Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Copyright (C) Freescale Semicondutor, Inc. 2007, 2008.
   4 * Copyright (C) Semihalf 2009
   5 * Copyright (C) Ilya Yanok, Emcraft Systems 2010
   6 * Copyright (C) Alexander Popov, Promcontroller 2014
   7 * Copyright (C) Mario Six, Guntermann & Drunck GmbH, 2016
   8 *
   9 * Written by Piotr Ziecik <kosmo@semihalf.com>. Hardware description
  10 * (defines, structures and comments) was taken from MPC5121 DMA driver
  11 * written by Hongjun Chen <hong-jun.chen@freescale.com>.
  12 *
  13 * Approved as OSADL project by a majority of OSADL members and funded
  14 * by OSADL membership fees in 2009;  for details see www.osadl.org.
 
 
 
 
 
 
 
 
 
 
 
 
 
  15 */
  16
  17/*
  18 * MPC512x and MPC8308 DMA driver. It supports memory to memory data transfers
  19 * (tested using dmatest module) and data transfers between memory and
  20 * peripheral I/O memory by means of slave scatter/gather with these
  21 * limitations:
  22 *  - chunked transfers (described by s/g lists with more than one item) are
  23 *     refused as long as proper support for scatter/gather is missing
  24 *  - transfers on MPC8308 always start from software as this SoC does not have
  25 *     external request lines for peripheral flow control
  26 *  - memory <-> I/O memory transfer chunks of sizes of 1, 2, 4, 16 (for
  27 *     MPC512x), and 32 bytes are supported, and, consequently, source
  28 *     addresses and destination addresses must be aligned accordingly;
  29 *     furthermore, for MPC512x SoCs, the transfer size must be aligned on
  30 *     (chunk size * maxburst)
  31 */
  32
  33#include <linux/module.h>
  34#include <linux/dmaengine.h>
  35#include <linux/dma-mapping.h>
  36#include <linux/interrupt.h>
  37#include <linux/io.h>
  38#include <linux/slab.h>
  39#include <linux/of_address.h>
  40#include <linux/of_device.h>
  41#include <linux/of_irq.h>
  42#include <linux/of_dma.h>
  43#include <linux/of_platform.h>
  44
  45#include <linux/random.h>
  46
  47#include "dmaengine.h"
  48
  49/* Number of DMA Transfer descriptors allocated per channel */
  50#define MPC_DMA_DESCRIPTORS	64
  51
  52/* Macro definitions */
  53#define MPC_DMA_TCD_OFFSET	0x1000
  54
  55/*
  56 * Maximum channel counts for individual hardware variants
  57 * and the maximum channel count over all supported controllers,
  58 * used for data structure size
  59 */
  60#define MPC8308_DMACHAN_MAX	16
  61#define MPC512x_DMACHAN_MAX	64
  62#define MPC_DMA_CHANNELS	64
  63
  64/* Arbitration mode of group and channel */
  65#define MPC_DMA_DMACR_EDCG	(1 << 31)
  66#define MPC_DMA_DMACR_ERGA	(1 << 3)
  67#define MPC_DMA_DMACR_ERCA	(1 << 2)
  68
  69/* Error codes */
  70#define MPC_DMA_DMAES_VLD	(1 << 31)
  71#define MPC_DMA_DMAES_GPE	(1 << 15)
  72#define MPC_DMA_DMAES_CPE	(1 << 14)
  73#define MPC_DMA_DMAES_ERRCHN(err) \
  74				(((err) >> 8) & 0x3f)
  75#define MPC_DMA_DMAES_SAE	(1 << 7)
  76#define MPC_DMA_DMAES_SOE	(1 << 6)
  77#define MPC_DMA_DMAES_DAE	(1 << 5)
  78#define MPC_DMA_DMAES_DOE	(1 << 4)
  79#define MPC_DMA_DMAES_NCE	(1 << 3)
  80#define MPC_DMA_DMAES_SGE	(1 << 2)
  81#define MPC_DMA_DMAES_SBE	(1 << 1)
  82#define MPC_DMA_DMAES_DBE	(1 << 0)
  83
  84#define MPC_DMA_DMAGPOR_SNOOP_ENABLE	(1 << 6)
  85
  86#define MPC_DMA_TSIZE_1		0x00
  87#define MPC_DMA_TSIZE_2		0x01
  88#define MPC_DMA_TSIZE_4		0x02
  89#define MPC_DMA_TSIZE_16	0x04
  90#define MPC_DMA_TSIZE_32	0x05
  91
  92/* MPC5121 DMA engine registers */
  93struct __attribute__ ((__packed__)) mpc_dma_regs {
  94	/* 0x00 */
  95	u32 dmacr;		/* DMA control register */
  96	u32 dmaes;		/* DMA error status */
  97	/* 0x08 */
  98	u32 dmaerqh;		/* DMA enable request high(channels 63~32) */
  99	u32 dmaerql;		/* DMA enable request low(channels 31~0) */
 100	u32 dmaeeih;		/* DMA enable error interrupt high(ch63~32) */
 101	u32 dmaeeil;		/* DMA enable error interrupt low(ch31~0) */
 102	/* 0x18 */
 103	u8 dmaserq;		/* DMA set enable request */
 104	u8 dmacerq;		/* DMA clear enable request */
 105	u8 dmaseei;		/* DMA set enable error interrupt */
 106	u8 dmaceei;		/* DMA clear enable error interrupt */
 107	/* 0x1c */
 108	u8 dmacint;		/* DMA clear interrupt request */
 109	u8 dmacerr;		/* DMA clear error */
 110	u8 dmassrt;		/* DMA set start bit */
 111	u8 dmacdne;		/* DMA clear DONE status bit */
 112	/* 0x20 */
 113	u32 dmainth;		/* DMA interrupt request high(ch63~32) */
 114	u32 dmaintl;		/* DMA interrupt request low(ch31~0) */
 115	u32 dmaerrh;		/* DMA error high(ch63~32) */
 116	u32 dmaerrl;		/* DMA error low(ch31~0) */
 117	/* 0x30 */
 118	u32 dmahrsh;		/* DMA hw request status high(ch63~32) */
 119	u32 dmahrsl;		/* DMA hardware request status low(ch31~0) */
 120	union {
 121		u32 dmaihsa;	/* DMA interrupt high select AXE(ch63~32) */
 122		u32 dmagpor;	/* (General purpose register on MPC8308) */
 123	};
 124	u32 dmailsa;		/* DMA interrupt low select AXE(ch31~0) */
 125	/* 0x40 ~ 0xff */
 126	u32 reserve0[48];	/* Reserved */
 127	/* 0x100 */
 128	u8 dchpri[MPC_DMA_CHANNELS];
 129	/* DMA channels(0~63) priority */
 130};
 131
 132struct __attribute__ ((__packed__)) mpc_dma_tcd {
 133	/* 0x00 */
 134	u32 saddr;		/* Source address */
 135
 136	u32 smod:5;		/* Source address modulo */
 137	u32 ssize:3;		/* Source data transfer size */
 138	u32 dmod:5;		/* Destination address modulo */
 139	u32 dsize:3;		/* Destination data transfer size */
 140	u32 soff:16;		/* Signed source address offset */
 141
 142	/* 0x08 */
 143	u32 nbytes;		/* Inner "minor" byte count */
 144	u32 slast;		/* Last source address adjustment */
 145	u32 daddr;		/* Destination address */
 146
 147	/* 0x14 */
 148	u32 citer_elink:1;	/* Enable channel-to-channel linking on
 149				 * minor loop complete
 150				 */
 151	u32 citer_linkch:6;	/* Link channel for minor loop complete */
 152	u32 citer:9;		/* Current "major" iteration count */
 153	u32 doff:16;		/* Signed destination address offset */
 154
 155	/* 0x18 */
 156	u32 dlast_sga;		/* Last Destination address adjustment/scatter
 157				 * gather address
 158				 */
 159
 160	/* 0x1c */
 161	u32 biter_elink:1;	/* Enable channel-to-channel linking on major
 162				 * loop complete
 163				 */
 164	u32 biter_linkch:6;
 165	u32 biter:9;		/* Beginning "major" iteration count */
 166	u32 bwc:2;		/* Bandwidth control */
 167	u32 major_linkch:6;	/* Link channel number */
 168	u32 done:1;		/* Channel done */
 169	u32 active:1;		/* Channel active */
 170	u32 major_elink:1;	/* Enable channel-to-channel linking on major
 171				 * loop complete
 172				 */
 173	u32 e_sg:1;		/* Enable scatter/gather processing */
 174	u32 d_req:1;		/* Disable request */
 175	u32 int_half:1;		/* Enable an interrupt when major counter is
 176				 * half complete
 177				 */
 178	u32 int_maj:1;		/* Enable an interrupt when major iteration
 179				 * count completes
 180				 */
 181	u32 start:1;		/* Channel start */
 182};
 183
 184struct mpc_dma_desc {
 185	struct dma_async_tx_descriptor	desc;
 186	struct mpc_dma_tcd		*tcd;
 187	dma_addr_t			tcd_paddr;
 188	int				error;
 189	struct list_head		node;
 190	int				will_access_peripheral;
 191};
 192
 193struct mpc_dma_chan {
 194	struct dma_chan			chan;
 195	struct list_head		free;
 196	struct list_head		prepared;
 197	struct list_head		queued;
 198	struct list_head		active;
 199	struct list_head		completed;
 200	struct mpc_dma_tcd		*tcd;
 201	dma_addr_t			tcd_paddr;
 202
 203	/* Settings for access to peripheral FIFO */
 204	dma_addr_t			src_per_paddr;
 205	u32				src_tcd_nunits;
 206	u8				swidth;
 207	dma_addr_t			dst_per_paddr;
 208	u32				dst_tcd_nunits;
 209	u8				dwidth;
 210
 211	/* Lock for this structure */
 212	spinlock_t			lock;
 213};
 214
 215struct mpc_dma {
 216	struct dma_device		dma;
 217	struct tasklet_struct		tasklet;
 218	struct mpc_dma_chan		channels[MPC_DMA_CHANNELS];
 219	struct mpc_dma_regs __iomem	*regs;
 220	struct mpc_dma_tcd __iomem	*tcd;
 221	int				irq;
 222	int				irq2;
 223	uint				error_status;
 224	int				is_mpc8308;
 225
 226	/* Lock for error_status field in this structure */
 227	spinlock_t			error_status_lock;
 228};
 229
 230#define DRV_NAME	"mpc512x_dma"
 231
 232/* Convert struct dma_chan to struct mpc_dma_chan */
 233static inline struct mpc_dma_chan *dma_chan_to_mpc_dma_chan(struct dma_chan *c)
 234{
 235	return container_of(c, struct mpc_dma_chan, chan);
 236}
 237
 238/* Convert struct dma_chan to struct mpc_dma */
 239static inline struct mpc_dma *dma_chan_to_mpc_dma(struct dma_chan *c)
 240{
 241	struct mpc_dma_chan *mchan = dma_chan_to_mpc_dma_chan(c);
 242
 243	return container_of(mchan, struct mpc_dma, channels[c->chan_id]);
 244}
 245
 246/*
 247 * Execute all queued DMA descriptors.
 248 *
 249 * Following requirements must be met while calling mpc_dma_execute():
 250 *	a) mchan->lock is acquired,
 251 *	b) mchan->active list is empty,
 252 *	c) mchan->queued list contains at least one entry.
 253 */
 254static void mpc_dma_execute(struct mpc_dma_chan *mchan)
 255{
 256	struct mpc_dma *mdma = dma_chan_to_mpc_dma(&mchan->chan);
 257	struct mpc_dma_desc *first = NULL;
 258	struct mpc_dma_desc *prev = NULL;
 259	struct mpc_dma_desc *mdesc;
 260	int cid = mchan->chan.chan_id;
 261
 262	while (!list_empty(&mchan->queued)) {
 263		mdesc = list_first_entry(&mchan->queued,
 264						struct mpc_dma_desc, node);
 265		/*
 266		 * Grab either several mem-to-mem transfer descriptors
 267		 * or one peripheral transfer descriptor,
 268		 * don't mix mem-to-mem and peripheral transfer descriptors
 269		 * within the same 'active' list.
