Linux Audio

Check our new training course

Loading...
v5.9
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Copyright (c) 2012-2014, The Linux Foundation. All rights reserved.
 
 
 
 
 
 
 
 
 
  4 */
  5
  6#include <linux/err.h>
  7#include <linux/interrupt.h>
  8#include <linux/types.h>
  9#include <crypto/scatterwalk.h>
 10#include <crypto/sha.h>
 11
 12#include "cipher.h"
 13#include "common.h"
 14#include "core.h"
 15#include "regs-v5.h"
 16#include "sha.h"
 17
 
 
 18static inline u32 qce_read(struct qce_device *qce, u32 offset)
 19{
 20	return readl(qce->base + offset);
 21}
 22
 23static inline void qce_write(struct qce_device *qce, u32 offset, u32 val)
 24{
 25	writel(val, qce->base + offset);
 26}
 27
 28static inline void qce_write_array(struct qce_device *qce, u32 offset,
 29				   const u32 *val, unsigned int len)
 30{
 31	int i;
 32
 33	for (i = 0; i < len; i++)
 34		qce_write(qce, offset + i * sizeof(u32), val[i]);
 35}
 36
 37static inline void
 38qce_clear_array(struct qce_device *qce, u32 offset, unsigned int len)
 39{
 40	int i;
 41
 42	for (i = 0; i < len; i++)
 43		qce_write(qce, offset + i * sizeof(u32), 0);
 44}
 45
 46static u32 qce_config_reg(struct qce_device *qce, int little)
 47{
 48	u32 beats = (qce->burst_size >> 3) - 1;
 49	u32 pipe_pair = qce->pipe_pair_id;
 50	u32 config;
 51
 52	config = (beats << REQ_SIZE_SHIFT) & REQ_SIZE_MASK;
 53	config |= BIT(MASK_DOUT_INTR_SHIFT) | BIT(MASK_DIN_INTR_SHIFT) |
 54		  BIT(MASK_OP_DONE_INTR_SHIFT) | BIT(MASK_ERR_INTR_SHIFT);
 55	config |= (pipe_pair << PIPE_SET_SELECT_SHIFT) & PIPE_SET_SELECT_MASK;
 56	config &= ~HIGH_SPD_EN_N_SHIFT;
 
 57
 58	if (little)
 59		config |= BIT(LITTLE_ENDIAN_MODE_SHIFT);
 
