Linux Audio

Check our new training course

Loading...
Note: File does not exist in v5.9.
   1#include <linux/delay.h>
   2#include <linux/dmaengine.h>
   3#include <linux/dma-mapping.h>
   4#include <linux/platform_device.h>
   5#include <linux/module.h>
   6#include <linux/of.h>
   7#include <linux/slab.h>
   8#include <linux/of_dma.h>
   9#include <linux/of_irq.h>
  10#include <linux/dmapool.h>
  11#include <linux/interrupt.h>
  12#include <linux/of_address.h>
  13#include <linux/pm_runtime.h>
  14#include "dmaengine.h"
  15
  16#define DESC_TYPE	27
  17#define DESC_TYPE_HOST	0x10
  18#define DESC_TYPE_TEARD	0x13
  19
  20#define TD_DESC_IS_RX	(1 << 16)
  21#define TD_DESC_DMA_NUM	10
  22
  23#define DESC_LENGTH_BITS_NUM	21
  24
  25#define DESC_TYPE_USB	(5 << 26)
  26#define DESC_PD_COMPLETE	(1 << 31)
  27
  28/* DMA engine */
  29#define DMA_TDFDQ	4
  30#define DMA_TXGCR(x)	(0x800 + (x) * 0x20)
  31#define DMA_RXGCR(x)	(0x808 + (x) * 0x20)
  32#define RXHPCRA0		4
  33
  34#define GCR_CHAN_ENABLE		(1 << 31)
  35#define GCR_TEARDOWN		(1 << 30)
  36#define GCR_STARV_RETRY		(1 << 24)
  37#define GCR_DESC_TYPE_HOST	(1 << 14)
  38
  39/* DMA scheduler */
  40#define DMA_SCHED_CTRL		0
  41#define DMA_SCHED_CTRL_EN	(1 << 31)
  42#define DMA_SCHED_WORD(x)	((x) * 4 + 0x800)
  43
  44#define SCHED_ENTRY0_CHAN(x)	((x) << 0)
  45#define SCHED_ENTRY0_IS_RX	(1 << 7)
  46
  47#define SCHED_ENTRY1_CHAN(x)	((x) << 8)
  48#define SCHED_ENTRY1_IS_RX	(1 << 15)
  49
  50#define SCHED_ENTRY2_CHAN(x)	((x) << 16)
  51#define SCHED_ENTRY2_IS_RX	(1 << 23)
  52
  53#define SCHED_ENTRY3_CHAN(x)	((x) << 24)
  54#define SCHED_ENTRY3_IS_RX	(1 << 31)
  55
  56/* Queue manager */
  57/* 4 KiB of memory for descriptors, 2 for each endpoint */
  58#define ALLOC_DECS_NUM		128
  59#define DESCS_AREAS		1
  60#define TOTAL_DESCS_NUM		(ALLOC_DECS_NUM * DESCS_AREAS)
  61#define QMGR_SCRATCH_SIZE	(TOTAL_DESCS_NUM * 4)
  62
  63#define QMGR_LRAM0_BASE		0x80
  64#define QMGR_LRAM_SIZE		0x84
  65#define QMGR_LRAM1_BASE		0x88
  66#define QMGR_MEMBASE(x)		(0x1000 + (x) * 0x10)
  67#define QMGR_MEMCTRL(x)		(0x1004 + (x) * 0x10)
  68#define QMGR_MEMCTRL_IDX_SH	16
  69#define QMGR_MEMCTRL_DESC_SH	8
  70
  71#define QMGR_NUM_PEND	5
  72#define QMGR_PEND(x)	(0x90 + (x) * 4)
  73
  74#define QMGR_PENDING_SLOT_Q(x)	(x / 32)
  75#define QMGR_PENDING_BIT_Q(x)	(x % 32)
  76
  77#define QMGR_QUEUE_A(n)	(0x2000 + (n) * 0x10)
  78#define QMGR_QUEUE_B(n)	(0x2004 + (n) * 0x10)
  79#define QMGR_QUEUE_C(n)	(0x2008 + (n) * 0x10)
  80#define QMGR_QUEUE_D(n)	(0x200c + (n) * 0x10)
  81
  82/* Glue layer specific */
  83/* USBSS  / USB AM335x */
  84#define USBSS_IRQ_STATUS	0x28
  85#define USBSS_IRQ_ENABLER	0x2c
  86#define USBSS_IRQ_CLEARR	0x30
  87
  88#define USBSS_IRQ_PD_COMP	(1 <<  2)
  89
  90/* Packet Descriptor */
  91#define PD2_ZERO_LENGTH		(1 << 19)
  92
  93struct cppi41_channel {
  94	struct dma_chan chan;
  95	struct dma_async_tx_descriptor txd;
  96	struct cppi41_dd *cdd;
  97	struct cppi41_desc *desc;
  98	dma_addr_t desc_phys;
  99	void __iomem *gcr_reg;
 100	int is_tx;
 101	u32 residue;
 102
 103	unsigned int q_num;
 104	unsigned int q_comp_num;
 105	unsigned int port_num;
 106
 107	unsigned td_retry;
 108	unsigned td_queued:1;
 109	unsigned td_seen:1;
 110	unsigned td_desc_seen:1;
 111
 112	struct list_head node;		/* Node for pending list */
 113};
 114
 115struct cppi41_desc {
 116	u32 pd0;
 117	u32 pd1;
 118	u32 pd2;
 119	u32 pd3;
 120	u32 pd4;
 121	u32 pd5;
 122	u32 pd6;
 123	u32 pd7;
 124} __aligned(32);
 125
 126struct chan_queues {
 127	u16 submit;
 128	u16 complete;
 129};
 130
 131struct cppi41_dd {
 132	struct dma_device ddev;
 133
 134	void *qmgr_scratch;
 135	dma_addr_t scratch_phys;
 136
 137	struct cppi41_desc *cd;
 138	dma_addr_t descs_phys;
 139	u32 first_td_desc;
 140	struct cppi41_channel *chan_busy[ALLOC_DECS_NUM];
 141
 142	void __iomem *usbss_mem;
 143	void __iomem *ctrl_mem;
 144	void __iomem *sched_mem;
 145	void __iomem *qmgr_mem;
 146	unsigned int irq;
 147	const struct chan_queues *queues_rx;
 148	const struct chan_queues *queues_tx;
 149	struct chan_queues td_queue;
 150
 151	struct list_head pending;	/* Pending queued transfers */
 152	spinlock_t lock;		/* Lock for pending list */
 153
 154	/* context for suspend/resume */
 155	unsigned int dma_tdfdq;
 156
 157	bool is_suspended;
 158};
 159