 270		 */
 271		if (mdesc->will_access_peripheral) {
 272			if (list_empty(&mchan->active))
 273				list_move_tail(&mdesc->node, &mchan->active);
 274			break;
 275		} else {
 276			list_move_tail(&mdesc->node, &mchan->active);
 277		}
 278	}
 279
 280	/* Chain descriptors into one transaction */
 281	list_for_each_entry(mdesc, &mchan->active, node) {
 282		if (!first)
 283			first = mdesc;
 284
 285		if (!prev) {
 286			prev = mdesc;
 287			continue;
 288		}
 289
 290		prev->tcd->dlast_sga = mdesc->tcd_paddr;
 291		prev->tcd->e_sg = 1;
 292		mdesc->tcd->start = 1;
 293
 294		prev = mdesc;
 295	}
 296
 297	prev->tcd->int_maj = 1;
 298
 299	/* Send first descriptor in chain into hardware */
 300	memcpy_toio(&mdma->tcd[cid], first->tcd, sizeof(struct mpc_dma_tcd));
 301
 302	if (first != prev)
 303		mdma->tcd[cid].e_sg = 1;
 304
 305	if (mdma->is_mpc8308) {
 306		/* MPC8308, no request lines, software initiated start */
 307		out_8(&mdma->regs->dmassrt, cid);
 308	} else if (first->will_access_peripheral) {
 309		/* Peripherals involved, start by external request signal */
 310		out_8(&mdma->regs->dmaserq, cid);
 311	} else {
 312		/* Memory to memory transfer, software initiated start */
 313		out_8(&mdma->regs->dmassrt, cid);
 314	}
 315}
 316
 317/* Handle interrupt on one half of DMA controller (32 channels) */
 318static void mpc_dma_irq_process(struct mpc_dma *mdma, u32 is, u32 es, int off)
 319{
 320	struct mpc_dma_chan *mchan;
 321	struct mpc_dma_desc *mdesc;
 322	u32 status = is | es;
 323	int ch;
 324
 325	while ((ch = fls(status) - 1) >= 0) {
 326		status &= ~(1 << ch);
 327		mchan = &mdma->channels[ch + off];
 328
 329		spin_lock(&mchan->lock);
 330
 331		out_8(&mdma->regs->dmacint, ch + off);
 332		out_8(&mdma->regs->dmacerr, ch + off);
 333
 334		/* Check error status */
 335		if (es & (1 << ch))
 336			list_for_each_entry(mdesc, &mchan->active, node)
 337				mdesc->error = -EIO;
 338
 339		/* Execute queued descriptors */
 340		list_splice_tail_init(&mchan->active, &mchan->completed);
 341		if (!list_empty(&mchan->queued))
 342			mpc_dma_execute(mchan);
 343
 344		spin_unlock(&mchan->lock);
 345	}
 346}
 347
 348/* Interrupt handler */
 349static irqreturn_t mpc_dma_irq(int irq, void *data)
 350{
 351	struct mpc_dma *mdma = data;
 352	uint es;
 353
 354	/* Save error status register */
 355	es = in_be32(&mdma->regs->dmaes);
 356	spin_lock(&mdma->error_status_lock);
 357	if ((es & MPC_DMA_DMAES_VLD) && mdma->error_status == 0)
 358		mdma->error_status = es;
 359	spin_unlock(&mdma->error_status_lock);
 360
 361	/* Handle interrupt on each channel */
 362	if (mdma->dma.chancnt > 32) {
 363		mpc_dma_irq_process(mdma, in_be32(&mdma->regs->dmainth),
 364					in_be32(&mdma->regs->dmaerrh), 32);
 365	}
 366	mpc_dma_irq_process(mdma, in_be32(&mdma->regs->dmaintl),
 367					in_be32(&mdma->regs->dmaerrl), 0);
 368
 369	/* Schedule tasklet */
 370	tasklet_schedule(&mdma->tasklet);
 371
 372	return IRQ_HANDLED;
 373}
 374
 375/* process completed descriptors */
 376static void mpc_dma_process_completed(struct mpc_dma *mdma)
 377{
 378	dma_cookie_t last_cookie = 0;
 379	struct mpc_dma_chan *mchan;
 380	struct mpc_dma_desc *mdesc;
 381	struct dma_async_tx_descriptor *desc;
 382	unsigned long flags;
 383	LIST_HEAD(list);
 384	int i;
 385
 386	for (i = 0; i < mdma->dma.chancnt; i++) {
 387		mchan = &mdma->channels[i];
 388
 389		/* Get all completed descriptors */
 390		spin_lock_irqsave(&mchan->lock, flags);
 391		if (!list_empty(&mchan->completed))
 392			list_splice_tail_init(&mchan->completed, &list);
 393		spin_unlock_irqrestore(&mchan->lock, flags);
 394
 395		if (list_empty(&list))
 396			continue;
 397
 398		/* Execute callbacks and run dependencies */
 399		list_for_each_entry(mdesc, &list, node) {
 400			desc = &mdesc->desc;
 401
 402			dmaengine_desc_get_callback_invoke(desc, NULL);
 403
 404			last_cookie = desc->cookie;
 405			dma_run_dependencies(desc);
 406		}
 407
 408		/* Free descriptors */
 409		spin_lock_irqsave(&mchan->lock, flags);
 410		list_splice_tail_init(&list, &mchan->free);
 411		mchan->chan.completed_cookie = last_cookie;
 412		spin_unlock_irqrestore(&mchan->lock, flags);
 413	}
 414}
 415
 416/* DMA Tasklet */
 417static void mpc_dma_tasklet(unsigned long data)
 418{
 419	struct mpc_dma *mdma = (void *)data;
 420	unsigned long flags;
 421	uint es;
 422
 423	spin_lock_irqsave(&mdma->error_status_lock, flags);
 424	es = mdma->error_status;
 425	mdma->error_status = 0;
 426	spin_unlock_irqrestore(&mdma->error_status_lock, flags);
 427
 428	/* Print nice error report */
 429	if (es) {
 430		dev_err(mdma->dma.dev,
 431			"Hardware reported following error(s) on channel %u:\n",
 432						      MPC_DMA_DMAES_ERRCHN(es));
 433
 434		if (es & MPC_DMA_DMAES_GPE)
 435			dev_err(mdma->dma.dev, "- Group Priority Error\n");
 436		if (es & MPC_DMA_DMAES_CPE)
 437			dev_err(mdma->dma.dev, "- Channel Priority Error\n");
 438		if (es & MPC_DMA_DMAES_SAE)
 439			dev_err(mdma->dma.dev, "- Source Address Error\n");
 440		if (es & MPC_DMA_DMAES_SOE)
 441			dev_err(mdma->dma.dev, "- Source Offset Configuration Error\n");
 442		if (es & MPC_DMA_DMAES_DAE)
 443			dev_err(mdma->dma.dev, "- Destination Address Error\n");
 444		if (es & MPC_DMA_DMAES_DOE)
 445			dev_err(mdma->dma.dev, "- Destination Offset Configuration Error\n");
 446		if (es & MPC_DMA_DMAES_NCE)
 447			dev_err(mdma->dma.dev, "- NBytes/Citter Configuration Error\n");
 448		if (es & MPC_DMA_DMAES_SGE)
 449			dev_err(mdma->dma.dev, "- Scatter/Gather Configuration Error\n");
 450		if (es & MPC_DMA_DMAES_SBE)
 451			dev_err(mdma->dma.dev, "- Source Bus Error\n");
 452		if (es & MPC_DMA_DMAES_DBE)
 453			dev_err(mdma->dma.dev, "- Destination Bus Error\n");
 454	}
 455
 456	mpc_dma_process_completed(mdma);
 457}
 458
 459/* Submit descriptor to hardware */
 460static dma_cookie_t mpc_dma_tx_submit(struct dma_async_tx_descriptor *txd)
 461{
 462	struct mpc_dma_chan *mchan = dma_chan_to_mpc_dma_chan(txd->chan);
 463	struct mpc_dma_desc *mdesc;
 464	unsigned long flags;
 465	dma_cookie_t cookie;
 466
 467	mdesc = container_of(txd, struct mpc_dma_desc, desc);
 468
 469	spin_lock_irqsave(&mchan->lock, flags);
 470
 471	/* Move descriptor to queue */
 472	list_move_tail(&mdesc->node, &mchan->queued);
 473
 474	/* If channel is idle, execute all queued descriptors */
 475	if (list_empty(&mchan->active))
 476		mpc_dma_execute(mchan);
 477
 478	/* Update cookie */
 479	cookie = dma_cookie_assign(txd);
 480	spin_unlock_irqrestore(&mchan->lock, flags);
 481
 482	return cookie;
 483}
 484
 485/* Alloc channel resources */
 486static int mpc_dma_alloc_chan_resources(struct dma_chan *chan)
 487{
 488	struct mpc_dma *mdma = dma_chan_to_mpc_dma(chan);
 489	struct mpc_dma_chan *mchan = dma_chan_to_mpc_dma_chan(chan);
 490	struct mpc_dma_desc *mdesc;
 491	struct mpc_dma_tcd *tcd;
 492	dma_addr_t tcd_paddr;
 493	unsigned long flags;
 494	LIST_HEAD(descs);
 495	int i;
 496
 497	/* Alloc DMA memory for Transfer Control Descriptors */
 498	tcd = dma_alloc_coherent(mdma->dma.dev,
 499			MPC_DMA_DESCRIPTORS * sizeof(struct mpc_dma_tcd),
 500							&tcd_paddr, GFP_KERNEL);
 501	if (!tcd)
 502		return -ENOMEM;
 503
 504	/* Alloc descriptors for this channel */
 505	for (i = 0; i < MPC_DMA_DESCRIPTORS; i++) {
 506		mdesc = kzalloc(sizeof(struct mpc_dma_desc), GFP_KERNEL);
 507		if (!mdesc) {
 508			dev_notice(mdma->dma.dev,
 509				"Memory allocation error. Allocated only %u descriptors\n", i);
 510			break;
 511		}
 512
 513		dma_async_tx_descriptor_init(&mdesc->desc, chan);
 514		mdesc->desc.flags = DMA_CTRL_ACK;
 515		mdesc->desc.tx_submit = mpc_dma_tx_submit;
 516
 517		mdesc->tcd = &tcd[i];
 518		mdesc->tcd_paddr = tcd_paddr + (i * sizeof(struct mpc_dma_tcd));
 519
 520		list_add_tail(&mdesc->node, &descs);
 521	}
 522
 523	/* Return error only if no descriptors were allocated */
 524	if (i == 0) {
 525		dma_free_coherent(mdma->dma.dev,
 526			MPC_DMA_DESCRIPTORS * sizeof(struct mpc_dma_tcd),
 527								tcd, tcd_paddr);
 528		return -ENOMEM;
 529	}
 530
 531	spin_lock_irqsave(&mchan->lock, flags);
 532	mchan->tcd = tcd;
 533	mchan->tcd_paddr = tcd_paddr;
 534	list_splice_tail_init(&descs, &mchan->free);
 535	spin_unlock_irqrestore(&mchan->lock, flags);
 536
 537	/* Enable Error Interrupt */
 538	out_8(&mdma->regs->dmaseei, chan->chan_id);
 539
 540	return 0;
 541}
 542
 543/* Free channel resources */
 544static void mpc_dma_free_chan_resources(struct dma_chan *chan)
 545{
 546	struct mpc_dma *mdma = dma_chan_to_mpc_dma(chan);
 547	struct mpc_dma_chan *mchan = dma_chan_to_mpc_dma_chan(chan);
 548	struct mpc_dma_desc *mdesc, *tmp;
 549	struct mpc_dma_tcd *tcd;
 550	dma_addr_t tcd_paddr;
 551	unsigned long flags;
 552	LIST_HEAD(descs);
 553
 554	spin_lock_irqsave(&mchan->lock, flags);
 555
 556	/* Channel must be idle */
 557	BUG_ON(!list_empty(&mchan->prepared));
 558	BUG_ON(!list_empty(&mchan->queued));
 559	BUG_ON(!list_empty(&mchan->active));
 560	BUG_ON(!list_empty(&mchan->completed));
 561
 562	/* Move data */
 563	list_splice_tail_init(&mchan->free, &descs);
 564	tcd = mchan->tcd;
 565	tcd_paddr = mchan->tcd_paddr;
 566
 567	spin_unlock_irqrestore(&mchan->lock, flags);
 568
 569	/* Free DMA memory used by descriptors */
 570	dma_free_coherent(mdma->dma.dev,
 571			MPC_DMA_DESCRIPTORS * sizeof(struct mpc_dma_tcd),
 572								tcd, tcd_paddr);
 573
 574	/* Free descriptors */
 575	list_for_each_entry_safe(mdesc, tmp, &descs, node)
 576		kfree(mdesc);
 577
 578	/* Disable Error Interrupt */
 579	out_8(&mdma->regs->dmaceei, chan->chan_id);
 580}
 581
 582/* Send all pending descriptor to hardware */
 583static void mpc_dma_issue_pending(struct dma_chan *chan)
 584{
 585	/*
 586	 * We are posting descriptors to the hardware as soon as
 587	 * they are ready, so this function does nothing.