 
 60
 61	return config;
 62}
 63
 64void qce_cpu_to_be32p_array(__be32 *dst, const u8 *src, unsigned int len)
 65{
 66	__be32 *d = dst;
 67	const u8 *s = src;
 68	unsigned int n;
 69
 70	n = len / sizeof(u32);
 71	for (; n > 0; n--) {
 72		*d = cpu_to_be32p((const __u32 *) s);
 73		s += sizeof(__u32);
 74		d++;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 75	}
 76}
 77
 78static void qce_setup_config(struct qce_device *qce)
 79{
 80	u32 config;
 81
 82	/* get big endianness */
 83	config = qce_config_reg(qce, 0);
 84
 85	/* clear status */
 86	qce_write(qce, REG_STATUS, 0);
 87	qce_write(qce, REG_CONFIG, config);
 88}
 89
 90static inline void qce_crypto_go(struct qce_device *qce)
 91{
 92	qce_write(qce, REG_GOPROC, BIT(GO_SHIFT) | BIT(RESULTS_DUMP_SHIFT));
 93}
 94
 95#ifdef CONFIG_CRYPTO_DEV_QCE_SHA
 96static u32 qce_auth_cfg(unsigned long flags, u32 key_size)
 97{
 98	u32 cfg = 0;
 99
100	if (IS_AES(flags) && (IS_CCM(flags) || IS_CMAC(flags)))
101		cfg |= AUTH_ALG_AES << AUTH_ALG_SHIFT;
102	else
103		cfg |= AUTH_ALG_SHA << AUTH_ALG_SHIFT;
104
105	if (IS_CCM(flags) || IS_CMAC(flags)) {
106		if (key_size == AES_KEYSIZE_128)
107			cfg |= AUTH_KEY_SZ_AES128 << AUTH_KEY_SIZE_SHIFT;
108		else if (key_size == AES_KEYSIZE_256)
109			cfg |= AUTH_KEY_SZ_AES256 << AUTH_KEY_SIZE_SHIFT;
110	}
111
112	if (IS_SHA1(flags) || IS_SHA1_HMAC(flags))
113		cfg |= AUTH_SIZE_SHA1 << AUTH_SIZE_SHIFT;
114	else if (IS_SHA256(flags) || IS_SHA256_HMAC(flags))
115		cfg |= AUTH_SIZE_SHA256 << AUTH_SIZE_SHIFT;
116	else if (IS_CMAC(flags))
117		cfg |= AUTH_SIZE_ENUM_16_BYTES << AUTH_SIZE_SHIFT;
118
119	if (IS_SHA1(flags) || IS_SHA256(flags))
120		cfg |= AUTH_MODE_HASH << AUTH_MODE_SHIFT;
121	else if (IS_SHA1_HMAC(flags) || IS_SHA256_HMAC(flags) ||
122		 IS_CBC(flags) || IS_CTR(flags))
123		cfg |= AUTH_MODE_HMAC << AUTH_MODE_SHIFT;
124	else if (IS_AES(flags) && IS_CCM(flags))
125		cfg |= AUTH_MODE_CCM << AUTH_MODE_SHIFT;
126	else if (IS_AES(flags) && IS_CMAC(flags))
127		cfg |= AUTH_MODE_CMAC << AUTH_MODE_SHIFT;
128
129	if (IS_SHA(flags) || IS_SHA_HMAC(flags))
130		cfg |= AUTH_POS_BEFORE << AUTH_POS_SHIFT;
131
132	if (IS_CCM(flags))
133		cfg |= QCE_MAX_NONCE_WORDS << AUTH_NONCE_NUM_WORDS_SHIFT;
134
135	if (IS_CBC(flags) || IS_CTR(flags) || IS_CCM(flags) ||
136	    IS_CMAC(flags))
137		cfg |= BIT(AUTH_LAST_SHIFT) | BIT(AUTH_FIRST_SHIFT);
138
139	return cfg;
140}
141
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
142static int qce_setup_regs_ahash(struct crypto_async_request *async_req,
143				u32 totallen, u32 offset)
144{
145	struct ahash_request *req = ahash_request_cast(async_req);
146	struct crypto_ahash *ahash = __crypto_ahash_cast(async_req->tfm);
147	struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
148	struct qce_alg_template *tmpl = to_ahash_tmpl(async_req->tfm);
149	struct qce_device *qce = tmpl->qce;
150	unsigned int digestsize = crypto_ahash_digestsize(ahash);
151	unsigned int blocksize = crypto_tfm_alg_blocksize(async_req->tfm);
152	__be32 auth[SHA256_DIGEST_SIZE / sizeof(__be32)] = {0};
153	__be32 mackey[QCE_SHA_HMAC_KEY_SIZE / sizeof(__be32)] = {0};
154	u32 auth_cfg = 0, config;
155	unsigned int iv_words;
156
157	/* if not the last, the size has to be on the block boundary */
158	if (!rctx->last_blk && req->nbytes % blocksize)
159		return -EINVAL;
160
161	qce_setup_config(qce);
162
163	if (IS_CMAC(rctx->flags)) {
164		qce_write(qce, REG_AUTH_SEG_CFG, 0);
165		qce_write(qce, REG_ENCR_SEG_CFG, 0);
166		qce_write(qce, REG_ENCR_SEG_SIZE, 0);
167		qce_clear_array(qce, REG_AUTH_IV0, 16);
168		qce_clear_array(qce, REG_AUTH_KEY0, 16);
169		qce_clear_array(qce, REG_AUTH_BYTECNT0, 4);
170
171		auth_cfg = qce_auth_cfg(rctx->flags, rctx->authklen);
172	}
173
174	if (IS_SHA_HMAC(rctx->flags) || IS_CMAC(rctx->flags)) {
175		u32 authkey_words = rctx->authklen / sizeof(u32);
176
177		qce_cpu_to_be32p_array(mackey, rctx->authkey, rctx->authklen);
178		qce_write_array(qce, REG_AUTH_KEY0, (u32 *)mackey,
179				authkey_words);
180	}
181
182	if (IS_CMAC(rctx->flags))
183		goto go_proc;
184
185	if (rctx->first_blk)
186		memcpy(auth, rctx->digest, digestsize);
187	else
188		qce_cpu_to_be32p_array(auth, rctx->digest, digestsize);
189
190	iv_words = (IS_SHA1(rctx->flags) || IS_SHA1_HMAC(rctx->flags)) ? 5 : 8;
191	qce_write_array(qce, REG_AUTH_IV0, (u32 *)auth, iv_words);
192
193	if (rctx->first_blk)
194		qce_clear_array(qce, REG_AUTH_BYTECNT0, 4);
195	else
196		qce_write_array(qce, REG_AUTH_BYTECNT0,
197				(u32 *)rctx->byte_count, 2);
198
199	auth_cfg = qce_auth_cfg(rctx->flags, 0);
200
201	if (rctx->last_blk)
202		auth_cfg |= BIT(AUTH_LAST_SHIFT);
203	else
204		auth_cfg &= ~BIT(AUTH_LAST_SHIFT);
205
206	if (rctx->first_blk)
207		auth_cfg |= BIT(AUTH_FIRST_SHIFT);
208	else
209		auth_cfg &= ~BIT(AUTH_FIRST_SHIFT);
210
211go_proc:
212	qce_write(qce, REG_AUTH_SEG_CFG, auth_cfg);
213	qce_write(qce, REG_AUTH_SEG_SIZE, req->nbytes);
214	qce_write(qce, REG_AUTH_SEG_START, 0);
215	qce_write(qce, REG_ENCR_SEG_CFG, 0);
216	qce_write(qce, REG_SEG_SIZE, req->nbytes);
217
218	/* get little endianness */
219	config = qce_config_reg(qce, 1);
220	qce_write(qce, REG_CONFIG, config);
221
222	qce_crypto_go(qce);
223
224	return 0;
225}
226#endif
227
228#ifdef CONFIG_CRYPTO_DEV_QCE_SKCIPHER
229static u32 qce_encr_cfg(unsigned long flags, u32 aes_key_size)
230{
231	u32 cfg = 0;
232
233	if (IS_AES(flags)) {
234		if (aes_key_size == AES_KEYSIZE_128)
235			cfg |= ENCR_KEY_SZ_AES128 << ENCR_KEY_SZ_SHIFT;
236		else if (aes_key_size == AES_KEYSIZE_256)
237			cfg |= ENCR_KEY_SZ_AES256 << ENCR_KEY_SZ_SHIFT;
238	}
239
240	if (IS_AES(flags))
241		cfg |= ENCR_ALG_AES << ENCR_ALG_SHIFT;
242	else if (IS_DES(flags) || IS_3DES(flags))
