Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/* SCTP kernel implementation
   3 * (C) Copyright IBM Corp. 2001, 2004
   4 * Copyright (c) 1999-2000 Cisco, Inc.
   5 * Copyright (c) 1999-2001 Motorola, Inc.
   6 * Copyright (c) 2001 Intel Corp.
   7 * Copyright (c) 2001 Nokia, Inc.
   8 * Copyright (c) 2001 La Monte H.P. Yarroll
   9 *
  10 * This abstraction carries sctp events to the ULP (sockets).
  11 *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  12 * Please send any bug reports or fixes you make to the
  13 * email address(es):
  14 *    lksctp developers <linux-sctp@vger.kernel.org>
  15 *
  16 * Written or modified by:
  17 *    Jon Grimm             <jgrimm@us.ibm.com>
  18 *    La Monte H.P. Yarroll <piggy@acm.org>
  19 *    Sridhar Samudrala     <sri@us.ibm.com>
  20 */
  21
  22#include <linux/slab.h>
  23#include <linux/types.h>
  24#include <linux/skbuff.h>
  25#include <net/sock.h>
  26#include <net/busy_poll.h>
  27#include <net/sctp/structs.h>
  28#include <net/sctp/sctp.h>
  29#include <net/sctp/sm.h>
  30
  31/* Forward declarations for internal helpers.  */
  32static struct sctp_ulpevent *sctp_ulpq_reasm(struct sctp_ulpq *ulpq,
  33					      struct sctp_ulpevent *);
  34static struct sctp_ulpevent *sctp_ulpq_order(struct sctp_ulpq *,
  35					      struct sctp_ulpevent *);
  36static void sctp_ulpq_reasm_drain(struct sctp_ulpq *ulpq);
  37
  38/* 1st Level Abstractions */
  39
  40/* Initialize a ULP queue from a block of memory.  */
  41struct sctp_ulpq *sctp_ulpq_init(struct sctp_ulpq *ulpq,
  42				 struct sctp_association *asoc)
  43{
  44	memset(ulpq, 0, sizeof(struct sctp_ulpq));
  45
  46	ulpq->asoc = asoc;
  47	skb_queue_head_init(&ulpq->reasm);
  48	skb_queue_head_init(&ulpq->reasm_uo);
  49	skb_queue_head_init(&ulpq->lobby);
  50	ulpq->pd_mode  = 0;
  51
  52	return ulpq;
  53}
  54
  55
  56/* Flush the reassembly and ordering queues.  */
  57void sctp_ulpq_flush(struct sctp_ulpq *ulpq)
  58{
  59	struct sk_buff *skb;
  60	struct sctp_ulpevent *event;
  61
  62	while ((skb = __skb_dequeue(&ulpq->lobby)) != NULL) {
  63		event = sctp_skb2event(skb);
  64		sctp_ulpevent_free(event);
  65	}
  66
  67	while ((skb = __skb_dequeue(&ulpq->reasm)) != NULL) {
  68		event = sctp_skb2event(skb);
  69		sctp_ulpevent_free(event);
  70	}
  71
  72	while ((skb = __skb_dequeue(&ulpq->reasm_uo)) != NULL) {
  73		event = sctp_skb2event(skb);
  74		sctp_ulpevent_free(event);
  75	}
  76}
  77
  78/* Dispose of a ulpqueue.  */
  79void sctp_ulpq_free(struct sctp_ulpq *ulpq)
  80{
  81	sctp_ulpq_flush(ulpq);
  82}
  83
  84/* Process an incoming DATA chunk.  */
  85int sctp_ulpq_tail_data(struct sctp_ulpq *ulpq, struct sctp_chunk *chunk,
  86			gfp_t gfp)
  87{
  88	struct sk_buff_head temp;
  89	struct sctp_ulpevent *event;
  90	int event_eor = 0;
  91
  92	/* Create an event from the incoming chunk. */
  93	event = sctp_ulpevent_make_rcvmsg(chunk->asoc, chunk, gfp);
  94	if (!event)
  95		return -ENOMEM;
  96
  97	event->ssn = ntohs(chunk->subh.data_hdr->ssn);
  98	event->ppid = chunk->subh.data_hdr->ppid;
  99
 100	/* Do reassembly if needed.  */
 101	event = sctp_ulpq_reasm(ulpq, event);
 102
 103	/* Do ordering if needed.  */
 104	if (event) {
 105		/* Create a temporary list to collect chunks on.  */
 106		skb_queue_head_init(&temp);
 107		__skb_queue_tail(&temp, sctp_event2skb(event));
 108
 109		if (event->msg_flags & MSG_EOR)
 110			event = sctp_ulpq_order(ulpq, event);
 111	}
 112
 113	/* Send event to the ULP.  'event' is the sctp_ulpevent for
 114	 * very first SKB on the 'temp' list.