 588	 */
 589}
 590
 591/* Check request completion status */
 592static enum dma_status
 593mpc_dma_tx_status(struct dma_chan *chan, dma_cookie_t cookie,
 594	       struct dma_tx_state *txstate)
 595{
 596	return dma_cookie_status(chan, cookie, txstate);
 597}
 598
 599/* Prepare descriptor for memory to memory copy */
 600static struct dma_async_tx_descriptor *
 601mpc_dma_prep_memcpy(struct dma_chan *chan, dma_addr_t dst, dma_addr_t src,
 602					size_t len, unsigned long flags)
 603{
 604	struct mpc_dma *mdma = dma_chan_to_mpc_dma(chan);
 605	struct mpc_dma_chan *mchan = dma_chan_to_mpc_dma_chan(chan);
 606	struct mpc_dma_desc *mdesc = NULL;
 607	struct mpc_dma_tcd *tcd;
 608	unsigned long iflags;
 609
 610	/* Get free descriptor */
 611	spin_lock_irqsave(&mchan->lock, iflags);
 612	if (!list_empty(&mchan->free)) {
 613		mdesc = list_first_entry(&mchan->free, struct mpc_dma_desc,
 614									node);
 615		list_del(&mdesc->node);
 616	}
 617	spin_unlock_irqrestore(&mchan->lock, iflags);
 618
 619	if (!mdesc) {
 620		/* try to free completed descriptors */
 621		mpc_dma_process_completed(mdma);
 622		return NULL;
 623	}
 624
 625	mdesc->error = 0;
 626	mdesc->will_access_peripheral = 0;
 627	tcd = mdesc->tcd;
 628
 629	/* Prepare Transfer Control Descriptor for this transaction */
 630	memset(tcd, 0, sizeof(struct mpc_dma_tcd));
 631
 632	if (IS_ALIGNED(src | dst | len, 32)) {
 633		tcd->ssize = MPC_DMA_TSIZE_32;
 634		tcd->dsize = MPC_DMA_TSIZE_32;
 635		tcd->soff = 32;
 636		tcd->doff = 32;
 637	} else if (!mdma->is_mpc8308 && IS_ALIGNED(src | dst | len, 16)) {
 638		/* MPC8308 doesn't support 16 byte transfers */
 639		tcd->ssize = MPC_DMA_TSIZE_16;
 640		tcd->dsize = MPC_DMA_TSIZE_16;
 641		tcd->soff = 16;
 642		tcd->doff = 16;
 643	} else if (IS_ALIGNED(src | dst | len, 4)) {
 644		tcd->ssize = MPC_DMA_TSIZE_4;
 645		tcd->dsize = MPC_DMA_TSIZE_4;
 646		tcd->soff = 4;
 647		tcd->doff = 4;
 648	} else if (IS_ALIGNED(src | dst | len, 2)) {
 649		tcd->ssize = MPC_DMA_TSIZE_2;
 650		tcd->dsize = MPC_DMA_TSIZE_2;
 651		tcd->soff = 2;
 652		tcd->doff = 2;
 653	} else {
 654		tcd->ssize = MPC_DMA_TSIZE_1;
 655		tcd->dsize = MPC_DMA_TSIZE_1;
 656		tcd->soff = 1;
 657		tcd->doff = 1;
 658	}
 659
 660	tcd->saddr = src;
 661	tcd->daddr = dst;
 662	tcd->nbytes = len;
 663	tcd->biter = 1;
 664	tcd->citer = 1;
 665
 666	/* Place descriptor in prepared list */
 667	spin_lock_irqsave(&mchan->lock, iflags);
 668	list_add_tail(&mdesc->node, &mchan->prepared);
 669	spin_unlock_irqrestore(&mchan->lock, iflags);
 670
 671	return &mdesc->desc;
 672}
 673
 674inline u8 buswidth_to_dmatsize(u8 buswidth)
 675{
 676	u8 res;
 677
 678	for (res = 0; buswidth > 1; buswidth /= 2)
 679		res++;
 680	return res;
 681}
 682
 683static struct dma_async_tx_descriptor *
 684mpc_dma_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
 685		unsigned int sg_len, enum dma_transfer_direction direction,
 686		unsigned long flags, void *context)
 687{
 688	struct mpc_dma *mdma = dma_chan_to_mpc_dma(chan);
 689	struct mpc_dma_chan *mchan = dma_chan_to_mpc_dma_chan(chan);
 690	struct mpc_dma_desc *mdesc = NULL;
 691	dma_addr_t per_paddr;
 692	u32 tcd_nunits;
 693	struct mpc_dma_tcd *tcd;
 694	unsigned long iflags;
 695	struct scatterlist *sg;
 696	size_t len;
 697	int iter, i;
 698
 699	/* Currently there is no proper support for scatter/gather */
 700	if (sg_len != 1)
 701		return NULL;
 702
 703	if (!is_slave_direction(direction))
 704		return NULL;
 705
 706	for_each_sg(sgl, sg, sg_len, i) {
 707		spin_lock_irqsave(&mchan->lock, iflags);
 708
 709		mdesc = list_first_entry(&mchan->free,
 710						struct mpc_dma_desc, node);
 711		if (!mdesc) {
 712			spin_unlock_irqrestore(&mchan->lock, iflags);
 713			/* Try to free completed descriptors */
 714			mpc_dma_process_completed(mdma);
 715			return NULL;
 716		}
 717
 718		list_del(&mdesc->node);
 719
 720		if (direction == DMA_DEV_TO_MEM) {
 721			per_paddr = mchan->src_per_paddr;
 722			tcd_nunits = mchan->src_tcd_nunits;
 723		} else {
 724			per_paddr = mchan->dst_per_paddr;
 725			tcd_nunits = mchan->dst_tcd_nunits;
 726		}
 727
 728		spin_unlock_irqrestore(&mchan->lock, iflags);
 729
 730		if (per_paddr == 0 || tcd_nunits == 0)
 731			goto err_prep;
 732
 733		mdesc->error = 0;
 734		mdesc->will_access_peripheral = 1;
 735
 736		/* Prepare Transfer Control Descriptor for this transaction */
 737		tcd = mdesc->tcd;
 738
 739		memset(tcd, 0, sizeof(struct mpc_dma_tcd));
 740
 741		if (direction == DMA_DEV_TO_MEM) {
 742			tcd->saddr = per_paddr;
 743			tcd->daddr = sg_dma_address(sg);
 744
 745			if (!IS_ALIGNED(sg_dma_address(sg), mchan->dwidth))
 746				goto err_prep;
 747
 748			tcd->soff = 0;
 749			tcd->doff = mchan->dwidth;
 750		} else {
 751			tcd->saddr = sg_dma_address(sg);
 752			tcd->daddr = per_paddr;
 753
 754			if (!IS_ALIGNED(sg_dma_address(sg), mchan->swidth))
 755				goto err_prep;
 756
 757			tcd->soff = mchan->swidth;
 758			tcd->doff = 0;
 759		}
 760
 761		tcd->ssize = buswidth_to_dmatsize(mchan->swidth);
 762		tcd->dsize = buswidth_to_dmatsize(mchan->dwidth);
 763
 764		if (mdma->is_mpc8308) {
 765			tcd->nbytes = sg_dma_len(sg);
 766			if (!IS_ALIGNED(tcd->nbytes, mchan->swidth))
 767				goto err_prep;
 768
 769			/* No major loops for MPC8303 */
 770			tcd->biter = 1;
 771			tcd->citer = 1;
 772		} else {
 773			len = sg_dma_len(sg);
 774			tcd->nbytes = tcd_nunits * tcd->ssize;
 775			if (!IS_ALIGNED(len, tcd->nbytes))
 776				goto err_prep;
 777
 778			iter = len / tcd->nbytes;
 779			if (iter >= 1 << 15) {
 780				/* len is too big */
 781				goto err_prep;
 782			}
 783			/* citer_linkch contains the high bits of iter */
 784			tcd->biter = iter & 0x1ff;
 785			tcd->biter_linkch = iter >> 9;
 786			tcd->citer = tcd->biter;
 787			tcd->citer_linkch = tcd->biter_linkch;
 788		}
 789
 790		tcd->e_sg = 0;
 791		tcd->d_req = 1;
 792
 793		/* Place descriptor in prepared list */
 794		spin_lock_irqsave(&mchan->lock, iflags);
 795		list_add_tail(&mdesc->node, &mchan->prepared);
 796		spin_unlock_irqrestore(&mchan->lock, iflags);
 797	}
 798
 799	return &mdesc->desc;
 800
 801err_prep:
 802	/* Put the descriptor back */
 803	spin_lock_irqsave(&mchan->lock, iflags);
 804	list_add_tail(&mdesc->node, &mchan->free);
 805	spin_unlock_irqrestore(&mchan->lock, iflags);
 806
 807	return NULL;
 808}
 809
 810inline bool is_buswidth_valid(u8 buswidth, bool is_mpc8308)
 811{
 812	switch (buswidth) {
 813	case 16:
 814		if (is_mpc8308)
 815			return false;
 816	case 1:
 817	case 2:
 818	case 4:
 819	case 32:
 820		break;
 821	default:
 822		return false;
 823	}
 824
 825	return true;
 826}
 827
 828static int mpc_dma_device_config(struct dma_chan *chan,
 829				 struct dma_slave_config *cfg)
 830{
 831	struct mpc_dma_chan *mchan = dma_chan_to_mpc_dma_chan(chan);
 832	struct mpc_dma *mdma = dma_chan_to_mpc_dma(&mchan->chan);
 833	unsigned long flags;
 834
 835	/*
 836	 * Software constraints:
 837	 *  - only transfers between a peripheral device and memory are
 838	 *     supported
 839	 *  - transfer chunk sizes of 1, 2, 4, 16 (for MPC512x), and 32 bytes
 840	 *     are supported, and, consequently, source addresses and
 841	 *     destination addresses; must be aligned accordingly; furthermore,
 842	 *     for MPC512x SoCs, the transfer size must be aligned on (chunk
 843	 *     size * maxburst)
 844	 *  - during the transfer, the RAM address is incremented by the size
 845	 *     of transfer chunk
 846	 *  - the peripheral port's address is constant during the transfer.