243		cfg |= ENCR_ALG_DES << ENCR_ALG_SHIFT;
244
245	if (IS_DES(flags))
246		cfg |= ENCR_KEY_SZ_DES << ENCR_KEY_SZ_SHIFT;
247
248	if (IS_3DES(flags))
249		cfg |= ENCR_KEY_SZ_3DES << ENCR_KEY_SZ_SHIFT;
250
251	switch (flags & QCE_MODE_MASK) {
252	case QCE_MODE_ECB:
253		cfg |= ENCR_MODE_ECB << ENCR_MODE_SHIFT;
254		break;
255	case QCE_MODE_CBC:
256		cfg |= ENCR_MODE_CBC << ENCR_MODE_SHIFT;
257		break;
258	case QCE_MODE_CTR:
259		cfg |= ENCR_MODE_CTR << ENCR_MODE_SHIFT;
260		break;
261	case QCE_MODE_XTS:
262		cfg |= ENCR_MODE_XTS << ENCR_MODE_SHIFT;
263		break;
264	case QCE_MODE_CCM:
265		cfg |= ENCR_MODE_CCM << ENCR_MODE_SHIFT;
266		cfg |= LAST_CCM_XFR << LAST_CCM_SHIFT;
267		break;
268	default:
269		return ~0;
270	}
271
272	return cfg;
273}
274
275static void qce_xts_swapiv(__be32 *dst, const u8 *src, unsigned int ivsize)
276{
277	u8 swap[QCE_AES_IV_LENGTH];
278	u32 i, j;
279
280	if (ivsize > QCE_AES_IV_LENGTH)
281		return;
282
283	memset(swap, 0, QCE_AES_IV_LENGTH);
284
285	for (i = (QCE_AES_IV_LENGTH - ivsize), j = ivsize - 1;
286	     i < QCE_AES_IV_LENGTH; i++, j--)
287		swap[i] = src[j];
288
289	qce_cpu_to_be32p_array(dst, swap, QCE_AES_IV_LENGTH);
290}
291
292static void qce_xtskey(struct qce_device *qce, const u8 *enckey,
293		       unsigned int enckeylen, unsigned int cryptlen)
294{
295	u32 xtskey[QCE_MAX_CIPHER_KEY_SIZE / sizeof(u32)] = {0};
296	unsigned int xtsklen = enckeylen / (2 * sizeof(u32));
297	unsigned int xtsdusize;
298
299	qce_cpu_to_be32p_array((__be32 *)xtskey, enckey + enckeylen / 2,
300			       enckeylen / 2);
301	qce_write_array(qce, REG_ENCR_XTS_KEY0, xtskey, xtsklen);
302
303	/* xts du size 512B */
304	xtsdusize = min_t(u32, QCE_SECTOR_SIZE, cryptlen);
305	qce_write(qce, REG_ENCR_XTS_DU_SIZE, xtsdusize);
306}
307
308static int qce_setup_regs_skcipher(struct crypto_async_request *async_req,
309				     u32 totallen, u32 offset)
310{
311	struct skcipher_request *req = skcipher_request_cast(async_req);
312	struct qce_cipher_reqctx *rctx = skcipher_request_ctx(req);
313	struct qce_cipher_ctx *ctx = crypto_tfm_ctx(async_req->tfm);
314	struct qce_alg_template *tmpl = to_cipher_tmpl(crypto_skcipher_reqtfm(req));
315	struct qce_device *qce = tmpl->qce;
316	__be32 enckey[QCE_MAX_CIPHER_KEY_SIZE / sizeof(__be32)] = {0};
317	__be32 enciv[QCE_MAX_IV_SIZE / sizeof(__be32)] = {0};
318	unsigned int enckey_words, enciv_words;
319	unsigned int keylen;
320	u32 encr_cfg = 0, auth_cfg = 0, config;
321	unsigned int ivsize = rctx->ivsize;
322	unsigned long flags = rctx->flags;
323
324	qce_setup_config(qce);
325
326	if (IS_XTS(flags))
327		keylen = ctx->enc_keylen / 2;
328	else
329		keylen = ctx->enc_keylen;
330
331	qce_cpu_to_be32p_array(enckey, ctx->enc_key, keylen);
332	enckey_words = keylen / sizeof(u32);
333
334	qce_write(qce, REG_AUTH_SEG_CFG, auth_cfg);
335
336	encr_cfg = qce_encr_cfg(flags, keylen);
337
338	if (IS_DES(flags)) {
339		enciv_words = 2;
340		enckey_words = 2;
341	} else if (IS_3DES(flags)) {
342		enciv_words = 2;
343		enckey_words = 6;
344	} else if (IS_AES(flags)) {
345		if (IS_XTS(flags))
346			qce_xtskey(qce, ctx->enc_key, ctx->enc_keylen,
347				   rctx->cryptlen);
348		enciv_words = 4;
349	} else {
350		return -EINVAL;
351	}
352
353	qce_write_array(qce, REG_ENCR_KEY0, (u32 *)enckey, enckey_words);
354
355	if (!IS_ECB(flags)) {
356		if (IS_XTS(flags))
357			qce_xts_swapiv(enciv, rctx->iv, ivsize);
358		else
359			qce_cpu_to_be32p_array(enciv, rctx->iv, ivsize);
360
361		qce_write_array(qce, REG_CNTR0_IV0, (u32 *)enciv, enciv_words);
362	}
363
364	if (IS_ENCRYPT(flags))
365		encr_cfg |= BIT(ENCODE_SHIFT);
366
367	qce_write(qce, REG_ENCR_SEG_CFG, encr_cfg);
368	qce_write(qce, REG_ENCR_SEG_SIZE, rctx->cryptlen);
369	qce_write(qce, REG_ENCR_SEG_START, offset & 0xffff);
370
371	if (IS_CTR(flags)) {
372		qce_write(qce, REG_CNTR_MASK, ~0);
373		qce_write(qce, REG_CNTR_MASK0, ~0);
374		qce_write(qce, REG_CNTR_MASK1, ~0);
375		qce_write(qce, REG_CNTR_MASK2, ~0);
376	}
377
378	qce_write(qce, REG_SEG_SIZE, totallen);
379
380	/* get little endianness */
381	config = qce_config_reg(qce, 1);
382	qce_write(qce, REG_CONFIG, config);
383
384	qce_crypto_go(qce);
385
386	return 0;
387}
388#endif
389
390int qce_start(struct crypto_async_request *async_req, u32 type, u32 totallen,
391	      u32 offset)
392{
393	switch (type) {
394#ifdef CONFIG_CRYPTO_DEV_QCE_SKCIPHER
395	case CRYPTO_ALG_TYPE_SKCIPHER:
396		return qce_setup_regs_skcipher(async_req, totallen, offset);
397#endif
398#ifdef CONFIG_CRYPTO_DEV_QCE_SHA
399	case CRYPTO_ALG_TYPE_AHASH:
400		return qce_setup_regs_ahash(async_req, totallen, offset);
401#endif
402	default:
403		return -EINVAL;
404	}
405}
406
407#define STATUS_ERRORS	\
408		(BIT(SW_ERR_SHIFT) | BIT(AXI_ERR_SHIFT) | BIT(HSD_ERR_SHIFT))
409
410int qce_check_status(struct qce_device *qce, u32 *status)
411{
412	int ret = 0;
413
414	*status = qce_read(qce, REG_STATUS);
415
416	/*
417	 * Don't use result dump status. The operation may not be complete.
418	 * Instead, use the status we just read from device. In case, we need to
419	 * use result_status from result dump the result_status needs to be byte
420	 * swapped, since we set the device to little endian.
421	 */
422	if (*status & STATUS_ERRORS || !(*status & BIT(OPERATION_DONE_SHIFT)))
423		ret = -ENXIO;
424
425	return ret;
426}
427
428void qce_get_version(struct qce_device *qce, u32 *major, u32 *minor, u32 *step)
429{
430	u32 val;
431
432	val = qce_read(qce, REG_VERSION);
433	*major = (val & CORE_MAJOR_REV_MASK) >> CORE_MAJOR_REV_SHIFT;
434	*minor = (val & CORE_MINOR_REV_MASK) >> CORE_MINOR_REV_SHIFT;
435	*step = (val & CORE_STEP_REV_MASK) >> CORE_STEP_REV_SHIFT;
436}
v4.10.11
 
