
 4599		case PORT_D:
 4600			temp |= TRANS_DP_PORT_SEL_D;
 4601			break;
 4602		default:
 4603			BUG();
 4604		}
 4605
 4606		I915_WRITE(reg, temp);
 4607	}
 4608
 4609	ironlake_enable_pch_transcoder(dev_priv, pipe);
 4610}
 4611
 4612static void lpt_pch_enable(struct drm_crtc *crtc)
 4613{
 4614	struct drm_device *dev = crtc->dev;
 4615	struct drm_i915_private *dev_priv = to_i915(dev);
 4616	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
 4617	enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
 4618
 4619	assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
 4620
 4621	lpt_program_iclkip(crtc);
 4622
 4623	/* Set transcoder timing. */
 4624	ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
 4625
 4626	lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
 4627}
 4628
 4629static void cpt_verify_modeset(struct drm_device *dev, int pipe)
 4630{
 4631	struct drm_i915_private *dev_priv = to_i915(dev);
 4632	i915_reg_t dslreg = PIPEDSL(pipe);
 4633	u32 temp;
 4634
 4635	temp = I915_READ(dslreg);
 4636	udelay(500);
 4637	if (wait_for(I915_READ(dslreg) != temp, 5)) {
 4638		if (wait_for(I915_READ(dslreg) != temp, 5))
 4639			DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
 4640	}
 4641}
 4642
 4643static int
 4644skl_update_scaler(struct intel_crtc_state *crtc_state, bool force_detach,
 4645		  unsigned scaler_user, int *scaler_id, unsigned int rotation,
 4646		  int src_w, int src_h, int dst_w, int dst_h)
 4647{
 4648	struct intel_crtc_scaler_state *scaler_state =
 4649		&crtc_state->scaler_state;
 4650	struct intel_crtc *intel_crtc =
 4651		to_intel_crtc(crtc_state->base.crtc);
 4652	int need_scaling;
 4653
 4654	need_scaling = drm_rotation_90_or_270(rotation) ?
 4655		(src_h != dst_w || src_w != dst_h):
 4656		(src_w != dst_w || src_h != dst_h);
 4657
 4658	/*
 4659	 * if plane is being disabled or scaler is no more required or force detach
 4660	 *  - free scaler binded to this plane/crtc
 4661	 *  - in order to do this, update crtc->scaler_usage
 4662	 *
 4663	 * Here scaler state in crtc_state is set free so that
 4664	 * scaler can be assigned to other user. Actual register
 4665	 * update to free the scaler is done in plane/panel-fit programming.
 4666	 * For this purpose crtc/plane_state->scaler_id isn't reset here.
 4667	 */
 4668	if (force_detach || !need_scaling) {
 4669		if (*scaler_id >= 0) {
 4670			scaler_state->scaler_users &= ~(1 << scaler_user);
 4671			scaler_state->scalers[*scaler_id].in_use = 0;
 4672
 4673			DRM_DEBUG_KMS("scaler_user index %u.%u: "
 4674				"Staged freeing scaler id %d scaler_users = 0x%x\n",
 4675				intel_crtc->pipe, scaler_user, *scaler_id,
 4676				scaler_state->scaler_users);
 4677			*scaler_id = -1;
 4678		}
 4679		return 0;
 4680	}
 4681
 4682	/* range checks */
 4683	if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H ||
 4684		dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H ||
 4685
 4686		src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H ||
 4687		dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H) {
 4688		DRM_DEBUG_KMS("scaler_user index %u.%u: src %ux%u dst %ux%u "
 4689			"size is out of scaler range\n",
 4690			intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h);
 4691		return -EINVAL;
 4692	}
 4693
 4694	/* mark this plane as a scaler user in crtc_state */
 4695	scaler_state->scaler_users |= (1 << scaler_user);
 4696	DRM_DEBUG_KMS("scaler_user index %u.%u: "
 4697		"staged scaling request for %ux%u->%ux%u scaler_users = 0x%x\n",
 4698		intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h,
 4699		scaler_state->scaler_users);
 4700
 4701	return 0;
 4702}
 4703
 4704/**
 4705 * skl_update_scaler_crtc - Stages update to scaler state for a given crtc.
 4706 *
 4707 * @state: crtc's scaler state
 4708 *
 4709 * Return
 4710 *     0 - scaler_usage updated successfully
 4711 *    error - requested scaling cannot be supported or other error condition
 4712 */
 4713int skl_update_scaler_crtc(struct intel_crtc_state *state)
 4714{
 4715	const struct drm_display_mode *adjusted_mode = &state->base.adjusted_mode;
 4716
 4717	return skl_update_scaler(state, !state->base.active, SKL_CRTC_INDEX,
 4718		&state->scaler_state.scaler_id, DRM_ROTATE_0,
 4719		state->pipe_src_w, state->pipe_src_h,
 4720		adjusted_mode->crtc_hdisplay, adjusted_mode->crtc_vdisplay);
 4721}
 4722
 4723/**
 4724 * skl_update_scaler_plane - Stages update to scaler state for a given plane.
 4725 *
 4726 * @state: crtc's scaler state
 4727 * @plane_state: atomic plane state to update
 4728 *
 4729 * Return
 4730 *     0 - scaler_usage updated successfully
 4731 *    error - requested scaling cannot be supported or other error condition
 4732 */
 4733static int skl_update_scaler_plane(struct intel_crtc_state *crtc_state,
 4734				   struct intel_plane_state *plane_state)
 4735{
 4736
 4737	struct intel_plane *intel_plane =
 4738		to_intel_plane(plane_state->base.plane);
 4739	struct drm_framebuffer *fb = plane_state->base.fb;
 4740	int ret;
 4741
 4742	bool force_detach = !fb || !plane_state->base.visible;
 4743
 4744	ret = skl_update_scaler(crtc_state, force_detach,
 4745				drm_plane_index(&intel_plane->base),
 4746				&plane_state->scaler_id,
 4747				plane_state->base.rotation,
 4748				drm_rect_width(&plane_state->base.src) >> 16,
 4749				drm_rect_height(&plane_state->base.src) >> 16,
 4750				drm_rect_width(&plane_state->base.dst),
 4751				drm_rect_height(&plane_state->base.dst));
 4752
 4753	if (ret || plane_state->scaler_id < 0)
 4754		return ret;
 4755
 4756	/* check colorkey */
 4757	if (plane_state->ckey.flags != I915_SET_COLORKEY_NONE) {
 4758		DRM_DEBUG_KMS("[PLANE:%d:%s] scaling with color key not allowed",
 4759			      intel_plane->base.base.id,
 4760			      intel_plane->base.name);
 4761		return -EINVAL;
 4762	}
 4763
 4764	/* Check src format */
 4765	switch (fb->pixel_format) {
 4766	case DRM_FORMAT_RGB565:
 4767	case DRM_FORMAT_XBGR8888:
 4768	case DRM_FORMAT_XRGB8888:
 4769	case DRM_FORMAT_ABGR8888:
 4770	case DRM_FORMAT_ARGB8888:
 4771	case DRM_FORMAT_XRGB2101010:
 4772	case DRM_FORMAT_XBGR2101010:
 4773	case DRM_FORMAT_YUYV:
 4774	case DRM_FORMAT_YVYU:
 4775	case DRM_FORMAT_UYVY:
 4776	case DRM_FORMAT_VYUY:
 4777		break;
 4778	default:
 4779		DRM_DEBUG_KMS("[PLANE:%d:%s] FB:%d unsupported scaling format 0x%x\n",
 4780			      intel_plane->base.base.id, intel_plane->base.name,
 4781			      fb->base.id, fb->pixel_format);
 4782		return -EINVAL;
 4783	}
 4784
 4785	return 0;
 4786}
 4787
 4788static void skylake_scaler_disable(struct intel_crtc *crtc)
 4789{
 4790	int i;
 4791
 4792	for (i = 0; i < crtc->num_scalers; i++)
 4793		skl_detach_scaler(crtc, i);
 4794}
 4795
 4796static void skylake_pfit_enable(struct intel_crtc *crtc)
 4797{
 4798	struct drm_device *dev = crtc->base.dev;
 4799	struct drm_i915_private *dev_priv = to_i915(dev);
 4800	int pipe = crtc->pipe;
 4801	struct intel_crtc_scaler_state *scaler_state =
 4802		&crtc->config->scaler_state;
 4803
 4804	if (crtc->config->pch_pfit.enabled) {
 4805		int id;
 4806
 4807		if (WARN_ON(crtc->config->scaler_state.scaler_id < 0))
 4808			return;
 4809
 4810		id = scaler_state->scaler_id;
 4811		I915_WRITE(SKL_PS_CTRL(pipe, id), PS_SCALER_EN |
 4812			PS_FILTER_MEDIUM | scaler_state->scalers[id].mode);
 4813		I915_WRITE(SKL_PS_WIN_POS(pipe, id), crtc->config->pch_pfit.pos);
 4814		I915_WRITE(SKL_PS_WIN_SZ(pipe, id), crtc->config->pch_pfit.size);
 4815	}
 4816}
 4817
 4818static void ironlake_pfit_enable(struct intel_crtc *crtc)
 4819{
 4820	struct drm_device *dev = crtc->base.dev;
 4821	struct drm_i915_private *dev_priv = to_i915(dev);
 4822	int pipe = crtc->pipe;
 4823
 4824	if (crtc->config->pch_pfit.enabled) {
 4825		/* Force use of hard-coded filter coefficients
 4826		 * as some pre-programmed values are broken,
 4827		 * e.g. x201.
 4828		 */
 4829		if (IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv))
 4830			I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
 4831						 PF_PIPE_SEL_IVB(pipe));
 4832		else
 4833			I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
 4834		I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
 4835		I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
 4836	}
 4837}
 4838
 4839void hsw_enable_ips(struct intel_crtc *crtc)
 4840{
 4841	struct drm_device *dev = crtc->base.dev;
 4842	struct drm_i915_private *dev_priv = to_i915(dev);
 4843
 4844	if (!crtc->config->ips_enabled)
 4845		return;
 4846
 4847	/*
 4848	 * We can only enable IPS after we enable a plane and wait for a vblank
 4849	 * This function is called from post_plane_update, which is run after
 4850	 * a vblank wait.
 4851	 */
 4852
 4853	assert_plane_enabled(dev_priv, crtc->plane);
 4854	if (IS_BROADWELL(dev_priv)) {
 4855		mutex_lock(&dev_priv->rps.hw_lock);
 4856		WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
 4857		mutex_unlock(&dev_priv->rps.hw_lock);
 4858		/* Quoting Art Runyan: "its not safe to expect any particular
 4859		 * value in IPS_CTL bit 31 after enabling IPS through the
 4860		 * mailbox." Moreover, the mailbox may return a bogus state,
 4861		 * so we need to just enable it and continue on.
 4862		 */
 4863	} else {
 4864		I915_WRITE(IPS_CTL, IPS_ENABLE);
 4865		/* The bit only becomes 1 in the next vblank, so this wait here
 4866		 * is essentially intel_wait_for_vblank. If we don't have this
 4867		 * and don't wait for vblanks until the end of crtc_enable, then
 4868		 * the HW state readout code will complain that the expected
 4869		 * IPS_CTL value is not the one we read. */
 4870		if (intel_wait_for_register(dev_priv,
 4871					    IPS_CTL, IPS_ENABLE, IPS_ENABLE,
 4872					    50))
 4873			DRM_ERROR("Timed out waiting for IPS enable\n");
 4874	}
 4875}
 4876
 4877void hsw_disable_ips(struct intel_crtc *crtc)
 4878{
 4879	struct drm_device *dev = crtc->base.dev;
 4880	struct drm_i915_private *dev_priv = to_i915(dev);
 4881
 4882	if (!crtc->config->ips_enabled)
 4883		return;
 4884
 4885	assert_plane_enabled(dev_priv, crtc->plane);
 4886	if (IS_BROADWELL(dev_priv)) {
 4887		mutex_lock(&dev_priv->rps.hw_lock);
 4888		WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
 4889		mutex_unlock(&dev_priv->rps.hw_lock);
 4890		/* wait for pcode to finish disabling IPS, which may take up to 42ms */
 4891		if (intel_wait_for_register(dev_priv,
 4892					    IPS_CTL, IPS_ENABLE, 0,
 4893					    42))
 4894			DRM_ERROR("Timed out waiting for IPS disable\n");
 4895	} else {
 4896		I915_WRITE(IPS_CTL, 0);
 4897		POSTING_READ(IPS_CTL);
 4898	}
 4899
 4900	/* We need to wait for a vblank before we can disable the plane. */
 4901	intel_wait_for_vblank(dev_priv, crtc->pipe);
 4902}
 4903
 4904static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc)
 4905{
 4906	if (intel_crtc->overlay) {
 4907		struct drm_device *dev = intel_crtc->base.dev;
 4908		struct drm_i915_private *dev_priv = to_i915(dev);
 4909
 4910		mutex_lock(&dev->struct_mutex);
 4911		dev_priv->mm.interruptible = false;
 4912		(void) intel_overlay_switch_off(intel_crtc->overlay);
 4913		dev_priv->mm.interruptible = true;
 4914		mutex_unlock(&dev->struct_mutex);
 4915	}
 4916
 4917	/* Let userspace switch the overlay on again. In most cases userspace
 4918	 * has to recompute where to put it anyway.
 4919	 */
 4920}
 4921
 4922/**
 4923 * intel_post_enable_primary - Perform operations after enabling primary plane
 4924 * @crtc: the CRTC whose primary plane was just enabled
 4925 *
 4926 * Performs potentially sleeping operations that must be done after the primary
 4927 * plane is enabled, such as updating FBC and IPS.  Note that this may be
 4928 * called due to an explicit primary plane update, or due to an implicit
 4929 * re-enable that is caused when a sprite plane is updated to no longer
 4930 * completely hide the primary plane.
 4931 */
 4932static void
 4933intel_post_enable_primary(struct drm_crtc *crtc)
 4934{
 4935	struct drm_device *dev = crtc->dev;
 4936	struct drm_i915_private *dev_priv = to_i915(dev);
 4937	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
 4938	int pipe = intel_crtc->pipe;
 4939
 4940	/*
 4941	 * FIXME IPS should be fine as long as one plane is
 4942	 * enabled, but in practice it seems to have problems
 4943	 * when going from primary only to sprite only and vice
 4944	 * versa.
 4945	 */
 4946	hsw_enable_ips(intel_crtc);
 4947
 4948	/*
 4949	 * Gen2 reports pipe underruns whenever all planes are disabled.
 4950	 * So don't enable underrun reporting before at least some planes
 4951	 * are enabled.
 4952	 * FIXME: Need to fix the logic to work when we turn off all planes
 4953	 * but leave the pipe running.
 4954	 */
 4955	if (IS_GEN2(dev_priv))
 4956		intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
 4957
 4958	/* Underruns don't always raise interrupts, so check manually. */
 4959	intel_check_cpu_fifo_underruns(dev_priv);
 4960	intel_check_pch_fifo_underruns(dev_priv);
 4961}
 4962
 4963/* FIXME move all this to pre_plane_update() with proper state tracking */
 4964static void
 4965intel_pre_disable_primary(struct drm_crtc *crtc)
 4966{
 4967	struct drm_device *dev = crtc->dev;
 4968	struct drm_i915_private *dev_priv = to_i915(dev);
 4969	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
 4970	int pipe = intel_crtc->pipe;
 4971
 4972	/*
 4973	 * Gen2 reports pipe underruns whenever all planes are disabled.
 4974	 * So diasble underrun reporting before all the planes get disabled.
 4975	 * FIXME: Need to fix the logic to work when we turn off all planes
 4976	 * but leave the pipe running.
 4977	 */
 4978	if (IS_GEN2(dev_priv))
 4979		intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
 4980
 4981	/*
 4982	 * FIXME IPS should be fine as long as one plane is
 4983	 * enabled, but in practice it seems to have problems
 4984	 * when going from primary only to sprite only and vice
 4985	 * versa.
 4986	 */
 4987	hsw_disable_ips(intel_crtc);
 4988}
 4989
 4990/* FIXME get rid of this and use pre_plane_update */
 4991static void
 4992intel_pre_disable_primary_noatomic(struct drm_crtc *crtc)
 4993{
 4994	struct drm_device *dev = crtc->dev;
 4995	struct drm_i915_private *dev_priv = to_i915(dev);
 4996	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
 4997	int pipe = intel_crtc->pipe;
 4998
 4999	intel_pre_disable_primary(crtc);
 5000
 5001	/*
 5002	 * Vblank time updates from the shadow to live plane control register
 5003	 * are blocked if the memory self-refresh mode is active at that
 5004	 * moment. So to make sure the plane gets truly disabled, disable
 5005	 * first the self-refresh mode. The self-refresh enable bit in turn
 5006	 * will be checked/applied by the HW only at the next frame start
 5007	 * event which is after the vblank start event, so we need to have a
 5008	 * wait-for-vblank between disabling the plane and the pipe.
 5009	 */
 5010	if (HAS_GMCH_DISPLAY(dev_priv)) {
 5011		intel_set_memory_cxsr(dev_priv, false);
 5012		dev_priv->wm.vlv.cxsr = false;
 5013		intel_wait_for_vblank(dev_priv, pipe);
 5014	}
 5015}
 5016
 5017static void intel_post_plane_update(struct intel_crtc_state *old_crtc_state)
 5018{
 5019	struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
 5020	struct drm_atomic_state *old_state = old_crtc_state->base.state;
 5021	struct intel_crtc_state *pipe_config =
 5022		to_intel_crtc_state(crtc->base.state);
 5023	struct drm_plane *primary = crtc->base.primary;
 5024	struct drm_plane_state *old_pri_state =
 5025		drm_atomic_get_existing_plane_state(old_state, primary);
 5026
 5027	intel_frontbuffer_flip(to_i915(crtc->base.dev), pipe_config->fb_bits);
 5028
 5029	crtc->wm.cxsr_allowed = true;
 5030
 5031	if (pipe_config->update_wm_post && pipe_config->base.active)
 5032		intel_update_watermarks(crtc);
 5033
 5034	if (old_pri_state) {
 5035		struct intel_plane_state *primary_state =
 5036			to_intel_plane_state(primary->state);
 5037		struct intel_plane_state *old_primary_state =
 5038			to_intel_plane_state(old_pri_state);
 5039
 5040		intel_fbc_post_update(crtc);
 5041
 5042		if (primary_state->base.visible &&
 5043		    (needs_modeset(&pipe_config->base) ||
 5044		     !old_primary_state->base.visible))
 5045			intel_post_enable_primary(&crtc->base);
 5046	}
 5047}
 5048
 5049static void intel_pre_plane_update(struct intel_crtc_state *old_crtc_state)
 5050{
 5051	struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
 5052	struct drm_device *dev = crtc->base.dev;
 5053	struct drm_i915_private *dev_priv = to_i915(dev);
 5054	struct intel_crtc_state *pipe_config =
 5055		to_intel_crtc_state(crtc->base.state);
 5056	struct drm_atomic_state *old_state = old_crtc_state->base.state;
 5057	struct drm_plane *primary = crtc->base.primary;
 5058	struct drm_plane_state *old_pri_state =
 5059		drm_atomic_get_existing_plane_state(old_state, primary);
 5060	bool modeset = needs_modeset(&pipe_config->base);
 5061	struct intel_atomic_state *old_intel_state =
 5062		to_intel_atomic_state(old_state);
 5063
 5064	if (old_pri_state) {
 5065		struct intel_plane_state *primary_state =
 5066			to_intel_plane_state(primary->state);
 5067		struct intel_plane_state *old_primary_state =
 5068			to_intel_plane_state(old_pri_state);
 5069
 5070		intel_fbc_pre_update(crtc, pipe_config, primary_state);
 5071
 5072		if (old_primary_state->base.visible &&
 5073		    (modeset || !primary_state->base.visible))
 5074			intel_pre_disable_primary(&crtc->base);
 5075	}
 5076
 5077	if (pipe_config->disable_cxsr && HAS_GMCH_DISPLAY(dev_priv)) {
 5078		crtc->wm.cxsr_allowed = false;
 5079
 5080		/*
 5081		 * Vblank time updates from the shadow to live plane control register
 5082		 * are blocked if the memory self-refresh mode is active at that
 5083		 * moment. So to make sure the plane gets truly disabled, disable
 5084		 * first the self-refresh mode. The self-refresh enable bit in turn
 5085		 * will be checked/applied by the HW only at the next frame start
 5086		 * event which is after the vblank start event, so we need to have a
 5087		 * wait-for-vblank between disabling the plane and the pipe.
 5088		 */
 5089		if (old_crtc_state->base.active) {
 5090			intel_set_memory_cxsr(dev_priv, false);
 5091			dev_priv->wm.vlv.cxsr = false;
 5092			intel_wait_for_vblank(dev_priv, crtc->pipe);
 5093		}
 5094	}
 5095
 5096	/*
 5097	 * IVB workaround: must disable low power watermarks for at least
 5098	 * one frame before enabling scaling.  LP watermarks can be re-enabled
 5099	 * when scaling is disabled.
 5100	 *
 5101	 * WaCxSRDisabledForSpriteScaling:ivb
 5102	 */
 5103	if (pipe_config->disable_lp_wm) {
 5104		ilk_disable_lp_wm(dev);
 5105		intel_wait_for_vblank(dev_priv, crtc->pipe);
 5106	}
 5107
 5108	/*
 5109	 * If we're doing a modeset, we're done.  No need to do any pre-vblank
 5110	 * watermark programming here.
 5111	 */
 5112	if (needs_modeset(&pipe_config->base))
 5113		return;
 5114
 5115	/*
 5116	 * For platforms that support atomic watermarks, program the
 5117	 * 'intermediate' watermarks immediately.  On pre-gen9 platforms, these
 5118	 * will be the intermediate values that are safe for both pre- and
 5119	 * post- vblank; when vblank happens, the 'active' values will be set
 5120	 * to the final 'target' values and we'll do this again to get the
 5121	 * optimal watermarks.  For gen9+ platforms, the values we program here
 5122	 * will be the final target values which will get automatically latched
 5123	 * at vblank time; no further programming will be necessary.
 5124	 *
 5125	 * If a platform hasn't been transitioned to atomic watermarks yet,
 5126	 * we'll continue to update watermarks the old way, if flags tell
 5127	 * us to.
 5128	 */
 5129	if (dev_priv->display.initial_watermarks != NULL)
 5130		dev_priv->display.initial_watermarks(old_intel_state,
 5131						     pipe_config);
 5132	else if (pipe_config->update_wm_pre)
 5133		intel_update_watermarks(crtc);
 5134}
 5135
 5136static void intel_crtc_disable_planes(struct drm_crtc *crtc, unsigned plane_mask)
 5137{
 5138	struct drm_device *dev = crtc->dev;
 5139	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
 5140	struct drm_plane *p;
 5141	int pipe = intel_crtc->pipe;
 5142
 5143	intel_crtc_dpms_overlay_disable(intel_crtc);
 5144
 5145	drm_for_each_plane_mask(p, dev, plane_mask)
 5146		to_intel_plane(p)->disable_plane(p, crtc);
 5147
 5148	/*
 5149	 * FIXME: Once we grow proper nuclear flip support out of this we need
 5150	 * to compute the mask of flip planes precisely. For the time being
 5151	 * consider this a flip to a NULL plane.
 5152	 */
 5153	intel_frontbuffer_flip(to_i915(dev), INTEL_FRONTBUFFER_ALL_MASK(pipe));
 5154}
 5155
 5156static void intel_encoders_pre_pll_enable(struct drm_crtc *crtc,
 5157					  struct intel_crtc_state *crtc_state,
 5158					  struct drm_atomic_state *old_state)
 5159{
 5160	struct drm_connector_state *old_conn_state;
 5161	struct drm_connector *conn;
 5162	int i;
 5163
 5164	for_each_connector_in_state(old_state, conn, old_conn_state, i) {
 5165		struct drm_connector_state *conn_state = conn->state;
 5166		struct intel_encoder *encoder =
 5167			to_intel_encoder(conn_state->best_encoder);
 5168
 5169		if (conn_state->crtc != crtc)
 5170			continue;
 5171
 5172		if (encoder->pre_pll_enable)
 5173			encoder->pre_pll_enable(encoder, crtc_state, conn_state);
 5174	}
 5175}
 5176
 5177static void intel_encoders_pre_enable(struct drm_crtc *crtc,
 5178				      struct intel_crtc_state *crtc_state,
 5179				      struct drm_atomic_state *old_state)
 5180{
 5181	struct drm_connector_state *old_conn_state;
 5182	struct drm_connector *conn;
 5183	int i;
 5184
 5185	for_each_connector_in_state(old_state, conn, old_conn_state, i) {
 5186		struct drm_connector_state *conn_state = conn->state;
 5187		struct intel_encoder *encoder =
 5188			to_intel_encoder(conn_state->best_encoder);
 5189
 5190		if (conn_state->crtc != crtc)
 5191			continue;
 5192
 5193		if (encoder->pre_enable)
 5194			encoder->pre_enable(encoder, crtc_state, conn_state);
 5195	}
 5196}
 5197
 5198static void intel_encoders_enable(struct drm_crtc *crtc,
 5199				  struct intel_crtc_state *crtc_state,
 5200				  struct drm_atomic_state *old_state)
 5201{
 5202	struct drm_connector_state *old_conn_state;
 5203	struct drm_connector *conn;
 5204	int i;
 5205
 5206	for_each_connector_in_state(old_state, conn, old_conn_state, i) {
 5207		struct drm_connector_state *conn_state = conn->state;
 5208		struct intel_encoder *encoder =
 5209			to_intel_encoder(conn_state->best_encoder);
 5210
 5211		if (conn_state->crtc != crtc)
 5212			continue;
 5213
 5214		encoder->enable(encoder, crtc_state, conn_state);
 5215		intel_opregion_notify_encoder(encoder, true);
 5216	}
 5217}
 5218
 5219static void intel_encoders_disable(struct drm_crtc *crtc,
 5220				   struct intel_crtc_state *old_crtc_state,
 5221				   struct drm_atomic_state *old_state)
 5222{
 5223	struct drm_connector_state *old_conn_state;
 5224	struct drm_connector *conn;
 5225	int i;
 5226
 5227	for_each_connector_in_state(old_state, conn, old_conn_state, i) {
 5228		struct intel_encoder *encoder =
 5229			to_intel_encoder(old_conn_state->best_encoder);
 5230
 5231		if (old_conn_state->crtc != crtc)
 5232			continue;
 5233
 5234		intel_opregion_notify_encoder(encoder, false);
 5235		encoder->disable(encoder, old_crtc_state, old_conn_state);
 5236	}
 5237}
 5238
 5239static void intel_encoders_post_disable(struct drm_crtc *crtc,
 5240					struct intel_crtc_state *old_crtc_state,
 5241					struct drm_atomic_state *old_state)
 5242{
 5243	struct drm_connector_state *old_conn_state;
 5244	struct drm_connector *conn;
 5245	int i;
 5246
 5247	for_each_connector_in_state(old_state, conn, old_conn_state, i) {
 5248		struct intel_encoder *encoder =
 5249			to_intel_encoder(old_conn_state->best_encoder);
 5250
 5251		if (old_conn_state->crtc != crtc)
 5252			continue;
 5253
 5254		if (encoder->post_disable)
 5255			encoder->post_disable(encoder, old_crtc_state, old_conn_state);
 5256	}
 5257}
 5258
 5259static void intel_encoders_post_pll_disable(struct drm_crtc *crtc,
 5260					    struct intel_crtc_state *old_crtc_state,
 5261					    struct drm_atomic_state *old_state)
 5262{
 5263	struct drm_connector_state *old_conn_state;
 5264	struct drm_connector *conn;
 5265	int i;
 5266
 5267	for_each_connector_in_state(old_state, conn, old_conn_state, i) {
 5268		struct intel_encoder *encoder =
 5269			to_intel_encoder(old_conn_state->best_encoder);
 5270
 5271		if (old_conn_state->crtc != crtc)
 5272			continue;
 5273
 5274		if (encoder->post_pll_disable)
 5275			encoder->post_pll_disable(encoder, old_crtc_state, old_conn_state);
 5276	}
 5277}
 5278
 5279static void ironlake_crtc_enable(struct intel_crtc_state *pipe_config,
 5280				 struct drm_atomic_state *old_state)
 5281{
 5282	struct drm_crtc *crtc = pipe_config->base.crtc;
 5283	struct drm_device *dev = crtc->dev;
 5284	struct drm_i915_private *dev_priv = to_i915(dev);
 5285	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
 5286	int pipe = intel_crtc->pipe;
 5287	struct intel_atomic_state *old_intel_state =
 5288		to_intel_atomic_state(old_state);
 5289
 5290	if (WARN_ON(intel_crtc->active))
 5291		return;
 5292
 5293	/*
 5294	 * Sometimes spurious CPU pipe underruns happen during FDI
 5295	 * training, at least with VGA+HDMI cloning. Suppress them.
 5296	 *
 5297	 * On ILK we get an occasional spurious CPU pipe underruns
 5298	 * between eDP port A enable and vdd enable. Also PCH port
 5299	 * enable seems to result in the occasional CPU pipe underrun.
 5300	 *
 5301	 * Spurious PCH underruns also occur during PCH enabling.
 5302	 */
 5303	if (intel_crtc->config->has_pch_encoder || IS_GEN5(dev_priv))
 5304		intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
 5305	if (intel_crtc->config->has_pch_encoder)
 5306		intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
 5307
 5308	if (intel_crtc->config->has_pch_encoder)
 5309		intel_prepare_shared_dpll(intel_crtc);
 5310
 5311	if (intel_crtc_has_dp_encoder(intel_crtc->config))
 5312		intel_dp_set_m_n(intel_crtc, M1_N1);
 5313
 5314	intel_set_pipe_timings(intel_crtc);
 5315	intel_set_pipe_src_size(intel_crtc);
 5316
 5317	if (intel_crtc->config->has_pch_encoder) {
 5318		intel_cpu_transcoder_set_m_n(intel_crtc,
 5319				     &intel_crtc->config->fdi_m_n, NULL);
 5320	}
 5321
 5322	ironlake_set_pipeconf(crtc);
 5323
 5324	intel_crtc->active = true;
 5325
 5326	intel_encoders_pre_enable(crtc, pipe_config, old_state);
 5327
 5328	if (intel_crtc->config->has_pch_encoder) {
 5329		/* Note: FDI PLL enabling _must_ be done before we enable the
 5330		 * cpu pipes, hence this is separate from all the other fdi/pch
 5331		 * enabling. */
 5332		ironlake_fdi_pll_enable(intel_crtc);
 5333	} else {
 5334		assert_fdi_tx_disabled(dev_priv, pipe);
 5335		assert_fdi_rx_disabled(dev_priv, pipe);
 5336	}
 5337
 5338	ironlake_pfit_enable(intel_crtc);
 5339
 5340	/*
 5341	 * On ILK+ LUT must be loaded before the pipe is running but with
 5342	 * clocks enabled
 5343	 */
 5344	intel_color_load_luts(&pipe_config->base);
 5345
 5346	if (dev_priv->display.initial_watermarks != NULL)
 5347		dev_priv->display.initial_watermarks(old_intel_state, intel_crtc->config);
 5348	intel_enable_pipe(intel_crtc);
 5349
 5350	if (intel_crtc->config->has_pch_encoder)
 5351		ironlake_pch_enable(crtc);
 5352
 5353	assert_vblank_disabled(crtc);
 5354	drm_crtc_vblank_on(crtc);
 5355
 5356	intel_encoders_enable(crtc, pipe_config, old_state);
 5357
 5358	if (HAS_PCH_CPT(dev_priv))
 5359		cpt_verify_modeset(dev, intel_crtc->pipe);
 5360
 5361	/* Must wait for vblank to avoid spurious PCH FIFO underruns */
 5362	if (intel_crtc->config->has_pch_encoder)
 5363		intel_wait_for_vblank(dev_priv, pipe);
 5364	intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
 5365	intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
 5366}
 5367
 5368/* IPS only exists on ULT machines and is tied to pipe A. */
 5369static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
 5370{
 5371	return HAS_IPS(to_i915(crtc->base.dev)) && crtc->pipe == PIPE_A;
 5372}
 5373
 5374static void haswell_crtc_enable(struct intel_crtc_state *pipe_config,
 5375				struct drm_atomic_state *old_state)
 5376{
 5377	struct drm_crtc *crtc = pipe_config->base.crtc;
 5378	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
 5379	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
 5380	int pipe = intel_crtc->pipe, hsw_workaround_pipe;
 5381	enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
 5382	struct intel_atomic_state *old_intel_state =
 5383		to_intel_atomic_state(old_state);
 5384
 5385	if (WARN_ON(intel_crtc->active))
 5386		return;
 5387
 5388	if (intel_crtc->config->has_pch_encoder)
 5389		intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
 5390						      false);
 5391
 5392	intel_encoders_pre_pll_enable(crtc, pipe_config, old_state);
 5393
 5394	if (intel_crtc->config->shared_dpll)
 5395		intel_enable_shared_dpll(intel_crtc);
 5396
 5397	if (intel_crtc_has_dp_encoder(intel_crtc->config))
 5398		intel_dp_set_m_n(intel_crtc, M1_N1);
 5399
 5400	if (!transcoder_is_dsi(cpu_transcoder))
 5401		intel_set_pipe_timings(intel_crtc);
 5402
 5403	intel_set_pipe_src_size(intel_crtc);
 5404
 5405	if (cpu_transcoder != TRANSCODER_EDP &&
 5406	    !transcoder_is_dsi(cpu_transcoder)) {
 5407		I915_WRITE(PIPE_MULT(cpu_transcoder),
 5408			   intel_crtc->config->pixel_multiplier - 1);
 5409	}
 5410
 5411	if (intel_crtc->config->has_pch_encoder) {
 5412		intel_cpu_transcoder_set_m_n(intel_crtc,
 5413				     &intel_crtc->config->fdi_m_n, NULL);
 5414	}
 5415
 5416	if (!transcoder_is_dsi(cpu_transcoder))
 5417		haswell_set_pipeconf(crtc);
 5418
 5419	haswell_set_pipemisc(crtc);
 5420
 5421	intel_color_set_csc(&pipe_config->base);
 5422
 5423	intel_crtc->active = true;
 5424
 5425	if (intel_crtc->config->has_pch_encoder)
 5426		intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
 5427	else
 5428		intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
 5429
 5430	intel_encoders_pre_enable(crtc, pipe_config, old_state);
 5431
 5432	if (intel_crtc->config->has_pch_encoder)
 5433		dev_priv->display.fdi_link_train(crtc);
 5434
 5435	if (!transcoder_is_dsi(cpu_transcoder))
 5436		intel_ddi_enable_pipe_clock(intel_crtc);
 5437
 5438	if (INTEL_GEN(dev_priv) >= 9)
 5439		skylake_pfit_enable(intel_crtc);
 5440	else
 5441		ironlake_pfit_enable(intel_crtc);
 5442
 5443	/*
 5444	 * On ILK+ LUT must be loaded before the pipe is running but with
 5445	 * clocks enabled
 5446	 */
 5447	intel_color_load_luts(&pipe_config->base);
 5448
 5449	intel_ddi_set_pipe_settings(crtc);
 5450	if (!transcoder_is_dsi(cpu_transcoder))
 5451		intel_ddi_enable_transcoder_func(crtc);
 5452
 5453	if (dev_priv->display.initial_watermarks != NULL)
 5454		dev_priv->display.initial_watermarks(old_intel_state,
 5455						     pipe_config);
 5456	else
 5457		intel_update_watermarks(intel_crtc);
 5458
 5459	/* XXX: Do the pipe assertions at the right place for BXT DSI. */
 5460	if (!transcoder_is_dsi(cpu_transcoder))
 5461		intel_enable_pipe(intel_crtc);
 5462
 5463	if (intel_crtc->config->has_pch_encoder)
 5464		lpt_pch_enable(crtc);
 5465
 5466	if (intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_DP_MST))
 5467		intel_ddi_set_vc_payload_alloc(crtc, true);
 5468
 5469	assert_vblank_disabled(crtc);
 5470	drm_crtc_vblank_on(crtc);
 5471
 5472	intel_encoders_enable(crtc, pipe_config, old_state);
 5473
 5474	if (intel_crtc->config->has_pch_encoder) {
 5475		intel_wait_for_vblank(dev_priv, pipe);
 5476		intel_wait_for_vblank(dev_priv, pipe);
 5477		intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
 5478		intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
 5479						      true);
 5480	}
 5481
 5482	/* If we change the relative order between pipe/planes enabling, we need
 5483	 * to change the workaround. */
 5484	hsw_workaround_pipe = pipe_config->hsw_workaround_pipe;
 5485	if (IS_HASWELL(dev_priv) && hsw_workaround_pipe != INVALID_PIPE) {
 5486		intel_wait_for_vblank(dev_priv, hsw_workaround_pipe);
 5487		intel_wait_for_vblank(dev_priv, hsw_workaround_pipe);
 5488	}
 5489}
 5490
 5491static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force)
 5492{
 5493	struct drm_device *dev = crtc->base.dev;
 5494	struct drm_i915_private *dev_priv = to_i915(dev);
 5495	int pipe = crtc->pipe;
 5496
 5497	/* To avoid upsetting the power well on haswell only disable the pfit if
 5498	 * it's in use. The hw state code will make sure we get this right. */
 5499	if (force || crtc->config->pch_pfit.enabled) {
 5500		I915_WRITE(PF_CTL(pipe), 0);
 5501		I915_WRITE(PF_WIN_POS(pipe), 0);
 5502		I915_WRITE(PF_WIN_SZ(pipe), 0);
 5503	}
 5504}
 5505
 5506static void ironlake_crtc_disable(struct intel_crtc_state *old_crtc_state,
 5507				  struct drm_atomic_state *old_state)
 5508{
 5509	struct drm_crtc *crtc = old_crtc_state->base.crtc;
 5510	struct drm_device *dev = crtc->dev;
 5511	struct drm_i915_private *dev_priv = to_i915(dev);
 5512	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
 5513	int pipe = intel_crtc->pipe;
 5514
 5515	/*
 5516	 * Sometimes spurious CPU pipe underruns happen when the
 5517	 * pipe is already disabled, but FDI RX/TX is still enabled.
 5518	 * Happens at least with VGA+HDMI cloning. Suppress them.
 5519	 */
 5520	if (intel_crtc->config->has_pch_encoder) {
 5521		intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
 5522		intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
 5523	}
 5524
 5525	intel_encoders_disable(crtc, old_crtc_state, old_state);
 5526
 5527	drm_crtc_vblank_off(crtc);
 5528	assert_vblank_disabled(crtc);
 5529
 5530	intel_disable_pipe(intel_crtc);
 5531
 5532	ironlake_pfit_disable(intel_crtc, false);
 5533
 5534	if (intel_crtc->config->has_pch_encoder)
 5535		ironlake_fdi_disable(crtc);
 5536
 5537	intel_encoders_post_disable(crtc, old_crtc_state, old_state);
 5538
 5539	if (intel_crtc->config->has_pch_encoder) {
 5540		ironlake_disable_pch_transcoder(dev_priv, pipe);
 5541
 5542		if (HAS_PCH_CPT(dev_priv)) {
 5543			i915_reg_t reg;
 5544			u32 temp;
 5545
 5546			/* disable TRANS_DP_CTL */
 5547			reg = TRANS_DP_CTL(pipe);
 5548			temp = I915_READ(reg);
 5549			temp &= ~(TRANS_DP_OUTPUT_ENABLE |
 5550				  TRANS_DP_PORT_SEL_MASK);
 5551			temp |= TRANS_DP_PORT_SEL_NONE;
 5552			I915_WRITE(reg, temp);
 5553
 5554			/* disable DPLL_SEL */
 5555			temp = I915_READ(PCH_DPLL_SEL);
 5556			temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
 5557			I915_WRITE(PCH_DPLL_SEL, temp);
 5558		}
 5559
 5560		ironlake_fdi_pll_disable(intel_crtc);
 5561	}
 5562
 5563	intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
 5564	intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
 5565}
 5566
 5567static void haswell_crtc_disable(struct intel_crtc_state *old_crtc_state,
 5568				 struct drm_atomic_state *old_state)
 5569{
 5570	struct drm_crtc *crtc = old_crtc_state->base.crtc;
 5571	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
 5572	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
 5573	enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
 5574
 5575	if (intel_crtc->config->has_pch_encoder)
 5576		intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
 5577						      false);
 5578
 5579	intel_encoders_disable(crtc, old_crtc_state, old_state);
 5580
 5581	drm_crtc_vblank_off(crtc);
 5582	assert_vblank_disabled(crtc);
 5583
 5584	/* XXX: Do the pipe assertions at the right place for BXT DSI. */
 5585	if (!transcoder_is_dsi(cpu_transcoder))
 5586		intel_disable_pipe(intel_crtc);
 5587
 5588	if (intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_DP_MST))
 5589		intel_ddi_set_vc_payload_alloc(crtc, false);
 5590
 5591	if (!transcoder_is_dsi(cpu_transcoder))
 5592		intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
 5593
 5594	if (INTEL_GEN(dev_priv) >= 9)
 5595		skylake_scaler_disable(intel_crtc);
 5596	else
 5597		ironlake_pfit_disable(intel_crtc, false);
 5598
 5599	if (!transcoder_is_dsi(cpu_transcoder))
 5600		intel_ddi_disable_pipe_clock(intel_crtc);
 5601
 5602	intel_encoders_post_disable(crtc, old_crtc_state, old_state);
 5603
 5604	if (old_crtc_state->has_pch_encoder)
 5605		intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
 5606						      true);
 5607}
 5608
 5609static void i9xx_pfit_enable(struct intel_crtc *crtc)
 5610{
 5611	struct drm_device *dev = crtc->base.dev;
 5612	struct drm_i915_private *dev_priv = to_i915(dev);
 5613	struct intel_crtc_state *pipe_config = crtc->config;
 5614
 5615	if (!pipe_config->gmch_pfit.control)
 5616		return;
 5617
 5618	/*
 5619	 * The panel fitter should only be adjusted whilst the pipe is disabled,
 5620	 * according to register description and PRM.
 5621	 */
 5622	WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
 5623	assert_pipe_disabled(dev_priv, crtc->pipe);
 5624
 5625	I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
 5626	I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
 5627
 5628	/* Border color in case we don't scale up to the full screen. Black by
 5629	 * default, change to something else for debugging. */
 5630	I915_WRITE(BCLRPAT(crtc->pipe), 0);
 5631}
 5632
 5633static enum intel_display_power_domain port_to_power_domain(enum port port)
 5634{
 5635	switch (port) {
 5636	case PORT_A:
 5637		return POWER_DOMAIN_PORT_DDI_A_LANES;
 5638	case PORT_B:
 5639		return POWER_DOMAIN_PORT_DDI_B_LANES;
 5640	case PORT_C:
 5641		return POWER_DOMAIN_PORT_DDI_C_LANES;
 5642	case PORT_D:
 5643		return POWER_DOMAIN_PORT_DDI_D_LANES;
 5644	case PORT_E:
 5645		return POWER_DOMAIN_PORT_DDI_E_LANES;
 5646	default:
 5647		MISSING_CASE(port);
 5648		return POWER_DOMAIN_PORT_OTHER;
 5649	}
 5650}
 5651
 5652static enum intel_display_power_domain port_to_aux_power_domain(enum port port)
 5653{
 5654	switch (port) {
 5655	case PORT_A:
 5656		return POWER_DOMAIN_AUX_A;
 5657	case PORT_B:
 5658		return POWER_DOMAIN_AUX_B;
 5659	case PORT_C:
 5660		return POWER_DOMAIN_AUX_C;
 5661	case PORT_D:
 5662		return POWER_DOMAIN_AUX_D;
 5663	case PORT_E:
 5664		/* FIXME: Check VBT for actual wiring of PORT E */
 5665		return POWER_DOMAIN_AUX_D;
 5666	default:
 5667		MISSING_CASE(port);
 5668		return POWER_DOMAIN_AUX_A;
 5669	}
 5670}
 5671
 5672enum intel_display_power_domain
 5673intel_display_port_power_domain(struct intel_encoder *intel_encoder)
 5674{
 5675	struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev);
 5676	struct intel_digital_port *intel_dig_port;
 5677
 5678	switch (intel_encoder->type) {
 5679	case INTEL_OUTPUT_UNKNOWN:
 5680		/* Only DDI platforms should ever use this output type */
 5681		WARN_ON_ONCE(!HAS_DDI(dev_priv));
 5682	case INTEL_OUTPUT_DP:
 5683	case INTEL_OUTPUT_HDMI:
 5684	case INTEL_OUTPUT_EDP:
 5685		intel_dig_port = enc_to_dig_port(&intel_encoder->base);
 5686		return port_to_power_domain(intel_dig_port->port);
 5687	case INTEL_OUTPUT_DP_MST:
 5688		intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
 5689		return port_to_power_domain(intel_dig_port->port);
 5690	case INTEL_OUTPUT_ANALOG:
 5691		return POWER_DOMAIN_PORT_CRT;
 5692	case INTEL_OUTPUT_DSI:
 5693		return POWER_DOMAIN_PORT_DSI;
 5694	default:
 5695		return POWER_DOMAIN_PORT_OTHER;
 5696	}
 5697}
 5698
 5699enum intel_display_power_domain
 5700intel_display_port_aux_power_domain(struct intel_encoder *intel_encoder)
 5701{
 5702	struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev);
 5703	struct intel_digital_port *intel_dig_port;
 5704
 5705	switch (intel_encoder->type) {
 5706	case INTEL_OUTPUT_UNKNOWN:
 5707	case INTEL_OUTPUT_HDMI:
 5708		/*
 5709		 * Only DDI platforms should ever use these output types.
 5710		 * We can get here after the HDMI detect code has already set
 5711		 * the type of the shared encoder. Since we can't be sure
 5712		 * what's the status of the given connectors, play safe and
 5713		 * run the DP detection too.
 5714		 */
 5715		WARN_ON_ONCE(!HAS_DDI(dev_priv));
 5716	case INTEL_OUTPUT_DP:
 5717	case INTEL_OUTPUT_EDP:
 5718		intel_dig_port = enc_to_dig_port(&intel_encoder->base);
 5719		return port_to_aux_power_domain(intel_dig_port->port);
 5720	case INTEL_OUTPUT_DP_MST:
 5721		intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
 5722		return port_to_aux_power_domain(intel_dig_port->port);
 5723	default:
 5724		MISSING_CASE(intel_encoder->type);
 5725		return POWER_DOMAIN_AUX_A;
 5726	}
 5727}
 5728
 5729static unsigned long get_crtc_power_domains(struct drm_crtc *crtc,
 5730					    struct intel_crtc_state *crtc_state)
 5731{
 5732	struct drm_device *dev = crtc->dev;
 5733	struct drm_encoder *encoder;
 5734	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
 5735	enum pipe pipe = intel_crtc->pipe;
 5736	unsigned long mask;
 5737	enum transcoder transcoder = crtc_state->cpu_transcoder;
 5738
 5739	if (!crtc_state->base.active)
 5740		return 0;
 5741
 5742	mask = BIT(POWER_DOMAIN_PIPE(pipe));
 5743	mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
 5744	if (crtc_state->pch_pfit.enabled ||
 5745	    crtc_state->pch_pfit.force_thru)
 5746		mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
 5747
 5748	drm_for_each_encoder_mask(encoder, dev, crtc_state->base.encoder_mask) {
 5749		struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
 5750
 5751		mask |= BIT(intel_display_port_power_domain(intel_encoder));
 5752	}
 5753
 5754	if (crtc_state->shared_dpll)
 5755		mask |= BIT(POWER_DOMAIN_PLLS);
 5756
 5757	return mask;
 5758}
 5759
 5760static unsigned long
 5761modeset_get_crtc_power_domains(struct drm_crtc *crtc,
 5762			       struct intel_crtc_state *crtc_state)
 5763{
 5764	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
 5765	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
 5766	enum intel_display_power_domain domain;
 5767	unsigned long domains, new_domains, old_domains;
 5768
 5769	old_domains = intel_crtc->enabled_power_domains;
 5770	intel_crtc->enabled_power_domains = new_domains =
 5771		get_crtc_power_domains(crtc, crtc_state);
 5772
 5773	domains = new_domains & ~old_domains;
 5774
 5775	for_each_power_domain(domain, domains)
 5776		intel_display_power_get(dev_priv, domain);
 5777
 5778	return old_domains & ~new_domains;
 5779}
 5780
 5781static void modeset_put_power_domains(struct drm_i915_private *dev_priv,
 5782				      unsigned long domains)
 5783{
 5784	enum intel_display_power_domain domain;
 5785
 5786	for_each_power_domain(domain, domains)
 5787		intel_display_power_put(dev_priv, domain);
 5788}
 5789
 5790static int intel_compute_max_dotclk(struct drm_i915_private *dev_priv)
 5791{
 5792	int max_cdclk_freq = dev_priv->max_cdclk_freq;
 5793
 5794	if (INTEL_INFO(dev_priv)->gen >= 9 ||
 5795	    IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
 5796		return max_cdclk_freq;
 5797	else if (IS_CHERRYVIEW(dev_priv))
 5798		return max_cdclk_freq*95/100;
 5799	else if (INTEL_INFO(dev_priv)->gen < 4)
 5800		return 2*max_cdclk_freq*90/100;
 5801	else
 5802		return max_cdclk_freq*90/100;
 5803}
 5804
 5805static int skl_calc_cdclk(int max_pixclk, int vco);
 5806
 5807static void intel_update_max_cdclk(struct drm_i915_private *dev_priv)
 5808{
 5809	if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
 5810		u32 limit = I915_READ(SKL_DFSM) & SKL_DFSM_CDCLK_LIMIT_MASK;
 5811		int max_cdclk, vco;
 5812
 5813		vco = dev_priv->skl_preferred_vco_freq;
 5814		WARN_ON(vco != 8100000 && vco != 8640000);
 5815
 5816		/*
 5817		 * Use the lower (vco 8640) cdclk values as a
 5818		 * first guess. skl_calc_cdclk() will correct it
 5819		 * if the preferred vco is 8100 instead.
 5820		 */
 5821		if (limit == SKL_DFSM_CDCLK_LIMIT_675)
 5822			max_cdclk = 617143;
 5823		else if (limit == SKL_DFSM_CDCLK_LIMIT_540)
 5824			max_cdclk = 540000;
 5825		else if (limit == SKL_DFSM_CDCLK_LIMIT_450)
 5826			max_cdclk = 432000;
 5827		else
 5828			max_cdclk = 308571;
 5829
 5830		dev_priv->max_cdclk_freq = skl_calc_cdclk(max_cdclk, vco);
 5831	} else if (IS_BROXTON(dev_priv)) {
 5832		dev_priv->max_cdclk_freq = 624000;
 5833	} else if (IS_BROADWELL(dev_priv))  {
 5834		/*
 5835		 * FIXME with extra cooling we can allow
 5836		 * 540 MHz for ULX and 675 Mhz for ULT.
 5837		 * How can we know if extra cooling is
 5838		 * available? PCI ID, VTB, something else?
 5839		 */
 5840		if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
 5841			dev_priv->max_cdclk_freq = 450000;
 5842		else if (IS_BDW_ULX(dev_priv))
 5843			dev_priv->max_cdclk_freq = 450000;
 5844		else if (IS_BDW_ULT(dev_priv))
 5845			dev_priv->max_cdclk_freq = 540000;
 5846		else
 5847			dev_priv->max_cdclk_freq = 675000;
 5848	} else if (IS_CHERRYVIEW(dev_priv)) {
 5849		dev_priv->max_cdclk_freq = 320000;
 5850	} else if (IS_VALLEYVIEW(dev_priv)) {
 5851		dev_priv->max_cdclk_freq = 400000;
 5852	} else {
 5853		/* otherwise assume cdclk is fixed */
 5854		dev_priv->max_cdclk_freq = dev_priv->cdclk_freq;
 5855	}
 5856
 5857	dev_priv->max_dotclk_freq = intel_compute_max_dotclk(dev_priv);
 5858
 5859	DRM_DEBUG_DRIVER("Max CD clock rate: %d kHz\n",
 5860			 dev_priv->max_cdclk_freq);
 5861
 5862	DRM_DEBUG_DRIVER("Max dotclock rate: %d kHz\n",
 5863			 dev_priv->max_dotclk_freq);
 5864}
 5865
 5866static void intel_update_cdclk(struct drm_i915_private *dev_priv)
 5867{
 5868	dev_priv->cdclk_freq = dev_priv->display.get_display_clock_speed(dev_priv);
 5869
 5870	if (INTEL_GEN(dev_priv) >= 9)
 5871		DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz, VCO: %d kHz, ref: %d kHz\n",
 5872				 dev_priv->cdclk_freq, dev_priv->cdclk_pll.vco,
 5873				 dev_priv->cdclk_pll.ref);
 5874	else
 5875		DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
 5876				 dev_priv->cdclk_freq);
 5877
 5878	/*
 5879	 * 9:0 CMBUS [sic] CDCLK frequency (cdfreq):
 5880	 * Programmng [sic] note: bit[9:2] should be programmed to the number
 5881	 * of cdclk that generates 4MHz reference clock freq which is used to
 5882	 * generate GMBus clock. This will vary with the cdclk freq.
 5883	 */
 5884	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
 5885		I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->cdclk_freq, 1000));
 5886}
 5887
 5888/* convert from kHz to .1 fixpoint MHz with -1MHz offset */
 5889static int skl_cdclk_decimal(int cdclk)
 5890{
 5891	return DIV_ROUND_CLOSEST(cdclk - 1000, 500);
 5892}
 5893
 5894static int bxt_de_pll_vco(struct drm_i915_private *dev_priv, int cdclk)
 5895{
 5896	int ratio;
 5897
 5898	if (cdclk == dev_priv->cdclk_pll.ref)
 5899		return 0;
 5900
 5901	switch (cdclk) {
 5902	default:
 5903		MISSING_CASE(cdclk);
 5904	case 144000:
 5905	case 288000:
 5906	case 384000:
 5907	case 576000:
 5908		ratio = 60;
 5909		break;
 5910	case 624000:
 5911		ratio = 65;
 5912		break;
 5913	}
 5914
 5915	return dev_priv->cdclk_pll.ref * ratio;
 5916}
 5917
 5918static void bxt_de_pll_disable(struct drm_i915_private *dev_priv)
 5919{
 5920	I915_WRITE(BXT_DE_PLL_ENABLE, 0);
 5921
 5922	/* Timeout 200us */
 5923	if (intel_wait_for_register(dev_priv,
 5924				    BXT_DE_PLL_ENABLE, BXT_DE_PLL_LOCK, 0,
 5925				    1))
 5926		DRM_ERROR("timeout waiting for DE PLL unlock\n");
 5927
 5928	dev_priv->cdclk_pll.vco = 0;
 5929}
 5930
 5931static void bxt_de_pll_enable(struct drm_i915_private *dev_priv, int vco)
 5932{
 5933	int ratio = DIV_ROUND_CLOSEST(vco, dev_priv->cdclk_pll.ref);
 5934	u32 val;
 5935
 5936	val = I915_READ(BXT_DE_PLL_CTL);
 5937	val &= ~BXT_DE_PLL_RATIO_MASK;
 5938	val |= BXT_DE_PLL_RATIO(ratio);
 5939	I915_WRITE(BXT_DE_PLL_CTL, val);
 5940
 5941	I915_WRITE(BXT_DE_PLL_ENABLE, BXT_DE_PLL_PLL_ENABLE);
 5942
 5943	/* Timeout 200us */
 5944	if (intel_wait_for_register(dev_priv,
 5945				    BXT_DE_PLL_ENABLE,
 5946				    BXT_DE_PLL_LOCK,
 5947				    BXT_DE_PLL_LOCK,
 5948				    1))
 5949		DRM_ERROR("timeout waiting for DE PLL lock\n");
 5950
 5951	dev_priv->cdclk_pll.vco = vco;
 5952}
 5953
 5954static void bxt_set_cdclk(struct drm_i915_private *dev_priv, int cdclk)
 5955{
 5956	u32 val, divider;
 5957	int vco, ret;
 5958
 5959	vco = bxt_de_pll_vco(dev_priv, cdclk);
 5960
 5961	DRM_DEBUG_DRIVER("Changing CDCLK to %d kHz (VCO %d kHz)\n", cdclk, vco);
 5962
 5963	/* cdclk = vco / 2 / div{1,1.5,2,4} */
 5964	switch (DIV_ROUND_CLOSEST(vco, cdclk)) {
 5965	case 8:
 5966		divider = BXT_CDCLK_CD2X_DIV_SEL_4;
 5967		break;
 5968	case 4:
 5969		divider = BXT_CDCLK_CD2X_DIV_SEL_2;
 5970		break;
 5971	case 3:
 5972		divider = BXT_CDCLK_CD2X_DIV_SEL_1_5;
 5973		break;
 5974	case 2:
 5975		divider = BXT_CDCLK_CD2X_DIV_SEL_1;
 5976		break;
 5977	default:
 5978		WARN_ON(cdclk != dev_priv->cdclk_pll.ref);
 5979		WARN_ON(vco != 0);
 5980
 5981		divider = BXT_CDCLK_CD2X_DIV_SEL_1;
 5982		break;
 5983	}
 5984
 5985	/* Inform power controller of upcoming frequency change */
 5986	mutex_lock(&dev_priv->rps.hw_lock);
 5987	ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
 5988				      0x80000000);
 5989	mutex_unlock(&dev_priv->rps.hw_lock);
 5990
 5991	if (ret) {
 5992		DRM_ERROR("PCode CDCLK freq change notify failed (err %d, freq %d)\n",
 5993			  ret, cdclk);
 5994		return;
 5995	}
 5996
 5997	if (dev_priv->cdclk_pll.vco != 0 &&
 5998	    dev_priv->cdclk_pll.vco != vco)
 5999		bxt_de_pll_disable(dev_priv);
 6000
 6001	if (dev_priv->cdclk_pll.vco != vco)
 6002		bxt_de_pll_enable(dev_priv, vco);
 6003
 6004	val = divider | skl_cdclk_decimal(cdclk);
 6005	/*
 6006	 * FIXME if only the cd2x divider needs changing, it could be done
 6007	 * without shutting off the pipe (if only one pipe is active).
 6008	 */
 6009	val |= BXT_CDCLK_CD2X_PIPE_NONE;
 6010	/*
 6011	 * Disable SSA Precharge when CD clock frequency < 500 MHz,
 6012	 * enable otherwise.
 6013	 */
 6014	if (cdclk >= 500000)
 6015		val |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
 6016	I915_WRITE(CDCLK_CTL, val);
 6017
 6018	mutex_lock(&dev_priv->rps.hw_lock);
 6019	ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
 6020				      DIV_ROUND_UP(cdclk, 25000));
 6021	mutex_unlock(&dev_priv->rps.hw_lock);
 6022
 6023	if (ret) {
 6024		DRM_ERROR("PCode CDCLK freq set failed, (err %d, freq %d)\n",
 6025			  ret, cdclk);
 6026		return;
 6027	}
 6028
 6029	intel_update_cdclk(dev_priv);
 6030}
 6031
 6032static void bxt_sanitize_cdclk(struct drm_i915_private *dev_priv)
 6033{
 6034	u32 cdctl, expected;
 6035
 6036	intel_update_cdclk(dev_priv);
 6037
 6038	if (dev_priv->cdclk_pll.vco == 0 ||
 6039	    dev_priv->cdclk_freq == dev_priv->cdclk_pll.ref)
 6040		goto sanitize;
 6041
 6042	/* DPLL okay; verify the cdclock
 6043	 *
 6044	 * Some BIOS versions leave an incorrect decimal frequency value and
 6045	 * set reserved MBZ bits in CDCLK_CTL at least during exiting from S4,
 6046	 * so sanitize this register.