 847	 */
 848
 849	if (!IS_ALIGNED(cfg->src_addr, cfg->src_addr_width) ||
 850	    !IS_ALIGNED(cfg->dst_addr, cfg->dst_addr_width)) {
 851		return -EINVAL;
 852	}
 853
 854	if (!is_buswidth_valid(cfg->src_addr_width, mdma->is_mpc8308) ||
 855	    !is_buswidth_valid(cfg->dst_addr_width, mdma->is_mpc8308))
 856		return -EINVAL;
 857
 858	spin_lock_irqsave(&mchan->lock, flags);
 859
 860	mchan->src_per_paddr = cfg->src_addr;
 861	mchan->src_tcd_nunits = cfg->src_maxburst;
 862	mchan->swidth = cfg->src_addr_width;
 863	mchan->dst_per_paddr = cfg->dst_addr;
 864	mchan->dst_tcd_nunits = cfg->dst_maxburst;
 865	mchan->dwidth = cfg->dst_addr_width;
 866
 867	/* Apply defaults */
 868	if (mchan->src_tcd_nunits == 0)
 869		mchan->src_tcd_nunits = 1;
 870	if (mchan->dst_tcd_nunits == 0)
 871		mchan->dst_tcd_nunits = 1;
 872
 873	spin_unlock_irqrestore(&mchan->lock, flags);
 874
 875	return 0;
 876}
 877
 878static int mpc_dma_device_terminate_all(struct dma_chan *chan)
 879{
 880	struct mpc_dma_chan *mchan = dma_chan_to_mpc_dma_chan(chan);
 881	struct mpc_dma *mdma = dma_chan_to_mpc_dma(chan);
 882	unsigned long flags;
 883
 884	/* Disable channel requests */
 885	spin_lock_irqsave(&mchan->lock, flags);
 886
 887	out_8(&mdma->regs->dmacerq, chan->chan_id);
 888	list_splice_tail_init(&mchan->prepared, &mchan->free);
 889	list_splice_tail_init(&mchan->queued, &mchan->free);
 890	list_splice_tail_init(&mchan->active, &mchan->free);
 891
 892	spin_unlock_irqrestore(&mchan->lock, flags);
 893
 894	return 0;
 895}
 896
 897static int mpc_dma_probe(struct platform_device *op)
 898{
 899	struct device_node *dn = op->dev.of_node;
 900	struct device *dev = &op->dev;
 901	struct dma_device *dma;
 902	struct mpc_dma *mdma;
 903	struct mpc_dma_chan *mchan;
 904	struct resource res;
 905	ulong regs_start, regs_size;
 906	int retval, i;
 907	u8 chancnt;
 908
 909	mdma = devm_kzalloc(dev, sizeof(struct mpc_dma), GFP_KERNEL);
 910	if (!mdma) {
 911		retval = -ENOMEM;
 912		goto err;
 913	}
 914
 915	mdma->irq = irq_of_parse_and_map(dn, 0);
 916	if (!mdma->irq) {
 917		dev_err(dev, "Error mapping IRQ!\n");
 918		retval = -EINVAL;
 919		goto err;
 920	}
 921
 922	if (of_device_is_compatible(dn, "fsl,mpc8308-dma")) {
 923		mdma->is_mpc8308 = 1;
 924		mdma->irq2 = irq_of_parse_and_map(dn, 1);
 925		if (!mdma->irq2) {
 926			dev_err(dev, "Error mapping IRQ!\n");
 927			retval = -EINVAL;
 928			goto err_dispose1;
 929		}
 930	}
 931
 932	retval = of_address_to_resource(dn, 0, &res);
 933	if (retval) {
 934		dev_err(dev, "Error parsing memory region!\n");
 935		goto err_dispose2;
 936	}
 937
 938	regs_start = res.start;
 939	regs_size = resource_size(&res);
 940
 941	if (!devm_request_mem_region(dev, regs_start, regs_size, DRV_NAME)) {
 942		dev_err(dev, "Error requesting memory region!\n");
 943		retval = -EBUSY;
 944		goto err_dispose2;
 945	}
 946
 947	mdma->regs = devm_ioremap(dev, regs_start, regs_size);
 948	if (!mdma->regs) {
 949		dev_err(dev, "Error mapping memory region!\n");
 950		retval = -ENOMEM;
 951		goto err_dispose2;
 952	}
 953
 954	mdma->tcd = (struct mpc_dma_tcd *)((u8 *)(mdma->regs)
 955							+ MPC_DMA_TCD_OFFSET);
 956
 957	retval = request_irq(mdma->irq, &mpc_dma_irq, 0, DRV_NAME, mdma);
 958	if (retval) {
 959		dev_err(dev, "Error requesting IRQ!\n");
 960		retval = -EINVAL;
 961		goto err_dispose2;
 962	}
 963
 964	if (mdma->is_mpc8308) {
 965		retval = request_irq(mdma->irq2, &mpc_dma_irq, 0,
 966							DRV_NAME, mdma);
 967		if (retval) {
 968			dev_err(dev, "Error requesting IRQ2!\n");
 969			retval = -EINVAL;
 970			goto err_free1;
 971		}
 972	}
 973
 974	spin_lock_init(&mdma->error_status_lock);
 975
 976	dma = &mdma->dma;
 977	dma->dev = dev;
 978	dma->device_alloc_chan_resources = mpc_dma_alloc_chan_resources;
 979	dma->device_free_chan_resources = mpc_dma_free_chan_resources;
 980	dma->device_issue_pending = mpc_dma_issue_pending;
 981	dma->device_tx_status = mpc_dma_tx_status;
 982	dma->device_prep_dma_memcpy = mpc_dma_prep_memcpy;
 983	dma->device_prep_slave_sg = mpc_dma_prep_slave_sg;
 984	dma->device_config = mpc_dma_device_config;
 985	dma->device_terminate_all = mpc_dma_device_terminate_all;
 986
 987	INIT_LIST_HEAD(&dma->channels);
 988	dma_cap_set(DMA_MEMCPY, dma->cap_mask);
 989	dma_cap_set(DMA_SLAVE, dma->cap_mask);
 990
 991	if (mdma->is_mpc8308)
 992		chancnt = MPC8308_DMACHAN_MAX;
 993	else
 994		chancnt = MPC512x_DMACHAN_MAX;
 995
 996	for (i = 0; i < chancnt; i++) {
 997		mchan = &mdma->channels[i];
 998
 999		mchan->chan.device = dma;
1000		dma_cookie_init(&mchan->chan);
1001
1002		INIT_LIST_HEAD(&mchan->free);
1003		INIT_LIST_HEAD(&mchan->prepared);
1004		INIT_LIST_HEAD(&mchan->queued);
1005		INIT_LIST_HEAD(&mchan->active);
1006		INIT_LIST_HEAD(&mchan->completed);
1007
1008		spin_lock_init(&mchan->lock);
1009		list_add_tail(&mchan->chan.device_node, &dma->channels);
1010	}
1011
1012	tasklet_init(&mdma->tasklet, mpc_dma_tasklet, (unsigned long)mdma);
1013
1014	/*
1015	 * Configure DMA Engine:
1016	 * - Dynamic clock,
1017	 * - Round-robin group arbitration,
1018	 * - Round-robin channel arbitration.
1019	 */
1020	if (mdma->is_mpc8308) {
1021		/* MPC8308 has 16 channels and lacks some registers */
1022		out_be32(&mdma->regs->dmacr, MPC_DMA_DMACR_ERCA);
1023
1024		/* enable snooping */
1025		out_be32(&mdma->regs->dmagpor, MPC_DMA_DMAGPOR_SNOOP_ENABLE);
1026		/* Disable error interrupts */
1027		out_be32(&mdma->regs->dmaeeil, 0);
1028
1029		/* Clear interrupts status */
1030		out_be32(&mdma->regs->dmaintl, 0xFFFF);
1031		out_be32(&mdma->regs->dmaerrl, 0xFFFF);
1032	} else {
1033		out_be32(&mdma->regs->dmacr, MPC_DMA_DMACR_EDCG |
1034						MPC_DMA_DMACR_ERGA |
1035						MPC_DMA_DMACR_ERCA);
1036
1037		/* Disable hardware DMA requests */
1038		out_be32(&mdma->regs->dmaerqh, 0);
1039		out_be32(&mdma->regs->dmaerql, 0);
1040
1041		/* Disable error interrupts */
1042		out_be32(&mdma->regs->dmaeeih, 0);
1043		out_be32(&mdma->regs->dmaeeil, 0);
1044
1045		/* Clear interrupts status */
1046		out_be32(&mdma->regs->dmainth, 0xFFFFFFFF);
1047		out_be32(&mdma->regs->dmaintl, 0xFFFFFFFF);
1048		out_be32(&mdma->regs->dmaerrh, 0xFFFFFFFF);
1049		out_be32(&mdma->regs->dmaerrl, 0xFFFFFFFF);
1050
1051		/* Route interrupts to IPIC */
1052		out_be32(&mdma->regs->dmaihsa, 0);
1053		out_be32(&mdma->regs->dmailsa, 0);
1054	}
1055
1056	/* Register DMA engine */
1057	dev_set_drvdata(dev, mdma);
1058	retval = dma_async_device_register(dma);
1059	if (retval)
1060		goto err_free2;
1061
1062	/* Register with OF helpers for DMA lookups (nonfatal) */
1063	if (dev->of_node) {
1064		retval = of_dma_controller_register(dev->of_node,
1065						of_dma_xlate_by_chan_id, mdma);
1066		if (retval)
1067			dev_warn(dev, "Could not register for OF lookup\n");
1068	}
1069
1070	return 0;
1071
1072err_free2:
1073	if (mdma->is_mpc8308)
1074		free_irq(mdma->irq2, mdma);
1075err_free1:
1076	free_irq(mdma->irq, mdma);
1077err_dispose2:
1078	if (mdma->is_mpc8308)
1079		irq_dispose_mapping(mdma->irq2);
1080err_dispose1:
1081	irq_dispose_mapping(mdma->irq);
1082err:
1083	return retval;
1084}
1085
1086static int mpc_dma_remove(struct platform_device *op)
1087{
1088	struct device *dev = &op->dev;
1089	struct mpc_dma *mdma = dev_get_drvdata(dev);
1090
1091	if (dev->of_node)
1092		of_dma_controller_free(dev->of_node);
1093	dma_async_device_unregister(&mdma->dma);
1094	if (mdma->is_mpc8308) {
1095		free_irq(mdma->irq2, mdma);
1096		irq_dispose_mapping(mdma->irq2);
1097	}
1098	free_irq(mdma->irq, mdma);
1099	irq_dispose_mapping(mdma->irq);
1100	tasklet_kill(&mdma->tasklet);
1101
1102	return 0;
1103}
1104
1105static const struct of_device_id mpc_dma_match[] = {
1106	{ .compatible = "fsl,mpc5121-dma", },
1107	{ .compatible = "fsl,mpc8308-dma", },
1108	{},
1109};
1110MODULE_DEVICE_TABLE(of, mpc_dma_match);
1111
1112static struct platform_driver mpc_dma_driver = {
1113	.probe		= mpc_dma_probe,
1114	.remove		= mpc_dma_remove,
1115	.driver = {
1116		.name = DRV_NAME,
1117		.of_match_table	= mpc_dma_match,
1118	},
1119};
1120
1121module_platform_driver(mpc_dma_driver);
1122
1123MODULE_LICENSE("GPL");
1124MODULE_AUTHOR("Piotr Ziecik <kosmo@semihalf.com>");
v4.10.11
 
   1/*
   2 * Copyright (C) Freescale Semicondutor, Inc. 2007, 2008.