  1/*
  2 * Copyright (c) 2012-2014, The Linux Foundation. All rights reserved.
  3 *
  4 * This program is free software; you can redistribute it and/or modify
  5 * it under the terms of the GNU General Public License version 2 and
  6 * only version 2 as published by the Free Software Foundation.
  7 *
  8 * This program is distributed in the hope that it will be useful,
  9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 11 * GNU General Public License for more details.
 12 */
 13
 14#include <linux/err.h>
 15#include <linux/interrupt.h>
 16#include <linux/types.h>
 17#include <crypto/scatterwalk.h>
 18#include <crypto/sha.h>
 19
 20#include "cipher.h"
 21#include "common.h"
 22#include "core.h"
 23#include "regs-v5.h"
 24#include "sha.h"
 25
 26#define QCE_SECTOR_SIZE		512
 27
 28static inline u32 qce_read(struct qce_device *qce, u32 offset)
 29{
 30	return readl(qce->base + offset);
 31}
 32
 33static inline void qce_write(struct qce_device *qce, u32 offset, u32 val)
 34{
 35	writel(val, qce->base + offset);
 36}
 37
 38static inline void qce_write_array(struct qce_device *qce, u32 offset,
 39				   const u32 *val, unsigned int len)
 40{
 41	int i;
 42
 43	for (i = 0; i < len; i++)
 44		qce_write(qce, offset + i * sizeof(u32), val[i]);
 45}
 46
 47static inline void
 48qce_clear_array(struct qce_device *qce, u32 offset, unsigned int len)
 49{
 50	int i;
 51
 52	for (i = 0; i < len; i++)
 53		qce_write(qce, offset + i * sizeof(u32), 0);
 54}
 55
 56static u32 qce_encr_cfg(unsigned long flags, u32 aes_key_size)
 57{
 58	u32 cfg = 0;
 