 115	 */
 116	if (event) {
 117		event_eor = (event->msg_flags & MSG_EOR) ? 1 : 0;
 118		sctp_ulpq_tail_event(ulpq, &temp);
 119	}
 120
 121	return event_eor;
 122}
 123
 124/* Add a new event for propagation to the ULP.  */
 125/* Clear the partial delivery mode for this socket.   Note: This
 126 * assumes that no association is currently in partial delivery mode.
 127 */
 128int sctp_clear_pd(struct sock *sk, struct sctp_association *asoc)
 129{
 130	struct sctp_sock *sp = sctp_sk(sk);
 131
 132	if (atomic_dec_and_test(&sp->pd_mode)) {
 133		/* This means there are no other associations in PD, so
 134		 * we can go ahead and clear out the lobby in one shot
 135		 */
 136		if (!skb_queue_empty(&sp->pd_lobby)) {
 137			skb_queue_splice_tail_init(&sp->pd_lobby,
 138						   &sk->sk_receive_queue);
 139			return 1;
 140		}
 141	} else {
 142		/* There are other associations in PD, so we only need to
 143		 * pull stuff out of the lobby that belongs to the
 144		 * associations that is exiting PD (all of its notifications
 145		 * are posted here).
 146		 */
 147		if (!skb_queue_empty(&sp->pd_lobby) && asoc) {
 148			struct sk_buff *skb, *tmp;
 149			struct sctp_ulpevent *event;
 150
 151			sctp_skb_for_each(skb, &sp->pd_lobby, tmp) {
 152				event = sctp_skb2event(skb);
 153				if (event->asoc == asoc) {
 154					__skb_unlink(skb, &sp->pd_lobby);
 155					__skb_queue_tail(&sk->sk_receive_queue,
 156							 skb);
 157				}
 158			}
 159		}
 160	}
 161
 162	return 0;
 163}
 164
 165/* Set the pd_mode on the socket and ulpq */
 166static void sctp_ulpq_set_pd(struct sctp_ulpq *ulpq)
 167{
 168	struct sctp_sock *sp = sctp_sk(ulpq->asoc->base.sk);
 169
 170	atomic_inc(&sp->pd_mode);
 171	ulpq->pd_mode = 1;
 172}
 173
 174/* Clear the pd_mode and restart any pending messages waiting for delivery. */
 175static int sctp_ulpq_clear_pd(struct sctp_ulpq *ulpq)
 176{
 177	ulpq->pd_mode = 0;
 178	sctp_ulpq_reasm_drain(ulpq);
 179	return sctp_clear_pd(ulpq->asoc->base.sk, ulpq->asoc);
 180}
 181
 182int sctp_ulpq_tail_event(struct sctp_ulpq *ulpq, struct sk_buff_head *skb_list)
 
 
 
 183{
 184	struct sock *sk = ulpq->asoc->base.sk;
 185	struct sctp_sock *sp = sctp_sk(sk);
 186	struct sctp_ulpevent *event;
 187	struct sk_buff_head *queue;
 188	struct sk_buff *skb;
 189	int clear_pd = 0;
 190
 191	skb = __skb_peek(skb_list);
 192	event = sctp_skb2event(skb);
 193
 194	/* If the socket is just going to throw this away, do not
 195	 * even try to deliver it.