   3 * Copyright (C) Semihalf 2009
   4 * Copyright (C) Ilya Yanok, Emcraft Systems 2010
   5 * Copyright (C) Alexander Popov, Promcontroller 2014
   6 * Copyright (C) Mario Six, Guntermann & Drunck GmbH, 2016
   7 *
   8 * Written by Piotr Ziecik <kosmo@semihalf.com>. Hardware description
   9 * (defines, structures and comments) was taken from MPC5121 DMA driver
  10 * written by Hongjun Chen <hong-jun.chen@freescale.com>.
  11 *
  12 * Approved as OSADL project by a majority of OSADL members and funded
  13 * by OSADL membership fees in 2009;  for details see www.osadl.org.
  14 *
  15 * This program is free software; you can redistribute it and/or modify it
  16 * under the terms of the GNU General Public License as published by the Free
  17 * Software Foundation; either version 2 of the License, or (at your option)
  18 * any later version.
  19 *
  20 * This program is distributed in the hope that it will be useful, but WITHOUT
  21 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  22 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  23 * more details.
  24 *
  25 * The full GNU General Public License is included in this distribution in the
  26 * file called COPYING.
  27 */
  28
  29/*
  30 * MPC512x and MPC8308 DMA driver. It supports memory to memory data transfers
  31 * (tested using dmatest module) and data transfers between memory and
  32 * peripheral I/O memory by means of slave scatter/gather with these
  33 * limitations:
  34 *  - chunked transfers (described by s/g lists with more than one item) are
  35 *     refused as long as proper support for scatter/gather is missing
  36 *  - transfers on MPC8308 always start from software as this SoC does not have
  37 *     external request lines for peripheral flow control
  38 *  - memory <-> I/O memory transfer chunks of sizes of 1, 2, 4, 16 (for
  39 *     MPC512x), and 32 bytes are supported, and, consequently, source
  40 *     addresses and destination addresses must be aligned accordingly;
  41 *     furthermore, for MPC512x SoCs, the transfer size must be aligned on
  42 *     (chunk size * maxburst)
  43 */
  44
  45#include <linux/module.h>
  46#include <linux/dmaengine.h>
  47#include <linux/dma-mapping.h>
  48#include <linux/interrupt.h>
  49#include <linux/io.h>
  50#include <linux/slab.h>
  51#include <linux/of_address.h>
  52#include <linux/of_device.h>
  53#include <linux/of_irq.h>
  54#include <linux/of_dma.h>
  55#include <linux/of_platform.h>
  56
  57#include <linux/random.h>
  58
  59#include "dmaengine.h"
  60
  61/* Number of DMA Transfer descriptors allocated per channel */
  62#define MPC_DMA_DESCRIPTORS	64
  63
  64/* Macro definitions */
  65#define MPC_DMA_TCD_OFFSET	0x1000
  66
  67/*
  68 * Maximum channel counts for individual hardware variants
  69 * and the maximum channel count over all supported controllers,
  70 * used for data structure size
  71 */
  72#define MPC8308_DMACHAN_MAX	16
  73#define MPC512x_DMACHAN_MAX	64
  74#define MPC_DMA_CHANNELS	64
  75
  76/* Arbitration mode of group and channel */
  77#define MPC_DMA_DMACR_EDCG	(1 << 31)
  78#define MPC_DMA_DMACR_ERGA	(1 << 3)
  79#define MPC_DMA_DMACR_ERCA	(1 << 2)
  80
  81/* Error codes */
  82#define MPC_DMA_DMAES_VLD	(1 << 31)
  83#define MPC_DMA_DMAES_GPE	(1 << 15)
  84#define MPC_DMA_DMAES_CPE	(1 << 14)
  85#define MPC_DMA_DMAES_ERRCHN(err) \
  86				(((err) >> 8) & 0x3f)
  87#define MPC_DMA_DMAES_SAE	(1 << 7)
  88#define MPC_DMA_DMAES_SOE	(1 << 6)
  89#define MPC_DMA_DMAES_DAE	(1 << 5)
  90#define MPC_DMA_DMAES_DOE	(1 << 4)
  91#define MPC_DMA_DMAES_NCE	(1 << 3)
  92#define MPC_DMA_DMAES_SGE	(1 << 2)
  93#define MPC_DMA_DMAES_SBE	(1 << 1)
  94#define MPC_DMA_DMAES_DBE	(1 << 0)
  95
  96#define MPC_DMA_DMAGPOR_SNOOP_ENABLE	(1 << 6)
  97
  98#define MPC_DMA_TSIZE_1		0x00
  99#define MPC_DMA_TSIZE_2		0x01
 100#define MPC_DMA_TSIZE_4		0x02
 101#define MPC_DMA_TSIZE_16	0x04
 102#define MPC_DMA_TSIZE_32	0x05
 103
 104/* MPC5121 DMA engine registers */
 105struct __attribute__ ((__packed__)) mpc_dma_regs {
 106	/* 0x00 */
 107	u32 dmacr;		/* DMA control register */
 108	u32 dmaes;		/* DMA error status */
 109	/* 0x08 */
 110	u32 dmaerqh;		/* DMA enable request high(channels 63~32) */
 111	u32 dmaerql;		/* DMA enable request low(channels 31~0) */
 112	u32 dmaeeih;		/* DMA enable error interrupt high(ch63~32) */
 113	u32 dmaeeil;		/* DMA enable error interrupt low(ch31~0) */
 114	/* 0x18 */
 115	u8 dmaserq;		/* DMA set enable request */
 116	u8 dmacerq;		/* DMA clear enable request */
 117	u8 dmaseei;		/* DMA set enable error interrupt */
 118	u8 dmaceei;		/* DMA clear enable error interrupt */
 119	/* 0x1c */
 120	u8 dmacint;		/* DMA clear interrupt request */
 121	u8 dmacerr;		/* DMA clear error */
 122	u8 dmassrt;		/* DMA set start bit */
 123	u8 dmacdne;		/* DMA clear DONE status bit */
 124	/* 0x20 */
 125	u32 dmainth;		/* DMA interrupt request high(ch63~32) */
 126	u32 dmaintl;		/* DMA interrupt request low(ch31~0) */
 127	u32 dmaerrh;		/* DMA error high(ch63~32) */
 128	u32 dmaerrl;		/* DMA error low(ch31~0) */
 129	/* 0x30 */
 130	u32 dmahrsh;		/* DMA hw request status high(ch63~32) */
 131	u32 dmahrsl;		/* DMA hardware request status low(ch31~0) */
 132	union {
 133		u32 dmaihsa;	/* DMA interrupt high select AXE(ch63~32) */
 134		u32 dmagpor;	/* (General purpose register on MPC8308) */
 135	};
 136	u32 dmailsa;		/* DMA interrupt low select AXE(ch31~0) */
 137	/* 0x40 ~ 0xff */
 138	u32 reserve0[48];	/* Reserved */
 139	/* 0x100 */
 140	u8 dchpri[MPC_DMA_CHANNELS];
 141	/* DMA channels(0~63) priority */
 142};
 143
 144struct __attribute__ ((__packed__)) mpc_dma_tcd {
 145	/* 0x00 */
 146	u32 saddr;		/* Source address */
 147
 148	u32 smod:5;		/* Source address modulo */
 149	u32 ssize:3;		/* Source data transfer size */
 150	u32 dmod:5;		/* Destination address modulo */
 151	u32 dsize:3;		/* Destination data transfer size */
 152	u32 soff:16;		/* Signed source address offset */
 153
 154	/* 0x08 */
 155	u32 nbytes;		/* Inner "minor" byte count */
 156	u32 slast;		/* Last source address adjustment */
 157	u32 daddr;		/* Destination address */
 158
 159	/* 0x14 */
 160	u32 citer_elink:1;	/* Enable channel-to-channel linking on
 161				 * minor loop complete
 162				 */
 163	u32 citer_linkch:6;	/* Link channel for minor loop complete */
 164	u32 citer:9;		/* Current "major" iteration count */
 165	u32 doff:16;		/* Signed destination address offset */
 166
 167	/* 0x18 */
 168	u32 dlast_sga;		/* Last Destination address adjustment/scatter
 169				 * gather address
 170				 */
 171
 172	/* 0x1c */
 173	u32 biter_elink:1;	/* Enable channel-to-channel linking on major
 174				 * loop complete
 175				 */
 176	u32 biter_linkch:6;
 177	u32 biter:9;		/* Beginning "major" iteration count */
 178	u32 bwc:2;		/* Bandwidth control */
 179	u32 major_linkch:6;	/* Link channel number */
 180	u32 done:1;		/* Channel done */
 181	u32 active:1;		/* Channel active */
 182	u32 major_elink:1;	/* Enable channel-to-channel linking on major
 183				 * loop complete
 184				 */
 185	u32 e_sg:1;		/* Enable scatter/gather processing */
 186	u32 d_req:1;		/* Disable request */
 187	u32 int_half:1;		/* Enable an interrupt when major counter is
 188				 * half complete
 189				 */
 190	u32 int_maj:1;		/* Enable an interrupt when major iteration
 191				 * count completes
 192				 */
 193	u32 start:1;		/* Channel start */
 194};
 195
 196struct mpc_dma_desc {
 197	struct dma_async_tx_descriptor	desc;
 198	struct mpc_dma_tcd		*tcd;
 199	dma_addr_t			tcd_paddr;
 200	int				error;
 201	struct list_head		node;
 202	int				will_access_peripheral;
 203};
 204
 205struct mpc_dma_chan {
 206	struct dma_chan			chan;
 207	struct list_head		free;
 208	struct list_head		prepared;
 209	struct list_head		queued;
 210	struct list_head		active;
 211	struct list_head		completed;
 212	struct mpc_dma_tcd		*tcd;
 213	dma_addr_t			tcd_paddr;
 214
 215	/* Settings for access to peripheral FIFO */
 216	dma_addr_t			src_per_paddr;
 217	u32				src_tcd_nunits;
 218	u8				swidth;
 219	dma_addr_t			dst_per_paddr;
 220	u32				dst_tcd_nunits;
 221	u8				dwidth;
 222
 223	/* Lock for this structure */
 224	spinlock_t			lock;
 225};
 226
 227struct mpc_dma {
 228	struct dma_device		dma;
 229	struct tasklet_struct		tasklet;
 230	struct mpc_dma_chan		channels[MPC_DMA_CHANNELS];
 231	struct mpc_dma_regs __iomem	*regs;
 232	struct mpc_dma_tcd __iomem	*tcd;
 233	int				irq;
 234	int				irq2;
 235	uint				error_status;
 236	int				is_mpc8308;
 237
 238	/* Lock for error_status field in this structure */
 239	spinlock_t			error_status_lock;
 240};
 241
 242#define DRV_NAME	"mpc512x_dma"
 243
 244/* Convert struct dma_chan to struct mpc_dma_chan */
 245static inline struct mpc_dma_chan *dma_chan_to_mpc_dma_chan(struct dma_chan *c)
 246{
 247	return container_of(c, struct mpc_dma_chan, chan);
 248}
 249
 250/* Convert struct dma_chan to struct mpc_dma */
 251static inline struct mpc_dma *dma_chan_to_mpc_dma(struct dma_chan *c)
 252{
 253	struct mpc_dma_chan *mchan = dma_chan_to_mpc_dma_chan(c);
 254
 255	return container_of(mchan, struct mpc_dma, channels[c->chan_id]);
 256}
 257
 258/*
 259 * Execute all queued DMA descriptors.
 260 *
 261 * Following requirements must be met while calling mpc_dma_execute():
 262 *	a) mchan->lock is acquired,
 263 *	b) mchan->active list is empty,
 264 *	c) mchan->queued list contains at least one entry.