 
 59
 60	if (IS_AES(flags)) {
 61		if (aes_key_size == AES_KEYSIZE_128)
 62			cfg |= ENCR_KEY_SZ_AES128 << ENCR_KEY_SZ_SHIFT;
 63		else if (aes_key_size == AES_KEYSIZE_256)
 64			cfg |= ENCR_KEY_SZ_AES256 << ENCR_KEY_SZ_SHIFT;
 65	}
 66
 67	if (IS_AES(flags))
 68		cfg |= ENCR_ALG_AES << ENCR_ALG_SHIFT;
 69	else if (IS_DES(flags) || IS_3DES(flags))
 70		cfg |= ENCR_ALG_DES << ENCR_ALG_SHIFT;
 71
 72	if (IS_DES(flags))
 73		cfg |= ENCR_KEY_SZ_DES << ENCR_KEY_SZ_SHIFT;
 74
 75	if (IS_3DES(flags))
 76		cfg |= ENCR_KEY_SZ_3DES << ENCR_KEY_SZ_SHIFT;
 
 
 
 77
 78	switch (flags & QCE_MODE_MASK) {
 79	case QCE_MODE_ECB:
 80		cfg |= ENCR_MODE_ECB << ENCR_MODE_SHIFT;
 81		break;
 82	case QCE_MODE_CBC:
 83		cfg |= ENCR_MODE_CBC << ENCR_MODE_SHIFT;
 84		break;
 85	case QCE_MODE_CTR:
 86		cfg |= ENCR_MODE_CTR << ENCR_MODE_SHIFT;
 87		break;
 88	case QCE_MODE_XTS:
 89		cfg |= ENCR_MODE_XTS << ENCR_MODE_SHIFT;
 90		break;
 91	case QCE_MODE_CCM:
 92		cfg |= ENCR_MODE_CCM << ENCR_MODE_SHIFT;
 93		cfg |= LAST_CCM_XFR << LAST_CCM_SHIFT;
 94		break;
 95	default:
 96		return ~0;
 97	}
 