 6047	 */
 6048	cdctl = I915_READ(CDCLK_CTL);
 6049	/*
 6050	 * Let's ignore the pipe field, since BIOS could have configured the
 6051	 * dividers both synching to an active pipe, or asynchronously
 6052	 * (PIPE_NONE).
 6053	 */
 6054	cdctl &= ~BXT_CDCLK_CD2X_PIPE_NONE;
 6055
 6056	expected = (cdctl & BXT_CDCLK_CD2X_DIV_SEL_MASK) |
 6057		   skl_cdclk_decimal(dev_priv->cdclk_freq);
 6058	/*
 6059	 * Disable SSA Precharge when CD clock frequency < 500 MHz,
 6060	 * enable otherwise.
 6061	 */
 6062	if (dev_priv->cdclk_freq >= 500000)
 6063		expected |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
 6064
 6065	if (cdctl == expected)
 6066		/* All well; nothing to sanitize */
 6067		return;
 6068
 6069sanitize:
 6070	DRM_DEBUG_KMS("Sanitizing cdclk programmed by pre-os\n");
 6071
 6072	/* force cdclk programming */
 6073	dev_priv->cdclk_freq = 0;
 6074
 6075	/* force full PLL disable + enable */
 6076	dev_priv->cdclk_pll.vco = -1;
 6077}
 6078
 6079void bxt_init_cdclk(struct drm_i915_private *dev_priv)
 6080{
 6081	bxt_sanitize_cdclk(dev_priv);
 6082
 6083	if (dev_priv->cdclk_freq != 0 && dev_priv->cdclk_pll.vco != 0)
 6084		return;
 6085
 6086	/*
 6087	 * FIXME:
 6088	 * - The initial CDCLK needs to be read from VBT.
 6089	 *   Need to make this change after VBT has changes for BXT.
 6090	 */
 6091	bxt_set_cdclk(dev_priv, bxt_calc_cdclk(0));
 6092}
 6093
 6094void bxt_uninit_cdclk(struct drm_i915_private *dev_priv)
 6095{
 6096	bxt_set_cdclk(dev_priv, dev_priv->cdclk_pll.ref);
 6097}
 6098
 6099static int skl_calc_cdclk(int max_pixclk, int vco)
 6100{
 6101	if (vco == 8640000) {
 6102		if (max_pixclk > 540000)
 6103			return 617143;
 6104		else if (max_pixclk > 432000)
 6105			return 540000;
 6106		else if (max_pixclk > 308571)
 6107			return 432000;
 6108		else
 6109			return 308571;
 6110	} else {
 6111		if (max_pixclk > 540000)
 6112			return 675000;
 6113		else if (max_pixclk > 450000)
 6114			return 540000;
 6115		else if (max_pixclk > 337500)
 6116			return 450000;
 6117		else
 6118			return 337500;
 6119	}
 6120}
 6121
 6122static void
 6123skl_dpll0_update(struct drm_i915_private *dev_priv)
 6124{
 6125	u32 val;
 6126
 6127	dev_priv->cdclk_pll.ref = 24000;
 6128	dev_priv->cdclk_pll.vco = 0;
 6129
 6130	val = I915_READ(LCPLL1_CTL);
 6131	if ((val & LCPLL_PLL_ENABLE) == 0)
 6132		return;
 6133
 6134	if (WARN_ON((val & LCPLL_PLL_LOCK) == 0))
 6135		return;
 6136
 6137	val = I915_READ(DPLL_CTRL1);
 6138
 6139	if (WARN_ON((val & (DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) |
 6140			    DPLL_CTRL1_SSC(SKL_DPLL0) |
 6141			    DPLL_CTRL1_OVERRIDE(SKL_DPLL0))) !=
 6142		    DPLL_CTRL1_OVERRIDE(SKL_DPLL0)))
 6143		return;
 6144
 6145	switch (val & DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0)) {
 6146	case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810, SKL_DPLL0):
 6147	case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1350, SKL_DPLL0):
 6148	case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1620, SKL_DPLL0):
 6149	case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2700, SKL_DPLL0):
 6150		dev_priv->cdclk_pll.vco = 8100000;
 6151		break;
 6152	case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080, SKL_DPLL0):
 6153	case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2160, SKL_DPLL0):
 6154		dev_priv->cdclk_pll.vco = 8640000;
 6155		break;
 6156	default:
 6157		MISSING_CASE(val & DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0));
 6158		break;
 6159	}
 6160}
 6161
 6162void skl_set_preferred_cdclk_vco(struct drm_i915_private *dev_priv, int vco)
 6163{
 6164	bool changed = dev_priv->skl_preferred_vco_freq != vco;
 6165
 6166	dev_priv->skl_preferred_vco_freq = vco;
 6167
 6168	if (changed)
 6169		intel_update_max_cdclk(dev_priv);
 6170}
 6171
 6172static void
 6173skl_dpll0_enable(struct drm_i915_private *dev_priv, int vco)
 6174{
 6175	int min_cdclk = skl_calc_cdclk(0, vco);
 6176	u32 val;
 6177
 6178	WARN_ON(vco != 8100000 && vco != 8640000);
 6179
 6180	/* select the minimum CDCLK before enabling DPLL 0 */
 6181	val = CDCLK_FREQ_337_308 | skl_cdclk_decimal(min_cdclk);
 6182	I915_WRITE(CDCLK_CTL, val);
 6183	POSTING_READ(CDCLK_CTL);
 6184
 6185	/*
 6186	 * We always enable DPLL0 with the lowest link rate possible, but still
 6187	 * taking into account the VCO required to operate the eDP panel at the
 6188	 * desired frequency. The usual DP link rates operate with a VCO of
 6189	 * 8100 while the eDP 1.4 alternate link rates need a VCO of 8640.
 6190	 * The modeset code is responsible for the selection of the exact link
 6191	 * rate later on, with the constraint of choosing a frequency that
 6192	 * works with vco.
 6193	 */
 6194	val = I915_READ(DPLL_CTRL1);
 6195
 6196	val &= ~(DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) | DPLL_CTRL1_SSC(SKL_DPLL0) |
 6197		 DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0));
 6198	val |= DPLL_CTRL1_OVERRIDE(SKL_DPLL0);
 6199	if (vco == 8640000)
 6200		val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080,
 6201					    SKL_DPLL0);
 6202	else
 6203		val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810,
 6204					    SKL_DPLL0);
 6205
 6206	I915_WRITE(DPLL_CTRL1, val);
 6207	POSTING_READ(DPLL_CTRL1);
 6208
 6209	I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) | LCPLL_PLL_ENABLE);
 6210
 6211	if (intel_wait_for_register(dev_priv,
 6212				    LCPLL1_CTL, LCPLL_PLL_LOCK, LCPLL_PLL_LOCK,
 6213				    5))
 6214		DRM_ERROR("DPLL0 not locked\n");
 6215
 6216	dev_priv->cdclk_pll.vco = vco;
 6217
 6218	/* We'll want to keep using the current vco from now on. */
 6219	skl_set_preferred_cdclk_vco(dev_priv, vco);
 6220}
 6221
 6222static void
 6223skl_dpll0_disable(struct drm_i915_private *dev_priv)
 6224{
 6225	I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) & ~LCPLL_PLL_ENABLE);
 6226	if (intel_wait_for_register(dev_priv,
 6227				   LCPLL1_CTL, LCPLL_PLL_LOCK, 0,
 6228				   1))
 6229		DRM_ERROR("Couldn't disable DPLL0\n");
 6230
 6231	dev_priv->cdclk_pll.vco = 0;
 6232}
 6233
 6234static void skl_set_cdclk(struct drm_i915_private *dev_priv, int cdclk, int vco)
 6235{
 6236	u32 freq_select, pcu_ack;
 6237	int ret;
 6238
 6239	WARN_ON((cdclk == 24000) != (vco == 0));
 6240
 6241	DRM_DEBUG_DRIVER("Changing CDCLK to %d kHz (VCO %d kHz)\n", cdclk, vco);
 6242
 6243	mutex_lock(&dev_priv->rps.hw_lock);
 6244	ret = skl_pcode_request(dev_priv, SKL_PCODE_CDCLK_CONTROL,
 6245				SKL_CDCLK_PREPARE_FOR_CHANGE,
 6246				SKL_CDCLK_READY_FOR_CHANGE,
 6247				SKL_CDCLK_READY_FOR_CHANGE, 3);
 6248	mutex_unlock(&dev_priv->rps.hw_lock);
 6249	if (ret) {
 6250		DRM_ERROR("Failed to inform PCU about cdclk change (%d)\n",
 6251			  ret);
 6252		return;
 6253	}
 6254
 6255	/* set CDCLK_CTL */
 6256	switch (cdclk) {
 6257	case 450000:
 6258	case 432000:
 6259		freq_select = CDCLK_FREQ_450_432;
 6260		pcu_ack = 1;
 6261		break;
 6262	case 540000:
 6263		freq_select = CDCLK_FREQ_540;
 6264		pcu_ack = 2;
 6265		break;
 6266	case 308571:
 6267	case 337500:
 6268	default:
 6269		freq_select = CDCLK_FREQ_337_308;
 6270		pcu_ack = 0;
 6271		break;
 6272	case 617143:
 6273	case 675000:
 6274		freq_select = CDCLK_FREQ_675_617;
 6275		pcu_ack = 3;
 6276		break;
 6277	}
 6278
 6279	if (dev_priv->cdclk_pll.vco != 0 &&
 6280	    dev_priv->cdclk_pll.vco != vco)
 6281		skl_dpll0_disable(dev_priv);
 6282
 6283	if (dev_priv->cdclk_pll.vco != vco)
 6284		skl_dpll0_enable(dev_priv, vco);
 6285
 6286	I915_WRITE(CDCLK_CTL, freq_select | skl_cdclk_decimal(cdclk));
 6287	POSTING_READ(CDCLK_CTL);
 6288
 6289	/* inform PCU of the change */
 6290	mutex_lock(&dev_priv->rps.hw_lock);
 6291	sandybridge_pcode_write(dev_priv, SKL_PCODE_CDCLK_CONTROL, pcu_ack);
 6292	mutex_unlock(&dev_priv->rps.hw_lock);
 6293
 6294	intel_update_cdclk(dev_priv);
 6295}
 6296
 6297static void skl_sanitize_cdclk(struct drm_i915_private *dev_priv);
 6298
 6299void skl_uninit_cdclk(struct drm_i915_private *dev_priv)
 6300{
 6301	skl_set_cdclk(dev_priv, dev_priv->cdclk_pll.ref, 0);
 6302}
 6303
 6304void skl_init_cdclk(struct drm_i915_private *dev_priv)
 6305{
 6306	int cdclk, vco;
 6307
 6308	skl_sanitize_cdclk(dev_priv);
 6309
 6310	if (dev_priv->cdclk_freq != 0 && dev_priv->cdclk_pll.vco != 0) {
 6311		/*
 6312		 * Use the current vco as our initial
 6313		 * guess as to what the preferred vco is.
 6314		 */
 6315		if (dev_priv->skl_preferred_vco_freq == 0)
 6316			skl_set_preferred_cdclk_vco(dev_priv,
 6317						    dev_priv->cdclk_pll.vco);
 6318		return;
 6319	}
 6320
 6321	vco = dev_priv->skl_preferred_vco_freq;
 6322	if (vco == 0)
 6323		vco = 8100000;
 6324	cdclk = skl_calc_cdclk(0, vco);
 6325
 6326	skl_set_cdclk(dev_priv, cdclk, vco);
 6327}
 6328
 6329static void skl_sanitize_cdclk(struct drm_i915_private *dev_priv)
 6330{
 6331	uint32_t cdctl, expected;
 6332
 6333	/*
 6334	 * check if the pre-os intialized the display
 6335	 * There is SWF18 scratchpad register defined which is set by the
 6336	 * pre-os which can be used by the OS drivers to check the status
 6337	 */
 6338	if ((I915_READ(SWF_ILK(0x18)) & 0x00FFFFFF) == 0)
 6339		goto sanitize;
 6340
 6341	intel_update_cdclk(dev_priv);
 6342	/* Is PLL enabled and locked ? */
 6343	if (dev_priv->cdclk_pll.vco == 0 ||
 6344	    dev_priv->cdclk_freq == dev_priv->cdclk_pll.ref)
 6345		goto sanitize;
 6346
 6347	/* DPLL okay; verify the cdclock
 6348	 *
 6349	 * Noticed in some instances that the freq selection is correct but
 6350	 * decimal part is programmed wrong from BIOS where pre-os does not
 6351	 * enable display. Verify the same as well.
 6352	 */
 6353	cdctl = I915_READ(CDCLK_CTL);
 6354	expected = (cdctl & CDCLK_FREQ_SEL_MASK) |
 6355		skl_cdclk_decimal(dev_priv->cdclk_freq);
 6356	if (cdctl == expected)
 6357		/* All well; nothing to sanitize */
 6358		return;
 6359
 6360sanitize:
 6361	DRM_DEBUG_KMS("Sanitizing cdclk programmed by pre-os\n");
 6362
 6363	/* force cdclk programming */
 6364	dev_priv->cdclk_freq = 0;
 6365	/* force full PLL disable + enable */
 6366	dev_priv->cdclk_pll.vco = -1;
 6367}
 6368
 6369/* Adjust CDclk dividers to allow high res or save power if possible */
 6370static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
 6371{
 6372	struct drm_i915_private *dev_priv = to_i915(dev);
 6373	u32 val, cmd;
 6374
 6375	WARN_ON(dev_priv->display.get_display_clock_speed(dev_priv)
 6376					!= dev_priv->cdclk_freq);
 6377
 6378	if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
 6379		cmd = 2;
 6380	else if (cdclk == 266667)
 6381		cmd = 1;
 6382	else
 6383		cmd = 0;
 6384
 6385	mutex_lock(&dev_priv->rps.hw_lock);
 6386	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
 6387	val &= ~DSPFREQGUAR_MASK;
 6388	val |= (cmd << DSPFREQGUAR_SHIFT);
 6389	vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
 6390	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
 6391		      DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
 6392		     50)) {
 6393		DRM_ERROR("timed out waiting for CDclk change\n");
 6394	}
 6395	mutex_unlock(&dev_priv->rps.hw_lock);
 6396
 6397	mutex_lock(&dev_priv->sb_lock);
 6398
 6399	if (cdclk == 400000) {
 6400		u32 divider;
 6401
 6402		divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
 6403
 6404		/* adjust cdclk divider */
 6405		val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
 6406		val &= ~CCK_FREQUENCY_VALUES;
 6407		val |= divider;
 6408		vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
 6409
 6410		if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
 6411			      CCK_FREQUENCY_STATUS) == (divider << CCK_FREQUENCY_STATUS_SHIFT),
 6412			     50))
 6413			DRM_ERROR("timed out waiting for CDclk change\n");
 6414	}
 6415
 6416	/* adjust self-refresh exit latency value */
 6417	val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
 6418	val &= ~0x7f;
 6419
 6420	/*
 6421	 * For high bandwidth configs, we set a higher latency in the bunit
 6422	 * so that the core display fetch happens in time to avoid underruns.
 6423	 */
 6424	if (cdclk == 400000)
 6425		val |= 4500 / 250; /* 4.5 usec */
 6426	else
 6427		val |= 3000 / 250; /* 3.0 usec */
 6428	vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
 6429
 6430	mutex_unlock(&dev_priv->sb_lock);
 6431
 6432	intel_update_cdclk(dev_priv);
 6433}
 6434
 6435static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
 6436{
 6437	struct drm_i915_private *dev_priv = to_i915(dev);
 6438	u32 val, cmd;
 6439
 6440	WARN_ON(dev_priv->display.get_display_clock_speed(dev_priv)
 6441						!= dev_priv->cdclk_freq);
 6442
 6443	switch (cdclk) {
 6444	case 333333:
 6445	case 320000:
 6446	case 266667:
 6447	case 200000:
 6448		break;
 6449	default:
 6450		MISSING_CASE(cdclk);
 6451		return;
 6452	}
 6453
 6454	/*
 6455	 * Specs are full of misinformation, but testing on actual
 6456	 * hardware has shown that we just need to write the desired
 6457	 * CCK divider into the Punit register.
 6458	 */
 6459	cmd = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
 6460
 6461	mutex_lock(&dev_priv->rps.hw_lock);
 6462	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
 6463	val &= ~DSPFREQGUAR_MASK_CHV;
 6464	val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
 6465	vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
 6466	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
 6467		      DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
 6468		     50)) {
 6469		DRM_ERROR("timed out waiting for CDclk change\n");
 6470	}
 6471	mutex_unlock(&dev_priv->rps.hw_lock);
 6472
 6473	intel_update_cdclk(dev_priv);
 6474}
 6475
 6476static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
 6477				 int max_pixclk)
 6478{
 6479	int freq_320 = (dev_priv->hpll_freq <<  1) % 320000 != 0 ? 333333 : 320000;
 6480	int limit = IS_CHERRYVIEW(dev_priv) ? 95 : 90;
 6481
 6482	/*
 6483	 * Really only a few cases to deal with, as only 4 CDclks are supported:
 6484	 *   200MHz
 6485	 *   267MHz
 6486	 *   320/333MHz (depends on HPLL freq)
 6487	 *   400MHz (VLV only)
 6488	 * So we check to see whether we're above 90% (VLV) or 95% (CHV)
 6489	 * of the lower bin and adjust if needed.
 6490	 *
 6491	 * We seem to get an unstable or solid color picture at 200MHz.
 6492	 * Not sure what's wrong. For now use 200MHz only when all pipes
 6493	 * are off.
 6494	 */
 6495	if (!IS_CHERRYVIEW(dev_priv) &&
 6496	    max_pixclk > freq_320*limit/100)
 6497		return 400000;
 6498	else if (max_pixclk > 266667*limit/100)
 6499		return freq_320;
 6500	else if (max_pixclk > 0)
 6501		return 266667;
 6502	else
 6503		return 200000;
 6504}
 6505
 6506static int bxt_calc_cdclk(int max_pixclk)
 6507{
 6508	if (max_pixclk > 576000)
 6509		return 624000;
 6510	else if (max_pixclk > 384000)
 6511		return 576000;
 6512	else if (max_pixclk > 288000)
 6513		return 384000;
 6514	else if (max_pixclk > 144000)
 6515		return 288000;
 6516	else
 6517		return 144000;
 6518}
 6519
 6520/* Compute the max pixel clock for new configuration. */
 6521static int intel_mode_max_pixclk(struct drm_device *dev,
 6522				 struct drm_atomic_state *state)
 6523{
 6524	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
 6525	struct drm_i915_private *dev_priv = to_i915(dev);
 6526	struct drm_crtc *crtc;
 6527	struct drm_crtc_state *crtc_state;
 6528	unsigned max_pixclk = 0, i;
 6529	enum pipe pipe;
 6530
 6531	memcpy(intel_state->min_pixclk, dev_priv->min_pixclk,
 6532	       sizeof(intel_state->min_pixclk));
 6533
 6534	for_each_crtc_in_state(state, crtc, crtc_state, i) {
 6535		int pixclk = 0;
 6536
 6537		if (crtc_state->enable)
 6538			pixclk = crtc_state->adjusted_mode.crtc_clock;
 6539
 6540		intel_state->min_pixclk[i] = pixclk;
 6541	}
 6542
 6543	for_each_pipe(dev_priv, pipe)
 6544		max_pixclk = max(intel_state->min_pixclk[pipe], max_pixclk);
 6545
 6546	return max_pixclk;
 6547}
 6548
 6549static int valleyview_modeset_calc_cdclk(struct drm_atomic_state *state)
 6550{
 6551	struct drm_device *dev = state->dev;
 6552	struct drm_i915_private *dev_priv = to_i915(dev);
 6553	int max_pixclk = intel_mode_max_pixclk(dev, state);
 6554	struct intel_atomic_state *intel_state =
 6555		to_intel_atomic_state(state);
 6556
 6557	intel_state->cdclk = intel_state->dev_cdclk =
 6558		valleyview_calc_cdclk(dev_priv, max_pixclk);
 6559
 6560	if (!intel_state->active_crtcs)
 6561		intel_state->dev_cdclk = valleyview_calc_cdclk(dev_priv, 0);
 6562
 6563	return 0;
 6564}
 6565
 6566static int bxt_modeset_calc_cdclk(struct drm_atomic_state *state)
 6567{
 6568	int max_pixclk = ilk_max_pixel_rate(state);
 6569	struct intel_atomic_state *intel_state =
 6570		to_intel_atomic_state(state);
 6571
 6572	intel_state->cdclk = intel_state->dev_cdclk =
 6573		bxt_calc_cdclk(max_pixclk);
 6574
 6575	if (!intel_state->active_crtcs)
 6576		intel_state->dev_cdclk = bxt_calc_cdclk(0);
 6577
 6578	return 0;
 6579}
 6580
 6581static void vlv_program_pfi_credits(struct drm_i915_private *dev_priv)
 6582{
 6583	unsigned int credits, default_credits;
 6584
 6585	if (IS_CHERRYVIEW(dev_priv))
 6586		default_credits = PFI_CREDIT(12);
 6587	else
 6588		default_credits = PFI_CREDIT(8);
 6589
 6590	if (dev_priv->cdclk_freq >= dev_priv->czclk_freq) {
 6591		/* CHV suggested value is 31 or 63 */
 6592		if (IS_CHERRYVIEW(dev_priv))
 6593			credits = PFI_CREDIT_63;
 6594		else
 6595			credits = PFI_CREDIT(15);
 6596	} else {
 6597		credits = default_credits;
 6598	}
 6599
 6600	/*
 6601	 * WA - write default credits before re-programming
 6602	 * FIXME: should we also set the resend bit here?
 6603	 */
 6604	I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
 6605		   default_credits);
 6606
 6607	I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
 6608		   credits | PFI_CREDIT_RESEND);
 6609
 6610	/*
 6611	 * FIXME is this guaranteed to clear
 6612	 * immediately or should we poll for it?
 6613	 */
 6614	WARN_ON(I915_READ(GCI_CONTROL) & PFI_CREDIT_RESEND);
 6615}
 6616
 6617static void valleyview_modeset_commit_cdclk(struct drm_atomic_state *old_state)
 6618{
 6619	struct drm_device *dev = old_state->dev;
 6620	struct drm_i915_private *dev_priv = to_i915(dev);
 6621	struct intel_atomic_state *old_intel_state =
 6622		to_intel_atomic_state(old_state);
 6623	unsigned req_cdclk = old_intel_state->dev_cdclk;
 6624
 6625	/*
 6626	 * FIXME: We can end up here with all power domains off, yet
 6627	 * with a CDCLK frequency other than the minimum. To account
 6628	 * for this take the PIPE-A power domain, which covers the HW
 6629	 * blocks needed for the following programming. This can be
 6630	 * removed once it's guaranteed that we get here either with
 6631	 * the minimum CDCLK set, or the required power domains
 6632	 * enabled.
 6633	 */
 6634	intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A);
 6635
 6636	if (IS_CHERRYVIEW(dev_priv))
 6637		cherryview_set_cdclk(dev, req_cdclk);
 6638	else
 6639		valleyview_set_cdclk(dev, req_cdclk);
 6640
 6641	vlv_program_pfi_credits(dev_priv);
 6642
 6643	intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
 6644}
 6645
 6646static void valleyview_crtc_enable(struct intel_crtc_state *pipe_config,
 6647				   struct drm_atomic_state *old_state)
 6648{
 6649	struct drm_crtc *crtc = pipe_config->base.crtc;
 6650	struct drm_device *dev = crtc->dev;
 6651	struct drm_i915_private *dev_priv = to_i915(dev);
 6652	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
 6653	int pipe = intel_crtc->pipe;
 6654
 6655	if (WARN_ON(intel_crtc->active))
 6656		return;
 6657
 6658	if (intel_crtc_has_dp_encoder(intel_crtc->config))
 6659		intel_dp_set_m_n(intel_crtc, M1_N1);
 6660
 6661	intel_set_pipe_timings(intel_crtc);
 6662	intel_set_pipe_src_size(intel_crtc);
 6663
 6664	if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B) {
 6665		struct drm_i915_private *dev_priv = to_i915(dev);
 6666
 6667		I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
 6668		I915_WRITE(CHV_CANVAS(pipe), 0);
 6669	}
 6670
 6671	i9xx_set_pipeconf(intel_crtc);
 6672
 6673	intel_crtc->active = true;
 6674
 6675	intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
 6676
 6677	intel_encoders_pre_pll_enable(crtc, pipe_config, old_state);
 6678
 6679	if (IS_CHERRYVIEW(dev_priv)) {
 6680		chv_prepare_pll(intel_crtc, intel_crtc->config);
 6681		chv_enable_pll(intel_crtc, intel_crtc->config);
 6682	} else {
 6683		vlv_prepare_pll(intel_crtc, intel_crtc->config);
 6684		vlv_enable_pll(intel_crtc, intel_crtc->config);
 6685	}
 6686
 6687	intel_encoders_pre_enable(crtc, pipe_config, old_state);
 6688
 6689	i9xx_pfit_enable(intel_crtc);
 6690
 6691	intel_color_load_luts(&pipe_config->base);
 6692
 6693	intel_update_watermarks(intel_crtc);
 6694	intel_enable_pipe(intel_crtc);
 6695
 6696	assert_vblank_disabled(crtc);
 6697	drm_crtc_vblank_on(crtc);
 6698
 6699	intel_encoders_enable(crtc, pipe_config, old_state);
 6700}
 6701
 6702static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
 6703{
 6704	struct drm_device *dev = crtc->base.dev;
 6705	struct drm_i915_private *dev_priv = to_i915(dev);
 6706
 6707	I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
 6708	I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
 6709}
 6710
 6711static void i9xx_crtc_enable(struct intel_crtc_state *pipe_config,
 6712			     struct drm_atomic_state *old_state)
 6713{
 6714	struct drm_crtc *crtc = pipe_config->base.crtc;
 6715	struct drm_device *dev = crtc->dev;
 6716	struct drm_i915_private *dev_priv = to_i915(dev);
 6717	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
 6718	enum pipe pipe = intel_crtc->pipe;
 6719
 6720	if (WARN_ON(intel_crtc->active))
 6721		return;
 6722
 6723	i9xx_set_pll_dividers(intel_crtc);
 6724
 6725	if (intel_crtc_has_dp_encoder(intel_crtc->config))
 6726		intel_dp_set_m_n(intel_crtc, M1_N1);
 6727
 6728	intel_set_pipe_timings(intel_crtc);
 6729	intel_set_pipe_src_size(intel_crtc);
 6730
 6731	i9xx_set_pipeconf(intel_crtc);
 6732
 6733	intel_crtc->active = true;
 6734
 6735	if (!IS_GEN2(dev_priv))
 6736		intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
 6737
 6738	intel_encoders_pre_enable(crtc, pipe_config, old_state);
 6739
 6740	i9xx_enable_pll(intel_crtc);
 6741
 6742	i9xx_pfit_enable(intel_crtc);
 6743
 6744	intel_color_load_luts(&pipe_config->base);
 6745
 6746	intel_update_watermarks(intel_crtc);
 6747	intel_enable_pipe(intel_crtc);
 6748
 6749	assert_vblank_disabled(crtc);
 6750	drm_crtc_vblank_on(crtc);
 6751
 6752	intel_encoders_enable(crtc, pipe_config, old_state);
 6753}
 6754
 6755static void i9xx_pfit_disable(struct intel_crtc *crtc)
 6756{
 6757	struct drm_device *dev = crtc->base.dev;
 6758	struct drm_i915_private *dev_priv = to_i915(dev);
 6759
 6760	if (!crtc->config->gmch_pfit.control)
 6761		return;
 6762
 6763	assert_pipe_disabled(dev_priv, crtc->pipe);
 6764
 6765	DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
 6766			 I915_READ(PFIT_CONTROL));
 6767	I915_WRITE(PFIT_CONTROL, 0);
 6768}
 6769
 6770static void i9xx_crtc_disable(struct intel_crtc_state *old_crtc_state,
 6771			      struct drm_atomic_state *old_state)
 6772{
 6773	struct drm_crtc *crtc = old_crtc_state->base.crtc;
 6774	struct drm_device *dev = crtc->dev;
 6775	struct drm_i915_private *dev_priv = to_i915(dev);
 6776	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
 6777	int pipe = intel_crtc->pipe;
 6778
 6779	/*
 6780	 * On gen2 planes are double buffered but the pipe isn't, so we must
 6781	 * wait for planes to fully turn off before disabling the pipe.
 6782	 */
 6783	if (IS_GEN2(dev_priv))
 6784		intel_wait_for_vblank(dev_priv, pipe);
 6785
 6786	intel_encoders_disable(crtc, old_crtc_state, old_state);
 6787
 6788	drm_crtc_vblank_off(crtc);
 6789	assert_vblank_disabled(crtc);
 6790
 6791	intel_disable_pipe(intel_crtc);
 6792
 6793	i9xx_pfit_disable(intel_crtc);
 6794
 6795	intel_encoders_post_disable(crtc, old_crtc_state, old_state);
 6796
 6797	if (!intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_DSI)) {
 6798		if (IS_CHERRYVIEW(dev_priv))
 6799			chv_disable_pll(dev_priv, pipe);
 6800		else if (IS_VALLEYVIEW(dev_priv))
 6801			vlv_disable_pll(dev_priv, pipe);
 6802		else
 6803			i9xx_disable_pll(intel_crtc);
 6804	}
 6805
 6806	intel_encoders_post_pll_disable(crtc, old_crtc_state, old_state);
 6807
 6808	if (!IS_GEN2(dev_priv))
 6809		intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
 6810}
 6811
 6812static void intel_crtc_disable_noatomic(struct drm_crtc *crtc)
 6813{
 6814	struct intel_encoder *encoder;
 6815	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
 6816	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
 6817	enum intel_display_power_domain domain;
 6818	unsigned long domains;
 6819	struct drm_atomic_state *state;
 6820	struct intel_crtc_state *crtc_state;
 6821	int ret;
 6822
 6823	if (!intel_crtc->active)
 6824		return;
 6825
 6826	if (to_intel_plane_state(crtc->primary->state)->base.visible) {
 6827		WARN_ON(intel_crtc->flip_work);
 6828
 6829		intel_pre_disable_primary_noatomic(crtc);
 6830
 6831		intel_crtc_disable_planes(crtc, 1 << drm_plane_index(crtc->primary));
 6832		to_intel_plane_state(crtc->primary->state)->base.visible = false;
 6833	}
 6834
 6835	state = drm_atomic_state_alloc(crtc->dev);
 6836	if (!state) {
 6837		DRM_DEBUG_KMS("failed to disable [CRTC:%d:%s], out of memory",
 6838			      crtc->base.id, crtc->name);
 6839		return;
 6840	}
 6841
 6842	state->acquire_ctx = crtc->dev->mode_config.acquire_ctx;
 6843
 6844	/* Everything's already locked, -EDEADLK can't happen. */
 6845	crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
 6846	ret = drm_atomic_add_affected_connectors(state, crtc);
 6847
 6848	WARN_ON(IS_ERR(crtc_state) || ret);
 6849
 6850	dev_priv->display.crtc_disable(crtc_state, state);
 6851
 6852	drm_atomic_state_put(state);
 6853
 6854	DRM_DEBUG_KMS("[CRTC:%d:%s] hw state adjusted, was enabled, now disabled\n",
 6855		      crtc->base.id, crtc->name);
 6856
 6857	WARN_ON(drm_atomic_set_mode_for_crtc(crtc->state, NULL) < 0);
 6858	crtc->state->active = false;
 6859	intel_crtc->active = false;
 6860	crtc->enabled = false;
 6861	crtc->state->connector_mask = 0;
 6862	crtc->state->encoder_mask = 0;
 6863
 6864	for_each_encoder_on_crtc(crtc->dev, crtc, encoder)
 6865		encoder->base.crtc = NULL;
 6866
 6867	intel_fbc_disable(intel_crtc);
 6868	intel_update_watermarks(intel_crtc);
 6869	intel_disable_shared_dpll(intel_crtc);
 6870
 6871	domains = intel_crtc->enabled_power_domains;
 6872	for_each_power_domain(domain, domains)
 6873		intel_display_power_put(dev_priv, domain);
 6874	intel_crtc->enabled_power_domains = 0;
 6875
 6876	dev_priv->active_crtcs &= ~(1 << intel_crtc->pipe);
 6877	dev_priv->min_pixclk[intel_crtc->pipe] = 0;
 6878}
 6879
 6880/*
 6881 * turn all crtc's off, but do not adjust state
 6882 * This has to be paired with a call to intel_modeset_setup_hw_state.
 6883 */
 6884int intel_display_suspend(struct drm_device *dev)
 6885{
 6886	struct drm_i915_private *dev_priv = to_i915(dev);
 6887	struct drm_atomic_state *state;
 6888	int ret;
 6889
 6890	state = drm_atomic_helper_suspend(dev);
 6891	ret = PTR_ERR_OR_ZERO(state);
 6892	if (ret)
 6893		DRM_ERROR("Suspending crtc's failed with %i\n", ret);
 6894	else
 6895		dev_priv->modeset_restore_state = state;
 6896	return ret;
 6897}
 6898
 6899void intel_encoder_destroy(struct drm_encoder *encoder)
 6900{
 6901	struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
 6902
 6903	drm_encoder_cleanup(encoder);
 6904	kfree(intel_encoder);
 6905}
 6906
 6907/* Cross check the actual hw state with our own modeset state tracking (and it's
 6908 * internal consistency). */
 6909static void intel_connector_verify_state(struct intel_connector *connector)
 6910{
 6911	struct drm_crtc *crtc = connector->base.state->crtc;
 6912
 6913	DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
 6914		      connector->base.base.id,
 6915		      connector->base.name);
 6916
 6917	if (connector->get_hw_state(connector)) {
 6918		struct intel_encoder *encoder = connector->encoder;
 6919		struct drm_connector_state *conn_state = connector->base.state;
 6920
 6921		I915_STATE_WARN(!crtc,
 6922			 "connector enabled without attached crtc\n");
 6923
 6924		if (!crtc)
 6925			return;
 6926
 6927		I915_STATE_WARN(!crtc->state->active,
 6928		      "connector is active, but attached crtc isn't\n");
 6929
 6930		if (!encoder || encoder->type == INTEL_OUTPUT_DP_MST)
 6931			return;
 6932
 6933		I915_STATE_WARN(conn_state->best_encoder != &encoder->base,
 6934			"atomic encoder doesn't match attached encoder\n");
 6935
 6936		I915_STATE_WARN(conn_state->crtc != encoder->base.crtc,
 6937			"attached encoder crtc differs from connector crtc\n");
 6938	} else {
 6939		I915_STATE_WARN(crtc && crtc->state->active,
 6940			"attached crtc is active, but connector isn't\n");
 6941		I915_STATE_WARN(!crtc && connector->base.state->best_encoder,
 6942			"best encoder set without crtc!\n");
 6943	}
 6944}
 6945
 6946int intel_connector_init(struct intel_connector *connector)
 6947{
 6948	drm_atomic_helper_connector_reset(&connector->base);
 6949
 6950	if (!connector->base.state)
 6951		return -ENOMEM;
 6952
 6953	return 0;
 6954}
 6955
 6956struct intel_connector *intel_connector_alloc(void)
 6957{
 6958	struct intel_connector *connector;
 6959
 6960	connector = kzalloc(sizeof *connector, GFP_KERNEL);
 6961	if (!connector)
 6962		return NULL;
 6963
 6964	if (intel_connector_init(connector) < 0) {
 6965		kfree(connector);
 6966		return NULL;
 6967	}
 6968
 6969	return connector;
 6970}
 6971
 6972/* Simple connector->get_hw_state implementation for encoders that support only
 6973 * one connector and no cloning and hence the encoder state determines the state
 6974 * of the connector. */
 6975bool intel_connector_get_hw_state(struct intel_connector *connector)
 6976{
 6977	enum pipe pipe = 0;
 6978	struct intel_encoder *encoder = connector->encoder;
 6979
 6980	return encoder->get_hw_state(encoder, &pipe);
 6981}
 6982
 6983static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state)
 6984{
 6985	if (crtc_state->base.enable && crtc_state->has_pch_encoder)
 6986		return crtc_state->fdi_lanes;
 6987
 6988	return 0;
 6989}
 6990
 6991static int ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
 6992				     struct intel_crtc_state *pipe_config)
 6993{
 6994	struct drm_i915_private *dev_priv = to_i915(dev);
 6995	struct drm_atomic_state *state = pipe_config->base.state;
 6996	struct intel_crtc *other_crtc;
 6997	struct intel_crtc_state *other_crtc_state;
 6998
 6999	DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
 7000		      pipe_name(pipe), pipe_config->fdi_lanes);
 7001	if (pipe_config->fdi_lanes > 4) {
 7002		DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
 7003			      pipe_name(pipe), pipe_config->fdi_lanes);
 7004		return -EINVAL;
 7005	}
 7006
 7007	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
 7008		if (pipe_config->fdi_lanes > 2) {
 7009			DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
 7010				      pipe_config->fdi_lanes);
 7011			return -EINVAL;
 7012		} else {
 7013			return 0;
 7014		}
 7015	}
 7016
 7017	if (INTEL_INFO(dev_priv)->num_pipes == 2)
 7018		return 0;
 7019
 7020	/* Ivybridge 3 pipe is really complicated */
 7021	switch (pipe) {
 7022	case PIPE_A:
 7023		return 0;
 7024	case PIPE_B:
 7025		if (pipe_config->fdi_lanes <= 2)
 7026			return 0;
 7027
 7028		other_crtc = intel_get_crtc_for_pipe(dev_priv, PIPE_C);
 7029		other_crtc_state =
 7030			intel_atomic_get_crtc_state(state, other_crtc);
 7031		if (IS_ERR(other_crtc_state))
 7032			return PTR_ERR(other_crtc_state);
 7033
 7034		if (pipe_required_fdi_lanes(other_crtc_state) > 0) {
 7035			DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
 7036				      pipe_name(pipe), pipe_config->fdi_lanes);
 7037			return -EINVAL;
 7038		}
 7039		return 0;
 7040	case PIPE_C:
 7041		if (pipe_config->fdi_lanes > 2) {
 7042			DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
 7043				      pipe_name(pipe), pipe_config->fdi_lanes);
 7044			return -EINVAL;
 7045		}
 7046
 7047		other_crtc = intel_get_crtc_for_pipe(dev_priv, PIPE_B);
 7048		other_crtc_state =
 7049			intel_atomic_get_crtc_state(state, other_crtc);
 7050		if (IS_ERR(other_crtc_state))
 7051			return PTR_ERR(other_crtc_state);
 7052
 7053		if (pipe_required_fdi_lanes(other_crtc_state) > 2) {
 7054			DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
 7055			return -EINVAL;
 7056		}
 7057		return 0;
 7058	default:
 7059		BUG();
 7060	}
 7061}
 7062
 7063#define RETRY 1
 7064static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
 7065				       struct intel_crtc_state *pipe_config)
 7066{
 7067	struct drm_device *dev = intel_crtc->base.dev;
 7068	const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
 7069	int lane, link_bw, fdi_dotclock, ret;
 7070	bool needs_recompute = false;
 7071
 7072retry:
 7073	/* FDI is a binary signal running at ~2.7GHz, encoding
 7074	 * each output octet as 10 bits. The actual frequency
 7075	 * is stored as a divider into a 100MHz clock, and the
 7076	 * mode pixel clock is stored in units of 1KHz.
 7077	 * Hence the bw of each lane in terms of the mode signal
 7078	 * is:
 7079	 */
 7080	link_bw = intel_fdi_link_freq(to_i915(dev), pipe_config);
 7081
 7082	fdi_dotclock = adjusted_mode->crtc_clock;
 7083
 7084	lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
 7085					   pipe_config->pipe_bpp);
 7086
 7087	pipe_config->fdi_lanes = lane;
 7088
 7089	intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
 7090			       link_bw, &pipe_config->fdi_m_n);
 7091
 7092	ret = ironlake_check_fdi_lanes(dev, intel_crtc->pipe, pipe_config);
 7093	if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) {
 7094		pipe_config->pipe_bpp -= 2*3;
 7095		DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
 7096			      pipe_config->pipe_bpp);
 7097		needs_recompute = true;
 7098		pipe_config->bw_constrained = true;
 7099
 7100		goto retry;
 7101	}
 7102
 7103	if (needs_recompute)
 7104		return RETRY;
 7105
 7106	return ret;
 7107}
 7108
 7109static bool pipe_config_supports_ips(struct drm_i915_private *dev_priv,
 7110				     struct intel_crtc_state *pipe_config)
 7111{
 7112	if (pipe_config->pipe_bpp > 24)
 7113		return false;
 7114
 7115	/* HSW can handle pixel rate up to cdclk? */
 7116	if (IS_HASWELL(dev_priv))
 7117		return true;
 7118
 7119	/*
 7120	 * We compare against max which means we must take
 7121	 * the increased cdclk requirement into account when
 7122	 * calculating the new cdclk.
 7123	 *
 7124	 * Should measure whether using a lower cdclk w/o IPS
 7125	 */
 7126	return ilk_pipe_pixel_rate(pipe_config) <=
 7127		dev_priv->max_cdclk_freq * 95 / 100;
 7128}
 7129
 7130static void hsw_compute_ips_config(struct intel_crtc *crtc,
 7131				   struct intel_crtc_state *pipe_config)
 7132{
 7133	struct drm_device *dev = crtc->base.dev;
 7134	struct drm_i915_private *dev_priv = to_i915(dev);
 7135
 7136	pipe_config->ips_enabled = i915.enable_ips &&
 7137		hsw_crtc_supports_ips(crtc) &&
 7138		pipe_config_supports_ips(dev_priv, pipe_config);
 7139}
 7140
 7141static bool intel_crtc_supports_double_wide(const struct intel_crtc *crtc)
 7142{
 7143	const struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
 7144
 7145	/* GDG double wide on either pipe, otherwise pipe A only */
 7146	return INTEL_INFO(dev_priv)->gen < 4 &&
 7147		(crtc->pipe == PIPE_A || IS_I915G(dev_priv));
 7148}
 7149
 7150static int intel_crtc_compute_config(struct intel_crtc *crtc,
 7151				     struct intel_crtc_state *pipe_config)
 7152{
 7153	struct drm_device *dev = crtc->base.dev;
 7154	struct drm_i915_private *dev_priv = to_i915(dev);
 7155	const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
 7156	int clock_limit = dev_priv->max_dotclk_freq;
 7157
 7158	if (INTEL_GEN(dev_priv) < 4) {
 7159		clock_limit = dev_priv->max_cdclk_freq * 9 / 10;
 7160
 7161		/*
 7162		 * Enable double wide mode when the dot clock
 7163		 * is > 90% of the (display) core speed.
 7164		 */
 7165		if (intel_crtc_supports_double_wide(crtc) &&
 7166		    adjusted_mode->crtc_clock > clock_limit) {
 7167			clock_limit = dev_priv->max_dotclk_freq;
 7168			pipe_config->double_wide = true;
 7169		}
 7170	}
 7171
 7172	if (adjusted_mode->crtc_clock > clock_limit) {
 7173		DRM_DEBUG_KMS("requested pixel clock (%d kHz) too high (max: %d kHz, double wide: %s)\n",
 7174			      adjusted_mode->crtc_clock, clock_limit,
 7175			      yesno(pipe_config->double_wide));
 7176		return -EINVAL;
 7177	}
 7178
 7179	/*
 7180	 * Pipe horizontal size must be even in:
 7181	 * - DVO ganged mode
 7182	 * - LVDS dual channel mode
 7183	 * - Double wide pipe
 7184	 */
 7185	if ((intel_crtc_has_type(pipe_config, INTEL_OUTPUT_LVDS) &&
 7186	     intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
 7187		pipe_config->pipe_src_w &= ~1;
 7188
 7189	/* Cantiga+ cannot handle modes with a hsync front porch of 0.
 7190	 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
 7191	 */
 7192	if ((INTEL_GEN(dev_priv) > 4 || IS_G4X(dev_priv)) &&
 7193		adjusted_mode->crtc_hsync_start == adjusted_mode->crtc_hdisplay)
 7194		return -EINVAL;
 7195
 7196	if (HAS_IPS(dev_priv))
 7197		hsw_compute_ips_config(crtc, pipe_config);
 7198
 7199	if (pipe_config->has_pch_encoder)
 7200		return ironlake_fdi_compute_config(crtc, pipe_config);
 7201
 7202	return 0;
 7203}
 7204
 7205static int skylake_get_display_clock_speed(struct drm_i915_private *dev_priv)
 7206{
 7207	u32 cdctl;
 7208
 7209	skl_dpll0_update(dev_priv);
 7210
 7211	if (dev_priv->cdclk_pll.vco == 0)
 7212		return dev_priv->cdclk_pll.ref;
 7213
 7214	cdctl = I915_READ(CDCLK_CTL);
 7215
 7216	if (dev_priv->cdclk_pll.vco == 8640000) {
 7217		switch (cdctl & CDCLK_FREQ_SEL_MASK) {
 7218		case CDCLK_FREQ_450_432:
 7219			return 432000;
 7220		case CDCLK_FREQ_337_308:
 7221			return 308571;
 7222		case CDCLK_FREQ_540:
 7223			return 540000;
 7224		case CDCLK_FREQ_675_617:
 7225			return 617143;
 7226		default:
 7227			MISSING_CASE(cdctl & CDCLK_FREQ_SEL_MASK);
 7228		}
 7229	} else {
 7230		switch (cdctl & CDCLK_FREQ_SEL_MASK) {
 7231		case CDCLK_FREQ_450_432:
 7232			return 450000;
 7233		case CDCLK_FREQ_337_308:
 7234			return 337500;
 7235		case CDCLK_FREQ_540:
 7236			return 540000;
 7237		case CDCLK_FREQ_675_617:
 7238			return 675000;
 7239		default:
 7240			MISSING_CASE(cdctl & CDCLK_FREQ_SEL_MASK);
 7241		}
 7242	}
 7243
 7244	return dev_priv->cdclk_pll.ref;
 7245}
 7246
 7247static void bxt_de_pll_update(struct drm_i915_private *dev_priv)
 7248{
 7249	u32 val;
 7250
 7251	dev_priv->cdclk_pll.ref = 19200;
 7252	dev_priv->cdclk_pll.vco = 0;
 7253
 7254	val = I915_READ(BXT_DE_PLL_ENABLE);
 7255	if ((val & BXT_DE_PLL_PLL_ENABLE) == 0)
 7256		return;
 7257
 7258	if (WARN_ON((val & BXT_DE_PLL_LOCK) == 0))
 7259		return;
 7260
 7261	val = I915_READ(BXT_DE_PLL_CTL);
 7262	dev_priv->cdclk_pll.vco = (val & BXT_DE_PLL_RATIO_MASK) *
 7263		dev_priv->cdclk_pll.ref;
 7264}
 7265
 7266static int broxton_get_display_clock_speed(struct drm_i915_private *dev_priv)
 7267{
 7268	u32 divider;
 7269	int div, vco;
 7270
 7271	bxt_de_pll_update(dev_priv);
 7272
 7273	vco = dev_priv->cdclk_pll.vco;
 7274	if (vco == 0)
 7275		return dev_priv->cdclk_pll.ref;
 7276
 7277	divider = I915_READ(CDCLK_CTL) & BXT_CDCLK_CD2X_DIV_SEL_MASK;
 7278
 7279	switch (divider) {
 7280	case BXT_CDCLK_CD2X_DIV_SEL_1:
 7281		div = 2;
 7282		break;
 7283	case BXT_CDCLK_CD2X_DIV_SEL_1_5:
 7284		div = 3;
 7285		break;
 7286	case BXT_CDCLK_CD2X_DIV_SEL_2:
 7287		div = 4;
 7288		break;
 7289	case BXT_CDCLK_CD2X_DIV_SEL_4:
 7290		div = 8;
 7291		break;
 7292	default:
 7293		MISSING_CASE(divider);
 7294		return dev_priv->cdclk_pll.ref;
 7295	}
 7296
 7297	return DIV_ROUND_CLOSEST(vco, div);
 7298}
 7299
 7300static int broadwell_get_display_clock_speed(struct drm_i915_private *dev_priv)
 7301{
 7302	uint32_t lcpll = I915_READ(LCPLL_CTL);
 7303	uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
 7304
 7305	if (lcpll & LCPLL_CD_SOURCE_FCLK)
 7306		return 800000;
 7307	else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
 7308		return 450000;
 7309	else if (freq == LCPLL_CLK_FREQ_450)
 7310		return 450000;
 7311	else if (freq == LCPLL_CLK_FREQ_54O_BDW)
 7312		return 540000;
 7313	else if (freq == LCPLL_CLK_FREQ_337_5_BDW)
 7314		return 337500;
 7315	else
 7316		return 675000;
 7317}
 7318
 7319static int haswell_get_display_clock_speed(struct drm_i915_private *dev_priv)
 7320{
 7321	uint32_t lcpll = I915_READ(LCPLL_CTL);
 7322	uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
 7323
 7324	if (lcpll & LCPLL_CD_SOURCE_FCLK)
 7325		return 800000;
 7326	else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
 7327		return 450000;
 7328	else if (freq == LCPLL_CLK_FREQ_450)
 7329		return 450000;
 7330	else if (IS_HSW_ULT(dev_priv))
 7331		return 337500;
 7332	else
 7333		return 540000;
 7334}
 7335
 7336static int valleyview_get_display_clock_speed(struct drm_i915_private *dev_priv)
 7337{
 7338	return vlv_get_cck_clock_hpll(dev_priv, "cdclk",
 7339				      CCK_DISPLAY_CLOCK_CONTROL);
 7340}
 7341
 7342static int ilk_get_display_clock_speed(struct drm_i915_private *dev_priv)
 7343{
 7344	return 450000;
 7345}
 7346
 7347static int i945_get_display_clock_speed(struct drm_i915_private *dev_priv)
 7348{
 7349	return 400000;
 7350}
 7351
 7352static int i915_get_display_clock_speed(struct drm_i915_private *dev_priv)
 7353{
 7354	return 333333;
 7355}
 7356
 7357static int i9xx_misc_get_display_clock_speed(struct drm_i915_private *dev_priv)
 7358{
 7359	return 200000;
 7360}
 7361
 7362static int pnv_get_display_clock_speed(struct drm_i915_private *dev_priv)
 7363{
 7364	struct pci_dev *pdev = dev_priv->drm.pdev;
 7365	u16 gcfgc = 0;
 7366
 7367	pci_read_config_word(pdev, GCFGC, &gcfgc);
 7368
 7369	switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
 7370	case GC_DISPLAY_CLOCK_267_MHZ_PNV:
 7371		return 266667;
 7372	case GC_DISPLAY_CLOCK_333_MHZ_PNV:
 7373		return 333333;
 7374	case GC_DISPLAY_CLOCK_444_MHZ_PNV:
 7375		return 444444;
 7376	case GC_DISPLAY_CLOCK_200_MHZ_PNV:
 7377		return 200000;
 7378	default:
 7379		DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
 7380	case GC_DISPLAY_CLOCK_133_MHZ_PNV:
 7381		return 133333;
 7382	case GC_DISPLAY_CLOCK_167_MHZ_PNV:
 7383		return 166667;
 7384	}
 7385}
 7386
 7387static int i915gm_get_display_clock_speed(struct drm_i915_private *dev_priv)
 7388{
 7389	struct pci_dev *pdev = dev_priv->drm.pdev;
 7390	u16 gcfgc = 0;
 7391
 7392	pci_read_config_word(pdev, GCFGC, &gcfgc);
 7393
 7394	if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
 7395		return 133333;
 7396	else {
 7397		switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
 7398		case GC_DISPLAY_CLOCK_333_MHZ:
 7399			return 333333;
 7400		default:
 7401		case GC_DISPLAY_CLOCK_190_200_MHZ:
 7402			return 190000;
 7403		}
 7404	}
 7405}
 7406
 7407static int i865_get_display_clock_speed(struct drm_i915_private *dev_priv)
 7408{
 7409	return 266667;
 7410}
 7411
 7412static int i85x_get_display_clock_speed(struct drm_i915_private *dev_priv)
 7413{
 7414	struct pci_dev *pdev = dev_priv->drm.pdev;
 7415	u16 hpllcc = 0;
 7416
 7417	/*
 7418	 * 852GM/852GMV only supports 133 MHz and the HPLLCC
 7419	 * encoding is different :(
 7420	 * FIXME is this the right way to detect 852GM/852GMV?
 7421	 */
 7422	if (pdev->revision == 0x1)
 7423		return 133333;
 7424
 7425	pci_bus_read_config_word(pdev->bus,
 7426				 PCI_DEVFN(0, 3), HPLLCC, &hpllcc);
 7427
 7428	/* Assume that the hardware is in the high speed state.  This
 7429	 * should be the default.
 7430	 */
 7431	switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
 7432	case GC_CLOCK_133_200:
 7433	case GC_CLOCK_133_200_2:
 7434	case GC_CLOCK_100_200:
 7435		return 200000;
 7436	case GC_CLOCK_166_250:
 7437		return 250000;
 7438	case GC_CLOCK_100_133:
 7439		return 133333;
 7440	case GC_CLOCK_133_266:
 7441	case GC_CLOCK_133_266_2:
 7442	case GC_CLOCK_166_266:
 7443		return 266667;
 7444	}
 7445
 7446	/* Shouldn't happen */
 7447	return 0;
 7448}
 7449
 7450static int i830_get_display_clock_speed(struct drm_i915_private *dev_priv)
 7451{
 7452	return 133333;
 7453}
 7454
 7455static unsigned int intel_hpll_vco(struct drm_i915_private *dev_priv)
 7456{
 7457	static const unsigned int blb_vco[8] = {
 7458		[0] = 3200000,
 7459		[1] = 4000000,
 7460		[2] = 5333333,
 7461		[3] = 4800000,
 7462		[4] = 6400000,
 7463	};
 7464	static const unsigned int pnv_vco[8] = {
 7465		[0] = 3200000,
 7466		[1] = 4000000,
 7467		[2] = 5333333,
 7468		[3] = 4800000,
 7469		[4] = 2666667,
 7470	};
 7471	static const unsigned int cl_vco[8] = {
 7472		[0] = 3200000,
 7473		[1] = 4000000,
 7474		[2] = 5333333,
 7475		[3] = 6400000,
 7476		[4] = 3333333,
 7477		[5] = 3566667,
 7478		[6] = 4266667,
 7479	};
 7480	static const unsigned int elk_vco[8] = {
 7481		[0] = 3200000,
 7482		[1] = 4000000,
 7483		[2] = 5333333,
 7484		[3] = 4800000,
 7485	};
 7486	static const unsigned int ctg_vco[8] = {
 7487		[0] = 3200000,
 7488		[1] = 4000000,
 7489		[2] = 5333333,
 7490		[3] = 6400000,
 7491		[4] = 2666667,
 7492		[5] = 4266667,
 7493	};
 7494	const unsigned int *vco_table;
 7495	unsigned int vco;
 7496	uint8_t tmp = 0;
 7497
 7498	/* FIXME other chipsets? */
 7499	if (IS_GM45(dev_priv))
 7500		vco_table = ctg_vco;
 7501	else if (IS_G4X(dev_priv))
 7502		vco_table = elk_vco;
 7503	else if (IS_CRESTLINE(dev_priv))
 7504		vco_table = cl_vco;
 7505	else if (IS_PINEVIEW(dev_priv))
 7506		vco_table = pnv_vco;
 7507	else if (IS_G33(dev_priv))
 7508		vco_table = blb_vco;
 7509	else
 7510		return 0;
 7511
 7512	tmp = I915_READ(IS_MOBILE(dev_priv) ? HPLLVCO_MOBILE : HPLLVCO);
 7513
 7514	vco = vco_table[tmp & 0x7];
 7515	if (vco == 0)
 7516		DRM_ERROR("Bad HPLL VCO (HPLLVCO=0x%02x)\n", tmp);
 7517	else
 7518		DRM_DEBUG_KMS("HPLL VCO %u kHz\n", vco);
 7519
 7520	return vco;
 7521}
 7522
 7523static int gm45_get_display_clock_speed(struct drm_i915_private *dev_priv)
 7524{
 7525	struct pci_dev *pdev = dev_priv->drm.pdev;
 7526	unsigned int cdclk_sel, vco = intel_hpll_vco(dev_priv);
 7527	uint16_t tmp = 0;
 7528
 7529	pci_read_config_word(pdev, GCFGC, &tmp);
 7530
 7531	cdclk_sel = (tmp >> 12) & 0x1;
 7532
 7533	switch (vco) {
 7534	case 2666667:
 7535	case 4000000:
 7536	case 5333333:
 7537		return cdclk_sel ? 333333 : 222222;
 7538	case 3200000:
 7539		return cdclk_sel ? 320000 : 228571;
 7540	default:
 7541		DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u, CFGC=0x%04x\n", vco, tmp);
 7542		return 222222;
 7543	}
 7544}
 7545
 7546static int i965gm_get_display_clock_speed(struct drm_i915_private *dev_priv)
 7547{
 7548	struct pci_dev *pdev = dev_priv->drm.pdev;
 7549	static const uint8_t div_3200[] = { 16, 10,  8 };
 7550	static const uint8_t div_4000[] = { 20, 12, 10 };
 7551	static const uint8_t div_5333[] = { 24, 16, 14 };
 7552	const uint8_t *div_table;
 7553	unsigned int cdclk_sel, vco = intel_hpll_vco(dev_priv);
 7554	uint16_t tmp = 0;
 7555
 7556	pci_read_config_word(pdev, GCFGC, &tmp);
 7557
 7558	cdclk_sel = ((tmp >> 8) & 0x1f) - 1;
 7559
 7560	if (cdclk_sel >= ARRAY_SIZE(div_3200))
 7561		goto fail;
 7562
 7563	switch (vco) {
 7564	case 3200000:
 7565		div_table = div_3200;
 7566		break;
 7567	case 4000000:
 7568		div_table = div_4000;
 7569		break;
 7570	case 5333333:
 7571		div_table = div_5333;
 7572		break;
 7573	default:
 7574		goto fail;
 7575	}
 7576
 7577	return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
 7578
 7579fail:
 7580	DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%04x\n", vco, tmp);
 7581	return 200000;
 7582}
 7583
 7584static int g33_get_display_clock_speed(struct drm_i915_private *dev_priv)
 7585{
 7586	struct pci_dev *pdev = dev_priv->drm.pdev;
 7587	static const uint8_t div_3200[] = { 12, 10,  8,  7, 5, 16 };
 7588	static const uint8_t div_4000[] = { 14, 12, 10,  8, 6, 20 };
 7589	static const uint8_t div_4800[] = { 20, 14, 12, 10, 8, 24 };
 7590	static const uint8_t div_5333[] = { 20, 16, 12, 12, 8, 28 };
 7591	const uint8_t *div_table;
 7592	unsigned int cdclk_sel, vco = intel_hpll_vco(dev_priv);
 7593	uint16_t tmp = 0;
 7594
 7595	pci_read_config_word(pdev, GCFGC, &tmp);
 7596
 7597	cdclk_sel = (tmp >> 4) & 0x7;
 7598
 7599	if (cdclk_sel >= ARRAY_SIZE(div_3200))
 7600		goto fail;
 7601
 7602	switch (vco) {
 7603	case 3200000:
 7604		div_table = div_3200;
 7605		break;
 7606	case 4000000:
 7607		div_table = div_4000;
 7608		break;
 7609	case 4800000:
 7610		div_table = div_4800;
 7611		break;
 7612	case 5333333:
 7613		div_table = div_5333;
 7614		break;
 7615	default:
 7616		goto fail;
 7617	}
 7618
 7619	return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
 7620
 7621fail:
 7622	DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%08x\n", vco, tmp);
 7623	return 190476;
 7624}
 7625
 7626static void
 7627intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
 7628{
 7629	while (*num > DATA_LINK_M_N_MASK ||
 7630	       *den > DATA_LINK_M_N_MASK) {
 7631		*num >>= 1;
 7632		*den >>= 1;
 7633	}
 7634}
 7635
 7636static void compute_m_n(unsigned int m, unsigned int n,
 7637			uint32_t *ret_m, uint32_t *ret_n)
 7638{
 7639	*ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
 7640	*ret_m = div_u64((uint64_t) m * *ret_n, n);
 7641	intel_reduce_m_n_ratio(ret_m, ret_n);
 7642}
 7643
 7644void
 7645intel_link_compute_m_n(int bits_per_pixel, int nlanes,
 7646		       int pixel_clock, int link_clock,
 7647		       struct intel_link_m_n *m_n)
 7648{
 7649	m_n->tu = 64;
 7650
 7651	compute_m_n(bits_per_pixel * pixel_clock,
 7652		    link_clock * nlanes * 8,
 7653		    &m_n->gmch_m, &m_n->gmch_n);
 7654
 7655	compute_m_n(pixel_clock, link_clock,
 7656		    &m_n->link_m, &m_n->link_n);
 7657}
 7658
 7659static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
 7660{
 7661	if (i915.panel_use_ssc >= 0)
 7662		return i915.panel_use_ssc != 0;
 7663	return dev_priv->vbt.lvds_use_ssc
 7664		&& !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
 7665}
 7666
 7667static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
 7668{
 7669	return (1 << dpll->n) << 16 | dpll->m2;
 7670}
 7671
 7672static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
 7673{
 7674	return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
 7675}
 7676
 7677static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
 7678				     struct intel_crtc_state *crtc_state,
 7679				     struct dpll *reduced_clock)
 7680{
 7681	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
 7682	u32 fp, fp2 = 0;
 7683
 7684	if (IS_PINEVIEW(dev_priv)) {
 7685		fp = pnv_dpll_compute_fp(&crtc_state->dpll);
 7686		if (reduced_clock)
 7687			fp2 = pnv_dpll_compute_fp(reduced_clock);
 7688	} else {
 7689		fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
 7690		if (reduced_clock)
 7691			fp2 = i9xx_dpll_compute_fp(reduced_clock);
 7692	}
 7693
 7694	crtc_state->dpll_hw_state.fp0 = fp;
 7695
 7696	crtc->lowfreq_avail = false;
 7697	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
 7698	    reduced_clock) {
 7699		crtc_state->dpll_hw_state.fp1 = fp2;
 7700		crtc->lowfreq_avail = true;
 7701	} else {
 7702		crtc_state->dpll_hw_state.fp1 = fp;
 7703	}
 7704}
 7705
 7706static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
 7707		pipe)
 7708{
 7709	u32 reg_val;
 7710
 7711	/*
 7712	 * PLLB opamp always calibrates to max value of 0x3f, force enable it
 7713	 * and set it to a reasonable value instead.
