Loading...
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
7 * Copyright (C) 1995, 1996 Paul M. Antoine
8 * Copyright (C) 1998 Ulf Carlsson
9 * Copyright (C) 1999 Silicon Graphics, Inc.
10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
11 * Copyright (C) 2002, 2003, 2004, 2005, 2007 Maciej W. Rozycki
12 * Copyright (C) 2000, 2001, 2012 MIPS Technologies, Inc. All rights reserved.
13 * Copyright (C) 2014, Imagination Technologies Ltd.
14 */
15#include <linux/bitops.h>
16#include <linux/bug.h>
17#include <linux/compiler.h>
18#include <linux/context_tracking.h>
19#include <linux/cpu_pm.h>
20#include <linux/kexec.h>
21#include <linux/init.h>
22#include <linux/kernel.h>
23#include <linux/module.h>
24#include <linux/extable.h>
25#include <linux/mm.h>
26#include <linux/sched/mm.h>
27#include <linux/sched/debug.h>
28#include <linux/smp.h>
29#include <linux/spinlock.h>
30#include <linux/kallsyms.h>
31#include <linux/memblock.h>
32#include <linux/interrupt.h>
33#include <linux/ptrace.h>
34#include <linux/kgdb.h>
35#include <linux/kdebug.h>
36#include <linux/kprobes.h>
37#include <linux/notifier.h>
38#include <linux/kdb.h>
39#include <linux/irq.h>
40#include <linux/perf_event.h>
41
42#include <asm/addrspace.h>
43#include <asm/bootinfo.h>
44#include <asm/branch.h>
45#include <asm/break.h>
46#include <asm/cop2.h>
47#include <asm/cpu.h>
48#include <asm/cpu-type.h>
49#include <asm/dsp.h>
50#include <asm/fpu.h>
51#include <asm/fpu_emulator.h>
52#include <asm/idle.h>
53#include <asm/isa-rev.h>
54#include <asm/mips-cps.h>
55#include <asm/mips-r2-to-r6-emul.h>
56#include <asm/mipsregs.h>
57#include <asm/mipsmtregs.h>
58#include <asm/module.h>
59#include <asm/msa.h>
60#include <asm/ptrace.h>
61#include <asm/sections.h>
62#include <asm/siginfo.h>
63#include <asm/tlbdebug.h>
64#include <asm/traps.h>
65#include <linux/uaccess.h>
66#include <asm/watch.h>
67#include <asm/mmu_context.h>
68#include <asm/types.h>
69#include <asm/stacktrace.h>
70#include <asm/tlbex.h>
71#include <asm/uasm.h>
72
73#include <asm/mach-loongson64/cpucfg-emul.h>
74
75extern void check_wait(void);
76extern asmlinkage void rollback_handle_int(void);
77extern asmlinkage void handle_int(void);
78extern asmlinkage void handle_adel(void);
79extern asmlinkage void handle_ades(void);
80extern asmlinkage void handle_ibe(void);
81extern asmlinkage void handle_dbe(void);
82extern asmlinkage void handle_sys(void);
83extern asmlinkage void handle_bp(void);
84extern asmlinkage void handle_ri(void);
85extern asmlinkage void handle_ri_rdhwr_tlbp(void);
86extern asmlinkage void handle_ri_rdhwr(void);
87extern asmlinkage void handle_cpu(void);
88extern asmlinkage void handle_ov(void);
89extern asmlinkage void handle_tr(void);
90extern asmlinkage void handle_msa_fpe(void);
91extern asmlinkage void handle_fpe(void);
92extern asmlinkage void handle_ftlb(void);
93extern asmlinkage void handle_gsexc(void);
94extern asmlinkage void handle_msa(void);
95extern asmlinkage void handle_mdmx(void);
96extern asmlinkage void handle_watch(void);
97extern asmlinkage void handle_mt(void);
98extern asmlinkage void handle_dsp(void);
99extern asmlinkage void handle_mcheck(void);
100extern asmlinkage void handle_reserved(void);
101extern void tlb_do_page_fault_0(void);
102
103void (*board_be_init)(void);
104int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
105void (*board_nmi_handler_setup)(void);
106void (*board_ejtag_handler_setup)(void);
107void (*board_bind_eic_interrupt)(int irq, int regset);
108void (*board_ebase_setup)(void);
109void(*board_cache_error_setup)(void);
110
111static void show_raw_backtrace(unsigned long reg29, const char *loglvl)
112{
113 unsigned long *sp = (unsigned long *)(reg29 & ~3);
114 unsigned long addr;
115
116 printk("%sCall Trace:", loglvl);
117#ifdef CONFIG_KALLSYMS
118 printk("%s\n", loglvl);
119#endif
120 while (!kstack_end(sp)) {
121 unsigned long __user *p =
122 (unsigned long __user *)(unsigned long)sp++;
123 if (__get_user(addr, p)) {
124 printk("%s (Bad stack address)", loglvl);
125 break;
126 }
127 if (__kernel_text_address(addr))
128 print_ip_sym(loglvl, addr);
129 }
130 printk("%s\n", loglvl);
131}
132
133#ifdef CONFIG_KALLSYMS
134int raw_show_trace;
135static int __init set_raw_show_trace(char *str)
136{
137 raw_show_trace = 1;
138 return 1;
139}
140__setup("raw_show_trace", set_raw_show_trace);
141#endif
142
143static void show_backtrace(struct task_struct *task, const struct pt_regs *regs,
144 const char *loglvl)
145{
146 unsigned long sp = regs->regs[29];
147 unsigned long ra = regs->regs[31];
148 unsigned long pc = regs->cp0_epc;
149
150 if (!task)
151 task = current;
152
153 if (raw_show_trace || user_mode(regs) || !__kernel_text_address(pc)) {
154 show_raw_backtrace(sp, loglvl);
155 return;
156 }
157 printk("%sCall Trace:\n", loglvl);
158 do {
159 print_ip_sym(loglvl, pc);
160 pc = unwind_stack(task, &sp, pc, &ra);
161 } while (pc);
162 pr_cont("\n");
163}
164
165/*
166 * This routine abuses get_user()/put_user() to reference pointers
167 * with at least a bit of error checking ...
168 */
169static void show_stacktrace(struct task_struct *task,
170 const struct pt_regs *regs, const char *loglvl)
171{
172 const int field = 2 * sizeof(unsigned long);
173 long stackdata;
174 int i;
175 unsigned long __user *sp = (unsigned long __user *)regs->regs[29];
176
177 printk("%sStack :", loglvl);
178 i = 0;
179 while ((unsigned long) sp & (PAGE_SIZE - 1)) {
180 if (i && ((i % (64 / field)) == 0)) {
181 pr_cont("\n");
182 printk("%s ", loglvl);
183 }
184 if (i > 39) {
185 pr_cont(" ...");
186 break;
187 }
188
189 if (__get_user(stackdata, sp++)) {
190 pr_cont(" (Bad stack address)");
191 break;
192 }
193
194 pr_cont(" %0*lx", field, stackdata);
195 i++;
196 }
197 pr_cont("\n");
198 show_backtrace(task, regs, loglvl);
199}
200
201void show_stack(struct task_struct *task, unsigned long *sp, const char *loglvl)
202{
203 struct pt_regs regs;
204 mm_segment_t old_fs = get_fs();
205
206 regs.cp0_status = KSU_KERNEL;
207 if (sp) {
208 regs.regs[29] = (unsigned long)sp;
209 regs.regs[31] = 0;
210 regs.cp0_epc = 0;
211 } else {
212 if (task && task != current) {
213 regs.regs[29] = task->thread.reg29;
214 regs.regs[31] = 0;
215 regs.cp0_epc = task->thread.reg31;
216 } else {
217 prepare_frametrace(®s);
218 }
219 }
220 /*
221 * show_stack() deals exclusively with kernel mode, so be sure to access
222 * the stack in the kernel (not user) address space.
223 */
224 set_fs(KERNEL_DS);
225 show_stacktrace(task, ®s, loglvl);
226 set_fs(old_fs);
227}
228
229static void show_code(unsigned int __user *pc)
230{
231 long i;
232 unsigned short __user *pc16 = NULL;
233
234 printk("Code:");
235
236 if ((unsigned long)pc & 1)
237 pc16 = (unsigned short __user *)((unsigned long)pc & ~1);
238 for(i = -3 ; i < 6 ; i++) {
239 unsigned int insn;
240 if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) {
241 pr_cont(" (Bad address in epc)\n");
242 break;
243 }
244 pr_cont("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>'));
245 }
246 pr_cont("\n");
247}
248
249static void __show_regs(const struct pt_regs *regs)
250{
251 const int field = 2 * sizeof(unsigned long);
252 unsigned int cause = regs->cp0_cause;
253 unsigned int exccode;
254 int i;
255
256 show_regs_print_info(KERN_DEFAULT);
257
258 /*
259 * Saved main processor registers
260 */
261 for (i = 0; i < 32; ) {
262 if ((i % 4) == 0)
263 printk("$%2d :", i);
264 if (i == 0)
265 pr_cont(" %0*lx", field, 0UL);
266 else if (i == 26 || i == 27)
267 pr_cont(" %*s", field, "");
268 else
269 pr_cont(" %0*lx", field, regs->regs[i]);
270
271 i++;
272 if ((i % 4) == 0)
273 pr_cont("\n");
274 }
275
276#ifdef CONFIG_CPU_HAS_SMARTMIPS
277 printk("Acx : %0*lx\n", field, regs->acx);
278#endif
279 if (MIPS_ISA_REV < 6) {
280 printk("Hi : %0*lx\n", field, regs->hi);
281 printk("Lo : %0*lx\n", field, regs->lo);
282 }
283
284 /*
285 * Saved cp0 registers
286 */
287 printk("epc : %0*lx %pS\n", field, regs->cp0_epc,
288 (void *) regs->cp0_epc);
289 printk("ra : %0*lx %pS\n", field, regs->regs[31],
290 (void *) regs->regs[31]);
291
292 printk("Status: %08x ", (uint32_t) regs->cp0_status);
293
294 if (cpu_has_3kex) {
295 if (regs->cp0_status & ST0_KUO)
296 pr_cont("KUo ");
297 if (regs->cp0_status & ST0_IEO)
298 pr_cont("IEo ");
299 if (regs->cp0_status & ST0_KUP)
300 pr_cont("KUp ");
301 if (regs->cp0_status & ST0_IEP)
302 pr_cont("IEp ");
303 if (regs->cp0_status & ST0_KUC)
304 pr_cont("KUc ");
305 if (regs->cp0_status & ST0_IEC)
306 pr_cont("IEc ");
307 } else if (cpu_has_4kex) {
308 if (regs->cp0_status & ST0_KX)
309 pr_cont("KX ");
310 if (regs->cp0_status & ST0_SX)
311 pr_cont("SX ");
312 if (regs->cp0_status & ST0_UX)
313 pr_cont("UX ");
314 switch (regs->cp0_status & ST0_KSU) {
315 case KSU_USER:
316 pr_cont("USER ");
317 break;
318 case KSU_SUPERVISOR:
319 pr_cont("SUPERVISOR ");
320 break;
321 case KSU_KERNEL:
322 pr_cont("KERNEL ");
323 break;
324 default:
325 pr_cont("BAD_MODE ");
326 break;
327 }
328 if (regs->cp0_status & ST0_ERL)
329 pr_cont("ERL ");
330 if (regs->cp0_status & ST0_EXL)
331 pr_cont("EXL ");
332 if (regs->cp0_status & ST0_IE)
333 pr_cont("IE ");
334 }
335 pr_cont("\n");
336
337 exccode = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
338 printk("Cause : %08x (ExcCode %02x)\n", cause, exccode);
339
340 if (1 <= exccode && exccode <= 5)
341 printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
342
343 printk("PrId : %08x (%s)\n", read_c0_prid(),
344 cpu_name_string());
345}
346
347/*
348 * FIXME: really the generic show_regs should take a const pointer argument.
349 */
350void show_regs(struct pt_regs *regs)
351{
352 __show_regs(regs);
353 dump_stack();
354}
355
356void show_registers(struct pt_regs *regs)
357{
358 const int field = 2 * sizeof(unsigned long);
359 mm_segment_t old_fs = get_fs();
360
361 __show_regs(regs);
362 print_modules();
363 printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
364 current->comm, current->pid, current_thread_info(), current,
365 field, current_thread_info()->tp_value);
366 if (cpu_has_userlocal) {
367 unsigned long tls;
368
369 tls = read_c0_userlocal();
370 if (tls != current_thread_info()->tp_value)
371 printk("*HwTLS: %0*lx\n", field, tls);
372 }
373
374 if (!user_mode(regs))
375 /* Necessary for getting the correct stack content */
376 set_fs(KERNEL_DS);
377 show_stacktrace(current, regs, KERN_DEFAULT);
378 show_code((unsigned int __user *) regs->cp0_epc);
379 printk("\n");
380 set_fs(old_fs);
381}
382
383static DEFINE_RAW_SPINLOCK(die_lock);
384
385void __noreturn die(const char *str, struct pt_regs *regs)
386{
387 static int die_counter;
388 int sig = SIGSEGV;
389
390 oops_enter();
391
392 if (notify_die(DIE_OOPS, str, regs, 0, current->thread.trap_nr,
393 SIGSEGV) == NOTIFY_STOP)
394 sig = 0;
395
396 console_verbose();
397 raw_spin_lock_irq(&die_lock);
398 bust_spinlocks(1);
399
400 printk("%s[#%d]:\n", str, ++die_counter);
401 show_registers(regs);
402 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
403 raw_spin_unlock_irq(&die_lock);
404
405 oops_exit();
406
407 if (in_interrupt())
408 panic("Fatal exception in interrupt");
409
410 if (panic_on_oops)
411 panic("Fatal exception");
412
413 if (regs && kexec_should_crash(current))
414 crash_kexec(regs);
415
416 do_exit(sig);
417}
418
419extern struct exception_table_entry __start___dbe_table[];
420extern struct exception_table_entry __stop___dbe_table[];
421
422__asm__(
423" .section __dbe_table, \"a\"\n"
424" .previous \n");
425
426/* Given an address, look for it in the exception tables. */
427static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
428{
429 const struct exception_table_entry *e;
430
431 e = search_extable(__start___dbe_table,
432 __stop___dbe_table - __start___dbe_table, addr);
433 if (!e)
434 e = search_module_dbetables(addr);
435 return e;
436}
437
438asmlinkage void do_be(struct pt_regs *regs)
439{
440 const int field = 2 * sizeof(unsigned long);
441 const struct exception_table_entry *fixup = NULL;
442 int data = regs->cp0_cause & 4;
443 int action = MIPS_BE_FATAL;
444 enum ctx_state prev_state;
445
446 prev_state = exception_enter();
447 /* XXX For now. Fixme, this searches the wrong table ... */
448 if (data && !user_mode(regs))
449 fixup = search_dbe_tables(exception_epc(regs));
450
451 if (fixup)
452 action = MIPS_BE_FIXUP;
453
454 if (board_be_handler)
455 action = board_be_handler(regs, fixup != NULL);
456 else
457 mips_cm_error_report();
458
459 switch (action) {
460 case MIPS_BE_DISCARD:
461 goto out;
462 case MIPS_BE_FIXUP:
463 if (fixup) {
464 regs->cp0_epc = fixup->nextinsn;
465 goto out;
466 }
467 break;
468 default:
469 break;
470 }
471
472 /*
473 * Assume it would be too dangerous to continue ...
474 */
475 printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
476 data ? "Data" : "Instruction",
477 field, regs->cp0_epc, field, regs->regs[31]);
478 if (notify_die(DIE_OOPS, "bus error", regs, 0, current->thread.trap_nr,
479 SIGBUS) == NOTIFY_STOP)
480 goto out;
481
482 die_if_kernel("Oops", regs);
483 force_sig(SIGBUS);
484
485out:
486 exception_exit(prev_state);
487}
488
489/*
490 * ll/sc, rdhwr, sync emulation
491 */
492
493#define OPCODE 0xfc000000
494#define BASE 0x03e00000
495#define RT 0x001f0000
496#define OFFSET 0x0000ffff
497#define LL 0xc0000000
498#define SC 0xe0000000
499#define SPEC0 0x00000000
500#define SPEC3 0x7c000000
501#define RD 0x0000f800
502#define FUNC 0x0000003f
503#define SYNC 0x0000000f
504#define RDHWR 0x0000003b
505
506/* microMIPS definitions */
507#define MM_POOL32A_FUNC 0xfc00ffff
508#define MM_RDHWR 0x00006b3c
509#define MM_RS 0x001f0000
510#define MM_RT 0x03e00000
511
512/*
513 * The ll_bit is cleared by r*_switch.S
514 */
515
516unsigned int ll_bit;
517struct task_struct *ll_task;
518
519static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode)
520{
521 unsigned long value, __user *vaddr;
522 long offset;
523
524 /*
525 * analyse the ll instruction that just caused a ri exception
526 * and put the referenced address to addr.
527 */
528
529 /* sign extend offset */
530 offset = opcode & OFFSET;
531 offset <<= 16;
532 offset >>= 16;
533
534 vaddr = (unsigned long __user *)
535 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
536
537 if ((unsigned long)vaddr & 3)
538 return SIGBUS;
539 if (get_user(value, vaddr))
540 return SIGSEGV;
541
542 preempt_disable();
543
544 if (ll_task == NULL || ll_task == current) {
545 ll_bit = 1;
546 } else {
547 ll_bit = 0;
548 }
549 ll_task = current;
550
551 preempt_enable();
552
553 regs->regs[(opcode & RT) >> 16] = value;
554
555 return 0;
556}
557
558static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode)
559{
560 unsigned long __user *vaddr;
561 unsigned long reg;
562 long offset;
563
564 /*
565 * analyse the sc instruction that just caused a ri exception
566 * and put the referenced address to addr.
567 */
568
569 /* sign extend offset */
570 offset = opcode & OFFSET;
571 offset <<= 16;
572 offset >>= 16;
573
574 vaddr = (unsigned long __user *)
575 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
576 reg = (opcode & RT) >> 16;
577
578 if ((unsigned long)vaddr & 3)
579 return SIGBUS;
580
581 preempt_disable();
582
583 if (ll_bit == 0 || ll_task != current) {
584 regs->regs[reg] = 0;
585 preempt_enable();
586 return 0;
587 }
588
589 preempt_enable();
590
591 if (put_user(regs->regs[reg], vaddr))
592 return SIGSEGV;
593
594 regs->regs[reg] = 1;
595
596 return 0;
597}
598
599/*
600 * ll uses the opcode of lwc0 and sc uses the opcode of swc0. That is both
601 * opcodes are supposed to result in coprocessor unusable exceptions if
602 * executed on ll/sc-less processors. That's the theory. In practice a
603 * few processors such as NEC's VR4100 throw reserved instruction exceptions
604 * instead, so we're doing the emulation thing in both exception handlers.
605 */
606static int simulate_llsc(struct pt_regs *regs, unsigned int opcode)
607{
608 if ((opcode & OPCODE) == LL) {
609 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
610 1, regs, 0);
611 return simulate_ll(regs, opcode);
612 }
613 if ((opcode & OPCODE) == SC) {
614 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
615 1, regs, 0);
616 return simulate_sc(regs, opcode);
617 }
618
619 return -1; /* Must be something else ... */
620}
621
622/*
623 * Simulate trapping 'rdhwr' instructions to provide user accessible
624 * registers not implemented in hardware.