 196	 */
 197	if (sk->sk_shutdown & RCV_SHUTDOWN &&
 198	    (sk->sk_shutdown & SEND_SHUTDOWN ||
 199	     !sctp_ulpevent_is_notification(event)))
 200		goto out_free;
 201
 202	if (!sctp_ulpevent_is_notification(event)) {
 203		sk_mark_napi_id(sk, skb);
 204		sk_incoming_cpu_update(sk);
 205	}
 206	/* Check if the user wishes to receive this event.  */
 207	if (!sctp_ulpevent_is_enabled(event, ulpq->asoc->subscribe))
 208		goto out_free;
 209
 210	/* If we are in partial delivery mode, post to the lobby until
 211	 * partial delivery is cleared, unless, of course _this_ is
 212	 * the association the cause of the partial delivery.
 213	 */
 214
 215	if (atomic_read(&sp->pd_mode) == 0) {
 216		queue = &sk->sk_receive_queue;
 217	} else {
 218		if (ulpq->pd_mode) {
 219			/* If the association is in partial delivery, we
 220			 * need to finish delivering the partially processed
 221			 * packet before passing any other data.  This is
 222			 * because we don't truly support stream interleaving.
 223			 */
 224			if ((event->msg_flags & MSG_NOTIFICATION) ||
 225			    (SCTP_DATA_NOT_FRAG ==
 226				    (event->msg_flags & SCTP_DATA_FRAG_MASK)))
 227				queue = &sp->pd_lobby;
 228			else {
 229				clear_pd = event->msg_flags & MSG_EOR;
 230				queue = &sk->sk_receive_queue;
 231			}
 232		} else {
 233			/*
 234			 * If fragment interleave is enabled, we
 235			 * can queue this to the receive queue instead
 236			 * of the lobby.
 237			 */
 238			if (sp->frag_interleave)
 239				queue = &sk->sk_receive_queue;
 240			else
 241				queue = &sp->pd_lobby;
 242		}
 243	}
 244
 245	skb_queue_splice_tail_init(skb_list, queue);
 
 
 
 
 
 
 246
 247	/* Did we just complete partial delivery and need to get
 248	 * rolling again?  Move pending data to the receive
 249	 * queue.
 250	 */
 251	if (clear_pd)
 252		sctp_ulpq_clear_pd(ulpq);
 253
 254	if (queue == &sk->sk_receive_queue && !sp->data_ready_signalled) {
 255		if (!sock_owned_by_user(sk))
 256			sp->data_ready_signalled = 1;
 257		sk->sk_data_ready(sk);
 258	}
 259	return 1;
 260
 261out_free:
 262	if (skb_list)
 263		sctp_queue_purge_ulpevents(skb_list);
 264	else
 265		sctp_ulpevent_free(event);
 266
 267	return 0;
 268}
 269
 270/* 2nd Level Abstractions */
 271
 272/* Helper function to store chunks that need to be reassembled.  */
 273static void sctp_ulpq_store_reasm(struct sctp_ulpq *ulpq,
 274					 struct sctp_ulpevent *event)
 275{
 276	struct sk_buff *pos;
 277	struct sctp_ulpevent *cevent;
 278	__u32 tsn, ctsn;
 279
 280	tsn = event->tsn;
 281
 282	/* See if it belongs at the end. */
 283	pos = skb_peek_tail(&ulpq->reasm);
 284	if (!pos) {
 285		__skb_queue_tail(&ulpq->reasm, sctp_event2skb(event));
 286		return;
 287	}
 288
 289	/* Short circuit just dropping it at the end. */
 290	cevent = sctp_skb2event(pos);
 291	ctsn = cevent->tsn;
 292	if (TSN_lt(ctsn, tsn)) {
 293		__skb_queue_tail(&ulpq->reasm, sctp_event2skb(event));
 294		return;
 295	}
 296
 297	/* Find the right place in this list. We store them by TSN.  */
 298	skb_queue_walk(&ulpq->reasm, pos) {
 299		cevent = sctp_skb2event(pos);
 300		ctsn = cevent->tsn;
 301
 302		if (TSN_lt(tsn, ctsn))
 303			break;
 304	}
 305
 306	/* Insert before pos. */
 307	__skb_queue_before(&ulpq->reasm, pos, sctp_event2skb(event));
 308
 309}
 310
 311/* Helper function to return an event corresponding to the reassembled
 312 * datagram.