 160#define FIST_COMPLETION_QUEUE	93
 161static struct chan_queues usb_queues_tx[] = {
 162	/* USB0 ENDP 1 */
 163	[ 0] = { .submit = 32, .complete =  93},
 164	[ 1] = { .submit = 34, .complete =  94},
 165	[ 2] = { .submit = 36, .complete =  95},
 166	[ 3] = { .submit = 38, .complete =  96},
 167	[ 4] = { .submit = 40, .complete =  97},
 168	[ 5] = { .submit = 42, .complete =  98},
 169	[ 6] = { .submit = 44, .complete =  99},
 170	[ 7] = { .submit = 46, .complete = 100},
 171	[ 8] = { .submit = 48, .complete = 101},
 172	[ 9] = { .submit = 50, .complete = 102},
 173	[10] = { .submit = 52, .complete = 103},
 174	[11] = { .submit = 54, .complete = 104},
 175	[12] = { .submit = 56, .complete = 105},
 176	[13] = { .submit = 58, .complete = 106},
 177	[14] = { .submit = 60, .complete = 107},
 178
 179	/* USB1 ENDP1 */
 180	[15] = { .submit = 62, .complete = 125},
 181	[16] = { .submit = 64, .complete = 126},
 182	[17] = { .submit = 66, .complete = 127},
 183	[18] = { .submit = 68, .complete = 128},
 184	[19] = { .submit = 70, .complete = 129},
 185	[20] = { .submit = 72, .complete = 130},
 186	[21] = { .submit = 74, .complete = 131},
 187	[22] = { .submit = 76, .complete = 132},
 188	[23] = { .submit = 78, .complete = 133},
 189	[24] = { .submit = 80, .complete = 134},
 190	[25] = { .submit = 82, .complete = 135},
 191	[26] = { .submit = 84, .complete = 136},
 192	[27] = { .submit = 86, .complete = 137},
 193	[28] = { .submit = 88, .complete = 138},
 194	[29] = { .submit = 90, .complete = 139},
 195};
 196
 197static const struct chan_queues usb_queues_rx[] = {
 198	/* USB0 ENDP 1 */
 199	[ 0] = { .submit =  1, .complete = 109},
 200	[ 1] = { .submit =  2, .complete = 110},
 201	[ 2] = { .submit =  3, .complete = 111},
 202	[ 3] = { .submit =  4, .complete = 112},
 203	[ 4] = { .submit =  5, .complete = 113},
 204	[ 5] = { .submit =  6, .complete = 114},
 205	[ 6] = { .submit =  7, .complete = 115},
 206	[ 7] = { .submit =  8, .complete = 116},
 207	[ 8] = { .submit =  9, .complete = 117},
 208	[ 9] = { .submit = 10, .complete = 118},
 209	[10] = { .submit = 11, .complete = 119},
 210	[11] = { .submit = 12, .complete = 120},
 211	[12] = { .submit = 13, .complete = 121},
 212	[13] = { .submit = 14, .complete = 122},
 213	[14] = { .submit = 15, .complete = 123},
 214
 215	/* USB1 ENDP 1 */
 216	[15] = { .submit = 16, .complete = 141},
 217	[16] = { .submit = 17, .complete = 142},
 218	[17] = { .submit = 18, .complete = 143},
 219	[18] = { .submit = 19, .complete = 144},
 220	[19] = { .submit = 20, .complete = 145},
 221	[20] = { .submit = 21, .complete = 146},
 222	[21] = { .submit = 22, .complete = 147},
 223	[22] = { .submit = 23, .complete = 148},
 224	[23] = { .submit = 24, .complete = 149},
 225	[24] = { .submit = 25, .complete = 150},
 226	[25] = { .submit = 26, .complete = 151},
 227	[26] = { .submit = 27, .complete = 152},
 228	[27] = { .submit = 28, .complete = 153},
 229	[28] = { .submit = 29, .complete = 154},
 230	[29] = { .submit = 30, .complete = 155},
 231};
 232
 233struct cppi_glue_infos {
 234	irqreturn_t (*isr)(int irq, void *data);
 235	const struct chan_queues *queues_rx;
 236	const struct chan_queues *queues_tx;
 237	struct chan_queues td_queue;
 238};
 239
 240static struct cppi41_channel *to_cpp41_chan(struct dma_chan *c)
 241{
 242	return container_of(c, struct cppi41_channel, chan);
 243}
 244
 245static struct cppi41_channel *desc_to_chan(struct cppi41_dd *cdd, u32 desc)
 246{
 247	struct cppi41_channel *c;
 248	u32 descs_size;
 249	u32 desc_num;
 250
 251	descs_size = sizeof(struct cppi41_desc) * ALLOC_DECS_NUM;
 252
 253	if (!((desc >= cdd->descs_phys) &&
 254			(desc < (cdd->descs_phys + descs_size)))) {
 255		return NULL;
 256	}
 257
 258	desc_num = (desc - cdd->descs_phys) / sizeof(struct cppi41_desc);
 259	BUG_ON(desc_num >= ALLOC_DECS_NUM);
 260	c = cdd->chan_busy[desc_num];
 261	cdd->chan_busy[desc_num] = NULL;
 262
 263	/* Usecount for chan_busy[], paired with push_desc_queue() */
 264	pm_runtime_put(cdd->ddev.dev);
 265
 266	return c;
 267}
 268
 269static void cppi_writel(u32 val, void *__iomem *mem)
 270{
 271	__raw_writel(val, mem);
 272}
 273
 274static u32 cppi_readl(void *__iomem *mem)
 275{
 276	return __raw_readl(mem);
 277}
 278
 279static u32 pd_trans_len(u32 val)
 280{
 281	return val & ((1 << (DESC_LENGTH_BITS_NUM + 1)) - 1);
 282}
 283