625 */
626static int simulate_rdhwr(struct pt_regs *regs, int rd, int rt)
627{
628 struct thread_info *ti = task_thread_info(current);
629
630 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
631 1, regs, 0);
632 switch (rd) {
633 case MIPS_HWR_CPUNUM: /* CPU number */
634 regs->regs[rt] = smp_processor_id();
635 return 0;
636 case MIPS_HWR_SYNCISTEP: /* SYNCI length */
637 regs->regs[rt] = min(current_cpu_data.dcache.linesz,
638 current_cpu_data.icache.linesz);
639 return 0;
640 case MIPS_HWR_CC: /* Read count register */
641 regs->regs[rt] = read_c0_count();
642 return 0;
643 case MIPS_HWR_CCRES: /* Count register resolution */
644 switch (current_cpu_type()) {
645 case CPU_20KC:
646 case CPU_25KF:
647 regs->regs[rt] = 1;
648 break;
649 default:
650 regs->regs[rt] = 2;
651 }
652 return 0;
653 case MIPS_HWR_ULR: /* Read UserLocal register */
654 regs->regs[rt] = ti->tp_value;
655 return 0;
656 default:
657 return -1;
658 }
659}
660
661static int simulate_rdhwr_normal(struct pt_regs *regs, unsigned int opcode)
662{
663 if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
664 int rd = (opcode & RD) >> 11;
665 int rt = (opcode & RT) >> 16;
666
667 simulate_rdhwr(regs, rd, rt);
668 return 0;
669 }
670
671 /* Not ours. */
672 return -1;
673}
674
675static int simulate_rdhwr_mm(struct pt_regs *regs, unsigned int opcode)
676{
677 if ((opcode & MM_POOL32A_FUNC) == MM_RDHWR) {
678 int rd = (opcode & MM_RS) >> 16;
679 int rt = (opcode & MM_RT) >> 21;
680 simulate_rdhwr(regs, rd, rt);
681 return 0;
682 }
683
684 /* Not ours. */
685 return -1;
686}
687
688static int simulate_sync(struct pt_regs *regs, unsigned int opcode)
689{
690 if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) {
691 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
692 1, regs, 0);
693 return 0;
694 }
695
696 return -1; /* Must be something else ... */
697}
698
699/*
700 * Loongson-3 CSR instructions emulation
701 */
702
703#ifdef CONFIG_CPU_LOONGSON3_CPUCFG_EMULATION
704
705#define LWC2 0xc8000000
706#define RS BASE
707#define CSR_OPCODE2 0x00000118
708#define CSR_OPCODE2_MASK 0x000007ff
709#define CSR_FUNC_MASK RT
710#define CSR_FUNC_CPUCFG 0x8
711
712static int simulate_loongson3_cpucfg(struct pt_regs *regs,
713 unsigned int opcode)
714{
715 int op = opcode & OPCODE;
716 int op2 = opcode & CSR_OPCODE2_MASK;
717 int csr_func = (opcode & CSR_FUNC_MASK) >> 16;
718
719 if (op == LWC2 && op2 == CSR_OPCODE2 && csr_func == CSR_FUNC_CPUCFG) {
720 int rd = (opcode & RD) >> 11;
721 int rs = (opcode & RS) >> 21;
722 __u64 sel = regs->regs[rs];
723
724 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, regs, 0);
725
726 /* Do not emulate on unsupported core models. */
727 preempt_disable();
728 if (!loongson3_cpucfg_emulation_enabled(¤t_cpu_data)) {
729 preempt_enable();
730 return -1;
731 }
732 regs->regs[rd] = loongson3_cpucfg_read_synthesized(
733 ¤t_cpu_data, sel);
734 preempt_enable();
735 return 0;
736 }
737
738 /* Not ours. */
739 return -1;
740}
741#endif /* CONFIG_CPU_LOONGSON3_CPUCFG_EMULATION */
742
743asmlinkage void do_ov(struct pt_regs *regs)
744{
745 enum ctx_state prev_state;
746
747 prev_state = exception_enter();
748 die_if_kernel("Integer overflow", regs);
749
750 force_sig_fault(SIGFPE, FPE_INTOVF, (void __user *)regs->cp0_epc);
751 exception_exit(prev_state);
752}
753
754#ifdef CONFIG_MIPS_FP_SUPPORT
755
756/*
757 * Send SIGFPE according to FCSR Cause bits, which must have already
758 * been masked against Enable bits. This is impotant as Inexact can
759 * happen together with Overflow or Underflow, and `ptrace' can set
760 * any bits.
761 */
762void force_fcr31_sig(unsigned long fcr31, void __user *fault_addr,
763 struct task_struct *tsk)
764{
765 int si_code = FPE_FLTUNK;
766
767 if (fcr31 & FPU_CSR_INV_X)
768 si_code = FPE_FLTINV;
769 else if (fcr31 & FPU_CSR_DIV_X)
770 si_code = FPE_FLTDIV;
771 else if (fcr31 & FPU_CSR_OVF_X)
772 si_code = FPE_FLTOVF;
773 else if (fcr31 & FPU_CSR_UDF_X)
774 si_code = FPE_FLTUND;
775 else if (fcr31 & FPU_CSR_INE_X)
776 si_code = FPE_FLTRES;
777
778 force_sig_fault_to_task(SIGFPE, si_code, fault_addr, tsk);
779}
780
781int process_fpemu_return(int sig, void __user *fault_addr, unsigned long fcr31)
782{
783 int si_code;
784 struct vm_area_struct *vma;
785
786 switch (sig) {
787 case 0:
788 return 0;
789
790 case SIGFPE:
791 force_fcr31_sig(fcr31, fault_addr, current);
792 return 1;
793
794 case SIGBUS:
795 force_sig_fault(SIGBUS, BUS_ADRERR, fault_addr);
796 return 1;
797
798 case SIGSEGV:
799 mmap_read_lock(current->mm);
800 vma = find_vma(current->mm, (unsigned long)fault_addr);
801 if (vma && (vma->vm_start <= (unsigned long)fault_addr))
802 si_code = SEGV_ACCERR;
803 else
804 si_code = SEGV_MAPERR;
805 mmap_read_unlock(current->mm);
806 force_sig_fault(SIGSEGV, si_code, fault_addr);
807 return 1;
808
809 default:
810 force_sig(sig);
811 return 1;
812 }
813}
814
815static int simulate_fp(struct pt_regs *regs, unsigned int opcode,
816 unsigned long old_epc, unsigned long old_ra)
817{
818 union mips_instruction inst = { .word = opcode };
819 void __user *fault_addr;
820 unsigned long fcr31;
821 int sig;
822
823 /* If it's obviously not an FP instruction, skip it */
824 switch (inst.i_format.opcode) {
825 case cop1_op:
826 case cop1x_op:
827 case lwc1_op:
828 case ldc1_op:
829 case swc1_op:
830 case sdc1_op:
831 break;
832
833 default:
834 return -1;
835 }
836
837 /*
838 * do_ri skipped over the instruction via compute_return_epc, undo
839 * that for the FPU emulator.
840 */
841 regs->cp0_epc = old_epc;
842 regs->regs[31] = old_ra;
843
844 /* Run the emulator */
845 sig = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 1,
846 &fault_addr);
847
848 /*
849 * We can't allow the emulated instruction to leave any
850 * enabled Cause bits set in $fcr31.
851 */
852 fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
853 current->thread.fpu.fcr31 &= ~fcr31;
854
855 /* Restore the hardware register state */
856 own_fpu(1);
857
858 /* Send a signal if required. */
859 process_fpemu_return(sig, fault_addr, fcr31);
860
861 return 0;
862}
863
864/*
865 * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
866 */
867asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
868{
869 enum ctx_state prev_state;
870 void __user *fault_addr;
871 int sig;
872
873 prev_state = exception_enter();
874 if (notify_die(DIE_FP, "FP exception", regs, 0, current->thread.trap_nr,
875 SIGFPE) == NOTIFY_STOP)
876 goto out;
877
878 /* Clear FCSR.Cause before enabling interrupts */
879 write_32bit_cp1_register(CP1_STATUS, fcr31 & ~mask_fcr31_x(fcr31));
880 local_irq_enable();
881
882 die_if_kernel("FP exception in kernel code", regs);
883
884 if (fcr31 & FPU_CSR_UNI_X) {
885 /*
886 * Unimplemented operation exception. If we've got the full
887 * software emulator on-board, let's use it...
888 *
889 * Force FPU to dump state into task/thread context. We're
890 * moving a lot of data here for what is probably a single
891 * instruction, but the alternative is to pre-decode the FP
892 * register operands before invoking the emulator, which seems
893 * a bit extreme for what should be an infrequent event.
894 */
895
896 /* Run the emulator */
897 sig = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 1,
898 &fault_addr);
899
900 /*
901 * We can't allow the emulated instruction to leave any
902 * enabled Cause bits set in $fcr31.
903 */
904 fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
905 current->thread.fpu.fcr31 &= ~fcr31;
906
907 /* Restore the hardware register state */
908 own_fpu(1); /* Using the FPU again. */
909 } else {
910 sig = SIGFPE;
911 fault_addr = (void __user *) regs->cp0_epc;
912 }
913
914 /* Send a signal if required. */
915 process_fpemu_return(sig, fault_addr, fcr31);
916
917out:
918 exception_exit(prev_state);
919}
920
921/*
922 * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
923 * emulated more than some threshold number of instructions, force migration to
924 * a "CPU" that has FP support.
925 */
926static void mt_ase_fp_affinity(void)
927{
928#ifdef CONFIG_MIPS_MT_FPAFF
929 if (mt_fpemul_threshold > 0 &&
930 ((current->thread.emulated_fp++ > mt_fpemul_threshold))) {
931 /*
932 * If there's no FPU present, or if the application has already
933 * restricted the allowed set to exclude any CPUs with FPUs,
934 * we'll skip the procedure.
935 */
936 if (cpumask_intersects(¤t->cpus_mask, &mt_fpu_cpumask)) {
937 cpumask_t tmask;
938
939 current->thread.user_cpus_allowed
940 = current->cpus_mask;
941 cpumask_and(&tmask, ¤t->cpus_mask,
942 &mt_fpu_cpumask);
943 set_cpus_allowed_ptr(current, &tmask);
944 set_thread_flag(TIF_FPUBOUND);
945 }
946 }
947#endif /* CONFIG_MIPS_MT_FPAFF */
948}
949
950#else /* !CONFIG_MIPS_FP_SUPPORT */
951
952static int simulate_fp(struct pt_regs *regs, unsigned int opcode,
953 unsigned long old_epc, unsigned long old_ra)
954{
955 return -1;
956}
957
958#endif /* !CONFIG_MIPS_FP_SUPPORT */
959
960void do_trap_or_bp(struct pt_regs *regs, unsigned int code, int si_code,
961 const char *str)
962{
963 char b[40];
964
965#ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
966 if (kgdb_ll_trap(DIE_TRAP, str, regs, code, current->thread.trap_nr,
967 SIGTRAP) == NOTIFY_STOP)
968 return;
969#endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
970
971 if (notify_die(DIE_TRAP, str, regs, code, current->thread.trap_nr,
972 SIGTRAP) == NOTIFY_STOP)
973 return;
974
975 /*
976 * A short test says that IRIX 5.3 sends SIGTRAP for all trap
977 * insns, even for trap and break codes that indicate arithmetic
978 * failures. Weird ...
979 * But should we continue the brokenness??? --macro
980 */
981 switch (code) {
982 case BRK_OVERFLOW:
983 case BRK_DIVZERO:
984 scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
985 die_if_kernel(b, regs);
986 force_sig_fault(SIGFPE,
987 code == BRK_DIVZERO ? FPE_INTDIV : FPE_INTOVF,
988 (void __user *) regs->cp0_epc);
989 break;
990 case BRK_BUG:
991 die_if_kernel("Kernel bug detected", regs);
992 force_sig(SIGTRAP);
993 break;
994 case BRK_MEMU:
995 /*
996 * This breakpoint code is used by the FPU emulator to retake
997 * control of the CPU after executing the instruction from the
998 * delay slot of an emulated branch.
999 *
1000 * Terminate if exception was recognized as a delay slot return
1001 * otherwise handle as normal.
1002 */
1003 if (do_dsemulret(regs))
1004 return;
1005
1006 die_if_kernel("Math emu break/trap", regs);
1007 force_sig(SIGTRAP);
1008 break;
1009 default:
1010 scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
1011 die_if_kernel(b, regs);
1012 if (si_code) {
1013 force_sig_fault(SIGTRAP, si_code, NULL);
1014 } else {
1015 force_sig(SIGTRAP);
1016 }
1017 }
1018}
1019
1020asmlinkage void do_bp(struct pt_regs *regs)
1021{
1022 unsigned long epc = msk_isa16_mode(exception_epc(regs));
1023 unsigned int opcode, bcode;
1024 enum ctx_state prev_state;
1025 mm_segment_t seg;
1026
1027 seg = get_fs();
1028 if (!user_mode(regs))
1029 set_fs(KERNEL_DS);
1030
1031 prev_state = exception_enter();
1032 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1033 if (get_isa16_mode(regs->cp0_epc)) {
1034 u16 instr[2];
1035
1036 if (__get_user(instr[0], (u16 __user *)epc))
1037 goto out_sigsegv;
1038
1039 if (!cpu_has_mmips) {
1040 /* MIPS16e mode */
1041 bcode = (instr[0] >> 5) & 0x3f;
1042 } else if (mm_insn_16bit(instr[0])) {
1043 /* 16-bit microMIPS BREAK */
1044 bcode = instr[0] & 0xf;
1045 } else {
1046 /* 32-bit microMIPS BREAK */
1047 if (__get_user(instr[1], (u16 __user *)(epc + 2)))
1048 goto out_sigsegv;
1049 opcode = (instr[0] << 16) | instr[1];
1050 bcode = (opcode >> 6) & ((1 << 20) - 1);
1051 }
1052 } else {
1053 if (__get_user(opcode, (unsigned int __user *)epc))
1054 goto out_sigsegv;
1055 bcode = (opcode >> 6) & ((1 << 20) - 1);
1056 }
1057
1058 /*
1059 * There is the ancient bug in the MIPS assemblers that the break
1060 * code starts left to bit 16 instead to bit 6 in the opcode.
1061 * Gas is bug-compatible, but not always, grrr...
1062 * We handle both cases with a simple heuristics. --macro
1063 */
1064 if (bcode >= (1 << 10))
1065 bcode = ((bcode & ((1 << 10) - 1)) << 10) | (bcode >> 10);
1066
1067 /*
1068 * notify the kprobe handlers, if instruction is likely to
1069 * pertain to them.
1070 */
1071 switch (bcode) {
1072 case BRK_UPROBE:
1073 if (notify_die(DIE_UPROBE, "uprobe", regs, bcode,
1074 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1075 goto out;
1076 else
1077 break;
1078 case BRK_UPROBE_XOL:
1079 if (notify_die(DIE_UPROBE_XOL, "uprobe_xol", regs, bcode,
1080 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1081 goto out;
1082 else
1083 break;
1084 case BRK_KPROBE_BP:
1085 if (notify_die(DIE_BREAK, "debug", regs, bcode,
1086 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1087 goto out;
1088 else
1089 break;
1090 case BRK_KPROBE_SSTEPBP:
1091 if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode,
1092 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1093 goto out;
1094 else
1095 break;
1096 default:
1097 break;
1098 }
1099
1100 do_trap_or_bp(regs, bcode, TRAP_BRKPT, "Break");
1101
1102out:
1103 set_fs(seg);
1104 exception_exit(prev_state);
1105 return;
1106
1107out_sigsegv:
1108 force_sig(SIGSEGV);
1109 goto out;
1110}
1111
1112asmlinkage void do_tr(struct pt_regs *regs)
1113{
1114 u32 opcode, tcode = 0;
1115 enum ctx_state prev_state;
1116 u16 instr[2];
1117 mm_segment_t seg;
1118 unsigned long epc = msk_isa16_mode(exception_epc(regs));
1119
1120 seg = get_fs();
1121 if (!user_mode(regs))
1122 set_fs(KERNEL_DS);
1123
1124 prev_state = exception_enter();
1125 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1126 if (get_isa16_mode(regs->cp0_epc)) {
1127 if (__get_user(instr[0], (u16 __user *)(epc + 0)) ||
1128 __get_user(instr[1], (u16 __user *)(epc + 2)))
1129 goto out_sigsegv;
1130 opcode = (instr[0] << 16) | instr[1];
1131 /* Immediate versions don't provide a code. */
1132 if (!(opcode & OPCODE))
1133 tcode = (opcode >> 12) & ((1 << 4) - 1);
1134 } else {
1135 if (__get_user(opcode, (u32 __user *)epc))
1136 goto out_sigsegv;
1137 /* Immediate versions don't provide a code. */
1138 if (!(opcode & OPCODE))
1139 tcode = (opcode >> 6) & ((1 << 10) - 1);
1140 }
1141
1142 do_trap_or_bp(regs, tcode, 0, "Trap");
1143
1144out:
1145 set_fs(seg);
1146 exception_exit(prev_state);
1147 return;
1148
1149out_sigsegv:
1150 force_sig(SIGSEGV);
1151 goto out;
1152}
1153
1154asmlinkage void do_ri(struct pt_regs *regs)
1155{
1156 unsigned int __user *epc = (unsigned int __user *)exception_epc(regs);
1157 unsigned long old_epc = regs->cp0_epc;
1158 unsigned long old31 = regs->regs[31];
1159 enum ctx_state prev_state;
1160 unsigned int opcode = 0;
1161 int status = -1;
1162
1163 /*
1164 * Avoid any kernel code. Just emulate the R2 instruction
1165 * as quickly as possible.
1166 */
1167 if (mipsr2_emulation && cpu_has_mips_r6 &&
1168 likely(user_mode(regs)) &&
1169 likely(get_user(opcode, epc) >= 0)) {
1170 unsigned long fcr31 = 0;
1171
1172 status = mipsr2_decoder(regs, opcode, &fcr31);
1173 switch (status) {
1174 case 0:
1175 case SIGEMT:
1176 return;
1177 case SIGILL:
1178 goto no_r2_instr;
1179 default:
1180 process_fpemu_return(status,
1181 ¤t->thread.cp0_baduaddr,
1182 fcr31);
1183 return;
1184 }
1185 }
1186
1187no_r2_instr:
1188
1189 prev_state = exception_enter();
1190 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1191
1192 if (notify_die(DIE_RI, "RI Fault", regs, 0, current->thread.trap_nr,
1193 SIGILL) == NOTIFY_STOP)
1194 goto out;
1195
1196 die_if_kernel("Reserved instruction in kernel code", regs);
1197
1198 if (unlikely(compute_return_epc(regs) < 0))
1199 goto out;
1200
1201 if (!get_isa16_mode(regs->cp0_epc)) {
1202 if (unlikely(get_user(opcode, epc) < 0))
1203 status = SIGSEGV;
1204
1205 if (!cpu_has_llsc && status < 0)
1206 status = simulate_llsc(regs, opcode);
1207
1208 if (status < 0)
1209 status = simulate_rdhwr_normal(regs, opcode);
1210
1211 if (status < 0)
1212 status = simulate_sync(regs, opcode);
1213
1214 if (status < 0)
1215 status = simulate_fp(regs, opcode, old_epc, old31);
1216
1217#ifdef CONFIG_CPU_LOONGSON3_CPUCFG_EMULATION
1218 if (status < 0)
1219 status = simulate_loongson3_cpucfg(regs, opcode);
1220#endif
1221 } else if (cpu_has_mmips) {
1222 unsigned short mmop[2] = { 0 };
1223
1224 if (unlikely(get_user(mmop[0], (u16 __user *)epc + 0) < 0))
1225 status = SIGSEGV;
1226 if (unlikely(get_user(mmop[1], (u16 __user *)epc + 1) < 0))
1227 status = SIGSEGV;
1228 opcode = mmop[0];
1229 opcode = (opcode << 16) | mmop[1];
1230
1231 if (status < 0)
1232 status = simulate_rdhwr_mm(regs, opcode);
1233 }
1234
1235 if (status < 0)
1236 status = SIGILL;
1237
1238 if (unlikely(status > 0)) {
1239 regs->cp0_epc = old_epc; /* Undo skip-over. */
1240 regs->regs[31] = old31;
1241 force_sig(status);
1242 }
1243
1244out:
1245 exception_exit(prev_state);
1246}
1247
1248/*
1249 * No lock; only written during early bootup by CPU 0.
1250 */
1251static RAW_NOTIFIER_HEAD(cu2_chain);
1252
1253int __ref register_cu2_notifier(struct notifier_block *nb)
1254{
1255 return raw_notifier_chain_register(&cu2_chain, nb);
1256}
1257
1258int cu2_notifier_call_chain(unsigned long val, void *v)
1259{
1260 return raw_notifier_call_chain(&cu2_chain, val, v);
1261}
1262
1263static int default_cu2_call(struct notifier_block *nfb, unsigned long action,
1264 void *data)
1265{
1266 struct pt_regs *regs = data;
1267
1268 die_if_kernel("COP2: Unhandled kernel unaligned access or invalid "
1269 "instruction", regs);
1270 force_sig(SIGILL);
1271
1272 return NOTIFY_OK;
1273}
1274
1275#ifdef CONFIG_MIPS_FP_SUPPORT
1276
1277static int enable_restore_fp_context(int msa)
1278{
1279 int err, was_fpu_owner, prior_msa;
1280 bool first_fp;
1281
1282 /* Initialize context if it hasn't been used already */
1283 first_fp = init_fp_ctx(current);
1284
1285 if (first_fp) {
1286 preempt_disable();
1287 err = own_fpu_inatomic(1);
1288 if (msa && !err) {
1289 enable_msa();
1290 /*
1291 * with MSA enabled, userspace can see MSACSR
1292 * and MSA regs, but the values in them are from
1293 * other task before current task, restore them
1294 * from saved fp/msa context
1295 */
1296 write_msa_csr(current->thread.fpu.msacsr);
1297 /*
1298 * own_fpu_inatomic(1) just restore low 64bit,
1299 * fix the high 64bit
1300 */
1301 init_msa_upper();
1302 set_thread_flag(TIF_USEDMSA);
1303 set_thread_flag(TIF_MSA_CTX_LIVE);
1304 }
1305 preempt_enable();
1306 return err;
1307 }
1308
1309 /*
1310 * This task has formerly used the FP context.