 7714	 */
 7715	reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
 7716	reg_val &= 0xffffff00;
 7717	reg_val |= 0x00000030;
 7718	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
 7719
 7720	reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
 7721	reg_val &= 0x8cffffff;
 7722	reg_val = 0x8c000000;
 7723	vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
 7724
 7725	reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
 7726	reg_val &= 0xffffff00;
 7727	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
 7728
 7729	reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
 7730	reg_val &= 0x00ffffff;
 7731	reg_val |= 0xb0000000;
 7732	vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
 7733}
 7734
 7735static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
 7736					 struct intel_link_m_n *m_n)
 7737{
 7738	struct drm_device *dev = crtc->base.dev;
 7739	struct drm_i915_private *dev_priv = to_i915(dev);
 7740	int pipe = crtc->pipe;
 7741
 7742	I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
 7743	I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
 7744	I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
 7745	I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
 7746}
 7747
 7748static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
 7749					 struct intel_link_m_n *m_n,
 7750					 struct intel_link_m_n *m2_n2)
 7751{
 7752	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
 7753	int pipe = crtc->pipe;
 7754	enum transcoder transcoder = crtc->config->cpu_transcoder;
 7755
 7756	if (INTEL_GEN(dev_priv) >= 5) {
 7757		I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
 7758		I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
 7759		I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
 7760		I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
 7761		/* M2_N2 registers to be set only for gen < 8 (M2_N2 available
 7762		 * for gen < 8) and if DRRS is supported (to make sure the
 7763		 * registers are not unnecessarily accessed).
 7764		 */
 7765		if (m2_n2 && (IS_CHERRYVIEW(dev_priv) ||
 7766		    INTEL_GEN(dev_priv) < 8) && crtc->config->has_drrs) {
 7767			I915_WRITE(PIPE_DATA_M2(transcoder),
 7768					TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
 7769			I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
 7770			I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
 7771			I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
 7772		}
 7773	} else {
 7774		I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
 7775		I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
 7776		I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
 7777		I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
 7778	}
 7779}
 7780
 7781void intel_dp_set_m_n(struct intel_crtc *crtc, enum link_m_n_set m_n)
 7782{
 7783	struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
 7784
 7785	if (m_n == M1_N1) {
 7786		dp_m_n = &crtc->config->dp_m_n;
 7787		dp_m2_n2 = &crtc->config->dp_m2_n2;
 7788	} else if (m_n == M2_N2) {
 7789
 7790		/*
 7791		 * M2_N2 registers are not supported. Hence m2_n2 divider value
 7792		 * needs to be programmed into M1_N1.
 7793		 */
 7794		dp_m_n = &crtc->config->dp_m2_n2;
 7795	} else {
 7796		DRM_ERROR("Unsupported divider value\n");
 7797		return;
 7798	}
 7799
 7800	if (crtc->config->has_pch_encoder)
 7801		intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
 7802	else
 7803		intel_cpu_transcoder_set_m_n(crtc, dp_m_n, dp_m2_n2);
 7804}
 7805
 7806static void vlv_compute_dpll(struct intel_crtc *crtc,
 7807			     struct intel_crtc_state *pipe_config)
 7808{
 7809	pipe_config->dpll_hw_state.dpll = DPLL_INTEGRATED_REF_CLK_VLV |
 7810		DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
 7811	if (crtc->pipe != PIPE_A)
 7812		pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
 7813
 7814	/* DPLL not used with DSI, but still need the rest set up */
 7815	if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI))
 7816		pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE |
 7817			DPLL_EXT_BUFFER_ENABLE_VLV;
 7818
 7819	pipe_config->dpll_hw_state.dpll_md =
 7820		(pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
 7821}
 7822
 7823static void chv_compute_dpll(struct intel_crtc *crtc,
 7824			     struct intel_crtc_state *pipe_config)
 7825{
 7826	pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV |
 7827		DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
 7828	if (crtc->pipe != PIPE_A)
 7829		pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
 7830
 7831	/* DPLL not used with DSI, but still need the rest set up */
 7832	if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI))
 7833		pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE;
 7834
 7835	pipe_config->dpll_hw_state.dpll_md =
 7836		(pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
 7837}
 7838
 7839static void vlv_prepare_pll(struct intel_crtc *crtc,
 7840			    const struct intel_crtc_state *pipe_config)
 7841{
 7842	struct drm_device *dev = crtc->base.dev;
 7843	struct drm_i915_private *dev_priv = to_i915(dev);
 7844	enum pipe pipe = crtc->pipe;
 7845	u32 mdiv;
 7846	u32 bestn, bestm1, bestm2, bestp1, bestp2;
 7847	u32 coreclk, reg_val;
 7848
 7849	/* Enable Refclk */
 7850	I915_WRITE(DPLL(pipe),
 7851		   pipe_config->dpll_hw_state.dpll &
 7852		   ~(DPLL_VCO_ENABLE | DPLL_EXT_BUFFER_ENABLE_VLV));
 7853
 7854	/* No need to actually set up the DPLL with DSI */
 7855	if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
 7856		return;
 7857
 7858	mutex_lock(&dev_priv->sb_lock);
 7859
 7860	bestn = pipe_config->dpll.n;
 7861	bestm1 = pipe_config->dpll.m1;
 7862	bestm2 = pipe_config->dpll.m2;
 7863	bestp1 = pipe_config->dpll.p1;
 7864	bestp2 = pipe_config->dpll.p2;
 7865
 7866	/* See eDP HDMI DPIO driver vbios notes doc */
 7867
 7868	/* PLL B needs special handling */
 7869	if (pipe == PIPE_B)
 7870		vlv_pllb_recal_opamp(dev_priv, pipe);
 7871
 7872	/* Set up Tx target for periodic Rcomp update */
 7873	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
 7874
 7875	/* Disable target IRef on PLL */
 7876	reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
 7877	reg_val &= 0x00ffffff;
 7878	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
 7879
 7880	/* Disable fast lock */
 7881	vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
 7882
 7883	/* Set idtafcrecal before PLL is enabled */
 7884	mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
 7885	mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
 7886	mdiv |= ((bestn << DPIO_N_SHIFT));
 7887	mdiv |= (1 << DPIO_K_SHIFT);
 7888
 7889	/*
 7890	 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
 7891	 * but we don't support that).
 7892	 * Note: don't use the DAC post divider as it seems unstable.
 7893	 */
 7894	mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
 7895	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
 7896
 7897	mdiv |= DPIO_ENABLE_CALIBRATION;
 7898	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
 7899
 7900	/* Set HBR and RBR LPF coefficients */
 7901	if (pipe_config->port_clock == 162000 ||
 7902	    intel_crtc_has_type(crtc->config, INTEL_OUTPUT_ANALOG) ||
 7903	    intel_crtc_has_type(crtc->config, INTEL_OUTPUT_HDMI))
 7904		vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
 7905				 0x009f0003);
 7906	else
 7907		vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
 7908				 0x00d0000f);
 7909
 7910	if (intel_crtc_has_dp_encoder(pipe_config)) {
 7911		/* Use SSC source */
 7912		if (pipe == PIPE_A)
 7913			vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
 7914					 0x0df40000);
 7915		else
 7916			vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
 7917					 0x0df70000);
 7918	} else { /* HDMI or VGA */
 7919		/* Use bend source */
 7920		if (pipe == PIPE_A)
 7921			vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
 7922					 0x0df70000);
 7923		else
 7924			vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
 7925					 0x0df40000);
 7926	}
 7927
 7928	coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
 7929	coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
 7930	if (intel_crtc_has_dp_encoder(crtc->config))
 7931		coreclk |= 0x01000000;
 7932	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
 7933
 7934	vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
 7935	mutex_unlock(&dev_priv->sb_lock);
 7936}
 7937
 7938static void chv_prepare_pll(struct intel_crtc *crtc,
 7939			    const struct intel_crtc_state *pipe_config)
 7940{
 7941	struct drm_device *dev = crtc->base.dev;
 7942	struct drm_i915_private *dev_priv = to_i915(dev);
 7943	enum pipe pipe = crtc->pipe;
 7944	enum dpio_channel port = vlv_pipe_to_channel(pipe);
 7945	u32 loopfilter, tribuf_calcntr;
 7946	u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
 7947	u32 dpio_val;
 7948	int vco;
 7949
 7950	/* Enable Refclk and SSC */
 7951	I915_WRITE(DPLL(pipe),
 7952		   pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
 7953
 7954	/* No need to actually set up the DPLL with DSI */
 7955	if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
 7956		return;
 7957
 7958	bestn = pipe_config->dpll.n;
 7959	bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
 7960	bestm1 = pipe_config->dpll.m1;
 7961	bestm2 = pipe_config->dpll.m2 >> 22;
 7962	bestp1 = pipe_config->dpll.p1;
 7963	bestp2 = pipe_config->dpll.p2;
 7964	vco = pipe_config->dpll.vco;
 7965	dpio_val = 0;
 7966	loopfilter = 0;
 7967
 7968	mutex_lock(&dev_priv->sb_lock);
 7969
 7970	/* p1 and p2 divider */
 7971	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
 7972			5 << DPIO_CHV_S1_DIV_SHIFT |
 7973			bestp1 << DPIO_CHV_P1_DIV_SHIFT |
 7974			bestp2 << DPIO_CHV_P2_DIV_SHIFT |
 7975			1 << DPIO_CHV_K_DIV_SHIFT);
 7976
 7977	/* Feedback post-divider - m2 */
 7978	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
 7979
 7980	/* Feedback refclk divider - n and m1 */
 7981	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
 7982			DPIO_CHV_M1_DIV_BY_2 |
 7983			1 << DPIO_CHV_N_DIV_SHIFT);
 7984
 7985	/* M2 fraction division */
 7986	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
 7987
 7988	/* M2 fraction division enable */
 7989	dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
 7990	dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
 7991	dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
 7992	if (bestm2_frac)
 7993		dpio_val |= DPIO_CHV_FRAC_DIV_EN;
 7994	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
 7995
 7996	/* Program digital lock detect threshold */
 7997	dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
 7998	dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
 7999					DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
 8000	dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
 8001	if (!bestm2_frac)
 8002		dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
 8003	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
 8004
 8005	/* Loop filter */
 8006	if (vco == 5400000) {
 8007		loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
 8008		loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
 8009		loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
 8010		tribuf_calcntr = 0x9;
 8011	} else if (vco <= 6200000) {
 8012		loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
 8013		loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
 8014		loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
 8015		tribuf_calcntr = 0x9;
 8016	} else if (vco <= 6480000) {
 8017		loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
 8018		loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
 8019		loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
 8020		tribuf_calcntr = 0x8;
 8021	} else {
 8022		/* Not supported. Apply the same limits as in the max case */
 8023		loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
 8024		loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
 8025		loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
 8026		tribuf_calcntr = 0;
 8027	}
 8028	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
 8029
 8030	dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
 8031	dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
 8032	dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
 8033	vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
 8034
 8035	/* AFC Recal */
 8036	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
 8037			vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
 8038			DPIO_AFC_RECAL);
 8039
 8040	mutex_unlock(&dev_priv->sb_lock);
 8041}
 8042
 8043/**
 8044 * vlv_force_pll_on - forcibly enable just the PLL
 8045 * @dev_priv: i915 private structure
 8046 * @pipe: pipe PLL to enable
 8047 * @dpll: PLL configuration
 8048 *
 8049 * Enable the PLL for @pipe using the supplied @dpll config. To be used
 8050 * in cases where we need the PLL enabled even when @pipe is not going to
 8051 * be enabled.
 8052 */
 8053int vlv_force_pll_on(struct drm_i915_private *dev_priv, enum pipe pipe,
 8054		     const struct dpll *dpll)
 8055{
 8056	struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
 8057	struct intel_crtc_state *pipe_config;
 8058
 8059	pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
 8060	if (!pipe_config)
 8061		return -ENOMEM;
 8062
 8063	pipe_config->base.crtc = &crtc->base;
 8064	pipe_config->pixel_multiplier = 1;
 8065	pipe_config->dpll = *dpll;
 8066
 8067	if (IS_CHERRYVIEW(dev_priv)) {
 8068		chv_compute_dpll(crtc, pipe_config);
 8069		chv_prepare_pll(crtc, pipe_config);
 8070		chv_enable_pll(crtc, pipe_config);
 8071	} else {
 8072		vlv_compute_dpll(crtc, pipe_config);
 8073		vlv_prepare_pll(crtc, pipe_config);
 8074		vlv_enable_pll(crtc, pipe_config);
 8075	}
 8076
 8077	kfree(pipe_config);
 8078
 8079	return 0;
 8080}
 8081
 8082/**
 8083 * vlv_force_pll_off - forcibly disable just the PLL
 8084 * @dev_priv: i915 private structure
 8085 * @pipe: pipe PLL to disable
 8086 *
 8087 * Disable the PLL for @pipe. To be used in cases where we need
 8088 * the PLL enabled even when @pipe is not going to be enabled.
 8089 */
 8090void vlv_force_pll_off(struct drm_i915_private *dev_priv, enum pipe pipe)
 8091{
 8092	if (IS_CHERRYVIEW(dev_priv))
 8093		chv_disable_pll(dev_priv, pipe);
 8094	else
 8095		vlv_disable_pll(dev_priv, pipe);
 8096}
 8097
 8098static void i9xx_compute_dpll(struct intel_crtc *crtc,
 8099			      struct intel_crtc_state *crtc_state,
 8100			      struct dpll *reduced_clock)
 8101{
 8102	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
 8103	u32 dpll;
 8104	struct dpll *clock = &crtc_state->dpll;
 8105
 8106	i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
 8107
 8108	dpll = DPLL_VGA_MODE_DIS;
 8109
 8110	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
 8111		dpll |= DPLLB_MODE_LVDS;
 8112	else
 8113		dpll |= DPLLB_MODE_DAC_SERIAL;
 8114
 8115	if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) || IS_G33(dev_priv)) {
 8116		dpll |= (crtc_state->pixel_multiplier - 1)
 8117			<< SDVO_MULTIPLIER_SHIFT_HIRES;
 8118	}
 8119
 8120	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
 8121	    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
 8122		dpll |= DPLL_SDVO_HIGH_SPEED;
 8123
 8124	if (intel_crtc_has_dp_encoder(crtc_state))
 8125		dpll |= DPLL_SDVO_HIGH_SPEED;
 8126
 8127	/* compute bitmask from p1 value */
 8128	if (IS_PINEVIEW(dev_priv))
 8129		dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
 8130	else {
 8131		dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
 8132		if (IS_G4X(dev_priv) && reduced_clock)
 8133			dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
 8134	}
 8135	switch (clock->p2) {
 8136	case 5:
 8137		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
 8138		break;
 8139	case 7:
 8140		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
 8141		break;
 8142	case 10:
 8143		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
 8144		break;
 8145	case 14:
 8146		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
 8147		break;
 8148	}
 8149	if (INTEL_GEN(dev_priv) >= 4)
 8150		dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
 8151
 8152	if (crtc_state->sdvo_tv_clock)
 8153		dpll |= PLL_REF_INPUT_TVCLKINBC;
 8154	else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
 8155		 intel_panel_use_ssc(dev_priv))
 8156		dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
 8157	else
 8158		dpll |= PLL_REF_INPUT_DREFCLK;
 8159
 8160	dpll |= DPLL_VCO_ENABLE;
 8161	crtc_state->dpll_hw_state.dpll = dpll;
 8162
 8163	if (INTEL_GEN(dev_priv) >= 4) {
 8164		u32 dpll_md = (crtc_state->pixel_multiplier - 1)
 8165			<< DPLL_MD_UDI_MULTIPLIER_SHIFT;
 8166		crtc_state->dpll_hw_state.dpll_md = dpll_md;
 8167	}
 8168}
 8169
 8170static void i8xx_compute_dpll(struct intel_crtc *crtc,
 8171			      struct intel_crtc_state *crtc_state,
 8172			      struct dpll *reduced_clock)
 8173{
 8174	struct drm_device *dev = crtc->base.dev;
 8175	struct drm_i915_private *dev_priv = to_i915(dev);
 8176	u32 dpll;
 8177	struct dpll *clock = &crtc_state->dpll;
 8178
 8179	i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
 8180
 8181	dpll = DPLL_VGA_MODE_DIS;
 8182
 8183	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
 8184		dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
 8185	} else {
 8186		if (clock->p1 == 2)
 8187			dpll |= PLL_P1_DIVIDE_BY_TWO;
 8188		else
 8189			dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
 8190		if (clock->p2 == 4)
 8191			dpll |= PLL_P2_DIVIDE_BY_4;
 8192	}
 8193
 8194	if (!IS_I830(dev_priv) &&
 8195	    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO))
 8196		dpll |= DPLL_DVO_2X_MODE;
 8197
 8198	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
 8199	    intel_panel_use_ssc(dev_priv))
 8200		dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
 8201	else
 8202		dpll |= PLL_REF_INPUT_DREFCLK;
 8203
 8204	dpll |= DPLL_VCO_ENABLE;
 8205	crtc_state->dpll_hw_state.dpll = dpll;
 8206}
 8207
 8208static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
 8209{
 8210	struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
 8211	enum pipe pipe = intel_crtc->pipe;
 8212	enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
 8213	const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
 8214	uint32_t crtc_vtotal, crtc_vblank_end;
 8215	int vsyncshift = 0;
 8216
 8217	/* We need to be careful not to changed the adjusted mode, for otherwise
 8218	 * the hw state checker will get angry at the mismatch. */
 8219	crtc_vtotal = adjusted_mode->crtc_vtotal;
 8220	crtc_vblank_end = adjusted_mode->crtc_vblank_end;
 8221
 8222	if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
 8223		/* the chip adds 2 halflines automatically */
 8224		crtc_vtotal -= 1;
 8225		crtc_vblank_end -= 1;
 8226
 8227		if (intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_SDVO))
 8228			vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
 8229		else
 8230			vsyncshift = adjusted_mode->crtc_hsync_start -
 8231				adjusted_mode->crtc_htotal / 2;
 8232		if (vsyncshift < 0)
 8233			vsyncshift += adjusted_mode->crtc_htotal;
 8234	}
 8235
 8236	if (INTEL_GEN(dev_priv) > 3)
 8237		I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
 8238
 8239	I915_WRITE(HTOTAL(cpu_transcoder),
 8240		   (adjusted_mode->crtc_hdisplay - 1) |
 8241		   ((adjusted_mode->crtc_htotal - 1) << 16));
 8242	I915_WRITE(HBLANK(cpu_transcoder),
 8243		   (adjusted_mode->crtc_hblank_start - 1) |
 8244		   ((adjusted_mode->crtc_hblank_end - 1) << 16));
 8245	I915_WRITE(HSYNC(cpu_transcoder),
 8246		   (adjusted_mode->crtc_hsync_start - 1) |
 8247		   ((adjusted_mode->crtc_hsync_end - 1) << 16));
 8248
 8249	I915_WRITE(VTOTAL(cpu_transcoder),
 8250		   (adjusted_mode->crtc_vdisplay - 1) |
 8251		   ((crtc_vtotal - 1) << 16));
 8252	I915_WRITE(VBLANK(cpu_transcoder),
 8253		   (adjusted_mode->crtc_vblank_start - 1) |
 8254		   ((crtc_vblank_end - 1) << 16));
 8255	I915_WRITE(VSYNC(cpu_transcoder),
 8256		   (adjusted_mode->crtc_vsync_start - 1) |
 8257		   ((adjusted_mode->crtc_vsync_end - 1) << 16));
 8258
 8259	/* Workaround: when the EDP input selection is B, the VTOTAL_B must be
 8260	 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
 8261	 * documented on the DDI_FUNC_CTL register description, EDP Input Select
 8262	 * bits. */
 8263	if (IS_HASWELL(dev_priv) && cpu_transcoder == TRANSCODER_EDP &&
 8264	    (pipe == PIPE_B || pipe == PIPE_C))
 8265		I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
 8266
 8267}
 8268
 8269static void intel_set_pipe_src_size(struct intel_crtc *intel_crtc)
 8270{
 8271	struct drm_device *dev = intel_crtc->base.dev;
 8272	struct drm_i915_private *dev_priv = to_i915(dev);
 8273	enum pipe pipe = intel_crtc->pipe;
 8274
 8275	/* pipesrc controls the size that is scaled from, which should
 8276	 * always be the user's requested size.
 8277	 */
 8278	I915_WRITE(PIPESRC(pipe),
 8279		   ((intel_crtc->config->pipe_src_w - 1) << 16) |
 8280		   (intel_crtc->config->pipe_src_h - 1));
 8281}
 8282
 8283static void intel_get_pipe_timings(struct intel_crtc *crtc,
 8284				   struct intel_crtc_state *pipe_config)
 8285{
 8286	struct drm_device *dev = crtc->base.dev;
 8287	struct drm_i915_private *dev_priv = to_i915(dev);
 8288	enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
 8289	uint32_t tmp;
 8290
 8291	tmp = I915_READ(HTOTAL(cpu_transcoder));
 8292	pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
 8293	pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
 8294	tmp = I915_READ(HBLANK(cpu_transcoder));
 8295	pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
 8296	pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
 8297	tmp = I915_READ(HSYNC(cpu_transcoder));
 8298	pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
 8299	pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
 8300
 8301	tmp = I915_READ(VTOTAL(cpu_transcoder));
 8302	pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
 8303	pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
 8304	tmp = I915_READ(VBLANK(cpu_transcoder));
 8305	pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
 8306	pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
 8307	tmp = I915_READ(VSYNC(cpu_transcoder));
 8308	pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
 8309	pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
 8310
 8311	if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
 8312		pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
 8313		pipe_config->base.adjusted_mode.crtc_vtotal += 1;
 8314		pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
 8315	}
 8316}
 8317
 8318static void intel_get_pipe_src_size(struct intel_crtc *crtc,
 8319				    struct intel_crtc_state *pipe_config)
 8320{
 8321	struct drm_device *dev = crtc->base.dev;
 8322	struct drm_i915_private *dev_priv = to_i915(dev);
 8323	u32 tmp;
 8324
 8325	tmp = I915_READ(PIPESRC(crtc->pipe));
 8326	pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
 8327	pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
 8328
 8329	pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
 8330	pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
 8331}
 8332
 8333void intel_mode_from_pipe_config(struct drm_display_mode *mode,
 8334				 struct intel_crtc_state *pipe_config)
 8335{
 8336	mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
 8337	mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
 8338	mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
 8339	mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
 8340
 8341	mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
 8342	mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
 8343	mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
 8344	mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
 8345
 8346	mode->flags = pipe_config->base.adjusted_mode.flags;
 8347	mode->type = DRM_MODE_TYPE_DRIVER;
 8348
 8349	mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
 8350	mode->flags |= pipe_config->base.adjusted_mode.flags;
 8351
 8352	mode->hsync = drm_mode_hsync(mode);
 8353	mode->vrefresh = drm_mode_vrefresh(mode);
 8354	drm_mode_set_name(mode);
 8355}
 8356
 8357static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
 8358{
 8359	struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
 8360	uint32_t pipeconf;
 8361
 8362	pipeconf = 0;
 8363
 8364	if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
 8365	    (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
 8366		pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
 8367
 8368	if (intel_crtc->config->double_wide)
 8369		pipeconf |= PIPECONF_DOUBLE_WIDE;
 8370
 8371	/* only g4x and later have fancy bpc/dither controls */
 8372	if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
 8373	    IS_CHERRYVIEW(dev_priv)) {
 8374		/* Bspec claims that we can't use dithering for 30bpp pipes. */
 8375		if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
 8376			pipeconf |= PIPECONF_DITHER_EN |
 8377				    PIPECONF_DITHER_TYPE_SP;
 8378
 8379		switch (intel_crtc->config->pipe_bpp) {
 8380		case 18:
 8381			pipeconf |= PIPECONF_6BPC;
 8382			break;
 8383		case 24:
 8384			pipeconf |= PIPECONF_8BPC;
 8385			break;
 8386		case 30:
 8387			pipeconf |= PIPECONF_10BPC;
 8388			break;
 8389		default:
 8390			/* Case prevented by intel_choose_pipe_bpp_dither. */
 8391			BUG();
 8392		}
 8393	}
 8394
 8395	if (HAS_PIPE_CXSR(dev_priv)) {
 8396		if (intel_crtc->lowfreq_avail) {
 8397			DRM_DEBUG_KMS("enabling CxSR downclocking\n");
 8398			pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
 8399		} else {
 8400			DRM_DEBUG_KMS("disabling CxSR downclocking\n");
 8401		}
 8402	}
 8403
 8404	if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
 8405		if (INTEL_GEN(dev_priv) < 4 ||
 8406		    intel_crtc_has_type(intel_crtc->config, INTEL_OUTPUT_SDVO))
 8407			pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
 8408		else
 8409			pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
 8410	} else
 8411		pipeconf |= PIPECONF_PROGRESSIVE;
 8412
 8413	if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
 8414	     intel_crtc->config->limited_color_range)
 8415		pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
 8416
 8417	I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
 8418	POSTING_READ(PIPECONF(intel_crtc->pipe));
 8419}
 8420
 8421static int i8xx_crtc_compute_clock(struct intel_crtc *crtc,
 8422				   struct intel_crtc_state *crtc_state)
 8423{
 8424	struct drm_device *dev = crtc->base.dev;
 8425	struct drm_i915_private *dev_priv = to_i915(dev);
 8426	const struct intel_limit *limit;
 8427	int refclk = 48000;
 8428
 8429	memset(&crtc_state->dpll_hw_state, 0,
 8430	       sizeof(crtc_state->dpll_hw_state));
 8431
 8432	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
 8433		if (intel_panel_use_ssc(dev_priv)) {
 8434			refclk = dev_priv->vbt.lvds_ssc_freq;
 8435			DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
 8436		}
 8437
 8438		limit = &intel_limits_i8xx_lvds;
 8439	} else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO)) {
 8440		limit = &intel_limits_i8xx_dvo;
 8441	} else {
 8442		limit = &intel_limits_i8xx_dac;
 8443	}
 8444
 8445	if (!crtc_state->clock_set &&
 8446	    !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
 8447				 refclk, NULL, &crtc_state->dpll)) {
 8448		DRM_ERROR("Couldn't find PLL settings for mode!\n");
 8449		return -EINVAL;
 8450	}
 8451
 8452	i8xx_compute_dpll(crtc, crtc_state, NULL);
 8453
 8454	return 0;
 8455}
 8456
 8457static int g4x_crtc_compute_clock(struct intel_crtc *crtc,
 8458				  struct intel_crtc_state *crtc_state)
 8459{
 8460	struct drm_device *dev = crtc->base.dev;
 8461	struct drm_i915_private *dev_priv = to_i915(dev);
 8462	const struct intel_limit *limit;
 8463	int refclk = 96000;
 8464
 8465	memset(&crtc_state->dpll_hw_state, 0,
 8466	       sizeof(crtc_state->dpll_hw_state));
 8467
 8468	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
 8469		if (intel_panel_use_ssc(dev_priv)) {
 8470			refclk = dev_priv->vbt.lvds_ssc_freq;
 8471			DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
 8472		}
 8473
 8474		if (intel_is_dual_link_lvds(dev))
 8475			limit = &intel_limits_g4x_dual_channel_lvds;
 8476		else
 8477			limit = &intel_limits_g4x_single_channel_lvds;
 8478	} else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI) ||
 8479		   intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
 8480		limit = &intel_limits_g4x_hdmi;
 8481	} else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) {
 8482		limit = &intel_limits_g4x_sdvo;
 8483	} else {
 8484		/* The option is for other outputs */
 8485		limit = &intel_limits_i9xx_sdvo;
 8486	}
 8487
 8488	if (!crtc_state->clock_set &&
 8489	    !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
 8490				refclk, NULL, &crtc_state->dpll)) {
 8491		DRM_ERROR("Couldn't find PLL settings for mode!\n");
 8492		return -EINVAL;
 8493	}
 8494
 8495	i9xx_compute_dpll(crtc, crtc_state, NULL);
 8496
 8497	return 0;
 8498}
 8499
 8500static int pnv_crtc_compute_clock(struct intel_crtc *crtc,
 8501				  struct intel_crtc_state *crtc_state)
 8502{
 8503	struct drm_device *dev = crtc->base.dev;
 8504	struct drm_i915_private *dev_priv = to_i915(dev);
 8505	const struct intel_limit *limit;
 8506	int refclk = 96000;
 8507
 8508	memset(&crtc_state->dpll_hw_state, 0,
 8509	       sizeof(crtc_state->dpll_hw_state));
 8510
 8511	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
 8512		if (intel_panel_use_ssc(dev_priv)) {
 8513			refclk = dev_priv->vbt.lvds_ssc_freq;
 8514			DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
 8515		}
 8516
 8517		limit = &intel_limits_pineview_lvds;
 8518	} else {
 8519		limit = &intel_limits_pineview_sdvo;
 8520	}
 8521
 8522	if (!crtc_state->clock_set &&
 8523	    !pnv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
 8524				refclk, NULL, &crtc_state->dpll)) {
 8525		DRM_ERROR("Couldn't find PLL settings for mode!\n");
 8526		return -EINVAL;
 8527	}
 8528
 8529	i9xx_compute_dpll(crtc, crtc_state, NULL);
 8530
 8531	return 0;
 8532}
 8533
 8534static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
 8535				   struct intel_crtc_state *crtc_state)
 8536{
 8537	struct drm_device *dev = crtc->base.dev;
 8538	struct drm_i915_private *dev_priv = to_i915(dev);
 8539	const struct intel_limit *limit;
 8540	int refclk = 96000;
 8541
 8542	memset(&crtc_state->dpll_hw_state, 0,
 8543	       sizeof(crtc_state->dpll_hw_state));
 8544
 8545	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
 8546		if (intel_panel_use_ssc(dev_priv)) {
 8547			refclk = dev_priv->vbt.lvds_ssc_freq;
 8548			DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
 8549		}
 8550
 8551		limit = &intel_limits_i9xx_lvds;
 8552	} else {
 8553		limit = &intel_limits_i9xx_sdvo;
 8554	}
 8555
 8556	if (!crtc_state->clock_set &&
 8557	    !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
 8558				 refclk, NULL, &crtc_state->dpll)) {
 8559		DRM_ERROR("Couldn't find PLL settings for mode!\n");
 8560		return -EINVAL;
 8561	}
 8562
 8563	i9xx_compute_dpll(crtc, crtc_state, NULL);
 8564
 8565	return 0;
 8566}
 8567
 8568static int chv_crtc_compute_clock(struct intel_crtc *crtc,
 8569				  struct intel_crtc_state *crtc_state)
 8570{
 8571	int refclk = 100000;
 8572	const struct intel_limit *limit = &intel_limits_chv;
 8573
 8574	memset(&crtc_state->dpll_hw_state, 0,
 8575	       sizeof(crtc_state->dpll_hw_state));
 8576
 8577	if (!crtc_state->clock_set &&
 8578	    !chv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
 8579				refclk, NULL, &crtc_state->dpll)) {
 8580		DRM_ERROR("Couldn't find PLL settings for mode!\n");
 8581		return -EINVAL;
 8582	}
 8583
 8584	chv_compute_dpll(crtc, crtc_state);
 8585
 8586	return 0;
 8587}
 8588
 8589static int vlv_crtc_compute_clock(struct intel_crtc *crtc,
 8590				  struct intel_crtc_state *crtc_state)
 8591{
 8592	int refclk = 100000;
 8593	const struct intel_limit *limit = &intel_limits_vlv;
 8594
 8595	memset(&crtc_state->dpll_hw_state, 0,
 8596	       sizeof(crtc_state->dpll_hw_state));
 8597
 8598	if (!crtc_state->clock_set &&
 8599	    !vlv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
 8600				refclk, NULL, &crtc_state->dpll)) {
 8601		DRM_ERROR("Couldn't find PLL settings for mode!\n");
 8602		return -EINVAL;
 8603	}
 8604
 8605	vlv_compute_dpll(crtc, crtc_state);
 8606
 8607	return 0;
 8608}
 8609
 8610static void i9xx_get_pfit_config(struct intel_crtc *crtc,
 8611				 struct intel_crtc_state *pipe_config)
 8612{
 8613	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
 8614	uint32_t tmp;
 8615
 8616	if (INTEL_GEN(dev_priv) <= 3 &&
 8617	    (IS_I830(dev_priv) || !IS_MOBILE(dev_priv)))
 8618		return;
 8619
 8620	tmp = I915_READ(PFIT_CONTROL);
 8621	if (!(tmp & PFIT_ENABLE))
 8622		return;
 8623
 8624	/* Check whether the pfit is attached to our pipe. */
 8625	if (INTEL_GEN(dev_priv) < 4) {
 8626		if (crtc->pipe != PIPE_B)
 8627			return;
 8628	} else {
 8629		if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
 8630			return;
 8631	}
 8632
 8633	pipe_config->gmch_pfit.control = tmp;
 8634	pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
 8635}
 8636
 8637static void vlv_crtc_clock_get(struct intel_crtc *crtc,
 8638			       struct intel_crtc_state *pipe_config)
 8639{
 8640	struct drm_device *dev = crtc->base.dev;
 8641	struct drm_i915_private *dev_priv = to_i915(dev);
 8642	int pipe = pipe_config->cpu_transcoder;
 8643	struct dpll clock;
 8644	u32 mdiv;
 8645	int refclk = 100000;
 8646
 8647	/* In case of DSI, DPLL will not be used */
 8648	if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
 8649		return;
 8650
 8651	mutex_lock(&dev_priv->sb_lock);
 8652	mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
 8653	mutex_unlock(&dev_priv->sb_lock);
 8654
 8655	clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
 8656	clock.m2 = mdiv & DPIO_M2DIV_MASK;
 8657	clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
 8658	clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
 8659	clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
 8660
 8661	pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock);
 8662}
 8663
 8664static void
 8665i9xx_get_initial_plane_config(struct intel_crtc *crtc,
 8666			      struct intel_initial_plane_config *plane_config)
 8667{
 8668	struct drm_device *dev = crtc->base.dev;
 8669	struct drm_i915_private *dev_priv = to_i915(dev);
 8670	u32 val, base, offset;
 8671	int pipe = crtc->pipe, plane = crtc->plane;
 8672	int fourcc, pixel_format;
 8673	unsigned int aligned_height;
 8674	struct drm_framebuffer *fb;
 8675	struct intel_framebuffer *intel_fb;
 8676
 8677	val = I915_READ(DSPCNTR(plane));
 8678	if (!(val & DISPLAY_PLANE_ENABLE))
 8679		return;
 8680
 8681	intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
 8682	if (!intel_fb) {
 8683		DRM_DEBUG_KMS("failed to alloc fb\n");
 8684		return;
 8685	}
 8686
 8687	fb = &intel_fb->base;
 8688
 8689	if (INTEL_GEN(dev_priv) >= 4) {
 8690		if (val & DISPPLANE_TILED) {
 8691			plane_config->tiling = I915_TILING_X;
 8692			fb->modifier = I915_FORMAT_MOD_X_TILED;
 8693		}
 8694	}
 8695
 8696	pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
 8697	fourcc = i9xx_format_to_fourcc(pixel_format);
 8698	fb->pixel_format = fourcc;
 8699	fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
 8700
 8701	if (INTEL_GEN(dev_priv) >= 4) {
 8702		if (plane_config->tiling)
 8703			offset = I915_READ(DSPTILEOFF(plane));
 8704		else
 8705			offset = I915_READ(DSPLINOFF(plane));
 8706		base = I915_READ(DSPSURF(plane)) & 0xfffff000;
 8707	} else {
 8708		base = I915_READ(DSPADDR(plane));
 8709	}
 8710	plane_config->base = base;
 8711
 8712	val = I915_READ(PIPESRC(pipe));
 8713	fb->width = ((val >> 16) & 0xfff) + 1;
 8714	fb->height = ((val >> 0) & 0xfff) + 1;
 8715
 8716	val = I915_READ(DSPSTRIDE(pipe));
 8717	fb->pitches[0] = val & 0xffffffc0;
 8718
 8719	aligned_height = intel_fb_align_height(dev, fb->height,
 8720					       fb->pixel_format,
 8721					       fb->modifier);
 8722
 8723	plane_config->size = fb->pitches[0] * aligned_height;
 8724
 8725	DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
 8726		      pipe_name(pipe), plane, fb->width, fb->height,
 8727		      fb->bits_per_pixel, base, fb->pitches[0],
 8728		      plane_config->size);
 8729
 8730	plane_config->fb = intel_fb;
 8731}
 8732
 8733static void chv_crtc_clock_get(struct intel_crtc *crtc,
 8734			       struct intel_crtc_state *pipe_config)
 8735{
 8736	struct drm_device *dev = crtc->base.dev;
 8737	struct drm_i915_private *dev_priv = to_i915(dev);
 8738	int pipe = pipe_config->cpu_transcoder;
 8739	enum dpio_channel port = vlv_pipe_to_channel(pipe);
 8740	struct dpll clock;
 8741	u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3;
 8742	int refclk = 100000;
 8743
 8744	/* In case of DSI, DPLL will not be used */
 8745	if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
 8746		return;
 8747
 8748	mutex_lock(&dev_priv->sb_lock);
 8749	cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
 8750	pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
 8751	pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
 8752	pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
 8753	pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
 8754	mutex_unlock(&dev_priv->sb_lock);
 8755
 8756	clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
 8757	clock.m2 = (pll_dw0 & 0xff) << 22;
 8758	if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN)
 8759		clock.m2 |= pll_dw2 & 0x3fffff;
 8760	clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
 8761	clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
 8762	clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
 8763
 8764	pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock);
 8765}
 8766
 8767static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
 8768				 struct intel_crtc_state *pipe_config)
 8769{
 8770	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
 8771	enum intel_display_power_domain power_domain;
 8772	uint32_t tmp;
 8773	bool ret;
 8774
 8775	power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
 8776	if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
 8777		return false;
 8778
 8779	pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
 8780	pipe_config->shared_dpll = NULL;
 8781
 8782	ret = false;
 8783
 8784	tmp = I915_READ(PIPECONF(crtc->pipe));
 8785	if (!(tmp & PIPECONF_ENABLE))
 8786		goto out;
 8787
 8788	if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
 8789	    IS_CHERRYVIEW(dev_priv)) {
 8790		switch (tmp & PIPECONF_BPC_MASK) {
 8791		case PIPECONF_6BPC:
 8792			pipe_config->pipe_bpp = 18;
 8793			break;
 8794		case PIPECONF_8BPC:
 8795			pipe_config->pipe_bpp = 24;
 8796			break;
 8797		case PIPECONF_10BPC:
 8798			pipe_config->pipe_bpp = 30;
 8799			break;
 8800		default:
 8801			break;
 8802		}
 8803	}
 8804
 8805	if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
 8806	    (tmp & PIPECONF_COLOR_RANGE_SELECT))
 8807		pipe_config->limited_color_range = true;
 8808
 8809	if (INTEL_GEN(dev_priv) < 4)
 8810		pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
 8811
 8812	intel_get_pipe_timings(crtc, pipe_config);
 8813	intel_get_pipe_src_size(crtc, pipe_config);
 8814
 8815	i9xx_get_pfit_config(crtc, pipe_config);
 8816
 8817	if (INTEL_GEN(dev_priv) >= 4) {
 8818		/* No way to read it out on pipes B and C */
 8819		if (IS_CHERRYVIEW(dev_priv) && crtc->pipe != PIPE_A)
 8820			tmp = dev_priv->chv_dpll_md[crtc->pipe];
 8821		else
 8822			tmp = I915_READ(DPLL_MD(crtc->pipe));
 8823		pipe_config->pixel_multiplier =
 8824			((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
 8825			 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
 8826		pipe_config->dpll_hw_state.dpll_md = tmp;
 8827	} else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
 8828		   IS_G33(dev_priv)) {
 8829		tmp = I915_READ(DPLL(crtc->pipe));
 8830		pipe_config->pixel_multiplier =
 8831			((tmp & SDVO_MULTIPLIER_MASK)
 8832			 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
 8833	} else {
 8834		/* Note that on i915G/GM the pixel multiplier is in the sdvo
 8835		 * port and will be fixed up in the encoder->get_config
 8836		 * function. */
 8837		pipe_config->pixel_multiplier = 1;
 8838	}
 8839	pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
 8840	if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv)) {
 8841		/*
 8842		 * DPLL_DVO_2X_MODE must be enabled for both DPLLs
 8843		 * on 830. Filter it out here so that we don't
 8844		 * report errors due to that.
 8845		 */
 8846		if (IS_I830(dev_priv))
 8847			pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
 8848
 8849		pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
 8850		pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
 8851	} else {
 8852		/* Mask out read-only status bits. */
 8853		pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
 8854						     DPLL_PORTC_READY_MASK |
 8855						     DPLL_PORTB_READY_MASK);
 8856	}
 8857
 8858	if (IS_CHERRYVIEW(dev_priv))
 8859		chv_crtc_clock_get(crtc, pipe_config);
 8860	else if (IS_VALLEYVIEW(dev_priv))
 8861		vlv_crtc_clock_get(crtc, pipe_config);
 8862	else
 8863		i9xx_crtc_clock_get(crtc, pipe_config);
 8864
 8865	/*
 8866	 * Normally the dotclock is filled in by the encoder .get_config()
 8867	 * but in case the pipe is enabled w/o any ports we need a sane
 8868	 * default.
 8869	 */
 8870	pipe_config->base.adjusted_mode.crtc_clock =
 8871		pipe_config->port_clock / pipe_config->pixel_multiplier;
 8872
 8873	ret = true;
 8874
 8875out:
 8876	intel_display_power_put(dev_priv, power_domain);
 8877
 8878	return ret;
 8879}
 8880
 8881static void ironlake_init_pch_refclk(struct drm_device *dev)
 8882{
 8883	struct drm_i915_private *dev_priv = to_i915(dev);
 8884	struct intel_encoder *encoder;
 8885	int i;
 8886	u32 val, final;
 8887	bool has_lvds = false;
 8888	bool has_cpu_edp = false;
 8889	bool has_panel = false;
 8890	bool has_ck505 = false;
 8891	bool can_ssc = false;
 8892	bool using_ssc_source = false;
 8893
 8894	/* We need to take the global config into account */
 8895	for_each_intel_encoder(dev, encoder) {
 8896		switch (encoder->type) {
 8897		case INTEL_OUTPUT_LVDS:
 8898			has_panel = true;
 8899			has_lvds = true;
 8900			break;
 8901		case INTEL_OUTPUT_EDP:
 8902			has_panel = true;
 8903			if (enc_to_dig_port(&encoder->base)->port == PORT_A)
 8904				has_cpu_edp = true;
 8905			break;
 8906		default:
 8907			break;
 8908		}
 8909	}
 8910
 8911	if (HAS_PCH_IBX(dev_priv)) {
 8912		has_ck505 = dev_priv->vbt.display_clock_mode;
 8913		can_ssc = has_ck505;
 8914	} else {
 8915		has_ck505 = false;
 8916		can_ssc = true;
 8917	}
 8918
 8919	/* Check if any DPLLs are using the SSC source */
 8920	for (i = 0; i < dev_priv->num_shared_dpll; i++) {
 8921		u32 temp = I915_READ(PCH_DPLL(i));
 8922
 8923		if (!(temp & DPLL_VCO_ENABLE))
 8924			continue;
 8925
 8926		if ((temp & PLL_REF_INPUT_MASK) ==
 8927		    PLLB_REF_INPUT_SPREADSPECTRUMIN) {
 8928			using_ssc_source = true;
 8929			break;
 8930		}
 8931	}
 8932
 8933	DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d using_ssc_source %d\n",
 8934		      has_panel, has_lvds, has_ck505, using_ssc_source);
 8935
 8936	/* Ironlake: try to setup display ref clock before DPLL
 8937	 * enabling. This is only under driver's control after
 8938	 * PCH B stepping, previous chipset stepping should be
 8939	 * ignoring this setting.
 8940	 */
 8941	val = I915_READ(PCH_DREF_CONTROL);
 8942
 8943	/* As we must carefully and slowly disable/enable each source in turn,
 8944	 * compute the final state we want first and check if we need to
 8945	 * make any changes at all.
 8946	 */
 8947	final = val;
 8948	final &= ~DREF_NONSPREAD_SOURCE_MASK;
 8949	if (has_ck505)
 8950		final |= DREF_NONSPREAD_CK505_ENABLE;
 8951	else
 8952		final |= DREF_NONSPREAD_SOURCE_ENABLE;
 8953
 8954	final &= ~DREF_SSC_SOURCE_MASK;
 8955	final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
 8956	final &= ~DREF_SSC1_ENABLE;
 8957
 8958	if (has_panel) {
 8959		final |= DREF_SSC_SOURCE_ENABLE;
 8960
 8961		if (intel_panel_use_ssc(dev_priv) && can_ssc)
 8962			final |= DREF_SSC1_ENABLE;
 8963
 8964		if (has_cpu_edp) {
 8965			if (intel_panel_use_ssc(dev_priv) && can_ssc)
 8966				final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
 8967			else
 8968				final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
 8969		} else
 8970			final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
 8971	} else if (using_ssc_source) {
 8972		final |= DREF_SSC_SOURCE_ENABLE;
 8973		final |= DREF_SSC1_ENABLE;
 8974	}
 8975
 8976	if (final == val)
 8977		return;
 8978
 8979	/* Always enable nonspread source */
 8980	val &= ~DREF_NONSPREAD_SOURCE_MASK;
 8981
 8982	if (has_ck505)
 8983		val |= DREF_NONSPREAD_CK505_ENABLE;
 8984	else
 8985		val |= DREF_NONSPREAD_SOURCE_ENABLE;
 8986
 8987	if (has_panel) {
 8988		val &= ~DREF_SSC_SOURCE_MASK;
 8989		val |= DREF_SSC_SOURCE_ENABLE;
 8990
 8991		/* SSC must be turned on before enabling the CPU output  */
 8992		if (intel_panel_use_ssc(dev_priv) && can_ssc) {
 8993			DRM_DEBUG_KMS("Using SSC on panel\n");
 8994			val |= DREF_SSC1_ENABLE;
 8995		} else
 8996			val &= ~DREF_SSC1_ENABLE;
 8997
 8998		/* Get SSC going before enabling the outputs */
 8999		I915_WRITE(PCH_DREF_CONTROL, val);
 9000		POSTING_READ(PCH_DREF_CONTROL);
 9001		udelay(200);
 9002
 9003		val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
 9004
 9005		/* Enable CPU source on CPU attached eDP */
 9006		if (has_cpu_edp) {
 9007			if (intel_panel_use_ssc(dev_priv) && can_ssc) {
 9008				DRM_DEBUG_KMS("Using SSC on eDP\n");
 9009				val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
 9010			} else
 9011				val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
 9012		} else
 9013			val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
 9014
 9015		I915_WRITE(PCH_DREF_CONTROL, val);
 9016		POSTING_READ(PCH_DREF_CONTROL);
 9017		udelay(200);
 9018	} else {
 9019		DRM_DEBUG_KMS("Disabling CPU source output\n");
 9020
 9021		val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
 9022
 9023		/* Turn off CPU output */
 9024		val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
 9025
 9026		I915_WRITE(PCH_DREF_CONTROL, val);
 9027		POSTING_READ(PCH_DREF_CONTROL);
 9028		udelay(200);
 9029
 9030		if (!using_ssc_source) {
 9031			DRM_DEBUG_KMS("Disabling SSC source\n");
 9032
 9033			/* Turn off the SSC source */
 9034			val &= ~DREF_SSC_SOURCE_MASK;
 9035			val |= DREF_SSC_SOURCE_DISABLE;
 9036
 9037			/* Turn off SSC1 */
 9038			val &= ~DREF_SSC1_ENABLE;
 9039
 9040			I915_WRITE(PCH_DREF_CONTROL, val);
 9041			POSTING_READ(PCH_DREF_CONTROL);
 9042			udelay(200);
 9043		}
 9044	}
 9045
 9046	BUG_ON(val != final);
 9047}
 9048
 9049static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
 9050{
 9051	uint32_t tmp;
 9052
 9053	tmp = I915_READ(SOUTH_CHICKEN2);
 9054	tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
 9055	I915_WRITE(SOUTH_CHICKEN2, tmp);
 9056
 9057	if (wait_for_us(I915_READ(SOUTH_CHICKEN2) &
 9058			FDI_MPHY_IOSFSB_RESET_STATUS, 100))
 9059		DRM_ERROR("FDI mPHY reset assert timeout\n");
 9060
 9061	tmp = I915_READ(SOUTH_CHICKEN2);
 9062	tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
 9063	I915_WRITE(SOUTH_CHICKEN2, tmp);
 9064
 9065	if (wait_for_us((I915_READ(SOUTH_CHICKEN2) &
 9066			 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
 9067		DRM_ERROR("FDI mPHY reset de-assert timeout\n");
 9068}
 9069
 9070/* WaMPhyProgramming:hsw */
 9071static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
 9072{
 9073	uint32_t tmp;
 9074
 9075	tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
 9076	tmp &= ~(0xFF << 24);
 9077	tmp |= (0x12 << 24);
 9078	intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
 9079
 9080	tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
 9081	tmp |= (1 << 11);
 9082	intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
 9083
 9084	tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
 9085	tmp |= (1 << 11);
 9086	intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
 9087
 9088	tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
 9089	tmp |= (1 << 24) | (1 << 21) | (1 << 18);
 9090	intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
 9091
 9092	tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
 9093	tmp |= (1 << 24) | (1 << 21) | (1 << 18);
 9094	intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
 9095
 9096	tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
 9097	tmp &= ~(7 << 13);
 9098	tmp |= (5 << 13);
 9099	intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
 9100
 9101	tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
 9102	tmp &= ~(7 << 13);
 9103	tmp |= (5 << 13);
 9104	intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
 9105
 9106	tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
 9107	tmp &= ~0xFF;
 9108	tmp |= 0x1C;
 9109	intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
 9110
 9111	tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
 9112	tmp &= ~0xFF;
 9113	tmp |= 0x1C;
 9114	intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
 9115
 9116	tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
 9117	tmp &= ~(0xFF << 16);
 9118	tmp |= (0x1C << 16);
 9119	intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
 9120
 9121	tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
 9122	tmp &= ~(0xFF << 16);
 9123	tmp |= (0x1C << 16);
 9124	intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
 9125
 9126	tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
 9127	tmp |= (1 << 27);
 9128	intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
 9129
 9130	tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
 9131	tmp |= (1 << 27);
 9132	intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
 9133
 9134	tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
 9135	tmp &= ~(0xF << 28);
 9136	tmp |= (4 << 28);
 9137	intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
 9138
 9139	tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
 9140	tmp &= ~(0xF << 28);
 9141	tmp |= (4 << 28);
 9142	intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
 9143}
 9144
 9145/* Implements 3 different sequences from BSpec chapter "Display iCLK
 9146 * Programming" based on the parameters passed:
 9147 * - Sequence to enable CLKOUT_DP
 9148 * - Sequence to enable CLKOUT_DP without spread
 9149 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
 9150 */
 9151static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
 9152				 bool with_fdi)
 9153{
 9154	struct drm_i915_private *dev_priv = to_i915(dev);
 9155	uint32_t reg, tmp;
 9156
 9157	if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
 9158		with_spread = true;
 9159	if (WARN(HAS_PCH_LPT_LP(dev_priv) &&
 9160	    with_fdi, "LP PCH doesn't have FDI\n"))
 9161		with_fdi = false;
 9162
 9163	mutex_lock(&dev_priv->sb_lock);
 9164
 9165	tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
 9166	tmp &= ~SBI_SSCCTL_DISABLE;
 9167	tmp |= SBI_SSCCTL_PATHALT;
 9168	intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
 9169
 9170	udelay(24);
 9171
 9172	if (with_spread) {
 9173		tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
 9174		tmp &= ~SBI_SSCCTL_PATHALT;
 9175		intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
 9176
 9177		if (with_fdi) {
 9178			lpt_reset_fdi_mphy(dev_priv);
 9179			lpt_program_fdi_mphy(dev_priv);
 9180		}
 9181	}
 9182
 9183	reg = HAS_PCH_LPT_LP(dev_priv) ? SBI_GEN0 : SBI_DBUFF0;
 9184	tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
 9185	tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
 9186	intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
 9187
 9188	mutex_unlock(&dev_priv->sb_lock);
 9189}
 9190
 9191/* Sequence to disable CLKOUT_DP */
 9192static void lpt_disable_clkout_dp(struct drm_device *dev)
 9193{
 9194	struct drm_i915_private *dev_priv = to_i915(dev);
 9195	uint32_t reg, tmp;
 9196
 9197	mutex_lock(&dev_priv->sb_lock);
 9198
 9199	reg = HAS_PCH_LPT_LP(dev_priv) ? SBI_GEN0 : SBI_DBUFF0;
 9200	tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
 9201	tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
 9202	intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
 9203
 9204	tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
 9205	if (!(tmp & SBI_SSCCTL_DISABLE)) {
 9206		if (!(tmp & SBI_SSCCTL_PATHALT)) {
 9207			tmp |= SBI_SSCCTL_PATHALT;
 9208			intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
 9209			udelay(32);
 9210		}
 9211		tmp |= SBI_SSCCTL_DISABLE;
 9212		intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
 9213	}
 9214
 9215	mutex_unlock(&dev_priv->sb_lock);
 9216}
 9217
 9218#define BEND_IDX(steps) ((50 + (steps)) / 5)
 9219
 9220static const uint16_t sscdivintphase[] = {
 9221	[BEND_IDX( 50)] = 0x3B23,
 9222	[BEND_IDX( 45)] = 0x3B23,
 9223	[BEND_IDX( 40)] = 0x3C23,
 9224	[BEND_IDX( 35)] = 0x3C23,
 9225	[BEND_IDX( 30)] = 0x3D23,
 9226	[BEND_IDX( 25)] = 0x3D23,
 9227	[BEND_IDX( 20)] = 0x3E23,
 9228	[BEND_IDX( 15)] = 0x3E23,
 9229	[BEND_IDX( 10)] = 0x3F23,
 9230	[BEND_IDX(  5)] = 0x3F23,
 9231	[BEND_IDX(  0)] = 0x0025,
 9232	[BEND_IDX( -5)] = 0x0025,
 9233	[BEND_IDX(-10)] = 0x0125,
 9234	[BEND_IDX(-15)] = 0x0125,
 9235	[BEND_IDX(-20)] = 0x0225,
 9236	[BEND_IDX(-25)] = 0x0225,
 9237	[BEND_IDX(-30)] = 0x0325,
 9238	[BEND_IDX(-35)] = 0x0325,
 9239	[BEND_IDX(-40)] = 0x0425,
 9240	[BEND_IDX(-45)] = 0x0425,
 9241	[BEND_IDX(-50)] = 0x0525,
 9242};
 9243
 9244/*
 9245 * Bend CLKOUT_DP
 9246 * steps -50 to 50 inclusive, in steps of 5
 9247 * < 0 slow down the clock, > 0 speed up the clock, 0 == no bend (135MHz)
 9248 * change in clock period = -(steps / 10) * 5.787 ps
 9249 */
 9250static void lpt_bend_clkout_dp(struct drm_i915_private *dev_priv, int steps)
 9251{
 9252	uint32_t tmp;
 9253	int idx = BEND_IDX(steps);
 9254
 9255	if (WARN_ON(steps % 5 != 0))
 9256		return;
 9257
 9258	if (WARN_ON(idx >= ARRAY_SIZE(sscdivintphase)))
 9259		return;
 9260
 9261	mutex_lock(&dev_priv->sb_lock);
 9262
 9263	if (steps % 10 != 0)
 9264		tmp = 0xAAAAAAAB;
 9265	else
 9266		tmp = 0x00000000;
 9267	intel_sbi_write(dev_priv, SBI_SSCDITHPHASE, tmp, SBI_ICLK);
 9268
 9269	tmp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE, SBI_ICLK);
 9270	tmp &= 0xffff0000;
 9271	tmp |= sscdivintphase[idx];
 9272	intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE, tmp, SBI_ICLK);
 9273
 9274	mutex_unlock(&dev_priv->sb_lock);
 9275}
 9276
 9277#undef BEND_IDX
 9278
 9279static void lpt_init_pch_refclk(struct drm_device *dev)
 9280{
 9281	struct intel_encoder *encoder;
 9282	bool has_vga = false;
 9283
 9284	for_each_intel_encoder(dev, encoder) {
 9285		switch (encoder->type) {
 9286		case INTEL_OUTPUT_ANALOG:
 9287			has_vga = true;
 9288			break;
 9289		default:
 9290			break;
 9291		}
 9292	}
 9293
 9294	if (has_vga) {
 9295		lpt_bend_clkout_dp(to_i915(dev), 0);
 9296		lpt_enable_clkout_dp(dev, true, true);
 9297	} else {
 9298		lpt_disable_clkout_dp(dev);
 9299	}
 9300}
 9301
 9302/*
 9303 * Initialize reference clocks when the driver loads
 9304 */
 9305void intel_init_pch_refclk(struct drm_device *dev)
 9306{
 9307	struct drm_i915_private *dev_priv = to_i915(dev);
 9308
 9309	if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv))
 9310		ironlake_init_pch_refclk(dev);
 9311	else if (HAS_PCH_LPT(dev_priv))
 9312		lpt_init_pch_refclk(dev);
 9313}
 9314
 9315static void ironlake_set_pipeconf(struct drm_crtc *crtc)
 9316{
 9317	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
 9318	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
 9319	int pipe = intel_crtc->pipe;
 9320	uint32_t val;
 9321
 9322	val = 0;
 9323
 9324	switch (intel_crtc->config->pipe_bpp) {
 9325	case 18:
 9326		val |= PIPECONF_6BPC;
 9327		break;
 9328	case 24:
 9329		val |= PIPECONF_8BPC;
 9330		break;
 9331	case 30:
 9332		val |= PIPECONF_10BPC;
 9333		break;
 9334	case 36:
 9335		val |= PIPECONF_12BPC;
 9336		break;
 9337	default:
 9338		/* Case prevented by intel_choose_pipe_bpp_dither. */
 9339		BUG();
 9340	}
 9341
 9342	if (intel_crtc->config->dither)
 9343		val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
 9344
 9345	if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
 9346		val |= PIPECONF_INTERLACED_ILK;
 9347	else
 9348		val |= PIPECONF_PROGRESSIVE;
 9349
 9350	if (intel_crtc->config->limited_color_range)
 9351		val |= PIPECONF_COLOR_RANGE_SELECT;
 9352
 9353	I915_WRITE(PIPECONF(pipe), val);
 9354	POSTING_READ(PIPECONF(pipe));
 9355}
 9356
 9357static void haswell_set_pipeconf(struct drm_crtc *crtc)
 9358{
 9359	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
 9360	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
 9361	enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
 9362	u32 val = 0;
 9363
 9364	if (IS_HASWELL(dev_priv) && intel_crtc->config->dither)
 9365		val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
 9366
 9367	if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
 9368		val |= PIPECONF_INTERLACED_ILK;
 9369	else
 9370		val |= PIPECONF_PROGRESSIVE;
 9371
 9372	I915_WRITE(PIPECONF(cpu_transcoder), val);
 9373	POSTING_READ(PIPECONF(cpu_transcoder));
 9374}
 9375
 9376static void haswell_set_pipemisc(struct drm_crtc *crtc)
 9377{
 9378	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
 9379	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
 9380
 9381	if (IS_BROADWELL(dev_priv) || INTEL_INFO(dev_priv)->gen >= 9) {
 9382		u32 val = 0;
 9383
 9384		switch (intel_crtc->config->pipe_bpp) {
 9385		case 18:
 9386			val |= PIPEMISC_DITHER_6_BPC;
 9387			break;
 9388		case 24:
 9389			val |= PIPEMISC_DITHER_8_BPC;
 9390			break;
 9391		case 30:
 9392			val |= PIPEMISC_DITHER_10_BPC;
 9393			break;
 9394		case 36:
 9395			val |= PIPEMISC_DITHER_12_BPC;
 9396			break;
 9397		default:
 9398			/* Case prevented by pipe_config_set_bpp. */
 9399			BUG();
 9400		}
 9401
 9402		if (intel_crtc->config->dither)
 9403			val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
 9404
 9405		I915_WRITE(PIPEMISC(intel_crtc->pipe), val);
 9406	}
 9407}
 9408
 9409int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
 9410{
 9411	/*
 9412	 * Account for spread spectrum to avoid
 9413	 * oversubscribing the link. Max center spread
 9414	 * is 2.5%; use 5% for safety's sake.