 98
 99	return cfg;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
100}
101
 
102static u32 qce_auth_cfg(unsigned long flags, u32 key_size)
103{
104	u32 cfg = 0;
105
106	if (IS_AES(flags) && (IS_CCM(flags) || IS_CMAC(flags)))
107		cfg |= AUTH_ALG_AES << AUTH_ALG_SHIFT;
108	else
109		cfg |= AUTH_ALG_SHA << AUTH_ALG_SHIFT;
110
111	if (IS_CCM(flags) || IS_CMAC(flags)) {
112		if (key_size == AES_KEYSIZE_128)
113			cfg |= AUTH_KEY_SZ_AES128 << AUTH_KEY_SIZE_SHIFT;
114		else if (key_size == AES_KEYSIZE_256)
115			cfg |= AUTH_KEY_SZ_AES256 << AUTH_KEY_SIZE_SHIFT;
116	}
117
118	if (IS_SHA1(flags) || IS_SHA1_HMAC(flags))
119		cfg |= AUTH_SIZE_SHA1 << AUTH_SIZE_SHIFT;
120	else if (IS_SHA256(flags) || IS_SHA256_HMAC(flags))
121		cfg |= AUTH_SIZE_SHA256 << AUTH_SIZE_SHIFT;
122	else if (IS_CMAC(flags))
123		cfg |= AUTH_SIZE_ENUM_16_BYTES << AUTH_SIZE_SHIFT;
124
125	if (IS_SHA1(flags) || IS_SHA256(flags))
126		cfg |= AUTH_MODE_HASH << AUTH_MODE_SHIFT;
127	else if (IS_SHA1_HMAC(flags) || IS_SHA256_HMAC(flags) ||
128		 IS_CBC(flags) || IS_CTR(flags))
129		cfg |= AUTH_MODE_HMAC << AUTH_MODE_SHIFT;
130	else if (IS_AES(flags) && IS_CCM(flags))
131		cfg |= AUTH_MODE_CCM << AUTH_MODE_SHIFT;
132	else if (IS_AES(flags) && IS_CMAC(flags))
133		cfg |= AUTH_MODE_CMAC << AUTH_MODE_SHIFT;
134
135	if (IS_SHA(flags) || IS_SHA_HMAC(flags))
136		cfg |= AUTH_POS_BEFORE << AUTH_POS_SHIFT;
137
138	if (IS_CCM(flags))
139		cfg |= QCE_MAX_NONCE_WORDS << AUTH_NONCE_NUM_WORDS_SHIFT;
140
141	if (IS_CBC(flags) || IS_CTR(flags) || IS_CCM(flags) ||
142	    IS_CMAC(flags))
143		cfg |= BIT(AUTH_LAST_SHIFT) | BIT(AUTH_FIRST_SHIFT);
144
145	return cfg;
146}
147
148static u32 qce_config_reg(struct qce_device *qce, int little)
149{
150	u32 beats = (qce->burst_size >> 3) - 1;
151	u32 pipe_pair = qce->pipe_pair_id;
152	u32 config;
153
154	config = (beats << REQ_SIZE_SHIFT) & REQ_SIZE_MASK;
155	config |= BIT(MASK_DOUT_INTR_SHIFT) | BIT(MASK_DIN_INTR_SHIFT) |
156		  BIT(MASK_OP_DONE_INTR_SHIFT) | BIT(MASK_ERR_INTR_SHIFT);
157	config |= (pipe_pair << PIPE_SET_SELECT_SHIFT) & PIPE_SET_SELECT_MASK;
158	config &= ~HIGH_SPD_EN_N_SHIFT;
159
160	if (little)
161		config |= BIT(LITTLE_ENDIAN_MODE_SHIFT);
162
163	return config;
164}
165
166void qce_cpu_to_be32p_array(__be32 *dst, const u8 *src, unsigned int len)
167{
168	__be32 *d = dst;
169	const u8 *s = src;
170	unsigned int n;
171
172	n = len / sizeof(u32);
173	for (; n > 0; n--) {
174		*d = cpu_to_be32p((const __u32 *) s);
175		s += sizeof(__u32);
176		d++;
177	}
178}
179
180static void qce_xts_swapiv(__be32 *dst, const u8 *src, unsigned int ivsize)
181{
182	u8 swap[QCE_AES_IV_LENGTH];
183	u32 i, j;
184
185	if (ivsize > QCE_AES_IV_LENGTH)
186		return;
187
188	memset(swap, 0, QCE_AES_IV_LENGTH);
189
190	for (i = (QCE_AES_IV_LENGTH - ivsize), j = ivsize - 1;
191	     i < QCE_AES_IV_LENGTH; i++, j--)
192		swap[i] = src[j];
193
194	qce_cpu_to_be32p_array(dst, swap, QCE_AES_IV_LENGTH);
195}
196
197static void qce_xtskey(struct qce_device *qce, const u8 *enckey,
198		       unsigned int enckeylen, unsigned int cryptlen)
199{
200	u32 xtskey[QCE_MAX_CIPHER_KEY_SIZE / sizeof(u32)] = {0};
201	unsigned int xtsklen = enckeylen / (2 * sizeof(u32));
202	unsigned int xtsdusize;
203
204	qce_cpu_to_be32p_array((__be32 *)xtskey, enckey + enckeylen / 2,
205			       enckeylen / 2);
206	qce_write_array(qce, REG_ENCR_XTS_KEY0, xtskey, xtsklen);
207
208	/* xts du size 512B */
209	xtsdusize = min_t(u32, QCE_SECTOR_SIZE, cryptlen);
210	qce_write(qce, REG_ENCR_XTS_DU_SIZE, xtsdusize);
211}
212
213static void qce_setup_config(struct qce_device *qce)
214{
215	u32 config;
216
217	/* get big endianness */
218	config = qce_config_reg(qce, 0);
219
220	/* clear status */
221	qce_write(qce, REG_STATUS, 0);
222	qce_write(qce, REG_CONFIG, config);
223}
224
225static inline void qce_crypto_go(struct qce_device *qce)
226{
227	qce_write(qce, REG_GOPROC, BIT(GO_SHIFT) | BIT(RESULTS_DUMP_SHIFT));
228}
229
230static int qce_setup_regs_ahash(struct crypto_async_request *async_req,
231				u32 totallen, u32 offset)
232{
233	struct ahash_request *req = ahash_request_cast(async_req);
234	struct crypto_ahash *ahash = __crypto_ahash_cast(async_req->tfm);
235	struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
236	struct qce_alg_template *tmpl = to_ahash_tmpl(async_req->tfm);
237	struct qce_device *qce = tmpl->qce;
238	unsigned int digestsize = crypto_ahash_digestsize(ahash);
239	unsigned int blocksize = crypto_tfm_alg_blocksize(async_req->tfm);
240	__be32 auth[SHA256_DIGEST_SIZE / sizeof(__be32)] = {0};