1311 *
1312 * If this thread has no live MSA vector context then we can simply
1313 * restore the scalar FP context. If it has live MSA vector context
1314 * (that is, it has or may have used MSA since last performing a
1315 * function call) then we'll need to restore the vector context. This
1316 * applies even if we're currently only executing a scalar FP
1317 * instruction. This is because if we were to later execute an MSA
1318 * instruction then we'd either have to:
1319 *
1320 * - Restore the vector context & clobber any registers modified by
1321 * scalar FP instructions between now & then.
1322 *
1323 * or
1324 *
1325 * - Not restore the vector context & lose the most significant bits
1326 * of all vector registers.
1327 *
1328 * Neither of those options is acceptable. We cannot restore the least
1329 * significant bits of the registers now & only restore the most
1330 * significant bits later because the most significant bits of any
1331 * vector registers whose aliased FP register is modified now will have
1332 * been zeroed. We'd have no way to know that when restoring the vector
1333 * context & thus may load an outdated value for the most significant
1334 * bits of a vector register.
1335 */
1336 if (!msa && !thread_msa_context_live())
1337 return own_fpu(1);
1338
1339 /*
1340 * This task is using or has previously used MSA. Thus we require
1341 * that Status.FR == 1.
1342 */
1343 preempt_disable();
1344 was_fpu_owner = is_fpu_owner();
1345 err = own_fpu_inatomic(0);
1346 if (err)
1347 goto out;
1348
1349 enable_msa();
1350 write_msa_csr(current->thread.fpu.msacsr);
1351 set_thread_flag(TIF_USEDMSA);
1352
1353 /*
1354 * If this is the first time that the task is using MSA and it has
1355 * previously used scalar FP in this time slice then we already nave
1356 * FP context which we shouldn't clobber. We do however need to clear
1357 * the upper 64b of each vector register so that this task has no
1358 * opportunity to see data left behind by another.
1359 */
1360 prior_msa = test_and_set_thread_flag(TIF_MSA_CTX_LIVE);
1361 if (!prior_msa && was_fpu_owner) {
1362 init_msa_upper();
1363
1364 goto out;
1365 }
1366
1367 if (!prior_msa) {
1368 /*
1369 * Restore the least significant 64b of each vector register
1370 * from the existing scalar FP context.
1371 */
1372 _restore_fp(current);
1373
1374 /*
1375 * The task has not formerly used MSA, so clear the upper 64b
1376 * of each vector register such that it cannot see data left
1377 * behind by another task.
1378 */
1379 init_msa_upper();
1380 } else {
1381 /* We need to restore the vector context. */
1382 restore_msa(current);
1383
1384 /* Restore the scalar FP control & status register */
1385 if (!was_fpu_owner)
1386 write_32bit_cp1_register(CP1_STATUS,
1387 current->thread.fpu.fcr31);
1388 }
1389
1390out:
1391 preempt_enable();
1392
1393 return 0;
1394}
1395
1396#else /* !CONFIG_MIPS_FP_SUPPORT */
1397
1398static int enable_restore_fp_context(int msa)
1399{
1400 return SIGILL;
1401}
1402
1403#endif /* CONFIG_MIPS_FP_SUPPORT */
1404
1405asmlinkage void do_cpu(struct pt_regs *regs)
1406{
1407 enum ctx_state prev_state;
1408 unsigned int __user *epc;
1409 unsigned long old_epc, old31;
1410 unsigned int opcode;
1411 unsigned int cpid;
1412 int status;
1413
1414 prev_state = exception_enter();
1415 cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
1416
1417 if (cpid != 2)
1418 die_if_kernel("do_cpu invoked from kernel context!", regs);
1419
1420 switch (cpid) {
1421 case 0:
1422 epc = (unsigned int __user *)exception_epc(regs);
1423 old_epc = regs->cp0_epc;
1424 old31 = regs->regs[31];
1425 opcode = 0;
1426 status = -1;
1427
1428 if (unlikely(compute_return_epc(regs) < 0))
1429 break;
1430
1431 if (!get_isa16_mode(regs->cp0_epc)) {
1432 if (unlikely(get_user(opcode, epc) < 0))
1433 status = SIGSEGV;
1434
1435 if (!cpu_has_llsc && status < 0)
1436 status = simulate_llsc(regs, opcode);
1437 }
1438
1439 if (status < 0)
1440 status = SIGILL;
1441
1442 if (unlikely(status > 0)) {
1443 regs->cp0_epc = old_epc; /* Undo skip-over. */
1444 regs->regs[31] = old31;
1445 force_sig(status);
1446 }
1447
1448 break;
1449
1450#ifdef CONFIG_MIPS_FP_SUPPORT
1451 case 3:
1452 /*
1453 * The COP3 opcode space and consequently the CP0.Status.CU3
1454 * bit and the CP0.Cause.CE=3 encoding have been removed as
1455 * of the MIPS III ISA. From the MIPS IV and MIPS32r2 ISAs
1456 * up the space has been reused for COP1X instructions, that
1457 * are enabled by the CP0.Status.CU1 bit and consequently
1458 * use the CP0.Cause.CE=1 encoding for Coprocessor Unusable
1459 * exceptions. Some FPU-less processors that implement one
1460 * of these ISAs however use this code erroneously for COP1X
1461 * instructions. Therefore we redirect this trap to the FP
1462 * emulator too.
1463 */
1464 if (raw_cpu_has_fpu || !cpu_has_mips_4_5_64_r2_r6) {
1465 force_sig(SIGILL);
1466 break;
1467 }
1468 fallthrough;
1469 case 1: {
1470 void __user *fault_addr;
1471 unsigned long fcr31;
1472 int err, sig;
1473
1474 err = enable_restore_fp_context(0);
1475
1476 if (raw_cpu_has_fpu && !err)
1477 break;
1478
1479 sig = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 0,
1480 &fault_addr);
1481
1482 /*
1483 * We can't allow the emulated instruction to leave
1484 * any enabled Cause bits set in $fcr31.
1485 */
1486 fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
1487 current->thread.fpu.fcr31 &= ~fcr31;
1488
1489 /* Send a signal if required. */
1490 if (!process_fpemu_return(sig, fault_addr, fcr31) && !err)
1491 mt_ase_fp_affinity();
1492
1493 break;
1494 }
1495#else /* CONFIG_MIPS_FP_SUPPORT */
1496 case 1:
1497 case 3:
1498 force_sig(SIGILL);
1499 break;
1500#endif /* CONFIG_MIPS_FP_SUPPORT */
1501
1502 case 2:
1503 raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs);
1504 break;
1505 }
1506
1507 exception_exit(prev_state);
1508}
1509
1510asmlinkage void do_msa_fpe(struct pt_regs *regs, unsigned int msacsr)
1511{
1512 enum ctx_state prev_state;
1513
1514 prev_state = exception_enter();
1515 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1516 if (notify_die(DIE_MSAFP, "MSA FP exception", regs, 0,
1517 current->thread.trap_nr, SIGFPE) == NOTIFY_STOP)
1518 goto out;
1519
1520 /* Clear MSACSR.Cause before enabling interrupts */
1521 write_msa_csr(msacsr & ~MSA_CSR_CAUSEF);
1522 local_irq_enable();
1523
1524 die_if_kernel("do_msa_fpe invoked from kernel context!", regs);
1525 force_sig(SIGFPE);
1526out:
1527 exception_exit(prev_state);
1528}
1529
1530asmlinkage void do_msa(struct pt_regs *regs)
1531{
1532 enum ctx_state prev_state;
1533 int err;
1534
1535 prev_state = exception_enter();
1536
1537 if (!cpu_has_msa || test_thread_flag(TIF_32BIT_FPREGS)) {
1538 force_sig(SIGILL);
1539 goto out;
1540 }
1541
1542 die_if_kernel("do_msa invoked from kernel context!", regs);
1543
1544 err = enable_restore_fp_context(1);
1545 if (err)
1546 force_sig(SIGILL);
1547out:
1548 exception_exit(prev_state);
1549}
1550
1551asmlinkage void do_mdmx(struct pt_regs *regs)
1552{
1553 enum ctx_state prev_state;
1554
1555 prev_state = exception_enter();
1556 force_sig(SIGILL);
1557 exception_exit(prev_state);
1558}
1559
1560/*
1561 * Called with interrupts disabled.
1562 */
1563asmlinkage void do_watch(struct pt_regs *regs)
1564{
1565 enum ctx_state prev_state;
1566
1567 prev_state = exception_enter();
1568 /*
1569 * Clear WP (bit 22) bit of cause register so we don't loop
1570 * forever.
1571 */
1572 clear_c0_cause(CAUSEF_WP);
1573
1574 /*
1575 * If the current thread has the watch registers loaded, save
1576 * their values and send SIGTRAP. Otherwise another thread
1577 * left the registers set, clear them and continue.
1578 */
1579 if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) {
1580 mips_read_watch_registers();
1581 local_irq_enable();
1582 force_sig_fault(SIGTRAP, TRAP_HWBKPT, NULL);
1583 } else {
1584 mips_clear_watch_registers();
1585 local_irq_enable();
1586 }
1587 exception_exit(prev_state);
1588}
1589
1590asmlinkage void do_mcheck(struct pt_regs *regs)
1591{
1592 int multi_match = regs->cp0_status & ST0_TS;
1593 enum ctx_state prev_state;
1594 mm_segment_t old_fs = get_fs();
1595
1596 prev_state = exception_enter();
1597 show_regs(regs);
1598
1599 if (multi_match) {
1600 dump_tlb_regs();
1601 pr_info("\n");
1602 dump_tlb_all();
1603 }
1604
1605 if (!user_mode(regs))
1606 set_fs(KERNEL_DS);
1607
1608 show_code((unsigned int __user *) regs->cp0_epc);
1609
1610 set_fs(old_fs);
1611
1612 /*
1613 * Some chips may have other causes of machine check (e.g. SB1
1614 * graduation timer)
1615 */
1616 panic("Caught Machine Check exception - %scaused by multiple "
1617 "matching entries in the TLB.",
1618 (multi_match) ? "" : "not ");
1619}
1620
1621asmlinkage void do_mt(struct pt_regs *regs)
1622{
1623 int subcode;
1624
1625 subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
1626 >> VPECONTROL_EXCPT_SHIFT;
1627 switch (subcode) {
1628 case 0:
1629 printk(KERN_DEBUG "Thread Underflow\n");
1630 break;
1631 case 1:
1632 printk(KERN_DEBUG "Thread Overflow\n");
1633 break;
1634 case 2:
1635 printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
1636 break;
1637 case 3:
1638 printk(KERN_DEBUG "Gating Storage Exception\n");
1639 break;
1640 case 4:
1641 printk(KERN_DEBUG "YIELD Scheduler Exception\n");
1642 break;
1643 case 5:
1644 printk(KERN_DEBUG "Gating Storage Scheduler Exception\n");
1645 break;
1646 default:
1647 printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
1648 subcode);
1649 break;
1650 }
1651 die_if_kernel("MIPS MT Thread exception in kernel", regs);
1652
1653 force_sig(SIGILL);
1654}
1655
1656
1657asmlinkage void do_dsp(struct pt_regs *regs)
1658{
1659 if (cpu_has_dsp)
1660 panic("Unexpected DSP exception");
1661
1662 force_sig(SIGILL);
1663}
1664
1665asmlinkage void do_reserved(struct pt_regs *regs)
1666{
1667 /*
1668 * Game over - no way to handle this if it ever occurs. Most probably
1669 * caused by a new unknown cpu type or after another deadly
1670 * hard/software error.
1671 */
1672 show_regs(regs);
1673 panic("Caught reserved exception %ld - should not happen.",
1674 (regs->cp0_cause & 0x7f) >> 2);
1675}
1676
1677static int __initdata l1parity = 1;
1678static int __init nol1parity(char *s)
1679{
1680 l1parity = 0;
1681 return 1;
1682}
1683__setup("nol1par", nol1parity);
1684static int __initdata l2parity = 1;
1685static int __init nol2parity(char *s)
1686{
1687 l2parity = 0;
1688 return 1;
1689}
1690__setup("nol2par", nol2parity);
1691
1692/*
1693 * Some MIPS CPUs can enable/disable for cache parity detection, but do
1694 * it different ways.
1695 */
1696static inline __init void parity_protection_init(void)
1697{
1698#define ERRCTL_PE 0x80000000
1699#define ERRCTL_L2P 0x00800000
1700
1701 if (mips_cm_revision() >= CM_REV_CM3) {
1702 ulong gcr_ectl, cp0_ectl;
1703
1704 /*
1705 * With CM3 systems we need to ensure that the L1 & L2
1706 * parity enables are set to the same value, since this
1707 * is presumed by the hardware engineers.
1708 *
1709 * If the user disabled either of L1 or L2 ECC checking,
1710 * disable both.
1711 */
1712 l1parity &= l2parity;
1713 l2parity &= l1parity;
1714
1715 /* Probe L1 ECC support */
1716 cp0_ectl = read_c0_ecc();
1717 write_c0_ecc(cp0_ectl | ERRCTL_PE);
1718 back_to_back_c0_hazard();
1719 cp0_ectl = read_c0_ecc();
1720
1721 /* Probe L2 ECC support */
1722 gcr_ectl = read_gcr_err_control();
1723
1724 if (!(gcr_ectl & CM_GCR_ERR_CONTROL_L2_ECC_SUPPORT) ||
1725 !(cp0_ectl & ERRCTL_PE)) {
1726 /*
1727 * One of L1 or L2 ECC checking isn't supported,
1728 * so we cannot enable either.
1729 */
1730 l1parity = l2parity = 0;
1731 }
1732
1733 /* Configure L1 ECC checking */
1734 if (l1parity)
1735 cp0_ectl |= ERRCTL_PE;
1736 else
1737 cp0_ectl &= ~ERRCTL_PE;
1738 write_c0_ecc(cp0_ectl);
1739 back_to_back_c0_hazard();
1740 WARN_ON(!!(read_c0_ecc() & ERRCTL_PE) != l1parity);
1741
1742 /* Configure L2 ECC checking */
1743 if (l2parity)
1744 gcr_ectl |= CM_GCR_ERR_CONTROL_L2_ECC_EN;
1745 else
1746 gcr_ectl &= ~CM_GCR_ERR_CONTROL_L2_ECC_EN;
1747 write_gcr_err_control(gcr_ectl);
1748 gcr_ectl = read_gcr_err_control();
1749 gcr_ectl &= CM_GCR_ERR_CONTROL_L2_ECC_EN;
1750 WARN_ON(!!gcr_ectl != l2parity);
1751
1752 pr_info("Cache parity protection %sabled\n",
1753 l1parity ? "en" : "dis");
1754 return;
1755 }
1756
1757 switch (current_cpu_type()) {
1758 case CPU_24K:
1759 case CPU_34K:
1760 case CPU_74K:
1761 case CPU_1004K:
1762 case CPU_1074K:
1763 case CPU_INTERAPTIV:
1764 case CPU_PROAPTIV:
1765 case CPU_P5600:
1766 case CPU_QEMU_GENERIC:
1767 case CPU_P6600:
1768 {
1769 unsigned long errctl;
1770 unsigned int l1parity_present, l2parity_present;
1771
1772 errctl = read_c0_ecc();
1773 errctl &= ~(ERRCTL_PE|ERRCTL_L2P);
1774
1775 /* probe L1 parity support */
1776 write_c0_ecc(errctl | ERRCTL_PE);
1777 back_to_back_c0_hazard();
1778 l1parity_present = (read_c0_ecc() & ERRCTL_PE);
1779
1780 /* probe L2 parity support */
1781 write_c0_ecc(errctl|ERRCTL_L2P);
1782 back_to_back_c0_hazard();
1783 l2parity_present = (read_c0_ecc() & ERRCTL_L2P);
1784
1785 if (l1parity_present && l2parity_present) {
1786 if (l1parity)
1787 errctl |= ERRCTL_PE;
1788 if (l1parity ^ l2parity)
1789 errctl |= ERRCTL_L2P;
1790 } else if (l1parity_present) {
1791 if (l1parity)
1792 errctl |= ERRCTL_PE;
1793 } else if (l2parity_present) {
1794 if (l2parity)
1795 errctl |= ERRCTL_L2P;
1796 } else {
1797 /* No parity available */
1798 }
1799
1800 printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl);
1801
1802 write_c0_ecc(errctl);
1803 back_to_back_c0_hazard();
1804 errctl = read_c0_ecc();
1805 printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl);
1806
1807 if (l1parity_present)
1808 printk(KERN_INFO "Cache parity protection %sabled\n",
1809 (errctl & ERRCTL_PE) ? "en" : "dis");
1810
1811 if (l2parity_present) {
1812 if (l1parity_present && l1parity)
1813 errctl ^= ERRCTL_L2P;
1814 printk(KERN_INFO "L2 cache parity protection %sabled\n",
1815 (errctl & ERRCTL_L2P) ? "en" : "dis");
1816 }
1817 }
1818 break;
1819
1820 case CPU_5KC:
1821 case CPU_5KE:
1822 case CPU_LOONGSON32:
1823 write_c0_ecc(0x80000000);
1824 back_to_back_c0_hazard();
1825 /* Set the PE bit (bit 31) in the c0_errctl register. */
1826 printk(KERN_INFO "Cache parity protection %sabled\n",
1827 (read_c0_ecc() & 0x80000000) ? "en" : "dis");
1828 break;
1829 case CPU_20KC:
1830 case CPU_25KF:
1831 /* Clear the DE bit (bit 16) in the c0_status register. */
1832 printk(KERN_INFO "Enable cache parity protection for "
1833 "MIPS 20KC/25KF CPUs.\n");
1834 clear_c0_status(ST0_DE);
1835 break;
1836 default:
1837 break;
1838 }
1839}
1840
1841asmlinkage void cache_parity_error(void)
1842{
1843 const int field = 2 * sizeof(unsigned long);
1844 unsigned int reg_val;
1845
1846 /* For the moment, report the problem and hang. */
1847 printk("Cache error exception:\n");
1848 printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1849 reg_val = read_c0_cacheerr();
1850 printk("c0_cacheerr == %08x\n", reg_val);
1851
1852 printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1853 reg_val & (1<<30) ? "secondary" : "primary",
1854 reg_val & (1<<31) ? "data" : "insn");
1855 if ((cpu_has_mips_r2_r6) &&
1856 ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) {
1857 pr_err("Error bits: %s%s%s%s%s%s%s%s\n",
1858 reg_val & (1<<29) ? "ED " : "",
1859 reg_val & (1<<28) ? "ET " : "",
1860 reg_val & (1<<27) ? "ES " : "",
1861 reg_val & (1<<26) ? "EE " : "",
1862 reg_val & (1<<25) ? "EB " : "",
1863 reg_val & (1<<24) ? "EI " : "",
1864 reg_val & (1<<23) ? "E1 " : "",
1865 reg_val & (1<<22) ? "E0 " : "");
1866 } else {
1867 pr_err("Error bits: %s%s%s%s%s%s%s\n",
1868 reg_val & (1<<29) ? "ED " : "",
1869 reg_val & (1<<28) ? "ET " : "",
1870 reg_val & (1<<26) ? "EE " : "",
1871 reg_val & (1<<25) ? "EB " : "",
1872 reg_val & (1<<24) ? "EI " : "",
1873 reg_val & (1<<23) ? "E1 " : "",
1874 reg_val & (1<<22) ? "E0 " : "");
1875 }
1876 printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
1877
1878#if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1879 if (reg_val & (1<<22))
1880 printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
1881
1882 if (reg_val & (1<<23))
1883 printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
1884#endif
1885
1886 panic("Can't handle the cache error!");
1887}
1888
1889asmlinkage void do_ftlb(void)
1890{
1891 const int field = 2 * sizeof(unsigned long);
1892 unsigned int reg_val;
1893
1894 /* For the moment, report the problem and hang. */
1895 if ((cpu_has_mips_r2_r6) &&
1896 (((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS) ||
1897 ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_LOONGSON))) {
1898 pr_err("FTLB error exception, cp0_ecc=0x%08x:\n",
1899 read_c0_ecc());
1900 pr_err("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1901 reg_val = read_c0_cacheerr();
1902 pr_err("c0_cacheerr == %08x\n", reg_val);
1903
1904 if ((reg_val & 0xc0000000) == 0xc0000000) {
1905 pr_err("Decoded c0_cacheerr: FTLB parity error\n");
1906 } else {
1907 pr_err("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1908 reg_val & (1<<30) ? "secondary" : "primary",
1909 reg_val & (1<<31) ? "data" : "insn");
1910 }
1911 } else {
1912 pr_err("FTLB error exception\n");
1913 }
1914 /* Just print the cacheerr bits for now */
1915 cache_parity_error();
1916}
1917
1918asmlinkage void do_gsexc(struct pt_regs *regs, u32 diag1)
1919{
1920 u32 exccode = (diag1 & LOONGSON_DIAG1_EXCCODE) >>
1921 LOONGSON_DIAG1_EXCCODE_SHIFT;
1922 enum ctx_state prev_state;
1923
1924 prev_state = exception_enter();
1925
1926 switch (exccode) {
1927 case 0x08:
1928 /* Undocumented exception, will trigger on certain
1929 * also-undocumented instructions accessible from userspace.