 313 * This routine creates a re-assembled skb given the first and last skb's
 314 * as stored in the reassembly queue. The skb's may be non-linear if the sctp
 315 * payload was fragmented on the way and ip had to reassemble them.
 316 * We add the rest of skb's to the first skb's fraglist.
 317 */
 318struct sctp_ulpevent *sctp_make_reassembled_event(struct net *net,
 319						  struct sk_buff_head *queue,
 320						  struct sk_buff *f_frag,
 321						  struct sk_buff *l_frag)
 322{
 323	struct sk_buff *pos;
 324	struct sk_buff *new = NULL;
 325	struct sctp_ulpevent *event;
 326	struct sk_buff *pnext, *last;
 327	struct sk_buff *list = skb_shinfo(f_frag)->frag_list;
 328
 329	/* Store the pointer to the 2nd skb */
 330	if (f_frag == l_frag)
 331		pos = NULL;
 332	else
 333		pos = f_frag->next;
 334
 335	/* Get the last skb in the f_frag's frag_list if present. */
 336	for (last = list; list; last = list, list = list->next)
 337		;
 338
 339	/* Add the list of remaining fragments to the first fragments
 340	 * frag_list.
 341	 */
 342	if (last)
 343		last->next = pos;
 344	else {
 345		if (skb_cloned(f_frag)) {
 346			/* This is a cloned skb, we can't just modify
 347			 * the frag_list.  We need a new skb to do that.
 348			 * Instead of calling skb_unshare(), we'll do it
 349			 * ourselves since we need to delay the free.
 350			 */
 351			new = skb_copy(f_frag, GFP_ATOMIC);
 352			if (!new)
 353				return NULL;	/* try again later */
 354
 355			sctp_skb_set_owner_r(new, f_frag->sk);
 356
 357			skb_shinfo(new)->frag_list = pos;
 358		} else
 359			skb_shinfo(f_frag)->frag_list = pos;
 360	}
 361
 362	/* Remove the first fragment from the reassembly queue.  */
 363	__skb_unlink(f_frag, queue);
 364
 365	/* if we did unshare, then free the old skb and re-assign */
 366	if (new) {
 367		kfree_skb(f_frag);
 368		f_frag = new;
 369	}
 370
 371	while (pos) {
 372
 373		pnext = pos->next;
 374
 375		/* Update the len and data_len fields of the first fragment. */
 376		f_frag->len += pos->len;
 377		f_frag->data_len += pos->len;
 378
 379		/* Remove the fragment from the reassembly queue.  */
 380		__skb_unlink(pos, queue);
 381
 382		/* Break if we have reached the last fragment.  */
 383		if (pos == l_frag)
 384			break;
 385		pos->next = pnext;
 386		pos = pnext;
 387	}
 388
 389	event = sctp_skb2event(f_frag);
 390	SCTP_INC_STATS(net, SCTP_MIB_REASMUSRMSGS);
 391
 392	return event;
 393}
 394
 395
 396/* Helper function to check if an incoming chunk has filled up the last
 397 * missing fragment in a SCTP datagram and return the corresponding event.