 284static u32 cppi41_pop_desc(struct cppi41_dd *cdd, unsigned queue_num)
 285{
 286	u32 desc;
 287
 288	desc = cppi_readl(cdd->qmgr_mem + QMGR_QUEUE_D(queue_num));
 289	desc &= ~0x1f;
 290	return desc;
 291}
 292
 293static irqreturn_t cppi41_irq(int irq, void *data)
 294{
 295	struct cppi41_dd *cdd = data;
 296	struct cppi41_channel *c;
 297	u32 status;
 298	int i;
 299
 300	status = cppi_readl(cdd->usbss_mem + USBSS_IRQ_STATUS);
 301	if (!(status & USBSS_IRQ_PD_COMP))
 302		return IRQ_NONE;
 303	cppi_writel(status, cdd->usbss_mem + USBSS_IRQ_STATUS);
 304
 305	for (i = QMGR_PENDING_SLOT_Q(FIST_COMPLETION_QUEUE); i < QMGR_NUM_PEND;
 306			i++) {
 307		u32 val;
 308		u32 q_num;
 309
 310		val = cppi_readl(cdd->qmgr_mem + QMGR_PEND(i));
 311		if (i == QMGR_PENDING_SLOT_Q(FIST_COMPLETION_QUEUE) && val) {
 312			u32 mask;
 313			/* set corresponding bit for completetion Q 93 */
 314			mask = 1 << QMGR_PENDING_BIT_Q(FIST_COMPLETION_QUEUE);
 315			/* not set all bits for queues less than Q 93 */
 316			mask--;
 317			/* now invert and keep only Q 93+ set */
 318			val &= ~mask;
 319		}
 320
 321		if (val)
 322			__iormb();
 323
 324		while (val) {
 325			u32 desc, len;
 326
 327			/*
 328			 * This should never trigger, see the comments in
 329			 * push_desc_queue()
 330			 */
 331			WARN_ON(cdd->is_suspended);
 332
 333			q_num = __fls(val);
 334			val &= ~(1 << q_num);
 335			q_num += 32 * i;
 336			desc = cppi41_pop_desc(cdd, q_num);
 337			c = desc_to_chan(cdd, desc);
 338			if (WARN_ON(!c)) {
 339				pr_err("%s() q %d desc %08x\n", __func__,
 340						q_num, desc);
 341				continue;
 342			}
 343
 344			if (c->desc->pd2 & PD2_ZERO_LENGTH)
 345				len = 0;
 346			else
 347				len = pd_trans_len(c->desc->pd0);
 348
 349			c->residue = pd_trans_len(c->desc->pd6) - len;
 350			dma_cookie_complete(&c->txd);
 351			dmaengine_desc_get_callback_invoke(&c->txd, NULL);
 352		}
 353	}
 354	return IRQ_HANDLED;
 355}
 356
 357static dma_cookie_t cppi41_tx_submit(struct dma_async_tx_descriptor *tx)
 358{
 359	dma_cookie_t cookie;
 360
 361	cookie = dma_cookie_assign(tx);
 362
 363	return cookie;
 364}
 365
 366static int cppi41_dma_alloc_chan_resources(struct dma_chan *chan)
 367{
 368	struct cppi41_channel *c = to_cpp41_chan(chan);
 369	struct cppi41_dd *cdd = c->cdd;
 370	int error;
 371
 372	error = pm_runtime_get_sync(cdd->ddev.dev);
 373	if (error < 0) {
 374		dev_err(cdd->ddev.dev, "%s pm runtime get: %i\n",
 375			__func__, error);
 376		pm_runtime_put_noidle(cdd->ddev.dev);
 377
 378		return error;
 379	}
 380
 381	dma_cookie_init(chan);
 382	dma_async_tx_descriptor_init(&c->txd, chan);
 383	c->txd.tx_submit = cppi41_tx_submit;
 384
 385	if (!c->is_tx)
 386		cppi_writel(c->q_num, c->gcr_reg + RXHPCRA0);
 387
 388	pm_runtime_mark_last_busy(cdd->ddev.dev);
 389	pm_runtime_put_autosuspend(cdd->ddev.dev);
 390
 391	return 0;
 392}
 393
 394static void cppi41_dma_free_chan_resources(struct dma_chan *chan)
 395{
 396	struct cppi41_channel *c = to_cpp41_chan(chan);
 397	struct cppi41_dd *cdd = c->cdd;
 398	int error;
 399
 400	error = pm_runtime_get_sync(cdd->ddev.dev);
 401	if (error < 0) {
 402		pm_runtime_put_noidle(cdd->ddev.dev);
 403
 404		return;
 405	}
 406
 407	WARN_ON(!list_empty(&cdd->pending));
 408
 409	pm_runtime_mark_last_busy(cdd->ddev.dev);
 410	pm_runtime_put_autosuspend(cdd->ddev.dev);
 411}
 412
 413static enum dma_status cppi41_dma_tx_status(struct dma_chan *chan,
 414	dma_cookie_t cookie, struct dma_tx_state *txstate)
 415{
 416	struct cppi41_channel *c = to_cpp41_chan(chan);
 417	enum dma_status ret;
 418
 419	/* lock */
 420	ret = dma_cookie_status(chan, cookie, txstate);
 421	if (txstate && ret == DMA_COMPLETE)
 422		txstate->residue = c->residue;
 423	/* unlock */
 424
 425	return ret;
 426}
 427
 428static void push_desc_queue(struct cppi41_channel *c)
 429{
 430	struct cppi41_dd *cdd = c->cdd;
 431	u32 desc_num;
 432	u32 desc_phys;
 433	u32 reg;
 434
 435	c->residue = 0;
 436
 437	reg = GCR_CHAN_ENABLE;
 438	if (!c->is_tx) {
 439		reg |= GCR_STARV_RETRY;
 440		reg |= GCR_DESC_TYPE_HOST;
 441		reg |= c->q_comp_num;
 442	}
 443
 444	cppi_writel(reg, c->gcr_reg);
 445
 446	/*
 447	 * We don't use writel() but __raw_writel() so we have to make sure
 448	 * that the DMA descriptor in coherent memory made to the main memory
 449	 * before starting the dma engine.