1930 * Processor state is not otherwise corrupted, but currently
1931 * we don't know how to proceed. Maybe there is some
1932 * undocumented control flag to enable the instructions?
1933 */
1934 force_sig(SIGILL);
1935 break;
1936
1937 default:
1938 /* None of the other exceptions, documented or not, have
1939 * further details given; none are encountered in the wild
1940 * either. Panic in case some of them turn out to be fatal.
1941 */
1942 show_regs(regs);
1943 panic("Unhandled Loongson exception - GSCause = %08x", diag1);
1944 }
1945
1946 exception_exit(prev_state);
1947}
1948
1949/*
1950 * SDBBP EJTAG debug exception handler.
1951 * We skip the instruction and return to the next instruction.
1952 */
1953void ejtag_exception_handler(struct pt_regs *regs)
1954{
1955 const int field = 2 * sizeof(unsigned long);
1956 unsigned long depc, old_epc, old_ra;
1957 unsigned int debug;
1958
1959 printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1960 depc = read_c0_depc();
1961 debug = read_c0_debug();
1962 printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
1963 if (debug & 0x80000000) {
1964 /*
1965 * In branch delay slot.
1966 * We cheat a little bit here and use EPC to calculate the
1967 * debug return address (DEPC). EPC is restored after the
1968 * calculation.
1969 */
1970 old_epc = regs->cp0_epc;
1971 old_ra = regs->regs[31];
1972 regs->cp0_epc = depc;
1973 compute_return_epc(regs);
1974 depc = regs->cp0_epc;
1975 regs->cp0_epc = old_epc;
1976 regs->regs[31] = old_ra;
1977 } else
1978 depc += 4;
1979 write_c0_depc(depc);
1980
1981#if 0
1982 printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
1983 write_c0_debug(debug | 0x100);
1984#endif
1985}
1986
1987/*
1988 * NMI exception handler.
1989 * No lock; only written during early bootup by CPU 0.
1990 */
1991static RAW_NOTIFIER_HEAD(nmi_chain);
1992
1993int register_nmi_notifier(struct notifier_block *nb)
1994{
1995 return raw_notifier_chain_register(&nmi_chain, nb);
1996}
1997
1998void __noreturn nmi_exception_handler(struct pt_regs *regs)
1999{
2000 char str[100];
2001
2002 nmi_enter();
2003 raw_notifier_call_chain(&nmi_chain, 0, regs);
2004 bust_spinlocks(1);
2005 snprintf(str, 100, "CPU%d NMI taken, CP0_EPC=%lx\n",
2006 smp_processor_id(), regs->cp0_epc);
2007 regs->cp0_epc = read_c0_errorepc();
2008 die(str, regs);
2009 nmi_exit();
2010}
2011
2012#define VECTORSPACING 0x100 /* for EI/VI mode */
2013
2014unsigned long ebase;
2015EXPORT_SYMBOL_GPL(ebase);
2016unsigned long exception_handlers[32];
2017unsigned long vi_handlers[64];
2018
2019void __init *set_except_vector(int n, void *addr)
2020{
2021 unsigned long handler = (unsigned long) addr;
2022 unsigned long old_handler;
2023
2024#ifdef CONFIG_CPU_MICROMIPS
2025 /*
2026 * Only the TLB handlers are cache aligned with an even
2027 * address. All other handlers are on an odd address and
2028 * require no modification. Otherwise, MIPS32 mode will
2029 * be entered when handling any TLB exceptions. That
2030 * would be bad...since we must stay in microMIPS mode.
2031 */
2032 if (!(handler & 0x1))
2033 handler |= 1;
2034#endif
2035 old_handler = xchg(&exception_handlers[n], handler);
2036
2037 if (n == 0 && cpu_has_divec) {
2038#ifdef CONFIG_CPU_MICROMIPS
2039 unsigned long jump_mask = ~((1 << 27) - 1);
2040#else
2041 unsigned long jump_mask = ~((1 << 28) - 1);
2042#endif
2043 u32 *buf = (u32 *)(ebase + 0x200);
2044 unsigned int k0 = 26;
2045 if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) {
2046 uasm_i_j(&buf, handler & ~jump_mask);
2047 uasm_i_nop(&buf);
2048 } else {
2049 UASM_i_LA(&buf, k0, handler);
2050 uasm_i_jr(&buf, k0);
2051 uasm_i_nop(&buf);
2052 }
2053 local_flush_icache_range(ebase + 0x200, (unsigned long)buf);
2054 }
2055 return (void *)old_handler;
2056}
2057
2058static void do_default_vi(void)
2059{
2060 show_regs(get_irq_regs());
2061 panic("Caught unexpected vectored interrupt.");
2062}
2063
2064static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs)
2065{
2066 unsigned long handler;
2067 unsigned long old_handler = vi_handlers[n];
2068 int srssets = current_cpu_data.srsets;
2069 u16 *h;
2070 unsigned char *b;
2071
2072 BUG_ON(!cpu_has_veic && !cpu_has_vint);
2073
2074 if (addr == NULL) {
2075 handler = (unsigned long) do_default_vi;
2076 srs = 0;
2077 } else
2078 handler = (unsigned long) addr;
2079 vi_handlers[n] = handler;
2080
2081 b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
2082
2083 if (srs >= srssets)
2084 panic("Shadow register set %d not supported", srs);
2085
2086 if (cpu_has_veic) {
2087 if (board_bind_eic_interrupt)
2088 board_bind_eic_interrupt(n, srs);
2089 } else if (cpu_has_vint) {
2090 /* SRSMap is only defined if shadow sets are implemented */
2091 if (srssets > 1)
2092 change_c0_srsmap(0xf << n*4, srs << n*4);
2093 }
2094
2095 if (srs == 0) {
2096 /*
2097 * If no shadow set is selected then use the default handler
2098 * that does normal register saving and standard interrupt exit
2099 */
2100 extern char except_vec_vi, except_vec_vi_lui;
2101 extern char except_vec_vi_ori, except_vec_vi_end;
2102 extern char rollback_except_vec_vi;
2103 char *vec_start = using_rollback_handler() ?
2104 &rollback_except_vec_vi : &except_vec_vi;
2105#if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN)
2106 const int lui_offset = &except_vec_vi_lui - vec_start + 2;
2107 const int ori_offset = &except_vec_vi_ori - vec_start + 2;
2108#else
2109 const int lui_offset = &except_vec_vi_lui - vec_start;
2110 const int ori_offset = &except_vec_vi_ori - vec_start;
2111#endif
2112 const int handler_len = &except_vec_vi_end - vec_start;
2113
2114 if (handler_len > VECTORSPACING) {
2115 /*
2116 * Sigh... panicing won't help as the console
2117 * is probably not configured :(
2118 */
2119 panic("VECTORSPACING too small");
2120 }
2121
2122 set_handler(((unsigned long)b - ebase), vec_start,
2123#ifdef CONFIG_CPU_MICROMIPS
2124 (handler_len - 1));
2125#else
2126 handler_len);
2127#endif
2128 h = (u16 *)(b + lui_offset);
2129 *h = (handler >> 16) & 0xffff;
2130 h = (u16 *)(b + ori_offset);
2131 *h = (handler & 0xffff);
2132 local_flush_icache_range((unsigned long)b,
2133 (unsigned long)(b+handler_len));
2134 }
2135 else {
2136 /*
2137 * In other cases jump directly to the interrupt handler. It
2138 * is the handler's responsibility to save registers if required
2139 * (eg hi/lo) and return from the exception using "eret".
2140 */
2141 u32 insn;
2142
2143 h = (u16 *)b;
2144 /* j handler */
2145#ifdef CONFIG_CPU_MICROMIPS
2146 insn = 0xd4000000 | (((u32)handler & 0x07ffffff) >> 1);
2147#else
2148 insn = 0x08000000 | (((u32)handler & 0x0fffffff) >> 2);
2149#endif
2150 h[0] = (insn >> 16) & 0xffff;
2151 h[1] = insn & 0xffff;
2152 h[2] = 0;
2153 h[3] = 0;
2154 local_flush_icache_range((unsigned long)b,
2155 (unsigned long)(b+8));
2156 }
2157
2158 return (void *)old_handler;
2159}
2160
2161void *set_vi_handler(int n, vi_handler_t addr)
2162{
2163 return set_vi_srs_handler(n, addr, 0);
2164}
2165
2166extern void tlb_init(void);
2167
2168/*
2169 * Timer interrupt
2170 */
2171int cp0_compare_irq;
2172EXPORT_SYMBOL_GPL(cp0_compare_irq);
2173int cp0_compare_irq_shift;
2174
2175/*
2176 * Performance counter IRQ or -1 if shared with timer
2177 */
2178int cp0_perfcount_irq;
2179EXPORT_SYMBOL_GPL(cp0_perfcount_irq);
2180
2181/*
2182 * Fast debug channel IRQ or -1 if not present
2183 */
2184int cp0_fdc_irq;
2185EXPORT_SYMBOL_GPL(cp0_fdc_irq);
2186
2187static int noulri;
2188
2189static int __init ulri_disable(char *s)
2190{
2191 pr_info("Disabling ulri\n");
2192 noulri = 1;
2193
2194 return 1;
2195}
2196__setup("noulri", ulri_disable);
2197
2198/* configure STATUS register */
2199static void configure_status(void)
2200{
2201 /*
2202 * Disable coprocessors and select 32-bit or 64-bit addressing
2203 * and the 16/32 or 32/32 FPR register model. Reset the BEV
2204 * flag that some firmware may have left set and the TS bit (for
2205 * IP27). Set XX for ISA IV code to work.
2206 */
2207 unsigned int status_set = ST0_CU0;
2208#ifdef CONFIG_64BIT
2209 status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
2210#endif
2211 if (current_cpu_data.isa_level & MIPS_CPU_ISA_IV)
2212 status_set |= ST0_XX;
2213 if (cpu_has_dsp)
2214 status_set |= ST0_MX;
2215
2216 change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
2217 status_set);
2218 back_to_back_c0_hazard();
2219}
2220
2221unsigned int hwrena;
2222EXPORT_SYMBOL_GPL(hwrena);
2223
2224/* configure HWRENA register */
2225static void configure_hwrena(void)
2226{
2227 hwrena = cpu_hwrena_impl_bits;
2228
2229 if (cpu_has_mips_r2_r6)
2230 hwrena |= MIPS_HWRENA_CPUNUM |
2231 MIPS_HWRENA_SYNCISTEP |
2232 MIPS_HWRENA_CC |
2233 MIPS_HWRENA_CCRES;
2234
2235 if (!noulri && cpu_has_userlocal)
2236 hwrena |= MIPS_HWRENA_ULR;
2237
2238 if (hwrena)
2239 write_c0_hwrena(hwrena);
2240}
2241
2242static void configure_exception_vector(void)
2243{
2244 if (cpu_has_mips_r2_r6) {
2245 unsigned long sr = set_c0_status(ST0_BEV);
2246 /* If available, use WG to set top bits of EBASE */
2247 if (cpu_has_ebase_wg) {
2248#ifdef CONFIG_64BIT
2249 write_c0_ebase_64(ebase | MIPS_EBASE_WG);
2250#else
2251 write_c0_ebase(ebase | MIPS_EBASE_WG);
2252#endif
2253 }
2254 write_c0_ebase(ebase);
2255 write_c0_status(sr);
2256 }
2257 if (cpu_has_veic || cpu_has_vint) {
2258 /* Setting vector spacing enables EI/VI mode */
2259 change_c0_intctl(0x3e0, VECTORSPACING);
2260 }
2261 if (cpu_has_divec) {
2262 if (cpu_has_mipsmt) {
2263 unsigned int vpflags = dvpe();
2264 set_c0_cause(CAUSEF_IV);
2265 evpe(vpflags);
2266 } else
2267 set_c0_cause(CAUSEF_IV);
2268 }
2269}
2270
2271void per_cpu_trap_init(bool is_boot_cpu)
2272{
2273 unsigned int cpu = smp_processor_id();
2274
2275 configure_status();
2276 configure_hwrena();
2277
2278 configure_exception_vector();
2279
2280 /*
2281 * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
2282 *
2283 * o read IntCtl.IPTI to determine the timer interrupt
2284 * o read IntCtl.IPPCI to determine the performance counter interrupt
2285 * o read IntCtl.IPFDC to determine the fast debug channel interrupt
2286 */
2287 if (cpu_has_mips_r2_r6) {
2288 cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP;
2289 cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7;
2290 cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7;
2291 cp0_fdc_irq = (read_c0_intctl() >> INTCTLB_IPFDC) & 7;
2292 if (!cp0_fdc_irq)
2293 cp0_fdc_irq = -1;
2294
2295 } else {
2296 cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ;
2297 cp0_compare_irq_shift = CP0_LEGACY_PERFCNT_IRQ;
2298 cp0_perfcount_irq = -1;
2299 cp0_fdc_irq = -1;
2300 }
2301
2302 if (cpu_has_mmid)
2303 cpu_data[cpu].asid_cache = 0;
2304 else if (!cpu_data[cpu].asid_cache)
2305 cpu_data[cpu].asid_cache = asid_first_version(cpu);
2306
2307 mmgrab(&init_mm);
2308 current->active_mm = &init_mm;
2309 BUG_ON(current->mm);
2310 enter_lazy_tlb(&init_mm, current);
2311
2312 /* Boot CPU's cache setup in setup_arch(). */
2313 if (!is_boot_cpu)
2314 cpu_cache_init();
2315 tlb_init();
2316 TLBMISS_HANDLER_SETUP();
2317}
2318
2319/* Install CPU exception handler */
2320void set_handler(unsigned long offset, void *addr, unsigned long size)
2321{
2322#ifdef CONFIG_CPU_MICROMIPS
2323 memcpy((void *)(ebase + offset), ((unsigned char *)addr - 1), size);
2324#else
2325 memcpy((void *)(ebase + offset), addr, size);
2326#endif
2327 local_flush_icache_range(ebase + offset, ebase + offset + size);
2328}
2329
2330static const char panic_null_cerr[] =
2331 "Trying to set NULL cache error exception handler\n";
2332
2333/*
2334 * Install uncached CPU exception handler.
2335 * This is suitable only for the cache error exception which is the only
2336 * exception handler that is being run uncached.
2337 */
2338void set_uncached_handler(unsigned long offset, void *addr,
2339 unsigned long size)
2340{
2341 unsigned long uncached_ebase = CKSEG1ADDR(ebase);
2342
2343 if (!addr)
2344 panic(panic_null_cerr);
2345
2346 memcpy((void *)(uncached_ebase + offset), addr, size);
2347}
2348
2349static int __initdata rdhwr_noopt;
2350static int __init set_rdhwr_noopt(char *str)
2351{
2352 rdhwr_noopt = 1;
2353 return 1;
2354}
2355
2356__setup("rdhwr_noopt", set_rdhwr_noopt);
2357
2358void __init trap_init(void)
2359{
2360 extern char except_vec3_generic;
2361 extern char except_vec4;
2362 extern char except_vec3_r4000;
2363 unsigned long i, vec_size;
2364 phys_addr_t ebase_pa;
2365
2366 check_wait();
2367
2368 if (!cpu_has_mips_r2_r6) {
2369 ebase = CAC_BASE;
2370 ebase_pa = virt_to_phys((void *)ebase);
2371 vec_size = 0x400;
2372
2373 memblock_reserve(ebase_pa, vec_size);
2374 } else {
2375 if (cpu_has_veic || cpu_has_vint)
2376 vec_size = 0x200 + VECTORSPACING*64;
2377 else
2378 vec_size = PAGE_SIZE;
2379
2380 ebase_pa = memblock_phys_alloc(vec_size, 1 << fls(vec_size));
2381 if (!ebase_pa)
2382 panic("%s: Failed to allocate %lu bytes align=0x%x\n",
2383 __func__, vec_size, 1 << fls(vec_size));
2384
2385 /*
2386 * Try to ensure ebase resides in KSeg0 if possible.
2387 *
2388 * It shouldn't generally be in XKPhys on MIPS64 to avoid
2389 * hitting a poorly defined exception base for Cache Errors.
2390 * The allocation is likely to be in the low 512MB of physical,
2391 * in which case we should be able to convert to KSeg0.
2392 *
2393 * EVA is special though as it allows segments to be rearranged
2394 * and to become uncached during cache error handling.
2395 */
2396 if (!IS_ENABLED(CONFIG_EVA) && !WARN_ON(ebase_pa >= 0x20000000))
2397 ebase = CKSEG0ADDR(ebase_pa);
2398 else
2399 ebase = (unsigned long)phys_to_virt(ebase_pa);
2400 }
2401
2402 if (cpu_has_mmips) {
2403 unsigned int config3 = read_c0_config3();
2404
2405 if (IS_ENABLED(CONFIG_CPU_MICROMIPS))
2406 write_c0_config3(config3 | MIPS_CONF3_ISA_OE);
2407 else
2408 write_c0_config3(config3 & ~MIPS_CONF3_ISA_OE);
2409 }
2410
2411 if (board_ebase_setup)
2412 board_ebase_setup();
2413 per_cpu_trap_init(true);
2414 memblock_set_bottom_up(false);
2415
2416 /*
2417 * Copy the generic exception handlers to their final destination.
2418 * This will be overridden later as suitable for a particular
2419 * configuration.
2420 */
2421 set_handler(0x180, &except_vec3_generic, 0x80);
2422
2423 /*
2424 * Setup default vectors
2425 */
2426 for (i = 0; i <= 31; i++)
2427 set_except_vector(i, handle_reserved);
2428
2429 /*
2430 * Copy the EJTAG debug exception vector handler code to it's final
2431 * destination.
2432 */
2433 if (cpu_has_ejtag && board_ejtag_handler_setup)
2434 board_ejtag_handler_setup();
2435
2436 /*
2437 * Only some CPUs have the watch exceptions.
2438 */
2439 if (cpu_has_watch)
2440 set_except_vector(EXCCODE_WATCH, handle_watch);
2441
2442 /*
2443 * Initialise interrupt handlers
2444 */
2445 if (cpu_has_veic || cpu_has_vint) {
2446 int nvec = cpu_has_veic ? 64 : 8;
2447 for (i = 0; i < nvec; i++)
2448 set_vi_handler(i, NULL);
2449 }
2450 else if (cpu_has_divec)
2451 set_handler(0x200, &except_vec4, 0x8);
2452
2453 /*
2454 * Some CPUs can enable/disable for cache parity detection, but does
2455 * it different ways.
2456 */
2457 parity_protection_init();
2458
2459 /*
2460 * The Data Bus Errors / Instruction Bus Errors are signaled
2461 * by external hardware. Therefore these two exceptions
2462 * may have board specific handlers.
2463 */
2464 if (board_be_init)
2465 board_be_init();
2466
2467 set_except_vector(EXCCODE_INT, using_rollback_handler() ?