 398 */
 399static struct sctp_ulpevent *sctp_ulpq_retrieve_reassembled(struct sctp_ulpq *ulpq)
 400{
 401	struct sk_buff *pos;
 402	struct sctp_ulpevent *cevent;
 403	struct sk_buff *first_frag = NULL;
 404	__u32 ctsn, next_tsn;
 405	struct sctp_ulpevent *retval = NULL;
 406	struct sk_buff *pd_first = NULL;
 407	struct sk_buff *pd_last = NULL;
 408	size_t pd_len = 0;
 409	struct sctp_association *asoc;
 410	u32 pd_point;
 411
 412	/* Initialized to 0 just to avoid compiler warning message.  Will
 413	 * never be used with this value. It is referenced only after it
 414	 * is set when we find the first fragment of a message.
 415	 */
 416	next_tsn = 0;
 417
 418	/* The chunks are held in the reasm queue sorted by TSN.
 419	 * Walk through the queue sequentially and look for a sequence of
 420	 * fragmented chunks that complete a datagram.
 421	 * 'first_frag' and next_tsn are reset when we find a chunk which
 422	 * is the first fragment of a datagram. Once these 2 fields are set
 423	 * we expect to find the remaining middle fragments and the last
 424	 * fragment in order. If not, first_frag is reset to NULL and we
 425	 * start the next pass when we find another first fragment.
 426	 *
 427	 * There is a potential to do partial delivery if user sets
 428	 * SCTP_PARTIAL_DELIVERY_POINT option. Lets count some things here
 429	 * to see if can do PD.
 430	 */
 431	skb_queue_walk(&ulpq->reasm, pos) {
 432		cevent = sctp_skb2event(pos);
 433		ctsn = cevent->tsn;
 434
 435		switch (cevent->msg_flags & SCTP_DATA_FRAG_MASK) {
 436		case SCTP_DATA_FIRST_FRAG:
 437			/* If this "FIRST_FRAG" is the first
 438			 * element in the queue, then count it towards
 439			 * possible PD.
 440			 */
 441			if (skb_queue_is_first(&ulpq->reasm, pos)) {
 442			    pd_first = pos;
 443			    pd_last = pos;
 444			    pd_len = pos->len;
 445			} else {
 446			    pd_first = NULL;
 447			    pd_last = NULL;
 448			    pd_len = 0;
 449			}
 450
 451			first_frag = pos;
 452			next_tsn = ctsn + 1;
 453			break;
 454
 455		case SCTP_DATA_MIDDLE_FRAG:
 456			if ((first_frag) && (ctsn == next_tsn)) {
 457				next_tsn++;
 458				if (pd_first) {
 459				    pd_last = pos;
 460				    pd_len += pos->len;
 461				}
 462			} else
 463				first_frag = NULL;
 464			break;
 465
 466		case SCTP_DATA_LAST_FRAG:
 467			if (first_frag && (ctsn == next_tsn))
 468				goto found;
 469			else
 470				first_frag = NULL;
 471			break;
 472		}
 473	}
 474
 475	asoc = ulpq->asoc;
 476	if (pd_first) {
 477		/* Make sure we can enter partial deliver.
 478		 * We can trigger partial delivery only if framgent
 479		 * interleave is set, or the socket is not already
 480		 * in  partial delivery.