 9415	 */
 9416	u32 bps = target_clock * bpp * 21 / 20;
 9417	return DIV_ROUND_UP(bps, link_bw * 8);
 9418}
 9419
 9420static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
 9421{
 9422	return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
 9423}
 9424
 9425static void ironlake_compute_dpll(struct intel_crtc *intel_crtc,
 9426				  struct intel_crtc_state *crtc_state,
 9427				  struct dpll *reduced_clock)
 9428{
 9429	struct drm_crtc *crtc = &intel_crtc->base;
 9430	struct drm_device *dev = crtc->dev;
 9431	struct drm_i915_private *dev_priv = to_i915(dev);
 9432	u32 dpll, fp, fp2;
 9433	int factor;
 9434
 9435	/* Enable autotuning of the PLL clock (if permissible) */
 9436	factor = 21;
 9437	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
 9438		if ((intel_panel_use_ssc(dev_priv) &&
 9439		     dev_priv->vbt.lvds_ssc_freq == 100000) ||
 9440		    (HAS_PCH_IBX(dev_priv) && intel_is_dual_link_lvds(dev)))
 9441			factor = 25;
 9442	} else if (crtc_state->sdvo_tv_clock)
 9443		factor = 20;
 9444
 9445	fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
 9446
 9447	if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
 9448		fp |= FP_CB_TUNE;
 9449
 9450	if (reduced_clock) {
 9451		fp2 = i9xx_dpll_compute_fp(reduced_clock);
 9452
 9453		if (reduced_clock->m < factor * reduced_clock->n)
 9454			fp2 |= FP_CB_TUNE;
 9455	} else {
 9456		fp2 = fp;
 9457	}
 9458
 9459	dpll = 0;
 9460
 9461	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
 9462		dpll |= DPLLB_MODE_LVDS;
 9463	else
 9464		dpll |= DPLLB_MODE_DAC_SERIAL;
 9465
 9466	dpll |= (crtc_state->pixel_multiplier - 1)
 9467		<< PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
 9468
 9469	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
 9470	    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
 9471		dpll |= DPLL_SDVO_HIGH_SPEED;
 9472
 9473	if (intel_crtc_has_dp_encoder(crtc_state))
 9474		dpll |= DPLL_SDVO_HIGH_SPEED;
 9475
 9476	/*
 9477	 * The high speed IO clock is only really required for
 9478	 * SDVO/HDMI/DP, but we also enable it for CRT to make it
 9479	 * possible to share the DPLL between CRT and HDMI. Enabling
 9480	 * the clock needlessly does no real harm, except use up a
 9481	 * bit of power potentially.
 9482	 *
 9483	 * We'll limit this to IVB with 3 pipes, since it has only two
 9484	 * DPLLs and so DPLL sharing is the only way to get three pipes
 9485	 * driving PCH ports at the same time. On SNB we could do this,
 9486	 * and potentially avoid enabling the second DPLL, but it's not
 9487	 * clear if it''s a win or loss power wise. No point in doing
 9488	 * this on ILK at all since it has a fixed DPLL<->pipe mapping.
 9489	 */
 9490	if (INTEL_INFO(dev_priv)->num_pipes == 3 &&
 9491	    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG))
 9492		dpll |= DPLL_SDVO_HIGH_SPEED;
 9493
 9494	/* compute bitmask from p1 value */
 9495	dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
 9496	/* also FPA1 */
 9497	dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
 9498
 9499	switch (crtc_state->dpll.p2) {
 9500	case 5:
 9501		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
 9502		break;
 9503	case 7:
 9504		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
 9505		break;
 9506	case 10:
 9507		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
 9508		break;
 9509	case 14:
 9510		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
 9511		break;
 9512	}
 9513
 9514	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
 9515	    intel_panel_use_ssc(dev_priv))
 9516		dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
 9517	else
 9518		dpll |= PLL_REF_INPUT_DREFCLK;
 9519
 9520	dpll |= DPLL_VCO_ENABLE;
 9521
 9522	crtc_state->dpll_hw_state.dpll = dpll;
 9523	crtc_state->dpll_hw_state.fp0 = fp;
 9524	crtc_state->dpll_hw_state.fp1 = fp2;
 9525}
 9526
 9527static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
 9528				       struct intel_crtc_state *crtc_state)
 9529{
 9530	struct drm_device *dev = crtc->base.dev;
 9531	struct drm_i915_private *dev_priv = to_i915(dev);
 9532	struct dpll reduced_clock;
 9533	bool has_reduced_clock = false;
 9534	struct intel_shared_dpll *pll;
 9535	const struct intel_limit *limit;
 9536	int refclk = 120000;
 9537
 9538	memset(&crtc_state->dpll_hw_state, 0,
 9539	       sizeof(crtc_state->dpll_hw_state));
 9540
 9541	crtc->lowfreq_avail = false;
 9542
 9543	/* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
 9544	if (!crtc_state->has_pch_encoder)
 9545		return 0;
 9546
 9547	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
 9548		if (intel_panel_use_ssc(dev_priv)) {
 9549			DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
 9550				      dev_priv->vbt.lvds_ssc_freq);
 9551			refclk = dev_priv->vbt.lvds_ssc_freq;
 9552		}
 9553
 9554		if (intel_is_dual_link_lvds(dev)) {
 9555			if (refclk == 100000)
 9556				limit = &intel_limits_ironlake_dual_lvds_100m;
 9557			else
 9558				limit = &intel_limits_ironlake_dual_lvds;
 9559		} else {
 9560			if (refclk == 100000)
 9561				limit = &intel_limits_ironlake_single_lvds_100m;
 9562			else
 9563				limit = &intel_limits_ironlake_single_lvds;
 9564		}
 9565	} else {
 9566		limit = &intel_limits_ironlake_dac;
 9567	}
 9568
 9569	if (!crtc_state->clock_set &&
 9570	    !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
 9571				refclk, NULL, &crtc_state->dpll)) {
 9572		DRM_ERROR("Couldn't find PLL settings for mode!\n");
 9573		return -EINVAL;
 9574	}
 9575
 9576	ironlake_compute_dpll(crtc, crtc_state,
 9577			      has_reduced_clock ? &reduced_clock : NULL);
 9578
 9579	pll = intel_get_shared_dpll(crtc, crtc_state, NULL);
 9580	if (pll == NULL) {
 9581		DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
 9582				 pipe_name(crtc->pipe));
 9583		return -EINVAL;
 9584	}
 9585
 9586	if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
 9587	    has_reduced_clock)
 9588		crtc->lowfreq_avail = true;
 9589
 9590	return 0;
 9591}
 9592
 9593static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
 9594					 struct intel_link_m_n *m_n)
 9595{
 9596	struct drm_device *dev = crtc->base.dev;
 9597	struct drm_i915_private *dev_priv = to_i915(dev);
 9598	enum pipe pipe = crtc->pipe;
 9599
 9600	m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
 9601	m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
 9602	m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
 9603		& ~TU_SIZE_MASK;
 9604	m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
 9605	m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
 9606		    & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
 9607}
 9608
 9609static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
 9610					 enum transcoder transcoder,
 9611					 struct intel_link_m_n *m_n,
 9612					 struct intel_link_m_n *m2_n2)
 9613{
 9614	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
 9615	enum pipe pipe = crtc->pipe;
 9616
 9617	if (INTEL_GEN(dev_priv) >= 5) {
 9618		m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
 9619		m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
 9620		m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
 9621			& ~TU_SIZE_MASK;
 9622		m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
 9623		m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
 9624			    & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
 9625		/* Read M2_N2 registers only for gen < 8 (M2_N2 available for
 9626		 * gen < 8) and if DRRS is supported (to make sure the
 9627		 * registers are not unnecessarily read).
 9628		 */
 9629		if (m2_n2 && INTEL_GEN(dev_priv) < 8 &&
 9630			crtc->config->has_drrs) {
 9631			m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
 9632			m2_n2->link_n =	I915_READ(PIPE_LINK_N2(transcoder));
 9633			m2_n2->gmch_m =	I915_READ(PIPE_DATA_M2(transcoder))
 9634					& ~TU_SIZE_MASK;
 9635			m2_n2->gmch_n =	I915_READ(PIPE_DATA_N2(transcoder));
 9636			m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
 9637					& TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
 9638		}
 9639	} else {
 9640		m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
 9641		m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
 9642		m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
 9643			& ~TU_SIZE_MASK;
 9644		m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
 9645		m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
 9646			    & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
 9647	}
 9648}
 9649
 9650void intel_dp_get_m_n(struct intel_crtc *crtc,
 9651		      struct intel_crtc_state *pipe_config)
 9652{
 9653	if (pipe_config->has_pch_encoder)
 9654		intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
 9655	else
 9656		intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
 9657					     &pipe_config->dp_m_n,
 9658					     &pipe_config->dp_m2_n2);
 9659}
 9660
 9661static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
 9662					struct intel_crtc_state *pipe_config)
 9663{
 9664	intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
 9665				     &pipe_config->fdi_m_n, NULL);
 9666}
 9667
 9668static void skylake_get_pfit_config(struct intel_crtc *crtc,
 9669				    struct intel_crtc_state *pipe_config)
 9670{
 9671	struct drm_device *dev = crtc->base.dev;
 9672	struct drm_i915_private *dev_priv = to_i915(dev);
 9673	struct intel_crtc_scaler_state *scaler_state = &pipe_config->scaler_state;
 9674	uint32_t ps_ctrl = 0;
 9675	int id = -1;
 9676	int i;
 9677
 9678	/* find scaler attached to this pipe */
 9679	for (i = 0; i < crtc->num_scalers; i++) {
 9680		ps_ctrl = I915_READ(SKL_PS_CTRL(crtc->pipe, i));
 9681		if (ps_ctrl & PS_SCALER_EN && !(ps_ctrl & PS_PLANE_SEL_MASK)) {
 9682			id = i;
 9683			pipe_config->pch_pfit.enabled = true;
 9684			pipe_config->pch_pfit.pos = I915_READ(SKL_PS_WIN_POS(crtc->pipe, i));
 9685			pipe_config->pch_pfit.size = I915_READ(SKL_PS_WIN_SZ(crtc->pipe, i));
 9686			break;
 9687		}
 9688	}
 9689
 9690	scaler_state->scaler_id = id;
 9691	if (id >= 0) {
 9692		scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX);
 9693	} else {
 9694		scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX);
 9695	}
 9696}
 9697
 9698static void
 9699skylake_get_initial_plane_config(struct intel_crtc *crtc,
 9700				 struct intel_initial_plane_config *plane_config)
 9701{
 9702	struct drm_device *dev = crtc->base.dev;
 9703	struct drm_i915_private *dev_priv = to_i915(dev);
 9704	u32 val, base, offset, stride_mult, tiling;
 9705	int pipe = crtc->pipe;
 9706	int fourcc, pixel_format;
 9707	unsigned int aligned_height;
 9708	struct drm_framebuffer *fb;
 9709	struct intel_framebuffer *intel_fb;
 9710
 9711	intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
 9712	if (!intel_fb) {
 9713		DRM_DEBUG_KMS("failed to alloc fb\n");
 9714		return;
 9715	}
 9716
 9717	fb = &intel_fb->base;
 9718
 9719	val = I915_READ(PLANE_CTL(pipe, 0));
 9720	if (!(val & PLANE_CTL_ENABLE))
 9721		goto error;
 9722
 9723	pixel_format = val & PLANE_CTL_FORMAT_MASK;
 9724	fourcc = skl_format_to_fourcc(pixel_format,
 9725				      val & PLANE_CTL_ORDER_RGBX,
 9726				      val & PLANE_CTL_ALPHA_MASK);
 9727	fb->pixel_format = fourcc;
 9728	fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
 9729
 9730	tiling = val & PLANE_CTL_TILED_MASK;
 9731	switch (tiling) {
 9732	case PLANE_CTL_TILED_LINEAR:
 9733		fb->modifier = DRM_FORMAT_MOD_NONE;
 9734		break;
 9735	case PLANE_CTL_TILED_X:
 9736		plane_config->tiling = I915_TILING_X;
 9737		fb->modifier = I915_FORMAT_MOD_X_TILED;
 9738		break;
 9739	case PLANE_CTL_TILED_Y:
 9740		fb->modifier = I915_FORMAT_MOD_Y_TILED;
 9741		break;
 9742	case PLANE_CTL_TILED_YF:
 9743		fb->modifier = I915_FORMAT_MOD_Yf_TILED;
 9744		break;
 9745	default:
 9746		MISSING_CASE(tiling);
 9747		goto error;
 9748	}
 9749
 9750	base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
 9751	plane_config->base = base;
 9752
 9753	offset = I915_READ(PLANE_OFFSET(pipe, 0));
 9754
 9755	val = I915_READ(PLANE_SIZE(pipe, 0));
 9756	fb->height = ((val >> 16) & 0xfff) + 1;
 9757	fb->width = ((val >> 0) & 0x1fff) + 1;
 9758
 9759	val = I915_READ(PLANE_STRIDE(pipe, 0));
 9760	stride_mult = intel_fb_stride_alignment(dev_priv, fb->modifier,
 9761						fb->pixel_format);
 9762	fb->pitches[0] = (val & 0x3ff) * stride_mult;
 9763
 9764	aligned_height = intel_fb_align_height(dev, fb->height,
 9765					       fb->pixel_format,
 9766					       fb->modifier);
 9767
 9768	plane_config->size = fb->pitches[0] * aligned_height;
 9769
 9770	DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
 9771		      pipe_name(pipe), fb->width, fb->height,
 9772		      fb->bits_per_pixel, base, fb->pitches[0],
 9773		      plane_config->size);
 9774
 9775	plane_config->fb = intel_fb;
 9776	return;
 9777
 9778error:
 9779	kfree(intel_fb);
 9780}
 9781
 9782static void ironlake_get_pfit_config(struct intel_crtc *crtc,
 9783				     struct intel_crtc_state *pipe_config)
 9784{
 9785	struct drm_device *dev = crtc->base.dev;
 9786	struct drm_i915_private *dev_priv = to_i915(dev);
 9787	uint32_t tmp;
 9788
 9789	tmp = I915_READ(PF_CTL(crtc->pipe));
 9790
 9791	if (tmp & PF_ENABLE) {
 9792		pipe_config->pch_pfit.enabled = true;
 9793		pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
 9794		pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
 9795
 9796		/* We currently do not free assignements of panel fitters on
 9797		 * ivb/hsw (since we don't use the higher upscaling modes which
 9798		 * differentiates them) so just WARN about this case for now. */
 9799		if (IS_GEN7(dev_priv)) {
 9800			WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
 9801				PF_PIPE_SEL_IVB(crtc->pipe));
 9802		}
 9803	}
 9804}
 9805
 9806static void
 9807ironlake_get_initial_plane_config(struct intel_crtc *crtc,
 9808				  struct intel_initial_plane_config *plane_config)
 9809{
 9810	struct drm_device *dev = crtc->base.dev;
 9811	struct drm_i915_private *dev_priv = to_i915(dev);
 9812	u32 val, base, offset;
 9813	int pipe = crtc->pipe;
 9814	int fourcc, pixel_format;
 9815	unsigned int aligned_height;
 9816	struct drm_framebuffer *fb;
 9817	struct intel_framebuffer *intel_fb;
 9818
 9819	val = I915_READ(DSPCNTR(pipe));
 9820	if (!(val & DISPLAY_PLANE_ENABLE))
 9821		return;
 9822
 9823	intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
 9824	if (!intel_fb) {
 9825		DRM_DEBUG_KMS("failed to alloc fb\n");
 9826		return;
 9827	}
 9828
 9829	fb = &intel_fb->base;
 9830
 9831	if (INTEL_GEN(dev_priv) >= 4) {
 9832		if (val & DISPPLANE_TILED) {
 9833			plane_config->tiling = I915_TILING_X;
 9834			fb->modifier = I915_FORMAT_MOD_X_TILED;
 9835		}
 9836	}
 9837
 9838	pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
 9839	fourcc = i9xx_format_to_fourcc(pixel_format);
 9840	fb->pixel_format = fourcc;
 9841	fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
 9842
 9843	base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
 9844	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
 9845		offset = I915_READ(DSPOFFSET(pipe));
 9846	} else {
 9847		if (plane_config->tiling)
 9848			offset = I915_READ(DSPTILEOFF(pipe));
 9849		else
 9850			offset = I915_READ(DSPLINOFF(pipe));
 9851	}
 9852	plane_config->base = base;
 9853
 9854	val = I915_READ(PIPESRC(pipe));
 9855	fb->width = ((val >> 16) & 0xfff) + 1;
 9856	fb->height = ((val >> 0) & 0xfff) + 1;
 9857
 9858	val = I915_READ(DSPSTRIDE(pipe));
 9859	fb->pitches[0] = val & 0xffffffc0;
 9860
 9861	aligned_height = intel_fb_align_height(dev, fb->height,
 9862					       fb->pixel_format,
 9863					       fb->modifier);
 9864
 9865	plane_config->size = fb->pitches[0] * aligned_height;
 9866
 9867	DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
 9868		      pipe_name(pipe), fb->width, fb->height,
 9869		      fb->bits_per_pixel, base, fb->pitches[0],
 9870		      plane_config->size);
 9871
 9872	plane_config->fb = intel_fb;
 9873}
 9874
 9875static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
 9876				     struct intel_crtc_state *pipe_config)
 9877{
 9878	struct drm_device *dev = crtc->base.dev;
 9879	struct drm_i915_private *dev_priv = to_i915(dev);
 9880	enum intel_display_power_domain power_domain;
 9881	uint32_t tmp;
 9882	bool ret;
 9883
 9884	power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
 9885	if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
 9886		return false;
 9887
 9888	pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
 9889	pipe_config->shared_dpll = NULL;
 9890
 9891	ret = false;
 9892	tmp = I915_READ(PIPECONF(crtc->pipe));
 9893	if (!(tmp & PIPECONF_ENABLE))
 9894		goto out;
 9895
 9896	switch (tmp & PIPECONF_BPC_MASK) {
 9897	case PIPECONF_6BPC:
 9898		pipe_config->pipe_bpp = 18;
 9899		break;
 9900	case PIPECONF_8BPC:
 9901		pipe_config->pipe_bpp = 24;
 9902		break;
 9903	case PIPECONF_10BPC:
 9904		pipe_config->pipe_bpp = 30;
 9905		break;
 9906	case PIPECONF_12BPC:
 9907		pipe_config->pipe_bpp = 36;
 9908		break;
 9909	default:
 9910		break;
 9911	}
 9912
 9913	if (tmp & PIPECONF_COLOR_RANGE_SELECT)
 9914		pipe_config->limited_color_range = true;
 9915
 9916	if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
 9917		struct intel_shared_dpll *pll;
 9918		enum intel_dpll_id pll_id;
 9919
 9920		pipe_config->has_pch_encoder = true;
 9921
 9922		tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
 9923		pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
 9924					  FDI_DP_PORT_WIDTH_SHIFT) + 1;
 9925
 9926		ironlake_get_fdi_m_n_config(crtc, pipe_config);
 9927
 9928		if (HAS_PCH_IBX(dev_priv)) {
 9929			/*
 9930			 * The pipe->pch transcoder and pch transcoder->pll
 9931			 * mapping is fixed.
 9932			 */
 9933			pll_id = (enum intel_dpll_id) crtc->pipe;
 9934		} else {
 9935			tmp = I915_READ(PCH_DPLL_SEL);
 9936			if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
 9937				pll_id = DPLL_ID_PCH_PLL_B;
 9938			else
 9939				pll_id= DPLL_ID_PCH_PLL_A;
 9940		}
 9941
 9942		pipe_config->shared_dpll =
 9943			intel_get_shared_dpll_by_id(dev_priv, pll_id);
 9944		pll = pipe_config->shared_dpll;
 9945
 9946		WARN_ON(!pll->funcs.get_hw_state(dev_priv, pll,
 9947						 &pipe_config->dpll_hw_state));
 9948
 9949		tmp = pipe_config->dpll_hw_state.dpll;
 9950		pipe_config->pixel_multiplier =
 9951			((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
 9952			 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
 9953
 9954		ironlake_pch_clock_get(crtc, pipe_config);
 9955	} else {
 9956		pipe_config->pixel_multiplier = 1;
 9957	}
 9958
 9959	intel_get_pipe_timings(crtc, pipe_config);
 9960	intel_get_pipe_src_size(crtc, pipe_config);
 9961
 9962	ironlake_get_pfit_config(crtc, pipe_config);
 9963
 9964	ret = true;
 9965
 9966out:
 9967	intel_display_power_put(dev_priv, power_domain);
 9968
 9969	return ret;
 9970}
 9971
 9972static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
 9973{
 9974	struct drm_device *dev = &dev_priv->drm;
 9975	struct intel_crtc *crtc;
 9976
 9977	for_each_intel_crtc(dev, crtc)
 9978		I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
 9979		     pipe_name(crtc->pipe));
 9980
 9981	I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
 9982	I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
 9983	I915_STATE_WARN(I915_READ(WRPLL_CTL(0)) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
 9984	I915_STATE_WARN(I915_READ(WRPLL_CTL(1)) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
 9985	I915_STATE_WARN(I915_READ(PP_STATUS(0)) & PP_ON, "Panel power on\n");
 9986	I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
 9987	     "CPU PWM1 enabled\n");
 9988	if (IS_HASWELL(dev_priv))
 9989		I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
 9990		     "CPU PWM2 enabled\n");
 9991	I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
 9992	     "PCH PWM1 enabled\n");
 9993	I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
 9994	     "Utility pin enabled\n");
 9995	I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
 9996
 9997	/*
 9998	 * In theory we can still leave IRQs enabled, as long as only the HPD
 9999	 * interrupts remain enabled. We used to check for that, but since it's
10000	 * gen-specific and since we only disable LCPLL after we fully disable
10001	 * the interrupts, the check below should be enough.
10002	 */
10003	I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
10004}
10005
10006static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
10007{
10008	if (IS_HASWELL(dev_priv))
10009		return I915_READ(D_COMP_HSW);
10010	else
10011		return I915_READ(D_COMP_BDW);
10012}
10013
10014static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
10015{
10016	if (IS_HASWELL(dev_priv)) {
10017		mutex_lock(&dev_priv->rps.hw_lock);
10018		if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
10019					    val))
10020			DRM_DEBUG_KMS("Failed to write to D_COMP\n");
10021		mutex_unlock(&dev_priv->rps.hw_lock);
10022	} else {
10023		I915_WRITE(D_COMP_BDW, val);
10024		POSTING_READ(D_COMP_BDW);
10025	}
10026}
10027
10028/*
10029 * This function implements pieces of two sequences from BSpec:
10030 * - Sequence for display software to disable LCPLL
10031 * - Sequence for display software to allow package C8+
10032 * The steps implemented here are just the steps that actually touch the LCPLL
10033 * register. Callers should take care of disabling all the display engine
10034 * functions, doing the mode unset, fixing interrupts, etc.
10035 */
10036static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
10037			      bool switch_to_fclk, bool allow_power_down)
10038{
10039	uint32_t val;
10040
10041	assert_can_disable_lcpll(dev_priv);
10042
10043	val = I915_READ(LCPLL_CTL);
10044
10045	if (switch_to_fclk) {
10046		val |= LCPLL_CD_SOURCE_FCLK;
10047		I915_WRITE(LCPLL_CTL, val);
10048
10049		if (wait_for_us(I915_READ(LCPLL_CTL) &
10050				LCPLL_CD_SOURCE_FCLK_DONE, 1))
10051			DRM_ERROR("Switching to FCLK failed\n");
10052
10053		val = I915_READ(LCPLL_CTL);
10054	}
10055
10056	val |= LCPLL_PLL_DISABLE;
10057	I915_WRITE(LCPLL_CTL, val);
10058	POSTING_READ(LCPLL_CTL);
10059
10060	if (intel_wait_for_register(dev_priv, LCPLL_CTL, LCPLL_PLL_LOCK, 0, 1))
10061		DRM_ERROR("LCPLL still locked\n");
10062
10063	val = hsw_read_dcomp(dev_priv);
10064	val |= D_COMP_COMP_DISABLE;
10065	hsw_write_dcomp(dev_priv, val);
10066	ndelay(100);
10067
10068	if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
10069		     1))
10070		DRM_ERROR("D_COMP RCOMP still in progress\n");
10071
10072	if (allow_power_down) {
10073		val = I915_READ(LCPLL_CTL);
10074		val |= LCPLL_POWER_DOWN_ALLOW;
10075		I915_WRITE(LCPLL_CTL, val);
10076		POSTING_READ(LCPLL_CTL);
10077	}
10078}
10079
10080/*
10081 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
10082 * source.
10083 */
10084static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
10085{
10086	uint32_t val;
10087
10088	val = I915_READ(LCPLL_CTL);
10089
10090	if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
10091		    LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
10092		return;
10093
10094	/*
10095	 * Make sure we're not on PC8 state before disabling PC8, otherwise
10096	 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
10097	 */
10098	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
10099
10100	if (val & LCPLL_POWER_DOWN_ALLOW) {
10101		val &= ~LCPLL_POWER_DOWN_ALLOW;
10102		I915_WRITE(LCPLL_CTL, val);
10103		POSTING_READ(LCPLL_CTL);
10104	}
10105
10106	val = hsw_read_dcomp(dev_priv);
10107	val |= D_COMP_COMP_FORCE;
10108	val &= ~D_COMP_COMP_DISABLE;
10109	hsw_write_dcomp(dev_priv, val);
10110
10111	val = I915_READ(LCPLL_CTL);
10112	val &= ~LCPLL_PLL_DISABLE;
10113	I915_WRITE(LCPLL_CTL, val);
10114
10115	if (intel_wait_for_register(dev_priv,
10116				    LCPLL_CTL, LCPLL_PLL_LOCK, LCPLL_PLL_LOCK,
10117				    5))
10118		DRM_ERROR("LCPLL not locked yet\n");
10119
10120	if (val & LCPLL_CD_SOURCE_FCLK) {
10121		val = I915_READ(LCPLL_CTL);
10122		val &= ~LCPLL_CD_SOURCE_FCLK;
10123		I915_WRITE(LCPLL_CTL, val);
10124
10125		if (wait_for_us((I915_READ(LCPLL_CTL) &
10126				 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
10127			DRM_ERROR("Switching back to LCPLL failed\n");
10128	}
10129
10130	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
10131	intel_update_cdclk(dev_priv);
10132}
10133
10134/*
10135 * Package states C8 and deeper are really deep PC states that can only be
10136 * reached when all the devices on the system allow it, so even if the graphics
10137 * device allows PC8+, it doesn't mean the system will actually get to these
10138 * states. Our driver only allows PC8+ when going into runtime PM.
10139 *
10140 * The requirements for PC8+ are that all the outputs are disabled, the power
10141 * well is disabled and most interrupts are disabled, and these are also
10142 * requirements for runtime PM. When these conditions are met, we manually do
10143 * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
10144 * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
10145 * hang the machine.
10146 *
10147 * When we really reach PC8 or deeper states (not just when we allow it) we lose
10148 * the state of some registers, so when we come back from PC8+ we need to
10149 * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
10150 * need to take care of the registers kept by RC6. Notice that this happens even
10151 * if we don't put the device in PCI D3 state (which is what currently happens
10152 * because of the runtime PM support).
10153 *
10154 * For more, read "Display Sequences for Package C8" on the hardware
10155 * documentation.
10156 */
10157void hsw_enable_pc8(struct drm_i915_private *dev_priv)
10158{
10159	struct drm_device *dev = &dev_priv->drm;
10160	uint32_t val;
10161
10162	DRM_DEBUG_KMS("Enabling package C8+\n");
10163
10164	if (HAS_PCH_LPT_LP(dev_priv)) {
10165		val = I915_READ(SOUTH_DSPCLK_GATE_D);
10166		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
10167		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
10168	}
10169
10170	lpt_disable_clkout_dp(dev);
10171	hsw_disable_lcpll(dev_priv, true, true);
10172}
10173
10174void hsw_disable_pc8(struct drm_i915_private *dev_priv)
10175{
10176	struct drm_device *dev = &dev_priv->drm;
10177	uint32_t val;
10178
10179	DRM_DEBUG_KMS("Disabling package C8+\n");
10180
10181	hsw_restore_lcpll(dev_priv);
10182	lpt_init_pch_refclk(dev);
10183
10184	if (HAS_PCH_LPT_LP(dev_priv)) {
10185		val = I915_READ(SOUTH_DSPCLK_GATE_D);
10186		val |= PCH_LP_PARTITION_LEVEL_DISABLE;
10187		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
10188	}
10189}
10190
10191static void bxt_modeset_commit_cdclk(struct drm_atomic_state *old_state)
10192{
10193	struct drm_device *dev = old_state->dev;
10194	struct intel_atomic_state *old_intel_state =
10195		to_intel_atomic_state(old_state);
10196	unsigned int req_cdclk = old_intel_state->dev_cdclk;
10197
10198	bxt_set_cdclk(to_i915(dev), req_cdclk);
10199}
10200
10201static int bdw_adjust_min_pipe_pixel_rate(struct intel_crtc_state *crtc_state,
10202					  int pixel_rate)
10203{
10204	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
10205
10206	/* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
10207	if (IS_BROADWELL(dev_priv) && crtc_state->ips_enabled)
10208		pixel_rate = DIV_ROUND_UP(pixel_rate * 100, 95);
10209
10210	/* BSpec says "Do not use DisplayPort with CDCLK less than
10211	 * 432 MHz, audio enabled, port width x4, and link rate
10212	 * HBR2 (5.4 GHz), or else there may be audio corruption or
10213	 * screen corruption."
10214	 */
10215	if (intel_crtc_has_dp_encoder(crtc_state) &&
10216	    crtc_state->has_audio &&
10217	    crtc_state->port_clock >= 540000 &&
10218	    crtc_state->lane_count == 4)
10219		pixel_rate = max(432000, pixel_rate);
10220
10221	return pixel_rate;
10222}
10223
10224/* compute the max rate for new configuration */
10225static int ilk_max_pixel_rate(struct drm_atomic_state *state)
10226{
10227	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
10228	struct drm_i915_private *dev_priv = to_i915(state->dev);
10229	struct drm_crtc *crtc;
10230	struct drm_crtc_state *cstate;
10231	struct intel_crtc_state *crtc_state;
10232	unsigned max_pixel_rate = 0, i;
10233	enum pipe pipe;
10234
10235	memcpy(intel_state->min_pixclk, dev_priv->min_pixclk,
10236	       sizeof(intel_state->min_pixclk));
10237
10238	for_each_crtc_in_state(state, crtc, cstate, i) {
10239		int pixel_rate;
10240
10241		crtc_state = to_intel_crtc_state(cstate);
10242		if (!crtc_state->base.enable) {
10243			intel_state->min_pixclk[i] = 0;
10244			continue;
10245		}
10246
10247		pixel_rate = ilk_pipe_pixel_rate(crtc_state);
10248
10249		if (IS_BROADWELL(dev_priv) || IS_GEN9(dev_priv))
10250			pixel_rate = bdw_adjust_min_pipe_pixel_rate(crtc_state,
10251								    pixel_rate);
10252
10253		intel_state->min_pixclk[i] = pixel_rate;
10254	}
10255
10256	for_each_pipe(dev_priv, pipe)
10257		max_pixel_rate = max(intel_state->min_pixclk[pipe], max_pixel_rate);
10258
10259	return max_pixel_rate;
10260}
10261
10262static void broadwell_set_cdclk(struct drm_device *dev, int cdclk)
10263{
10264	struct drm_i915_private *dev_priv = to_i915(dev);
10265	uint32_t val, data;
10266	int ret;
10267
10268	if (WARN((I915_READ(LCPLL_CTL) &
10269		  (LCPLL_PLL_DISABLE | LCPLL_PLL_LOCK |
10270		   LCPLL_CD_CLOCK_DISABLE | LCPLL_ROOT_CD_CLOCK_DISABLE |
10271		   LCPLL_CD2X_CLOCK_DISABLE | LCPLL_POWER_DOWN_ALLOW |
10272		   LCPLL_CD_SOURCE_FCLK)) != LCPLL_PLL_LOCK,
10273		 "trying to change cdclk frequency with cdclk not enabled\n"))
10274		return;
10275
10276	mutex_lock(&dev_priv->rps.hw_lock);
10277	ret = sandybridge_pcode_write(dev_priv,
10278				      BDW_PCODE_DISPLAY_FREQ_CHANGE_REQ, 0x0);
10279	mutex_unlock(&dev_priv->rps.hw_lock);
10280	if (ret) {
10281		DRM_ERROR("failed to inform pcode about cdclk change\n");
10282		return;
10283	}
10284
10285	val = I915_READ(LCPLL_CTL);
10286	val |= LCPLL_CD_SOURCE_FCLK;
10287	I915_WRITE(LCPLL_CTL, val);
10288
10289	if (wait_for_us(I915_READ(LCPLL_CTL) &
10290			LCPLL_CD_SOURCE_FCLK_DONE, 1))
10291		DRM_ERROR("Switching to FCLK failed\n");
10292
10293	val = I915_READ(LCPLL_CTL);
10294	val &= ~LCPLL_CLK_FREQ_MASK;
10295
10296	switch (cdclk) {
10297	case 450000:
10298		val |= LCPLL_CLK_FREQ_450;
10299		data = 0;
10300		break;
10301	case 540000:
10302		val |= LCPLL_CLK_FREQ_54O_BDW;
10303		data = 1;
10304		break;
10305	case 337500:
10306		val |= LCPLL_CLK_FREQ_337_5_BDW;
10307		data = 2;
10308		break;
10309	case 675000:
10310		val |= LCPLL_CLK_FREQ_675_BDW;
10311		data = 3;
10312		break;
10313	default:
10314		WARN(1, "invalid cdclk frequency\n");
10315		return;
10316	}
10317
10318	I915_WRITE(LCPLL_CTL, val);
10319
10320	val = I915_READ(LCPLL_CTL);
10321	val &= ~LCPLL_CD_SOURCE_FCLK;
10322	I915_WRITE(LCPLL_CTL, val);
10323
10324	if (wait_for_us((I915_READ(LCPLL_CTL) &
10325			LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
10326		DRM_ERROR("Switching back to LCPLL failed\n");
10327
10328	mutex_lock(&dev_priv->rps.hw_lock);
10329	sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ, data);
10330	mutex_unlock(&dev_priv->rps.hw_lock);
10331
10332	I915_WRITE(CDCLK_FREQ, DIV_ROUND_CLOSEST(cdclk, 1000) - 1);
10333
10334	intel_update_cdclk(dev_priv);
10335
10336	WARN(cdclk != dev_priv->cdclk_freq,
10337	     "cdclk requested %d kHz but got %d kHz\n",
10338	     cdclk, dev_priv->cdclk_freq);
10339}
10340
10341static int broadwell_calc_cdclk(int max_pixclk)
10342{
10343	if (max_pixclk > 540000)
10344		return 675000;
10345	else if (max_pixclk > 450000)
10346		return 540000;
10347	else if (max_pixclk > 337500)
10348		return 450000;
10349	else
10350		return 337500;
10351}
10352
10353static int broadwell_modeset_calc_cdclk(struct drm_atomic_state *state)
10354{
10355	struct drm_i915_private *dev_priv = to_i915(state->dev);
10356	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
10357	int max_pixclk = ilk_max_pixel_rate(state);
10358	int cdclk;
10359
10360	/*
10361	 * FIXME should also account for plane ratio
10362	 * once 64bpp pixel formats are supported.
10363	 */
10364	cdclk = broadwell_calc_cdclk(max_pixclk);
10365
10366	if (cdclk > dev_priv->max_cdclk_freq) {
10367		DRM_DEBUG_KMS("requested cdclk (%d kHz) exceeds max (%d kHz)\n",
10368			      cdclk, dev_priv->max_cdclk_freq);
10369		return -EINVAL;
10370	}
10371
10372	intel_state->cdclk = intel_state->dev_cdclk = cdclk;
10373	if (!intel_state->active_crtcs)
10374		intel_state->dev_cdclk = broadwell_calc_cdclk(0);
10375
10376	return 0;
10377}
10378
10379static void broadwell_modeset_commit_cdclk(struct drm_atomic_state *old_state)
10380{
10381	struct drm_device *dev = old_state->dev;
10382	struct intel_atomic_state *old_intel_state =
10383		to_intel_atomic_state(old_state);
10384	unsigned req_cdclk = old_intel_state->dev_cdclk;
10385
10386	broadwell_set_cdclk(dev, req_cdclk);
10387}
10388
10389static int skl_modeset_calc_cdclk(struct drm_atomic_state *state)
10390{
10391	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
10392	struct drm_i915_private *dev_priv = to_i915(state->dev);
10393	const int max_pixclk = ilk_max_pixel_rate(state);
10394	int vco = intel_state->cdclk_pll_vco;
10395	int cdclk;
10396
10397	/*
10398	 * FIXME should also account for plane ratio
10399	 * once 64bpp pixel formats are supported.
10400	 */
10401	cdclk = skl_calc_cdclk(max_pixclk, vco);
10402
10403	/*
10404	 * FIXME move the cdclk caclulation to
10405	 * compute_config() so we can fail gracegully.
10406	 */
10407	if (cdclk > dev_priv->max_cdclk_freq) {
10408		DRM_ERROR("requested cdclk (%d kHz) exceeds max (%d kHz)\n",
10409			  cdclk, dev_priv->max_cdclk_freq);
10410		cdclk = dev_priv->max_cdclk_freq;
10411	}
10412
10413	intel_state->cdclk = intel_state->dev_cdclk = cdclk;
10414	if (!intel_state->active_crtcs)
10415		intel_state->dev_cdclk = skl_calc_cdclk(0, vco);
10416
10417	return 0;
10418}
10419
10420static void skl_modeset_commit_cdclk(struct drm_atomic_state *old_state)
10421{
10422	struct drm_i915_private *dev_priv = to_i915(old_state->dev);
10423	struct intel_atomic_state *intel_state = to_intel_atomic_state(old_state);
10424	unsigned int req_cdclk = intel_state->dev_cdclk;
10425	unsigned int req_vco = intel_state->cdclk_pll_vco;
10426
10427	skl_set_cdclk(dev_priv, req_cdclk, req_vco);
10428}
10429
10430static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
10431				      struct intel_crtc_state *crtc_state)
10432{
10433	if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI)) {
10434		if (!intel_ddi_pll_select(crtc, crtc_state))
10435			return -EINVAL;
10436	}
10437
10438	crtc->lowfreq_avail = false;
10439
10440	return 0;
10441}
10442
10443static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv,
10444				enum port port,
10445				struct intel_crtc_state *pipe_config)
10446{
10447	enum intel_dpll_id id;
10448
10449	switch (port) {
10450	case PORT_A:
10451		id = DPLL_ID_SKL_DPLL0;
10452		break;
10453	case PORT_B:
10454		id = DPLL_ID_SKL_DPLL1;
10455		break;
10456	case PORT_C:
10457		id = DPLL_ID_SKL_DPLL2;
10458		break;
10459	default:
10460		DRM_ERROR("Incorrect port type\n");
10461		return;
10462	}
10463
10464	pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
10465}
10466
10467static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
10468				enum port port,
10469				struct intel_crtc_state *pipe_config)
10470{
10471	enum intel_dpll_id id;
10472	u32 temp;
10473
10474	temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
10475	id = temp >> (port * 3 + 1);
10476
10477	if (WARN_ON(id < SKL_DPLL0 || id > SKL_DPLL3))
10478		return;
10479
10480	pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
10481}
10482
10483static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
10484				enum port port,
10485				struct intel_crtc_state *pipe_config)
10486{
10487	enum intel_dpll_id id;
10488	uint32_t ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
10489
10490	switch (ddi_pll_sel) {
10491	case PORT_CLK_SEL_WRPLL1:
10492		id = DPLL_ID_WRPLL1;
10493		break;
10494	case PORT_CLK_SEL_WRPLL2:
10495		id = DPLL_ID_WRPLL2;
10496		break;
10497	case PORT_CLK_SEL_SPLL:
10498		id = DPLL_ID_SPLL;
10499		break;
10500	case PORT_CLK_SEL_LCPLL_810:
10501		id = DPLL_ID_LCPLL_810;
10502		break;
10503	case PORT_CLK_SEL_LCPLL_1350:
10504		id = DPLL_ID_LCPLL_1350;
10505		break;
10506	case PORT_CLK_SEL_LCPLL_2700:
10507		id = DPLL_ID_LCPLL_2700;
10508		break;
10509	default:
10510		MISSING_CASE(ddi_pll_sel);
10511		/* fall through */
10512	case PORT_CLK_SEL_NONE:
10513		return;
10514	}
10515
10516	pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
10517}
10518
10519static bool hsw_get_transcoder_state(struct intel_crtc *crtc,
10520				     struct intel_crtc_state *pipe_config,
10521				     unsigned long *power_domain_mask)
10522{
10523	struct drm_device *dev = crtc->base.dev;
10524	struct drm_i915_private *dev_priv = to_i915(dev);
10525	enum intel_display_power_domain power_domain;
10526	u32 tmp;
10527
10528	/*
10529	 * The pipe->transcoder mapping is fixed with the exception of the eDP
10530	 * transcoder handled below.
10531	 */
10532	pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
10533
10534	/*
10535	 * XXX: Do intel_display_power_get_if_enabled before reading this (for
10536	 * consistency and less surprising code; it's in always on power).
10537	 */
10538	tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
10539	if (tmp & TRANS_DDI_FUNC_ENABLE) {
10540		enum pipe trans_edp_pipe;
10541		switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
10542		default:
10543			WARN(1, "unknown pipe linked to edp transcoder\n");
10544		case TRANS_DDI_EDP_INPUT_A_ONOFF:
10545		case TRANS_DDI_EDP_INPUT_A_ON:
10546			trans_edp_pipe = PIPE_A;
10547			break;
10548		case TRANS_DDI_EDP_INPUT_B_ONOFF:
10549			trans_edp_pipe = PIPE_B;
10550			break;
10551		case TRANS_DDI_EDP_INPUT_C_ONOFF:
10552			trans_edp_pipe = PIPE_C;
10553			break;
10554		}
10555
10556		if (trans_edp_pipe == crtc->pipe)
10557			pipe_config->cpu_transcoder = TRANSCODER_EDP;
10558	}
10559
10560	power_domain = POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder);
10561	if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
10562		return false;
10563	*power_domain_mask |= BIT(power_domain);
10564
10565	tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
10566
10567	return tmp & PIPECONF_ENABLE;
10568}
10569
10570static bool bxt_get_dsi_transcoder_state(struct intel_crtc *crtc,
10571					 struct intel_crtc_state *pipe_config,
10572					 unsigned long *power_domain_mask)
10573{
10574	struct drm_device *dev = crtc->base.dev;
10575	struct drm_i915_private *dev_priv = to_i915(dev);
10576	enum intel_display_power_domain power_domain;
10577	enum port port;
10578	enum transcoder cpu_transcoder;
10579	u32 tmp;
10580
10581	for_each_port_masked(port, BIT(PORT_A) | BIT(PORT_C)) {
10582		if (port == PORT_A)
10583			cpu_transcoder = TRANSCODER_DSI_A;
10584		else
10585			cpu_transcoder = TRANSCODER_DSI_C;
10586
10587		power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
10588		if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
10589			continue;
10590		*power_domain_mask |= BIT(power_domain);
10591
10592		/*
10593		 * The PLL needs to be enabled with a valid divider
10594		 * configuration, otherwise accessing DSI registers will hang
10595		 * the machine. See BSpec North Display Engine
10596		 * registers/MIPI[BXT]. We can break out here early, since we
10597		 * need the same DSI PLL to be enabled for both DSI ports.
10598		 */
10599		if (!intel_dsi_pll_is_enabled(dev_priv))
10600			break;
10601
10602		/* XXX: this works for video mode only */
10603		tmp = I915_READ(BXT_MIPI_PORT_CTRL(port));
10604		if (!(tmp & DPI_ENABLE))
10605			continue;
10606
10607		tmp = I915_READ(MIPI_CTRL(port));
10608		if ((tmp & BXT_PIPE_SELECT_MASK) != BXT_PIPE_SELECT(crtc->pipe))
10609			continue;
10610
10611		pipe_config->cpu_transcoder = cpu_transcoder;
10612		break;
10613	}
10614
10615	return transcoder_is_dsi(pipe_config->cpu_transcoder);
10616}
10617
10618static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
10619				       struct intel_crtc_state *pipe_config)
10620{
10621	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10622	struct intel_shared_dpll *pll;
10623	enum port port;
10624	uint32_t tmp;
10625
10626	tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
10627
10628	port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
10629
10630	if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
10631		skylake_get_ddi_pll(dev_priv, port, pipe_config);
10632	else if (IS_BROXTON(dev_priv))
10633		bxt_get_ddi_pll(dev_priv, port, pipe_config);
10634	else
10635		haswell_get_ddi_pll(dev_priv, port, pipe_config);
10636
10637	pll = pipe_config->shared_dpll;
10638	if (pll) {
10639		WARN_ON(!pll->funcs.get_hw_state(dev_priv, pll,
10640						 &pipe_config->dpll_hw_state));
10641	}
10642
10643	/*
10644	 * Haswell has only FDI/PCH transcoder A. It is which is connected to
10645	 * DDI E. So just check whether this pipe is wired to DDI E and whether
10646	 * the PCH transcoder is on.
10647	 */
10648	if (INTEL_GEN(dev_priv) < 9 &&
10649	    (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
10650		pipe_config->has_pch_encoder = true;
10651
10652		tmp = I915_READ(FDI_RX_CTL(PIPE_A));
10653		pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
10654					  FDI_DP_PORT_WIDTH_SHIFT) + 1;
10655
10656		ironlake_get_fdi_m_n_config(crtc, pipe_config);
10657	}
10658}
10659
10660static bool haswell_get_pipe_config(struct intel_crtc *crtc,
10661				    struct intel_crtc_state *pipe_config)
10662{
10663	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10664	enum intel_display_power_domain power_domain;
10665	unsigned long power_domain_mask;
10666	bool active;
10667
10668	power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
10669	if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
10670		return false;
10671	power_domain_mask = BIT(power_domain);
10672
10673	pipe_config->shared_dpll = NULL;
10674
10675	active = hsw_get_transcoder_state(crtc, pipe_config, &power_domain_mask);
10676
10677	if (IS_BROXTON(dev_priv) &&
10678	    bxt_get_dsi_transcoder_state(crtc, pipe_config, &power_domain_mask)) {
10679		WARN_ON(active);
10680		active = true;
10681	}
10682
10683	if (!active)
10684		goto out;
10685
10686	if (!transcoder_is_dsi(pipe_config->cpu_transcoder)) {
10687		haswell_get_ddi_port_state(crtc, pipe_config);
10688		intel_get_pipe_timings(crtc, pipe_config);
10689	}
10690
10691	intel_get_pipe_src_size(crtc, pipe_config);
10692
10693	pipe_config->gamma_mode =
10694		I915_READ(GAMMA_MODE(crtc->pipe)) & GAMMA_MODE_MODE_MASK;
10695
10696	if (INTEL_GEN(dev_priv) >= 9) {
10697		skl_init_scalers(dev_priv, crtc, pipe_config);
10698
10699		pipe_config->scaler_state.scaler_id = -1;
10700		pipe_config->scaler_state.scaler_users &= ~(1 << SKL_CRTC_INDEX);
10701	}
10702
10703	power_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
10704	if (intel_display_power_get_if_enabled(dev_priv, power_domain)) {
10705		power_domain_mask |= BIT(power_domain);
10706		if (INTEL_GEN(dev_priv) >= 9)
10707			skylake_get_pfit_config(crtc, pipe_config);
10708		else
10709			ironlake_get_pfit_config(crtc, pipe_config);
10710	}
10711
10712	if (IS_HASWELL(dev_priv))
10713		pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
10714			(I915_READ(IPS_CTL) & IPS_ENABLE);
10715
10716	if (pipe_config->cpu_transcoder != TRANSCODER_EDP &&
10717	    !transcoder_is_dsi(pipe_config->cpu_transcoder)) {
10718		pipe_config->pixel_multiplier =
10719			I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
10720	} else {
10721		pipe_config->pixel_multiplier = 1;
10722	}
10723
10724out:
10725	for_each_power_domain(power_domain, power_domain_mask)
10726		intel_display_power_put(dev_priv, power_domain);
10727
10728	return active;
10729}
10730
10731static void i845_update_cursor(struct drm_crtc *crtc, u32 base,
10732			       const struct intel_plane_state *plane_state)
10733{
10734	struct drm_device *dev = crtc->dev;
10735	struct drm_i915_private *dev_priv = to_i915(dev);
10736	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10737	uint32_t cntl = 0, size = 0;
10738
10739	if (plane_state && plane_state->base.visible) {
10740		unsigned int width = plane_state->base.crtc_w;
10741		unsigned int height = plane_state->base.crtc_h;
10742		unsigned int stride = roundup_pow_of_two(width) * 4;
10743
10744		switch (stride) {
10745		default:
10746			WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
10747				  width, stride);
10748			stride = 256;
10749			/* fallthrough */
10750		case 256:
10751		case 512:
10752		case 1024:
10753		case 2048:
10754			break;
10755		}
10756
10757		cntl |= CURSOR_ENABLE |
10758			CURSOR_GAMMA_ENABLE |
10759			CURSOR_FORMAT_ARGB |
10760			CURSOR_STRIDE(stride);
10761
10762		size = (height << 12) | width;
10763	}
10764
10765	if (intel_crtc->cursor_cntl != 0 &&
10766	    (intel_crtc->cursor_base != base ||
10767	     intel_crtc->cursor_size != size ||
10768	     intel_crtc->cursor_cntl != cntl)) {
10769		/* On these chipsets we can only modify the base/size/stride
10770		 * whilst the cursor is disabled.
10771		 */
10772		I915_WRITE(CURCNTR(PIPE_A), 0);
10773		POSTING_READ(CURCNTR(PIPE_A));
10774		intel_crtc->cursor_cntl = 0;
10775	}
10776
10777	if (intel_crtc->cursor_base != base) {
10778		I915_WRITE(CURBASE(PIPE_A), base);
10779		intel_crtc->cursor_base = base;
10780	}
10781
10782	if (intel_crtc->cursor_size != size) {
10783		I915_WRITE(CURSIZE, size);
10784		intel_crtc->cursor_size = size;
10785	}
10786
10787	if (intel_crtc->cursor_cntl != cntl) {
10788		I915_WRITE(CURCNTR(PIPE_A), cntl);
10789		POSTING_READ(CURCNTR(PIPE_A));
10790		intel_crtc->cursor_cntl = cntl;
10791	}
10792}
10793
10794static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base,
10795			       const struct intel_plane_state *plane_state)
10796{
10797	struct drm_device *dev = crtc->dev;
10798	struct drm_i915_private *dev_priv = to_i915(dev);
10799	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10800	int pipe = intel_crtc->pipe;
10801	uint32_t cntl = 0;
10802
10803	if (plane_state && plane_state->base.visible) {
10804		cntl = MCURSOR_GAMMA_ENABLE;
10805		switch (plane_state->base.crtc_w) {
10806			case 64:
10807				cntl |= CURSOR_MODE_64_ARGB_AX;
10808				break;
10809			case 128:
10810				cntl |= CURSOR_MODE_128_ARGB_AX;
10811				break;
10812			case 256:
10813				cntl |= CURSOR_MODE_256_ARGB_AX;
10814				break;
10815			default:
10816				MISSING_CASE(plane_state->base.crtc_w);
10817				return;
10818		}
10819		cntl |= pipe << 28; /* Connect to correct pipe */
10820
10821		if (HAS_DDI(dev_priv))
10822			cntl |= CURSOR_PIPE_CSC_ENABLE;
10823
10824		if (plane_state->base.rotation & DRM_ROTATE_180)
10825			cntl |= CURSOR_ROTATE_180;
10826	}
10827
10828	if (intel_crtc->cursor_cntl != cntl) {
10829		I915_WRITE(CURCNTR(pipe), cntl);
10830		POSTING_READ(CURCNTR(pipe));
10831		intel_crtc->cursor_cntl = cntl;
10832	}
10833
10834	/* and commit changes on next vblank */
10835	I915_WRITE(CURBASE(pipe), base);
10836	POSTING_READ(CURBASE(pipe));
10837
10838	intel_crtc->cursor_base = base;
10839}
10840
10841/* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
10842static void intel_crtc_update_cursor(struct drm_crtc *crtc,
10843				     const struct intel_plane_state *plane_state)
10844{
10845	struct drm_device *dev = crtc->dev;
10846	struct drm_i915_private *dev_priv = to_i915(dev);
10847	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10848	int pipe = intel_crtc->pipe;
10849	u32 base = intel_crtc->cursor_addr;
10850	u32 pos = 0;
10851
10852	if (plane_state) {
10853		int x = plane_state->base.crtc_x;
10854		int y = plane_state->base.crtc_y;
10855
10856		if (x < 0) {
10857			pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
10858			x = -x;
10859		}
10860		pos |= x << CURSOR_X_SHIFT;
10861
10862		if (y < 0) {
10863			pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
10864			y = -y;
10865		}
10866		pos |= y << CURSOR_Y_SHIFT;
10867
10868		/* ILK+ do this automagically */
10869		if (HAS_GMCH_DISPLAY(dev_priv) &&
10870		    plane_state->base.rotation & DRM_ROTATE_180) {
10871			base += (plane_state->base.crtc_h *
10872				 plane_state->base.crtc_w - 1) * 4;
10873		}
10874	}
10875
10876	I915_WRITE(CURPOS(pipe), pos);
10877
10878	if (IS_845G(dev_priv) || IS_I865G(dev_priv))
10879		i845_update_cursor(crtc, base, plane_state);
10880	else
10881		i9xx_update_cursor(crtc, base, plane_state);
10882}
10883
10884static bool cursor_size_ok(struct drm_i915_private *dev_priv,
10885			   uint32_t width, uint32_t height)
10886{
10887	if (width == 0 || height == 0)
10888		return false;
10889
10890	/*
10891	 * 845g/865g are special in that they are only limited by
10892	 * the width of their cursors, the height is arbitrary up to
10893	 * the precision of the register. Everything else requires
10894	 * square cursors, limited to a few power-of-two sizes.