2468 rollback_handle_int : handle_int);
2469 set_except_vector(EXCCODE_MOD, handle_tlbm);
2470 set_except_vector(EXCCODE_TLBL, handle_tlbl);
2471 set_except_vector(EXCCODE_TLBS, handle_tlbs);
2472
2473 set_except_vector(EXCCODE_ADEL, handle_adel);
2474 set_except_vector(EXCCODE_ADES, handle_ades);
2475
2476 set_except_vector(EXCCODE_IBE, handle_ibe);
2477 set_except_vector(EXCCODE_DBE, handle_dbe);
2478
2479 set_except_vector(EXCCODE_SYS, handle_sys);
2480 set_except_vector(EXCCODE_BP, handle_bp);
2481
2482 if (rdhwr_noopt)
2483 set_except_vector(EXCCODE_RI, handle_ri);
2484 else {
2485 if (cpu_has_vtag_icache)
2486 set_except_vector(EXCCODE_RI, handle_ri_rdhwr_tlbp);
2487 else if (current_cpu_type() == CPU_LOONGSON64)
2488 set_except_vector(EXCCODE_RI, handle_ri_rdhwr_tlbp);
2489 else
2490 set_except_vector(EXCCODE_RI, handle_ri_rdhwr);
2491 }
2492
2493 set_except_vector(EXCCODE_CPU, handle_cpu);
2494 set_except_vector(EXCCODE_OV, handle_ov);
2495 set_except_vector(EXCCODE_TR, handle_tr);
2496 set_except_vector(EXCCODE_MSAFPE, handle_msa_fpe);
2497
2498 if (board_nmi_handler_setup)
2499 board_nmi_handler_setup();
2500
2501 if (cpu_has_fpu && !cpu_has_nofpuex)
2502 set_except_vector(EXCCODE_FPE, handle_fpe);
2503
2504 if (cpu_has_ftlbparex)
2505 set_except_vector(MIPS_EXCCODE_TLBPAR, handle_ftlb);
2506
2507 if (cpu_has_gsexcex)
2508 set_except_vector(LOONGSON_EXCCODE_GSEXC, handle_gsexc);
2509
2510 if (cpu_has_rixiex) {
2511 set_except_vector(EXCCODE_TLBRI, tlb_do_page_fault_0);
2512 set_except_vector(EXCCODE_TLBXI, tlb_do_page_fault_0);
2513 }
2514
2515 set_except_vector(EXCCODE_MSADIS, handle_msa);
2516 set_except_vector(EXCCODE_MDMX, handle_mdmx);
2517
2518 if (cpu_has_mcheck)
2519 set_except_vector(EXCCODE_MCHECK, handle_mcheck);
2520
2521 if (cpu_has_mipsmt)
2522 set_except_vector(EXCCODE_THREAD, handle_mt);
2523
2524 set_except_vector(EXCCODE_DSPDIS, handle_dsp);
2525
2526 if (board_cache_error_setup)
2527 board_cache_error_setup();
2528
2529 if (cpu_has_vce)
2530 /* Special exception: R4[04]00 uses also the divec space. */
2531 set_handler(0x180, &except_vec3_r4000, 0x100);
2532 else if (cpu_has_4kex)
2533 set_handler(0x180, &except_vec3_generic, 0x80);
2534 else
2535 set_handler(0x080, &except_vec3_generic, 0x80);
2536
2537 local_flush_icache_range(ebase, ebase + vec_size);
2538
2539 sort_extable(__start___dbe_table, __stop___dbe_table);
2540
2541 cu2_notifier(default_cu2_call, 0x80000000); /* Run last */
2542}
2543
2544static int trap_pm_notifier(struct notifier_block *self, unsigned long cmd,
2545 void *v)
2546{
2547 switch (cmd) {
2548 case CPU_PM_ENTER_FAILED:
2549 case CPU_PM_EXIT:
2550 configure_status();
2551 configure_hwrena();
2552 configure_exception_vector();
2553
2554 /* Restore register with CPU number for TLB handlers */
2555 TLBMISS_HANDLER_RESTORE();
2556
2557 break;
2558 }
2559
2560 return NOTIFY_OK;
2561}
2562
2563static struct notifier_block trap_pm_notifier_block = {
2564 .notifier_call = trap_pm_notifier,
2565};
2566
2567static int __init trap_pm_init(void)
2568{
2569 return cpu_pm_register_notifier(&trap_pm_notifier_block);
2570}
2571arch_initcall(trap_pm_init);
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
7 * Copyright (C) 1995, 1996 Paul M. Antoine
8 * Copyright (C) 1998 Ulf Carlsson
9 * Copyright (C) 1999 Silicon Graphics, Inc.
10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
11 * Copyright (C) 2002, 2003, 2004, 2005, 2007 Maciej W. Rozycki
12 * Copyright (C) 2000, 2001, 2012 MIPS Technologies, Inc. All rights reserved.
13 * Copyright (C) 2014, Imagination Technologies Ltd.
14 */
15#include <linux/bitops.h>
16#include <linux/bug.h>
17#include <linux/compiler.h>
18#include <linux/context_tracking.h>
19#include <linux/cpu_pm.h>
20#include <linux/kexec.h>
21#include <linux/init.h>
22#include <linux/kernel.h>
23#include <linux/module.h>
24#include <linux/extable.h>
25#include <linux/mm.h>
26#include <linux/sched.h>
27#include <linux/smp.h>
28#include <linux/spinlock.h>
29#include <linux/kallsyms.h>
30#include <linux/bootmem.h>
31#include <linux/interrupt.h>
32#include <linux/ptrace.h>
33#include <linux/kgdb.h>
34#include <linux/kdebug.h>
35#include <linux/kprobes.h>
36#include <linux/notifier.h>
37#include <linux/kdb.h>
38#include <linux/irq.h>
39#include <linux/perf_event.h>
40
41#include <asm/addrspace.h>
42#include <asm/bootinfo.h>
43#include <asm/branch.h>
44#include <asm/break.h>
45#include <asm/cop2.h>
46#include <asm/cpu.h>
47#include <asm/cpu-type.h>
48#include <asm/dsp.h>
49#include <asm/fpu.h>
50#include <asm/fpu_emulator.h>
51#include <asm/idle.h>
52#include <asm/mips-cm.h>
53#include <asm/mips-r2-to-r6-emul.h>
54#include <asm/mipsregs.h>
55#include <asm/mipsmtregs.h>
56#include <asm/module.h>
57#include <asm/msa.h>
58#include <asm/pgtable.h>
59#include <asm/ptrace.h>
60#include <asm/sections.h>
61#include <asm/siginfo.h>
62#include <asm/tlbdebug.h>
63#include <asm/traps.h>
64#include <linux/uaccess.h>
65#include <asm/watch.h>
66#include <asm/mmu_context.h>
67#include <asm/types.h>
68#include <asm/stacktrace.h>
69#include <asm/uasm.h>
70
71extern void check_wait(void);
72extern asmlinkage void rollback_handle_int(void);
73extern asmlinkage void handle_int(void);
74extern u32 handle_tlbl[];
75extern u32 handle_tlbs[];
76extern u32 handle_tlbm[];
77extern asmlinkage void handle_adel(void);
78extern asmlinkage void handle_ades(void);
79extern asmlinkage void handle_ibe(void);
80extern asmlinkage void handle_dbe(void);
81extern asmlinkage void handle_sys(void);
82extern asmlinkage void handle_bp(void);
83extern asmlinkage void handle_ri(void);
84extern asmlinkage void handle_ri_rdhwr_tlbp(void);
85extern asmlinkage void handle_ri_rdhwr(void);
86extern asmlinkage void handle_cpu(void);
87extern asmlinkage void handle_ov(void);
88extern asmlinkage void handle_tr(void);
89extern asmlinkage void handle_msa_fpe(void);
90extern asmlinkage void handle_fpe(void);
91extern asmlinkage void handle_ftlb(void);
92extern asmlinkage void handle_msa(void);
93extern asmlinkage void handle_mdmx(void);
94extern asmlinkage void handle_watch(void);
95extern asmlinkage void handle_mt(void);
96extern asmlinkage void handle_dsp(void);
97extern asmlinkage void handle_mcheck(void);
98extern asmlinkage void handle_reserved(void);
99extern void tlb_do_page_fault_0(void);
100
101void (*board_be_init)(void);
102int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
103void (*board_nmi_handler_setup)(void);
104void (*board_ejtag_handler_setup)(void);
105void (*board_bind_eic_interrupt)(int irq, int regset);
106void (*board_ebase_setup)(void);
107void(*board_cache_error_setup)(void);
108
109static void show_raw_backtrace(unsigned long reg29)
110{
111 unsigned long *sp = (unsigned long *)(reg29 & ~3);
112 unsigned long addr;
113
114 printk("Call Trace:");
115#ifdef CONFIG_KALLSYMS
116 printk("\n");
117#endif
118 while (!kstack_end(sp)) {
119 unsigned long __user *p =
120 (unsigned long __user *)(unsigned long)sp++;
121 if (__get_user(addr, p)) {
122 printk(" (Bad stack address)");
123 break;
124 }
125 if (__kernel_text_address(addr))
126 print_ip_sym(addr);
127 }
128 printk("\n");
129}
130
131#ifdef CONFIG_KALLSYMS
132int raw_show_trace;
133static int __init set_raw_show_trace(char *str)
134{
135 raw_show_trace = 1;
136 return 1;
137}
138__setup("raw_show_trace", set_raw_show_trace);
139#endif
140
141static void show_backtrace(struct task_struct *task, const struct pt_regs *regs)
142{
143 unsigned long sp = regs->regs[29];
144 unsigned long ra = regs->regs[31];
145 unsigned long pc = regs->cp0_epc;
146
147 if (!task)
148 task = current;
149
150 if (raw_show_trace || user_mode(regs) || !__kernel_text_address(pc)) {
151 show_raw_backtrace(sp);
152 return;
153 }
154 printk("Call Trace:\n");
155 do {
156 print_ip_sym(pc);
157 pc = unwind_stack(task, &sp, pc, &ra);
158 } while (pc);
159 pr_cont("\n");
160}
161
162/*
163 * This routine abuses get_user()/put_user() to reference pointers
164 * with at least a bit of error checking ...
165 */
166static void show_stacktrace(struct task_struct *task,
167 const struct pt_regs *regs)
168{
169 const int field = 2 * sizeof(unsigned long);
170 long stackdata;
171 int i;
172 unsigned long __user *sp = (unsigned long __user *)regs->regs[29];
173
174 printk("Stack :");
175 i = 0;
176 while ((unsigned long) sp & (PAGE_SIZE - 1)) {
177 if (i && ((i % (64 / field)) == 0)) {
178 pr_cont("\n");
179 printk(" ");
180 }
181 if (i > 39) {
182 pr_cont(" ...");
183 break;
184 }
185
186 if (__get_user(stackdata, sp++)) {
187 pr_cont(" (Bad stack address)");
188 break;
189 }
190
191 pr_cont(" %0*lx", field, stackdata);
192 i++;
193 }
194 pr_cont("\n");
195 show_backtrace(task, regs);
196}
197
198void show_stack(struct task_struct *task, unsigned long *sp)
199{
200 struct pt_regs regs;
201 mm_segment_t old_fs = get_fs();
202 if (sp) {
203 regs.regs[29] = (unsigned long)sp;
204 regs.regs[31] = 0;
205 regs.cp0_epc = 0;
206 } else {
207 if (task && task != current) {
208 regs.regs[29] = task->thread.reg29;
209 regs.regs[31] = 0;
210 regs.cp0_epc = task->thread.reg31;
211#ifdef CONFIG_KGDB_KDB
212 } else if (atomic_read(&kgdb_active) != -1 &&
213 kdb_current_regs) {
214 memcpy(®s, kdb_current_regs, sizeof(regs));
215#endif /* CONFIG_KGDB_KDB */
216 } else {
217 prepare_frametrace(®s);
218 }
219 }
220 /*
221 * show_stack() deals exclusively with kernel mode, so be sure to access
222 * the stack in the kernel (not user) address space.
223 */
224 set_fs(KERNEL_DS);
225 show_stacktrace(task, ®s);
226 set_fs(old_fs);
227}
228
229static void show_code(unsigned int __user *pc)
230{
231 long i;
232 unsigned short __user *pc16 = NULL;
233
234 printk("Code:");
235
236 if ((unsigned long)pc & 1)
237 pc16 = (unsigned short __user *)((unsigned long)pc & ~1);
238 for(i = -3 ; i < 6 ; i++) {
239 unsigned int insn;
240 if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) {
241 pr_cont(" (Bad address in epc)\n");
242 break;
243 }
244 pr_cont("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>'));
245 }
246 pr_cont("\n");
247}
248
249static void __show_regs(const struct pt_regs *regs)
250{
251 const int field = 2 * sizeof(unsigned long);
252 unsigned int cause = regs->cp0_cause;
253 unsigned int exccode;
254 int i;
255
256 show_regs_print_info(KERN_DEFAULT);
257
258 /*
259 * Saved main processor registers
260 */
261 for (i = 0; i < 32; ) {
262 if ((i % 4) == 0)
263 printk("$%2d :", i);
264 if (i == 0)
265 pr_cont(" %0*lx", field, 0UL);
266 else if (i == 26 || i == 27)
267 pr_cont(" %*s", field, "");
268 else
269 pr_cont(" %0*lx", field, regs->regs[i]);
270
271 i++;
272 if ((i % 4) == 0)
273 pr_cont("\n");
274 }
275
276#ifdef CONFIG_CPU_HAS_SMARTMIPS
277 printk("Acx : %0*lx\n", field, regs->acx);
278#endif
279 printk("Hi : %0*lx\n", field, regs->hi);
280 printk("Lo : %0*lx\n", field, regs->lo);
281
282 /*
283 * Saved cp0 registers
284 */
285 printk("epc : %0*lx %pS\n", field, regs->cp0_epc,
286 (void *) regs->cp0_epc);
287 printk("ra : %0*lx %pS\n", field, regs->regs[31],
288 (void *) regs->regs[31]);
289
290 printk("Status: %08x ", (uint32_t) regs->cp0_status);
291
292 if (cpu_has_3kex) {
293 if (regs->cp0_status & ST0_KUO)
294 pr_cont("KUo ");
295 if (regs->cp0_status & ST0_IEO)
296 pr_cont("IEo ");
297 if (regs->cp0_status & ST0_KUP)
298 pr_cont("KUp ");
299 if (regs->cp0_status & ST0_IEP)
300 pr_cont("IEp ");
301 if (regs->cp0_status & ST0_KUC)
302 pr_cont("KUc ");
303 if (regs->cp0_status & ST0_IEC)
304 pr_cont("IEc ");
305 } else if (cpu_has_4kex) {
306 if (regs->cp0_status & ST0_KX)
307 pr_cont("KX ");
308 if (regs->cp0_status & ST0_SX)
309 pr_cont("SX ");
310 if (regs->cp0_status & ST0_UX)
311 pr_cont("UX ");
312 switch (regs->cp0_status & ST0_KSU) {
313 case KSU_USER:
314 pr_cont("USER ");
315 break;
316 case KSU_SUPERVISOR:
317 pr_cont("SUPERVISOR ");
318 break;
319 case KSU_KERNEL:
320 pr_cont("KERNEL ");
321 break;
322 default:
323 pr_cont("BAD_MODE ");
324 break;
325 }
326 if (regs->cp0_status & ST0_ERL)
327 pr_cont("ERL ");
328 if (regs->cp0_status & ST0_EXL)
329 pr_cont("EXL ");
330 if (regs->cp0_status & ST0_IE)
331 pr_cont("IE ");
332 }
333 pr_cont("\n");
334
335 exccode = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
336 printk("Cause : %08x (ExcCode %02x)\n", cause, exccode);
337
338 if (1 <= exccode && exccode <= 5)
339 printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
340
341 printk("PrId : %08x (%s)\n", read_c0_prid(),
342 cpu_name_string());
343}
344
345/*
346 * FIXME: really the generic show_regs should take a const pointer argument.
347 */
348void show_regs(struct pt_regs *regs)
349{
350 __show_regs((struct pt_regs *)regs);
351}
352
353void show_registers(struct pt_regs *regs)
354{
355 const int field = 2 * sizeof(unsigned long);
356 mm_segment_t old_fs = get_fs();
357
358 __show_regs(regs);
359 print_modules();
360 printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
361 current->comm, current->pid, current_thread_info(), current,
362 field, current_thread_info()->tp_value);
363 if (cpu_has_userlocal) {
364 unsigned long tls;
365
366 tls = read_c0_userlocal();
367 if (tls != current_thread_info()->tp_value)
368 printk("*HwTLS: %0*lx\n", field, tls);
369 }
370
371 if (!user_mode(regs))
372 /* Necessary for getting the correct stack content */
373 set_fs(KERNEL_DS);
374 show_stacktrace(current, regs);
375 show_code((unsigned int __user *) regs->cp0_epc);
376 printk("\n");
377 set_fs(old_fs);
378}
379
380static DEFINE_RAW_SPINLOCK(die_lock);
381
382void __noreturn die(const char *str, struct pt_regs *regs)
383{
384 static int die_counter;
385 int sig = SIGSEGV;
386
387 oops_enter();
388
389 if (notify_die(DIE_OOPS, str, regs, 0, current->thread.trap_nr,
390 SIGSEGV) == NOTIFY_STOP)
391 sig = 0;
392
393 console_verbose();
394 raw_spin_lock_irq(&die_lock);
395 bust_spinlocks(1);
396
397 printk("%s[#%d]:\n", str, ++die_counter);
398 show_registers(regs);
399 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
400 raw_spin_unlock_irq(&die_lock);
401
402 oops_exit();
403
404 if (in_interrupt())
405 panic("Fatal exception in interrupt");
406
407 if (panic_on_oops)
408 panic("Fatal exception");
409
410 if (regs && kexec_should_crash(current))
411 crash_kexec(regs);
412
413 do_exit(sig);
414}
415
416extern struct exception_table_entry __start___dbe_table[];
417extern struct exception_table_entry __stop___dbe_table[];
418
419__asm__(
420" .section __dbe_table, \"a\"\n"
421" .previous \n");
422
423/* Given an address, look for it in the exception tables. */
424static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
425{
426 const struct exception_table_entry *e;
427
428 e = search_extable(__start___dbe_table, __stop___dbe_table - 1, addr);
429 if (!e)
430 e = search_module_dbetables(addr);
431 return e;
432}
433
434asmlinkage void do_be(struct pt_regs *regs)
435{
436 const int field = 2 * sizeof(unsigned long);
437 const struct exception_table_entry *fixup = NULL;
438 int data = regs->cp0_cause & 4;
439 int action = MIPS_BE_FATAL;
440 enum ctx_state prev_state;
441
442 prev_state = exception_enter();
443 /* XXX For now. Fixme, this searches the wrong table ... */
444 if (data && !user_mode(regs))
445 fixup = search_dbe_tables(exception_epc(regs));
446
447 if (fixup)
448 action = MIPS_BE_FIXUP;
449
450 if (board_be_handler)
451 action = board_be_handler(regs, fixup != NULL);
452 else
453 mips_cm_error_report();
454
455 switch (action) {
456 case MIPS_BE_DISCARD:
457 goto out;
458 case MIPS_BE_FIXUP:
459 if (fixup) {
460 regs->cp0_epc = fixup->nextinsn;
461 goto out;
462 }
463 break;
464 default:
465 break;
466 }
467
468 /*
469 * Assume it would be too dangerous to continue ...
470 */
471 printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
472 data ? "Data" : "Instruction",
473 field, regs->cp0_epc, field, regs->regs[31]);
474 if (notify_die(DIE_OOPS, "bus error", regs, 0, current->thread.trap_nr,
475 SIGBUS) == NOTIFY_STOP)
476 goto out;
477
478 die_if_kernel("Oops", regs);
479 force_sig(SIGBUS, current);
480
481out:
482 exception_exit(prev_state);
483}
484
485/*
486 * ll/sc, rdhwr, sync emulation
487 */
488
489#define OPCODE 0xfc000000
490#define BASE 0x03e00000
491#define RT 0x001f0000
492#define OFFSET 0x0000ffff
493#define LL 0xc0000000
494#define SC 0xe0000000
495#define SPEC0 0x00000000
496#define SPEC3 0x7c000000
497#define RD 0x0000f800
498#define FUNC 0x0000003f
499#define SYNC 0x0000000f
500#define RDHWR 0x0000003b
501
502/* microMIPS definitions */
503#define MM_POOL32A_FUNC 0xfc00ffff
504#define MM_RDHWR 0x00006b3c
505#define MM_RS 0x001f0000
506#define MM_RT 0x03e00000
507
508/*
509 * The ll_bit is cleared by r*_switch.S
510 */
511
512unsigned int ll_bit;
513struct task_struct *ll_task;
514
515static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode)
516{
517 unsigned long value, __user *vaddr;
518 long offset;
519
520 /*
521 * analyse the ll instruction that just caused a ri exception
522 * and put the referenced address to addr.
523 */
524
525 /* sign extend offset */
526 offset = opcode & OFFSET;
527 offset <<= 16;
528 offset >>= 16;
529
530 vaddr = (unsigned long __user *)
531 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
532
533 if ((unsigned long)vaddr & 3)
534 return SIGBUS;
535 if (get_user(value, vaddr))
536 return SIGSEGV;
537
538 preempt_disable();
539
540 if (ll_task == NULL || ll_task == current) {
541 ll_bit = 1;
542 } else {
543 ll_bit = 0;
544 }
545 ll_task = current;
546
547 preempt_enable();
548
549 regs->regs[(opcode & RT) >> 16] = value;
550
551 return 0;
552}
553
554static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode)
555{
556 unsigned long __user *vaddr;
557 unsigned long reg;
558 long offset;
559
560 /*
561 * analyse the sc instruction that just caused a ri exception
562 * and put the referenced address to addr.
563 */
564
565 /* sign extend offset */
566 offset = opcode & OFFSET;
567 offset <<= 16;
568 offset >>= 16;
569
570 vaddr = (unsigned long __user *)
571 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
572 reg = (opcode & RT) >> 16;
573
574 if ((unsigned long)vaddr & 3)
575 return SIGBUS;
576
577 preempt_disable();
578
579 if (ll_bit == 0 || ll_task != current) {
580 regs->regs[reg] = 0;
581 preempt_enable();
582 return 0;
583 }
584
585 preempt_enable();
586
587 if (put_user(regs->regs[reg], vaddr))
588 return SIGSEGV;
589
590 regs->regs[reg] = 1;
591
592 return 0;
593}
594
595/*
596 * ll uses the opcode of lwc0 and sc uses the opcode of swc0. That is both
597 * opcodes are supposed to result in coprocessor unusable exceptions if
598 * executed on ll/sc-less processors. That's the theory. In practice a
599 * few processors such as NEC's VR4100 throw reserved instruction exceptions
600 * instead, so we're doing the emulation thing in both exception handlers.