 450	 */
 451	__iowmb();
 452
 453	/*
 454	 * DMA transfers can take at least 200ms to complete with USB mass
 455	 * storage connected. To prevent autosuspend timeouts, we must use
 456	 * pm_runtime_get/put() when chan_busy[] is modified. This will get
 457	 * cleared in desc_to_chan() or cppi41_stop_chan() depending on the
 458	 * outcome of the transfer.
 459	 */
 460	pm_runtime_get(cdd->ddev.dev);
 461
 462	desc_phys = lower_32_bits(c->desc_phys);
 463	desc_num = (desc_phys - cdd->descs_phys) / sizeof(struct cppi41_desc);
 464	WARN_ON(cdd->chan_busy[desc_num]);
 465	cdd->chan_busy[desc_num] = c;
 466
 467	reg = (sizeof(struct cppi41_desc) - 24) / 4;
 468	reg |= desc_phys;
 469	cppi_writel(reg, cdd->qmgr_mem + QMGR_QUEUE_D(c->q_num));
 470}
 471
 472/*
 473 * Caller must hold cdd->lock to prevent push_desc_queue()
 474 * getting called out of order. We have both cppi41_dma_issue_pending()
 475 * and cppi41_runtime_resume() call this function.
 476 */
 477static void cppi41_run_queue(struct cppi41_dd *cdd)
 478{
 479	struct cppi41_channel *c, *_c;
 480
 481	list_for_each_entry_safe(c, _c, &cdd->pending, node) {
 482		push_desc_queue(c);
 483		list_del(&c->node);
 484	}
 485}
 486
 487static void cppi41_dma_issue_pending(struct dma_chan *chan)
 488{
 489	struct cppi41_channel *c = to_cpp41_chan(chan);
 490	struct cppi41_dd *cdd = c->cdd;
 491	unsigned long flags;
 492	int error;
 493
 494	error = pm_runtime_get(cdd->ddev.dev);
 495	if ((error != -EINPROGRESS) && error < 0) {
 496		pm_runtime_put_noidle(cdd->ddev.dev);
 497		dev_err(cdd->ddev.dev, "Failed to pm_runtime_get: %i\n",
 498			error);
 499
 500		return;
 501	}
 502
 503	spin_lock_irqsave(&cdd->lock, flags);
 504	list_add_tail(&c->node, &cdd->pending);
 505	if (!cdd->is_suspended)
 506		cppi41_run_queue(cdd);
 507	spin_unlock_irqrestore(&cdd->lock, flags);
 508
 509	pm_runtime_mark_last_busy(cdd->ddev.dev);
 510	pm_runtime_put_autosuspend(cdd->ddev.dev);
 511}
 512
 513static u32 get_host_pd0(u32 length)
 514{
 515	u32 reg;
 516
 517	reg = DESC_TYPE_HOST << DESC_TYPE;
 518	reg |= length;
 519
 520	return reg;
 521}
 522
 523static u32 get_host_pd1(struct cppi41_channel *c)
 524{
 525	u32 reg;
 526
 527	reg = 0;
 528
 529	return reg;
 530}
 531
 532static u32 get_host_pd2(struct cppi41_channel *c)
 533{
 534	u32 reg;
 535
 536	reg = DESC_TYPE_USB;
 537	reg |= c->q_comp_num;
 538
 539	return reg;
 540}
 541
 542static u32 get_host_pd3(u32 length)
 543{
 544	u32 reg;
 545
 546	/* PD3 = packet size */
 547	reg = length;
 548
 549	return reg;
 550}
 551
 552static u32 get_host_pd6(u32 length)
 553{
 554	u32 reg;
 555
 556	/* PD6 buffer size */
 557	reg = DESC_PD_COMPLETE;
 558	reg |= length;
 559
 560	return reg;
 561}
 562
 563static u32 get_host_pd4_or_7(u32 addr)
 564{
 565	u32 reg;
 566
 567	reg = addr;
 568
 569	return reg;
 570}
 571
 572static u32 get_host_pd5(void)
 573{
 574	u32 reg;
 575
 576	reg = 0;
 577
 578	return reg;
 579}
 580
 581static struct dma_async_tx_descriptor *cppi41_dma_prep_slave_sg(
 582	struct dma_chan *chan, struct scatterlist *sgl, unsigned sg_len,
 583	enum dma_transfer_direction dir, unsigned long tx_flags, void *context)
 584{
 585	struct cppi41_channel *c = to_cpp41_chan(chan);
 586	struct cppi41_desc *d;
 587	struct scatterlist *sg;
 588	unsigned int i;
 589
 590	d = c->desc;
 591	for_each_sg(sgl, sg, sg_len, i) {
 592		u32 addr;
 593		u32 len;
 594
 595		/* We need to use more than one desc once musb supports sg */
 596		addr = lower_32_bits(sg_dma_address(sg));
 597		len = sg_dma_len(sg);
 598
 599		d->pd0 = get_host_pd0(len);
 600		d->pd1 = get_host_pd1(c);
 601		d->pd2 = get_host_pd2(c);
 602		d->pd3 = get_host_pd3(len);
 603		d->pd4 = get_host_pd4_or_7(addr);
 604		d->pd5 = get_host_pd5();
 605		d->pd6 = get_host_pd6(len);
 606		d->pd7 = get_host_pd4_or_7(addr);
 607
 608		d++;
 609	}
 610
 611	return &c->txd;
 612}
 613
 614static void cppi41_compute_td_desc(struct cppi41_desc *d)
 615{