10895	 */
10896	if (IS_845G(dev_priv) || IS_I865G(dev_priv)) {
10897		if ((width & 63) != 0)
10898			return false;
10899
10900		if (width > (IS_845G(dev_priv) ? 64 : 512))
10901			return false;
10902
10903		if (height > 1023)
10904			return false;
10905	} else {
10906		switch (width | height) {
10907		case 256:
10908		case 128:
10909			if (IS_GEN2(dev_priv))
10910				return false;
10911		case 64:
10912			break;
10913		default:
10914			return false;
10915		}
10916	}
10917
10918	return true;
10919}
10920
10921/* VESA 640x480x72Hz mode to set on the pipe */
10922static struct drm_display_mode load_detect_mode = {
10923	DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
10924		 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
10925};
10926
10927struct drm_framebuffer *
10928__intel_framebuffer_create(struct drm_device *dev,
10929			   struct drm_mode_fb_cmd2 *mode_cmd,
10930			   struct drm_i915_gem_object *obj)
10931{
10932	struct intel_framebuffer *intel_fb;
10933	int ret;
10934
10935	intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
10936	if (!intel_fb)
10937		return ERR_PTR(-ENOMEM);
10938
10939	ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
10940	if (ret)
10941		goto err;
10942
10943	return &intel_fb->base;
10944
10945err:
10946	kfree(intel_fb);
10947	return ERR_PTR(ret);
10948}
10949
10950static struct drm_framebuffer *
10951intel_framebuffer_create(struct drm_device *dev,
10952			 struct drm_mode_fb_cmd2 *mode_cmd,
10953			 struct drm_i915_gem_object *obj)
10954{
10955	struct drm_framebuffer *fb;
10956	int ret;
10957
10958	ret = i915_mutex_lock_interruptible(dev);
10959	if (ret)
10960		return ERR_PTR(ret);
10961	fb = __intel_framebuffer_create(dev, mode_cmd, obj);
10962	mutex_unlock(&dev->struct_mutex);
10963
10964	return fb;
10965}
10966
10967static u32
10968intel_framebuffer_pitch_for_width(int width, int bpp)
10969{
10970	u32 pitch = DIV_ROUND_UP(width * bpp, 8);
10971	return ALIGN(pitch, 64);
10972}
10973
10974static u32
10975intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
10976{
10977	u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
10978	return PAGE_ALIGN(pitch * mode->vdisplay);
10979}
10980
10981static struct drm_framebuffer *
10982intel_framebuffer_create_for_mode(struct drm_device *dev,
10983				  struct drm_display_mode *mode,
10984				  int depth, int bpp)
10985{
10986	struct drm_framebuffer *fb;
10987	struct drm_i915_gem_object *obj;
10988	struct drm_mode_fb_cmd2 mode_cmd = { 0 };
10989
10990	obj = i915_gem_object_create(dev,
10991				    intel_framebuffer_size_for_mode(mode, bpp));
10992	if (IS_ERR(obj))
10993		return ERR_CAST(obj);
10994
10995	mode_cmd.width = mode->hdisplay;
10996	mode_cmd.height = mode->vdisplay;
10997	mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
10998								bpp);
10999	mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
11000
11001	fb = intel_framebuffer_create(dev, &mode_cmd, obj);
11002	if (IS_ERR(fb))
11003		i915_gem_object_put(obj);
11004
11005	return fb;
11006}
11007
11008static struct drm_framebuffer *
11009mode_fits_in_fbdev(struct drm_device *dev,
11010		   struct drm_display_mode *mode)
11011{
11012#ifdef CONFIG_DRM_FBDEV_EMULATION
11013	struct drm_i915_private *dev_priv = to_i915(dev);
11014	struct drm_i915_gem_object *obj;
11015	struct drm_framebuffer *fb;
11016
11017	if (!dev_priv->fbdev)
11018		return NULL;
11019
11020	if (!dev_priv->fbdev->fb)
11021		return NULL;
11022
11023	obj = dev_priv->fbdev->fb->obj;
11024	BUG_ON(!obj);
11025
11026	fb = &dev_priv->fbdev->fb->base;
11027	if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
11028							       fb->bits_per_pixel))
11029		return NULL;
11030
11031	if (obj->base.size < mode->vdisplay * fb->pitches[0])
11032		return NULL;
11033
11034	drm_framebuffer_reference(fb);
11035	return fb;
11036#else
11037	return NULL;
11038#endif
11039}
11040
11041static int intel_modeset_setup_plane_state(struct drm_atomic_state *state,
11042					   struct drm_crtc *crtc,
11043					   struct drm_display_mode *mode,
11044					   struct drm_framebuffer *fb,
11045					   int x, int y)
11046{
11047	struct drm_plane_state *plane_state;
11048	int hdisplay, vdisplay;
11049	int ret;
11050
11051	plane_state = drm_atomic_get_plane_state(state, crtc->primary);
11052	if (IS_ERR(plane_state))
11053		return PTR_ERR(plane_state);
11054
11055	if (mode)
11056		drm_crtc_get_hv_timing(mode, &hdisplay, &vdisplay);
11057	else
11058		hdisplay = vdisplay = 0;
11059
11060	ret = drm_atomic_set_crtc_for_plane(plane_state, fb ? crtc : NULL);
11061	if (ret)
11062		return ret;
11063	drm_atomic_set_fb_for_plane(plane_state, fb);
11064	plane_state->crtc_x = 0;
11065	plane_state->crtc_y = 0;
11066	plane_state->crtc_w = hdisplay;
11067	plane_state->crtc_h = vdisplay;
11068	plane_state->src_x = x << 16;
11069	plane_state->src_y = y << 16;
11070	plane_state->src_w = hdisplay << 16;
11071	plane_state->src_h = vdisplay << 16;
11072
11073	return 0;
11074}
11075
11076bool intel_get_load_detect_pipe(struct drm_connector *connector,
11077				struct drm_display_mode *mode,
11078				struct intel_load_detect_pipe *old,
11079				struct drm_modeset_acquire_ctx *ctx)
11080{
11081	struct intel_crtc *intel_crtc;
11082	struct intel_encoder *intel_encoder =
11083		intel_attached_encoder(connector);
11084	struct drm_crtc *possible_crtc;
11085	struct drm_encoder *encoder = &intel_encoder->base;
11086	struct drm_crtc *crtc = NULL;
11087	struct drm_device *dev = encoder->dev;
11088	struct drm_i915_private *dev_priv = to_i915(dev);
11089	struct drm_framebuffer *fb;
11090	struct drm_mode_config *config = &dev->mode_config;
11091	struct drm_atomic_state *state = NULL, *restore_state = NULL;
11092	struct drm_connector_state *connector_state;
11093	struct intel_crtc_state *crtc_state;
11094	int ret, i = -1;
11095
11096	DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
11097		      connector->base.id, connector->name,
11098		      encoder->base.id, encoder->name);
11099
11100	old->restore_state = NULL;
11101
11102retry:
11103	ret = drm_modeset_lock(&config->connection_mutex, ctx);
11104	if (ret)
11105		goto fail;
11106
11107	/*
11108	 * Algorithm gets a little messy:
11109	 *
11110	 *   - if the connector already has an assigned crtc, use it (but make
11111	 *     sure it's on first)
11112	 *
11113	 *   - try to find the first unused crtc that can drive this connector,
11114	 *     and use that if we find one
11115	 */
11116
11117	/* See if we already have a CRTC for this connector */
11118	if (connector->state->crtc) {
11119		crtc = connector->state->crtc;
11120
11121		ret = drm_modeset_lock(&crtc->mutex, ctx);
11122		if (ret)
11123			goto fail;
11124
11125		/* Make sure the crtc and connector are running */
11126		goto found;
11127	}
11128
11129	/* Find an unused one (if possible) */
11130	for_each_crtc(dev, possible_crtc) {
11131		i++;
11132		if (!(encoder->possible_crtcs & (1 << i)))
11133			continue;
11134
11135		ret = drm_modeset_lock(&possible_crtc->mutex, ctx);
11136		if (ret)
11137			goto fail;
11138
11139		if (possible_crtc->state->enable) {
11140			drm_modeset_unlock(&possible_crtc->mutex);
11141			continue;
11142		}
11143
11144		crtc = possible_crtc;
11145		break;
11146	}
11147
11148	/*
11149	 * If we didn't find an unused CRTC, don't use any.
11150	 */
11151	if (!crtc) {
11152		DRM_DEBUG_KMS("no pipe available for load-detect\n");
11153		goto fail;
11154	}
11155
11156found:
11157	intel_crtc = to_intel_crtc(crtc);
11158
11159	ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
11160	if (ret)
11161		goto fail;
11162
11163	state = drm_atomic_state_alloc(dev);
11164	restore_state = drm_atomic_state_alloc(dev);
11165	if (!state || !restore_state) {
11166		ret = -ENOMEM;
11167		goto fail;
11168	}
11169
11170	state->acquire_ctx = ctx;
11171	restore_state->acquire_ctx = ctx;
11172
11173	connector_state = drm_atomic_get_connector_state(state, connector);
11174	if (IS_ERR(connector_state)) {
11175		ret = PTR_ERR(connector_state);
11176		goto fail;
11177	}
11178
11179	ret = drm_atomic_set_crtc_for_connector(connector_state, crtc);
11180	if (ret)
11181		goto fail;
11182
11183	crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
11184	if (IS_ERR(crtc_state)) {
11185		ret = PTR_ERR(crtc_state);
11186		goto fail;
11187	}
11188
11189	crtc_state->base.active = crtc_state->base.enable = true;
11190
11191	if (!mode)
11192		mode = &load_detect_mode;
11193
11194	/* We need a framebuffer large enough to accommodate all accesses
11195	 * that the plane may generate whilst we perform load detection.
11196	 * We can not rely on the fbcon either being present (we get called
11197	 * during its initialisation to detect all boot displays, or it may
11198	 * not even exist) or that it is large enough to satisfy the
11199	 * requested mode.
11200	 */
11201	fb = mode_fits_in_fbdev(dev, mode);
11202	if (fb == NULL) {
11203		DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
11204		fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
11205	} else
11206		DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
11207	if (IS_ERR(fb)) {
11208		DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
11209		goto fail;
11210	}
11211
11212	ret = intel_modeset_setup_plane_state(state, crtc, mode, fb, 0, 0);
11213	if (ret)
11214		goto fail;
11215
11216	drm_framebuffer_unreference(fb);
11217
11218	ret = drm_atomic_set_mode_for_crtc(&crtc_state->base, mode);
11219	if (ret)
11220		goto fail;
11221
11222	ret = PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(restore_state, connector));
11223	if (!ret)
11224		ret = PTR_ERR_OR_ZERO(drm_atomic_get_crtc_state(restore_state, crtc));
11225	if (!ret)
11226		ret = PTR_ERR_OR_ZERO(drm_atomic_get_plane_state(restore_state, crtc->primary));
11227	if (ret) {
11228		DRM_DEBUG_KMS("Failed to create a copy of old state to restore: %i\n", ret);
11229		goto fail;
11230	}
11231
11232	ret = drm_atomic_commit(state);
11233	if (ret) {
11234		DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
11235		goto fail;
11236	}
11237
11238	old->restore_state = restore_state;
11239	drm_atomic_state_put(state);
11240
11241	/* let the connector get through one full cycle before testing */
11242	intel_wait_for_vblank(dev_priv, intel_crtc->pipe);
11243	return true;
11244
11245fail:
11246	if (state) {
11247		drm_atomic_state_put(state);
11248		state = NULL;
11249	}
11250	if (restore_state) {
11251		drm_atomic_state_put(restore_state);
11252		restore_state = NULL;
11253	}
11254
11255	if (ret == -EDEADLK) {
11256		drm_modeset_backoff(ctx);
11257		goto retry;
11258	}
11259
11260	return false;
11261}
11262
11263void intel_release_load_detect_pipe(struct drm_connector *connector,
11264				    struct intel_load_detect_pipe *old,
11265				    struct drm_modeset_acquire_ctx *ctx)
11266{
11267	struct intel_encoder *intel_encoder =
11268		intel_attached_encoder(connector);
11269	struct drm_encoder *encoder = &intel_encoder->base;
11270	struct drm_atomic_state *state = old->restore_state;
11271	int ret;
11272
11273	DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
11274		      connector->base.id, connector->name,
11275		      encoder->base.id, encoder->name);
11276
11277	if (!state)
11278		return;
11279
11280	ret = drm_atomic_commit(state);
11281	if (ret)
11282		DRM_DEBUG_KMS("Couldn't release load detect pipe: %i\n", ret);
11283	drm_atomic_state_put(state);
11284}
11285
11286static int i9xx_pll_refclk(struct drm_device *dev,
11287			   const struct intel_crtc_state *pipe_config)
11288{
11289	struct drm_i915_private *dev_priv = to_i915(dev);
11290	u32 dpll = pipe_config->dpll_hw_state.dpll;
11291
11292	if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
11293		return dev_priv->vbt.lvds_ssc_freq;
11294	else if (HAS_PCH_SPLIT(dev_priv))
11295		return 120000;
11296	else if (!IS_GEN2(dev_priv))
11297		return 96000;
11298	else
11299		return 48000;
11300}
11301
11302/* Returns the clock of the currently programmed mode of the given pipe. */
11303static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
11304				struct intel_crtc_state *pipe_config)
11305{
11306	struct drm_device *dev = crtc->base.dev;
11307	struct drm_i915_private *dev_priv = to_i915(dev);
11308	int pipe = pipe_config->cpu_transcoder;
11309	u32 dpll = pipe_config->dpll_hw_state.dpll;
11310	u32 fp;
11311	struct dpll clock;
11312	int port_clock;
11313	int refclk = i9xx_pll_refclk(dev, pipe_config);
11314
11315	if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
11316		fp = pipe_config->dpll_hw_state.fp0;
11317	else
11318		fp = pipe_config->dpll_hw_state.fp1;
11319
11320	clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
11321	if (IS_PINEVIEW(dev_priv)) {
11322		clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
11323		clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
11324	} else {
11325		clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
11326		clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
11327	}
11328
11329	if (!IS_GEN2(dev_priv)) {
11330		if (IS_PINEVIEW(dev_priv))
11331			clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
11332				DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
11333		else
11334			clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
11335			       DPLL_FPA01_P1_POST_DIV_SHIFT);
11336
11337		switch (dpll & DPLL_MODE_MASK) {
11338		case DPLLB_MODE_DAC_SERIAL:
11339			clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
11340				5 : 10;
11341			break;
11342		case DPLLB_MODE_LVDS:
11343			clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
11344				7 : 14;
11345			break;
11346		default:
11347			DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
11348				  "mode\n", (int)(dpll & DPLL_MODE_MASK));
11349			return;
11350		}
11351
11352		if (IS_PINEVIEW(dev_priv))
11353			port_clock = pnv_calc_dpll_params(refclk, &clock);
11354		else
11355			port_clock = i9xx_calc_dpll_params(refclk, &clock);
11356	} else {
11357		u32 lvds = IS_I830(dev_priv) ? 0 : I915_READ(LVDS);
11358		bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
11359
11360		if (is_lvds) {
11361			clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
11362				       DPLL_FPA01_P1_POST_DIV_SHIFT);
11363
11364			if (lvds & LVDS_CLKB_POWER_UP)
11365				clock.p2 = 7;
11366			else
11367				clock.p2 = 14;
11368		} else {
11369			if (dpll & PLL_P1_DIVIDE_BY_TWO)
11370				clock.p1 = 2;
11371			else {
11372				clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
11373					    DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
11374			}
11375			if (dpll & PLL_P2_DIVIDE_BY_4)
11376				clock.p2 = 4;
11377			else
11378				clock.p2 = 2;
11379		}
11380
11381		port_clock = i9xx_calc_dpll_params(refclk, &clock);
11382	}
11383
11384	/*
11385	 * This value includes pixel_multiplier. We will use
11386	 * port_clock to compute adjusted_mode.crtc_clock in the
11387	 * encoder's get_config() function.
11388	 */
11389	pipe_config->port_clock = port_clock;
11390}
11391
11392int intel_dotclock_calculate(int link_freq,
11393			     const struct intel_link_m_n *m_n)
11394{
11395	/*
11396	 * The calculation for the data clock is:
11397	 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
11398	 * But we want to avoid losing precison if possible, so:
11399	 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
11400	 *
11401	 * and the link clock is simpler:
11402	 * link_clock = (m * link_clock) / n
11403	 */
11404
11405	if (!m_n->link_n)
11406		return 0;
11407
11408	return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
11409}
11410
11411static void ironlake_pch_clock_get(struct intel_crtc *crtc,
11412				   struct intel_crtc_state *pipe_config)
11413{
11414	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
11415
11416	/* read out port_clock from the DPLL */
11417	i9xx_crtc_clock_get(crtc, pipe_config);
11418
11419	/*
11420	 * In case there is an active pipe without active ports,
11421	 * we may need some idea for the dotclock anyway.
11422	 * Calculate one based on the FDI configuration.
11423	 */
11424	pipe_config->base.adjusted_mode.crtc_clock =
11425		intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
11426					 &pipe_config->fdi_m_n);
11427}
11428
11429/** Returns the currently programmed mode of the given pipe. */
11430struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
11431					     struct drm_crtc *crtc)
11432{
11433	struct drm_i915_private *dev_priv = to_i915(dev);
11434	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11435	enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
11436	struct drm_display_mode *mode;
11437	struct intel_crtc_state *pipe_config;
11438	int htot = I915_READ(HTOTAL(cpu_transcoder));
11439	int hsync = I915_READ(HSYNC(cpu_transcoder));
11440	int vtot = I915_READ(VTOTAL(cpu_transcoder));
11441	int vsync = I915_READ(VSYNC(cpu_transcoder));
11442	enum pipe pipe = intel_crtc->pipe;
11443
11444	mode = kzalloc(sizeof(*mode), GFP_KERNEL);
11445	if (!mode)
11446		return NULL;
11447
11448	pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
11449	if (!pipe_config) {
11450		kfree(mode);
11451		return NULL;
11452	}
11453
11454	/*
11455	 * Construct a pipe_config sufficient for getting the clock info
11456	 * back out of crtc_clock_get.
11457	 *
11458	 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
11459	 * to use a real value here instead.
11460	 */
11461	pipe_config->cpu_transcoder = (enum transcoder) pipe;
11462	pipe_config->pixel_multiplier = 1;
11463	pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(pipe));
11464	pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(pipe));
11465	pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(pipe));
11466	i9xx_crtc_clock_get(intel_crtc, pipe_config);
11467
11468	mode->clock = pipe_config->port_clock / pipe_config->pixel_multiplier;
11469	mode->hdisplay = (htot & 0xffff) + 1;
11470	mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
11471	mode->hsync_start = (hsync & 0xffff) + 1;
11472	mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
11473	mode->vdisplay = (vtot & 0xffff) + 1;
11474	mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
11475	mode->vsync_start = (vsync & 0xffff) + 1;
11476	mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
11477
11478	drm_mode_set_name(mode);
11479
11480	kfree(pipe_config);
11481
11482	return mode;
11483}
11484
11485static void intel_crtc_destroy(struct drm_crtc *crtc)
11486{
11487	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11488	struct drm_device *dev = crtc->dev;
11489	struct intel_flip_work *work;
11490
11491	spin_lock_irq(&dev->event_lock);
11492	work = intel_crtc->flip_work;
11493	intel_crtc->flip_work = NULL;
11494	spin_unlock_irq(&dev->event_lock);
11495
11496	if (work) {
11497		cancel_work_sync(&work->mmio_work);
11498		cancel_work_sync(&work->unpin_work);
11499		kfree(work);
11500	}
11501
11502	drm_crtc_cleanup(crtc);
11503
11504	kfree(intel_crtc);
11505}
11506
11507static void intel_unpin_work_fn(struct work_struct *__work)
11508{
11509	struct intel_flip_work *work =
11510		container_of(__work, struct intel_flip_work, unpin_work);
11511	struct intel_crtc *crtc = to_intel_crtc(work->crtc);
11512	struct drm_device *dev = crtc->base.dev;
11513	struct drm_plane *primary = crtc->base.primary;
11514
11515	if (is_mmio_work(work))
11516		flush_work(&work->mmio_work);
11517
11518	mutex_lock(&dev->struct_mutex);
11519	intel_unpin_fb_vma(work->old_vma);
11520	i915_gem_object_put(work->pending_flip_obj);
11521	mutex_unlock(&dev->struct_mutex);
11522
11523	i915_gem_request_put(work->flip_queued_req);
11524
11525	intel_frontbuffer_flip_complete(to_i915(dev),
11526					to_intel_plane(primary)->frontbuffer_bit);
11527	intel_fbc_post_update(crtc);
11528	drm_framebuffer_unreference(work->old_fb);
11529
11530	BUG_ON(atomic_read(&crtc->unpin_work_count) == 0);
11531	atomic_dec(&crtc->unpin_work_count);
11532
11533	kfree(work);
11534}
11535
11536/* Is 'a' after or equal to 'b'? */
11537static bool g4x_flip_count_after_eq(u32 a, u32 b)
11538{
11539	return !((a - b) & 0x80000000);
11540}
11541
11542static bool __pageflip_finished_cs(struct intel_crtc *crtc,
11543				   struct intel_flip_work *work)
11544{
11545	struct drm_device *dev = crtc->base.dev;
11546	struct drm_i915_private *dev_priv = to_i915(dev);
11547
11548	if (abort_flip_on_reset(crtc))
11549		return true;
11550
11551	/*
11552	 * The relevant registers doen't exist on pre-ctg.
11553	 * As the flip done interrupt doesn't trigger for mmio
11554	 * flips on gmch platforms, a flip count check isn't
11555	 * really needed there. But since ctg has the registers,
11556	 * include it in the check anyway.
11557	 */
11558	if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv))
11559		return true;
11560
11561	/*
11562	 * BDW signals flip done immediately if the plane
11563	 * is disabled, even if the plane enable is already
11564	 * armed to occur at the next vblank :(
11565	 */
11566
11567	/*
11568	 * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
11569	 * used the same base address. In that case the mmio flip might
11570	 * have completed, but the CS hasn't even executed the flip yet.
11571	 *
11572	 * A flip count check isn't enough as the CS might have updated
11573	 * the base address just after start of vblank, but before we
11574	 * managed to process the interrupt. This means we'd complete the
11575	 * CS flip too soon.
11576	 *
11577	 * Combining both checks should get us a good enough result. It may
11578	 * still happen that the CS flip has been executed, but has not
11579	 * yet actually completed. But in case the base address is the same
11580	 * anyway, we don't really care.
11581	 */
11582	return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
11583		crtc->flip_work->gtt_offset &&
11584		g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_G4X(crtc->pipe)),
11585				    crtc->flip_work->flip_count);
11586}
11587
11588static bool
11589__pageflip_finished_mmio(struct intel_crtc *crtc,
11590			       struct intel_flip_work *work)
11591{
11592	/*
11593	 * MMIO work completes when vblank is different from
11594	 * flip_queued_vblank.
11595	 *
11596	 * Reset counter value doesn't matter, this is handled by
11597	 * i915_wait_request finishing early, so no need to handle
11598	 * reset here.
11599	 */
11600	return intel_crtc_get_vblank_counter(crtc) != work->flip_queued_vblank;
11601}
11602
11603
11604static bool pageflip_finished(struct intel_crtc *crtc,
11605			      struct intel_flip_work *work)
11606{
11607	if (!atomic_read(&work->pending))
11608		return false;
11609
11610	smp_rmb();
11611
11612	if (is_mmio_work(work))
11613		return __pageflip_finished_mmio(crtc, work);
11614	else
11615		return __pageflip_finished_cs(crtc, work);
11616}
11617
11618void intel_finish_page_flip_cs(struct drm_i915_private *dev_priv, int pipe)
11619{
11620	struct drm_device *dev = &dev_priv->drm;
11621	struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
11622	struct intel_flip_work *work;
11623	unsigned long flags;
11624
11625	/* Ignore early vblank irqs */
11626	if (!crtc)
11627		return;
11628
11629	/*
11630	 * This is called both by irq handlers and the reset code (to complete
11631	 * lost pageflips) so needs the full irqsave spinlocks.
11632	 */
11633	spin_lock_irqsave(&dev->event_lock, flags);
11634	work = crtc->flip_work;
11635
11636	if (work != NULL &&
11637	    !is_mmio_work(work) &&
11638	    pageflip_finished(crtc, work))
11639		page_flip_completed(crtc);
11640
11641	spin_unlock_irqrestore(&dev->event_lock, flags);
11642}
11643
11644void intel_finish_page_flip_mmio(struct drm_i915_private *dev_priv, int pipe)
11645{
11646	struct drm_device *dev = &dev_priv->drm;
11647	struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
11648	struct intel_flip_work *work;
11649	unsigned long flags;
11650
11651	/* Ignore early vblank irqs */
11652	if (!crtc)
11653		return;
11654
11655	/*
11656	 * This is called both by irq handlers and the reset code (to complete
11657	 * lost pageflips) so needs the full irqsave spinlocks.
11658	 */
11659	spin_lock_irqsave(&dev->event_lock, flags);
11660	work = crtc->flip_work;
11661
11662	if (work != NULL &&
11663	    is_mmio_work(work) &&
11664	    pageflip_finished(crtc, work))
11665		page_flip_completed(crtc);
11666
11667	spin_unlock_irqrestore(&dev->event_lock, flags);
11668}
11669
11670static inline void intel_mark_page_flip_active(struct intel_crtc *crtc,
11671					       struct intel_flip_work *work)
11672{
11673	work->flip_queued_vblank = intel_crtc_get_vblank_counter(crtc);
11674
11675	/* Ensure that the work item is consistent when activating it ... */
11676	smp_mb__before_atomic();
11677	atomic_set(&work->pending, 1);
11678}
11679
11680static int intel_gen2_queue_flip(struct drm_device *dev,
11681				 struct drm_crtc *crtc,
11682				 struct drm_framebuffer *fb,
11683				 struct drm_i915_gem_object *obj,
11684				 struct drm_i915_gem_request *req,
11685				 uint32_t flags)
11686{
11687	struct intel_ring *ring = req->ring;
11688	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11689	u32 flip_mask;
11690	int ret;
11691
11692	ret = intel_ring_begin(req, 6);
11693	if (ret)
11694		return ret;
11695
11696	/* Can't queue multiple flips, so wait for the previous
11697	 * one to finish before executing the next.
11698	 */
11699	if (intel_crtc->plane)
11700		flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
11701	else
11702		flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
11703	intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
11704	intel_ring_emit(ring, MI_NOOP);
11705	intel_ring_emit(ring, MI_DISPLAY_FLIP |
11706			MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11707	intel_ring_emit(ring, fb->pitches[0]);
11708	intel_ring_emit(ring, intel_crtc->flip_work->gtt_offset);
11709	intel_ring_emit(ring, 0); /* aux display base address, unused */
11710
11711	return 0;
11712}
11713
11714static int intel_gen3_queue_flip(struct drm_device *dev,
11715				 struct drm_crtc *crtc,
11716				 struct drm_framebuffer *fb,
11717				 struct drm_i915_gem_object *obj,
11718				 struct drm_i915_gem_request *req,
11719				 uint32_t flags)
11720{
11721	struct intel_ring *ring = req->ring;
11722	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11723	u32 flip_mask;
11724	int ret;
11725
11726	ret = intel_ring_begin(req, 6);
11727	if (ret)
11728		return ret;
11729
11730	if (intel_crtc->plane)
11731		flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
11732	else
11733		flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
11734	intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
11735	intel_ring_emit(ring, MI_NOOP);
11736	intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
11737			MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11738	intel_ring_emit(ring, fb->pitches[0]);
11739	intel_ring_emit(ring, intel_crtc->flip_work->gtt_offset);
11740	intel_ring_emit(ring, MI_NOOP);
11741
11742	return 0;
11743}
11744
11745static int intel_gen4_queue_flip(struct drm_device *dev,
11746				 struct drm_crtc *crtc,
11747				 struct drm_framebuffer *fb,
11748				 struct drm_i915_gem_object *obj,
11749				 struct drm_i915_gem_request *req,
11750				 uint32_t flags)
11751{
11752	struct intel_ring *ring = req->ring;
11753	struct drm_i915_private *dev_priv = to_i915(dev);
11754	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11755	uint32_t pf, pipesrc;
11756	int ret;
11757
11758	ret = intel_ring_begin(req, 4);
11759	if (ret)
11760		return ret;
11761
11762	/* i965+ uses the linear or tiled offsets from the
11763	 * Display Registers (which do not change across a page-flip)
11764	 * so we need only reprogram the base address.
11765	 */
11766	intel_ring_emit(ring, MI_DISPLAY_FLIP |
11767			MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11768	intel_ring_emit(ring, fb->pitches[0]);
11769	intel_ring_emit(ring, intel_crtc->flip_work->gtt_offset |
11770			intel_fb_modifier_to_tiling(fb->modifier));
11771
11772	/* XXX Enabling the panel-fitter across page-flip is so far
11773	 * untested on non-native modes, so ignore it for now.
11774	 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
11775	 */
11776	pf = 0;
11777	pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
11778	intel_ring_emit(ring, pf | pipesrc);
11779
11780	return 0;
11781}
11782
11783static int intel_gen6_queue_flip(struct drm_device *dev,
11784				 struct drm_crtc *crtc,
11785				 struct drm_framebuffer *fb,
11786				 struct drm_i915_gem_object *obj,
11787				 struct drm_i915_gem_request *req,
11788				 uint32_t flags)
11789{
11790	struct intel_ring *ring = req->ring;
11791	struct drm_i915_private *dev_priv = to_i915(dev);
11792	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11793	uint32_t pf, pipesrc;
11794	int ret;
11795
11796	ret = intel_ring_begin(req, 4);
11797	if (ret)
11798		return ret;
11799
11800	intel_ring_emit(ring, MI_DISPLAY_FLIP |
11801			MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11802	intel_ring_emit(ring, fb->pitches[0] |
11803			intel_fb_modifier_to_tiling(fb->modifier));
11804	intel_ring_emit(ring, intel_crtc->flip_work->gtt_offset);
11805
11806	/* Contrary to the suggestions in the documentation,
11807	 * "Enable Panel Fitter" does not seem to be required when page
11808	 * flipping with a non-native mode, and worse causes a normal
11809	 * modeset to fail.
11810	 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
11811	 */
11812	pf = 0;
11813	pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
11814	intel_ring_emit(ring, pf | pipesrc);
11815
11816	return 0;
11817}
11818
11819static int intel_gen7_queue_flip(struct drm_device *dev,
11820				 struct drm_crtc *crtc,
11821				 struct drm_framebuffer *fb,
11822				 struct drm_i915_gem_object *obj,
11823				 struct drm_i915_gem_request *req,
11824				 uint32_t flags)
11825{
11826	struct drm_i915_private *dev_priv = to_i915(dev);
11827	struct intel_ring *ring = req->ring;
11828	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11829	uint32_t plane_bit = 0;
11830	int len, ret;
11831
11832	switch (intel_crtc->plane) {
11833	case PLANE_A:
11834		plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
11835		break;
11836	case PLANE_B:
11837		plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
11838		break;
11839	case PLANE_C:
11840		plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
11841		break;
11842	default:
11843		WARN_ONCE(1, "unknown plane in flip command\n");
11844		return -ENODEV;
11845	}
11846
11847	len = 4;
11848	if (req->engine->id == RCS) {
11849		len += 6;
11850		/*
11851		 * On Gen 8, SRM is now taking an extra dword to accommodate
11852		 * 48bits addresses, and we need a NOOP for the batch size to
11853		 * stay even.
11854		 */
11855		if (IS_GEN8(dev_priv))
11856			len += 2;
11857	}
11858
11859	/*
11860	 * BSpec MI_DISPLAY_FLIP for IVB:
11861	 * "The full packet must be contained within the same cache line."
11862	 *
11863	 * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
11864	 * cacheline, if we ever start emitting more commands before
11865	 * the MI_DISPLAY_FLIP we may need to first emit everything else,
11866	 * then do the cacheline alignment, and finally emit the
11867	 * MI_DISPLAY_FLIP.
11868	 */
11869	ret = intel_ring_cacheline_align(req);
11870	if (ret)
11871		return ret;
11872
11873	ret = intel_ring_begin(req, len);
11874	if (ret)
11875		return ret;
11876
11877	/* Unmask the flip-done completion message. Note that the bspec says that
11878	 * we should do this for both the BCS and RCS, and that we must not unmask
11879	 * more than one flip event at any time (or ensure that one flip message
11880	 * can be sent by waiting for flip-done prior to queueing new flips).
11881	 * Experimentation says that BCS works despite DERRMR masking all
11882	 * flip-done completion events and that unmasking all planes at once
11883	 * for the RCS also doesn't appear to drop events. Setting the DERRMR
11884	 * to zero does lead to lockups within MI_DISPLAY_FLIP.
11885	 */
11886	if (req->engine->id == RCS) {
11887		intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
11888		intel_ring_emit_reg(ring, DERRMR);
11889		intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
11890					  DERRMR_PIPEB_PRI_FLIP_DONE |
11891					  DERRMR_PIPEC_PRI_FLIP_DONE));
11892		if (IS_GEN8(dev_priv))
11893			intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8 |
11894					      MI_SRM_LRM_GLOBAL_GTT);
11895		else
11896			intel_ring_emit(ring, MI_STORE_REGISTER_MEM |
11897					      MI_SRM_LRM_GLOBAL_GTT);
11898		intel_ring_emit_reg(ring, DERRMR);
11899		intel_ring_emit(ring,
11900				i915_ggtt_offset(req->engine->scratch) + 256);
11901		if (IS_GEN8(dev_priv)) {
11902			intel_ring_emit(ring, 0);
11903			intel_ring_emit(ring, MI_NOOP);
11904		}
11905	}
11906
11907	intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
11908	intel_ring_emit(ring, fb->pitches[0] |
11909			intel_fb_modifier_to_tiling(fb->modifier));
11910	intel_ring_emit(ring, intel_crtc->flip_work->gtt_offset);
11911	intel_ring_emit(ring, (MI_NOOP));
11912
11913	return 0;
11914}
11915
11916static bool use_mmio_flip(struct intel_engine_cs *engine,
11917			  struct drm_i915_gem_object *obj)
11918{
11919	/*
11920	 * This is not being used for older platforms, because
11921	 * non-availability of flip done interrupt forces us to use
11922	 * CS flips. Older platforms derive flip done using some clever
11923	 * tricks involving the flip_pending status bits and vblank irqs.
11924	 * So using MMIO flips there would disrupt this mechanism.
11925	 */
11926
11927	if (engine == NULL)
11928		return true;
11929
11930	if (INTEL_GEN(engine->i915) < 5)
11931		return false;
11932
11933	if (i915.use_mmio_flip < 0)
11934		return false;
11935	else if (i915.use_mmio_flip > 0)
11936		return true;
11937	else if (i915.enable_execlists)
11938		return true;
11939
11940	return engine != i915_gem_object_last_write_engine(obj);
11941}
11942
11943static void skl_do_mmio_flip(struct intel_crtc *intel_crtc,
11944			     unsigned int rotation,
11945			     struct intel_flip_work *work)
11946{
11947	struct drm_device *dev = intel_crtc->base.dev;
11948	struct drm_i915_private *dev_priv = to_i915(dev);
11949	struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
11950	const enum pipe pipe = intel_crtc->pipe;
11951	u32 ctl, stride = skl_plane_stride(fb, 0, rotation);
11952
11953	ctl = I915_READ(PLANE_CTL(pipe, 0));
11954	ctl &= ~PLANE_CTL_TILED_MASK;
11955	switch (fb->modifier) {
11956	case DRM_FORMAT_MOD_NONE:
11957		break;
11958	case I915_FORMAT_MOD_X_TILED:
11959		ctl |= PLANE_CTL_TILED_X;
11960		break;
11961	case I915_FORMAT_MOD_Y_TILED:
11962		ctl |= PLANE_CTL_TILED_Y;
11963		break;
11964	case I915_FORMAT_MOD_Yf_TILED:
11965		ctl |= PLANE_CTL_TILED_YF;
11966		break;
11967	default:
11968		MISSING_CASE(fb->modifier);
11969	}
11970
11971	/*
11972	 * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
11973	 * PLANE_SURF updates, the update is then guaranteed to be atomic.
11974	 */
11975	I915_WRITE(PLANE_CTL(pipe, 0), ctl);
11976	I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
11977
11978	I915_WRITE(PLANE_SURF(pipe, 0), work->gtt_offset);
11979	POSTING_READ(PLANE_SURF(pipe, 0));
11980}
11981
11982static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc,
11983			     struct intel_flip_work *work)
11984{
11985	struct drm_device *dev = intel_crtc->base.dev;
11986	struct drm_i915_private *dev_priv = to_i915(dev);
11987	struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
11988	i915_reg_t reg = DSPCNTR(intel_crtc->plane);
11989	u32 dspcntr;
11990
11991	dspcntr = I915_READ(reg);
11992
11993	if (fb->modifier == I915_FORMAT_MOD_X_TILED)
11994		dspcntr |= DISPPLANE_TILED;
11995	else
11996		dspcntr &= ~DISPPLANE_TILED;
11997
11998	I915_WRITE(reg, dspcntr);
11999
12000	I915_WRITE(DSPSURF(intel_crtc->plane), work->gtt_offset);
12001	POSTING_READ(DSPSURF(intel_crtc->plane));
12002}
12003
12004static void intel_mmio_flip_work_func(struct work_struct *w)
12005{
12006	struct intel_flip_work *work =
12007		container_of(w, struct intel_flip_work, mmio_work);
12008	struct intel_crtc *crtc = to_intel_crtc(work->crtc);
12009	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
12010	struct intel_framebuffer *intel_fb =
12011		to_intel_framebuffer(crtc->base.primary->fb);
12012	struct drm_i915_gem_object *obj = intel_fb->obj;
12013
12014	WARN_ON(i915_gem_object_wait(obj, 0, MAX_SCHEDULE_TIMEOUT, NULL) < 0);
12015
12016	intel_pipe_update_start(crtc);
12017
12018	if (INTEL_GEN(dev_priv) >= 9)
12019		skl_do_mmio_flip(crtc, work->rotation, work);
12020	else
12021		/* use_mmio_flip() retricts MMIO flips to ilk+ */
12022		ilk_do_mmio_flip(crtc, work);
12023
12024	intel_pipe_update_end(crtc, work);
12025}
12026
12027static int intel_default_queue_flip(struct drm_device *dev,
12028				    struct drm_crtc *crtc,
12029				    struct drm_framebuffer *fb,
12030				    struct drm_i915_gem_object *obj,
12031				    struct drm_i915_gem_request *req,
12032				    uint32_t flags)
12033{
12034	return -ENODEV;
12035}
12036
12037static bool __pageflip_stall_check_cs(struct drm_i915_private *dev_priv,
12038				      struct intel_crtc *intel_crtc,
12039				      struct intel_flip_work *work)
12040{
12041	u32 addr, vblank;
12042
12043	if (!atomic_read(&work->pending))
12044		return false;
12045
12046	smp_rmb();
12047
12048	vblank = intel_crtc_get_vblank_counter(intel_crtc);
12049	if (work->flip_ready_vblank == 0) {
12050		if (work->flip_queued_req &&
12051		    !i915_gem_request_completed(work->flip_queued_req))
12052			return false;
12053
12054		work->flip_ready_vblank = vblank;
12055	}
12056
12057	if (vblank - work->flip_ready_vblank < 3)
12058		return false;
12059
12060	/* Potential stall - if we see that the flip has happened,
12061	 * assume a missed interrupt. */
12062	if (INTEL_GEN(dev_priv) >= 4)
12063		addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
12064	else
12065		addr = I915_READ(DSPADDR(intel_crtc->plane));
12066
12067	/* There is a potential issue here with a false positive after a flip
12068	 * to the same address. We could address this by checking for a
12069	 * non-incrementing frame counter.
12070	 */
12071	return addr == work->gtt_offset;
12072}
12073
12074void intel_check_page_flip(struct drm_i915_private *dev_priv, int pipe)
12075{
12076	struct drm_device *dev = &dev_priv->drm;
12077	struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
12078	struct intel_flip_work *work;
12079
12080	WARN_ON(!in_interrupt());
12081
12082	if (crtc == NULL)
12083		return;
12084
12085	spin_lock(&dev->event_lock);
12086	work = crtc->flip_work;
12087
12088	if (work != NULL && !is_mmio_work(work) &&
12089	    __pageflip_stall_check_cs(dev_priv, crtc, work)) {
12090		WARN_ONCE(1,
12091			  "Kicking stuck page flip: queued at %d, now %d\n",
12092			work->flip_queued_vblank, intel_crtc_get_vblank_counter(crtc));
12093		page_flip_completed(crtc);
12094		work = NULL;
12095	}
12096
12097	if (work != NULL && !is_mmio_work(work) &&
12098	    intel_crtc_get_vblank_counter(crtc) - work->flip_queued_vblank > 1)
12099		intel_queue_rps_boost_for_request(work->flip_queued_req);
12100	spin_unlock(&dev->event_lock);
12101}
12102
12103static int intel_crtc_page_flip(struct drm_crtc *crtc,
12104				struct drm_framebuffer *fb,
12105				struct drm_pending_vblank_event *event,
12106				uint32_t page_flip_flags)
12107{
12108	struct drm_device *dev = crtc->dev;
12109	struct drm_i915_private *dev_priv = to_i915(dev);
12110	struct drm_framebuffer *old_fb = crtc->primary->fb;
12111	struct drm_i915_gem_object *obj = intel_fb_obj(fb);
12112	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12113	struct drm_plane *primary = crtc->primary;
12114	enum pipe pipe = intel_crtc->pipe;
12115	struct intel_flip_work *work;
12116	struct intel_engine_cs *engine;
12117	bool mmio_flip;
12118	struct drm_i915_gem_request *request;
12119	struct i915_vma *vma;
12120	int ret;
12121
12122	/*
12123	 * drm_mode_page_flip_ioctl() should already catch this, but double
12124	 * check to be safe.  In the future we may enable pageflipping from
12125	 * a disabled primary plane.
12126	 */
12127	if (WARN_ON(intel_fb_obj(old_fb) == NULL))
12128		return -EBUSY;
12129
12130	/* Can't change pixel format via MI display flips. */
12131	if (fb->pixel_format != crtc->primary->fb->pixel_format)
12132		return -EINVAL;
12133
12134	/*
12135	 * TILEOFF/LINOFF registers can't be changed via MI display flips.
12136	 * Note that pitch changes could also affect these register.
12137	 */
12138	if (INTEL_GEN(dev_priv) > 3 &&
12139	    (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
12140	     fb->pitches[0] != crtc->primary->fb->pitches[0]))
12141		return -EINVAL;
12142
12143	if (i915_terminally_wedged(&dev_priv->gpu_error))
12144		goto out_hang;
12145
12146	work = kzalloc(sizeof(*work), GFP_KERNEL);
12147	if (work == NULL)
12148		return -ENOMEM;
12149
12150	work->event = event;
12151	work->crtc = crtc;
12152	work->old_fb = old_fb;
12153	INIT_WORK(&work->unpin_work, intel_unpin_work_fn);
12154
12155	ret = drm_crtc_vblank_get(crtc);
12156	if (ret)
12157		goto free_work;
12158
12159	/* We borrow the event spin lock for protecting flip_work */
12160	spin_lock_irq(&dev->event_lock);
12161	if (intel_crtc->flip_work) {
12162		/* Before declaring the flip queue wedged, check if
12163		 * the hardware completed the operation behind our backs.
12164		 */
12165		if (pageflip_finished(intel_crtc, intel_crtc->flip_work)) {
12166			DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
12167			page_flip_completed(intel_crtc);
12168		} else {
12169			DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
12170			spin_unlock_irq(&dev->event_lock);
12171
12172			drm_crtc_vblank_put(crtc);
12173			kfree(work);
12174			return -EBUSY;
12175		}
12176	}
12177	intel_crtc->flip_work = work;
12178	spin_unlock_irq(&dev->event_lock);
12179
12180	if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
12181		flush_workqueue(dev_priv->wq);
12182
12183	/* Reference the objects for the scheduled work. */
12184	drm_framebuffer_reference(work->old_fb);
12185
12186	crtc->primary->fb = fb;
12187	update_state_fb(crtc->primary);
12188
12189	work->pending_flip_obj = i915_gem_object_get(obj);
12190
12191	ret = i915_mutex_lock_interruptible(dev);
12192	if (ret)
12193		goto cleanup;
12194
12195	intel_crtc->reset_count = i915_reset_count(&dev_priv->gpu_error);
12196	if (i915_reset_in_progress_or_wedged(&dev_priv->gpu_error)) {
12197		ret = -EIO;
12198		goto unlock;
12199	}
12200
12201	atomic_inc(&intel_crtc->unpin_work_count);
12202
12203	if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
12204		work->flip_count = I915_READ(PIPE_FLIPCOUNT_G4X(pipe)) + 1;
12205
12206	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
12207		engine = dev_priv->engine[BCS];
12208		if (fb->modifier != old_fb->modifier)
12209			/* vlv: DISPLAY_FLIP fails to change tiling */
12210			engine = NULL;
12211	} else if (IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) {
12212		engine = dev_priv->engine[BCS];
12213	} else if (INTEL_GEN(dev_priv) >= 7) {
12214		engine = i915_gem_object_last_write_engine(obj);
12215		if (engine == NULL || engine->id != RCS)
12216			engine = dev_priv->engine[BCS];
12217	} else {
12218		engine = dev_priv->engine[RCS];
12219	}
12220
12221	mmio_flip = use_mmio_flip(engine, obj);
12222
12223	vma = intel_pin_and_fence_fb_obj(fb, primary->state->rotation);
12224	if (IS_ERR(vma)) {
12225		ret = PTR_ERR(vma);
12226		goto cleanup_pending;
12227	}
12228
12229	work->old_vma = to_intel_plane_state(primary->state)->vma;
12230	to_intel_plane_state(primary->state)->vma = vma;
12231
12232	work->gtt_offset = i915_ggtt_offset(vma) + intel_crtc->dspaddr_offset;
12233	work->rotation = crtc->primary->state->rotation;
12234
12235	/*
12236	 * There's the potential that the next frame will not be compatible with
12237	 * FBC, so we want to call pre_update() before the actual page flip.
12238	 * The problem is that pre_update() caches some information about the fb
12239	 * object, so we want to do this only after the object is pinned. Let's
12240	 * be on the safe side and do this immediately before scheduling the
12241	 * flip.
12242	 */
12243	intel_fbc_pre_update(intel_crtc, intel_crtc->config,
12244			     to_intel_plane_state(primary->state));
12245
12246	if (mmio_flip) {
12247		INIT_WORK(&work->mmio_work, intel_mmio_flip_work_func);
12248		queue_work(system_unbound_wq, &work->mmio_work);
12249	} else {
12250		request = i915_gem_request_alloc(engine, engine->last_context);
12251		if (IS_ERR(request)) {
12252			ret = PTR_ERR(request);
12253			goto cleanup_unpin;
12254		}
12255
12256		ret = i915_gem_request_await_object(request, obj, false);
12257		if (ret)
12258			goto cleanup_request;
12259
12260		ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, request,
12261						   page_flip_flags);
12262		if (ret)
12263			goto cleanup_request;
12264
12265		intel_mark_page_flip_active(intel_crtc, work);
12266
12267		work->flip_queued_req = i915_gem_request_get(request);
12268		i915_add_request_no_flush(request);
12269	}
12270
12271	i915_gem_object_wait_priority(obj, 0, I915_PRIORITY_DISPLAY);
12272	i915_gem_track_fb(intel_fb_obj(old_fb), obj,
12273			  to_intel_plane(primary)->frontbuffer_bit);
12274	mutex_unlock(&dev->struct_mutex);
12275
12276	intel_frontbuffer_flip_prepare(to_i915(dev),
12277				       to_intel_plane(primary)->frontbuffer_bit);
12278
12279	trace_i915_flip_request(intel_crtc->plane, obj);
12280
12281	return 0;
12282
12283cleanup_request:
12284	i915_add_request_no_flush(request);
12285cleanup_unpin:
12286	to_intel_plane_state(primary->state)->vma = work->old_vma;
12287	intel_unpin_fb_vma(vma);
12288cleanup_pending:
12289	atomic_dec(&intel_crtc->unpin_work_count);
12290unlock:
12291	mutex_unlock(&dev->struct_mutex);
12292cleanup:
12293	crtc->primary->fb = old_fb;
12294	update_state_fb(crtc->primary);
12295
12296	i915_gem_object_put(obj);
12297	drm_framebuffer_unreference(work->old_fb);
12298
12299	spin_lock_irq(&dev->event_lock);
12300	intel_crtc->flip_work = NULL;
12301	spin_unlock_irq(&dev->event_lock);
12302
12303	drm_crtc_vblank_put(crtc);
12304free_work:
12305	kfree(work);
12306
12307	if (ret == -EIO) {
12308		struct drm_atomic_state *state;
12309		struct drm_plane_state *plane_state;
12310
12311out_hang:
12312		state = drm_atomic_state_alloc(dev);
12313		if (!state)
12314			return -ENOMEM;
12315		state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
12316
12317retry:
12318		plane_state = drm_atomic_get_plane_state(state, primary);
12319		ret = PTR_ERR_OR_ZERO(plane_state);
12320		if (!ret) {
12321			drm_atomic_set_fb_for_plane(plane_state, fb);
12322
12323			ret = drm_atomic_set_crtc_for_plane(plane_state, crtc);
12324			if (!ret)
12325				ret = drm_atomic_commit(state);
12326		}
12327
12328		if (ret == -EDEADLK) {
12329			drm_modeset_backoff(state->acquire_ctx);
12330			drm_atomic_state_clear(state);
12331			goto retry;
12332		}
12333
12334		drm_atomic_state_put(state);
12335
12336		if (ret == 0 && event) {
12337			spin_lock_irq(&dev->event_lock);
12338			drm_crtc_send_vblank_event(crtc, event);
12339			spin_unlock_irq(&dev->event_lock);
12340		}
12341	}
12342	return ret;
12343}
12344
12345
12346/**
12347 * intel_wm_need_update - Check whether watermarks need updating
12348 * @plane: drm plane
12349 * @state: new plane state
12350 *
12351 * Check current plane state versus the new one to determine whether
12352 * watermarks need to be recalculated.
12353 *
12354 * Returns true or false.
12355 */
12356static bool intel_wm_need_update(struct drm_plane *plane,
12357				 struct drm_plane_state *state)
12358{
12359	struct intel_plane_state *new = to_intel_plane_state(state);
12360	struct intel_plane_state *cur = to_intel_plane_state(plane->state);
12361
12362	/* Update watermarks on tiling or size changes. */
12363	if (new->base.visible != cur->base.visible)
12364		return true;
12365
12366	if (!cur->base.fb || !new->base.fb)
12367		return false;
12368
12369	if (cur->base.fb->modifier != new->base.fb->modifier ||
12370	    cur->base.rotation != new->base.rotation ||
12371	    drm_rect_width(&new->base.src) != drm_rect_width(&cur->base.src) ||
12372	    drm_rect_height(&new->base.src) != drm_rect_height(&cur->base.src) ||
12373	    drm_rect_width(&new->base.dst) != drm_rect_width(&cur->base.dst) ||
12374	    drm_rect_height(&new->base.dst) != drm_rect_height(&cur->base.dst))
12375		return true;
12376
12377	return false;
12378}
12379
12380static bool needs_scaling(struct intel_plane_state *state)
12381{
12382	int src_w = drm_rect_width(&state->base.src) >> 16;
12383	int src_h = drm_rect_height(&state->base.src) >> 16;
12384	int dst_w = drm_rect_width(&state->base.dst);
12385	int dst_h = drm_rect_height(&state->base.dst);
12386
12387	return (src_w != dst_w || src_h != dst_h);
12388}
12389
12390int intel_plane_atomic_calc_changes(struct drm_crtc_state *crtc_state,
12391				    struct drm_plane_state *plane_state)
12392{
12393	struct intel_crtc_state *pipe_config = to_intel_crtc_state(crtc_state);
12394	struct drm_crtc *crtc = crtc_state->crtc;
12395	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12396	struct drm_plane *plane = plane_state->plane;
12397	struct drm_device *dev = crtc->dev;
12398	struct drm_i915_private *dev_priv = to_i915(dev);
12399	struct intel_plane_state *old_plane_state =
12400		to_intel_plane_state(plane->state);
12401	bool mode_changed = needs_modeset(crtc_state);
12402	bool was_crtc_enabled = crtc->state->active;
12403	bool is_crtc_enabled = crtc_state->active;
12404	bool turn_off, turn_on, visible, was_visible;
12405	struct drm_framebuffer *fb = plane_state->fb;
12406	int ret;
12407
12408	if (INTEL_GEN(dev_priv) >= 9 && plane->type != DRM_PLANE_TYPE_CURSOR) {
12409		ret = skl_update_scaler_plane(
12410			to_intel_crtc_state(crtc_state),
12411			to_intel_plane_state(plane_state));
12412		if (ret)
12413			return ret;
12414	}
12415
12416	was_visible = old_plane_state->base.visible;
12417	visible = to_intel_plane_state(plane_state)->base.visible;
12418
12419	if (!was_crtc_enabled && WARN_ON(was_visible))
12420		was_visible = false;
12421
12422	/*
12423	 * Visibility is calculated as if the crtc was on, but
12424	 * after scaler setup everything depends on it being off
12425	 * when the crtc isn't active.
12426	 *
12427	 * FIXME this is wrong for watermarks. Watermarks should also
12428	 * be computed as if the pipe would be active. Perhaps move
12429	 * per-plane wm computation to the .check_plane() hook, and
12430	 * only combine the results from all planes in the current place?
12431	 */
12432	if (!is_crtc_enabled)
12433		to_intel_plane_state(plane_state)->base.visible = visible = false;
12434
12435	if (!was_visible && !visible)
12436		return 0;
12437
12438	if (fb != old_plane_state->base.fb)
12439		pipe_config->fb_changed = true;
12440
12441	turn_off = was_visible && (!visible || mode_changed);
12442	turn_on = visible && (!was_visible || mode_changed);
12443
12444	DRM_DEBUG_ATOMIC("[CRTC:%d:%s] has [PLANE:%d:%s] with fb %i\n",
12445			 intel_crtc->base.base.id,
12446			 intel_crtc->base.name,
12447			 plane->base.id, plane->name,
12448			 fb ? fb->base.id : -1);
12449
12450	DRM_DEBUG_ATOMIC("[PLANE:%d:%s] visible %i -> %i, off %i, on %i, ms %i\n",
12451			 plane->base.id, plane->name,
12452			 was_visible, visible,
12453			 turn_off, turn_on, mode_changed);
12454
12455	if (turn_on) {
12456		pipe_config->update_wm_pre = true;
12457
12458		/* must disable cxsr around plane enable/disable */
12459		if (plane->type != DRM_PLANE_TYPE_CURSOR)
12460			pipe_config->disable_cxsr = true;
12461	} else if (turn_off) {
12462		pipe_config->update_wm_post = true;
12463
12464		/* must disable cxsr around plane enable/disable */
12465		if (plane->type != DRM_PLANE_TYPE_CURSOR)
12466			pipe_config->disable_cxsr = true;
12467	} else if (intel_wm_need_update(plane, plane_state)) {
12468		/* FIXME bollocks */
12469		pipe_config->update_wm_pre = true;
12470		pipe_config->update_wm_post = true;
12471	}
12472
12473	/* Pre-gen9 platforms need two-step watermark updates */
12474	if ((pipe_config->update_wm_pre || pipe_config->update_wm_post) &&
12475	    INTEL_GEN(dev_priv) < 9 && dev_priv->display.optimize_watermarks)
12476		to_intel_crtc_state(crtc_state)->wm.need_postvbl_update = true;
12477
12478	if (visible || was_visible)
12479		pipe_config->fb_bits |= to_intel_plane(plane)->frontbuffer_bit;
12480
12481	/*
12482	 * WaCxSRDisabledForSpriteScaling:ivb
12483	 *
12484	 * cstate->update_wm was already set above, so this flag will
12485	 * take effect when we commit and program watermarks.
12486	 */
12487	if (plane->type == DRM_PLANE_TYPE_OVERLAY && IS_IVYBRIDGE(dev_priv) &&
12488	    needs_scaling(to_intel_plane_state(plane_state)) &&
12489	    !needs_scaling(old_plane_state))
12490		pipe_config->disable_lp_wm = true;
12491
12492	return 0;
12493}
12494
12495static bool encoders_cloneable(const struct intel_encoder *a,
12496			       const struct intel_encoder *b)
12497{
12498	/* masks could be asymmetric, so check both ways */
12499	return a == b || (a->cloneable & (1 << b->type) &&
12500			  b->cloneable & (1 << a->type));
12501}
12502
12503static bool check_single_encoder_cloning(struct drm_atomic_state *state,
12504					 struct intel_crtc *crtc,
12505					 struct intel_encoder *encoder)
12506{
12507	struct intel_encoder *source_encoder;
12508	struct drm_connector *connector;
12509	struct drm_connector_state *connector_state;
12510	int i;
12511
12512	for_each_connector_in_state(state, connector, connector_state, i) {
12513		if (connector_state->crtc != &crtc->base)
12514			continue;
12515
12516		source_encoder =
12517			to_intel_encoder(connector_state->best_encoder);
12518		if (!encoders_cloneable(encoder, source_encoder))
12519			return false;
12520	}
12521
12522	return true;
12523}
12524
12525static int intel_crtc_atomic_check(struct drm_crtc *crtc,
12526				   struct drm_crtc_state *crtc_state)
12527{
12528	struct drm_device *dev = crtc->dev;
12529	struct drm_i915_private *dev_priv = to_i915(dev);
12530	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12531	struct intel_crtc_state *pipe_config =
12532		to_intel_crtc_state(crtc_state);
12533	struct drm_atomic_state *state = crtc_state->state;
12534	int ret;
12535	bool mode_changed = needs_modeset(crtc_state);
12536
12537	if (mode_changed && !crtc_state->active)
12538		pipe_config->update_wm_post = true;
12539
12540	if (mode_changed && crtc_state->enable &&
12541	    dev_priv->display.crtc_compute_clock &&
12542	    !WARN_ON(pipe_config->shared_dpll)) {
12543		ret = dev_priv->display.crtc_compute_clock(intel_crtc,
12544							   pipe_config);
12545		if (ret)
12546			return ret;
12547	}
12548
12549	if (crtc_state->color_mgmt_changed) {
12550		ret = intel_color_check(crtc, crtc_state);
12551		if (ret)
12552			return ret;
12553
12554		/*
12555		 * Changing color management on Intel hardware is
12556		 * handled as part of planes update.
12557		 */
12558		crtc_state->planes_changed = true;
12559	}
12560
12561	ret = 0;
12562	if (dev_priv->display.compute_pipe_wm) {
12563		ret = dev_priv->display.compute_pipe_wm(pipe_config);
12564		if (ret) {
12565			DRM_DEBUG_KMS("Target pipe watermarks are invalid\n");
12566			return ret;
12567		}
12568	}
12569
12570	if (dev_priv->display.compute_intermediate_wm &&
12571	    !to_intel_atomic_state(state)->skip_intermediate_wm) {
12572		if (WARN_ON(!dev_priv->display.compute_pipe_wm))
12573			return 0;
12574
12575		/*
12576		 * Calculate 'intermediate' watermarks that satisfy both the
12577		 * old state and the new state.  We can program these
12578		 * immediately.