601 */
602static int simulate_llsc(struct pt_regs *regs, unsigned int opcode)
603{
604 if ((opcode & OPCODE) == LL) {
605 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
606 1, regs, 0);
607 return simulate_ll(regs, opcode);
608 }
609 if ((opcode & OPCODE) == SC) {
610 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
611 1, regs, 0);
612 return simulate_sc(regs, opcode);
613 }
614
615 return -1; /* Must be something else ... */
616}
617
618/*
619 * Simulate trapping 'rdhwr' instructions to provide user accessible
620 * registers not implemented in hardware.
621 */
622static int simulate_rdhwr(struct pt_regs *regs, int rd, int rt)
623{
624 struct thread_info *ti = task_thread_info(current);
625
626 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
627 1, regs, 0);
628 switch (rd) {
629 case MIPS_HWR_CPUNUM: /* CPU number */
630 regs->regs[rt] = smp_processor_id();
631 return 0;
632 case MIPS_HWR_SYNCISTEP: /* SYNCI length */
633 regs->regs[rt] = min(current_cpu_data.dcache.linesz,
634 current_cpu_data.icache.linesz);
635 return 0;
636 case MIPS_HWR_CC: /* Read count register */
637 regs->regs[rt] = read_c0_count();
638 return 0;
639 case MIPS_HWR_CCRES: /* Count register resolution */
640 switch (current_cpu_type()) {
641 case CPU_20KC:
642 case CPU_25KF:
643 regs->regs[rt] = 1;
644 break;
645 default:
646 regs->regs[rt] = 2;
647 }
648 return 0;
649 case MIPS_HWR_ULR: /* Read UserLocal register */
650 regs->regs[rt] = ti->tp_value;
651 return 0;
652 default:
653 return -1;
654 }
655}
656
657static int simulate_rdhwr_normal(struct pt_regs *regs, unsigned int opcode)
658{
659 if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
660 int rd = (opcode & RD) >> 11;
661 int rt = (opcode & RT) >> 16;
662
663 simulate_rdhwr(regs, rd, rt);
664 return 0;
665 }
666
667 /* Not ours. */
668 return -1;
669}
670
671static int simulate_rdhwr_mm(struct pt_regs *regs, unsigned int opcode)
672{
673 if ((opcode & MM_POOL32A_FUNC) == MM_RDHWR) {
674 int rd = (opcode & MM_RS) >> 16;
675 int rt = (opcode & MM_RT) >> 21;
676 simulate_rdhwr(regs, rd, rt);
677 return 0;
678 }
679
680 /* Not ours. */
681 return -1;
682}
683
684static int simulate_sync(struct pt_regs *regs, unsigned int opcode)
685{
686 if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) {
687 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
688 1, regs, 0);
689 return 0;
690 }
691
692 return -1; /* Must be something else ... */
693}
694
695asmlinkage void do_ov(struct pt_regs *regs)
696{
697 enum ctx_state prev_state;
698 siginfo_t info = {
699 .si_signo = SIGFPE,
700 .si_code = FPE_INTOVF,
701 .si_addr = (void __user *)regs->cp0_epc,
702 };
703
704 prev_state = exception_enter();
705 die_if_kernel("Integer overflow", regs);
706
707 force_sig_info(SIGFPE, &info, current);
708 exception_exit(prev_state);
709}
710
711/*
712 * Send SIGFPE according to FCSR Cause bits, which must have already
713 * been masked against Enable bits. This is impotant as Inexact can
714 * happen together with Overflow or Underflow, and `ptrace' can set
715 * any bits.
716 */
717void force_fcr31_sig(unsigned long fcr31, void __user *fault_addr,
718 struct task_struct *tsk)
719{
720 struct siginfo si = { .si_addr = fault_addr, .si_signo = SIGFPE };
721
722 if (fcr31 & FPU_CSR_INV_X)
723 si.si_code = FPE_FLTINV;
724 else if (fcr31 & FPU_CSR_DIV_X)
725 si.si_code = FPE_FLTDIV;
726 else if (fcr31 & FPU_CSR_OVF_X)
727 si.si_code = FPE_FLTOVF;
728 else if (fcr31 & FPU_CSR_UDF_X)
729 si.si_code = FPE_FLTUND;
730 else if (fcr31 & FPU_CSR_INE_X)
731 si.si_code = FPE_FLTRES;
732 else
733 si.si_code = __SI_FAULT;
734 force_sig_info(SIGFPE, &si, tsk);
735}
736
737int process_fpemu_return(int sig, void __user *fault_addr, unsigned long fcr31)
738{
739 struct siginfo si = { 0 };
740 struct vm_area_struct *vma;
741
742 switch (sig) {
743 case 0:
744 return 0;
745
746 case SIGFPE:
747 force_fcr31_sig(fcr31, fault_addr, current);
748 return 1;
749
750 case SIGBUS:
751 si.si_addr = fault_addr;
752 si.si_signo = sig;
753 si.si_code = BUS_ADRERR;
754 force_sig_info(sig, &si, current);
755 return 1;
756
757 case SIGSEGV:
758 si.si_addr = fault_addr;
759 si.si_signo = sig;
760 down_read(¤t->mm->mmap_sem);
761 vma = find_vma(current->mm, (unsigned long)fault_addr);
762 if (vma && (vma->vm_start <= (unsigned long)fault_addr))
763 si.si_code = SEGV_ACCERR;
764 else
765 si.si_code = SEGV_MAPERR;
766 up_read(¤t->mm->mmap_sem);
767 force_sig_info(sig, &si, current);
768 return 1;
769
770 default:
771 force_sig(sig, current);
772 return 1;
773 }
774}
775
776static int simulate_fp(struct pt_regs *regs, unsigned int opcode,
777 unsigned long old_epc, unsigned long old_ra)
778{
779 union mips_instruction inst = { .word = opcode };
780 void __user *fault_addr;
781 unsigned long fcr31;
782 int sig;
783
784 /* If it's obviously not an FP instruction, skip it */
785 switch (inst.i_format.opcode) {
786 case cop1_op:
787 case cop1x_op:
788 case lwc1_op:
789 case ldc1_op:
790 case swc1_op:
791 case sdc1_op:
792 break;
793
794 default:
795 return -1;
796 }
797
798 /*
799 * do_ri skipped over the instruction via compute_return_epc, undo
800 * that for the FPU emulator.
801 */
802 regs->cp0_epc = old_epc;
803 regs->regs[31] = old_ra;
804
805 /* Save the FP context to struct thread_struct */
806 lose_fpu(1);
807
808 /* Run the emulator */
809 sig = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 1,
810 &fault_addr);
811
812 /*
813 * We can't allow the emulated instruction to leave any
814 * enabled Cause bits set in $fcr31.
815 */
816 fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
817 current->thread.fpu.fcr31 &= ~fcr31;
818
819 /* Restore the hardware register state */
820 own_fpu(1);
821
822 /* Send a signal if required. */
823 process_fpemu_return(sig, fault_addr, fcr31);
824
825 return 0;
826}
827
828/*
829 * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
830 */
831asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
832{
833 enum ctx_state prev_state;
834 void __user *fault_addr;
835 int sig;
836
837 prev_state = exception_enter();
838 if (notify_die(DIE_FP, "FP exception", regs, 0, current->thread.trap_nr,
839 SIGFPE) == NOTIFY_STOP)
840 goto out;
841
842 /* Clear FCSR.Cause before enabling interrupts */
843 write_32bit_cp1_register(CP1_STATUS, fcr31 & ~mask_fcr31_x(fcr31));
844 local_irq_enable();
845
846 die_if_kernel("FP exception in kernel code", regs);
847
848 if (fcr31 & FPU_CSR_UNI_X) {
849 /*
850 * Unimplemented operation exception. If we've got the full
851 * software emulator on-board, let's use it...
852 *
853 * Force FPU to dump state into task/thread context. We're
854 * moving a lot of data here for what is probably a single
855 * instruction, but the alternative is to pre-decode the FP
856 * register operands before invoking the emulator, which seems
857 * a bit extreme for what should be an infrequent event.
858 */
859 /* Ensure 'resume' not overwrite saved fp context again. */
860 lose_fpu(1);
861
862 /* Run the emulator */
863 sig = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 1,
864 &fault_addr);
865
866 /*
867 * We can't allow the emulated instruction to leave any
868 * enabled Cause bits set in $fcr31.
869 */
870 fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
871 current->thread.fpu.fcr31 &= ~fcr31;
872
873 /* Restore the hardware register state */
874 own_fpu(1); /* Using the FPU again. */
875 } else {
876 sig = SIGFPE;
877 fault_addr = (void __user *) regs->cp0_epc;
878 }
879
880 /* Send a signal if required. */
881 process_fpemu_return(sig, fault_addr, fcr31);
882
883out:
884 exception_exit(prev_state);
885}
886
887void do_trap_or_bp(struct pt_regs *regs, unsigned int code, int si_code,
888 const char *str)
889{
890 siginfo_t info = { 0 };
891 char b[40];
892
893#ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
894 if (kgdb_ll_trap(DIE_TRAP, str, regs, code, current->thread.trap_nr,
895 SIGTRAP) == NOTIFY_STOP)
896 return;
897#endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
898
899 if (notify_die(DIE_TRAP, str, regs, code, current->thread.trap_nr,
900 SIGTRAP) == NOTIFY_STOP)
901 return;
902
903 /*
904 * A short test says that IRIX 5.3 sends SIGTRAP for all trap
905 * insns, even for trap and break codes that indicate arithmetic
906 * failures. Weird ...
907 * But should we continue the brokenness??? --macro
908 */
909 switch (code) {
910 case BRK_OVERFLOW:
911 case BRK_DIVZERO:
912 scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
913 die_if_kernel(b, regs);
914 if (code == BRK_DIVZERO)
915 info.si_code = FPE_INTDIV;
916 else
917 info.si_code = FPE_INTOVF;
918 info.si_signo = SIGFPE;
919 info.si_addr = (void __user *) regs->cp0_epc;
920 force_sig_info(SIGFPE, &info, current);
921 break;
922 case BRK_BUG:
923 die_if_kernel("Kernel bug detected", regs);
924 force_sig(SIGTRAP, current);
925 break;
926 case BRK_MEMU:
927 /*
928 * This breakpoint code is used by the FPU emulator to retake
929 * control of the CPU after executing the instruction from the
930 * delay slot of an emulated branch.
931 *
932 * Terminate if exception was recognized as a delay slot return
933 * otherwise handle as normal.
934 */
935 if (do_dsemulret(regs))
936 return;
937
938 die_if_kernel("Math emu break/trap", regs);
939 force_sig(SIGTRAP, current);
940 break;
941 default:
942 scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
943 die_if_kernel(b, regs);
944 if (si_code) {
945 info.si_signo = SIGTRAP;
946 info.si_code = si_code;
947 force_sig_info(SIGTRAP, &info, current);
948 } else {
949 force_sig(SIGTRAP, current);
950 }
951 }
952}
953
954asmlinkage void do_bp(struct pt_regs *regs)
955{
956 unsigned long epc = msk_isa16_mode(exception_epc(regs));
957 unsigned int opcode, bcode;
958 enum ctx_state prev_state;
959 mm_segment_t seg;
960
961 seg = get_fs();
962 if (!user_mode(regs))
963 set_fs(KERNEL_DS);
964
965 prev_state = exception_enter();
966 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
967 if (get_isa16_mode(regs->cp0_epc)) {
968 u16 instr[2];
969
970 if (__get_user(instr[0], (u16 __user *)epc))
971 goto out_sigsegv;
972
973 if (!cpu_has_mmips) {
974 /* MIPS16e mode */
975 bcode = (instr[0] >> 5) & 0x3f;
976 } else if (mm_insn_16bit(instr[0])) {
977 /* 16-bit microMIPS BREAK */
978 bcode = instr[0] & 0xf;
979 } else {
980 /* 32-bit microMIPS BREAK */
981 if (__get_user(instr[1], (u16 __user *)(epc + 2)))
982 goto out_sigsegv;
983 opcode = (instr[0] << 16) | instr[1];
984 bcode = (opcode >> 6) & ((1 << 20) - 1);
985 }
986 } else {
987 if (__get_user(opcode, (unsigned int __user *)epc))
988 goto out_sigsegv;
989 bcode = (opcode >> 6) & ((1 << 20) - 1);
990 }
991
992 /*
993 * There is the ancient bug in the MIPS assemblers that the break
994 * code starts left to bit 16 instead to bit 6 in the opcode.
995 * Gas is bug-compatible, but not always, grrr...
996 * We handle both cases with a simple heuristics. --macro
997 */
998 if (bcode >= (1 << 10))
999 bcode = ((bcode & ((1 << 10) - 1)) << 10) | (bcode >> 10);
1000
1001 /*
1002 * notify the kprobe handlers, if instruction is likely to
1003 * pertain to them.
1004 */
1005 switch (bcode) {
1006 case BRK_UPROBE:
1007 if (notify_die(DIE_UPROBE, "uprobe", regs, bcode,
1008 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1009 goto out;
1010 else
1011 break;
1012 case BRK_UPROBE_XOL:
1013 if (notify_die(DIE_UPROBE_XOL, "uprobe_xol", regs, bcode,
1014 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1015 goto out;
1016 else
1017 break;
1018 case BRK_KPROBE_BP:
1019 if (notify_die(DIE_BREAK, "debug", regs, bcode,
1020 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1021 goto out;
1022 else
1023 break;
1024 case BRK_KPROBE_SSTEPBP:
1025 if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode,
1026 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1027 goto out;
1028 else
1029 break;
1030 default:
1031 break;
1032 }
1033
1034 do_trap_or_bp(regs, bcode, TRAP_BRKPT, "Break");
1035
1036out:
1037 set_fs(seg);
1038 exception_exit(prev_state);
1039 return;
1040
1041out_sigsegv:
1042 force_sig(SIGSEGV, current);
1043 goto out;
1044}
1045
1046asmlinkage void do_tr(struct pt_regs *regs)
1047{
1048 u32 opcode, tcode = 0;
1049 enum ctx_state prev_state;
1050 u16 instr[2];
1051 mm_segment_t seg;
1052 unsigned long epc = msk_isa16_mode(exception_epc(regs));
1053
1054 seg = get_fs();
1055 if (!user_mode(regs))
1056 set_fs(get_ds());
1057
1058 prev_state = exception_enter();
1059 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1060 if (get_isa16_mode(regs->cp0_epc)) {
1061 if (__get_user(instr[0], (u16 __user *)(epc + 0)) ||
1062 __get_user(instr[1], (u16 __user *)(epc + 2)))
1063 goto out_sigsegv;
1064 opcode = (instr[0] << 16) | instr[1];
1065 /* Immediate versions don't provide a code. */
1066 if (!(opcode & OPCODE))
1067 tcode = (opcode >> 12) & ((1 << 4) - 1);
1068 } else {
1069 if (__get_user(opcode, (u32 __user *)epc))
1070 goto out_sigsegv;
1071 /* Immediate versions don't provide a code. */
1072 if (!(opcode & OPCODE))
1073 tcode = (opcode >> 6) & ((1 << 10) - 1);
1074 }
1075
1076 do_trap_or_bp(regs, tcode, 0, "Trap");
1077
1078out:
1079 set_fs(seg);
1080 exception_exit(prev_state);
1081 return;
1082
1083out_sigsegv:
1084 force_sig(SIGSEGV, current);
1085 goto out;
1086}
1087
1088asmlinkage void do_ri(struct pt_regs *regs)
1089{
1090 unsigned int __user *epc = (unsigned int __user *)exception_epc(regs);
1091 unsigned long old_epc = regs->cp0_epc;
1092 unsigned long old31 = regs->regs[31];
1093 enum ctx_state prev_state;
1094 unsigned int opcode = 0;
1095 int status = -1;
1096
1097 /*
1098 * Avoid any kernel code. Just emulate the R2 instruction
1099 * as quickly as possible.
1100 */
1101 if (mipsr2_emulation && cpu_has_mips_r6 &&
1102 likely(user_mode(regs)) &&
1103 likely(get_user(opcode, epc) >= 0)) {
1104 unsigned long fcr31 = 0;
1105
1106 status = mipsr2_decoder(regs, opcode, &fcr31);
1107 switch (status) {
1108 case 0:
1109 case SIGEMT:
1110 task_thread_info(current)->r2_emul_return = 1;
1111 return;
1112 case SIGILL:
1113 goto no_r2_instr;
1114 default:
1115 process_fpemu_return(status,
1116 ¤t->thread.cp0_baduaddr,
1117 fcr31);
1118 task_thread_info(current)->r2_emul_return = 1;
1119 return;
1120 }
1121 }
1122
1123no_r2_instr:
1124
1125 prev_state = exception_enter();
1126 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1127
1128 if (notify_die(DIE_RI, "RI Fault", regs, 0, current->thread.trap_nr,
1129 SIGILL) == NOTIFY_STOP)
1130 goto out;
1131
1132 die_if_kernel("Reserved instruction in kernel code", regs);
1133
1134 if (unlikely(compute_return_epc(regs) < 0))
1135 goto out;
1136
1137 if (!get_isa16_mode(regs->cp0_epc)) {
1138 if (unlikely(get_user(opcode, epc) < 0))
1139 status = SIGSEGV;
1140
1141 if (!cpu_has_llsc && status < 0)
1142 status = simulate_llsc(regs, opcode);
1143
1144 if (status < 0)
1145 status = simulate_rdhwr_normal(regs, opcode);
1146
1147 if (status < 0)
1148 status = simulate_sync(regs, opcode);
1149
1150 if (status < 0)
1151 status = simulate_fp(regs, opcode, old_epc, old31);
1152 } else if (cpu_has_mmips) {
1153 unsigned short mmop[2] = { 0 };
1154
1155 if (unlikely(get_user(mmop[0], (u16 __user *)epc + 0) < 0))
1156 status = SIGSEGV;
1157 if (unlikely(get_user(mmop[1], (u16 __user *)epc + 1) < 0))
1158 status = SIGSEGV;
1159 opcode = mmop[0];
1160 opcode = (opcode << 16) | mmop[1];
1161
1162 if (status < 0)
1163 status = simulate_rdhwr_mm(regs, opcode);
1164 }
1165
1166 if (status < 0)
1167 status = SIGILL;
1168
1169 if (unlikely(status > 0)) {
1170 regs->cp0_epc = old_epc; /* Undo skip-over. */
1171 regs->regs[31] = old31;
1172 force_sig(status, current);
1173 }
1174
1175out:
1176 exception_exit(prev_state);
1177}
1178
1179/*
1180 * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
1181 * emulated more than some threshold number of instructions, force migration to
1182 * a "CPU" that has FP support.
1183 */
1184static void mt_ase_fp_affinity(void)
1185{
1186#ifdef CONFIG_MIPS_MT_FPAFF
1187 if (mt_fpemul_threshold > 0 &&
1188 ((current->thread.emulated_fp++ > mt_fpemul_threshold))) {
1189 /*
1190 * If there's no FPU present, or if the application has already
1191 * restricted the allowed set to exclude any CPUs with FPUs,
1192 * we'll skip the procedure.
1193 */
1194 if (cpumask_intersects(¤t->cpus_allowed, &mt_fpu_cpumask)) {
1195 cpumask_t tmask;
1196
1197 current->thread.user_cpus_allowed
1198 = current->cpus_allowed;
1199 cpumask_and(&tmask, ¤t->cpus_allowed,
1200 &mt_fpu_cpumask);
1201 set_cpus_allowed_ptr(current, &tmask);
1202 set_thread_flag(TIF_FPUBOUND);
1203 }
1204 }
1205#endif /* CONFIG_MIPS_MT_FPAFF */
1206}
1207
1208/*
1209 * No lock; only written during early bootup by CPU 0.
1210 */
1211static RAW_NOTIFIER_HEAD(cu2_chain);
1212
1213int __ref register_cu2_notifier(struct notifier_block *nb)
1214{
1215 return raw_notifier_chain_register(&cu2_chain, nb);
1216}
1217
1218int cu2_notifier_call_chain(unsigned long val, void *v)
1219{
1220 return raw_notifier_call_chain(&cu2_chain, val, v);
1221}
1222
1223static int default_cu2_call(struct notifier_block *nfb, unsigned long action,
1224 void *data)
1225{
1226 struct pt_regs *regs = data;
1227
1228 die_if_kernel("COP2: Unhandled kernel unaligned access or invalid "
1229 "instruction", regs);
1230 force_sig(SIGILL, current);
1231
1232 return NOTIFY_OK;
1233}
1234
1235static int wait_on_fp_mode_switch(atomic_t *p)
1236{
1237 /*
1238 * The FP mode for this task is currently being switched. That may
1239 * involve modifications to the format of this tasks FP context which
1240 * make it unsafe to proceed with execution for the moment. Instead,
1241 * schedule some other task.
1242 */
1243 schedule();
1244 return 0;
1245}
1246
1247static int enable_restore_fp_context(int msa)
1248{
1249 int err, was_fpu_owner, prior_msa;
1250
1251 /*
1252 * If an FP mode switch is currently underway, wait for it to
1253 * complete before proceeding.