241	__be32 mackey[QCE_SHA_HMAC_KEY_SIZE / sizeof(__be32)] = {0};
242	u32 auth_cfg = 0, config;
243	unsigned int iv_words;
244
245	/* if not the last, the size has to be on the block boundary */
246	if (!rctx->last_blk && req->nbytes % blocksize)
247		return -EINVAL;
248
249	qce_setup_config(qce);
250
251	if (IS_CMAC(rctx->flags)) {
252		qce_write(qce, REG_AUTH_SEG_CFG, 0);
253		qce_write(qce, REG_ENCR_SEG_CFG, 0);
254		qce_write(qce, REG_ENCR_SEG_SIZE, 0);
255		qce_clear_array(qce, REG_AUTH_IV0, 16);
256		qce_clear_array(qce, REG_AUTH_KEY0, 16);
257		qce_clear_array(qce, REG_AUTH_BYTECNT0, 4);
258
259		auth_cfg = qce_auth_cfg(rctx->flags, rctx->authklen);
260	}
261
262	if (IS_SHA_HMAC(rctx->flags) || IS_CMAC(rctx->flags)) {
263		u32 authkey_words = rctx->authklen / sizeof(u32);
264
265		qce_cpu_to_be32p_array(mackey, rctx->authkey, rctx->authklen);
266		qce_write_array(qce, REG_AUTH_KEY0, (u32 *)mackey,
267				authkey_words);
268	}
269
270	if (IS_CMAC(rctx->flags))
271		goto go_proc;
272
273	if (rctx->first_blk)
274		memcpy(auth, rctx->digest, digestsize);
275	else
276		qce_cpu_to_be32p_array(auth, rctx->digest, digestsize);
277
278	iv_words = (IS_SHA1(rctx->flags) || IS_SHA1_HMAC(rctx->flags)) ? 5 : 8;
279	qce_write_array(qce, REG_AUTH_IV0, (u32 *)auth, iv_words);
280
281	if (rctx->first_blk)
282		qce_clear_array(qce, REG_AUTH_BYTECNT0, 4);
283	else
284		qce_write_array(qce, REG_AUTH_BYTECNT0,
285				(u32 *)rctx->byte_count, 2);
286
287	auth_cfg = qce_auth_cfg(rctx->flags, 0);
288
289	if (rctx->last_blk)
290		auth_cfg |= BIT(AUTH_LAST_SHIFT);
291	else
292		auth_cfg &= ~BIT(AUTH_LAST_SHIFT);
293
294	if (rctx->first_blk)
295		auth_cfg |= BIT(AUTH_FIRST_SHIFT);
296	else
297		auth_cfg &= ~BIT(AUTH_FIRST_SHIFT);
298
299go_proc:
300	qce_write(qce, REG_AUTH_SEG_CFG, auth_cfg);
301	qce_write(qce, REG_AUTH_SEG_SIZE, req->nbytes);
302	qce_write(qce, REG_AUTH_SEG_START, 0);
303	qce_write(qce, REG_ENCR_SEG_CFG, 0);
304	qce_write(qce, REG_SEG_SIZE, req->nbytes);
305
306	/* get little endianness */
307	config = qce_config_reg(qce, 1);
308	qce_write(qce, REG_CONFIG, config);
309
310	qce_crypto_go(qce);
311
312	return 0;
313}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
314
315static int qce_setup_regs_ablkcipher(struct crypto_async_request *async_req,
316				     u32 totallen, u32 offset)
317{
318	struct ablkcipher_request *req = ablkcipher_request_cast(async_req);
319	struct qce_cipher_reqctx *rctx = ablkcipher_request_ctx(req);
320	struct qce_cipher_ctx *ctx = crypto_tfm_ctx(async_req->tfm);
321	struct qce_alg_template *tmpl = to_cipher_tmpl(async_req->tfm);
322	struct qce_device *qce = tmpl->qce;
323	__be32 enckey[QCE_MAX_CIPHER_KEY_SIZE / sizeof(__be32)] = {0};
324	__be32 enciv[QCE_MAX_IV_SIZE / sizeof(__be32)] = {0};
325	unsigned int enckey_words, enciv_words;
326	unsigned int keylen;
327	u32 encr_cfg = 0, auth_cfg = 0, config;
328	unsigned int ivsize = rctx->ivsize;
329	unsigned long flags = rctx->flags;
330
331	qce_setup_config(qce);
332
333	if (IS_XTS(flags))
334		keylen = ctx->enc_keylen / 2;
335	else
336		keylen = ctx->enc_keylen;
337
338	qce_cpu_to_be32p_array(enckey, ctx->enc_key, keylen);
339	enckey_words = keylen / sizeof(u32);
340
341	qce_write(qce, REG_AUTH_SEG_CFG, auth_cfg);
342
343	encr_cfg = qce_encr_cfg(flags, keylen);
344
345	if (IS_DES(flags)) {
346		enciv_words = 2;
347		enckey_words = 2;
348	} else if (IS_3DES(flags)) {
349		enciv_words = 2;
350		enckey_words = 6;
351	} else if (IS_AES(flags)) {
352		if (IS_XTS(flags))
353			qce_xtskey(qce, ctx->enc_key, ctx->enc_keylen,
354				   rctx->cryptlen);
355		enciv_words = 4;
356	} else {
357		return -EINVAL;
358	}
359
360	qce_write_array(qce, REG_ENCR_KEY0, (u32 *)enckey, enckey_words);
361
362	if (!IS_ECB(flags)) {
363		if (IS_XTS(flags))
364			qce_xts_swapiv(enciv, rctx->iv, ivsize);
365		else
366			qce_cpu_to_be32p_array(enciv, rctx->iv, ivsize);
367
368		qce_write_array(qce, REG_CNTR0_IV0, (u32 *)enciv, enciv_words);
369	}
370
371	if (IS_ENCRYPT(flags))
372		encr_cfg |= BIT(ENCODE_SHIFT);
373
374	qce_write(qce, REG_ENCR_SEG_CFG, encr_cfg);
375	qce_write(qce, REG_ENCR_SEG_SIZE, rctx->cryptlen);
376	qce_write(qce, REG_ENCR_SEG_START, offset & 0xffff);
377
378	if (IS_CTR(flags)) {
379		qce_write(qce, REG_CNTR_MASK, ~0);
380		qce_write(qce, REG_CNTR_MASK0, ~0);
381		qce_write(qce, REG_CNTR_MASK1, ~0);
382		qce_write(qce, REG_CNTR_MASK2, ~0);
383	}
384
385	qce_write(qce, REG_SEG_SIZE, totallen);
386
387	/* get little endianness */
388	config = qce_config_reg(qce, 1);
389	qce_write(qce, REG_CONFIG, config);
390
391	qce_crypto_go(qce);
392
393	return 0;
394}
 