 265 */
 266static void mpc_dma_execute(struct mpc_dma_chan *mchan)
 267{
 268	struct mpc_dma *mdma = dma_chan_to_mpc_dma(&mchan->chan);
 269	struct mpc_dma_desc *first = NULL;
 270	struct mpc_dma_desc *prev = NULL;
 271	struct mpc_dma_desc *mdesc;
 272	int cid = mchan->chan.chan_id;
 273
 274	while (!list_empty(&mchan->queued)) {
 275		mdesc = list_first_entry(&mchan->queued,
 276						struct mpc_dma_desc, node);
 277		/*
 278		 * Grab either several mem-to-mem transfer descriptors
 279		 * or one peripheral transfer descriptor,
 280		 * don't mix mem-to-mem and peripheral transfer descriptors
 281		 * within the same 'active' list.
 282		 */
 283		if (mdesc->will_access_peripheral) {
 284			if (list_empty(&mchan->active))
 285				list_move_tail(&mdesc->node, &mchan->active);
 286			break;
 287		} else {
 288			list_move_tail(&mdesc->node, &mchan->active);
 289		}
 290	}
 291
 292	/* Chain descriptors into one transaction */
 293	list_for_each_entry(mdesc, &mchan->active, node) {
 294		if (!first)
 295			first = mdesc;
 296
 297		if (!prev) {
 298			prev = mdesc;
 299			continue;
 300		}
 301
 302		prev->tcd->dlast_sga = mdesc->tcd_paddr;
 303		prev->tcd->e_sg = 1;
 304		mdesc->tcd->start = 1;
 305
 306		prev = mdesc;
 307	}
 308
 309	prev->tcd->int_maj = 1;
 310
 311	/* Send first descriptor in chain into hardware */
 312	memcpy_toio(&mdma->tcd[cid], first->tcd, sizeof(struct mpc_dma_tcd));
 313
 314	if (first != prev)
 315		mdma->tcd[cid].e_sg = 1;
 316
 317	if (mdma->is_mpc8308) {
 318		/* MPC8308, no request lines, software initiated start */
 319		out_8(&mdma->regs->dmassrt, cid);
 320	} else if (first->will_access_peripheral) {
 321		/* Peripherals involved, start by external request signal */
 322		out_8(&mdma->regs->dmaserq, cid);
 323	} else {
 324		/* Memory to memory transfer, software initiated start */
 325		out_8(&mdma->regs->dmassrt, cid);
 326	}
 327}
 328
 329/* Handle interrupt on one half of DMA controller (32 channels) */
 330static void mpc_dma_irq_process(struct mpc_dma *mdma, u32 is, u32 es, int off)
 331{
 332	struct mpc_dma_chan *mchan;
 333	struct mpc_dma_desc *mdesc;
 334	u32 status = is | es;
 335	int ch;
 336
 337	while ((ch = fls(status) - 1) >= 0) {
 338		status &= ~(1 << ch);
 339		mchan = &mdma->channels[ch + off];
 340
 341		spin_lock(&mchan->lock);
 342
 343		out_8(&mdma->regs->dmacint, ch + off);
 344		out_8(&mdma->regs->dmacerr, ch + off);
 345
 346		/* Check error status */
 347		if (es & (1 << ch))
 348			list_for_each_entry(mdesc, &mchan->active, node)
 349				mdesc->error = -EIO;
 350
 351		/* Execute queued descriptors */
 352		list_splice_tail_init(&mchan->active, &mchan->completed);
 353		if (!list_empty(&mchan->queued))
 354			mpc_dma_execute(mchan);
 355
 356		spin_unlock(&mchan->lock);
 357	}
 358}
 359
 360/* Interrupt handler */
 361static irqreturn_t mpc_dma_irq(int irq, void *data)
 362{
 363	struct mpc_dma *mdma = data;
 364	uint es;
 365
 366	/* Save error status register */
 367	es = in_be32(&mdma->regs->dmaes);
 368	spin_lock(&mdma->error_status_lock);
 369	if ((es & MPC_DMA_DMAES_VLD) && mdma->error_status == 0)
 370		mdma->error_status = es;
 371	spin_unlock(&mdma->error_status_lock);
 372
 373	/* Handle interrupt on each channel */
 374	if (mdma->dma.chancnt > 32) {
 375		mpc_dma_irq_process(mdma, in_be32(&mdma->regs->dmainth),
 376					in_be32(&mdma->regs->dmaerrh), 32);
 377	}
 378	mpc_dma_irq_process(mdma, in_be32(&mdma->regs->dmaintl),
 379					in_be32(&mdma->regs->dmaerrl), 0);
 380
 381	/* Schedule tasklet */
 382	tasklet_schedule(&mdma->tasklet);
 383
 384	return IRQ_HANDLED;
 385}
 386
 387/* process completed descriptors */
 388static void mpc_dma_process_completed(struct mpc_dma *mdma)
 389{
 390	dma_cookie_t last_cookie = 0;
 391	struct mpc_dma_chan *mchan;
 392	struct mpc_dma_desc *mdesc;
 393	struct dma_async_tx_descriptor *desc;
 394	unsigned long flags;
 395	LIST_HEAD(list);
 396	int i;
 397
 398	for (i = 0; i < mdma->dma.chancnt; i++) {
 399		mchan = &mdma->channels[i];
 400
 401		/* Get all completed descriptors */
 402		spin_lock_irqsave(&mchan->lock, flags);
 403		if (!list_empty(&mchan->completed))
 404			list_splice_tail_init(&mchan->completed, &list);
 405		spin_unlock_irqrestore(&mchan->lock, flags);
 406
 407		if (list_empty(&list))
 408			continue;
 409
 410		/* Execute callbacks and run dependencies */
 411		list_for_each_entry(mdesc, &list, node) {
 412			desc = &mdesc->desc;
 413
 414			dmaengine_desc_get_callback_invoke(desc, NULL);
 415
 416			last_cookie = desc->cookie;
 417			dma_run_dependencies(desc);
 418		}
 419
 420		/* Free descriptors */
 421		spin_lock_irqsave(&mchan->lock, flags);
 422		list_splice_tail_init(&list, &mchan->free);
 423		mchan->chan.completed_cookie = last_cookie;
 424		spin_unlock_irqrestore(&mchan->lock, flags);
 425	}
 426}
 427
 428/* DMA Tasklet */
 429static void mpc_dma_tasklet(unsigned long data)
 430{
 431	struct mpc_dma *mdma = (void *)data;
 432	unsigned long flags;
 433	uint es;
 434
 435	spin_lock_irqsave(&mdma->error_status_lock, flags);
 436	es = mdma->error_status;
 437	mdma->error_status = 0;
 438	spin_unlock_irqrestore(&mdma->error_status_lock, flags);
 439
 440	/* Print nice error report */
 441	if (es) {
 442		dev_err(mdma->dma.dev,
 443			"Hardware reported following error(s) on channel %u:\n",
 444						      MPC_DMA_DMAES_ERRCHN(es));
 445
 446		if (es & MPC_DMA_DMAES_GPE)
 447			dev_err(mdma->dma.dev, "- Group Priority Error\n");
 448		if (es & MPC_DMA_DMAES_CPE)
 449			dev_err(mdma->dma.dev, "- Channel Priority Error\n");
 450		if (es & MPC_DMA_DMAES_SAE)
 451			dev_err(mdma->dma.dev, "- Source Address Error\n");
 452		if (es & MPC_DMA_DMAES_SOE)
 453			dev_err(mdma->dma.dev, "- Source Offset Configuration Error\n");
 454		if (es & MPC_DMA_DMAES_DAE)
 455			dev_err(mdma->dma.dev, "- Destination Address Error\n");
 456		if (es & MPC_DMA_DMAES_DOE)
 457			dev_err(mdma->dma.dev, "- Destination Offset Configuration Error\n");
 458		if (es & MPC_DMA_DMAES_NCE)
 459			dev_err(mdma->dma.dev, "- NBytes/Citter Configuration Error\n");
 460		if (es & MPC_DMA_DMAES_SGE)
 461			dev_err(mdma->dma.dev, "- Scatter/Gather Configuration Error\n");
 462		if (es & MPC_DMA_DMAES_SBE)
 463			dev_err(mdma->dma.dev, "- Source Bus Error\n");
 464		if (es & MPC_DMA_DMAES_DBE)
 465			dev_err(mdma->dma.dev, "- Destination Bus Error\n");
 466	}
 467
 468	mpc_dma_process_completed(mdma);
 469}
 470
 471/* Submit descriptor to hardware */
 472static dma_cookie_t mpc_dma_tx_submit(struct dma_async_tx_descriptor *txd)
 473{
 474	struct mpc_dma_chan *mchan = dma_chan_to_mpc_dma_chan(txd->chan);
 475	struct mpc_dma_desc *mdesc;
 476	unsigned long flags;
 477	dma_cookie_t cookie;
 478
 479	mdesc = container_of(txd, struct mpc_dma_desc, desc);
 480
 481	spin_lock_irqsave(&mchan->lock, flags);
 482
 483	/* Move descriptor to queue */
 484	list_move_tail(&mdesc->node, &mchan->queued);
 485
 486	/* If channel is idle, execute all queued descriptors */
 487	if (list_empty(&mchan->active))
 488		mpc_dma_execute(mchan);
 489
 490	/* Update cookie */
 491	cookie = dma_cookie_assign(txd);
 492	spin_unlock_irqrestore(&mchan->lock, flags);
 493
 494	return cookie;
 495}
 496
 497/* Alloc channel resources */
 498static int mpc_dma_alloc_chan_resources(struct dma_chan *chan)
 499{
 500	struct mpc_dma *mdma = dma_chan_to_mpc_dma(chan);
 501	struct mpc_dma_chan *mchan = dma_chan_to_mpc_dma_chan(chan);
 502	struct mpc_dma_desc *mdesc;
 503	struct mpc_dma_tcd *tcd;
 504	dma_addr_t tcd_paddr;
 505	unsigned long flags;
 506	LIST_HEAD(descs);
 507	int i;
 508
 509	/* Alloc DMA memory for Transfer Control Descriptors */
 510	tcd = dma_alloc_coherent(mdma->dma.dev,
 511			MPC_DMA_DESCRIPTORS * sizeof(struct mpc_dma_tcd),
 512							&tcd_paddr, GFP_KERNEL);
 513	if (!tcd)
 514		return -ENOMEM;
 515
 516	/* Alloc descriptors for this channel */
 517	for (i = 0; i < MPC_DMA_DESCRIPTORS; i++) {
 518		mdesc = kzalloc(sizeof(struct mpc_dma_desc), GFP_KERNEL);
 519		if (!mdesc) {
 520			dev_notice(mdma->dma.dev,
 521				"Memory allocation error. Allocated only %u descriptors\n", i);
 522			break;
 523		}
 524
 525		dma_async_tx_descriptor_init(&mdesc->desc, chan);
 526		mdesc->desc.flags = DMA_CTRL_ACK;
 527		mdesc->desc.tx_submit = mpc_dma_tx_submit;
 528
 529		mdesc->tcd = &tcd[i];
 530		mdesc->tcd_paddr = tcd_paddr + (i * sizeof(struct mpc_dma_tcd));
 531
 532		list_add_tail(&mdesc->node, &descs);
 533	}
 534
 535	/* Return error only if no descriptors were allocated */
 536	if (i == 0) {
 537		dma_free_coherent(mdma->dma.dev,
 538			MPC_DMA_DESCRIPTORS * sizeof(struct mpc_dma_tcd),
 539								tcd, tcd_paddr);
 540		return -ENOMEM;
 541	}
 542
 543	spin_lock_irqsave(&mchan->lock, flags);
 544	mchan->tcd = tcd;
 545	mchan->tcd_paddr = tcd_paddr;
 546	list_splice_tail_init(&descs, &mchan->free);
 547	spin_unlock_irqrestore(&mchan->lock, flags);
 548
 549	/* Enable Error Interrupt */
 550	out_8(&mdma->regs->dmaseei, chan->chan_id);
 551
 552	return 0;
 553}
 554
 555/* Free channel resources */
 556static void mpc_dma_free_chan_resources(struct dma_chan *chan)
 557{
 558	struct mpc_dma *mdma = dma_chan_to_mpc_dma(chan);
 559	struct mpc_dma_chan *mchan = dma_chan_to_mpc_dma_chan(chan);
 560	struct mpc_dma_desc *mdesc, *tmp;
 561	struct mpc_dma_tcd *tcd;
 562	dma_addr_t tcd_paddr;
 563	unsigned long flags;
 564	LIST_HEAD(descs);
 565
 566	spin_lock_irqsave(&mchan->lock, flags);
 567
 568	/* Channel must be idle */
 569	BUG_ON(!list_empty(&mchan->prepared));
 570	BUG_ON(!list_empty(&mchan->queued));
 571	BUG_ON(!list_empty(&mchan->active));
 572	BUG_ON(!list_empty(&mchan->completed));
 573
 574	/* Move data */
 575	list_splice_tail_init(&mchan->free, &descs);
 576	tcd = mchan->tcd;
 577	tcd_paddr = mchan->tcd_paddr;
 578
 579	spin_unlock_irqrestore(&mchan->lock, flags);
 580
 581	/* Free DMA memory used by descriptors */
 582	dma_free_coherent(mdma->dma.dev,
 583			MPC_DMA_DESCRIPTORS * sizeof(struct mpc_dma_tcd),
 584								tcd, tcd_paddr);
 585
 586	/* Free descriptors */
 587	list_for_each_entry_safe(mdesc, tmp, &descs, node)
 588		kfree(mdesc);
 589
 590	/* Disable Error Interrupt */
 591	out_8(&mdma->regs->dmaceei, chan->chan_id);
 592}
 593
 594/* Send all pending descriptor to hardware */
 595static void mpc_dma_issue_pending(struct dma_chan *chan)
 596{
 597	/*
 598	 * We are posting descriptors to the hardware as soon as
 599	 * they are ready, so this function does nothing.