12579		 */
12580		ret = dev_priv->display.compute_intermediate_wm(dev,
12581								intel_crtc,
12582								pipe_config);
12583		if (ret) {
12584			DRM_DEBUG_KMS("No valid intermediate pipe watermarks are possible\n");
12585			return ret;
12586		}
12587	} else if (dev_priv->display.compute_intermediate_wm) {
12588		if (HAS_PCH_SPLIT(dev_priv) && INTEL_GEN(dev_priv) < 9)
12589			pipe_config->wm.ilk.intermediate = pipe_config->wm.ilk.optimal;
12590	}
12591
12592	if (INTEL_GEN(dev_priv) >= 9) {
12593		if (mode_changed)
12594			ret = skl_update_scaler_crtc(pipe_config);
12595
12596		if (!ret)
12597			ret = intel_atomic_setup_scalers(dev, intel_crtc,
12598							 pipe_config);
12599	}
12600
12601	return ret;
12602}
12603
12604static const struct drm_crtc_helper_funcs intel_helper_funcs = {
12605	.mode_set_base_atomic = intel_pipe_set_base_atomic,
12606	.atomic_begin = intel_begin_crtc_commit,
12607	.atomic_flush = intel_finish_crtc_commit,
12608	.atomic_check = intel_crtc_atomic_check,
12609};
12610
12611static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
12612{
12613	struct intel_connector *connector;
12614
12615	for_each_intel_connector(dev, connector) {
12616		if (connector->base.state->crtc)
12617			drm_connector_unreference(&connector->base);
12618
12619		if (connector->base.encoder) {
12620			connector->base.state->best_encoder =
12621				connector->base.encoder;
12622			connector->base.state->crtc =
12623				connector->base.encoder->crtc;
12624
12625			drm_connector_reference(&connector->base);
12626		} else {
12627			connector->base.state->best_encoder = NULL;
12628			connector->base.state->crtc = NULL;
12629		}
12630	}
12631}
12632
12633static void
12634connected_sink_compute_bpp(struct intel_connector *connector,
12635			   struct intel_crtc_state *pipe_config)
12636{
12637	const struct drm_display_info *info = &connector->base.display_info;
12638	int bpp = pipe_config->pipe_bpp;
12639
12640	DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
12641		      connector->base.base.id,
12642		      connector->base.name);
12643
12644	/* Don't use an invalid EDID bpc value */
12645	if (info->bpc != 0 && info->bpc * 3 < bpp) {
12646		DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
12647			      bpp, info->bpc * 3);
12648		pipe_config->pipe_bpp = info->bpc * 3;
12649	}
12650
12651	/* Clamp bpp to 8 on screens without EDID 1.4 */
12652	if (info->bpc == 0 && bpp > 24) {
12653		DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
12654			      bpp);
12655		pipe_config->pipe_bpp = 24;
12656	}
12657}
12658
12659static int
12660compute_baseline_pipe_bpp(struct intel_crtc *crtc,
12661			  struct intel_crtc_state *pipe_config)
12662{
12663	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
12664	struct drm_atomic_state *state;
12665	struct drm_connector *connector;
12666	struct drm_connector_state *connector_state;
12667	int bpp, i;
12668
12669	if ((IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
12670	    IS_CHERRYVIEW(dev_priv)))
12671		bpp = 10*3;
12672	else if (INTEL_GEN(dev_priv) >= 5)
12673		bpp = 12*3;
12674	else
12675		bpp = 8*3;
12676
12677
12678	pipe_config->pipe_bpp = bpp;
12679
12680	state = pipe_config->base.state;
12681
12682	/* Clamp display bpp to EDID value */
12683	for_each_connector_in_state(state, connector, connector_state, i) {
12684		if (connector_state->crtc != &crtc->base)
12685			continue;
12686
12687		connected_sink_compute_bpp(to_intel_connector(connector),
12688					   pipe_config);
12689	}
12690
12691	return bpp;
12692}
12693
12694static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
12695{
12696	DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
12697			"type: 0x%x flags: 0x%x\n",
12698		mode->crtc_clock,
12699		mode->crtc_hdisplay, mode->crtc_hsync_start,
12700		mode->crtc_hsync_end, mode->crtc_htotal,
12701		mode->crtc_vdisplay, mode->crtc_vsync_start,
12702		mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
12703}
12704
12705static inline void
12706intel_dump_m_n_config(struct intel_crtc_state *pipe_config, char *id,
12707		      unsigned int lane_count, struct intel_link_m_n *m_n)
12708{
12709	DRM_DEBUG_KMS("%s: lanes: %i; gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
12710		      id, lane_count,
12711		      m_n->gmch_m, m_n->gmch_n,
12712		      m_n->link_m, m_n->link_n, m_n->tu);
12713}
12714
12715static void intel_dump_pipe_config(struct intel_crtc *crtc,
12716				   struct intel_crtc_state *pipe_config,
12717				   const char *context)
12718{
12719	struct drm_device *dev = crtc->base.dev;
12720	struct drm_i915_private *dev_priv = to_i915(dev);
12721	struct drm_plane *plane;
12722	struct intel_plane *intel_plane;
12723	struct intel_plane_state *state;
12724	struct drm_framebuffer *fb;
12725
12726	DRM_DEBUG_KMS("[CRTC:%d:%s]%s\n",
12727		      crtc->base.base.id, crtc->base.name, context);
12728
12729	DRM_DEBUG_KMS("cpu_transcoder: %s, pipe bpp: %i, dithering: %i\n",
12730		      transcoder_name(pipe_config->cpu_transcoder),
12731		      pipe_config->pipe_bpp, pipe_config->dither);
12732
12733	if (pipe_config->has_pch_encoder)
12734		intel_dump_m_n_config(pipe_config, "fdi",
12735				      pipe_config->fdi_lanes,
12736				      &pipe_config->fdi_m_n);
12737
12738	if (intel_crtc_has_dp_encoder(pipe_config)) {
12739		intel_dump_m_n_config(pipe_config, "dp m_n",
12740				pipe_config->lane_count, &pipe_config->dp_m_n);
12741		if (pipe_config->has_drrs)
12742			intel_dump_m_n_config(pipe_config, "dp m2_n2",
12743					      pipe_config->lane_count,
12744					      &pipe_config->dp_m2_n2);
12745	}
12746
12747	DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
12748		      pipe_config->has_audio, pipe_config->has_infoframe);
12749
12750	DRM_DEBUG_KMS("requested mode:\n");
12751	drm_mode_debug_printmodeline(&pipe_config->base.mode);
12752	DRM_DEBUG_KMS("adjusted mode:\n");
12753	drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
12754	intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
12755	DRM_DEBUG_KMS("port clock: %d, pipe src size: %dx%d\n",
12756		      pipe_config->port_clock,
12757		      pipe_config->pipe_src_w, pipe_config->pipe_src_h);
12758
12759	if (INTEL_GEN(dev_priv) >= 9)
12760		DRM_DEBUG_KMS("num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n",
12761			      crtc->num_scalers,
12762			      pipe_config->scaler_state.scaler_users,
12763		              pipe_config->scaler_state.scaler_id);
12764
12765	if (HAS_GMCH_DISPLAY(dev_priv))
12766		DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
12767			      pipe_config->gmch_pfit.control,
12768			      pipe_config->gmch_pfit.pgm_ratios,
12769			      pipe_config->gmch_pfit.lvds_border_bits);
12770	else
12771		DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
12772			      pipe_config->pch_pfit.pos,
12773			      pipe_config->pch_pfit.size,
12774		              enableddisabled(pipe_config->pch_pfit.enabled));
12775
12776	DRM_DEBUG_KMS("ips: %i, double wide: %i\n",
12777		      pipe_config->ips_enabled, pipe_config->double_wide);
12778
12779	if (IS_BROXTON(dev_priv)) {
12780		DRM_DEBUG_KMS("dpll_hw_state: ebb0: 0x%x, ebb4: 0x%x,"
12781			      "pll0: 0x%x, pll1: 0x%x, pll2: 0x%x, pll3: 0x%x, "
12782			      "pll6: 0x%x, pll8: 0x%x, pll9: 0x%x, pll10: 0x%x, pcsdw12: 0x%x\n",
12783			      pipe_config->dpll_hw_state.ebb0,
12784			      pipe_config->dpll_hw_state.ebb4,
12785			      pipe_config->dpll_hw_state.pll0,
12786			      pipe_config->dpll_hw_state.pll1,
12787			      pipe_config->dpll_hw_state.pll2,
12788			      pipe_config->dpll_hw_state.pll3,
12789			      pipe_config->dpll_hw_state.pll6,
12790			      pipe_config->dpll_hw_state.pll8,
12791			      pipe_config->dpll_hw_state.pll9,
12792			      pipe_config->dpll_hw_state.pll10,
12793			      pipe_config->dpll_hw_state.pcsdw12);
12794	} else if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
12795		DRM_DEBUG_KMS("dpll_hw_state: "
12796			      "ctrl1: 0x%x, cfgcr1: 0x%x, cfgcr2: 0x%x\n",
12797			      pipe_config->dpll_hw_state.ctrl1,
12798			      pipe_config->dpll_hw_state.cfgcr1,
12799			      pipe_config->dpll_hw_state.cfgcr2);
12800	} else if (HAS_DDI(dev_priv)) {
12801		DRM_DEBUG_KMS("dpll_hw_state: wrpll: 0x%x spll: 0x%x\n",
12802			      pipe_config->dpll_hw_state.wrpll,
12803			      pipe_config->dpll_hw_state.spll);
12804	} else {
12805		DRM_DEBUG_KMS("dpll_hw_state: dpll: 0x%x, dpll_md: 0x%x, "
12806			      "fp0: 0x%x, fp1: 0x%x\n",
12807			      pipe_config->dpll_hw_state.dpll,
12808			      pipe_config->dpll_hw_state.dpll_md,
12809			      pipe_config->dpll_hw_state.fp0,
12810			      pipe_config->dpll_hw_state.fp1);
12811	}
12812
12813	DRM_DEBUG_KMS("planes on this crtc\n");
12814	list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
12815		struct drm_format_name_buf format_name;
12816		intel_plane = to_intel_plane(plane);
12817		if (intel_plane->pipe != crtc->pipe)
12818			continue;
12819
12820		state = to_intel_plane_state(plane->state);
12821		fb = state->base.fb;
12822		if (!fb) {
12823			DRM_DEBUG_KMS("[PLANE:%d:%s] disabled, scaler_id = %d\n",
12824				      plane->base.id, plane->name, state->scaler_id);
12825			continue;
12826		}
12827
12828		DRM_DEBUG_KMS("[PLANE:%d:%s] FB:%d, fb = %ux%u format = %s\n",
12829			      plane->base.id, plane->name,
12830			      fb->base.id, fb->width, fb->height,
12831			      drm_get_format_name(fb->pixel_format, &format_name));
12832		if (INTEL_GEN(dev_priv) >= 9)
12833			DRM_DEBUG_KMS("\tscaler:%d src %dx%d+%d+%d dst %dx%d+%d+%d\n",
12834				      state->scaler_id,
12835				      state->base.src.x1 >> 16,
12836				      state->base.src.y1 >> 16,
12837				      drm_rect_width(&state->base.src) >> 16,
12838				      drm_rect_height(&state->base.src) >> 16,
12839				      state->base.dst.x1, state->base.dst.y1,
12840				      drm_rect_width(&state->base.dst),
12841				      drm_rect_height(&state->base.dst));
12842	}
12843}
12844
12845static bool check_digital_port_conflicts(struct drm_atomic_state *state)
12846{
12847	struct drm_device *dev = state->dev;
12848	struct drm_connector *connector;
12849	unsigned int used_ports = 0;
12850	unsigned int used_mst_ports = 0;
12851
12852	/*
12853	 * Walk the connector list instead of the encoder
12854	 * list to detect the problem on ddi platforms
12855	 * where there's just one encoder per digital port.
12856	 */
12857	drm_for_each_connector(connector, dev) {
12858		struct drm_connector_state *connector_state;
12859		struct intel_encoder *encoder;
12860
12861		connector_state = drm_atomic_get_existing_connector_state(state, connector);
12862		if (!connector_state)
12863			connector_state = connector->state;
12864
12865		if (!connector_state->best_encoder)
12866			continue;
12867
12868		encoder = to_intel_encoder(connector_state->best_encoder);
12869
12870		WARN_ON(!connector_state->crtc);
12871
12872		switch (encoder->type) {
12873			unsigned int port_mask;
12874		case INTEL_OUTPUT_UNKNOWN:
12875			if (WARN_ON(!HAS_DDI(to_i915(dev))))
12876				break;
12877		case INTEL_OUTPUT_DP:
12878		case INTEL_OUTPUT_HDMI:
12879		case INTEL_OUTPUT_EDP:
12880			port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
12881
12882			/* the same port mustn't appear more than once */
12883			if (used_ports & port_mask)
12884				return false;
12885
12886			used_ports |= port_mask;
12887			break;
12888		case INTEL_OUTPUT_DP_MST:
12889			used_mst_ports |=
12890				1 << enc_to_mst(&encoder->base)->primary->port;
12891			break;
12892		default:
12893			break;
12894		}
12895	}
12896
12897	/* can't mix MST and SST/HDMI on the same port */
12898	if (used_ports & used_mst_ports)
12899		return false;
12900
12901	return true;
12902}
12903
12904static void
12905clear_intel_crtc_state(struct intel_crtc_state *crtc_state)
12906{
12907	struct drm_crtc_state tmp_state;
12908	struct intel_crtc_scaler_state scaler_state;
12909	struct intel_dpll_hw_state dpll_hw_state;
12910	struct intel_shared_dpll *shared_dpll;
12911	bool force_thru;
12912
12913	/* FIXME: before the switch to atomic started, a new pipe_config was
12914	 * kzalloc'd. Code that depends on any field being zero should be
12915	 * fixed, so that the crtc_state can be safely duplicated. For now,
12916	 * only fields that are know to not cause problems are preserved. */
12917
12918	tmp_state = crtc_state->base;
12919	scaler_state = crtc_state->scaler_state;
12920	shared_dpll = crtc_state->shared_dpll;
12921	dpll_hw_state = crtc_state->dpll_hw_state;
12922	force_thru = crtc_state->pch_pfit.force_thru;
12923
12924	memset(crtc_state, 0, sizeof *crtc_state);
12925
12926	crtc_state->base = tmp_state;
12927	crtc_state->scaler_state = scaler_state;
12928	crtc_state->shared_dpll = shared_dpll;
12929	crtc_state->dpll_hw_state = dpll_hw_state;
12930	crtc_state->pch_pfit.force_thru = force_thru;
12931}
12932
12933static int
12934intel_modeset_pipe_config(struct drm_crtc *crtc,
12935			  struct intel_crtc_state *pipe_config)
12936{
12937	struct drm_atomic_state *state = pipe_config->base.state;
12938	struct intel_encoder *encoder;
12939	struct drm_connector *connector;
12940	struct drm_connector_state *connector_state;
12941	int base_bpp, ret = -EINVAL;
12942	int i;
12943	bool retry = true;
12944
12945	clear_intel_crtc_state(pipe_config);
12946
12947	pipe_config->cpu_transcoder =
12948		(enum transcoder) to_intel_crtc(crtc)->pipe;
12949
12950	/*
12951	 * Sanitize sync polarity flags based on requested ones. If neither
12952	 * positive or negative polarity is requested, treat this as meaning
12953	 * negative polarity.
12954	 */
12955	if (!(pipe_config->base.adjusted_mode.flags &
12956	      (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
12957		pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
12958
12959	if (!(pipe_config->base.adjusted_mode.flags &
12960	      (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
12961		pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
12962
12963	base_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
12964					     pipe_config);
12965	if (base_bpp < 0)
12966		goto fail;
12967
12968	/*
12969	 * Determine the real pipe dimensions. Note that stereo modes can
12970	 * increase the actual pipe size due to the frame doubling and
12971	 * insertion of additional space for blanks between the frame. This
12972	 * is stored in the crtc timings. We use the requested mode to do this
12973	 * computation to clearly distinguish it from the adjusted mode, which
12974	 * can be changed by the connectors in the below retry loop.
12975	 */
12976	drm_crtc_get_hv_timing(&pipe_config->base.mode,
12977			       &pipe_config->pipe_src_w,
12978			       &pipe_config->pipe_src_h);
12979
12980	for_each_connector_in_state(state, connector, connector_state, i) {
12981		if (connector_state->crtc != crtc)
12982			continue;
12983
12984		encoder = to_intel_encoder(connector_state->best_encoder);
12985
12986		if (!check_single_encoder_cloning(state, to_intel_crtc(crtc), encoder)) {
12987			DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
12988			goto fail;
12989		}
12990
12991		/*
12992		 * Determine output_types before calling the .compute_config()
12993		 * hooks so that the hooks can use this information safely.
12994		 */
12995		pipe_config->output_types |= 1 << encoder->type;
12996	}
12997
12998encoder_retry:
12999	/* Ensure the port clock defaults are reset when retrying. */
13000	pipe_config->port_clock = 0;
13001	pipe_config->pixel_multiplier = 1;
13002
13003	/* Fill in default crtc timings, allow encoders to overwrite them. */
13004	drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
13005			      CRTC_STEREO_DOUBLE);
13006
13007	/* Pass our mode to the connectors and the CRTC to give them a chance to
13008	 * adjust it according to limitations or connector properties, and also
13009	 * a chance to reject the mode entirely.
13010	 */
13011	for_each_connector_in_state(state, connector, connector_state, i) {
13012		if (connector_state->crtc != crtc)
13013			continue;
13014
13015		encoder = to_intel_encoder(connector_state->best_encoder);
13016
13017		if (!(encoder->compute_config(encoder, pipe_config, connector_state))) {
13018			DRM_DEBUG_KMS("Encoder config failure\n");
13019			goto fail;
13020		}
13021	}
13022
13023	/* Set default port clock if not overwritten by the encoder. Needs to be
13024	 * done afterwards in case the encoder adjusts the mode. */
13025	if (!pipe_config->port_clock)
13026		pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
13027			* pipe_config->pixel_multiplier;
13028
13029	ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
13030	if (ret < 0) {
13031		DRM_DEBUG_KMS("CRTC fixup failed\n");
13032		goto fail;
13033	}
13034
13035	if (ret == RETRY) {
13036		if (WARN(!retry, "loop in pipe configuration computation\n")) {
13037			ret = -EINVAL;
13038			goto fail;
13039		}
13040
13041		DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
13042		retry = false;
13043		goto encoder_retry;
13044	}
13045
13046	/* Dithering seems to not pass-through bits correctly when it should, so
13047	 * only enable it on 6bpc panels. */
13048	pipe_config->dither = pipe_config->pipe_bpp == 6*3;
13049	DRM_DEBUG_KMS("hw max bpp: %i, pipe bpp: %i, dithering: %i\n",
13050		      base_bpp, pipe_config->pipe_bpp, pipe_config->dither);
13051
13052fail:
13053	return ret;
13054}
13055
13056static void
13057intel_modeset_update_crtc_state(struct drm_atomic_state *state)
13058{
13059	struct drm_crtc *crtc;
13060	struct drm_crtc_state *crtc_state;
13061	int i;
13062
13063	/* Double check state. */
13064	for_each_crtc_in_state(state, crtc, crtc_state, i) {
13065		to_intel_crtc(crtc)->config = to_intel_crtc_state(crtc->state);
13066
13067		/* Update hwmode for vblank functions */
13068		if (crtc->state->active)
13069			crtc->hwmode = crtc->state->adjusted_mode;
13070		else
13071			crtc->hwmode.crtc_clock = 0;
13072
13073		/*
13074		 * Update legacy state to satisfy fbc code. This can
13075		 * be removed when fbc uses the atomic state.
13076		 */
13077		if (drm_atomic_get_existing_plane_state(state, crtc->primary)) {
13078			struct drm_plane_state *plane_state = crtc->primary->state;
13079
13080			crtc->primary->fb = plane_state->fb;
13081			crtc->x = plane_state->src_x >> 16;
13082			crtc->y = plane_state->src_y >> 16;
13083		}
13084	}
13085}
13086
13087static bool intel_fuzzy_clock_check(int clock1, int clock2)
13088{
13089	int diff;
13090
13091	if (clock1 == clock2)
13092		return true;
13093
13094	if (!clock1 || !clock2)
13095		return false;
13096
13097	diff = abs(clock1 - clock2);
13098
13099	if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
13100		return true;
13101
13102	return false;
13103}
13104
13105static bool
13106intel_compare_m_n(unsigned int m, unsigned int n,
13107		  unsigned int m2, unsigned int n2,
13108		  bool exact)
13109{
13110	if (m == m2 && n == n2)
13111		return true;
13112
13113	if (exact || !m || !n || !m2 || !n2)
13114		return false;
13115
13116	BUILD_BUG_ON(DATA_LINK_M_N_MASK > INT_MAX);
13117
13118	if (n > n2) {
13119		while (n > n2) {
13120			m2 <<= 1;
13121			n2 <<= 1;
13122		}
13123	} else if (n < n2) {
13124		while (n < n2) {
13125			m <<= 1;
13126			n <<= 1;
13127		}
13128	}
13129
13130	if (n != n2)
13131		return false;
13132
13133	return intel_fuzzy_clock_check(m, m2);
13134}
13135
13136static bool
13137intel_compare_link_m_n(const struct intel_link_m_n *m_n,
13138		       struct intel_link_m_n *m2_n2,
13139		       bool adjust)
13140{
13141	if (m_n->tu == m2_n2->tu &&
13142	    intel_compare_m_n(m_n->gmch_m, m_n->gmch_n,
13143			      m2_n2->gmch_m, m2_n2->gmch_n, !adjust) &&
13144	    intel_compare_m_n(m_n->link_m, m_n->link_n,
13145			      m2_n2->link_m, m2_n2->link_n, !adjust)) {
13146		if (adjust)
13147			*m2_n2 = *m_n;
13148
13149		return true;
13150	}
13151
13152	return false;
13153}
13154
13155static bool
13156intel_pipe_config_compare(struct drm_i915_private *dev_priv,
13157			  struct intel_crtc_state *current_config,
13158			  struct intel_crtc_state *pipe_config,
13159			  bool adjust)
13160{
13161	bool ret = true;
13162
13163#define INTEL_ERR_OR_DBG_KMS(fmt, ...) \
13164	do { \
13165		if (!adjust) \
13166			DRM_ERROR(fmt, ##__VA_ARGS__); \
13167		else \
13168			DRM_DEBUG_KMS(fmt, ##__VA_ARGS__); \
13169	} while (0)
13170
13171#define PIPE_CONF_CHECK_X(name)	\
13172	if (current_config->name != pipe_config->name) { \
13173		INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
13174			  "(expected 0x%08x, found 0x%08x)\n", \
13175			  current_config->name, \
13176			  pipe_config->name); \
13177		ret = false; \
13178	}
13179
13180#define PIPE_CONF_CHECK_I(name)	\
13181	if (current_config->name != pipe_config->name) { \
13182		INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
13183			  "(expected %i, found %i)\n", \
13184			  current_config->name, \
13185			  pipe_config->name); \
13186		ret = false; \
13187	}
13188
13189#define PIPE_CONF_CHECK_P(name)	\
13190	if (current_config->name != pipe_config->name) { \
13191		INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
13192			  "(expected %p, found %p)\n", \
13193			  current_config->name, \
13194			  pipe_config->name); \
13195		ret = false; \
13196	}
13197
13198#define PIPE_CONF_CHECK_M_N(name) \
13199	if (!intel_compare_link_m_n(&current_config->name, \
13200				    &pipe_config->name,\
13201				    adjust)) { \
13202		INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
13203			  "(expected tu %i gmch %i/%i link %i/%i, " \
13204			  "found tu %i, gmch %i/%i link %i/%i)\n", \
13205			  current_config->name.tu, \
13206			  current_config->name.gmch_m, \
13207			  current_config->name.gmch_n, \
13208			  current_config->name.link_m, \
13209			  current_config->name.link_n, \
13210			  pipe_config->name.tu, \
13211			  pipe_config->name.gmch_m, \
13212			  pipe_config->name.gmch_n, \
13213			  pipe_config->name.link_m, \
13214			  pipe_config->name.link_n); \
13215		ret = false; \
13216	}
13217
13218/* This is required for BDW+ where there is only one set of registers for
13219 * switching between high and low RR.
13220 * This macro can be used whenever a comparison has to be made between one
13221 * hw state and multiple sw state variables.
13222 */
13223#define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) \
13224	if (!intel_compare_link_m_n(&current_config->name, \
13225				    &pipe_config->name, adjust) && \
13226	    !intel_compare_link_m_n(&current_config->alt_name, \
13227				    &pipe_config->name, adjust)) { \
13228		INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
13229			  "(expected tu %i gmch %i/%i link %i/%i, " \
13230			  "or tu %i gmch %i/%i link %i/%i, " \
13231			  "found tu %i, gmch %i/%i link %i/%i)\n", \
13232			  current_config->name.tu, \
13233			  current_config->name.gmch_m, \
13234			  current_config->name.gmch_n, \
13235			  current_config->name.link_m, \
13236			  current_config->name.link_n, \
13237			  current_config->alt_name.tu, \
13238			  current_config->alt_name.gmch_m, \
13239			  current_config->alt_name.gmch_n, \
13240			  current_config->alt_name.link_m, \
13241			  current_config->alt_name.link_n, \
13242			  pipe_config->name.tu, \
13243			  pipe_config->name.gmch_m, \
13244			  pipe_config->name.gmch_n, \
13245			  pipe_config->name.link_m, \
13246			  pipe_config->name.link_n); \
13247		ret = false; \
13248	}
13249
13250#define PIPE_CONF_CHECK_FLAGS(name, mask)	\
13251	if ((current_config->name ^ pipe_config->name) & (mask)) { \
13252		INTEL_ERR_OR_DBG_KMS("mismatch in " #name "(" #mask ") " \
13253			  "(expected %i, found %i)\n", \
13254			  current_config->name & (mask), \
13255			  pipe_config->name & (mask)); \
13256		ret = false; \
13257	}
13258
13259#define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
13260	if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
13261		INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
13262			  "(expected %i, found %i)\n", \
13263			  current_config->name, \
13264			  pipe_config->name); \
13265		ret = false; \
13266	}
13267
13268#define PIPE_CONF_QUIRK(quirk)	\
13269	((current_config->quirks | pipe_config->quirks) & (quirk))
13270
13271	PIPE_CONF_CHECK_I(cpu_transcoder);
13272
13273	PIPE_CONF_CHECK_I(has_pch_encoder);
13274	PIPE_CONF_CHECK_I(fdi_lanes);
13275	PIPE_CONF_CHECK_M_N(fdi_m_n);
13276
13277	PIPE_CONF_CHECK_I(lane_count);
13278	PIPE_CONF_CHECK_X(lane_lat_optim_mask);
13279
13280	if (INTEL_GEN(dev_priv) < 8) {
13281		PIPE_CONF_CHECK_M_N(dp_m_n);
13282
13283		if (current_config->has_drrs)
13284			PIPE_CONF_CHECK_M_N(dp_m2_n2);
13285	} else
13286		PIPE_CONF_CHECK_M_N_ALT(dp_m_n, dp_m2_n2);
13287
13288	PIPE_CONF_CHECK_X(output_types);
13289
13290	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
13291	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
13292	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
13293	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
13294	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
13295	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
13296
13297	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
13298	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
13299	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
13300	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
13301	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
13302	PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
13303
13304	PIPE_CONF_CHECK_I(pixel_multiplier);
13305	PIPE_CONF_CHECK_I(has_hdmi_sink);
13306	if ((INTEL_GEN(dev_priv) < 8 && !IS_HASWELL(dev_priv)) ||
13307	    IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
13308		PIPE_CONF_CHECK_I(limited_color_range);
13309	PIPE_CONF_CHECK_I(has_infoframe);
13310
13311	PIPE_CONF_CHECK_I(has_audio);
13312
13313	PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
13314			      DRM_MODE_FLAG_INTERLACE);
13315
13316	if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
13317		PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
13318				      DRM_MODE_FLAG_PHSYNC);
13319		PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
13320				      DRM_MODE_FLAG_NHSYNC);
13321		PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
13322				      DRM_MODE_FLAG_PVSYNC);
13323		PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
13324				      DRM_MODE_FLAG_NVSYNC);
13325	}
13326
13327	PIPE_CONF_CHECK_X(gmch_pfit.control);
13328	/* pfit ratios are autocomputed by the hw on gen4+ */
13329	if (INTEL_GEN(dev_priv) < 4)
13330		PIPE_CONF_CHECK_X(gmch_pfit.pgm_ratios);
13331	PIPE_CONF_CHECK_X(gmch_pfit.lvds_border_bits);
13332
13333	if (!adjust) {
13334		PIPE_CONF_CHECK_I(pipe_src_w);
13335		PIPE_CONF_CHECK_I(pipe_src_h);
13336
13337		PIPE_CONF_CHECK_I(pch_pfit.enabled);
13338		if (current_config->pch_pfit.enabled) {
13339			PIPE_CONF_CHECK_X(pch_pfit.pos);
13340			PIPE_CONF_CHECK_X(pch_pfit.size);
13341		}
13342
13343		PIPE_CONF_CHECK_I(scaler_state.scaler_id);
13344	}
13345
13346	/* BDW+ don't expose a synchronous way to read the state */
13347	if (IS_HASWELL(dev_priv))
13348		PIPE_CONF_CHECK_I(ips_enabled);
13349
13350	PIPE_CONF_CHECK_I(double_wide);
13351
13352	PIPE_CONF_CHECK_P(shared_dpll);
13353	PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
13354	PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
13355	PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
13356	PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
13357	PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
13358	PIPE_CONF_CHECK_X(dpll_hw_state.spll);
13359	PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
13360	PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
13361	PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
13362
13363	PIPE_CONF_CHECK_X(dsi_pll.ctrl);
13364	PIPE_CONF_CHECK_X(dsi_pll.div);
13365
13366	if (IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5)
13367		PIPE_CONF_CHECK_I(pipe_bpp);
13368
13369	PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
13370	PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
13371
13372#undef PIPE_CONF_CHECK_X
13373#undef PIPE_CONF_CHECK_I
13374#undef PIPE_CONF_CHECK_P
13375#undef PIPE_CONF_CHECK_FLAGS
13376#undef PIPE_CONF_CHECK_CLOCK_FUZZY
13377#undef PIPE_CONF_QUIRK
13378#undef INTEL_ERR_OR_DBG_KMS
13379
13380	return ret;
13381}
13382
13383static void intel_pipe_config_sanity_check(struct drm_i915_private *dev_priv,
13384					   const struct intel_crtc_state *pipe_config)
13385{
13386	if (pipe_config->has_pch_encoder) {
13387		int fdi_dotclock = intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
13388							    &pipe_config->fdi_m_n);
13389		int dotclock = pipe_config->base.adjusted_mode.crtc_clock;
13390
13391		/*
13392		 * FDI already provided one idea for the dotclock.
13393		 * Yell if the encoder disagrees.
13394		 */
13395		WARN(!intel_fuzzy_clock_check(fdi_dotclock, dotclock),
13396		     "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
13397		     fdi_dotclock, dotclock);
13398	}
13399}
13400
13401static void verify_wm_state(struct drm_crtc *crtc,
13402			    struct drm_crtc_state *new_state)
13403{
13404	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
13405	struct skl_ddb_allocation hw_ddb, *sw_ddb;
13406	struct skl_pipe_wm hw_wm, *sw_wm;
13407	struct skl_plane_wm *hw_plane_wm, *sw_plane_wm;
13408	struct skl_ddb_entry *hw_ddb_entry, *sw_ddb_entry;
13409	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13410	const enum pipe pipe = intel_crtc->pipe;
13411	int plane, level, max_level = ilk_wm_max_level(dev_priv);
13412
13413	if (INTEL_GEN(dev_priv) < 9 || !new_state->active)
13414		return;
13415
13416	skl_pipe_wm_get_hw_state(crtc, &hw_wm);
13417	sw_wm = &to_intel_crtc_state(new_state)->wm.skl.optimal;
13418
13419	skl_ddb_get_hw_state(dev_priv, &hw_ddb);
13420	sw_ddb = &dev_priv->wm.skl_hw.ddb;
13421
13422	/* planes */
13423	for_each_universal_plane(dev_priv, pipe, plane) {
13424		hw_plane_wm = &hw_wm.planes[plane];
13425		sw_plane_wm = &sw_wm->planes[plane];
13426
13427		/* Watermarks */
13428		for (level = 0; level <= max_level; level++) {
13429			if (skl_wm_level_equals(&hw_plane_wm->wm[level],
13430						&sw_plane_wm->wm[level]))
13431				continue;
13432
13433			DRM_ERROR("mismatch in WM pipe %c plane %d level %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
13434				  pipe_name(pipe), plane + 1, level,
13435				  sw_plane_wm->wm[level].plane_en,
13436				  sw_plane_wm->wm[level].plane_res_b,
13437				  sw_plane_wm->wm[level].plane_res_l,
13438				  hw_plane_wm->wm[level].plane_en,
13439				  hw_plane_wm->wm[level].plane_res_b,
13440				  hw_plane_wm->wm[level].plane_res_l);
13441		}
13442
13443		if (!skl_wm_level_equals(&hw_plane_wm->trans_wm,
13444					 &sw_plane_wm->trans_wm)) {
13445			DRM_ERROR("mismatch in trans WM pipe %c plane %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
13446				  pipe_name(pipe), plane + 1,
13447				  sw_plane_wm->trans_wm.plane_en,
13448				  sw_plane_wm->trans_wm.plane_res_b,
13449				  sw_plane_wm->trans_wm.plane_res_l,
13450				  hw_plane_wm->trans_wm.plane_en,
13451				  hw_plane_wm->trans_wm.plane_res_b,
13452				  hw_plane_wm->trans_wm.plane_res_l);
13453		}
13454
13455		/* DDB */
13456		hw_ddb_entry = &hw_ddb.plane[pipe][plane];
13457		sw_ddb_entry = &sw_ddb->plane[pipe][plane];
13458
13459		if (!skl_ddb_entry_equal(hw_ddb_entry, sw_ddb_entry)) {
13460			DRM_ERROR("mismatch in DDB state pipe %c plane %d (expected (%u,%u), found (%u,%u))\n",
13461				  pipe_name(pipe), plane + 1,
13462				  sw_ddb_entry->start, sw_ddb_entry->end,
13463				  hw_ddb_entry->start, hw_ddb_entry->end);
13464		}
13465	}
13466
13467	/*
13468	 * cursor
13469	 * If the cursor plane isn't active, we may not have updated it's ddb
13470	 * allocation. In that case since the ddb allocation will be updated
13471	 * once the plane becomes visible, we can skip this check
13472	 */
13473	if (intel_crtc->cursor_addr) {
13474		hw_plane_wm = &hw_wm.planes[PLANE_CURSOR];
13475		sw_plane_wm = &sw_wm->planes[PLANE_CURSOR];
13476
13477		/* Watermarks */
13478		for (level = 0; level <= max_level; level++) {
13479			if (skl_wm_level_equals(&hw_plane_wm->wm[level],
13480						&sw_plane_wm->wm[level]))
13481				continue;
13482
13483			DRM_ERROR("mismatch in WM pipe %c cursor level %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
13484				  pipe_name(pipe), level,
13485				  sw_plane_wm->wm[level].plane_en,
13486				  sw_plane_wm->wm[level].plane_res_b,
13487				  sw_plane_wm->wm[level].plane_res_l,
13488				  hw_plane_wm->wm[level].plane_en,
13489				  hw_plane_wm->wm[level].plane_res_b,
13490				  hw_plane_wm->wm[level].plane_res_l);
13491		}
13492
13493		if (!skl_wm_level_equals(&hw_plane_wm->trans_wm,
13494					 &sw_plane_wm->trans_wm)) {
13495			DRM_ERROR("mismatch in trans WM pipe %c cursor (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
13496				  pipe_name(pipe),
13497				  sw_plane_wm->trans_wm.plane_en,
13498				  sw_plane_wm->trans_wm.plane_res_b,
13499				  sw_plane_wm->trans_wm.plane_res_l,
13500				  hw_plane_wm->trans_wm.plane_en,
13501				  hw_plane_wm->trans_wm.plane_res_b,
13502				  hw_plane_wm->trans_wm.plane_res_l);
13503		}
13504
13505		/* DDB */
13506		hw_ddb_entry = &hw_ddb.plane[pipe][PLANE_CURSOR];
13507		sw_ddb_entry = &sw_ddb->plane[pipe][PLANE_CURSOR];
13508
13509		if (!skl_ddb_entry_equal(hw_ddb_entry, sw_ddb_entry)) {
13510			DRM_ERROR("mismatch in DDB state pipe %c cursor (expected (%u,%u), found (%u,%u))\n",
13511				  pipe_name(pipe),
13512				  sw_ddb_entry->start, sw_ddb_entry->end,
13513				  hw_ddb_entry->start, hw_ddb_entry->end);
13514		}
13515	}
13516}
13517
13518static void
13519verify_connector_state(struct drm_device *dev,
13520		       struct drm_atomic_state *state,
13521		       struct drm_crtc *crtc)
13522{
13523	struct drm_connector *connector;
13524	struct drm_connector_state *old_conn_state;
13525	int i;
13526
13527	for_each_connector_in_state(state, connector, old_conn_state, i) {
13528		struct drm_encoder *encoder = connector->encoder;
13529		struct drm_connector_state *state = connector->state;
13530
13531		if (state->crtc != crtc)
13532			continue;
13533
13534		intel_connector_verify_state(to_intel_connector(connector));
13535
13536		I915_STATE_WARN(state->best_encoder != encoder,
13537		     "connector's atomic encoder doesn't match legacy encoder\n");
13538	}
13539}
13540
13541static void
13542verify_encoder_state(struct drm_device *dev)
13543{
13544	struct intel_encoder *encoder;
13545	struct intel_connector *connector;
13546
13547	for_each_intel_encoder(dev, encoder) {
13548		bool enabled = false;
13549		enum pipe pipe;
13550
13551		DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
13552			      encoder->base.base.id,
13553			      encoder->base.name);
13554
13555		for_each_intel_connector(dev, connector) {
13556			if (connector->base.state->best_encoder != &encoder->base)
13557				continue;
13558			enabled = true;
13559
13560			I915_STATE_WARN(connector->base.state->crtc !=
13561					encoder->base.crtc,
13562			     "connector's crtc doesn't match encoder crtc\n");
13563		}
13564
13565		I915_STATE_WARN(!!encoder->base.crtc != enabled,
13566		     "encoder's enabled state mismatch "
13567		     "(expected %i, found %i)\n",
13568		     !!encoder->base.crtc, enabled);
13569
13570		if (!encoder->base.crtc) {
13571			bool active;
13572
13573			active = encoder->get_hw_state(encoder, &pipe);
13574			I915_STATE_WARN(active,
13575			     "encoder detached but still enabled on pipe %c.\n",
13576			     pipe_name(pipe));
13577		}
13578	}
13579}
13580
13581static void
13582verify_crtc_state(struct drm_crtc *crtc,
13583		  struct drm_crtc_state *old_crtc_state,
13584		  struct drm_crtc_state *new_crtc_state)
13585{
13586	struct drm_device *dev = crtc->dev;
13587	struct drm_i915_private *dev_priv = to_i915(dev);
13588	struct intel_encoder *encoder;
13589	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13590	struct intel_crtc_state *pipe_config, *sw_config;
13591	struct drm_atomic_state *old_state;
13592	bool active;
13593
13594	old_state = old_crtc_state->state;
13595	__drm_atomic_helper_crtc_destroy_state(old_crtc_state);
13596	pipe_config = to_intel_crtc_state(old_crtc_state);
13597	memset(pipe_config, 0, sizeof(*pipe_config));
13598	pipe_config->base.crtc = crtc;
13599	pipe_config->base.state = old_state;
13600
13601	DRM_DEBUG_KMS("[CRTC:%d:%s]\n", crtc->base.id, crtc->name);
13602
13603	active = dev_priv->display.get_pipe_config(intel_crtc, pipe_config);
13604
13605	/* hw state is inconsistent with the pipe quirk */
13606	if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
13607	    (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
13608		active = new_crtc_state->active;
13609
13610	I915_STATE_WARN(new_crtc_state->active != active,
13611	     "crtc active state doesn't match with hw state "
13612	     "(expected %i, found %i)\n", new_crtc_state->active, active);
13613
13614	I915_STATE_WARN(intel_crtc->active != new_crtc_state->active,
13615	     "transitional active state does not match atomic hw state "
13616	     "(expected %i, found %i)\n", new_crtc_state->active, intel_crtc->active);
13617
13618	for_each_encoder_on_crtc(dev, crtc, encoder) {
13619		enum pipe pipe;
13620
13621		active = encoder->get_hw_state(encoder, &pipe);
13622		I915_STATE_WARN(active != new_crtc_state->active,
13623			"[ENCODER:%i] active %i with crtc active %i\n",
13624			encoder->base.base.id, active, new_crtc_state->active);
13625
13626		I915_STATE_WARN(active && intel_crtc->pipe != pipe,
13627				"Encoder connected to wrong pipe %c\n",
13628				pipe_name(pipe));
13629
13630		if (active) {
13631			pipe_config->output_types |= 1 << encoder->type;
13632			encoder->get_config(encoder, pipe_config);
13633		}
13634	}
13635
13636	if (!new_crtc_state->active)
13637		return;
13638
13639	intel_pipe_config_sanity_check(dev_priv, pipe_config);
13640
13641	sw_config = to_intel_crtc_state(crtc->state);
13642	if (!intel_pipe_config_compare(dev_priv, sw_config,
13643				       pipe_config, false)) {
13644		I915_STATE_WARN(1, "pipe state doesn't match!\n");
13645		intel_dump_pipe_config(intel_crtc, pipe_config,
13646				       "[hw state]");
13647		intel_dump_pipe_config(intel_crtc, sw_config,
13648				       "[sw state]");
13649	}
13650}
13651
13652static void
13653verify_single_dpll_state(struct drm_i915_private *dev_priv,
13654			 struct intel_shared_dpll *pll,
13655			 struct drm_crtc *crtc,
13656			 struct drm_crtc_state *new_state)
13657{
13658	struct intel_dpll_hw_state dpll_hw_state;
13659	unsigned crtc_mask;
13660	bool active;
13661
13662	memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
13663
13664	DRM_DEBUG_KMS("%s\n", pll->name);
13665
13666	active = pll->funcs.get_hw_state(dev_priv, pll, &dpll_hw_state);
13667
13668	if (!(pll->flags & INTEL_DPLL_ALWAYS_ON)) {
13669		I915_STATE_WARN(!pll->on && pll->active_mask,
13670		     "pll in active use but not on in sw tracking\n");
13671		I915_STATE_WARN(pll->on && !pll->active_mask,
13672		     "pll is on but not used by any active crtc\n");
13673		I915_STATE_WARN(pll->on != active,
13674		     "pll on state mismatch (expected %i, found %i)\n",
13675		     pll->on, active);
13676	}
13677
13678	if (!crtc) {
13679		I915_STATE_WARN(pll->active_mask & ~pll->config.crtc_mask,
13680				"more active pll users than references: %x vs %x\n",
13681				pll->active_mask, pll->config.crtc_mask);
13682
13683		return;
13684	}
13685
13686	crtc_mask = 1 << drm_crtc_index(crtc);
13687
13688	if (new_state->active)
13689		I915_STATE_WARN(!(pll->active_mask & crtc_mask),
13690				"pll active mismatch (expected pipe %c in active mask 0x%02x)\n",
13691				pipe_name(drm_crtc_index(crtc)), pll->active_mask);
13692	else
13693		I915_STATE_WARN(pll->active_mask & crtc_mask,
13694				"pll active mismatch (didn't expect pipe %c in active mask 0x%02x)\n",
13695				pipe_name(drm_crtc_index(crtc)), pll->active_mask);
13696
13697	I915_STATE_WARN(!(pll->config.crtc_mask & crtc_mask),
13698			"pll enabled crtcs mismatch (expected 0x%x in 0x%02x)\n",
13699			crtc_mask, pll->config.crtc_mask);
13700
13701	I915_STATE_WARN(pll->on && memcmp(&pll->config.hw_state,
13702					  &dpll_hw_state,
13703					  sizeof(dpll_hw_state)),
13704			"pll hw state mismatch\n");
13705}
13706
13707static void
13708verify_shared_dpll_state(struct drm_device *dev, struct drm_crtc *crtc,
13709			 struct drm_crtc_state *old_crtc_state,
13710			 struct drm_crtc_state *new_crtc_state)
13711{
13712	struct drm_i915_private *dev_priv = to_i915(dev);
13713	struct intel_crtc_state *old_state = to_intel_crtc_state(old_crtc_state);
13714	struct intel_crtc_state *new_state = to_intel_crtc_state(new_crtc_state);
13715
13716	if (new_state->shared_dpll)
13717		verify_single_dpll_state(dev_priv, new_state->shared_dpll, crtc, new_crtc_state);
13718
13719	if (old_state->shared_dpll &&
13720	    old_state->shared_dpll != new_state->shared_dpll) {
13721		unsigned crtc_mask = 1 << drm_crtc_index(crtc);
13722		struct intel_shared_dpll *pll = old_state->shared_dpll;
13723
13724		I915_STATE_WARN(pll->active_mask & crtc_mask,
13725				"pll active mismatch (didn't expect pipe %c in active mask)\n",
13726				pipe_name(drm_crtc_index(crtc)));
13727		I915_STATE_WARN(pll->config.crtc_mask & crtc_mask,
13728				"pll enabled crtcs mismatch (found %x in enabled mask)\n",
13729				pipe_name(drm_crtc_index(crtc)));
13730	}
13731}
13732
13733static void
13734intel_modeset_verify_crtc(struct drm_crtc *crtc,
13735			  struct drm_atomic_state *state,
13736			  struct drm_crtc_state *old_state,
13737			  struct drm_crtc_state *new_state)
13738{
13739	if (!needs_modeset(new_state) &&
13740	    !to_intel_crtc_state(new_state)->update_pipe)
13741		return;
13742
13743	verify_wm_state(crtc, new_state);
13744	verify_connector_state(crtc->dev, state, crtc);
13745	verify_crtc_state(crtc, old_state, new_state);
13746	verify_shared_dpll_state(crtc->dev, crtc, old_state, new_state);
13747}
13748
13749static void
13750verify_disabled_dpll_state(struct drm_device *dev)
13751{
13752	struct drm_i915_private *dev_priv = to_i915(dev);
13753	int i;
13754
13755	for (i = 0; i < dev_priv->num_shared_dpll; i++)
13756		verify_single_dpll_state(dev_priv, &dev_priv->shared_dplls[i], NULL, NULL);
13757}
13758
13759static void
13760intel_modeset_verify_disabled(struct drm_device *dev,
13761			      struct drm_atomic_state *state)
13762{
13763	verify_encoder_state(dev);
13764	verify_connector_state(dev, state, NULL);
13765	verify_disabled_dpll_state(dev);
13766}
13767
13768static void update_scanline_offset(struct intel_crtc *crtc)
13769{
13770	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
13771
13772	/*
13773	 * The scanline counter increments at the leading edge of hsync.
13774	 *
13775	 * On most platforms it starts counting from vtotal-1 on the
13776	 * first active line. That means the scanline counter value is
13777	 * always one less than what we would expect. Ie. just after
13778	 * start of vblank, which also occurs at start of hsync (on the
13779	 * last active line), the scanline counter will read vblank_start-1.
13780	 *
13781	 * On gen2 the scanline counter starts counting from 1 instead
13782	 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
13783	 * to keep the value positive), instead of adding one.
13784	 *
13785	 * On HSW+ the behaviour of the scanline counter depends on the output
13786	 * type. For DP ports it behaves like most other platforms, but on HDMI
13787	 * there's an extra 1 line difference. So we need to add two instead of
13788	 * one to the value.
13789	 */
13790	if (IS_GEN2(dev_priv)) {
13791		const struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode;
13792		int vtotal;
13793
13794		vtotal = adjusted_mode->crtc_vtotal;
13795		if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
13796			vtotal /= 2;
13797
13798		crtc->scanline_offset = vtotal - 1;
13799	} else if (HAS_DDI(dev_priv) &&
13800		   intel_crtc_has_type(crtc->config, INTEL_OUTPUT_HDMI)) {
13801		crtc->scanline_offset = 2;
13802	} else
13803		crtc->scanline_offset = 1;
13804}
13805
13806static void intel_modeset_clear_plls(struct drm_atomic_state *state)
13807{
13808	struct drm_device *dev = state->dev;
13809	struct drm_i915_private *dev_priv = to_i915(dev);
13810	struct intel_shared_dpll_config *shared_dpll = NULL;
13811	struct drm_crtc *crtc;
13812	struct drm_crtc_state *crtc_state;
13813	int i;
13814
13815	if (!dev_priv->display.crtc_compute_clock)
13816		return;
13817
13818	for_each_crtc_in_state(state, crtc, crtc_state, i) {
13819		struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13820		struct intel_shared_dpll *old_dpll =
13821			to_intel_crtc_state(crtc->state)->shared_dpll;
13822
13823		if (!needs_modeset(crtc_state))
13824			continue;
13825
13826		to_intel_crtc_state(crtc_state)->shared_dpll = NULL;
13827
13828		if (!old_dpll)
13829			continue;
13830
13831		if (!shared_dpll)
13832			shared_dpll = intel_atomic_get_shared_dpll_state(state);
13833
13834		intel_shared_dpll_config_put(shared_dpll, old_dpll, intel_crtc);
13835	}
13836}
13837
13838/*
13839 * This implements the workaround described in the "notes" section of the mode
13840 * set sequence documentation. When going from no pipes or single pipe to
13841 * multiple pipes, and planes are enabled after the pipe, we need to wait at
13842 * least 2 vblanks on the first pipe before enabling planes on the second pipe.
13843 */
13844static int haswell_mode_set_planes_workaround(struct drm_atomic_state *state)
13845{
13846	struct drm_crtc_state *crtc_state;
13847	struct intel_crtc *intel_crtc;
13848	struct drm_crtc *crtc;
13849	struct intel_crtc_state *first_crtc_state = NULL;
13850	struct intel_crtc_state *other_crtc_state = NULL;
13851	enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE;
13852	int i;
13853
13854	/* look at all crtc's that are going to be enabled in during modeset */
13855	for_each_crtc_in_state(state, crtc, crtc_state, i) {
13856		intel_crtc = to_intel_crtc(crtc);
13857
13858		if (!crtc_state->active || !needs_modeset(crtc_state))
13859			continue;
13860
13861		if (first_crtc_state) {
13862			other_crtc_state = to_intel_crtc_state(crtc_state);
13863			break;
13864		} else {
13865			first_crtc_state = to_intel_crtc_state(crtc_state);
13866			first_pipe = intel_crtc->pipe;
13867		}
13868	}
13869
13870	/* No workaround needed? */
13871	if (!first_crtc_state)
13872		return 0;
13873
13874	/* w/a possibly needed, check how many crtc's are already enabled. */
13875	for_each_intel_crtc(state->dev, intel_crtc) {
13876		struct intel_crtc_state *pipe_config;
13877
13878		pipe_config = intel_atomic_get_crtc_state(state, intel_crtc);
13879		if (IS_ERR(pipe_config))
13880			return PTR_ERR(pipe_config);
13881
13882		pipe_config->hsw_workaround_pipe = INVALID_PIPE;
13883
13884		if (!pipe_config->base.active ||
13885		    needs_modeset(&pipe_config->base))
13886			continue;
13887
13888		/* 2 or more enabled crtcs means no need for w/a */
13889		if (enabled_pipe != INVALID_PIPE)
13890			return 0;
13891
13892		enabled_pipe = intel_crtc->pipe;
13893	}
13894
13895	if (enabled_pipe != INVALID_PIPE)
13896		first_crtc_state->hsw_workaround_pipe = enabled_pipe;
13897	else if (other_crtc_state)
13898		other_crtc_state->hsw_workaround_pipe = first_pipe;
13899
13900	return 0;
13901}
13902
13903static int intel_modeset_all_pipes(struct drm_atomic_state *state)
13904{
13905	struct drm_crtc *crtc;
13906	struct drm_crtc_state *crtc_state;
13907	int ret = 0;
13908
13909	/* add all active pipes to the state */
13910	for_each_crtc(state->dev, crtc) {
13911		crtc_state = drm_atomic_get_crtc_state(state, crtc);
13912		if (IS_ERR(crtc_state))
13913			return PTR_ERR(crtc_state);
13914
13915		if (!crtc_state->active || needs_modeset(crtc_state))
13916			continue;
13917
13918		crtc_state->mode_changed = true;
13919
13920		ret = drm_atomic_add_affected_connectors(state, crtc);
13921		if (ret)
13922			break;
13923
13924		ret = drm_atomic_add_affected_planes(state, crtc);
13925		if (ret)
13926			break;
13927	}
13928
13929	return ret;
13930}
13931
13932static int intel_modeset_checks(struct drm_atomic_state *state)
13933{
13934	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13935	struct drm_i915_private *dev_priv = to_i915(state->dev);
13936	struct drm_crtc *crtc;
13937	struct drm_crtc_state *crtc_state;
13938	int ret = 0, i;
13939
13940	if (!check_digital_port_conflicts(state)) {
13941		DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
13942		return -EINVAL;
13943	}
13944
13945	intel_state->modeset = true;
13946	intel_state->active_crtcs = dev_priv->active_crtcs;
13947
13948	for_each_crtc_in_state(state, crtc, crtc_state, i) {
13949		if (crtc_state->active)
13950			intel_state->active_crtcs |= 1 << i;
13951		else
13952			intel_state->active_crtcs &= ~(1 << i);
13953
13954		if (crtc_state->active != crtc->state->active)
13955			intel_state->active_pipe_changes |= drm_crtc_mask(crtc);
13956	}
13957
13958	/*
13959	 * See if the config requires any additional preparation, e.g.
13960	 * to adjust global state with pipes off.  We need to do this
13961	 * here so we can get the modeset_pipe updated config for the new
13962	 * mode set on this crtc.  For other crtcs we need to use the
13963	 * adjusted_mode bits in the crtc directly.
13964	 */
13965	if (dev_priv->display.modeset_calc_cdclk) {
13966		if (!intel_state->cdclk_pll_vco)
13967			intel_state->cdclk_pll_vco = dev_priv->cdclk_pll.vco;
13968		if (!intel_state->cdclk_pll_vco)
13969			intel_state->cdclk_pll_vco = dev_priv->skl_preferred_vco_freq;
13970
13971		ret = dev_priv->display.modeset_calc_cdclk(state);
13972		if (ret < 0)
13973			return ret;
13974
13975		if (intel_state->dev_cdclk != dev_priv->cdclk_freq ||
13976		    intel_state->cdclk_pll_vco != dev_priv->cdclk_pll.vco)
13977			ret = intel_modeset_all_pipes(state);
13978
13979		if (ret < 0)
13980			return ret;
13981
13982		DRM_DEBUG_KMS("New cdclk calculated to be atomic %u, actual %u\n",
13983			      intel_state->cdclk, intel_state->dev_cdclk);
13984	} else {
13985		to_intel_atomic_state(state)->cdclk = dev_priv->atomic_cdclk_freq;
13986	}
13987
13988	intel_modeset_clear_plls(state);
13989
13990	if (IS_HASWELL(dev_priv))
13991		return haswell_mode_set_planes_workaround(state);
13992
13993	return 0;
13994}
13995
13996/*
13997 * Handle calculation of various watermark data at the end of the atomic check
13998 * phase.  The code here should be run after the per-crtc and per-plane 'check'
13999 * handlers to ensure that all derived state has been updated.
14000 */
14001static int calc_watermark_data(struct drm_atomic_state *state)
14002{
14003	struct drm_device *dev = state->dev;
14004	struct drm_i915_private *dev_priv = to_i915(dev);
14005
14006	/* Is there platform-specific watermark information to calculate? */
14007	if (dev_priv->display.compute_global_watermarks)
14008		return dev_priv->display.compute_global_watermarks(state);
14009
14010	return 0;
14011}
14012
14013/**
14014 * intel_atomic_check - validate state object
14015 * @dev: drm device
14016 * @state: state to validate
14017 */
14018static int intel_atomic_check(struct drm_device *dev,
14019			      struct drm_atomic_state *state)
14020{
14021	struct drm_i915_private *dev_priv = to_i915(dev);
14022	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
14023	struct drm_crtc *crtc;
14024	struct drm_crtc_state *crtc_state;
14025	int ret, i;
14026	bool any_ms = false;
14027
14028	ret = drm_atomic_helper_check_modeset(dev, state);
14029	if (ret)
14030		return ret;
14031
14032	for_each_crtc_in_state(state, crtc, crtc_state, i) {
14033		struct intel_crtc_state *pipe_config =
14034			to_intel_crtc_state(crtc_state);
14035
14036		/* Catch I915_MODE_FLAG_INHERITED */
14037		if (crtc_state->mode.private_flags != crtc->state->mode.private_flags)
14038			crtc_state->mode_changed = true;
14039
14040		if (!needs_modeset(crtc_state))
14041			continue;
14042
14043		if (!crtc_state->enable) {
14044			any_ms = true;
14045			continue;
14046		}
14047
14048		/* FIXME: For only active_changed we shouldn't need to do any
14049		 * state recomputation at all. */
14050
14051		ret = drm_atomic_add_affected_connectors(state, crtc);
14052		if (ret)
14053			return ret;
14054
14055		ret = intel_modeset_pipe_config(crtc, pipe_config);
14056		if (ret) {
14057			intel_dump_pipe_config(to_intel_crtc(crtc),
14058					       pipe_config, "[failed]");
14059			return ret;
14060		}
14061
14062		if (i915.fastboot &&
14063		    intel_pipe_config_compare(dev_priv,
14064					to_intel_crtc_state(crtc->state),
14065					pipe_config, true)) {
14066			crtc_state->mode_changed = false;
14067			to_intel_crtc_state(crtc_state)->update_pipe = true;
14068		}
14069
14070		if (needs_modeset(crtc_state))
14071			any_ms = true;
14072
14073		ret = drm_atomic_add_affected_planes(state, crtc);
14074		if (ret)
14075			return ret;
14076
14077		intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
14078				       needs_modeset(crtc_state) ?
14079				       "[modeset]" : "[fastset]");
14080	}
14081
14082	if (any_ms) {
14083		ret = intel_modeset_checks(state);
14084
14085		if (ret)
14086			return ret;
14087	} else {
14088		intel_state->cdclk = dev_priv->atomic_cdclk_freq;
14089	}
14090
14091	ret = drm_atomic_helper_check_planes(dev, state);
14092	if (ret)
14093		return ret;
14094
14095	intel_fbc_choose_crtc(dev_priv, state);
14096	return calc_watermark_data(state);
14097}
14098
14099static int intel_atomic_prepare_commit(struct drm_device *dev,
14100				       struct drm_atomic_state *state)
14101{
14102	struct drm_i915_private *dev_priv = to_i915(dev);
14103	struct drm_crtc_state *crtc_state;
14104	struct drm_crtc *crtc;
14105	int i, ret;
14106
14107	for_each_crtc_in_state(state, crtc, crtc_state, i) {
14108		if (state->legacy_cursor_update)
14109			continue;
14110
14111		ret = intel_crtc_wait_for_pending_flips(crtc);
14112		if (ret)
14113			return ret;
14114
14115		if (atomic_read(&to_intel_crtc(crtc)->unpin_work_count) >= 2)
14116			flush_workqueue(dev_priv->wq);
14117	}
14118
14119	ret = mutex_lock_interruptible(&dev->struct_mutex);
14120	if (ret)
14121		return ret;
14122
14123	ret = drm_atomic_helper_prepare_planes(dev, state);
14124	mutex_unlock(&dev->struct_mutex);
14125
14126	return ret;
14127}
14128
14129u32 intel_crtc_get_vblank_counter(struct intel_crtc *crtc)
14130{
14131	struct drm_device *dev = crtc->base.dev;
14132
14133	if (!dev->max_vblank_count)
14134		return drm_accurate_vblank_count(&crtc->base);
14135
14136	return dev->driver->get_vblank_counter(dev, crtc->pipe);
14137}
14138
14139static void intel_atomic_wait_for_vblanks(struct drm_device *dev,
14140					  struct drm_i915_private *dev_priv,
14141					  unsigned crtc_mask)
14142{
14143	unsigned last_vblank_count[I915_MAX_PIPES];
14144	enum pipe pipe;
14145	int ret;
14146
14147	if (!crtc_mask)
14148		return;
14149
14150	for_each_pipe(dev_priv, pipe) {
14151		struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv,
14152								  pipe);
14153
14154		if (!((1 << pipe) & crtc_mask))
14155			continue;
14156
14157		ret = drm_crtc_vblank_get(&crtc->base);
14158		if (WARN_ON(ret != 0)) {
14159			crtc_mask &= ~(1 << pipe);
14160			continue;
14161		}
14162
14163		last_vblank_count[pipe] = drm_crtc_vblank_count(&crtc->base);
14164	}
14165
14166	for_each_pipe(dev_priv, pipe) {
14167		struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv,
14168								  pipe);
14169		long lret;
14170
14171		if (!((1 << pipe) & crtc_mask))
14172			continue;
14173
14174		lret = wait_event_timeout(dev->vblank[pipe].queue,
14175				last_vblank_count[pipe] !=
14176					drm_crtc_vblank_count(&crtc->base),
14177				msecs_to_jiffies(50));
14178
14179		WARN(!lret, "pipe %c vblank wait timed out\n", pipe_name(pipe));
14180
14181		drm_crtc_vblank_put(&crtc->base);
14182	}
14183}
14184
14185static bool needs_vblank_wait(struct intel_crtc_state *crtc_state)
14186{
14187	/* fb updated, need to unpin old fb */
14188	if (crtc_state->fb_changed)
14189		return true;
14190
14191	/* wm changes, need vblank before final wm's */
14192	if (crtc_state->update_wm_post)
14193		return true;
14194
14195	/*
14196	 * cxsr is re-enabled after vblank.