395
396int qce_start(struct crypto_async_request *async_req, u32 type, u32 totallen,
397	      u32 offset)
398{
399	switch (type) {
400	case CRYPTO_ALG_TYPE_ABLKCIPHER:
401		return qce_setup_regs_ablkcipher(async_req, totallen, offset);
 
 
 
402	case CRYPTO_ALG_TYPE_AHASH:
403		return qce_setup_regs_ahash(async_req, totallen, offset);
 
404	default:
405		return -EINVAL;
406	}
407}
408
409#define STATUS_ERRORS	\
410		(BIT(SW_ERR_SHIFT) | BIT(AXI_ERR_SHIFT) | BIT(HSD_ERR_SHIFT))
411
412int qce_check_status(struct qce_device *qce, u32 *status)
413{
414	int ret = 0;
415
416	*status = qce_read(qce, REG_STATUS);
417
418	/*
419	 * Don't use result dump status. The operation may not be complete.
420	 * Instead, use the status we just read from device. In case, we need to
421	 * use result_status from result dump the result_status needs to be byte
422	 * swapped, since we set the device to little endian.
423	 */
424	if (*status & STATUS_ERRORS || !(*status & BIT(OPERATION_DONE_SHIFT)))
425		ret = -ENXIO;
426
427	return ret;
428}
429
430void qce_get_version(struct qce_device *qce, u32 *major, u32 *minor, u32 *step)
431{
432	u32 val;
433
434	val = qce_read(qce, REG_VERSION);
435	*major = (val & CORE_MAJOR_REV_MASK) >> CORE_MAJOR_REV_SHIFT;
436	*minor = (val & CORE_MINOR_REV_MASK) >> CORE_MINOR_REV_SHIFT;
437	*step = (val & CORE_STEP_REV_MASK) >> CORE_STEP_REV_SHIFT;
438}