 600	 */
 601}
 602
 603/* Check request completion status */
 604static enum dma_status
 605mpc_dma_tx_status(struct dma_chan *chan, dma_cookie_t cookie,
 606	       struct dma_tx_state *txstate)
 607{
 608	return dma_cookie_status(chan, cookie, txstate);
 609}
 610
 611/* Prepare descriptor for memory to memory copy */
 612static struct dma_async_tx_descriptor *
 613mpc_dma_prep_memcpy(struct dma_chan *chan, dma_addr_t dst, dma_addr_t src,
 614					size_t len, unsigned long flags)
 615{
 616	struct mpc_dma *mdma = dma_chan_to_mpc_dma(chan);
 617	struct mpc_dma_chan *mchan = dma_chan_to_mpc_dma_chan(chan);
 618	struct mpc_dma_desc *mdesc = NULL;
 619	struct mpc_dma_tcd *tcd;
 620	unsigned long iflags;
 621
 622	/* Get free descriptor */
 623	spin_lock_irqsave(&mchan->lock, iflags);
 624	if (!list_empty(&mchan->free)) {
 625		mdesc = list_first_entry(&mchan->free, struct mpc_dma_desc,
 626									node);
 627		list_del(&mdesc->node);
 628	}
 629	spin_unlock_irqrestore(&mchan->lock, iflags);
 630
 631	if (!mdesc) {
 632		/* try to free completed descriptors */
 633		mpc_dma_process_completed(mdma);
 634		return NULL;
 635	}
 636
 637	mdesc->error = 0;
 638	mdesc->will_access_peripheral = 0;
 639	tcd = mdesc->tcd;
 640
 641	/* Prepare Transfer Control Descriptor for this transaction */
 642	memset(tcd, 0, sizeof(struct mpc_dma_tcd));
 643
 644	if (IS_ALIGNED(src | dst | len, 32)) {
 645		tcd->ssize = MPC_DMA_TSIZE_32;
 646		tcd->dsize = MPC_DMA_TSIZE_32;
 647		tcd->soff = 32;
 648		tcd->doff = 32;
 649	} else if (!mdma->is_mpc8308 && IS_ALIGNED(src | dst | len, 16)) {
 650		/* MPC8308 doesn't support 16 byte transfers */
 651		tcd->ssize = MPC_DMA_TSIZE_16;
 652		tcd->dsize = MPC_DMA_TSIZE_16;
 653		tcd->soff = 16;
 654		tcd->doff = 16;
 655	} else if (IS_ALIGNED(src | dst | len, 4)) {
 656		tcd->ssize = MPC_DMA_TSIZE_4;
 657		tcd->dsize = MPC_DMA_TSIZE_4;
 658		tcd->soff = 4;
 659		tcd->doff = 4;
 660	} else if (IS_ALIGNED(src | dst | len, 2)) {
 661		tcd->ssize = MPC_DMA_TSIZE_2;
 662		tcd->dsize = MPC_DMA_TSIZE_2;
 663		tcd->soff = 2;
 664		tcd->doff = 2;
 665	} else {
 666		tcd->ssize = MPC_DMA_TSIZE_1;
 667		tcd->dsize = MPC_DMA_TSIZE_1;
 668		tcd->soff = 1;
 669		tcd->doff = 1;
 670	}
 671
 672	tcd->saddr = src;
 673	tcd->daddr = dst;
 674	tcd->nbytes = len;
 675	tcd->biter = 1;
 676	tcd->citer = 1;
 677
 678	/* Place descriptor in prepared list */
 679	spin_lock_irqsave(&mchan->lock, iflags);
 680	list_add_tail(&mdesc->node, &mchan->prepared);
 681	spin_unlock_irqrestore(&mchan->lock, iflags);
 682
 683	return &mdesc->desc;
 684}
 685
 686inline u8 buswidth_to_dmatsize(u8 buswidth)
 687{
 688	u8 res;
 689
 690	for (res = 0; buswidth > 1; buswidth /= 2)
 691		res++;
 692	return res;
 693}
 694
 695static struct dma_async_tx_descriptor *
 696mpc_dma_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
 697		unsigned int sg_len, enum dma_transfer_direction direction,
 698		unsigned long flags, void *context)
 699{
 700	struct mpc_dma *mdma = dma_chan_to_mpc_dma(chan);
 701	struct mpc_dma_chan *mchan = dma_chan_to_mpc_dma_chan(chan);
 702	struct mpc_dma_desc *mdesc = NULL;
 703	dma_addr_t per_paddr;
 704	u32 tcd_nunits;
 705	struct mpc_dma_tcd *tcd;
 706	unsigned long iflags;
 707	struct scatterlist *sg;
 708	size_t len;
 709	int iter, i;
 710
 711	/* Currently there is no proper support for scatter/gather */
 712	if (sg_len != 1)
 713		return NULL;
 714
 715	if (!is_slave_direction(direction))
 716		return NULL;
 717
 718	for_each_sg(sgl, sg, sg_len, i) {
 719		spin_lock_irqsave(&mchan->lock, iflags);
 720
 721		mdesc = list_first_entry(&mchan->free,
 722						struct mpc_dma_desc, node);
 723		if (!mdesc) {
 724			spin_unlock_irqrestore(&mchan->lock, iflags);
 725			/* Try to free completed descriptors */
 726			mpc_dma_process_completed(mdma);
 727			return NULL;
 728		}
 729
 730		list_del(&mdesc->node);
 731
 732		if (direction == DMA_DEV_TO_MEM) {
 733			per_paddr = mchan->src_per_paddr;
 734			tcd_nunits = mchan->src_tcd_nunits;
 735		} else {
 736			per_paddr = mchan->dst_per_paddr;
 737			tcd_nunits = mchan->dst_tcd_nunits;
 738		}
 739
 740		spin_unlock_irqrestore(&mchan->lock, iflags);
 741
 742		if (per_paddr == 0 || tcd_nunits == 0)
 743			goto err_prep;
 744
 745		mdesc->error = 0;
 746		mdesc->will_access_peripheral = 1;
 747
 748		/* Prepare Transfer Control Descriptor for this transaction */
 749		tcd = mdesc->tcd;
 750
 751		memset(tcd, 0, sizeof(struct mpc_dma_tcd));
 752
 753		if (direction == DMA_DEV_TO_MEM) {
 754			tcd->saddr = per_paddr;
 755			tcd->daddr = sg_dma_address(sg);
 756
 757			if (!IS_ALIGNED(sg_dma_address(sg), mchan->dwidth))
 758				goto err_prep;
 759
 760			tcd->soff = 0;
 761			tcd->doff = mchan->dwidth;
 762		} else {
 763			tcd->saddr = sg_dma_address(sg);
 764			tcd->daddr = per_paddr;
 765
 766			if (!IS_ALIGNED(sg_dma_address(sg), mchan->swidth))
 767				goto err_prep;
 768
 769			tcd->soff = mchan->swidth;
 770			tcd->doff = 0;
 771		}
 772
 773		tcd->ssize = buswidth_to_dmatsize(mchan->swidth);
 774		tcd->dsize = buswidth_to_dmatsize(mchan->dwidth);
 775
 776		if (mdma->is_mpc8308) {
 777			tcd->nbytes = sg_dma_len(sg);
 778			if (!IS_ALIGNED(tcd->nbytes, mchan->swidth))
 779				goto err_prep;
 780
 781			/* No major loops for MPC8303 */
 782			tcd->biter = 1;
 783			tcd->citer = 1;
 784		} else {
 785			len = sg_dma_len(sg);
 786			tcd->nbytes = tcd_nunits * tcd->ssize;
 787			if (!IS_ALIGNED(len, tcd->nbytes))
 788				goto err_prep;
 789
 790			iter = len / tcd->nbytes;
 791			if (iter >= 1 << 15) {
 792				/* len is too big */
 793				goto err_prep;
 794			}
 795			/* citer_linkch contains the high bits of iter */
 796			tcd->biter = iter & 0x1ff;
 797			tcd->biter_linkch = iter >> 9;
 798			tcd->citer = tcd->biter;
 799			tcd->citer_linkch = tcd->biter_linkch;
 800		}
 801
 802		tcd->e_sg = 0;
 803		tcd->d_req = 1;
 804
 805		/* Place descriptor in prepared list */
 806		spin_lock_irqsave(&mchan->lock, iflags);
 807		list_add_tail(&mdesc->node, &mchan->prepared);
 808		spin_unlock_irqrestore(&mchan->lock, iflags);
 809	}
 810
 811	return &mdesc->desc;
 812
 813err_prep:
 814	/* Put the descriptor back */
 815	spin_lock_irqsave(&mchan->lock, iflags);
 816	list_add_tail(&mdesc->node, &mchan->free);
 817	spin_unlock_irqrestore(&mchan->lock, iflags);
 818
 819	return NULL;
 820}
 821
 822inline bool is_buswidth_valid(u8 buswidth, bool is_mpc8308)
 823{
 824	switch (buswidth) {
 825	case 16:
 826		if (is_mpc8308)
 827			return false;
 828	case 1:
 829	case 2:
 830	case 4:
 831	case 32:
 832		break;
 833	default:
 834		return false;
 835	}
 836
 837	return true;
 838}
 839
 840static int mpc_dma_device_config(struct dma_chan *chan,
 841				 struct dma_slave_config *cfg)
 842{
 843	struct mpc_dma_chan *mchan = dma_chan_to_mpc_dma_chan(chan);
 844	struct mpc_dma *mdma = dma_chan_to_mpc_dma(&mchan->chan);
 845	unsigned long flags;
 846
 847	/*
 848	 * Software constraints:
 849	 *  - only transfers between a peripheral device and memory are
 850	 *     supported
 851	 *  - transfer chunk sizes of 1, 2, 4, 16 (for MPC512x), and 32 bytes
 852	 *     are supported, and, consequently, source addresses and
 853	 *     destination addresses; must be aligned accordingly; furthermore,
 854	 *     for MPC512x SoCs, the transfer size must be aligned on (chunk
 855	 *     size * maxburst)
 856	 *  - during the transfer, the RAM address is incremented by the size
 857	 *     of transfer chunk
 858	 *  - the peripheral port's address is constant during the transfer.