1254 */
1255 wait_on_atomic_t(¤t->mm->context.fp_mode_switching,
1256 wait_on_fp_mode_switch, TASK_KILLABLE);
1257
1258 if (!used_math()) {
1259 /* First time FP context user. */
1260 preempt_disable();
1261 err = init_fpu();
1262 if (msa && !err) {
1263 enable_msa();
1264 init_msa_upper();
1265 set_thread_flag(TIF_USEDMSA);
1266 set_thread_flag(TIF_MSA_CTX_LIVE);
1267 }
1268 preempt_enable();
1269 if (!err)
1270 set_used_math();
1271 return err;
1272 }
1273
1274 /*
1275 * This task has formerly used the FP context.
1276 *
1277 * If this thread has no live MSA vector context then we can simply
1278 * restore the scalar FP context. If it has live MSA vector context
1279 * (that is, it has or may have used MSA since last performing a
1280 * function call) then we'll need to restore the vector context. This
1281 * applies even if we're currently only executing a scalar FP
1282 * instruction. This is because if we were to later execute an MSA
1283 * instruction then we'd either have to:
1284 *
1285 * - Restore the vector context & clobber any registers modified by
1286 * scalar FP instructions between now & then.
1287 *
1288 * or
1289 *
1290 * - Not restore the vector context & lose the most significant bits
1291 * of all vector registers.
1292 *
1293 * Neither of those options is acceptable. We cannot restore the least
1294 * significant bits of the registers now & only restore the most
1295 * significant bits later because the most significant bits of any
1296 * vector registers whose aliased FP register is modified now will have
1297 * been zeroed. We'd have no way to know that when restoring the vector
1298 * context & thus may load an outdated value for the most significant
1299 * bits of a vector register.
1300 */
1301 if (!msa && !thread_msa_context_live())
1302 return own_fpu(1);
1303
1304 /*
1305 * This task is using or has previously used MSA. Thus we require
1306 * that Status.FR == 1.
1307 */
1308 preempt_disable();
1309 was_fpu_owner = is_fpu_owner();
1310 err = own_fpu_inatomic(0);
1311 if (err)
1312 goto out;
1313
1314 enable_msa();
1315 write_msa_csr(current->thread.fpu.msacsr);
1316 set_thread_flag(TIF_USEDMSA);
1317
1318 /*
1319 * If this is the first time that the task is using MSA and it has
1320 * previously used scalar FP in this time slice then we already nave
1321 * FP context which we shouldn't clobber. We do however need to clear
1322 * the upper 64b of each vector register so that this task has no
1323 * opportunity to see data left behind by another.
1324 */
1325 prior_msa = test_and_set_thread_flag(TIF_MSA_CTX_LIVE);
1326 if (!prior_msa && was_fpu_owner) {
1327 init_msa_upper();
1328
1329 goto out;
1330 }
1331
1332 if (!prior_msa) {
1333 /*
1334 * Restore the least significant 64b of each vector register
1335 * from the existing scalar FP context.
1336 */
1337 _restore_fp(current);
1338
1339 /*
1340 * The task has not formerly used MSA, so clear the upper 64b
1341 * of each vector register such that it cannot see data left
1342 * behind by another task.
1343 */
1344 init_msa_upper();
1345 } else {
1346 /* We need to restore the vector context. */
1347 restore_msa(current);
1348
1349 /* Restore the scalar FP control & status register */
1350 if (!was_fpu_owner)
1351 write_32bit_cp1_register(CP1_STATUS,
1352 current->thread.fpu.fcr31);
1353 }
1354
1355out:
1356 preempt_enable();
1357
1358 return 0;
1359}
1360
1361asmlinkage void do_cpu(struct pt_regs *regs)
1362{
1363 enum ctx_state prev_state;
1364 unsigned int __user *epc;
1365 unsigned long old_epc, old31;
1366 void __user *fault_addr;
1367 unsigned int opcode;
1368 unsigned long fcr31;
1369 unsigned int cpid;
1370 int status, err;
1371 int sig;
1372
1373 prev_state = exception_enter();
1374 cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
1375
1376 if (cpid != 2)
1377 die_if_kernel("do_cpu invoked from kernel context!", regs);
1378
1379 switch (cpid) {
1380 case 0:
1381 epc = (unsigned int __user *)exception_epc(regs);
1382 old_epc = regs->cp0_epc;
1383 old31 = regs->regs[31];
1384 opcode = 0;
1385 status = -1;
1386
1387 if (unlikely(compute_return_epc(regs) < 0))
1388 break;
1389
1390 if (!get_isa16_mode(regs->cp0_epc)) {
1391 if (unlikely(get_user(opcode, epc) < 0))
1392 status = SIGSEGV;
1393
1394 if (!cpu_has_llsc && status < 0)
1395 status = simulate_llsc(regs, opcode);
1396 }
1397
1398 if (status < 0)
1399 status = SIGILL;
1400
1401 if (unlikely(status > 0)) {
1402 regs->cp0_epc = old_epc; /* Undo skip-over. */
1403 regs->regs[31] = old31;
1404 force_sig(status, current);
1405 }
1406
1407 break;
1408
1409 case 3:
1410 /*
1411 * The COP3 opcode space and consequently the CP0.Status.CU3
1412 * bit and the CP0.Cause.CE=3 encoding have been removed as
1413 * of the MIPS III ISA. From the MIPS IV and MIPS32r2 ISAs
1414 * up the space has been reused for COP1X instructions, that
1415 * are enabled by the CP0.Status.CU1 bit and consequently
1416 * use the CP0.Cause.CE=1 encoding for Coprocessor Unusable
1417 * exceptions. Some FPU-less processors that implement one
1418 * of these ISAs however use this code erroneously for COP1X
1419 * instructions. Therefore we redirect this trap to the FP
1420 * emulator too.
1421 */
1422 if (raw_cpu_has_fpu || !cpu_has_mips_4_5_64_r2_r6) {
1423 force_sig(SIGILL, current);
1424 break;
1425 }
1426 /* Fall through. */
1427
1428 case 1:
1429 err = enable_restore_fp_context(0);
1430
1431 if (raw_cpu_has_fpu && !err)
1432 break;
1433
1434 sig = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 0,
1435 &fault_addr);
1436
1437 /*
1438 * We can't allow the emulated instruction to leave
1439 * any enabled Cause bits set in $fcr31.
1440 */
1441 fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
1442 current->thread.fpu.fcr31 &= ~fcr31;
1443
1444 /* Send a signal if required. */
1445 if (!process_fpemu_return(sig, fault_addr, fcr31) && !err)
1446 mt_ase_fp_affinity();
1447
1448 break;
1449
1450 case 2:
1451 raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs);
1452 break;
1453 }
1454
1455 exception_exit(prev_state);
1456}
1457
1458asmlinkage void do_msa_fpe(struct pt_regs *regs, unsigned int msacsr)
1459{
1460 enum ctx_state prev_state;
1461
1462 prev_state = exception_enter();
1463 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1464 if (notify_die(DIE_MSAFP, "MSA FP exception", regs, 0,
1465 current->thread.trap_nr, SIGFPE) == NOTIFY_STOP)
1466 goto out;
1467
1468 /* Clear MSACSR.Cause before enabling interrupts */
1469 write_msa_csr(msacsr & ~MSA_CSR_CAUSEF);
1470 local_irq_enable();
1471
1472 die_if_kernel("do_msa_fpe invoked from kernel context!", regs);
1473 force_sig(SIGFPE, current);
1474out:
1475 exception_exit(prev_state);
1476}
1477
1478asmlinkage void do_msa(struct pt_regs *regs)
1479{
1480 enum ctx_state prev_state;
1481 int err;
1482
1483 prev_state = exception_enter();
1484
1485 if (!cpu_has_msa || test_thread_flag(TIF_32BIT_FPREGS)) {
1486 force_sig(SIGILL, current);
1487 goto out;
1488 }
1489
1490 die_if_kernel("do_msa invoked from kernel context!", regs);
1491
1492 err = enable_restore_fp_context(1);
1493 if (err)
1494 force_sig(SIGILL, current);
1495out:
1496 exception_exit(prev_state);
1497}
1498
1499asmlinkage void do_mdmx(struct pt_regs *regs)
1500{
1501 enum ctx_state prev_state;
1502
1503 prev_state = exception_enter();
1504 force_sig(SIGILL, current);
1505 exception_exit(prev_state);
1506}
1507
1508/*
1509 * Called with interrupts disabled.
1510 */
1511asmlinkage void do_watch(struct pt_regs *regs)
1512{
1513 siginfo_t info = { .si_signo = SIGTRAP, .si_code = TRAP_HWBKPT };
1514 enum ctx_state prev_state;
1515
1516 prev_state = exception_enter();
1517 /*
1518 * Clear WP (bit 22) bit of cause register so we don't loop
1519 * forever.
1520 */
1521 clear_c0_cause(CAUSEF_WP);
1522
1523 /*
1524 * If the current thread has the watch registers loaded, save
1525 * their values and send SIGTRAP. Otherwise another thread
1526 * left the registers set, clear them and continue.
1527 */
1528 if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) {
1529 mips_read_watch_registers();
1530 local_irq_enable();
1531 force_sig_info(SIGTRAP, &info, current);
1532 } else {
1533 mips_clear_watch_registers();
1534 local_irq_enable();
1535 }
1536 exception_exit(prev_state);
1537}
1538
1539asmlinkage void do_mcheck(struct pt_regs *regs)
1540{
1541 int multi_match = regs->cp0_status & ST0_TS;
1542 enum ctx_state prev_state;
1543 mm_segment_t old_fs = get_fs();
1544
1545 prev_state = exception_enter();
1546 show_regs(regs);
1547
1548 if (multi_match) {
1549 dump_tlb_regs();
1550 pr_info("\n");
1551 dump_tlb_all();
1552 }
1553
1554 if (!user_mode(regs))
1555 set_fs(KERNEL_DS);
1556
1557 show_code((unsigned int __user *) regs->cp0_epc);
1558
1559 set_fs(old_fs);
1560
1561 /*
1562 * Some chips may have other causes of machine check (e.g. SB1
1563 * graduation timer)
1564 */
1565 panic("Caught Machine Check exception - %scaused by multiple "
1566 "matching entries in the TLB.",
1567 (multi_match) ? "" : "not ");
1568}
1569
1570asmlinkage void do_mt(struct pt_regs *regs)
1571{
1572 int subcode;
1573
1574 subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
1575 >> VPECONTROL_EXCPT_SHIFT;
1576 switch (subcode) {
1577 case 0:
1578 printk(KERN_DEBUG "Thread Underflow\n");
1579 break;
1580 case 1:
1581 printk(KERN_DEBUG "Thread Overflow\n");
1582 break;
1583 case 2:
1584 printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
1585 break;
1586 case 3:
1587 printk(KERN_DEBUG "Gating Storage Exception\n");
1588 break;
1589 case 4:
1590 printk(KERN_DEBUG "YIELD Scheduler Exception\n");
1591 break;
1592 case 5:
1593 printk(KERN_DEBUG "Gating Storage Scheduler Exception\n");
1594 break;
1595 default:
1596 printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
1597 subcode);
1598 break;
1599 }
1600 die_if_kernel("MIPS MT Thread exception in kernel", regs);
1601
1602 force_sig(SIGILL, current);
1603}
1604
1605
1606asmlinkage void do_dsp(struct pt_regs *regs)
1607{
1608 if (cpu_has_dsp)
1609 panic("Unexpected DSP exception");
1610
1611 force_sig(SIGILL, current);
1612}
1613
1614asmlinkage void do_reserved(struct pt_regs *regs)
1615{
1616 /*
1617 * Game over - no way to handle this if it ever occurs. Most probably
1618 * caused by a new unknown cpu type or after another deadly
1619 * hard/software error.
1620 */
1621 show_regs(regs);
1622 panic("Caught reserved exception %ld - should not happen.",
1623 (regs->cp0_cause & 0x7f) >> 2);
1624}
1625
1626static int __initdata l1parity = 1;
1627static int __init nol1parity(char *s)
1628{
1629 l1parity = 0;
1630 return 1;
1631}
1632__setup("nol1par", nol1parity);
1633static int __initdata l2parity = 1;
1634static int __init nol2parity(char *s)
1635{
1636 l2parity = 0;
1637 return 1;
1638}
1639__setup("nol2par", nol2parity);
1640
1641/*
1642 * Some MIPS CPUs can enable/disable for cache parity detection, but do
1643 * it different ways.
1644 */
1645static inline void parity_protection_init(void)
1646{
1647 switch (current_cpu_type()) {
1648 case CPU_24K:
1649 case CPU_34K:
1650 case CPU_74K:
1651 case CPU_1004K:
1652 case CPU_1074K:
1653 case CPU_INTERAPTIV:
1654 case CPU_PROAPTIV:
1655 case CPU_P5600:
1656 case CPU_QEMU_GENERIC:
1657 case CPU_I6400:
1658 case CPU_P6600:
1659 {
1660#define ERRCTL_PE 0x80000000
1661#define ERRCTL_L2P 0x00800000
1662 unsigned long errctl;
1663 unsigned int l1parity_present, l2parity_present;
1664
1665 errctl = read_c0_ecc();
1666 errctl &= ~(ERRCTL_PE|ERRCTL_L2P);
1667
1668 /* probe L1 parity support */
1669 write_c0_ecc(errctl | ERRCTL_PE);
1670 back_to_back_c0_hazard();
1671 l1parity_present = (read_c0_ecc() & ERRCTL_PE);
1672
1673 /* probe L2 parity support */
1674 write_c0_ecc(errctl|ERRCTL_L2P);
1675 back_to_back_c0_hazard();
1676 l2parity_present = (read_c0_ecc() & ERRCTL_L2P);
1677
1678 if (l1parity_present && l2parity_present) {
1679 if (l1parity)
1680 errctl |= ERRCTL_PE;
1681 if (l1parity ^ l2parity)
1682 errctl |= ERRCTL_L2P;
1683 } else if (l1parity_present) {
1684 if (l1parity)
1685 errctl |= ERRCTL_PE;
1686 } else if (l2parity_present) {
1687 if (l2parity)
1688 errctl |= ERRCTL_L2P;
1689 } else {
1690 /* No parity available */
1691 }
1692
1693 printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl);
1694
1695 write_c0_ecc(errctl);
1696 back_to_back_c0_hazard();
1697 errctl = read_c0_ecc();
1698 printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl);
1699
1700 if (l1parity_present)
1701 printk(KERN_INFO "Cache parity protection %sabled\n",
1702 (errctl & ERRCTL_PE) ? "en" : "dis");
1703
1704 if (l2parity_present) {
1705 if (l1parity_present && l1parity)
1706 errctl ^= ERRCTL_L2P;
1707 printk(KERN_INFO "L2 cache parity protection %sabled\n",
1708 (errctl & ERRCTL_L2P) ? "en" : "dis");
1709 }
1710 }
1711 break;
1712
1713 case CPU_5KC:
1714 case CPU_5KE:
1715 case CPU_LOONGSON1:
1716 write_c0_ecc(0x80000000);
1717 back_to_back_c0_hazard();
1718 /* Set the PE bit (bit 31) in the c0_errctl register. */
1719 printk(KERN_INFO "Cache parity protection %sabled\n",
1720 (read_c0_ecc() & 0x80000000) ? "en" : "dis");
1721 break;
1722 case CPU_20KC:
1723 case CPU_25KF:
1724 /* Clear the DE bit (bit 16) in the c0_status register. */
1725 printk(KERN_INFO "Enable cache parity protection for "
1726 "MIPS 20KC/25KF CPUs.\n");
1727 clear_c0_status(ST0_DE);
1728 break;
1729 default:
1730 break;
1731 }
1732}
1733
1734asmlinkage void cache_parity_error(void)
1735{
1736 const int field = 2 * sizeof(unsigned long);
1737 unsigned int reg_val;
1738
1739 /* For the moment, report the problem and hang. */
1740 printk("Cache error exception:\n");
1741 printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1742 reg_val = read_c0_cacheerr();
1743 printk("c0_cacheerr == %08x\n", reg_val);
1744
1745 printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1746 reg_val & (1<<30) ? "secondary" : "primary",
1747 reg_val & (1<<31) ? "data" : "insn");
1748 if ((cpu_has_mips_r2_r6) &&
1749 ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) {
1750 pr_err("Error bits: %s%s%s%s%s%s%s%s\n",
1751 reg_val & (1<<29) ? "ED " : "",
1752 reg_val & (1<<28) ? "ET " : "",
1753 reg_val & (1<<27) ? "ES " : "",
1754 reg_val & (1<<26) ? "EE " : "",
1755 reg_val & (1<<25) ? "EB " : "",
1756 reg_val & (1<<24) ? "EI " : "",
1757 reg_val & (1<<23) ? "E1 " : "",
1758 reg_val & (1<<22) ? "E0 " : "");
1759 } else {
1760 pr_err("Error bits: %s%s%s%s%s%s%s\n",
1761 reg_val & (1<<29) ? "ED " : "",
1762 reg_val & (1<<28) ? "ET " : "",
1763 reg_val & (1<<26) ? "EE " : "",
1764 reg_val & (1<<25) ? "EB " : "",
1765 reg_val & (1<<24) ? "EI " : "",
1766 reg_val & (1<<23) ? "E1 " : "",
1767 reg_val & (1<<22) ? "E0 " : "");
1768 }
1769 printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
1770
1771#if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1772 if (reg_val & (1<<22))
1773 printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
1774
1775 if (reg_val & (1<<23))
1776 printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
1777#endif
1778
1779 panic("Can't handle the cache error!");
1780}
1781
1782asmlinkage void do_ftlb(void)
1783{
1784 const int field = 2 * sizeof(unsigned long);
1785 unsigned int reg_val;
1786
1787 /* For the moment, report the problem and hang. */
1788 if ((cpu_has_mips_r2_r6) &&
1789 (((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS) ||
1790 ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_LOONGSON))) {
1791 pr_err("FTLB error exception, cp0_ecc=0x%08x:\n",
1792 read_c0_ecc());
1793 pr_err("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1794 reg_val = read_c0_cacheerr();
1795 pr_err("c0_cacheerr == %08x\n", reg_val);
1796
1797 if ((reg_val & 0xc0000000) == 0xc0000000) {
1798 pr_err("Decoded c0_cacheerr: FTLB parity error\n");
1799 } else {
1800 pr_err("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1801 reg_val & (1<<30) ? "secondary" : "primary",
1802 reg_val & (1<<31) ? "data" : "insn");
1803 }
1804 } else {
1805 pr_err("FTLB error exception\n");
1806 }
1807 /* Just print the cacheerr bits for now */
1808 cache_parity_error();
1809}
1810
1811/*
1812 * SDBBP EJTAG debug exception handler.
1813 * We skip the instruction and return to the next instruction.
1814 */
1815void ejtag_exception_handler(struct pt_regs *regs)
1816{
1817 const int field = 2 * sizeof(unsigned long);
1818 unsigned long depc, old_epc, old_ra;
1819 unsigned int debug;
1820
1821 printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1822 depc = read_c0_depc();
1823 debug = read_c0_debug();
1824 printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
1825 if (debug & 0x80000000) {
1826 /*
1827 * In branch delay slot.
1828 * We cheat a little bit here and use EPC to calculate the
1829 * debug return address (DEPC). EPC is restored after the
1830 * calculation.
1831 */
1832 old_epc = regs->cp0_epc;
1833 old_ra = regs->regs[31];
1834 regs->cp0_epc = depc;
1835 compute_return_epc(regs);
1836 depc = regs->cp0_epc;
1837 regs->cp0_epc = old_epc;
1838 regs->regs[31] = old_ra;
1839 } else
1840 depc += 4;
1841 write_c0_depc(depc);
1842
1843#if 0
1844 printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
1845 write_c0_debug(debug | 0x100);
1846#endif
1847}
1848
1849/*
1850 * NMI exception handler.
1851 * No lock; only written during early bootup by CPU 0.
1852 */
1853static RAW_NOTIFIER_HEAD(nmi_chain);
1854
1855int register_nmi_notifier(struct notifier_block *nb)
1856{
1857 return raw_notifier_chain_register(&nmi_chain, nb);
1858}
1859
1860void __noreturn nmi_exception_handler(struct pt_regs *regs)
1861{
1862 char str[100];
1863
1864 nmi_enter();
1865 raw_notifier_call_chain(&nmi_chain, 0, regs);
1866 bust_spinlocks(1);
1867 snprintf(str, 100, "CPU%d NMI taken, CP0_EPC=%lx\n",
1868 smp_processor_id(), regs->cp0_epc);
1869 regs->cp0_epc = read_c0_errorepc();
1870 die(str, regs);
1871 nmi_exit();
1872}
1873
1874#define VECTORSPACING 0x100 /* for EI/VI mode */
1875
1876unsigned long ebase;
1877EXPORT_SYMBOL_GPL(ebase);
1878unsigned long exception_handlers[32];
1879unsigned long vi_handlers[64];
1880
1881void __init *set_except_vector(int n, void *addr)
1882{
1883 unsigned long handler = (unsigned long) addr;
1884 unsigned long old_handler;
1885
1886#ifdef CONFIG_CPU_MICROMIPS
1887 /*
1888 * Only the TLB handlers are cache aligned with an even
1889 * address. All other handlers are on an odd address and
1890 * require no modification. Otherwise, MIPS32 mode will
1891 * be entered when handling any TLB exceptions. That
1892 * would be bad...since we must stay in microMIPS mode.