14197	 * This is already handled by crtc_state->update_wm_post,
14198	 * but added for clarity.
14199	 */
14200	if (crtc_state->disable_cxsr)
14201		return true;
14202
14203	return false;
14204}
14205
14206static void intel_update_crtc(struct drm_crtc *crtc,
14207			      struct drm_atomic_state *state,
14208			      struct drm_crtc_state *old_crtc_state,
14209			      unsigned int *crtc_vblank_mask)
14210{
14211	struct drm_device *dev = crtc->dev;
14212	struct drm_i915_private *dev_priv = to_i915(dev);
14213	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14214	struct intel_crtc_state *pipe_config = to_intel_crtc_state(crtc->state);
14215	bool modeset = needs_modeset(crtc->state);
14216
14217	if (modeset) {
14218		update_scanline_offset(intel_crtc);
14219		dev_priv->display.crtc_enable(pipe_config, state);
14220	} else {
14221		intel_pre_plane_update(to_intel_crtc_state(old_crtc_state));
14222	}
14223
14224	if (drm_atomic_get_existing_plane_state(state, crtc->primary)) {
14225		intel_fbc_enable(
14226		    intel_crtc, pipe_config,
14227		    to_intel_plane_state(crtc->primary->state));
14228	}
14229
14230	drm_atomic_helper_commit_planes_on_crtc(old_crtc_state);
14231
14232	if (needs_vblank_wait(pipe_config))
14233		*crtc_vblank_mask |= drm_crtc_mask(crtc);
14234}
14235
14236static void intel_update_crtcs(struct drm_atomic_state *state,
14237			       unsigned int *crtc_vblank_mask)
14238{
14239	struct drm_crtc *crtc;
14240	struct drm_crtc_state *old_crtc_state;
14241	int i;
14242
14243	for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
14244		if (!crtc->state->active)
14245			continue;
14246
14247		intel_update_crtc(crtc, state, old_crtc_state,
14248				  crtc_vblank_mask);
14249	}
14250}
14251
14252static void skl_update_crtcs(struct drm_atomic_state *state,
14253			     unsigned int *crtc_vblank_mask)
14254{
14255	struct drm_i915_private *dev_priv = to_i915(state->dev);
14256	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
14257	struct drm_crtc *crtc;
14258	struct intel_crtc *intel_crtc;
14259	struct drm_crtc_state *old_crtc_state;
14260	struct intel_crtc_state *cstate;
14261	unsigned int updated = 0;
14262	bool progress;
14263	enum pipe pipe;
14264	int i;
14265
14266	const struct skl_ddb_entry *entries[I915_MAX_PIPES] = {};
14267
14268	for_each_crtc_in_state(state, crtc, old_crtc_state, i)
14269		/* ignore allocations for crtc's that have been turned off. */
14270		if (crtc->state->active)
14271			entries[i] = &to_intel_crtc_state(old_crtc_state)->wm.skl.ddb;
14272
14273	/*
14274	 * Whenever the number of active pipes changes, we need to make sure we
14275	 * update the pipes in the right order so that their ddb allocations
14276	 * never overlap with eachother inbetween CRTC updates. Otherwise we'll
14277	 * cause pipe underruns and other bad stuff.
14278	 */
14279	do {
14280		progress = false;
14281
14282		for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
14283			bool vbl_wait = false;
14284			unsigned int cmask = drm_crtc_mask(crtc);
14285
14286			intel_crtc = to_intel_crtc(crtc);
14287			cstate = to_intel_crtc_state(crtc->state);
14288			pipe = intel_crtc->pipe;
14289
14290			if (updated & cmask || !cstate->base.active)
14291				continue;
14292
14293			if (skl_ddb_allocation_overlaps(entries, &cstate->wm.skl.ddb, i))
14294				continue;
14295
14296			updated |= cmask;
14297			entries[i] = &cstate->wm.skl.ddb;
14298
14299			/*
14300			 * If this is an already active pipe, it's DDB changed,
14301			 * and this isn't the last pipe that needs updating
14302			 * then we need to wait for a vblank to pass for the
14303			 * new ddb allocation to take effect.
14304			 */
14305			if (!skl_ddb_entry_equal(&cstate->wm.skl.ddb,
14306						 &to_intel_crtc_state(old_crtc_state)->wm.skl.ddb) &&
14307			    !crtc->state->active_changed &&
14308			    intel_state->wm_results.dirty_pipes != updated)
14309				vbl_wait = true;
14310
14311			intel_update_crtc(crtc, state, old_crtc_state,
14312					  crtc_vblank_mask);
14313
14314			if (vbl_wait)
14315				intel_wait_for_vblank(dev_priv, pipe);
14316
14317			progress = true;
14318		}
14319	} while (progress);
14320}
14321
14322static void intel_atomic_commit_tail(struct drm_atomic_state *state)
14323{
14324	struct drm_device *dev = state->dev;
14325	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
14326	struct drm_i915_private *dev_priv = to_i915(dev);
14327	struct drm_crtc_state *old_crtc_state;
14328	struct drm_crtc *crtc;
14329	struct intel_crtc_state *intel_cstate;
14330	bool hw_check = intel_state->modeset;
14331	unsigned long put_domains[I915_MAX_PIPES] = {};
14332	unsigned crtc_vblank_mask = 0;
14333	int i;
14334
14335	drm_atomic_helper_wait_for_dependencies(state);
14336
14337	if (intel_state->modeset)
14338		intel_display_power_get(dev_priv, POWER_DOMAIN_MODESET);
14339
14340	for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
14341		struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14342
14343		if (needs_modeset(crtc->state) ||
14344		    to_intel_crtc_state(crtc->state)->update_pipe) {
14345			hw_check = true;
14346
14347			put_domains[to_intel_crtc(crtc)->pipe] =
14348				modeset_get_crtc_power_domains(crtc,
14349					to_intel_crtc_state(crtc->state));
14350		}
14351
14352		if (!needs_modeset(crtc->state))
14353			continue;
14354
14355		intel_pre_plane_update(to_intel_crtc_state(old_crtc_state));
14356
14357		if (old_crtc_state->active) {
14358			intel_crtc_disable_planes(crtc, old_crtc_state->plane_mask);
14359			dev_priv->display.crtc_disable(to_intel_crtc_state(old_crtc_state), state);
14360			intel_crtc->active = false;
14361			intel_fbc_disable(intel_crtc);
14362			intel_disable_shared_dpll(intel_crtc);
14363
14364			/*
14365			 * Underruns don't always raise
14366			 * interrupts, so check manually.
14367			 */
14368			intel_check_cpu_fifo_underruns(dev_priv);
14369			intel_check_pch_fifo_underruns(dev_priv);
14370
14371			if (!crtc->state->active) {
14372				/*
14373				 * Make sure we don't call initial_watermarks
14374				 * for ILK-style watermark updates.
14375				 */
14376				if (dev_priv->display.atomic_update_watermarks)
14377					dev_priv->display.initial_watermarks(intel_state,
14378									     to_intel_crtc_state(crtc->state));
14379				else
14380					intel_update_watermarks(intel_crtc);
14381			}
14382		}
14383	}
14384
14385	/* Only after disabling all output pipelines that will be changed can we
14386	 * update the the output configuration. */
14387	intel_modeset_update_crtc_state(state);
14388
14389	if (intel_state->modeset) {
14390		drm_atomic_helper_update_legacy_modeset_state(state->dev, state);
14391
14392		if (dev_priv->display.modeset_commit_cdclk &&
14393		    (intel_state->dev_cdclk != dev_priv->cdclk_freq ||
14394		     intel_state->cdclk_pll_vco != dev_priv->cdclk_pll.vco))
14395			dev_priv->display.modeset_commit_cdclk(state);
14396
14397		/*
14398		 * SKL workaround: bspec recommends we disable the SAGV when we
14399		 * have more then one pipe enabled
14400		 */
14401		if (!intel_can_enable_sagv(state))
14402			intel_disable_sagv(dev_priv);
14403
14404		intel_modeset_verify_disabled(dev, state);
14405	}
14406
14407	/* Complete the events for pipes that have now been disabled */
14408	for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
14409		bool modeset = needs_modeset(crtc->state);
14410
14411		/* Complete events for now disable pipes here. */
14412		if (modeset && !crtc->state->active && crtc->state->event) {
14413			spin_lock_irq(&dev->event_lock);
14414			drm_crtc_send_vblank_event(crtc, crtc->state->event);
14415			spin_unlock_irq(&dev->event_lock);
14416
14417			crtc->state->event = NULL;
14418		}
14419	}
14420
14421	/* Now enable the clocks, plane, pipe, and connectors that we set up. */
14422	dev_priv->display.update_crtcs(state, &crtc_vblank_mask);
14423
14424	/* FIXME: We should call drm_atomic_helper_commit_hw_done() here
14425	 * already, but still need the state for the delayed optimization. To
14426	 * fix this:
14427	 * - wrap the optimization/post_plane_update stuff into a per-crtc work.
14428	 * - schedule that vblank worker _before_ calling hw_done
14429	 * - at the start of commit_tail, cancel it _synchrously
14430	 * - switch over to the vblank wait helper in the core after that since
14431	 *   we don't need out special handling any more.
14432	 */
14433	if (!state->legacy_cursor_update)
14434		intel_atomic_wait_for_vblanks(dev, dev_priv, crtc_vblank_mask);
14435
14436	/*
14437	 * Now that the vblank has passed, we can go ahead and program the
14438	 * optimal watermarks on platforms that need two-step watermark
14439	 * programming.
14440	 *
14441	 * TODO: Move this (and other cleanup) to an async worker eventually.
14442	 */
14443	for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
14444		intel_cstate = to_intel_crtc_state(crtc->state);
14445
14446		if (dev_priv->display.optimize_watermarks)
14447			dev_priv->display.optimize_watermarks(intel_state,
14448							      intel_cstate);
14449	}
14450
14451	for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
14452		intel_post_plane_update(to_intel_crtc_state(old_crtc_state));
14453
14454		if (put_domains[i])
14455			modeset_put_power_domains(dev_priv, put_domains[i]);
14456
14457		intel_modeset_verify_crtc(crtc, state, old_crtc_state, crtc->state);
14458	}
14459
14460	if (intel_state->modeset && intel_can_enable_sagv(state))
14461		intel_enable_sagv(dev_priv);
14462
14463	drm_atomic_helper_commit_hw_done(state);
14464
14465	if (intel_state->modeset)
14466		intel_display_power_put(dev_priv, POWER_DOMAIN_MODESET);
14467
14468	mutex_lock(&dev->struct_mutex);
14469	drm_atomic_helper_cleanup_planes(dev, state);
14470	mutex_unlock(&dev->struct_mutex);
14471
14472	drm_atomic_helper_commit_cleanup_done(state);
14473
14474	drm_atomic_state_put(state);
14475
14476	/* As one of the primary mmio accessors, KMS has a high likelihood
14477	 * of triggering bugs in unclaimed access. After we finish
14478	 * modesetting, see if an error has been flagged, and if so
14479	 * enable debugging for the next modeset - and hope we catch
14480	 * the culprit.
14481	 *
14482	 * XXX note that we assume display power is on at this point.
14483	 * This might hold true now but we need to add pm helper to check
14484	 * unclaimed only when the hardware is on, as atomic commits
14485	 * can happen also when the device is completely off.
14486	 */
14487	intel_uncore_arm_unclaimed_mmio_detection(dev_priv);
14488}
14489
14490static void intel_atomic_commit_work(struct work_struct *work)
14491{
14492	struct drm_atomic_state *state =
14493		container_of(work, struct drm_atomic_state, commit_work);
14494
14495	intel_atomic_commit_tail(state);
14496}
14497
14498static int __i915_sw_fence_call
14499intel_atomic_commit_ready(struct i915_sw_fence *fence,
14500			  enum i915_sw_fence_notify notify)
14501{
14502	struct intel_atomic_state *state =
14503		container_of(fence, struct intel_atomic_state, commit_ready);
14504
14505	switch (notify) {
14506	case FENCE_COMPLETE:
14507		if (state->base.commit_work.func)
14508			queue_work(system_unbound_wq, &state->base.commit_work);
14509		break;
14510
14511	case FENCE_FREE:
14512		{
14513			struct intel_atomic_helper *helper =
14514				&to_i915(state->base.dev)->atomic_helper;
14515
14516			if (llist_add(&state->freed, &helper->free_list))
14517				schedule_work(&helper->free_work);
14518			break;
14519		}
14520	}
14521
14522	return NOTIFY_DONE;
14523}
14524
14525static void intel_atomic_track_fbs(struct drm_atomic_state *state)
14526{
14527	struct drm_plane_state *old_plane_state;
14528	struct drm_plane *plane;
14529	int i;
14530
14531	for_each_plane_in_state(state, plane, old_plane_state, i)
14532		i915_gem_track_fb(intel_fb_obj(old_plane_state->fb),
14533				  intel_fb_obj(plane->state->fb),
14534				  to_intel_plane(plane)->frontbuffer_bit);
14535}
14536
14537/**
14538 * intel_atomic_commit - commit validated state object
14539 * @dev: DRM device
14540 * @state: the top-level driver state object
14541 * @nonblock: nonblocking commit
14542 *
14543 * This function commits a top-level state object that has been validated
14544 * with drm_atomic_helper_check().
14545 *
14546 * RETURNS
14547 * Zero for success or -errno.
14548 */
14549static int intel_atomic_commit(struct drm_device *dev,
14550			       struct drm_atomic_state *state,
14551			       bool nonblock)
14552{
14553	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
14554	struct drm_i915_private *dev_priv = to_i915(dev);
14555	int ret = 0;
14556
14557	ret = drm_atomic_helper_setup_commit(state, nonblock);
14558	if (ret)
14559		return ret;
14560
14561	drm_atomic_state_get(state);
14562	i915_sw_fence_init(&intel_state->commit_ready,
14563			   intel_atomic_commit_ready);
14564
14565	ret = intel_atomic_prepare_commit(dev, state);
14566	if (ret) {
14567		DRM_DEBUG_ATOMIC("Preparing state failed with %i\n", ret);
14568		i915_sw_fence_commit(&intel_state->commit_ready);
14569		return ret;
14570	}
14571
14572	drm_atomic_helper_swap_state(state, true);
14573	dev_priv->wm.distrust_bios_wm = false;
14574	intel_shared_dpll_commit(state);
14575	intel_atomic_track_fbs(state);
14576
14577	if (intel_state->modeset) {
14578		memcpy(dev_priv->min_pixclk, intel_state->min_pixclk,
14579		       sizeof(intel_state->min_pixclk));
14580		dev_priv->active_crtcs = intel_state->active_crtcs;
14581		dev_priv->atomic_cdclk_freq = intel_state->cdclk;
14582	}
14583
14584	drm_atomic_state_get(state);
14585	INIT_WORK(&state->commit_work,
14586		  nonblock ? intel_atomic_commit_work : NULL);
14587
14588	i915_sw_fence_commit(&intel_state->commit_ready);
14589	if (!nonblock) {
14590		i915_sw_fence_wait(&intel_state->commit_ready);
14591		intel_atomic_commit_tail(state);
14592	}
14593
14594	return 0;
14595}
14596
14597void intel_crtc_restore_mode(struct drm_crtc *crtc)
14598{
14599	struct drm_device *dev = crtc->dev;
14600	struct drm_atomic_state *state;
14601	struct drm_crtc_state *crtc_state;
14602	int ret;
14603
14604	state = drm_atomic_state_alloc(dev);
14605	if (!state) {
14606		DRM_DEBUG_KMS("[CRTC:%d:%s] crtc restore failed, out of memory",
14607			      crtc->base.id, crtc->name);
14608		return;
14609	}
14610
14611	state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
14612
14613retry:
14614	crtc_state = drm_atomic_get_crtc_state(state, crtc);
14615	ret = PTR_ERR_OR_ZERO(crtc_state);
14616	if (!ret) {
14617		if (!crtc_state->active)
14618			goto out;
14619
14620		crtc_state->mode_changed = true;
14621		ret = drm_atomic_commit(state);
14622	}
14623
14624	if (ret == -EDEADLK) {
14625		drm_atomic_state_clear(state);
14626		drm_modeset_backoff(state->acquire_ctx);
14627		goto retry;
14628	}
14629
14630out:
14631	drm_atomic_state_put(state);
14632}
14633
14634/*
14635 * FIXME: Remove this once i915 is fully DRIVER_ATOMIC by calling
14636 *        drm_atomic_helper_legacy_gamma_set() directly.
14637 */
14638static int intel_atomic_legacy_gamma_set(struct drm_crtc *crtc,
14639					 u16 *red, u16 *green, u16 *blue,
14640					 uint32_t size)
14641{
14642	struct drm_device *dev = crtc->dev;
14643	struct drm_mode_config *config = &dev->mode_config;
14644	struct drm_crtc_state *state;
14645	int ret;
14646
14647	ret = drm_atomic_helper_legacy_gamma_set(crtc, red, green, blue, size);
14648	if (ret)
14649		return ret;
14650
14651	/*
14652	 * Make sure we update the legacy properties so this works when
14653	 * atomic is not enabled.
14654	 */
14655
14656	state = crtc->state;
14657
14658	drm_object_property_set_value(&crtc->base,
14659				      config->degamma_lut_property,
14660				      (state->degamma_lut) ?
14661				      state->degamma_lut->base.id : 0);
14662
14663	drm_object_property_set_value(&crtc->base,
14664				      config->ctm_property,
14665				      (state->ctm) ?
14666				      state->ctm->base.id : 0);
14667
14668	drm_object_property_set_value(&crtc->base,
14669				      config->gamma_lut_property,
14670				      (state->gamma_lut) ?
14671				      state->gamma_lut->base.id : 0);
14672
14673	return 0;
14674}
14675
14676static const struct drm_crtc_funcs intel_crtc_funcs = {
14677	.gamma_set = intel_atomic_legacy_gamma_set,
14678	.set_config = drm_atomic_helper_set_config,
14679	.set_property = drm_atomic_helper_crtc_set_property,
14680	.destroy = intel_crtc_destroy,
14681	.page_flip = intel_crtc_page_flip,
14682	.atomic_duplicate_state = intel_crtc_duplicate_state,
14683	.atomic_destroy_state = intel_crtc_destroy_state,
14684};
14685
14686/**
14687 * intel_prepare_plane_fb - Prepare fb for usage on plane
14688 * @plane: drm plane to prepare for
14689 * @fb: framebuffer to prepare for presentation
14690 *
14691 * Prepares a framebuffer for usage on a display plane.  Generally this
14692 * involves pinning the underlying object and updating the frontbuffer tracking
14693 * bits.  Some older platforms need special physical address handling for
14694 * cursor planes.
14695 *
14696 * Must be called with struct_mutex held.
14697 *
14698 * Returns 0 on success, negative error code on failure.
14699 */
14700int
14701intel_prepare_plane_fb(struct drm_plane *plane,
14702		       struct drm_plane_state *new_state)
14703{
14704	struct intel_atomic_state *intel_state =
14705		to_intel_atomic_state(new_state->state);
14706	struct drm_i915_private *dev_priv = to_i915(plane->dev);
14707	struct drm_framebuffer *fb = new_state->fb;
14708	struct drm_i915_gem_object *obj = intel_fb_obj(fb);
14709	struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->state->fb);
14710	int ret;
14711
14712	if (!obj && !old_obj)
14713		return 0;
14714
14715	if (old_obj) {
14716		struct drm_crtc_state *crtc_state =
14717			drm_atomic_get_existing_crtc_state(new_state->state,
14718							   plane->state->crtc);
14719
14720		/* Big Hammer, we also need to ensure that any pending
14721		 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
14722		 * current scanout is retired before unpinning the old
14723		 * framebuffer. Note that we rely on userspace rendering
14724		 * into the buffer attached to the pipe they are waiting
14725		 * on. If not, userspace generates a GPU hang with IPEHR
14726		 * point to the MI_WAIT_FOR_EVENT.
14727		 *
14728		 * This should only fail upon a hung GPU, in which case we
14729		 * can safely continue.
14730		 */
14731		if (needs_modeset(crtc_state)) {
14732			ret = i915_sw_fence_await_reservation(&intel_state->commit_ready,
14733							      old_obj->resv, NULL,
14734							      false, 0,
14735							      GFP_KERNEL);
14736			if (ret < 0)
14737				return ret;
14738		}
14739	}
14740
14741	if (new_state->fence) { /* explicit fencing */
14742		ret = i915_sw_fence_await_dma_fence(&intel_state->commit_ready,
14743						    new_state->fence,
14744						    I915_FENCE_TIMEOUT,
14745						    GFP_KERNEL);
14746		if (ret < 0)
14747			return ret;
14748	}
14749
14750	if (!obj)
14751		return 0;
14752
14753	if (!new_state->fence) { /* implicit fencing */
14754		ret = i915_sw_fence_await_reservation(&intel_state->commit_ready,
14755						      obj->resv, NULL,
14756						      false, I915_FENCE_TIMEOUT,
14757						      GFP_KERNEL);
14758		if (ret < 0)
14759			return ret;
14760
14761		i915_gem_object_wait_priority(obj, 0, I915_PRIORITY_DISPLAY);
14762	}
14763
14764	if (plane->type == DRM_PLANE_TYPE_CURSOR &&
14765	    INTEL_INFO(dev_priv)->cursor_needs_physical) {
14766		int align = IS_I830(dev_priv) ? 16 * 1024 : 256;
14767		ret = i915_gem_object_attach_phys(obj, align);
14768		if (ret) {
14769			DRM_DEBUG_KMS("failed to attach phys object\n");
14770			return ret;
14771		}
14772	} else {
14773		struct i915_vma *vma;
14774
14775		vma = intel_pin_and_fence_fb_obj(fb, new_state->rotation);
14776		if (IS_ERR(vma)) {
14777			DRM_DEBUG_KMS("failed to pin object\n");
14778			return PTR_ERR(vma);
14779		}
14780
14781		to_intel_plane_state(new_state)->vma = vma;
14782	}
14783
14784	return 0;
14785}
14786
14787/**
14788 * intel_cleanup_plane_fb - Cleans up an fb after plane use
14789 * @plane: drm plane to clean up for
14790 * @fb: old framebuffer that was on plane
14791 *
14792 * Cleans up a framebuffer that has just been removed from a plane.
14793 *
14794 * Must be called with struct_mutex held.
14795 */
14796void
14797intel_cleanup_plane_fb(struct drm_plane *plane,
14798		       struct drm_plane_state *old_state)
14799{
14800	struct i915_vma *vma;
14801
14802	/* Should only be called after a successful intel_prepare_plane_fb()! */
14803	vma = fetch_and_zero(&to_intel_plane_state(old_state)->vma);
14804	if (vma)
14805		intel_unpin_fb_vma(vma);
14806}
14807
14808int
14809skl_max_scale(struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state)
14810{
14811	int max_scale;
14812	int crtc_clock, cdclk;
14813
14814	if (!intel_crtc || !crtc_state->base.enable)
14815		return DRM_PLANE_HELPER_NO_SCALING;
14816
14817	crtc_clock = crtc_state->base.adjusted_mode.crtc_clock;
14818	cdclk = to_intel_atomic_state(crtc_state->base.state)->cdclk;
14819
14820	if (WARN_ON_ONCE(!crtc_clock || cdclk < crtc_clock))
14821		return DRM_PLANE_HELPER_NO_SCALING;
14822
14823	/*
14824	 * skl max scale is lower of:
14825	 *    close to 3 but not 3, -1 is for that purpose
14826	 *            or
14827	 *    cdclk/crtc_clock
14828	 */
14829	max_scale = min((1 << 16) * 3 - 1, (1 << 8) * ((cdclk << 8) / crtc_clock));
14830
14831	return max_scale;
14832}
14833
14834static int
14835intel_check_primary_plane(struct drm_plane *plane,
14836			  struct intel_crtc_state *crtc_state,
14837			  struct intel_plane_state *state)
14838{
14839	struct drm_i915_private *dev_priv = to_i915(plane->dev);
14840	struct drm_crtc *crtc = state->base.crtc;
14841	int min_scale = DRM_PLANE_HELPER_NO_SCALING;
14842	int max_scale = DRM_PLANE_HELPER_NO_SCALING;
14843	bool can_position = false;
14844	int ret;
14845
14846	if (INTEL_GEN(dev_priv) >= 9) {
14847		/* use scaler when colorkey is not required */
14848		if (state->ckey.flags == I915_SET_COLORKEY_NONE) {
14849			min_scale = 1;
14850			max_scale = skl_max_scale(to_intel_crtc(crtc), crtc_state);
14851		}
14852		can_position = true;
14853	}
14854
14855	ret = drm_plane_helper_check_state(&state->base,
14856					   &state->clip,
14857					   min_scale, max_scale,
14858					   can_position, true);
14859	if (ret)
14860		return ret;
14861
14862	if (!state->base.fb)
14863		return 0;
14864
14865	if (INTEL_GEN(dev_priv) >= 9) {
14866		ret = skl_check_plane_surface(state);
14867		if (ret)
14868			return ret;
14869	}
14870
14871	return 0;
14872}
14873
14874static void intel_begin_crtc_commit(struct drm_crtc *crtc,
14875				    struct drm_crtc_state *old_crtc_state)
14876{
14877	struct drm_device *dev = crtc->dev;
14878	struct drm_i915_private *dev_priv = to_i915(dev);
14879	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14880	struct intel_crtc_state *intel_cstate =
14881		to_intel_crtc_state(crtc->state);
14882	struct intel_crtc_state *old_intel_cstate =
14883		to_intel_crtc_state(old_crtc_state);
14884	struct intel_atomic_state *old_intel_state =
14885		to_intel_atomic_state(old_crtc_state->state);
14886	bool modeset = needs_modeset(crtc->state);
14887
14888	if (!modeset &&
14889	    (intel_cstate->base.color_mgmt_changed ||
14890	     intel_cstate->update_pipe)) {
14891		intel_color_set_csc(crtc->state);
14892		intel_color_load_luts(crtc->state);
14893	}
14894
14895	/* Perform vblank evasion around commit operation */
14896	intel_pipe_update_start(intel_crtc);
14897
14898	if (modeset)
14899		goto out;
14900
14901	if (intel_cstate->update_pipe)
14902		intel_update_pipe_config(intel_crtc, old_intel_cstate);
14903	else if (INTEL_GEN(dev_priv) >= 9)
14904		skl_detach_scalers(intel_crtc);
14905
14906out:
14907	if (dev_priv->display.atomic_update_watermarks)
14908		dev_priv->display.atomic_update_watermarks(old_intel_state,
14909							   intel_cstate);
14910}
14911
14912static void intel_finish_crtc_commit(struct drm_crtc *crtc,
14913				     struct drm_crtc_state *old_crtc_state)
14914{
14915	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14916
14917	intel_pipe_update_end(intel_crtc, NULL);
14918}
14919
14920/**
14921 * intel_plane_destroy - destroy a plane
14922 * @plane: plane to destroy
14923 *
14924 * Common destruction function for all types of planes (primary, cursor,
14925 * sprite).
14926 */
14927void intel_plane_destroy(struct drm_plane *plane)
14928{
14929	drm_plane_cleanup(plane);
14930	kfree(to_intel_plane(plane));
14931}
14932
14933const struct drm_plane_funcs intel_plane_funcs = {
14934	.update_plane = drm_atomic_helper_update_plane,
14935	.disable_plane = drm_atomic_helper_disable_plane,
14936	.destroy = intel_plane_destroy,
14937	.set_property = drm_atomic_helper_plane_set_property,
14938	.atomic_get_property = intel_plane_atomic_get_property,
14939	.atomic_set_property = intel_plane_atomic_set_property,
14940	.atomic_duplicate_state = intel_plane_duplicate_state,
14941	.atomic_destroy_state = intel_plane_destroy_state,
14942};
14943
14944static struct intel_plane *
14945intel_primary_plane_create(struct drm_i915_private *dev_priv, enum pipe pipe)
14946{
14947	struct intel_plane *primary = NULL;
14948	struct intel_plane_state *state = NULL;
14949	const uint32_t *intel_primary_formats;
14950	unsigned int supported_rotations;
14951	unsigned int num_formats;
14952	int ret;
14953
14954	primary = kzalloc(sizeof(*primary), GFP_KERNEL);
14955	if (!primary) {
14956		ret = -ENOMEM;
14957		goto fail;
14958	}
14959
14960	state = intel_create_plane_state(&primary->base);
14961	if (!state) {
14962		ret = -ENOMEM;
14963		goto fail;
14964	}
14965
14966	primary->base.state = &state->base;
14967
14968	primary->can_scale = false;
14969	primary->max_downscale = 1;
14970	if (INTEL_GEN(dev_priv) >= 9) {
14971		primary->can_scale = true;
14972		state->scaler_id = -1;
14973	}
14974	primary->pipe = pipe;
14975	/*
14976	 * On gen2/3 only plane A can do FBC, but the panel fitter and LVDS
14977	 * port is hooked to pipe B. Hence we want plane A feeding pipe B.
14978	 */
14979	if (HAS_FBC(dev_priv) && INTEL_GEN(dev_priv) < 4)
14980		primary->plane = (enum plane) !pipe;
14981	else
14982		primary->plane = (enum plane) pipe;
14983	primary->frontbuffer_bit = INTEL_FRONTBUFFER_PRIMARY(pipe);
14984	primary->check_plane = intel_check_primary_plane;
14985
14986	if (INTEL_GEN(dev_priv) >= 9) {
14987		intel_primary_formats = skl_primary_formats;
14988		num_formats = ARRAY_SIZE(skl_primary_formats);
14989
14990		primary->update_plane = skylake_update_primary_plane;
14991		primary->disable_plane = skylake_disable_primary_plane;
14992	} else if (HAS_PCH_SPLIT(dev_priv)) {
14993		intel_primary_formats = i965_primary_formats;
14994		num_formats = ARRAY_SIZE(i965_primary_formats);
14995
14996		primary->update_plane = ironlake_update_primary_plane;
14997		primary->disable_plane = i9xx_disable_primary_plane;
14998	} else if (INTEL_GEN(dev_priv) >= 4) {
14999		intel_primary_formats = i965_primary_formats;
15000		num_formats = ARRAY_SIZE(i965_primary_formats);
15001
15002		primary->update_plane = i9xx_update_primary_plane;
15003		primary->disable_plane = i9xx_disable_primary_plane;
15004	} else {
15005		intel_primary_formats = i8xx_primary_formats;
15006		num_formats = ARRAY_SIZE(i8xx_primary_formats);
15007
15008		primary->update_plane = i9xx_update_primary_plane;
15009		primary->disable_plane = i9xx_disable_primary_plane;
15010	}
15011
15012	if (INTEL_GEN(dev_priv) >= 9)
15013		ret = drm_universal_plane_init(&dev_priv->drm, &primary->base,
15014					       0, &intel_plane_funcs,
15015					       intel_primary_formats, num_formats,
15016					       DRM_PLANE_TYPE_PRIMARY,
15017					       "plane 1%c", pipe_name(pipe));
15018	else if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
15019		ret = drm_universal_plane_init(&dev_priv->drm, &primary->base,
15020					       0, &intel_plane_funcs,
15021					       intel_primary_formats, num_formats,
15022					       DRM_PLANE_TYPE_PRIMARY,
15023					       "primary %c", pipe_name(pipe));
15024	else
15025		ret = drm_universal_plane_init(&dev_priv->drm, &primary->base,
15026					       0, &intel_plane_funcs,
15027					       intel_primary_formats, num_formats,
15028					       DRM_PLANE_TYPE_PRIMARY,
15029					       "plane %c", plane_name(primary->plane));
15030	if (ret)
15031		goto fail;
15032
15033	if (INTEL_GEN(dev_priv) >= 9) {
15034		supported_rotations =
15035			DRM_ROTATE_0 | DRM_ROTATE_90 |
15036			DRM_ROTATE_180 | DRM_ROTATE_270;
15037	} else if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B) {
15038		supported_rotations =
15039			DRM_ROTATE_0 | DRM_ROTATE_180 |
15040			DRM_REFLECT_X;
15041	} else if (INTEL_GEN(dev_priv) >= 4) {
15042		supported_rotations =
15043			DRM_ROTATE_0 | DRM_ROTATE_180;
15044	} else {
15045		supported_rotations = DRM_ROTATE_0;
15046	}
15047
15048	if (INTEL_GEN(dev_priv) >= 4)
15049		drm_plane_create_rotation_property(&primary->base,
15050						   DRM_ROTATE_0,
15051						   supported_rotations);
15052
15053	drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
15054
15055	return primary;
15056
15057fail:
15058	kfree(state);
15059	kfree(primary);
15060
15061	return ERR_PTR(ret);
15062}
15063
15064static int
15065intel_check_cursor_plane(struct drm_plane *plane,
15066			 struct intel_crtc_state *crtc_state,
15067			 struct intel_plane_state *state)
15068{
15069	struct drm_framebuffer *fb = state->base.fb;
15070	struct drm_i915_gem_object *obj = intel_fb_obj(fb);
15071	enum pipe pipe = to_intel_plane(plane)->pipe;
15072	unsigned stride;
15073	int ret;
15074
15075	ret = drm_plane_helper_check_state(&state->base,
15076					   &state->clip,
15077					   DRM_PLANE_HELPER_NO_SCALING,
15078					   DRM_PLANE_HELPER_NO_SCALING,
15079					   true, true);
15080	if (ret)
15081		return ret;
15082
15083	/* if we want to turn off the cursor ignore width and height */
15084	if (!obj)
15085		return 0;
15086
15087	/* Check for which cursor types we support */
15088	if (!cursor_size_ok(to_i915(plane->dev), state->base.crtc_w,
15089			    state->base.crtc_h)) {
15090		DRM_DEBUG("Cursor dimension %dx%d not supported\n",
15091			  state->base.crtc_w, state->base.crtc_h);
15092		return -EINVAL;
15093	}
15094
15095	stride = roundup_pow_of_two(state->base.crtc_w) * 4;
15096	if (obj->base.size < stride * state->base.crtc_h) {
15097		DRM_DEBUG_KMS("buffer is too small\n");
15098		return -ENOMEM;
15099	}
15100
15101	if (fb->modifier != DRM_FORMAT_MOD_NONE) {
15102		DRM_DEBUG_KMS("cursor cannot be tiled\n");
15103		return -EINVAL;
15104	}
15105
15106	/*
15107	 * There's something wrong with the cursor on CHV pipe C.
15108	 * If it straddles the left edge of the screen then
15109	 * moving it away from the edge or disabling it often
15110	 * results in a pipe underrun, and often that can lead to
15111	 * dead pipe (constant underrun reported, and it scans
15112	 * out just a solid color). To recover from that, the
15113	 * display power well must be turned off and on again.
15114	 * Refuse the put the cursor into that compromised position.
15115	 */
15116	if (IS_CHERRYVIEW(to_i915(plane->dev)) && pipe == PIPE_C &&
15117	    state->base.visible && state->base.crtc_x < 0) {
15118		DRM_DEBUG_KMS("CHV cursor C not allowed to straddle the left screen edge\n");
15119		return -EINVAL;
15120	}
15121
15122	return 0;
15123}
15124
15125static void
15126intel_disable_cursor_plane(struct drm_plane *plane,
15127			   struct drm_crtc *crtc)
15128{
15129	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
15130
15131	intel_crtc->cursor_addr = 0;
15132	intel_crtc_update_cursor(crtc, NULL);
15133}
15134
15135static void
15136intel_update_cursor_plane(struct drm_plane *plane,
15137			  const struct intel_crtc_state *crtc_state,
15138			  const struct intel_plane_state *state)
15139{
15140	struct drm_crtc *crtc = crtc_state->base.crtc;
15141	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
15142	struct drm_i915_private *dev_priv = to_i915(plane->dev);
15143	struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb);
15144	uint32_t addr;
15145
15146	if (!obj)
15147		addr = 0;
15148	else if (!INTEL_INFO(dev_priv)->cursor_needs_physical)
15149		addr = intel_plane_ggtt_offset(state);
15150	else
15151		addr = obj->phys_handle->busaddr;
15152
15153	intel_crtc->cursor_addr = addr;
15154	intel_crtc_update_cursor(crtc, state);
15155}
15156
15157static struct intel_plane *
15158intel_cursor_plane_create(struct drm_i915_private *dev_priv, enum pipe pipe)
15159{
15160	struct intel_plane *cursor = NULL;
15161	struct intel_plane_state *state = NULL;
15162	int ret;
15163
15164	cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
15165	if (!cursor) {
15166		ret = -ENOMEM;
15167		goto fail;
15168	}
15169
15170	state = intel_create_plane_state(&cursor->base);
15171	if (!state) {
15172		ret = -ENOMEM;
15173		goto fail;
15174	}
15175
15176	cursor->base.state = &state->base;
15177
15178	cursor->can_scale = false;
15179	cursor->max_downscale = 1;
15180	cursor->pipe = pipe;
15181	cursor->plane = pipe;
15182	cursor->frontbuffer_bit = INTEL_FRONTBUFFER_CURSOR(pipe);
15183	cursor->check_plane = intel_check_cursor_plane;
15184	cursor->update_plane = intel_update_cursor_plane;
15185	cursor->disable_plane = intel_disable_cursor_plane;
15186
15187	ret = drm_universal_plane_init(&dev_priv->drm, &cursor->base,
15188				       0, &intel_plane_funcs,
15189				       intel_cursor_formats,
15190				       ARRAY_SIZE(intel_cursor_formats),
15191				       DRM_PLANE_TYPE_CURSOR,
15192				       "cursor %c", pipe_name(pipe));
15193	if (ret)
15194		goto fail;
15195
15196	if (INTEL_GEN(dev_priv) >= 4)
15197		drm_plane_create_rotation_property(&cursor->base,
15198						   DRM_ROTATE_0,
15199						   DRM_ROTATE_0 |
15200						   DRM_ROTATE_180);
15201
15202	if (INTEL_GEN(dev_priv) >= 9)
15203		state->scaler_id = -1;
15204
15205	drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
15206
15207	return cursor;
15208
15209fail:
15210	kfree(state);
15211	kfree(cursor);
15212
15213	return ERR_PTR(ret);
15214}
15215
15216static void skl_init_scalers(struct drm_i915_private *dev_priv,
15217			     struct intel_crtc *crtc,
15218			     struct intel_crtc_state *crtc_state)
15219{
15220	struct intel_crtc_scaler_state *scaler_state =
15221		&crtc_state->scaler_state;
15222	int i;
15223
15224	for (i = 0; i < crtc->num_scalers; i++) {
15225		struct intel_scaler *scaler = &scaler_state->scalers[i];
15226
15227		scaler->in_use = 0;
15228		scaler->mode = PS_SCALER_MODE_DYN;
15229	}
15230
15231	scaler_state->scaler_id = -1;
15232}
15233
15234static int intel_crtc_init(struct drm_i915_private *dev_priv, enum pipe pipe)
15235{
15236	struct intel_crtc *intel_crtc;
15237	struct intel_crtc_state *crtc_state = NULL;
15238	struct intel_plane *primary = NULL;
15239	struct intel_plane *cursor = NULL;
15240	int sprite, ret;
15241
15242	intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
15243	if (!intel_crtc)
15244		return -ENOMEM;
15245
15246	crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
15247	if (!crtc_state) {
15248		ret = -ENOMEM;
15249		goto fail;
15250	}
15251	intel_crtc->config = crtc_state;
15252	intel_crtc->base.state = &crtc_state->base;
15253	crtc_state->base.crtc = &intel_crtc->base;
15254
15255	/* initialize shared scalers */
15256	if (INTEL_GEN(dev_priv) >= 9) {
15257		if (pipe == PIPE_C)
15258			intel_crtc->num_scalers = 1;
15259		else
15260			intel_crtc->num_scalers = SKL_NUM_SCALERS;
15261
15262		skl_init_scalers(dev_priv, intel_crtc, crtc_state);
15263	}
15264
15265	primary = intel_primary_plane_create(dev_priv, pipe);
15266	if (IS_ERR(primary)) {
15267		ret = PTR_ERR(primary);
15268		goto fail;
15269	}
15270
15271	for_each_sprite(dev_priv, pipe, sprite) {
15272		struct intel_plane *plane;
15273
15274		plane = intel_sprite_plane_create(dev_priv, pipe, sprite);
15275		if (IS_ERR(plane)) {
15276			ret = PTR_ERR(plane);
15277			goto fail;
15278		}
15279	}
15280
15281	cursor = intel_cursor_plane_create(dev_priv, pipe);
15282	if (IS_ERR(cursor)) {
15283		ret = PTR_ERR(cursor);
15284		goto fail;
15285	}
15286
15287	ret = drm_crtc_init_with_planes(&dev_priv->drm, &intel_crtc->base,
15288					&primary->base, &cursor->base,
15289					&intel_crtc_funcs,
15290					"pipe %c", pipe_name(pipe));
15291	if (ret)
15292		goto fail;
15293
15294	intel_crtc->pipe = pipe;
15295	intel_crtc->plane = primary->plane;
15296
15297	intel_crtc->cursor_base = ~0;
15298	intel_crtc->cursor_cntl = ~0;
15299	intel_crtc->cursor_size = ~0;
15300
15301	intel_crtc->wm.cxsr_allowed = true;
15302
15303	BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
15304	       dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
15305	dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = intel_crtc;
15306	dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = intel_crtc;
15307
15308	drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
15309
15310	intel_color_init(&intel_crtc->base);
15311
15312	WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
15313
15314	return 0;
15315
15316fail:
15317	/*
15318	 * drm_mode_config_cleanup() will free up any
15319	 * crtcs/planes already initialized.
15320	 */
15321	kfree(crtc_state);
15322	kfree(intel_crtc);
15323
15324	return ret;
15325}
15326
15327enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
15328{
15329	struct drm_encoder *encoder = connector->base.encoder;
15330	struct drm_device *dev = connector->base.dev;
15331
15332	WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
15333
15334	if (!encoder || WARN_ON(!encoder->crtc))
15335		return INVALID_PIPE;
15336
15337	return to_intel_crtc(encoder->crtc)->pipe;
15338}
15339
15340int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
15341				struct drm_file *file)
15342{
15343	struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
15344	struct drm_crtc *drmmode_crtc;
15345	struct intel_crtc *crtc;
15346
15347	drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
15348	if (!drmmode_crtc)
15349		return -ENOENT;
15350
15351	crtc = to_intel_crtc(drmmode_crtc);
15352	pipe_from_crtc_id->pipe = crtc->pipe;
15353
15354	return 0;
15355}
15356
15357static int intel_encoder_clones(struct intel_encoder *encoder)
15358{
15359	struct drm_device *dev = encoder->base.dev;
15360	struct intel_encoder *source_encoder;
15361	int index_mask = 0;
15362	int entry = 0;
15363
15364	for_each_intel_encoder(dev, source_encoder) {
15365		if (encoders_cloneable(encoder, source_encoder))
15366			index_mask |= (1 << entry);
15367
15368		entry++;
15369	}
15370
15371	return index_mask;
15372}
15373
15374static bool has_edp_a(struct drm_i915_private *dev_priv)
15375{
15376	if (!IS_MOBILE(dev_priv))
15377		return false;
15378
15379	if ((I915_READ(DP_A) & DP_DETECTED) == 0)
15380		return false;
15381
15382	if (IS_GEN5(dev_priv) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
15383		return false;
15384
15385	return true;
15386}
15387
15388static bool intel_crt_present(struct drm_i915_private *dev_priv)
15389{
15390	if (INTEL_GEN(dev_priv) >= 9)
15391		return false;
15392
15393	if (IS_HSW_ULT(dev_priv) || IS_BDW_ULT(dev_priv))
15394		return false;
15395
15396	if (IS_CHERRYVIEW(dev_priv))
15397		return false;
15398
15399	if (HAS_PCH_LPT_H(dev_priv) &&
15400	    I915_READ(SFUSE_STRAP) & SFUSE_STRAP_CRT_DISABLED)
15401		return false;
15402
15403	/* DDI E can't be used if DDI A requires 4 lanes */
15404	if (HAS_DDI(dev_priv) && I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES)
15405		return false;
15406
15407	if (!dev_priv->vbt.int_crt_support)
15408		return false;
15409
15410	return true;
15411}
15412
15413void intel_pps_unlock_regs_wa(struct drm_i915_private *dev_priv)
15414{
15415	int pps_num;
15416	int pps_idx;
15417
15418	if (HAS_DDI(dev_priv))
15419		return;
15420	/*
15421	 * This w/a is needed at least on CPT/PPT, but to be sure apply it
15422	 * everywhere where registers can be write protected.
15423	 */
15424	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
15425		pps_num = 2;
15426	else
15427		pps_num = 1;
15428
15429	for (pps_idx = 0; pps_idx < pps_num; pps_idx++) {
15430		u32 val = I915_READ(PP_CONTROL(pps_idx));
15431
15432		val = (val & ~PANEL_UNLOCK_MASK) | PANEL_UNLOCK_REGS;
15433		I915_WRITE(PP_CONTROL(pps_idx), val);
15434	}
15435}
15436
15437static void intel_pps_init(struct drm_i915_private *dev_priv)
15438{
15439	if (HAS_PCH_SPLIT(dev_priv) || IS_BROXTON(dev_priv))
15440		dev_priv->pps_mmio_base = PCH_PPS_BASE;
15441	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
15442		dev_priv->pps_mmio_base = VLV_PPS_BASE;
15443	else
15444		dev_priv->pps_mmio_base = PPS_BASE;
15445
15446	intel_pps_unlock_regs_wa(dev_priv);
15447}
15448
15449static void intel_setup_outputs(struct drm_device *dev)
15450{
15451	struct drm_i915_private *dev_priv = to_i915(dev);
15452	struct intel_encoder *encoder;
15453	bool dpd_is_edp = false;
15454
15455	intel_pps_init(dev_priv);
15456
15457	/*
15458	 * intel_edp_init_connector() depends on this completing first, to
15459	 * prevent the registeration of both eDP and LVDS and the incorrect
15460	 * sharing of the PPS.
15461	 */
15462	intel_lvds_init(dev);
15463
15464	if (intel_crt_present(dev_priv))
15465		intel_crt_init(dev);
15466
15467	if (IS_BROXTON(dev_priv)) {
15468		/*
15469		 * FIXME: Broxton doesn't support port detection via the
15470		 * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to
15471		 * detect the ports.
15472		 */
15473		intel_ddi_init(dev, PORT_A);
15474		intel_ddi_init(dev, PORT_B);
15475		intel_ddi_init(dev, PORT_C);
15476
15477		intel_dsi_init(dev);
15478	} else if (HAS_DDI(dev_priv)) {
15479		int found;
15480
15481		/*
15482		 * Haswell uses DDI functions to detect digital outputs.
15483		 * On SKL pre-D0 the strap isn't connected, so we assume
15484		 * it's there.
15485		 */
15486		found = I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_INIT_DISPLAY_DETECTED;
15487		/* WaIgnoreDDIAStrap: skl */
15488		if (found || IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
15489			intel_ddi_init(dev, PORT_A);
15490
15491		/* DDI B, C and D detection is indicated by the SFUSE_STRAP
15492		 * register */
15493		found = I915_READ(SFUSE_STRAP);
15494
15495		if (found & SFUSE_STRAP_DDIB_DETECTED)
15496			intel_ddi_init(dev, PORT_B);
15497		if (found & SFUSE_STRAP_DDIC_DETECTED)
15498			intel_ddi_init(dev, PORT_C);
15499		if (found & SFUSE_STRAP_DDID_DETECTED)
15500			intel_ddi_init(dev, PORT_D);
15501		/*
15502		 * On SKL we don't have a way to detect DDI-E so we rely on VBT.
15503		 */
15504		if ((IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) &&
15505		    (dev_priv->vbt.ddi_port_info[PORT_E].supports_dp ||
15506		     dev_priv->vbt.ddi_port_info[PORT_E].supports_dvi ||
15507		     dev_priv->vbt.ddi_port_info[PORT_E].supports_hdmi))
15508			intel_ddi_init(dev, PORT_E);
15509
15510	} else if (HAS_PCH_SPLIT(dev_priv)) {
15511		int found;
15512		dpd_is_edp = intel_dp_is_edp(dev_priv, PORT_D);
15513
15514		if (has_edp_a(dev_priv))
15515			intel_dp_init(dev, DP_A, PORT_A);
15516
15517		if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
15518			/* PCH SDVOB multiplex with HDMIB */
15519			found = intel_sdvo_init(dev, PCH_SDVOB, PORT_B);
15520			if (!found)
15521				intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
15522			if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
15523				intel_dp_init(dev, PCH_DP_B, PORT_B);
15524		}
15525
15526		if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
15527			intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
15528
15529		if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
15530			intel_hdmi_init(dev, PCH_HDMID, PORT_D);
15531
15532		if (I915_READ(PCH_DP_C) & DP_DETECTED)
15533			intel_dp_init(dev, PCH_DP_C, PORT_C);
15534
15535		if (I915_READ(PCH_DP_D) & DP_DETECTED)
15536			intel_dp_init(dev, PCH_DP_D, PORT_D);
15537	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
15538		bool has_edp, has_port;
15539
15540		/*
15541		 * The DP_DETECTED bit is the latched state of the DDC
15542		 * SDA pin at boot. However since eDP doesn't require DDC
15543		 * (no way to plug in a DP->HDMI dongle) the DDC pins for
15544		 * eDP ports may have been muxed to an alternate function.
15545		 * Thus we can't rely on the DP_DETECTED bit alone to detect
15546		 * eDP ports. Consult the VBT as well as DP_DETECTED to
15547		 * detect eDP ports.
15548		 *
15549		 * Sadly the straps seem to be missing sometimes even for HDMI
15550		 * ports (eg. on Voyo V3 - CHT x7-Z8700), so check both strap
15551		 * and VBT for the presence of the port. Additionally we can't
15552		 * trust the port type the VBT declares as we've seen at least
15553		 * HDMI ports that the VBT claim are DP or eDP.
15554		 */
15555		has_edp = intel_dp_is_edp(dev_priv, PORT_B);
15556		has_port = intel_bios_is_port_present(dev_priv, PORT_B);
15557		if (I915_READ(VLV_DP_B) & DP_DETECTED || has_port)
15558			has_edp &= intel_dp_init(dev, VLV_DP_B, PORT_B);
15559		if ((I915_READ(VLV_HDMIB) & SDVO_DETECTED || has_port) && !has_edp)
15560			intel_hdmi_init(dev, VLV_HDMIB, PORT_B);
15561
15562		has_edp = intel_dp_is_edp(dev_priv, PORT_C);
15563		has_port = intel_bios_is_port_present(dev_priv, PORT_C);
15564		if (I915_READ(VLV_DP_C) & DP_DETECTED || has_port)
15565			has_edp &= intel_dp_init(dev, VLV_DP_C, PORT_C);
15566		if ((I915_READ(VLV_HDMIC) & SDVO_DETECTED || has_port) && !has_edp)
15567			intel_hdmi_init(dev, VLV_HDMIC, PORT_C);
15568
15569		if (IS_CHERRYVIEW(dev_priv)) {
15570			/*
15571			 * eDP not supported on port D,
15572			 * so no need to worry about it
15573			 */
15574			has_port = intel_bios_is_port_present(dev_priv, PORT_D);
15575			if (I915_READ(CHV_DP_D) & DP_DETECTED || has_port)
15576				intel_dp_init(dev, CHV_DP_D, PORT_D);
15577			if (I915_READ(CHV_HDMID) & SDVO_DETECTED || has_port)
15578				intel_hdmi_init(dev, CHV_HDMID, PORT_D);
15579		}
15580
15581		intel_dsi_init(dev);
15582	} else if (!IS_GEN2(dev_priv) && !IS_PINEVIEW(dev_priv)) {
15583		bool found = false;
15584
15585		if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
15586			DRM_DEBUG_KMS("probing SDVOB\n");
15587			found = intel_sdvo_init(dev, GEN3_SDVOB, PORT_B);
15588			if (!found && IS_G4X(dev_priv)) {
15589				DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
15590				intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
15591			}
15592
15593			if (!found && IS_G4X(dev_priv))
15594				intel_dp_init(dev, DP_B, PORT_B);
15595		}
15596
15597		/* Before G4X SDVOC doesn't have its own detect register */
15598
15599		if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
15600			DRM_DEBUG_KMS("probing SDVOC\n");
15601			found = intel_sdvo_init(dev, GEN3_SDVOC, PORT_C);
15602		}
15603
15604		if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
15605
15606			if (IS_G4X(dev_priv)) {
15607				DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
15608				intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
15609			}
15610			if (IS_G4X(dev_priv))
15611				intel_dp_init(dev, DP_C, PORT_C);
15612		}
15613
15614		if (IS_G4X(dev_priv) && (I915_READ(DP_D) & DP_DETECTED))
15615			intel_dp_init(dev, DP_D, PORT_D);
15616	} else if (IS_GEN2(dev_priv))
15617		intel_dvo_init(dev);
15618
15619	if (SUPPORTS_TV(dev_priv))
15620		intel_tv_init(dev);
15621
15622	intel_psr_init(dev);
15623
15624	for_each_intel_encoder(dev, encoder) {
15625		encoder->base.possible_crtcs = encoder->crtc_mask;
15626		encoder->base.possible_clones =
15627			intel_encoder_clones(encoder);
15628	}
15629
15630	intel_init_pch_refclk(dev);
15631
15632	drm_helper_move_panel_connectors_to_head(dev);
15633}
15634
15635static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
15636{
15637	struct drm_device *dev = fb->dev;
15638	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
15639
15640	drm_framebuffer_cleanup(fb);
15641	mutex_lock(&dev->struct_mutex);
15642	WARN_ON(!intel_fb->obj->framebuffer_references--);
15643	i915_gem_object_put(intel_fb->obj);
15644	mutex_unlock(&dev->struct_mutex);
15645	kfree(intel_fb);
15646}
15647
15648static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
15649						struct drm_file *file,
15650						unsigned int *handle)
15651{
15652	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
15653	struct drm_i915_gem_object *obj = intel_fb->obj;
15654
15655	if (obj->userptr.mm) {
15656		DRM_DEBUG("attempting to use a userptr for a framebuffer, denied\n");
15657		return -EINVAL;
15658	}
15659
15660	return drm_gem_handle_create(file, &obj->base, handle);
15661}
15662
15663static int intel_user_framebuffer_dirty(struct drm_framebuffer *fb,
15664					struct drm_file *file,
15665					unsigned flags, unsigned color,
15666					struct drm_clip_rect *clips,
15667					unsigned num_clips)
15668{
15669	struct drm_device *dev = fb->dev;
15670	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
15671	struct drm_i915_gem_object *obj = intel_fb->obj;
15672
15673	mutex_lock(&dev->struct_mutex);
15674	if (obj->pin_display && obj->cache_dirty)
15675		i915_gem_clflush_object(obj, true);
15676	intel_fb_obj_flush(obj, false, ORIGIN_DIRTYFB);
15677	mutex_unlock(&dev->struct_mutex);
15678
15679	return 0;
15680}
15681
15682static const struct drm_framebuffer_funcs intel_fb_funcs = {
15683	.destroy = intel_user_framebuffer_destroy,
15684	.create_handle = intel_user_framebuffer_create_handle,
15685	.dirty = intel_user_framebuffer_dirty,
15686};
15687
15688static
15689u32 intel_fb_pitch_limit(struct drm_i915_private *dev_priv,
15690			 uint64_t fb_modifier, uint32_t pixel_format)
15691{
15692	u32 gen = INTEL_INFO(dev_priv)->gen;
15693
15694	if (gen >= 9) {
15695		int cpp = drm_format_plane_cpp(pixel_format, 0);
15696
15697		/* "The stride in bytes must not exceed the of the size of 8K
15698		 *  pixels and 32K bytes."
15699		 */
15700		return min(8192 * cpp, 32768);
15701	} else if (gen >= 5 && !IS_VALLEYVIEW(dev_priv) &&
15702		   !IS_CHERRYVIEW(dev_priv)) {
15703		return 32*1024;
15704	} else if (gen >= 4) {
15705		if (fb_modifier == I915_FORMAT_MOD_X_TILED)
15706			return 16*1024;
15707		else
15708			return 32*1024;
15709	} else if (gen >= 3) {
15710		if (fb_modifier == I915_FORMAT_MOD_X_TILED)
15711			return 8*1024;
15712		else
15713			return 16*1024;
15714	} else {
15715		/* XXX DSPC is limited to 4k tiled */
15716		return 8*1024;
15717	}
15718}
15719
15720static int intel_framebuffer_init(struct drm_device *dev,
15721				  struct intel_framebuffer *intel_fb,
15722				  struct drm_mode_fb_cmd2 *mode_cmd,
15723				  struct drm_i915_gem_object *obj)
15724{
15725	struct drm_i915_private *dev_priv = to_i915(dev);
15726	unsigned int tiling = i915_gem_object_get_tiling(obj);
15727	int ret;
15728	u32 pitch_limit, stride_alignment;
15729	struct drm_format_name_buf format_name;
15730
15731	WARN_ON(!mutex_is_locked(&dev->struct_mutex));
15732
15733	if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
15734		/*
15735		 * If there's a fence, enforce that
15736		 * the fb modifier and tiling mode match.
15737		 */
15738		if (tiling != I915_TILING_NONE &&
15739		    tiling != intel_fb_modifier_to_tiling(mode_cmd->modifier[0])) {
15740			DRM_DEBUG("tiling_mode doesn't match fb modifier\n");
15741			return -EINVAL;
15742		}
15743	} else {
15744		if (tiling == I915_TILING_X) {
15745			mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
15746		} else if (tiling == I915_TILING_Y) {
15747			DRM_DEBUG("No Y tiling for legacy addfb\n");
15748			return -EINVAL;
15749		}
15750	}
15751
15752	/* Passed in modifier sanity checking. */
15753	switch (mode_cmd->modifier[0]) {
15754	case I915_FORMAT_MOD_Y_TILED:
15755	case I915_FORMAT_MOD_Yf_TILED:
15756		if (INTEL_GEN(dev_priv) < 9) {
15757			DRM_DEBUG("Unsupported tiling 0x%llx!\n",
15758				  mode_cmd->modifier[0]);
15759			return -EINVAL;
15760		}
15761	case DRM_FORMAT_MOD_NONE:
15762	case I915_FORMAT_MOD_X_TILED:
15763		break;
15764	default:
15765		DRM_DEBUG("Unsupported fb modifier 0x%llx!\n",
15766			  mode_cmd->modifier[0]);
15767		return -EINVAL;
15768	}
15769
15770	/*
15771	 * gen2/3 display engine uses the fence if present,
15772	 * so the tiling mode must match the fb modifier exactly.