 859	 */
 860
 861	if (!IS_ALIGNED(cfg->src_addr, cfg->src_addr_width) ||
 862	    !IS_ALIGNED(cfg->dst_addr, cfg->dst_addr_width)) {
 863		return -EINVAL;
 864	}
 865
 866	if (!is_buswidth_valid(cfg->src_addr_width, mdma->is_mpc8308) ||
 867	    !is_buswidth_valid(cfg->dst_addr_width, mdma->is_mpc8308))
 868		return -EINVAL;
 869
 870	spin_lock_irqsave(&mchan->lock, flags);
 871
 872	mchan->src_per_paddr = cfg->src_addr;
 873	mchan->src_tcd_nunits = cfg->src_maxburst;
 874	mchan->swidth = cfg->src_addr_width;
 875	mchan->dst_per_paddr = cfg->dst_addr;
 876	mchan->dst_tcd_nunits = cfg->dst_maxburst;
 877	mchan->dwidth = cfg->dst_addr_width;
 878
 879	/* Apply defaults */
 880	if (mchan->src_tcd_nunits == 0)
 881		mchan->src_tcd_nunits = 1;
 882	if (mchan->dst_tcd_nunits == 0)
 883		mchan->dst_tcd_nunits = 1;
 884
 885	spin_unlock_irqrestore(&mchan->lock, flags);
 886
 887	return 0;
 888}
 889
 890static int mpc_dma_device_terminate_all(struct dma_chan *chan)
 891{
 892	struct mpc_dma_chan *mchan = dma_chan_to_mpc_dma_chan(chan);
 893	struct mpc_dma *mdma = dma_chan_to_mpc_dma(chan);
 894	unsigned long flags;
 895
 896	/* Disable channel requests */
 897	spin_lock_irqsave(&mchan->lock, flags);
 898
 899	out_8(&mdma->regs->dmacerq, chan->chan_id);
 900	list_splice_tail_init(&mchan->prepared, &mchan->free);
 901	list_splice_tail_init(&mchan->queued, &mchan->free);
 902	list_splice_tail_init(&mchan->active, &mchan->free);
 903
 904	spin_unlock_irqrestore(&mchan->lock, flags);
 905
 906	return 0;
 907}
 908
 909static int mpc_dma_probe(struct platform_device *op)
 910{
 911	struct device_node *dn = op->dev.of_node;
 912	struct device *dev = &op->dev;
 913	struct dma_device *dma;
 914	struct mpc_dma *mdma;
 915	struct mpc_dma_chan *mchan;
 916	struct resource res;
 917	ulong regs_start, regs_size;
 918	int retval, i;
 919	u8 chancnt;
 920
 921	mdma = devm_kzalloc(dev, sizeof(struct mpc_dma), GFP_KERNEL);
 922	if (!mdma) {
 923		retval = -ENOMEM;
 924		goto err;
 925	}
 926
 927	mdma->irq = irq_of_parse_and_map(dn, 0);
 928	if (!mdma->irq) {
 929		dev_err(dev, "Error mapping IRQ!\n");
 930		retval = -EINVAL;
 931		goto err;
 932	}
 933
 934	if (of_device_is_compatible(dn, "fsl,mpc8308-dma")) {
 935		mdma->is_mpc8308 = 1;
 936		mdma->irq2 = irq_of_parse_and_map(dn, 1);
 937		if (!mdma->irq2) {
 938			dev_err(dev, "Error mapping IRQ!\n");
 939			retval = -EINVAL;
 940			goto err_dispose1;
 941		}
 942	}
 943
 944	retval = of_address_to_resource(dn, 0, &res);
 945	if (retval) {
 946		dev_err(dev, "Error parsing memory region!\n");
 947		goto err_dispose2;
 948	}
 949
 950	regs_start = res.start;
 951	regs_size = resource_size(&res);
 952
 953	if (!devm_request_mem_region(dev, regs_start, regs_size, DRV_NAME)) {
 954		dev_err(dev, "Error requesting memory region!\n");
 955		retval = -EBUSY;
 956		goto err_dispose2;
 957	}
 958
 959	mdma->regs = devm_ioremap(dev, regs_start, regs_size);
 960	if (!mdma->regs) {
 961		dev_err(dev, "Error mapping memory region!\n");
 962		retval = -ENOMEM;
 963		goto err_dispose2;
 964	}
 965
 966	mdma->tcd = (struct mpc_dma_tcd *)((u8 *)(mdma->regs)
 967							+ MPC_DMA_TCD_OFFSET);
 968
 969	retval = request_irq(mdma->irq, &mpc_dma_irq, 0, DRV_NAME, mdma);
 970	if (retval) {
 971		dev_err(dev, "Error requesting IRQ!\n");
 972		retval = -EINVAL;
 973		goto err_dispose2;
 974	}
 975
 976	if (mdma->is_mpc8308) {
 977		retval = request_irq(mdma->irq2, &mpc_dma_irq, 0,
 978							DRV_NAME, mdma);
 979		if (retval) {
 980			dev_err(dev, "Error requesting IRQ2!\n");
 981			retval = -EINVAL;
 982			goto err_free1;
 983		}
 984	}
 985
 986	spin_lock_init(&mdma->error_status_lock);
 987
 988	dma = &mdma->dma;
 989	dma->dev = dev;
 990	dma->device_alloc_chan_resources = mpc_dma_alloc_chan_resources;
 991	dma->device_free_chan_resources = mpc_dma_free_chan_resources;
 992	dma->device_issue_pending = mpc_dma_issue_pending;
 993	dma->device_tx_status = mpc_dma_tx_status;
 994	dma->device_prep_dma_memcpy = mpc_dma_prep_memcpy;
 995	dma->device_prep_slave_sg = mpc_dma_prep_slave_sg;
 996	dma->device_config = mpc_dma_device_config;
 997	dma->device_terminate_all = mpc_dma_device_terminate_all;
 998
 999	INIT_LIST_HEAD(&dma->channels);
1000	dma_cap_set(DMA_MEMCPY, dma->cap_mask);
1001	dma_cap_set(DMA_SLAVE, dma->cap_mask);
1002
1003	if (mdma->is_mpc8308)
1004		chancnt = MPC8308_DMACHAN_MAX;
1005	else
1006		chancnt = MPC512x_DMACHAN_MAX;
1007
1008	for (i = 0; i < chancnt; i++) {
1009		mchan = &mdma->channels[i];
1010
1011		mchan->chan.device = dma;
1012		dma_cookie_init(&mchan->chan);
1013
1014		INIT_LIST_HEAD(&mchan->free);
1015		INIT_LIST_HEAD(&mchan->prepared);
1016		INIT_LIST_HEAD(&mchan->queued);
1017		INIT_LIST_HEAD(&mchan->active);
1018		INIT_LIST_HEAD(&mchan->completed);
1019
1020		spin_lock_init(&mchan->lock);
1021		list_add_tail(&mchan->chan.device_node, &dma->channels);
1022	}
1023
1024	tasklet_init(&mdma->tasklet, mpc_dma_tasklet, (unsigned long)mdma);
1025
1026	/*
1027	 * Configure DMA Engine:
1028	 * - Dynamic clock,
1029	 * - Round-robin group arbitration,
1030	 * - Round-robin channel arbitration.
1031	 */
1032	if (mdma->is_mpc8308) {
1033		/* MPC8308 has 16 channels and lacks some registers */
1034		out_be32(&mdma->regs->dmacr, MPC_DMA_DMACR_ERCA);
1035
1036		/* enable snooping */
1037		out_be32(&mdma->regs->dmagpor, MPC_DMA_DMAGPOR_SNOOP_ENABLE);
1038		/* Disable error interrupts */
1039		out_be32(&mdma->regs->dmaeeil, 0);
1040
1041		/* Clear interrupts status */
1042		out_be32(&mdma->regs->dmaintl, 0xFFFF);
1043		out_be32(&mdma->regs->dmaerrl, 0xFFFF);
1044	} else {
1045		out_be32(&mdma->regs->dmacr, MPC_DMA_DMACR_EDCG |
1046						MPC_DMA_DMACR_ERGA |
1047						MPC_DMA_DMACR_ERCA);
1048
1049		/* Disable hardware DMA requests */
1050		out_be32(&mdma->regs->dmaerqh, 0);
1051		out_be32(&mdma->regs->dmaerql, 0);
1052
1053		/* Disable error interrupts */
1054		out_be32(&mdma->regs->dmaeeih, 0);
1055		out_be32(&mdma->regs->dmaeeil, 0);
1056
1057		/* Clear interrupts status */
1058		out_be32(&mdma->regs->dmainth, 0xFFFFFFFF);
1059		out_be32(&mdma->regs->dmaintl, 0xFFFFFFFF);
1060		out_be32(&mdma->regs->dmaerrh, 0xFFFFFFFF);
1061		out_be32(&mdma->regs->dmaerrl, 0xFFFFFFFF);
1062
1063		/* Route interrupts to IPIC */
1064		out_be32(&mdma->regs->dmaihsa, 0);
1065		out_be32(&mdma->regs->dmailsa, 0);
1066	}
1067
1068	/* Register DMA engine */
1069	dev_set_drvdata(dev, mdma);
1070	retval = dma_async_device_register(dma);
1071	if (retval)
1072		goto err_free2;
1073
1074	/* Register with OF helpers for DMA lookups (nonfatal) */
1075	if (dev->of_node) {
1076		retval = of_dma_controller_register(dev->of_node,
1077						of_dma_xlate_by_chan_id, mdma);
1078		if (retval)
1079			dev_warn(dev, "Could not register for OF lookup\n");
1080	}
1081
1082	return 0;
1083
1084err_free2:
1085	if (mdma->is_mpc8308)
1086		free_irq(mdma->irq2, mdma);
1087err_free1:
1088	free_irq(mdma->irq, mdma);
1089err_dispose2:
1090	if (mdma->is_mpc8308)
1091		irq_dispose_mapping(mdma->irq2);
1092err_dispose1:
1093	irq_dispose_mapping(mdma->irq);
1094err:
1095	return retval;
1096}
1097
1098static int mpc_dma_remove(struct platform_device *op)
1099{
1100	struct device *dev = &op->dev;
1101	struct mpc_dma *mdma = dev_get_drvdata(dev);
1102
1103	if (dev->of_node)
1104		of_dma_controller_free(dev->of_node);
1105	dma_async_device_unregister(&mdma->dma);
1106	if (mdma->is_mpc8308) {
1107		free_irq(mdma->irq2, mdma);
1108		irq_dispose_mapping(mdma->irq2);
1109	}
1110	free_irq(mdma->irq, mdma);
1111	irq_dispose_mapping(mdma->irq);
1112	tasklet_kill(&mdma->tasklet);
1113
1114	return 0;
1115}
1116
1117static const struct of_device_id mpc_dma_match[] = {
1118	{ .compatible = "fsl,mpc5121-dma", },
1119	{ .compatible = "fsl,mpc8308-dma", },
1120	{},
1121};
1122MODULE_DEVICE_TABLE(of, mpc_dma_match);
1123
1124static struct platform_driver mpc_dma_driver = {
1125	.probe		= mpc_dma_probe,
1126	.remove		= mpc_dma_remove,
1127	.driver = {
1128		.name = DRV_NAME,
1129		.of_match_table	= mpc_dma_match,
1130	},
1131};
1132
1133module_platform_driver(mpc_dma_driver);
1134
1135MODULE_LICENSE("GPL");
1136MODULE_AUTHOR("Piotr Ziecik <kosmo@semihalf.com>");