1893 */
1894 if (!(handler & 0x1))
1895 handler |= 1;
1896#endif
1897 old_handler = xchg(&exception_handlers[n], handler);
1898
1899 if (n == 0 && cpu_has_divec) {
1900#ifdef CONFIG_CPU_MICROMIPS
1901 unsigned long jump_mask = ~((1 << 27) - 1);
1902#else
1903 unsigned long jump_mask = ~((1 << 28) - 1);
1904#endif
1905 u32 *buf = (u32 *)(ebase + 0x200);
1906 unsigned int k0 = 26;
1907 if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) {
1908 uasm_i_j(&buf, handler & ~jump_mask);
1909 uasm_i_nop(&buf);
1910 } else {
1911 UASM_i_LA(&buf, k0, handler);
1912 uasm_i_jr(&buf, k0);
1913 uasm_i_nop(&buf);
1914 }
1915 local_flush_icache_range(ebase + 0x200, (unsigned long)buf);
1916 }
1917 return (void *)old_handler;
1918}
1919
1920static void do_default_vi(void)
1921{
1922 show_regs(get_irq_regs());
1923 panic("Caught unexpected vectored interrupt.");
1924}
1925
1926static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs)
1927{
1928 unsigned long handler;
1929 unsigned long old_handler = vi_handlers[n];
1930 int srssets = current_cpu_data.srsets;
1931 u16 *h;
1932 unsigned char *b;
1933
1934 BUG_ON(!cpu_has_veic && !cpu_has_vint);
1935
1936 if (addr == NULL) {
1937 handler = (unsigned long) do_default_vi;
1938 srs = 0;
1939 } else
1940 handler = (unsigned long) addr;
1941 vi_handlers[n] = handler;
1942
1943 b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
1944
1945 if (srs >= srssets)
1946 panic("Shadow register set %d not supported", srs);
1947
1948 if (cpu_has_veic) {
1949 if (board_bind_eic_interrupt)
1950 board_bind_eic_interrupt(n, srs);
1951 } else if (cpu_has_vint) {
1952 /* SRSMap is only defined if shadow sets are implemented */
1953 if (srssets > 1)
1954 change_c0_srsmap(0xf << n*4, srs << n*4);
1955 }
1956
1957 if (srs == 0) {
1958 /*
1959 * If no shadow set is selected then use the default handler
1960 * that does normal register saving and standard interrupt exit
1961 */
1962 extern char except_vec_vi, except_vec_vi_lui;
1963 extern char except_vec_vi_ori, except_vec_vi_end;
1964 extern char rollback_except_vec_vi;
1965 char *vec_start = using_rollback_handler() ?
1966 &rollback_except_vec_vi : &except_vec_vi;
1967#if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN)
1968 const int lui_offset = &except_vec_vi_lui - vec_start + 2;
1969 const int ori_offset = &except_vec_vi_ori - vec_start + 2;
1970#else
1971 const int lui_offset = &except_vec_vi_lui - vec_start;
1972 const int ori_offset = &except_vec_vi_ori - vec_start;
1973#endif
1974 const int handler_len = &except_vec_vi_end - vec_start;
1975
1976 if (handler_len > VECTORSPACING) {
1977 /*
1978 * Sigh... panicing won't help as the console
1979 * is probably not configured :(
1980 */
1981 panic("VECTORSPACING too small");
1982 }
1983
1984 set_handler(((unsigned long)b - ebase), vec_start,
1985#ifdef CONFIG_CPU_MICROMIPS
1986 (handler_len - 1));
1987#else
1988 handler_len);
1989#endif
1990 h = (u16 *)(b + lui_offset);
1991 *h = (handler >> 16) & 0xffff;
1992 h = (u16 *)(b + ori_offset);
1993 *h = (handler & 0xffff);
1994 local_flush_icache_range((unsigned long)b,
1995 (unsigned long)(b+handler_len));
1996 }
1997 else {
1998 /*
1999 * In other cases jump directly to the interrupt handler. It
2000 * is the handler's responsibility to save registers if required
2001 * (eg hi/lo) and return from the exception using "eret".
2002 */
2003 u32 insn;
2004
2005 h = (u16 *)b;
2006 /* j handler */
2007#ifdef CONFIG_CPU_MICROMIPS
2008 insn = 0xd4000000 | (((u32)handler & 0x07ffffff) >> 1);
2009#else
2010 insn = 0x08000000 | (((u32)handler & 0x0fffffff) >> 2);
2011#endif
2012 h[0] = (insn >> 16) & 0xffff;
2013 h[1] = insn & 0xffff;
2014 h[2] = 0;
2015 h[3] = 0;
2016 local_flush_icache_range((unsigned long)b,
2017 (unsigned long)(b+8));
2018 }
2019
2020 return (void *)old_handler;
2021}
2022
2023void *set_vi_handler(int n, vi_handler_t addr)
2024{
2025 return set_vi_srs_handler(n, addr, 0);
2026}
2027
2028extern void tlb_init(void);
2029
2030/*
2031 * Timer interrupt
2032 */
2033int cp0_compare_irq;
2034EXPORT_SYMBOL_GPL(cp0_compare_irq);
2035int cp0_compare_irq_shift;
2036
2037/*
2038 * Performance counter IRQ or -1 if shared with timer
2039 */
2040int cp0_perfcount_irq;
2041EXPORT_SYMBOL_GPL(cp0_perfcount_irq);
2042
2043/*
2044 * Fast debug channel IRQ or -1 if not present
2045 */
2046int cp0_fdc_irq;
2047EXPORT_SYMBOL_GPL(cp0_fdc_irq);
2048
2049static int noulri;
2050
2051static int __init ulri_disable(char *s)
2052{
2053 pr_info("Disabling ulri\n");
2054 noulri = 1;
2055
2056 return 1;
2057}
2058__setup("noulri", ulri_disable);
2059
2060/* configure STATUS register */
2061static void configure_status(void)
2062{
2063 /*
2064 * Disable coprocessors and select 32-bit or 64-bit addressing
2065 * and the 16/32 or 32/32 FPR register model. Reset the BEV
2066 * flag that some firmware may have left set and the TS bit (for
2067 * IP27). Set XX for ISA IV code to work.
2068 */
2069 unsigned int status_set = ST0_CU0;
2070#ifdef CONFIG_64BIT
2071 status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
2072#endif
2073 if (current_cpu_data.isa_level & MIPS_CPU_ISA_IV)
2074 status_set |= ST0_XX;
2075 if (cpu_has_dsp)
2076 status_set |= ST0_MX;
2077
2078 change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
2079 status_set);
2080}
2081
2082unsigned int hwrena;
2083EXPORT_SYMBOL_GPL(hwrena);
2084
2085/* configure HWRENA register */
2086static void configure_hwrena(void)
2087{
2088 hwrena = cpu_hwrena_impl_bits;
2089
2090 if (cpu_has_mips_r2_r6)
2091 hwrena |= MIPS_HWRENA_CPUNUM |
2092 MIPS_HWRENA_SYNCISTEP |
2093 MIPS_HWRENA_CC |
2094 MIPS_HWRENA_CCRES;
2095
2096 if (!noulri && cpu_has_userlocal)
2097 hwrena |= MIPS_HWRENA_ULR;
2098
2099 if (hwrena)
2100 write_c0_hwrena(hwrena);
2101}
2102
2103static void configure_exception_vector(void)
2104{
2105 if (cpu_has_veic || cpu_has_vint) {
2106 unsigned long sr = set_c0_status(ST0_BEV);
2107 /* If available, use WG to set top bits of EBASE */
2108 if (cpu_has_ebase_wg) {
2109#ifdef CONFIG_64BIT
2110 write_c0_ebase_64(ebase | MIPS_EBASE_WG);
2111#else
2112 write_c0_ebase(ebase | MIPS_EBASE_WG);
2113#endif
2114 }
2115 write_c0_ebase(ebase);
2116 write_c0_status(sr);
2117 /* Setting vector spacing enables EI/VI mode */
2118 change_c0_intctl(0x3e0, VECTORSPACING);
2119 }
2120 if (cpu_has_divec) {
2121 if (cpu_has_mipsmt) {
2122 unsigned int vpflags = dvpe();
2123 set_c0_cause(CAUSEF_IV);
2124 evpe(vpflags);
2125 } else
2126 set_c0_cause(CAUSEF_IV);
2127 }
2128}
2129
2130void per_cpu_trap_init(bool is_boot_cpu)
2131{
2132 unsigned int cpu = smp_processor_id();
2133
2134 configure_status();
2135 configure_hwrena();
2136
2137 configure_exception_vector();
2138
2139 /*
2140 * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
2141 *
2142 * o read IntCtl.IPTI to determine the timer interrupt
2143 * o read IntCtl.IPPCI to determine the performance counter interrupt
2144 * o read IntCtl.IPFDC to determine the fast debug channel interrupt
2145 */
2146 if (cpu_has_mips_r2_r6) {
2147 /*
2148 * We shouldn't trust a secondary core has a sane EBASE register
2149 * so use the one calculated by the boot CPU.
2150 */
2151 if (!is_boot_cpu) {
2152 /* If available, use WG to set top bits of EBASE */
2153 if (cpu_has_ebase_wg) {
2154#ifdef CONFIG_64BIT
2155 write_c0_ebase_64(ebase | MIPS_EBASE_WG);
2156#else
2157 write_c0_ebase(ebase | MIPS_EBASE_WG);
2158#endif
2159 }
2160 write_c0_ebase(ebase);
2161 }
2162
2163 cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP;
2164 cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7;
2165 cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7;
2166 cp0_fdc_irq = (read_c0_intctl() >> INTCTLB_IPFDC) & 7;
2167 if (!cp0_fdc_irq)
2168 cp0_fdc_irq = -1;
2169
2170 } else {
2171 cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ;
2172 cp0_compare_irq_shift = CP0_LEGACY_PERFCNT_IRQ;
2173 cp0_perfcount_irq = -1;
2174 cp0_fdc_irq = -1;
2175 }
2176
2177 if (!cpu_data[cpu].asid_cache)
2178 cpu_data[cpu].asid_cache = asid_first_version(cpu);
2179
2180 atomic_inc(&init_mm.mm_count);
2181 current->active_mm = &init_mm;
2182 BUG_ON(current->mm);
2183 enter_lazy_tlb(&init_mm, current);
2184
2185 /* Boot CPU's cache setup in setup_arch(). */
2186 if (!is_boot_cpu)
2187 cpu_cache_init();
2188 tlb_init();
2189 TLBMISS_HANDLER_SETUP();
2190}
2191
2192/* Install CPU exception handler */
2193void set_handler(unsigned long offset, void *addr, unsigned long size)
2194{
2195#ifdef CONFIG_CPU_MICROMIPS
2196 memcpy((void *)(ebase + offset), ((unsigned char *)addr - 1), size);
2197#else
2198 memcpy((void *)(ebase + offset), addr, size);
2199#endif
2200 local_flush_icache_range(ebase + offset, ebase + offset + size);
2201}
2202
2203static char panic_null_cerr[] =
2204 "Trying to set NULL cache error exception handler";
2205
2206/*
2207 * Install uncached CPU exception handler.
2208 * This is suitable only for the cache error exception which is the only
2209 * exception handler that is being run uncached.
2210 */
2211void set_uncached_handler(unsigned long offset, void *addr,
2212 unsigned long size)
2213{
2214 unsigned long uncached_ebase = CKSEG1ADDR(ebase);
2215
2216 if (!addr)
2217 panic(panic_null_cerr);
2218
2219 memcpy((void *)(uncached_ebase + offset), addr, size);
2220}
2221
2222static int __initdata rdhwr_noopt;
2223static int __init set_rdhwr_noopt(char *str)
2224{
2225 rdhwr_noopt = 1;
2226 return 1;
2227}
2228
2229__setup("rdhwr_noopt", set_rdhwr_noopt);
2230
2231void __init trap_init(void)
2232{
2233 extern char except_vec3_generic;
2234 extern char except_vec4;
2235 extern char except_vec3_r4000;
2236 unsigned long i;
2237
2238 check_wait();
2239
2240 if (cpu_has_veic || cpu_has_vint) {
2241 unsigned long size = 0x200 + VECTORSPACING*64;
2242 phys_addr_t ebase_pa;
2243
2244 ebase = (unsigned long)
2245 __alloc_bootmem(size, 1 << fls(size), 0);
2246
2247 /*
2248 * Try to ensure ebase resides in KSeg0 if possible.
2249 *
2250 * It shouldn't generally be in XKPhys on MIPS64 to avoid
2251 * hitting a poorly defined exception base for Cache Errors.
2252 * The allocation is likely to be in the low 512MB of physical,
2253 * in which case we should be able to convert to KSeg0.
2254 *
2255 * EVA is special though as it allows segments to be rearranged
2256 * and to become uncached during cache error handling.
2257 */
2258 ebase_pa = __pa(ebase);
2259 if (!IS_ENABLED(CONFIG_EVA) && !WARN_ON(ebase_pa >= 0x20000000))
2260 ebase = CKSEG0ADDR(ebase_pa);
2261 } else {
2262 ebase = CAC_BASE;
2263
2264 if (cpu_has_mips_r2_r6) {
2265 if (cpu_has_ebase_wg) {
2266#ifdef CONFIG_64BIT
2267 ebase = (read_c0_ebase_64() & ~0xfff);
2268#else
2269 ebase = (read_c0_ebase() & ~0xfff);
2270#endif
2271 } else {
2272 ebase += (read_c0_ebase() & 0x3ffff000);
2273 }
2274 }
2275 }
2276
2277 if (cpu_has_mmips) {
2278 unsigned int config3 = read_c0_config3();
2279
2280 if (IS_ENABLED(CONFIG_CPU_MICROMIPS))
2281 write_c0_config3(config3 | MIPS_CONF3_ISA_OE);
2282 else
2283 write_c0_config3(config3 & ~MIPS_CONF3_ISA_OE);
2284 }
2285
2286 if (board_ebase_setup)
2287 board_ebase_setup();
2288 per_cpu_trap_init(true);
2289
2290 /*
2291 * Copy the generic exception handlers to their final destination.
2292 * This will be overridden later as suitable for a particular
2293 * configuration.
2294 */
2295 set_handler(0x180, &except_vec3_generic, 0x80);
2296
2297 /*
2298 * Setup default vectors
2299 */
2300 for (i = 0; i <= 31; i++)
2301 set_except_vector(i, handle_reserved);
2302
2303 /*
2304 * Copy the EJTAG debug exception vector handler code to it's final
2305 * destination.
2306 */
2307 if (cpu_has_ejtag && board_ejtag_handler_setup)
2308 board_ejtag_handler_setup();
2309
2310 /*
2311 * Only some CPUs have the watch exceptions.
2312 */
2313 if (cpu_has_watch)
2314 set_except_vector(EXCCODE_WATCH, handle_watch);
2315
2316 /*
2317 * Initialise interrupt handlers
2318 */
2319 if (cpu_has_veic || cpu_has_vint) {
2320 int nvec = cpu_has_veic ? 64 : 8;
2321 for (i = 0; i < nvec; i++)
2322 set_vi_handler(i, NULL);
2323 }
2324 else if (cpu_has_divec)
2325 set_handler(0x200, &except_vec4, 0x8);
2326
2327 /*
2328 * Some CPUs can enable/disable for cache parity detection, but does
2329 * it different ways.
2330 */
2331 parity_protection_init();
2332
2333 /*
2334 * The Data Bus Errors / Instruction Bus Errors are signaled
2335 * by external hardware. Therefore these two exceptions
2336 * may have board specific handlers.
2337 */
2338 if (board_be_init)
2339 board_be_init();
2340
2341 set_except_vector(EXCCODE_INT, using_rollback_handler() ?
2342 rollback_handle_int : handle_int);
2343 set_except_vector(EXCCODE_MOD, handle_tlbm);
2344 set_except_vector(EXCCODE_TLBL, handle_tlbl);
2345 set_except_vector(EXCCODE_TLBS, handle_tlbs);
2346
2347 set_except_vector(EXCCODE_ADEL, handle_adel);
2348 set_except_vector(EXCCODE_ADES, handle_ades);
2349
2350 set_except_vector(EXCCODE_IBE, handle_ibe);
2351 set_except_vector(EXCCODE_DBE, handle_dbe);
2352
2353 set_except_vector(EXCCODE_SYS, handle_sys);
2354 set_except_vector(EXCCODE_BP, handle_bp);
2355
2356 if (rdhwr_noopt)
2357 set_except_vector(EXCCODE_RI, handle_ri);
2358 else {
2359 if (cpu_has_vtag_icache)
2360 set_except_vector(EXCCODE_RI, handle_ri_rdhwr_tlbp);
2361 else if (current_cpu_type() == CPU_LOONGSON3)
2362 set_except_vector(EXCCODE_RI, handle_ri_rdhwr_tlbp);
2363 else
2364 set_except_vector(EXCCODE_RI, handle_ri_rdhwr);
2365 }
2366
2367 set_except_vector(EXCCODE_CPU, handle_cpu);
2368 set_except_vector(EXCCODE_OV, handle_ov);
2369 set_except_vector(EXCCODE_TR, handle_tr);
2370 set_except_vector(EXCCODE_MSAFPE, handle_msa_fpe);
2371
2372 if (current_cpu_type() == CPU_R6000 ||
2373 current_cpu_type() == CPU_R6000A) {
2374 /*
2375 * The R6000 is the only R-series CPU that features a machine
2376 * check exception (similar to the R4000 cache error) and
2377 * unaligned ldc1/sdc1 exception. The handlers have not been
2378 * written yet. Well, anyway there is no R6000 machine on the
2379 * current list of targets for Linux/MIPS.
2380 * (Duh, crap, there is someone with a triple R6k machine)
2381 */
2382 //set_except_vector(14, handle_mc);
2383 //set_except_vector(15, handle_ndc);
2384 }
2385
2386
2387 if (board_nmi_handler_setup)
2388 board_nmi_handler_setup();
2389
2390 if (cpu_has_fpu && !cpu_has_nofpuex)
2391 set_except_vector(EXCCODE_FPE, handle_fpe);
2392
2393 set_except_vector(MIPS_EXCCODE_TLBPAR, handle_ftlb);
2394
2395 if (cpu_has_rixiex) {
2396 set_except_vector(EXCCODE_TLBRI, tlb_do_page_fault_0);
2397 set_except_vector(EXCCODE_TLBXI, tlb_do_page_fault_0);
2398 }
2399
2400 set_except_vector(EXCCODE_MSADIS, handle_msa);
2401 set_except_vector(EXCCODE_MDMX, handle_mdmx);
2402
2403 if (cpu_has_mcheck)
2404 set_except_vector(EXCCODE_MCHECK, handle_mcheck);
2405
2406 if (cpu_has_mipsmt)
2407 set_except_vector(EXCCODE_THREAD, handle_mt);
2408
2409 set_except_vector(EXCCODE_DSPDIS, handle_dsp);
2410
2411 if (board_cache_error_setup)
2412 board_cache_error_setup();
2413
2414 if (cpu_has_vce)
2415 /* Special exception: R4[04]00 uses also the divec space. */
2416 set_handler(0x180, &except_vec3_r4000, 0x100);
2417 else if (cpu_has_4kex)
2418 set_handler(0x180, &except_vec3_generic, 0x80);
2419 else
2420 set_handler(0x080, &except_vec3_generic, 0x80);
2421
2422 local_flush_icache_range(ebase, ebase + 0x400);
2423
2424 sort_extable(__start___dbe_table, __stop___dbe_table);
2425
2426 cu2_notifier(default_cu2_call, 0x80000000); /* Run last */
2427}
2428
2429static int trap_pm_notifier(struct notifier_block *self, unsigned long cmd,
2430 void *v)
2431{
2432 switch (cmd) {
2433 case CPU_PM_ENTER_FAILED:
2434 case CPU_PM_EXIT:
2435 configure_status();
2436 configure_hwrena();
2437 configure_exception_vector();
2438
2439 /* Restore register with CPU number for TLB handlers */
2440 TLBMISS_HANDLER_RESTORE();
2441
2442 break;
2443 }
2444
2445 return NOTIFY_OK;
2446}
2447
2448static struct notifier_block trap_pm_notifier_block = {
2449 .notifier_call = trap_pm_notifier,
2450};
2451
2452static int __init trap_pm_init(void)
2453{
2454 return cpu_pm_register_notifier(&trap_pm_notifier_block);
2455}
2456arch_initcall(trap_pm_init);