 616	d->pd0 = DESC_TYPE_TEARD << DESC_TYPE;
 617}
 618
 619static int cppi41_tear_down_chan(struct cppi41_channel *c)
 620{
 621	struct cppi41_dd *cdd = c->cdd;
 622	struct cppi41_desc *td;
 623	u32 reg;
 624	u32 desc_phys;
 625	u32 td_desc_phys;
 626
 627	td = cdd->cd;
 628	td += cdd->first_td_desc;
 629
 630	td_desc_phys = cdd->descs_phys;
 631	td_desc_phys += cdd->first_td_desc * sizeof(struct cppi41_desc);
 632
 633	if (!c->td_queued) {
 634		cppi41_compute_td_desc(td);
 635		__iowmb();
 636
 637		reg = (sizeof(struct cppi41_desc) - 24) / 4;
 638		reg |= td_desc_phys;
 639		cppi_writel(reg, cdd->qmgr_mem +
 640				QMGR_QUEUE_D(cdd->td_queue.submit));
 641
 642		reg = GCR_CHAN_ENABLE;
 643		if (!c->is_tx) {
 644			reg |= GCR_STARV_RETRY;
 645			reg |= GCR_DESC_TYPE_HOST;
 646			reg |= c->q_comp_num;
 647		}
 648		reg |= GCR_TEARDOWN;
 649		cppi_writel(reg, c->gcr_reg);
 650		c->td_queued = 1;
 651		c->td_retry = 500;
 652	}
 653
 654	if (!c->td_seen || !c->td_desc_seen) {
 655
 656		desc_phys = cppi41_pop_desc(cdd, cdd->td_queue.complete);
 657		if (!desc_phys)
 658			desc_phys = cppi41_pop_desc(cdd, c->q_comp_num);
 659
 660		if (desc_phys == c->desc_phys) {
 661			c->td_desc_seen = 1;
 662
 663		} else if (desc_phys == td_desc_phys) {
 664			u32 pd0;
 665
 666			__iormb();
 667			pd0 = td->pd0;
 668			WARN_ON((pd0 >> DESC_TYPE) != DESC_TYPE_TEARD);
 669			WARN_ON(!c->is_tx && !(pd0 & TD_DESC_IS_RX));
 670			WARN_ON((pd0 & 0x1f) != c->port_num);
 671			c->td_seen = 1;
 672		} else if (desc_phys) {
 673			WARN_ON_ONCE(1);
 674		}
 675	}
 676	c->td_retry--;
 677	/*
 678	 * If the TX descriptor / channel is in use, the caller needs to poke
 679	 * his TD bit multiple times. After that he hardware releases the
 680	 * transfer descriptor followed by TD descriptor. Waiting seems not to
 681	 * cause any difference.
 682	 * RX seems to be thrown out right away. However once the TearDown
 683	 * descriptor gets through we are done. If we have seens the transfer
 684	 * descriptor before the TD we fetch it from enqueue, it has to be
 685	 * there waiting for us.
 686	 */
 687	if (!c->td_seen && c->td_retry) {
 688		udelay(1);
 689		return -EAGAIN;
 690	}
 691	WARN_ON(!c->td_retry);
 692
 693	if (!c->td_desc_seen) {
 694		desc_phys = cppi41_pop_desc(cdd, c->q_num);
 695		if (!desc_phys)
 696			desc_phys = cppi41_pop_desc(cdd, c->q_comp_num);
 697		WARN_ON(!desc_phys);
 698	}
 699
 700	c->td_queued = 0;
 701	c->td_seen = 0;
 702	c->td_desc_seen = 0;
 703	cppi_writel(0, c->gcr_reg);
 704	return 0;
 705}
 706
 707static int cppi41_stop_chan(struct dma_chan *chan)
 708{
 709	struct cppi41_channel *c = to_cpp41_chan(chan);
 710	struct cppi41_dd *cdd = c->cdd;
 711	u32 desc_num;
 712	u32 desc_phys;
 713	int ret;
 714
 715	desc_phys = lower_32_bits(c->desc_phys);
 716	desc_num = (desc_phys - cdd->descs_phys) / sizeof(struct cppi41_desc);
 717	if (!cdd->chan_busy[desc_num])
 718		return 0;
 719
 720	ret = cppi41_tear_down_chan(c);
 721	if (ret)
 722		return ret;
 723
 724	WARN_ON(!cdd->chan_busy[desc_num]);
 725	cdd->chan_busy[desc_num] = NULL;
 726
 727	/* Usecount for chan_busy[], paired with push_desc_queue() */
 728	pm_runtime_put(cdd->ddev.dev);
 729
 730	return 0;
 731}
 732
 733static void cleanup_chans(struct cppi41_dd *cdd)
 734{
 735	while (!list_empty(&cdd->ddev.channels)) {
 736		struct cppi41_channel *cchan;
 737
 738		cchan = list_first_entry(&cdd->ddev.channels,
 739				struct cppi41_channel, chan.device_node);
 740		list_del(&cchan->chan.device_node);
 741		kfree(cchan);
 742	}
 743}
 744
 745static int cppi41_add_chans(struct device *dev, struct cppi41_dd *cdd)
 746{
 747	struct cppi41_channel *cchan;
 748	int i;
 749	int ret;
 750	u32 n_chans;
 751
 752	ret = of_property_read_u32(dev->of_node, "#dma-channels",
 753			&n_chans);
 754	if (ret)
 755		return ret;
 756	/*
 757	 * The channels can only be used as TX or as RX. So we add twice
 758	 * that much dma channels because USB can only do RX or TX.