15773	 */
15774	if (INTEL_INFO(dev_priv)->gen < 4 &&
15775	    tiling != intel_fb_modifier_to_tiling(mode_cmd->modifier[0])) {
15776		DRM_DEBUG("tiling_mode must match fb modifier exactly on gen2/3\n");
15777		return -EINVAL;
15778	}
15779
15780	stride_alignment = intel_fb_stride_alignment(dev_priv,
15781						     mode_cmd->modifier[0],
15782						     mode_cmd->pixel_format);
15783	if (mode_cmd->pitches[0] & (stride_alignment - 1)) {
15784		DRM_DEBUG("pitch (%d) must be at least %u byte aligned\n",
15785			  mode_cmd->pitches[0], stride_alignment);
15786		return -EINVAL;
15787	}
15788
15789	pitch_limit = intel_fb_pitch_limit(dev_priv, mode_cmd->modifier[0],
15790					   mode_cmd->pixel_format);
15791	if (mode_cmd->pitches[0] > pitch_limit) {
15792		DRM_DEBUG("%s pitch (%u) must be at less than %d\n",
15793			  mode_cmd->modifier[0] != DRM_FORMAT_MOD_NONE ?
15794			  "tiled" : "linear",
15795			  mode_cmd->pitches[0], pitch_limit);
15796		return -EINVAL;
15797	}
15798
15799	/*
15800	 * If there's a fence, enforce that
15801	 * the fb pitch and fence stride match.
15802	 */
15803	if (tiling != I915_TILING_NONE &&
15804	    mode_cmd->pitches[0] != i915_gem_object_get_stride(obj)) {
15805		DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
15806			  mode_cmd->pitches[0],
15807			  i915_gem_object_get_stride(obj));
15808		return -EINVAL;
15809	}
15810
15811	/* Reject formats not supported by any plane early. */
15812	switch (mode_cmd->pixel_format) {
15813	case DRM_FORMAT_C8:
15814	case DRM_FORMAT_RGB565:
15815	case DRM_FORMAT_XRGB8888:
15816	case DRM_FORMAT_ARGB8888:
15817		break;
15818	case DRM_FORMAT_XRGB1555:
15819		if (INTEL_GEN(dev_priv) > 3) {
15820			DRM_DEBUG("unsupported pixel format: %s\n",
15821			          drm_get_format_name(mode_cmd->pixel_format, &format_name));
15822			return -EINVAL;
15823		}
15824		break;
15825	case DRM_FORMAT_ABGR8888:
15826		if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
15827		    INTEL_GEN(dev_priv) < 9) {
15828			DRM_DEBUG("unsupported pixel format: %s\n",
15829			          drm_get_format_name(mode_cmd->pixel_format, &format_name));
15830			return -EINVAL;
15831		}
15832		break;
15833	case DRM_FORMAT_XBGR8888:
15834	case DRM_FORMAT_XRGB2101010:
15835	case DRM_FORMAT_XBGR2101010:
15836		if (INTEL_GEN(dev_priv) < 4) {
15837			DRM_DEBUG("unsupported pixel format: %s\n",
15838			          drm_get_format_name(mode_cmd->pixel_format, &format_name));
15839			return -EINVAL;
15840		}
15841		break;
15842	case DRM_FORMAT_ABGR2101010:
15843		if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv)) {
15844			DRM_DEBUG("unsupported pixel format: %s\n",
15845			          drm_get_format_name(mode_cmd->pixel_format, &format_name));
15846			return -EINVAL;
15847		}
15848		break;
15849	case DRM_FORMAT_YUYV:
15850	case DRM_FORMAT_UYVY:
15851	case DRM_FORMAT_YVYU:
15852	case DRM_FORMAT_VYUY:
15853		if (INTEL_GEN(dev_priv) < 5) {
15854			DRM_DEBUG("unsupported pixel format: %s\n",
15855			          drm_get_format_name(mode_cmd->pixel_format, &format_name));
15856			return -EINVAL;
15857		}
15858		break;
15859	default:
15860		DRM_DEBUG("unsupported pixel format: %s\n",
15861		          drm_get_format_name(mode_cmd->pixel_format, &format_name));
15862		return -EINVAL;
15863	}
15864
15865	/* FIXME need to adjust LINOFF/TILEOFF accordingly. */
15866	if (mode_cmd->offsets[0] != 0)
15867		return -EINVAL;
15868
15869	drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
15870	intel_fb->obj = obj;
15871
15872	ret = intel_fill_fb_info(dev_priv, &intel_fb->base);
15873	if (ret)
15874		return ret;
15875
15876	ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
15877	if (ret) {
15878		DRM_ERROR("framebuffer init failed %d\n", ret);
15879		return ret;
15880	}
15881
15882	intel_fb->obj->framebuffer_references++;
15883
15884	return 0;
15885}
15886
15887static struct drm_framebuffer *
15888intel_user_framebuffer_create(struct drm_device *dev,
15889			      struct drm_file *filp,
15890			      const struct drm_mode_fb_cmd2 *user_mode_cmd)
15891{
15892	struct drm_framebuffer *fb;
15893	struct drm_i915_gem_object *obj;
15894	struct drm_mode_fb_cmd2 mode_cmd = *user_mode_cmd;
15895
15896	obj = i915_gem_object_lookup(filp, mode_cmd.handles[0]);
15897	if (!obj)
15898		return ERR_PTR(-ENOENT);
15899
15900	fb = intel_framebuffer_create(dev, &mode_cmd, obj);
15901	if (IS_ERR(fb))
15902		i915_gem_object_put(obj);
15903
15904	return fb;
15905}
15906
15907static const struct drm_mode_config_funcs intel_mode_funcs = {
15908	.fb_create = intel_user_framebuffer_create,
15909	.output_poll_changed = intel_fbdev_output_poll_changed,
15910	.atomic_check = intel_atomic_check,
15911	.atomic_commit = intel_atomic_commit,
15912	.atomic_state_alloc = intel_atomic_state_alloc,
15913	.atomic_state_clear = intel_atomic_state_clear,
15914};
15915
15916/**
15917 * intel_init_display_hooks - initialize the display modesetting hooks
15918 * @dev_priv: device private
15919 */
15920void intel_init_display_hooks(struct drm_i915_private *dev_priv)
15921{
15922	if (INTEL_INFO(dev_priv)->gen >= 9) {
15923		dev_priv->display.get_pipe_config = haswell_get_pipe_config;
15924		dev_priv->display.get_initial_plane_config =
15925			skylake_get_initial_plane_config;
15926		dev_priv->display.crtc_compute_clock =
15927			haswell_crtc_compute_clock;
15928		dev_priv->display.crtc_enable = haswell_crtc_enable;
15929		dev_priv->display.crtc_disable = haswell_crtc_disable;
15930	} else if (HAS_DDI(dev_priv)) {
15931		dev_priv->display.get_pipe_config = haswell_get_pipe_config;
15932		dev_priv->display.get_initial_plane_config =
15933			ironlake_get_initial_plane_config;
15934		dev_priv->display.crtc_compute_clock =
15935			haswell_crtc_compute_clock;
15936		dev_priv->display.crtc_enable = haswell_crtc_enable;
15937		dev_priv->display.crtc_disable = haswell_crtc_disable;
15938	} else if (HAS_PCH_SPLIT(dev_priv)) {
15939		dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
15940		dev_priv->display.get_initial_plane_config =
15941			ironlake_get_initial_plane_config;
15942		dev_priv->display.crtc_compute_clock =
15943			ironlake_crtc_compute_clock;
15944		dev_priv->display.crtc_enable = ironlake_crtc_enable;
15945		dev_priv->display.crtc_disable = ironlake_crtc_disable;
15946	} else if (IS_CHERRYVIEW(dev_priv)) {
15947		dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15948		dev_priv->display.get_initial_plane_config =
15949			i9xx_get_initial_plane_config;
15950		dev_priv->display.crtc_compute_clock = chv_crtc_compute_clock;
15951		dev_priv->display.crtc_enable = valleyview_crtc_enable;
15952		dev_priv->display.crtc_disable = i9xx_crtc_disable;
15953	} else if (IS_VALLEYVIEW(dev_priv)) {
15954		dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15955		dev_priv->display.get_initial_plane_config =
15956			i9xx_get_initial_plane_config;
15957		dev_priv->display.crtc_compute_clock = vlv_crtc_compute_clock;
15958		dev_priv->display.crtc_enable = valleyview_crtc_enable;
15959		dev_priv->display.crtc_disable = i9xx_crtc_disable;
15960	} else if (IS_G4X(dev_priv)) {
15961		dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15962		dev_priv->display.get_initial_plane_config =
15963			i9xx_get_initial_plane_config;
15964		dev_priv->display.crtc_compute_clock = g4x_crtc_compute_clock;
15965		dev_priv->display.crtc_enable = i9xx_crtc_enable;
15966		dev_priv->display.crtc_disable = i9xx_crtc_disable;
15967	} else if (IS_PINEVIEW(dev_priv)) {
15968		dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15969		dev_priv->display.get_initial_plane_config =
15970			i9xx_get_initial_plane_config;
15971		dev_priv->display.crtc_compute_clock = pnv_crtc_compute_clock;
15972		dev_priv->display.crtc_enable = i9xx_crtc_enable;
15973		dev_priv->display.crtc_disable = i9xx_crtc_disable;
15974	} else if (!IS_GEN2(dev_priv)) {
15975		dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15976		dev_priv->display.get_initial_plane_config =
15977			i9xx_get_initial_plane_config;
15978		dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
15979		dev_priv->display.crtc_enable = i9xx_crtc_enable;
15980		dev_priv->display.crtc_disable = i9xx_crtc_disable;
15981	} else {
15982		dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
15983		dev_priv->display.get_initial_plane_config =
15984			i9xx_get_initial_plane_config;
15985		dev_priv->display.crtc_compute_clock = i8xx_crtc_compute_clock;
15986		dev_priv->display.crtc_enable = i9xx_crtc_enable;
15987		dev_priv->display.crtc_disable = i9xx_crtc_disable;
15988	}
15989
15990	/* Returns the core display clock speed */
15991	if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
15992		dev_priv->display.get_display_clock_speed =
15993			skylake_get_display_clock_speed;
15994	else if (IS_BROXTON(dev_priv))
15995		dev_priv->display.get_display_clock_speed =
15996			broxton_get_display_clock_speed;
15997	else if (IS_BROADWELL(dev_priv))
15998		dev_priv->display.get_display_clock_speed =
15999			broadwell_get_display_clock_speed;
16000	else if (IS_HASWELL(dev_priv))
16001		dev_priv->display.get_display_clock_speed =
16002			haswell_get_display_clock_speed;
16003	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
16004		dev_priv->display.get_display_clock_speed =
16005			valleyview_get_display_clock_speed;
16006	else if (IS_GEN5(dev_priv))
16007		dev_priv->display.get_display_clock_speed =
16008			ilk_get_display_clock_speed;
16009	else if (IS_I945G(dev_priv) || IS_BROADWATER(dev_priv) ||
16010		 IS_GEN6(dev_priv) || IS_IVYBRIDGE(dev_priv))
16011		dev_priv->display.get_display_clock_speed =
16012			i945_get_display_clock_speed;
16013	else if (IS_GM45(dev_priv))
16014		dev_priv->display.get_display_clock_speed =
16015			gm45_get_display_clock_speed;
16016	else if (IS_CRESTLINE(dev_priv))
16017		dev_priv->display.get_display_clock_speed =
16018			i965gm_get_display_clock_speed;
16019	else if (IS_PINEVIEW(dev_priv))
16020		dev_priv->display.get_display_clock_speed =
16021			pnv_get_display_clock_speed;
16022	else if (IS_G33(dev_priv) || IS_G4X(dev_priv))
16023		dev_priv->display.get_display_clock_speed =
16024			g33_get_display_clock_speed;
16025	else if (IS_I915G(dev_priv))
16026		dev_priv->display.get_display_clock_speed =
16027			i915_get_display_clock_speed;
16028	else if (IS_I945GM(dev_priv) || IS_845G(dev_priv))
16029		dev_priv->display.get_display_clock_speed =
16030			i9xx_misc_get_display_clock_speed;
16031	else if (IS_I915GM(dev_priv))
16032		dev_priv->display.get_display_clock_speed =
16033			i915gm_get_display_clock_speed;
16034	else if (IS_I865G(dev_priv))
16035		dev_priv->display.get_display_clock_speed =
16036			i865_get_display_clock_speed;
16037	else if (IS_I85X(dev_priv))
16038		dev_priv->display.get_display_clock_speed =
16039			i85x_get_display_clock_speed;
16040	else { /* 830 */
16041		WARN(!IS_I830(dev_priv), "Unknown platform. Assuming 133 MHz CDCLK\n");
16042		dev_priv->display.get_display_clock_speed =
16043			i830_get_display_clock_speed;
16044	}
16045
16046	if (IS_GEN5(dev_priv)) {
16047		dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
16048	} else if (IS_GEN6(dev_priv)) {
16049		dev_priv->display.fdi_link_train = gen6_fdi_link_train;
16050	} else if (IS_IVYBRIDGE(dev_priv)) {
16051		/* FIXME: detect B0+ stepping and use auto training */
16052		dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
16053	} else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
16054		dev_priv->display.fdi_link_train = hsw_fdi_link_train;
16055	}
16056
16057	if (IS_BROADWELL(dev_priv)) {
16058		dev_priv->display.modeset_commit_cdclk =
16059			broadwell_modeset_commit_cdclk;
16060		dev_priv->display.modeset_calc_cdclk =
16061			broadwell_modeset_calc_cdclk;
16062	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
16063		dev_priv->display.modeset_commit_cdclk =
16064			valleyview_modeset_commit_cdclk;
16065		dev_priv->display.modeset_calc_cdclk =
16066			valleyview_modeset_calc_cdclk;
16067	} else if (IS_BROXTON(dev_priv)) {
16068		dev_priv->display.modeset_commit_cdclk =
16069			bxt_modeset_commit_cdclk;
16070		dev_priv->display.modeset_calc_cdclk =
16071			bxt_modeset_calc_cdclk;
16072	} else if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
16073		dev_priv->display.modeset_commit_cdclk =
16074			skl_modeset_commit_cdclk;
16075		dev_priv->display.modeset_calc_cdclk =
16076			skl_modeset_calc_cdclk;
16077	}
16078
16079	if (dev_priv->info.gen >= 9)
16080		dev_priv->display.update_crtcs = skl_update_crtcs;
16081	else
16082		dev_priv->display.update_crtcs = intel_update_crtcs;
16083
16084	switch (INTEL_INFO(dev_priv)->gen) {
16085	case 2:
16086		dev_priv->display.queue_flip = intel_gen2_queue_flip;
16087		break;
16088
16089	case 3:
16090		dev_priv->display.queue_flip = intel_gen3_queue_flip;
16091		break;
16092
16093	case 4:
16094	case 5:
16095		dev_priv->display.queue_flip = intel_gen4_queue_flip;
16096		break;
16097
16098	case 6:
16099		dev_priv->display.queue_flip = intel_gen6_queue_flip;
16100		break;
16101	case 7:
16102	case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
16103		dev_priv->display.queue_flip = intel_gen7_queue_flip;
16104		break;
16105	case 9:
16106		/* Drop through - unsupported since execlist only. */
16107	default:
16108		/* Default just returns -ENODEV to indicate unsupported */
16109		dev_priv->display.queue_flip = intel_default_queue_flip;
16110	}
16111}
16112
16113/*
16114 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
16115 * resume, or other times.  This quirk makes sure that's the case for
16116 * affected systems.
16117 */
16118static void quirk_pipea_force(struct drm_device *dev)
16119{
16120	struct drm_i915_private *dev_priv = to_i915(dev);
16121
16122	dev_priv->quirks |= QUIRK_PIPEA_FORCE;
16123	DRM_INFO("applying pipe a force quirk\n");
16124}
16125
16126static void quirk_pipeb_force(struct drm_device *dev)
16127{
16128	struct drm_i915_private *dev_priv = to_i915(dev);
16129
16130	dev_priv->quirks |= QUIRK_PIPEB_FORCE;
16131	DRM_INFO("applying pipe b force quirk\n");
16132}
16133
16134/*
16135 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
16136 */
16137static void quirk_ssc_force_disable(struct drm_device *dev)
16138{
16139	struct drm_i915_private *dev_priv = to_i915(dev);
16140	dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
16141	DRM_INFO("applying lvds SSC disable quirk\n");
16142}
16143
16144/*
16145 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
16146 * brightness value
16147 */
16148static void quirk_invert_brightness(struct drm_device *dev)
16149{
16150	struct drm_i915_private *dev_priv = to_i915(dev);
16151	dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
16152	DRM_INFO("applying inverted panel brightness quirk\n");
16153}
16154
16155/* Some VBT's incorrectly indicate no backlight is present */
16156static void quirk_backlight_present(struct drm_device *dev)
16157{
16158	struct drm_i915_private *dev_priv = to_i915(dev);
16159	dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
16160	DRM_INFO("applying backlight present quirk\n");
16161}
16162
16163struct intel_quirk {
16164	int device;
16165	int subsystem_vendor;
16166	int subsystem_device;
16167	void (*hook)(struct drm_device *dev);
16168};
16169
16170/* For systems that don't have a meaningful PCI subdevice/subvendor ID */
16171struct intel_dmi_quirk {
16172	void (*hook)(struct drm_device *dev);
16173	const struct dmi_system_id (*dmi_id_list)[];
16174};
16175
16176static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
16177{
16178	DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
16179	return 1;
16180}
16181
16182static const struct intel_dmi_quirk intel_dmi_quirks[] = {
16183	{
16184		.dmi_id_list = &(const struct dmi_system_id[]) {
16185			{
16186				.callback = intel_dmi_reverse_brightness,
16187				.ident = "NCR Corporation",
16188				.matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
16189					    DMI_MATCH(DMI_PRODUCT_NAME, ""),
16190				},
16191			},
16192			{ }  /* terminating entry */
16193		},
16194		.hook = quirk_invert_brightness,
16195	},
16196};
16197
16198static struct intel_quirk intel_quirks[] = {
16199	/* Toshiba Protege R-205, S-209 needs pipe A force quirk */
16200	{ 0x2592, 0x1179, 0x0001, quirk_pipea_force },
16201
16202	/* ThinkPad T60 needs pipe A force quirk (bug #16494) */
16203	{ 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
16204
16205	/* 830 needs to leave pipe A & dpll A up */
16206	{ 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
16207
16208	/* 830 needs to leave pipe B & dpll B up */
16209	{ 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
16210
16211	/* Lenovo U160 cannot use SSC on LVDS */
16212	{ 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
16213
16214	/* Sony Vaio Y cannot use SSC on LVDS */
16215	{ 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
16216
16217	/* Acer Aspire 5734Z must invert backlight brightness */
16218	{ 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
16219
16220	/* Acer/eMachines G725 */
16221	{ 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
16222
16223	/* Acer/eMachines e725 */
16224	{ 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
16225
16226	/* Acer/Packard Bell NCL20 */
16227	{ 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
16228
16229	/* Acer Aspire 4736Z */
16230	{ 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
16231
16232	/* Acer Aspire 5336 */
16233	{ 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
16234
16235	/* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
16236	{ 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
16237
16238	/* Acer C720 Chromebook (Core i3 4005U) */
16239	{ 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
16240
16241	/* Apple Macbook 2,1 (Core 2 T7400) */
16242	{ 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
16243
16244	/* Apple Macbook 4,1 */
16245	{ 0x2a02, 0x106b, 0x00a1, quirk_backlight_present },
16246
16247	/* Toshiba CB35 Chromebook (Celeron 2955U) */
16248	{ 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
16249
16250	/* HP Chromebook 14 (Celeron 2955U) */
16251	{ 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
16252
16253	/* Dell Chromebook 11 */
16254	{ 0x0a06, 0x1028, 0x0a35, quirk_backlight_present },
16255
16256	/* Dell Chromebook 11 (2015 version) */
16257	{ 0x0a16, 0x1028, 0x0a35, quirk_backlight_present },
16258};
16259
16260static void intel_init_quirks(struct drm_device *dev)
16261{
16262	struct pci_dev *d = dev->pdev;
16263	int i;
16264
16265	for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
16266		struct intel_quirk *q = &intel_quirks[i];
16267
16268		if (d->device == q->device &&
16269		    (d->subsystem_vendor == q->subsystem_vendor ||
16270		     q->subsystem_vendor == PCI_ANY_ID) &&
16271		    (d->subsystem_device == q->subsystem_device ||
16272		     q->subsystem_device == PCI_ANY_ID))
16273			q->hook(dev);
16274	}
16275	for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
16276		if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
16277			intel_dmi_quirks[i].hook(dev);
16278	}
16279}
16280
16281/* Disable the VGA plane that we never use */
16282static void i915_disable_vga(struct drm_i915_private *dev_priv)
16283{
16284	struct pci_dev *pdev = dev_priv->drm.pdev;
16285	u8 sr1;
16286	i915_reg_t vga_reg = i915_vgacntrl_reg(dev_priv);
16287
16288	/* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
16289	vga_get_uninterruptible(pdev, VGA_RSRC_LEGACY_IO);
16290	outb(SR01, VGA_SR_INDEX);
16291	sr1 = inb(VGA_SR_DATA);
16292	outb(sr1 | 1<<5, VGA_SR_DATA);
16293	vga_put(pdev, VGA_RSRC_LEGACY_IO);
16294	udelay(300);
16295
16296	I915_WRITE(vga_reg, VGA_DISP_DISABLE);
16297	POSTING_READ(vga_reg);
16298}
16299
16300void intel_modeset_init_hw(struct drm_device *dev)
16301{
16302	struct drm_i915_private *dev_priv = to_i915(dev);
16303
16304	intel_update_cdclk(dev_priv);
16305
16306	dev_priv->atomic_cdclk_freq = dev_priv->cdclk_freq;
16307
16308	intel_init_clock_gating(dev_priv);
16309}
16310
16311/*
16312 * Calculate what we think the watermarks should be for the state we've read
16313 * out of the hardware and then immediately program those watermarks so that
16314 * we ensure the hardware settings match our internal state.
16315 *
16316 * We can calculate what we think WM's should be by creating a duplicate of the
16317 * current state (which was constructed during hardware readout) and running it
16318 * through the atomic check code to calculate new watermark values in the
16319 * state object.
16320 */
16321static void sanitize_watermarks(struct drm_device *dev)
16322{
16323	struct drm_i915_private *dev_priv = to_i915(dev);
16324	struct drm_atomic_state *state;
16325	struct intel_atomic_state *intel_state;
16326	struct drm_crtc *crtc;
16327	struct drm_crtc_state *cstate;
16328	struct drm_modeset_acquire_ctx ctx;
16329	int ret;
16330	int i;
16331
16332	/* Only supported on platforms that use atomic watermark design */
16333	if (!dev_priv->display.optimize_watermarks)
16334		return;
16335
16336	/*
16337	 * We need to hold connection_mutex before calling duplicate_state so
16338	 * that the connector loop is protected.
16339	 */
16340	drm_modeset_acquire_init(&ctx, 0);
16341retry:
16342	ret = drm_modeset_lock_all_ctx(dev, &ctx);
16343	if (ret == -EDEADLK) {
16344		drm_modeset_backoff(&ctx);
16345		goto retry;
16346	} else if (WARN_ON(ret)) {
16347		goto fail;
16348	}
16349
16350	state = drm_atomic_helper_duplicate_state(dev, &ctx);
16351	if (WARN_ON(IS_ERR(state)))
16352		goto fail;
16353
16354	intel_state = to_intel_atomic_state(state);
16355
16356	/*
16357	 * Hardware readout is the only time we don't want to calculate
16358	 * intermediate watermarks (since we don't trust the current
16359	 * watermarks).
16360	 */
16361	intel_state->skip_intermediate_wm = true;
16362
16363	ret = intel_atomic_check(dev, state);
16364	if (ret) {
16365		/*
16366		 * If we fail here, it means that the hardware appears to be
16367		 * programmed in a way that shouldn't be possible, given our
16368		 * understanding of watermark requirements.  This might mean a
16369		 * mistake in the hardware readout code or a mistake in the
16370		 * watermark calculations for a given platform.  Raise a WARN
16371		 * so that this is noticeable.
16372		 *
16373		 * If this actually happens, we'll have to just leave the
16374		 * BIOS-programmed watermarks untouched and hope for the best.
16375		 */
16376		WARN(true, "Could not determine valid watermarks for inherited state\n");
16377		goto put_state;
16378	}
16379
16380	/* Write calculated watermark values back */
16381	for_each_crtc_in_state(state, crtc, cstate, i) {
16382		struct intel_crtc_state *cs = to_intel_crtc_state(cstate);
16383
16384		cs->wm.need_postvbl_update = true;
16385		dev_priv->display.optimize_watermarks(intel_state, cs);
16386	}
16387
16388put_state:
16389	drm_atomic_state_put(state);
16390fail:
16391	drm_modeset_drop_locks(&ctx);
16392	drm_modeset_acquire_fini(&ctx);
16393}
16394
16395static void intel_atomic_helper_free_state(struct work_struct *work)
16396{
16397	struct drm_i915_private *dev_priv =
16398		container_of(work, typeof(*dev_priv), atomic_helper.free_work);
16399	struct intel_atomic_state *state, *next;
16400	struct llist_node *freed;
16401
16402	freed = llist_del_all(&dev_priv->atomic_helper.free_list);
16403	llist_for_each_entry_safe(state, next, freed, freed)
16404		drm_atomic_state_put(&state->base);
16405}
16406
16407int intel_modeset_init(struct drm_device *dev)
16408{
16409	struct drm_i915_private *dev_priv = to_i915(dev);
16410	struct i915_ggtt *ggtt = &dev_priv->ggtt;
16411	enum pipe pipe;
16412	struct intel_crtc *crtc;
16413
16414	drm_mode_config_init(dev);
16415
16416	dev->mode_config.min_width = 0;
16417	dev->mode_config.min_height = 0;
16418
16419	dev->mode_config.preferred_depth = 24;
16420	dev->mode_config.prefer_shadow = 1;
16421
16422	dev->mode_config.allow_fb_modifiers = true;
16423
16424	dev->mode_config.funcs = &intel_mode_funcs;
16425
16426	INIT_WORK(&dev_priv->atomic_helper.free_work,
16427		  intel_atomic_helper_free_state);
16428
16429	intel_init_quirks(dev);
16430
16431	intel_init_pm(dev_priv);
16432
16433	if (INTEL_INFO(dev_priv)->num_pipes == 0)
16434		return 0;
16435
16436	/*
16437	 * There may be no VBT; and if the BIOS enabled SSC we can
16438	 * just keep using it to avoid unnecessary flicker.  Whereas if the
16439	 * BIOS isn't using it, don't assume it will work even if the VBT
16440	 * indicates as much.
16441	 */
16442	if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) {
16443		bool bios_lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
16444					    DREF_SSC1_ENABLE);
16445
16446		if (dev_priv->vbt.lvds_use_ssc != bios_lvds_use_ssc) {
16447			DRM_DEBUG_KMS("SSC %sabled by BIOS, overriding VBT which says %sabled\n",
16448				     bios_lvds_use_ssc ? "en" : "dis",
16449				     dev_priv->vbt.lvds_use_ssc ? "en" : "dis");
16450			dev_priv->vbt.lvds_use_ssc = bios_lvds_use_ssc;
16451		}
16452	}
16453
16454	if (IS_GEN2(dev_priv)) {
16455		dev->mode_config.max_width = 2048;
16456		dev->mode_config.max_height = 2048;
16457	} else if (IS_GEN3(dev_priv)) {
16458		dev->mode_config.max_width = 4096;
16459		dev->mode_config.max_height = 4096;
16460	} else {
16461		dev->mode_config.max_width = 8192;
16462		dev->mode_config.max_height = 8192;
16463	}
16464
16465	if (IS_845G(dev_priv) || IS_I865G(dev_priv)) {
16466		dev->mode_config.cursor_width = IS_845G(dev_priv) ? 64 : 512;
16467		dev->mode_config.cursor_height = 1023;
16468	} else if (IS_GEN2(dev_priv)) {
16469		dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
16470		dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
16471	} else {
16472		dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
16473		dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
16474	}
16475
16476	dev->mode_config.fb_base = ggtt->mappable_base;
16477
16478	DRM_DEBUG_KMS("%d display pipe%s available.\n",
16479		      INTEL_INFO(dev_priv)->num_pipes,
16480		      INTEL_INFO(dev_priv)->num_pipes > 1 ? "s" : "");
16481
16482	for_each_pipe(dev_priv, pipe) {
16483		int ret;
16484
16485		ret = intel_crtc_init(dev_priv, pipe);
16486		if (ret) {
16487			drm_mode_config_cleanup(dev);
16488			return ret;
16489		}
16490	}
16491
16492	intel_shared_dpll_init(dev);
16493
16494	intel_update_czclk(dev_priv);
16495	intel_modeset_init_hw(dev);
16496
16497	if (dev_priv->max_cdclk_freq == 0)
16498		intel_update_max_cdclk(dev_priv);
16499
16500	/* Just disable it once at startup */
16501	i915_disable_vga(dev_priv);
16502	intel_setup_outputs(dev);
16503
16504	drm_modeset_lock_all(dev);
16505	intel_modeset_setup_hw_state(dev);
16506	drm_modeset_unlock_all(dev);
16507
16508	for_each_intel_crtc(dev, crtc) {
16509		struct intel_initial_plane_config plane_config = {};
16510
16511		if (!crtc->active)
16512			continue;
16513
16514		/*
16515		 * Note that reserving the BIOS fb up front prevents us
16516		 * from stuffing other stolen allocations like the ring
16517		 * on top.  This prevents some ugliness at boot time, and
16518		 * can even allow for smooth boot transitions if the BIOS
16519		 * fb is large enough for the active pipe configuration.
16520		 */
16521		dev_priv->display.get_initial_plane_config(crtc,
16522							   &plane_config);
16523
16524		/*
16525		 * If the fb is shared between multiple heads, we'll
16526		 * just get the first one.
16527		 */
16528		intel_find_initial_plane_obj(crtc, &plane_config);
16529	}
16530
16531	/*
16532	 * Make sure hardware watermarks really match the state we read out.
16533	 * Note that we need to do this after reconstructing the BIOS fb's
16534	 * since the watermark calculation done here will use pstate->fb.
16535	 */
16536	sanitize_watermarks(dev);
16537
16538	return 0;
16539}
16540
16541static void intel_enable_pipe_a(struct drm_device *dev)
16542{
16543	struct intel_connector *connector;
16544	struct drm_connector *crt = NULL;
16545	struct intel_load_detect_pipe load_detect_temp;
16546	struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
16547
16548	/* We can't just switch on the pipe A, we need to set things up with a
16549	 * proper mode and output configuration. As a gross hack, enable pipe A
16550	 * by enabling the load detect pipe once. */
16551	for_each_intel_connector(dev, connector) {
16552		if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
16553			crt = &connector->base;
16554			break;
16555		}
16556	}
16557
16558	if (!crt)
16559		return;
16560
16561	if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
16562		intel_release_load_detect_pipe(crt, &load_detect_temp, ctx);
16563}
16564
16565static bool
16566intel_check_plane_mapping(struct intel_crtc *crtc)
16567{
16568	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
16569	u32 val;
16570
16571	if (INTEL_INFO(dev_priv)->num_pipes == 1)
16572		return true;
16573
16574	val = I915_READ(DSPCNTR(!crtc->plane));
16575
16576	if ((val & DISPLAY_PLANE_ENABLE) &&
16577	    (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
16578		return false;
16579
16580	return true;
16581}
16582
16583static bool intel_crtc_has_encoders(struct intel_crtc *crtc)
16584{
16585	struct drm_device *dev = crtc->base.dev;
16586	struct intel_encoder *encoder;
16587
16588	for_each_encoder_on_crtc(dev, &crtc->base, encoder)
16589		return true;
16590
16591	return false;
16592}
16593
16594static struct intel_connector *intel_encoder_find_connector(struct intel_encoder *encoder)
16595{
16596	struct drm_device *dev = encoder->base.dev;
16597	struct intel_connector *connector;
16598
16599	for_each_connector_on_encoder(dev, &encoder->base, connector)
16600		return connector;
16601
16602	return NULL;
16603}
16604
16605static bool has_pch_trancoder(struct drm_i915_private *dev_priv,
16606			      enum transcoder pch_transcoder)
16607{
16608	return HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) ||
16609		(HAS_PCH_LPT_H(dev_priv) && pch_transcoder == TRANSCODER_A);
16610}
16611
16612static void intel_sanitize_crtc(struct intel_crtc *crtc)
16613{
16614	struct drm_device *dev = crtc->base.dev;
16615	struct drm_i915_private *dev_priv = to_i915(dev);
16616	enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
16617
16618	/* Clear any frame start delays used for debugging left by the BIOS */
16619	if (!transcoder_is_dsi(cpu_transcoder)) {
16620		i915_reg_t reg = PIPECONF(cpu_transcoder);
16621
16622		I915_WRITE(reg,
16623			   I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
16624	}
16625
16626	/* restore vblank interrupts to correct state */
16627	drm_crtc_vblank_reset(&crtc->base);
16628	if (crtc->active) {
16629		struct intel_plane *plane;
16630
16631		drm_crtc_vblank_on(&crtc->base);
16632
16633		/* Disable everything but the primary plane */
16634		for_each_intel_plane_on_crtc(dev, crtc, plane) {
16635			if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
16636				continue;
16637
16638			plane->disable_plane(&plane->base, &crtc->base);
16639		}
16640	}
16641
16642	/* We need to sanitize the plane -> pipe mapping first because this will
16643	 * disable the crtc (and hence change the state) if it is wrong. Note
16644	 * that gen4+ has a fixed plane -> pipe mapping.  */
16645	if (INTEL_GEN(dev_priv) < 4 && !intel_check_plane_mapping(crtc)) {
16646		bool plane;
16647
16648		DRM_DEBUG_KMS("[CRTC:%d:%s] wrong plane connection detected!\n",
16649			      crtc->base.base.id, crtc->base.name);
16650
16651		/* Pipe has the wrong plane attached and the plane is active.
16652		 * Temporarily change the plane mapping and disable everything
16653		 * ...  */
16654		plane = crtc->plane;
16655		to_intel_plane_state(crtc->base.primary->state)->base.visible = true;
16656		crtc->plane = !plane;
16657		intel_crtc_disable_noatomic(&crtc->base);
16658		crtc->plane = plane;
16659	}
16660
16661	if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
16662	    crtc->pipe == PIPE_A && !crtc->active) {
16663		/* BIOS forgot to enable pipe A, this mostly happens after
16664		 * resume. Force-enable the pipe to fix this, the update_dpms
16665		 * call below we restore the pipe to the right state, but leave
16666		 * the required bits on. */
16667		intel_enable_pipe_a(dev);
16668	}
16669
16670	/* Adjust the state of the output pipe according to whether we
16671	 * have active connectors/encoders. */
16672	if (crtc->active && !intel_crtc_has_encoders(crtc))
16673		intel_crtc_disable_noatomic(&crtc->base);
16674
16675	if (crtc->active || HAS_GMCH_DISPLAY(dev_priv)) {
16676		/*
16677		 * We start out with underrun reporting disabled to avoid races.
16678		 * For correct bookkeeping mark this on active crtcs.
16679		 *
16680		 * Also on gmch platforms we dont have any hardware bits to
16681		 * disable the underrun reporting. Which means we need to start
16682		 * out with underrun reporting disabled also on inactive pipes,
16683		 * since otherwise we'll complain about the garbage we read when
16684		 * e.g. coming up after runtime pm.
16685		 *
16686		 * No protection against concurrent access is required - at
16687		 * worst a fifo underrun happens which also sets this to false.
16688		 */
16689		crtc->cpu_fifo_underrun_disabled = true;
16690		/*
16691		 * We track the PCH trancoder underrun reporting state
16692		 * within the crtc. With crtc for pipe A housing the underrun
16693		 * reporting state for PCH transcoder A, crtc for pipe B housing
16694		 * it for PCH transcoder B, etc. LPT-H has only PCH transcoder A,
16695		 * and marking underrun reporting as disabled for the non-existing
16696		 * PCH transcoders B and C would prevent enabling the south
16697		 * error interrupt (see cpt_can_enable_serr_int()).
16698		 */
16699		if (has_pch_trancoder(dev_priv, (enum transcoder)crtc->pipe))
16700			crtc->pch_fifo_underrun_disabled = true;
16701	}
16702}
16703
16704static void intel_sanitize_encoder(struct intel_encoder *encoder)
16705{
16706	struct intel_connector *connector;
16707
16708	/* We need to check both for a crtc link (meaning that the
16709	 * encoder is active and trying to read from a pipe) and the
16710	 * pipe itself being active. */
16711	bool has_active_crtc = encoder->base.crtc &&
16712		to_intel_crtc(encoder->base.crtc)->active;
16713
16714	connector = intel_encoder_find_connector(encoder);
16715	if (connector && !has_active_crtc) {
16716		DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
16717			      encoder->base.base.id,
16718			      encoder->base.name);
16719
16720		/* Connector is active, but has no active pipe. This is
16721		 * fallout from our resume register restoring. Disable
16722		 * the encoder manually again. */
16723		if (encoder->base.crtc) {
16724			struct drm_crtc_state *crtc_state = encoder->base.crtc->state;
16725
16726			DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
16727				      encoder->base.base.id,
16728				      encoder->base.name);
16729			encoder->disable(encoder, to_intel_crtc_state(crtc_state), connector->base.state);
16730			if (encoder->post_disable)
16731				encoder->post_disable(encoder, to_intel_crtc_state(crtc_state), connector->base.state);
16732		}
16733		encoder->base.crtc = NULL;
16734
16735		/* Inconsistent output/port/pipe state happens presumably due to
16736		 * a bug in one of the get_hw_state functions. Or someplace else
16737		 * in our code, like the register restore mess on resume. Clamp
16738		 * things to off as a safer default. */
16739
16740		connector->base.dpms = DRM_MODE_DPMS_OFF;
16741		connector->base.encoder = NULL;
16742	}
16743	/* Enabled encoders without active connectors will be fixed in
16744	 * the crtc fixup. */
16745}
16746
16747void i915_redisable_vga_power_on(struct drm_i915_private *dev_priv)
16748{
16749	i915_reg_t vga_reg = i915_vgacntrl_reg(dev_priv);
16750
16751	if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
16752		DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
16753		i915_disable_vga(dev_priv);
16754	}
16755}
16756
16757void i915_redisable_vga(struct drm_i915_private *dev_priv)
16758{
16759	/* This function can be called both from intel_modeset_setup_hw_state or
16760	 * at a very early point in our resume sequence, where the power well
16761	 * structures are not yet restored. Since this function is at a very
16762	 * paranoid "someone might have enabled VGA while we were not looking"
16763	 * level, just check if the power well is enabled instead of trying to
16764	 * follow the "don't touch the power well if we don't need it" policy
16765	 * the rest of the driver uses. */
16766	if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_VGA))
16767		return;
16768
16769	i915_redisable_vga_power_on(dev_priv);
16770
16771	intel_display_power_put(dev_priv, POWER_DOMAIN_VGA);
16772}
16773
16774static bool primary_get_hw_state(struct intel_plane *plane)
16775{
16776	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
16777
16778	return I915_READ(DSPCNTR(plane->plane)) & DISPLAY_PLANE_ENABLE;
16779}
16780
16781/* FIXME read out full plane state for all planes */
16782static void readout_plane_state(struct intel_crtc *crtc)
16783{
16784	struct drm_plane *primary = crtc->base.primary;
16785	struct intel_plane_state *plane_state =
16786		to_intel_plane_state(primary->state);
16787
16788	plane_state->base.visible = crtc->active &&
16789		primary_get_hw_state(to_intel_plane(primary));
16790
16791	if (plane_state->base.visible)
16792		crtc->base.state->plane_mask |= 1 << drm_plane_index(primary);
16793}
16794
16795static void intel_modeset_readout_hw_state(struct drm_device *dev)
16796{
16797	struct drm_i915_private *dev_priv = to_i915(dev);
16798	enum pipe pipe;
16799	struct intel_crtc *crtc;
16800	struct intel_encoder *encoder;
16801	struct intel_connector *connector;
16802	int i;
16803
16804	dev_priv->active_crtcs = 0;
16805
16806	for_each_intel_crtc(dev, crtc) {
16807		struct intel_crtc_state *crtc_state = crtc->config;
16808
16809		__drm_atomic_helper_crtc_destroy_state(&crtc_state->base);
16810		memset(crtc_state, 0, sizeof(*crtc_state));
16811		crtc_state->base.crtc = &crtc->base;
16812
16813		crtc_state->base.active = crtc_state->base.enable =
16814			dev_priv->display.get_pipe_config(crtc, crtc_state);
16815
16816		crtc->base.enabled = crtc_state->base.enable;
16817		crtc->active = crtc_state->base.active;
16818
16819		if (crtc_state->base.active)
16820			dev_priv->active_crtcs |= 1 << crtc->pipe;
16821
16822		readout_plane_state(crtc);
16823
16824		DRM_DEBUG_KMS("[CRTC:%d:%s] hw state readout: %s\n",
16825			      crtc->base.base.id, crtc->base.name,
16826			      enableddisabled(crtc->active));
16827	}
16828
16829	for (i = 0; i < dev_priv->num_shared_dpll; i++) {
16830		struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
16831
16832		pll->on = pll->funcs.get_hw_state(dev_priv, pll,
16833						  &pll->config.hw_state);
16834		pll->config.crtc_mask = 0;
16835		for_each_intel_crtc(dev, crtc) {
16836			if (crtc->active && crtc->config->shared_dpll == pll)
16837				pll->config.crtc_mask |= 1 << crtc->pipe;
16838		}
16839		pll->active_mask = pll->config.crtc_mask;
16840
16841		DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
16842			      pll->name, pll->config.crtc_mask, pll->on);
16843	}
16844
16845	for_each_intel_encoder(dev, encoder) {
16846		pipe = 0;
16847
16848		if (encoder->get_hw_state(encoder, &pipe)) {
16849			crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
16850
16851			encoder->base.crtc = &crtc->base;
16852			crtc->config->output_types |= 1 << encoder->type;
16853			encoder->get_config(encoder, crtc->config);
16854		} else {
16855			encoder->base.crtc = NULL;
16856		}
16857
16858		DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
16859			      encoder->base.base.id, encoder->base.name,
16860			      enableddisabled(encoder->base.crtc),
16861			      pipe_name(pipe));
16862	}
16863
16864	for_each_intel_connector(dev, connector) {
16865		if (connector->get_hw_state(connector)) {
16866			connector->base.dpms = DRM_MODE_DPMS_ON;
16867
16868			encoder = connector->encoder;
16869			connector->base.encoder = &encoder->base;
16870
16871			if (encoder->base.crtc &&
16872			    encoder->base.crtc->state->active) {
16873				/*
16874				 * This has to be done during hardware readout
16875				 * because anything calling .crtc_disable may
16876				 * rely on the connector_mask being accurate.
16877				 */
16878				encoder->base.crtc->state->connector_mask |=
16879					1 << drm_connector_index(&connector->base);
16880				encoder->base.crtc->state->encoder_mask |=
16881					1 << drm_encoder_index(&encoder->base);
16882			}
16883
16884		} else {
16885			connector->base.dpms = DRM_MODE_DPMS_OFF;
16886			connector->base.encoder = NULL;
16887		}
16888		DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
16889			      connector->base.base.id, connector->base.name,
16890			      enableddisabled(connector->base.encoder));
16891	}
16892
16893	for_each_intel_crtc(dev, crtc) {
16894		int pixclk = 0;
16895
16896		crtc->base.hwmode = crtc->config->base.adjusted_mode;
16897
16898		memset(&crtc->base.mode, 0, sizeof(crtc->base.mode));
16899		if (crtc->base.state->active) {
16900			intel_mode_from_pipe_config(&crtc->base.mode, crtc->config);
16901			intel_mode_from_pipe_config(&crtc->base.state->adjusted_mode, crtc->config);
16902			WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, &crtc->base.mode));
16903
16904			/*
16905			 * The initial mode needs to be set in order to keep
16906			 * the atomic core happy. It wants a valid mode if the
16907			 * crtc's enabled, so we do the above call.
16908			 *
16909			 * At this point some state updated by the connectors
16910			 * in their ->detect() callback has not run yet, so
16911			 * no recalculation can be done yet.
16912			 *
16913			 * Even if we could do a recalculation and modeset
16914			 * right now it would cause a double modeset if
16915			 * fbdev or userspace chooses a different initial mode.
16916			 *
16917			 * If that happens, someone indicated they wanted a
16918			 * mode change, which means it's safe to do a full
16919			 * recalculation.
16920			 */
16921			crtc->base.state->mode.private_flags = I915_MODE_FLAG_INHERITED;
16922
16923			if (INTEL_GEN(dev_priv) >= 9 || IS_BROADWELL(dev_priv))
16924				pixclk = ilk_pipe_pixel_rate(crtc->config);
16925			else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
16926				pixclk = crtc->config->base.adjusted_mode.crtc_clock;
16927			else
16928				WARN_ON(dev_priv->display.modeset_calc_cdclk);
16929
16930			/* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
16931			if (IS_BROADWELL(dev_priv) && crtc->config->ips_enabled)
16932				pixclk = DIV_ROUND_UP(pixclk * 100, 95);
16933
16934			drm_calc_timestamping_constants(&crtc->base, &crtc->base.hwmode);
16935			update_scanline_offset(crtc);
16936		}
16937
16938		dev_priv->min_pixclk[crtc->pipe] = pixclk;
16939
16940		intel_pipe_config_sanity_check(dev_priv, crtc->config);
16941	}
16942}
16943
16944/* Scan out the current hw modeset state,
16945 * and sanitizes it to the current state
16946 */
16947static void
16948intel_modeset_setup_hw_state(struct drm_device *dev)
16949{
16950	struct drm_i915_private *dev_priv = to_i915(dev);
16951	enum pipe pipe;
16952	struct intel_crtc *crtc;
16953	struct intel_encoder *encoder;
16954	int i;
16955
16956	intel_modeset_readout_hw_state(dev);
16957
16958	/* HW state is read out, now we need to sanitize this mess. */
16959	for_each_intel_encoder(dev, encoder) {
16960		intel_sanitize_encoder(encoder);
16961	}
16962
16963	for_each_pipe(dev_priv, pipe) {
16964		crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
16965
16966		intel_sanitize_crtc(crtc);
16967		intel_dump_pipe_config(crtc, crtc->config,
16968				       "[setup_hw_state]");
16969	}
16970
16971	intel_modeset_update_connector_atomic_state(dev);
16972
16973	for (i = 0; i < dev_priv->num_shared_dpll; i++) {
16974		struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
16975
16976		if (!pll->on || pll->active_mask)
16977			continue;
16978
16979		DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
16980
16981		pll->funcs.disable(dev_priv, pll);
16982		pll->on = false;
16983	}
16984
16985	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
16986		vlv_wm_get_hw_state(dev);
16987	else if (IS_GEN9(dev_priv))
16988		skl_wm_get_hw_state(dev);
16989	else if (HAS_PCH_SPLIT(dev_priv))
16990		ilk_wm_get_hw_state(dev);
16991
16992	for_each_intel_crtc(dev, crtc) {
16993		unsigned long put_domains;
16994
16995		put_domains = modeset_get_crtc_power_domains(&crtc->base, crtc->config);
16996		if (WARN_ON(put_domains))
16997			modeset_put_power_domains(dev_priv, put_domains);
16998	}
16999	intel_display_set_init_power(dev_priv, false);
17000
17001	intel_fbc_init_pipe_state(dev_priv);
17002}
17003
17004void intel_display_resume(struct drm_device *dev)
17005{
17006	struct drm_i915_private *dev_priv = to_i915(dev);
17007	struct drm_atomic_state *state = dev_priv->modeset_restore_state;
17008	struct drm_modeset_acquire_ctx ctx;
17009	int ret;
17010
17011	dev_priv->modeset_restore_state = NULL;
17012	if (state)
17013		state->acquire_ctx = &ctx;
17014
17015	/*
17016	 * This is a cludge because with real atomic modeset mode_config.mutex
17017	 * won't be taken. Unfortunately some probed state like
17018	 * audio_codec_enable is still protected by mode_config.mutex, so lock
17019	 * it here for now.
17020	 */
17021	mutex_lock(&dev->mode_config.mutex);
17022	drm_modeset_acquire_init(&ctx, 0);
17023
17024	while (1) {
17025		ret = drm_modeset_lock_all_ctx(dev, &ctx);
17026		if (ret != -EDEADLK)
17027			break;
17028
17029		drm_modeset_backoff(&ctx);
17030	}
17031
17032	if (!ret)
17033		ret = __intel_display_resume(dev, state);
17034
17035	drm_modeset_drop_locks(&ctx);
17036	drm_modeset_acquire_fini(&ctx);
17037	mutex_unlock(&dev->mode_config.mutex);
17038
17039	if (ret)
17040		DRM_ERROR("Restoring old state failed with %i\n", ret);
17041	if (state)
17042		drm_atomic_state_put(state);
17043}
17044
17045void intel_modeset_gem_init(struct drm_device *dev)
17046{
17047	struct drm_i915_private *dev_priv = to_i915(dev);
17048
17049	intel_init_gt_powersave(dev_priv);
17050
17051	intel_setup_overlay(dev_priv);
17052}
17053
17054int intel_connector_register(struct drm_connector *connector)
17055{
17056	struct intel_connector *intel_connector = to_intel_connector(connector);
17057	int ret;
17058
17059	ret = intel_backlight_device_register(intel_connector);
17060	if (ret)
17061		goto err;
17062
17063	return 0;
17064
17065err:
17066	return ret;
17067}
17068
17069void intel_connector_unregister(struct drm_connector *connector)
17070{
17071	struct intel_connector *intel_connector = to_intel_connector(connector);
17072
17073	intel_backlight_device_unregister(intel_connector);
17074	intel_panel_destroy_backlight(connector);
17075}
17076
17077void intel_modeset_cleanup(struct drm_device *dev)
17078{
17079	struct drm_i915_private *dev_priv = to_i915(dev);
17080
17081	flush_work(&dev_priv->atomic_helper.free_work);
17082	WARN_ON(!llist_empty(&dev_priv->atomic_helper.free_list));
17083
17084	intel_disable_gt_powersave(dev_priv);
17085
17086	/*
17087	 * Interrupts and polling as the first thing to avoid creating havoc.
17088	 * Too much stuff here (turning of connectors, ...) would
17089	 * experience fancy races otherwise.
17090	 */
17091	intel_irq_uninstall(dev_priv);
17092
17093	/*
17094	 * Due to the hpd irq storm handling the hotplug work can re-arm the
17095	 * poll handlers. Hence disable polling after hpd handling is shut down.
17096	 */
17097	drm_kms_helper_poll_fini(dev);
17098
17099	intel_unregister_dsm_handler();
17100
17101	intel_fbc_global_disable(dev_priv);
17102
17103	/* flush any delayed tasks or pending work */
17104	flush_scheduled_work();
17105
17106	drm_mode_config_cleanup(dev);
17107
17108	intel_cleanup_overlay(dev_priv);
17109
17110	intel_cleanup_gt_powersave(dev_priv);
17111
17112	intel_teardown_gmbus(dev);
17113}
17114
17115void intel_connector_attach_encoder(struct intel_connector *connector,
17116				    struct intel_encoder *encoder)
17117{
17118	connector->encoder = encoder;
17119	drm_mode_connector_attach_encoder(&connector->base,
17120					  &encoder->base);
17121}
17122
17123/*
17124 * set vga decode state - true == enable VGA decode
17125 */
17126int intel_modeset_vga_set_state(struct drm_i915_private *dev_priv, bool state)
17127{
17128	unsigned reg = INTEL_GEN(dev_priv) >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
17129	u16 gmch_ctrl;
17130
17131	if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
17132		DRM_ERROR("failed to read control word\n");
17133		return -EIO;
17134	}
17135
17136	if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
17137		return 0;
17138
17139	if (state)
17140		gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
17141	else
17142		gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
17143
17144	if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
17145		DRM_ERROR("failed to write control word\n");
17146		return -EIO;
17147	}
17148
17149	return 0;
17150}
17151
17152#if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
17153
17154struct intel_display_error_state {
17155
17156	u32 power_well_driver;
17157
17158	int num_transcoders;
17159
17160	struct intel_cursor_error_state {
17161		u32 control;
17162		u32 position;
17163		u32 base;
17164		u32 size;
17165	} cursor[I915_MAX_PIPES];
17166
17167	struct intel_pipe_error_state {
17168		bool power_domain_on;
17169		u32 source;
17170		u32 stat;
17171	} pipe[I915_MAX_PIPES];
17172
17173	struct intel_plane_error_state {
17174		u32 control;
17175		u32 stride;
17176		u32 size;
17177		u32 pos;
17178		u32 addr;
17179		u32 surface;
17180		u32 tile_offset;
17181	} plane[I915_MAX_PIPES];
17182
17183	struct intel_transcoder_error_state {
17184		bool power_domain_on;
17185		enum transcoder cpu_transcoder;
17186
17187		u32 conf;
17188
17189		u32 htotal;
17190		u32 hblank;
17191		u32 hsync;
17192		u32 vtotal;
17193		u32 vblank;
17194		u32 vsync;
17195	} transcoder[4];
17196};
17197
17198struct intel_display_error_state *
17199intel_display_capture_error_state(struct drm_i915_private *dev_priv)
17200{
17201	struct intel_display_error_state *error;
17202	int transcoders[] = {
17203		TRANSCODER_A,
17204		TRANSCODER_B,
17205		TRANSCODER_C,
17206		TRANSCODER_EDP,
17207	};
17208	int i;
17209
17210	if (INTEL_INFO(dev_priv)->num_pipes == 0)
17211		return NULL;
17212
17213	error = kzalloc(sizeof(*error), GFP_ATOMIC);
17214	if (error == NULL)
17215		return NULL;
17216
17217	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
17218		error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
17219
17220	for_each_pipe(dev_priv, i) {
17221		error->pipe[i].power_domain_on =
17222			__intel_display_power_is_enabled(dev_priv,
17223							 POWER_DOMAIN_PIPE(i));
17224		if (!error->pipe[i].power_domain_on)
17225			continue;
17226
17227		error->cursor[i].control = I915_READ(CURCNTR(i));
17228		error->cursor[i].position = I915_READ(CURPOS(i));
17229		error->cursor[i].base = I915_READ(CURBASE(i));
17230
17231		error->plane[i].control = I915_READ(DSPCNTR(i));
17232		error->plane[i].stride = I915_READ(DSPSTRIDE(i));
17233		if (INTEL_GEN(dev_priv) <= 3) {
17234			error->plane[i].size = I915_READ(DSPSIZE(i));
17235			error->plane[i].pos = I915_READ(DSPPOS(i));
17236		}
17237		if (INTEL_GEN(dev_priv) <= 7 && !IS_HASWELL(dev_priv))
17238			error->plane[i].addr = I915_READ(DSPADDR(i));
17239		if (INTEL_GEN(dev_priv) >= 4) {
17240			error->plane[i].surface = I915_READ(DSPSURF(i));
17241			error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
17242		}
17243
17244		error->pipe[i].source = I915_READ(PIPESRC(i));
17245
17246		if (HAS_GMCH_DISPLAY(dev_priv))
17247			error->pipe[i].stat = I915_READ(PIPESTAT(i));
17248	}
17249
17250	/* Note: this does not include DSI transcoders. */
17251	error->num_transcoders = INTEL_INFO(dev_priv)->num_pipes;
17252	if (HAS_DDI(dev_priv))
17253		error->num_transcoders++; /* Account for eDP. */
17254
17255	for (i = 0; i < error->num_transcoders; i++) {
17256		enum transcoder cpu_transcoder = transcoders[i];
17257
17258		error->transcoder[i].power_domain_on =
17259			__intel_display_power_is_enabled(dev_priv,
17260				POWER_DOMAIN_TRANSCODER(cpu_transcoder));
17261		if (!error->transcoder[i].power_domain_on)
17262			continue;
17263
17264		error->transcoder[i].cpu_transcoder = cpu_transcoder;
17265
17266		error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
17267		error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
17268		error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
17269		error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
17270		error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
17271		error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
17272		error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
17273	}
17274
17275	return error;
17276}
17277
17278#define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
17279
17280void
17281intel_display_print_error_state(struct drm_i915_error_state_buf *m,
17282				struct drm_i915_private *dev_priv,
17283				struct intel_display_error_state *error)
17284{
17285	int i;
17286
17287	if (!error)
17288		return;
17289
17290	err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev_priv)->num_pipes);
17291	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
17292		err_printf(m, "PWR_WELL_CTL2: %08x\n",
17293			   error->power_well_driver);
17294	for_each_pipe(dev_priv, i) {
17295		err_printf(m, "Pipe [%d]:\n", i);
17296		err_printf(m, "  Power: %s\n",
17297			   onoff(error->pipe[i].power_domain_on));
17298		err_printf(m, "  SRC: %08x\n", error->pipe[i].source);
17299		err_printf(m, "  STAT: %08x\n", error->pipe[i].stat);
17300
17301		err_printf(m, "Plane [%d]:\n", i);
17302		err_printf(m, "  CNTR: %08x\n", error->plane[i].control);
17303		err_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
17304		if (INTEL_GEN(dev_priv) <= 3) {
17305			err_printf(m, "  SIZE: %08x\n", error->plane[i].size);
17306			err_printf(m, "  POS: %08x\n", error->plane[i].pos);
17307		}
17308		if (INTEL_GEN(dev_priv) <= 7 && !IS_HASWELL(dev_priv))
17309			err_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
17310		if (INTEL_GEN(dev_priv) >= 4) {
17311			err_printf(m, "  SURF: %08x\n", error->plane[i].surface);
17312			err_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
17313		}
17314
17315		err_printf(m, "Cursor [%d]:\n", i);
17316		err_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
17317		err_printf(m, "  POS: %08x\n", error->cursor[i].position);
17318		err_printf(m, "  BASE: %08x\n", error->cursor[i].base);
17319	}
17320
17321	for (i = 0; i < error->num_transcoders; i++) {
17322		err_printf(m, "CPU transcoder: %s\n",
17323			   transcoder_name(error->transcoder[i].cpu_transcoder));
17324		err_printf(m, "  Power: %s\n",
17325			   onoff(error->transcoder[i].power_domain_on));
17326		err_printf(m, "  CONF: %08x\n", error->transcoder[i].conf);
17327		err_printf(m, "  HTOTAL: %08x\n", error->transcoder[i].htotal);
17328		err_printf(m, "  HBLANK: %08x\n", error->transcoder[i].hblank);
17329		err_printf(m, "  HSYNC: %08x\n", error->transcoder[i].hsync);
17330		err_printf(m, "  VTOTAL: %08x\n", error->transcoder[i].vtotal);
17331		err_printf(m, "  VBLANK: %08x\n", error->transcoder[i].vblank);
17332		err_printf(m, "  VSYNC: %08x\n", error->transcoder[i].vsync);
17333	}
17334}
17335
17336#endif