 759	 */
 760	n_chans *= 2;
 761
 762	for (i = 0; i < n_chans; i++) {
 763		cchan = kzalloc(sizeof(*cchan), GFP_KERNEL);
 764		if (!cchan)
 765			goto err;
 766
 767		cchan->cdd = cdd;
 768		if (i & 1) {
 769			cchan->gcr_reg = cdd->ctrl_mem + DMA_TXGCR(i >> 1);
 770			cchan->is_tx = 1;
 771		} else {
 772			cchan->gcr_reg = cdd->ctrl_mem + DMA_RXGCR(i >> 1);
 773			cchan->is_tx = 0;
 774		}
 775		cchan->port_num = i >> 1;
 776		cchan->desc = &cdd->cd[i];
 777		cchan->desc_phys = cdd->descs_phys;
 778		cchan->desc_phys += i * sizeof(struct cppi41_desc);
 779		cchan->chan.device = &cdd->ddev;
 780		list_add_tail(&cchan->chan.device_node, &cdd->ddev.channels);
 781	}
 782	cdd->first_td_desc = n_chans;
 783
 784	return 0;
 785err:
 786	cleanup_chans(cdd);
 787	return -ENOMEM;
 788}
 789
 790static void purge_descs(struct device *dev, struct cppi41_dd *cdd)
 791{
 792	unsigned int mem_decs;
 793	int i;
 794
 795	mem_decs = ALLOC_DECS_NUM * sizeof(struct cppi41_desc);
 796
 797	for (i = 0; i < DESCS_AREAS; i++) {
 798
 799		cppi_writel(0, cdd->qmgr_mem + QMGR_MEMBASE(i));
 800		cppi_writel(0, cdd->qmgr_mem + QMGR_MEMCTRL(i));
 801
 802		dma_free_coherent(dev, mem_decs, cdd->cd,
 803				cdd->descs_phys);
 804	}
 805}
 806
 807static void disable_sched(struct cppi41_dd *cdd)
 808{
 809	cppi_writel(0, cdd->sched_mem + DMA_SCHED_CTRL);
 810}
 811
 812static void deinit_cppi41(struct device *dev, struct cppi41_dd *cdd)
 813{
 814	disable_sched(cdd);
 815
 816	purge_descs(dev, cdd);
 817
 818	cppi_writel(0, cdd->qmgr_mem + QMGR_LRAM0_BASE);
 819	cppi_writel(0, cdd->qmgr_mem + QMGR_LRAM0_BASE);
 820	dma_free_coherent(dev, QMGR_SCRATCH_SIZE, cdd->qmgr_scratch,
 821			cdd->scratch_phys);
 822}
 823
 824static int init_descs(struct device *dev, struct cppi41_dd *cdd)
 825{
 826	unsigned int desc_size;
 827	unsigned int mem_decs;
 828	int i;
 829	u32 reg;
 830	u32 idx;
 831
 832	BUILD_BUG_ON(sizeof(struct cppi41_desc) &
 833			(sizeof(struct cppi41_desc) - 1));
 834	BUILD_BUG_ON(sizeof(struct cppi41_desc) < 32);
 835	BUILD_BUG_ON(ALLOC_DECS_NUM < 32);
 836
 837	desc_size = sizeof(struct cppi41_desc);
 838	mem_decs = ALLOC_DECS_NUM * desc_size;
 839
 840	idx = 0;
 841	for (i = 0; i < DESCS_AREAS; i++) {
 842
 843		reg = idx << QMGR_MEMCTRL_IDX_SH;
 844		reg |= (ilog2(desc_size) - 5) << QMGR_MEMCTRL_DESC_SH;
 845		reg |= ilog2(ALLOC_DECS_NUM) - 5;
 846
 847		BUILD_BUG_ON(DESCS_AREAS != 1);
 848		cdd->cd = dma_alloc_coherent(dev, mem_decs,
 849				&cdd->descs_phys, GFP_KERNEL);
 850		if (!cdd->cd)
 851			return -ENOMEM;
 852
 853		cppi_writel(cdd->descs_phys, cdd->qmgr_mem + QMGR_MEMBASE(i));
 854		cppi_writel(reg, cdd->qmgr_mem + QMGR_MEMCTRL(i));
 855
 856		idx += ALLOC_DECS_NUM;
 857	}
 858	return 0;
 859}
 860
 861static void init_sched(struct cppi41_dd *cdd)
 862{
 863	unsigned ch;
 864	unsigned word;
 865	u32 reg;
 866
 867	word = 0;
 868	cppi_writel(0, cdd->sched_mem + DMA_SCHED_CTRL);
 869	for (ch = 0; ch < 15 * 2; ch += 2) {
 870
 871		reg = SCHED_ENTRY0_CHAN(ch);
 872		reg |= SCHED_ENTRY1_CHAN(ch) | SCHED_ENTRY1_IS_RX;
 873
 874		reg |= SCHED_ENTRY2_CHAN(ch + 1);
 875		reg |= SCHED_ENTRY3_CHAN(ch + 1) | SCHED_ENTRY3_IS_RX;
 876		cppi_writel(reg, cdd->sched_mem + DMA_SCHED_WORD(word));
 877		word++;
 878	}
 879	reg = 15 * 2 * 2 - 1;
 880	reg |= DMA_SCHED_CTRL_EN;
 881	cppi_writel(reg, cdd->sched_mem + DMA_SCHED_CTRL);
 882}
 883
 884static int init_cppi41(struct device *dev, struct cppi41_dd *cdd)
 885{
 886	int ret;
 887
 888	BUILD_BUG_ON(QMGR_SCRATCH_SIZE > ((1 << 14) - 1));
 889	cdd->qmgr_scratch = dma_alloc_coherent(dev, QMGR_SCRATCH_SIZE,
 890			&cdd->scratch_phys, GFP_KERNEL);
 891	if (!cdd->qmgr_scratch)
 892		return -ENOMEM;
 893
 894	cppi_writel(cdd->scratch_phys, cdd->qmgr_mem + QMGR_LRAM0_BASE);
 895	cppi_writel(QMGR_SCRATCH_SIZE, cdd->qmgr_mem + QMGR_LRAM_SIZE);
 896	cppi_writel(0, cdd->qmgr_mem + QMGR_LRAM1_BASE);
 897
 898	ret = init_descs(dev, cdd);
 899	if (ret)
 900		goto err_td;
 901
 902	cppi_writel(cdd->td_queue.submit, cdd->ctrl_mem + DMA_TDFDQ);
 903	init_sched(cdd);
 904	return 0;
 905err_td:
 906	deinit_cppi41(dev, cdd);
 907	return ret;
 908}
 909
 910static struct platform_driver cpp41_dma_driver;
 911/*
 912 * The param format is:
 913 * X Y
 914 * X: Port
 915 * Y: 0 = RX else TX
 916 */
 917#define INFO_PORT	0
 918#define INFO_IS_TX	1
 919
 920static bool cpp41_dma_filter_fn(struct dma_chan *chan, void *param)
 921{
 922	struct cppi41_channel *cchan;
 923	struct cppi41_dd *cdd;
 924	const struct chan_queues *queues;
 925	u32 *num = param;
 926
 927	if (chan->device->dev->driver != &cpp41_dma_driver.driver)
 928		return false;
 929
 930	cchan = to_cpp41_chan(chan);
 931
 932	if (cchan->port_num != num[INFO_PORT])
 933		return false;
 934
 935	if (cchan->is_tx && !num[INFO_IS_TX])
 936		return false;
 937	cdd = cchan->cdd;
 938	if (cchan->is_tx)
 939		queues = cdd->queues_tx;
 940	else
 941		queues = cdd->queues_rx;
 942
 943	BUILD_BUG_ON(ARRAY_SIZE(usb_queues_rx) != ARRAY_SIZE(usb_queues_tx));
 944	if (WARN_ON(cchan->port_num > ARRAY_SIZE(usb_queues_rx)))
 945		return false;
 946
 947	cchan->q_num = queues[cchan->port_num].submit;
 948	cchan->q_comp_num = queues[cchan->port_num].complete;
 949	return true;
 950}
 951
 952static struct of_dma_filter_info cpp41_dma_info = {
 953	.filter_fn = cpp41_dma_filter_fn,
 954};
 955
 956static struct dma_chan *cppi41_dma_xlate(struct of_phandle_args *dma_spec,
 957		struct of_dma *ofdma)
 958{
 959	int count = dma_spec->args_count;
 960	struct of_dma_filter_info *info = ofdma->of_dma_data;
 961
 962	if (!info || !info->filter_fn)
 963		return NULL;
 964
 965	if (count != 2)
 966		return NULL;
 967
 968	return dma_request_channel(info->dma_cap, info->filter_fn,
 969			&dma_spec->args[0]);
 970}
 971
 972static const struct cppi_glue_infos usb_infos = {
 973	.isr = cppi41_irq,
 974	.queues_rx = usb_queues_rx,
 975	.queues_tx = usb_queues_tx,
 976	.td_queue = { .submit = 31, .complete = 0 },
 977};
 978
 979static const struct of_device_id cppi41_dma_ids[] = {
 980	{ .compatible = "ti,am3359-cppi41", .data = &usb_infos},
 981	{},
 982};
 983MODULE_DEVICE_TABLE(of, cppi41_dma_ids);
 984
 985static const struct cppi_glue_infos *get_glue_info(struct device *dev)
 986{
 987	const struct of_device_id *of_id;
 988
 989	of_id = of_match_node(cppi41_dma_ids, dev->of_node);
 990	if (!of_id)
 991		return NULL;
 992	return of_id->data;
 993}
 994
 995#define CPPI41_DMA_BUSWIDTHS	(BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
 996				BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
 997				BIT(DMA_SLAVE_BUSWIDTH_3_BYTES) | \
 998				BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
 999
1000static int cppi41_dma_probe(struct platform_device *pdev)
1001{
1002	struct cppi41_dd *cdd;
1003	struct device *dev = &pdev->dev;
1004	const struct cppi_glue_infos *glue_info;
1005	int irq;
1006	int ret;
1007
1008	glue_info = get_glue_info(dev);
1009	if (!glue_info)
1010		return -EINVAL;
1011
1012	cdd = devm_kzalloc(&pdev->dev, sizeof(*cdd), GFP_KERNEL);
1013	if (!cdd)
1014		return -ENOMEM;
1015
1016	dma_cap_set(DMA_SLAVE, cdd->ddev.cap_mask);
1017	cdd->ddev.device_alloc_chan_resources = cppi41_dma_alloc_chan_resources;
1018	cdd->ddev.device_free_chan_resources = cppi41_dma_free_chan_resources;
1019	cdd->ddev.device_tx_status = cppi41_dma_tx_status;
1020	cdd->ddev.device_issue_pending = cppi41_dma_issue_pending;
1021	cdd->ddev.device_prep_slave_sg = cppi41_dma_prep_slave_sg;
1022	cdd->ddev.device_terminate_all = cppi41_stop_chan;
1023	cdd->ddev.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1024	cdd->ddev.src_addr_widths = CPPI41_DMA_BUSWIDTHS;
1025	cdd->ddev.dst_addr_widths = CPPI41_DMA_BUSWIDTHS;
1026	cdd->ddev.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1027	cdd->ddev.dev = dev;
1028	INIT_LIST_HEAD(&cdd->ddev.channels);
1029	cpp41_dma_info.dma_cap = cdd->ddev.cap_mask;
1030
1031	cdd->usbss_mem = of_iomap(dev->of_node, 0);
1032	cdd->ctrl_mem = of_iomap(dev->of_node, 1);
1033	cdd->sched_mem = of_iomap(dev->of_node, 2);
1034	cdd->qmgr_mem = of_iomap(dev->of_node, 3);
1035	spin_lock_init(&cdd->lock);
1036	INIT_LIST_HEAD(&cdd->pending);
1037
1038	platform_set_drvdata(pdev, cdd);
1039
1040	if (!cdd->usbss_mem || !cdd->ctrl_mem || !cdd->sched_mem ||
1041			!cdd->qmgr_mem)
1042		return -ENXIO;
1043
1044	pm_runtime_enable(dev);
1045	pm_runtime_set_autosuspend_delay(dev, 100);
1046	pm_runtime_use_autosuspend(dev);
1047	ret = pm_runtime_get_sync(dev);
1048	if (ret < 0)
1049		goto err_get_sync;
1050
1051	cdd->queues_rx = glue_info->queues_rx;
1052	cdd->queues_tx = glue_info->queues_tx;
1053	cdd->td_queue = glue_info->td_queue;
1054
1055	ret = init_cppi41(dev, cdd);
1056	if (ret)
1057		goto err_init_cppi;
1058
1059	ret = cppi41_add_chans(dev, cdd);
1060	if (ret)
1061		goto err_chans;
1062
1063	irq = irq_of_parse_and_map(dev->of_node, 0);
1064	if (!irq) {
1065		ret = -EINVAL;
1066		goto err_irq;
1067	}
1068
1069	cppi_writel(USBSS_IRQ_PD_COMP, cdd->usbss_mem + USBSS_IRQ_ENABLER);
1070
1071	ret = devm_request_irq(&pdev->dev, irq, glue_info->isr, IRQF_SHARED,
1072			dev_name(dev), cdd);
1073	if (ret)
1074		goto err_irq;
1075	cdd->irq = irq;
1076
1077	ret = dma_async_device_register(&cdd->ddev);
1078	if (ret)
1079		goto err_dma_reg;
1080
1081	ret = of_dma_controller_register(dev->of_node,
1082			cppi41_dma_xlate, &cpp41_dma_info);
1083	if (ret)
1084		goto err_of;
1085
1086	pm_runtime_mark_last_busy(dev);
1087	pm_runtime_put_autosuspend(dev);
1088
1089	return 0;
1090err_of:
1091	dma_async_device_unregister(&cdd->ddev);
1092err_dma_reg:
1093err_irq:
1094	cppi_writel(0, cdd->usbss_mem + USBSS_IRQ_CLEARR);
1095	cleanup_chans(cdd);
1096err_chans:
1097	deinit_cppi41(dev, cdd);
1098err_init_cppi:
1099	pm_runtime_dont_use_autosuspend(dev);
1100err_get_sync:
1101	pm_runtime_put_sync(dev);
1102	pm_runtime_disable(dev);
1103	iounmap(cdd->usbss_mem);
1104	iounmap(cdd->ctrl_mem);
1105	iounmap(cdd->sched_mem);
1106	iounmap(cdd->qmgr_mem);
1107	return ret;
1108}
1109
1110static int cppi41_dma_remove(struct platform_device *pdev)
1111{
1112	struct cppi41_dd *cdd = platform_get_drvdata(pdev);
1113	int error;
1114
1115	error = pm_runtime_get_sync(&pdev->dev);
1116	if (error < 0)
1117		dev_err(&pdev->dev, "%s could not pm_runtime_get: %i\n",
1118			__func__, error);
1119	of_dma_controller_free(pdev->dev.of_node);
1120	dma_async_device_unregister(&cdd->ddev);
1121
1122	cppi_writel(0, cdd->usbss_mem + USBSS_IRQ_CLEARR);
1123	devm_free_irq(&pdev->dev, cdd->irq, cdd);
1124	cleanup_chans(cdd);
1125	deinit_cppi41(&pdev->dev, cdd);
1126	iounmap(cdd->usbss_mem);
1127	iounmap(cdd->ctrl_mem);
1128	iounmap(cdd->sched_mem);
1129	iounmap(cdd->qmgr_mem);
1130	pm_runtime_dont_use_autosuspend(&pdev->dev);
1131	pm_runtime_put_sync(&pdev->dev);
1132	pm_runtime_disable(&pdev->dev);
1133	return 0;
1134}
1135
1136static int __maybe_unused cppi41_suspend(struct device *dev)
1137{
1138	struct cppi41_dd *cdd = dev_get_drvdata(dev);
1139
1140	cdd->dma_tdfdq = cppi_readl(cdd->ctrl_mem + DMA_TDFDQ);
1141	cppi_writel(0, cdd->usbss_mem + USBSS_IRQ_CLEARR);
1142	disable_sched(cdd);
1143
1144	return 0;
1145}
1146
1147static int __maybe_unused cppi41_resume(struct device *dev)
1148{
1149	struct cppi41_dd *cdd = dev_get_drvdata(dev);
1150	struct cppi41_channel *c;
1151	int i;
1152
1153	for (i = 0; i < DESCS_AREAS; i++)
1154		cppi_writel(cdd->descs_phys, cdd->qmgr_mem + QMGR_MEMBASE(i));
1155
1156	list_for_each_entry(c, &cdd->ddev.channels, chan.device_node)
1157		if (!c->is_tx)
1158			cppi_writel(c->q_num, c->gcr_reg + RXHPCRA0);
1159
1160	init_sched(cdd);
1161
1162	cppi_writel(cdd->dma_tdfdq, cdd->ctrl_mem + DMA_TDFDQ);
1163	cppi_writel(cdd->scratch_phys, cdd->qmgr_mem + QMGR_LRAM0_BASE);
1164	cppi_writel(QMGR_SCRATCH_SIZE, cdd->qmgr_mem + QMGR_LRAM_SIZE);
1165	cppi_writel(0, cdd->qmgr_mem + QMGR_LRAM1_BASE);
1166
1167	cppi_writel(USBSS_IRQ_PD_COMP, cdd->usbss_mem + USBSS_IRQ_ENABLER);
1168
1169	return 0;
1170}
1171
1172static int __maybe_unused cppi41_runtime_suspend(struct device *dev)
1173{
1174	struct cppi41_dd *cdd = dev_get_drvdata(dev);
1175	unsigned long flags;
1176
1177	spin_lock_irqsave(&cdd->lock, flags);
1178	cdd->is_suspended = true;
1179	WARN_ON(!list_empty(&cdd->pending));
1180	spin_unlock_irqrestore(&cdd->lock, flags);
1181
1182	return 0;
1183}
1184
1185static int __maybe_unused cppi41_runtime_resume(struct device *dev)
1186{
1187	struct cppi41_dd *cdd = dev_get_drvdata(dev);
1188	unsigned long flags;
1189
1190	spin_lock_irqsave(&cdd->lock, flags);
1191	cdd->is_suspended = false;
1192	cppi41_run_queue(cdd);
1193	spin_unlock_irqrestore(&cdd->lock, flags);
1194
1195	return 0;
1196}
1197
1198static const struct dev_pm_ops cppi41_pm_ops = {
1199	SET_LATE_SYSTEM_SLEEP_PM_OPS(cppi41_suspend, cppi41_resume)
1200	SET_RUNTIME_PM_OPS(cppi41_runtime_suspend,
1201			   cppi41_runtime_resume,
1202			   NULL)
1203};
1204
1205static struct platform_driver cpp41_dma_driver = {
1206	.probe  = cppi41_dma_probe,
1207	.remove = cppi41_dma_remove,
1208	.driver = {
1209		.name = "cppi41-dma-engine",
1210		.pm = &cppi41_pm_ops,
1211		.of_match_table = of_match_ptr(cppi41_dma_ids),
1212	},
1213};
1214
1215module_platform_driver(cpp41_dma_driver);
1216MODULE_LICENSE("GPL");
1217MODULE_AUTHOR("Sebastian Andrzej Siewior <bigeasy@linutronix.de>");