 481		 */
 482		if (!sctp_sk(asoc->base.sk)->frag_interleave &&
 483		    atomic_read(&sctp_sk(asoc->base.sk)->pd_mode))
 484			goto done;
 485
 486		cevent = sctp_skb2event(pd_first);
 487		pd_point = sctp_sk(asoc->base.sk)->pd_point;
 488		if (pd_point && pd_point <= pd_len) {
 489			retval = sctp_make_reassembled_event(asoc->base.net,
 490							     &ulpq->reasm,
 491							     pd_first, pd_last);
 
 492			if (retval)
 493				sctp_ulpq_set_pd(ulpq);
 494		}
 495	}
 496done:
 497	return retval;
 498found:
 499	retval = sctp_make_reassembled_event(ulpq->asoc->base.net,
 500					     &ulpq->reasm, first_frag, pos);
 501	if (retval)
 502		retval->msg_flags |= MSG_EOR;
 503	goto done;
 504}
 505
 506/* Retrieve the next set of fragments of a partial message. */
 507static struct sctp_ulpevent *sctp_ulpq_retrieve_partial(struct sctp_ulpq *ulpq)
 508{
 509	struct sk_buff *pos, *last_frag, *first_frag;
 510	struct sctp_ulpevent *cevent;
 511	__u32 ctsn, next_tsn;
 512	int is_last;
 513	struct sctp_ulpevent *retval;
 514
 515	/* The chunks are held in the reasm queue sorted by TSN.
 516	 * Walk through the queue sequentially and look for the first
 517	 * sequence of fragmented chunks.
 518	 */
 519
 520	if (skb_queue_empty(&ulpq->reasm))
 521		return NULL;
 522
 523	last_frag = first_frag = NULL;
 524	retval = NULL;
 525	next_tsn = 0;
 526	is_last = 0;
 527
 528	skb_queue_walk(&ulpq->reasm, pos) {
 529		cevent = sctp_skb2event(pos);
 530		ctsn = cevent->tsn;
 531
 532		switch (cevent->msg_flags & SCTP_DATA_FRAG_MASK) {
 533		case SCTP_DATA_FIRST_FRAG:
 534			if (!first_frag)
 535				return NULL;
 536			goto done;
 537		case SCTP_DATA_MIDDLE_FRAG:
 538			if (!first_frag) {
 539				first_frag = pos;
 540				next_tsn = ctsn + 1;
 541				last_frag = pos;
 542			} else if (next_tsn == ctsn) {
 543				next_tsn++;
 544				last_frag = pos;
 545			} else
 546				goto done;
 547			break;
 548		case SCTP_DATA_LAST_FRAG:
 549			if (!first_frag)
 550				first_frag = pos;
 551			else if (ctsn != next_tsn)
 552				goto done;
 553			last_frag = pos;
 554			is_last = 1;
 555			goto done;
 556		default:
 557			return NULL;
 558		}
 559	}
 560
 561	/* We have the reassembled event. There is no need to look
 562	 * further.
 563	 */
 564done:
 565	retval = sctp_make_reassembled_event(ulpq->asoc->base.net, &ulpq->reasm,
 566					     first_frag, last_frag);
 567	if (retval && is_last)
 568		retval->msg_flags |= MSG_EOR;
 569
 570	return retval;
 571}
 572
 573
 574/* Helper function to reassemble chunks.  Hold chunks on the reasm queue that
 575 * need reassembling.
 576 */
 577static struct sctp_ulpevent *sctp_ulpq_reasm(struct sctp_ulpq *ulpq,
 578						struct sctp_ulpevent *event)
 579{
 580	struct sctp_ulpevent *retval = NULL;
 581
 582	/* Check if this is part of a fragmented message.  */
 583	if (SCTP_DATA_NOT_FRAG == (event->msg_flags & SCTP_DATA_FRAG_MASK)) {
 584		event->msg_flags |= MSG_EOR;
 585		return event;
 586	}
 587
 588	sctp_ulpq_store_reasm(ulpq, event);
 589	if (!ulpq->pd_mode)
 590		retval = sctp_ulpq_retrieve_reassembled(ulpq);
 591	else {
 592		__u32 ctsn, ctsnap;
 593
 594		/* Do not even bother unless this is the next tsn to
 595		 * be delivered.
 596		 */
 597		ctsn = event->tsn;
 598		ctsnap = sctp_tsnmap_get_ctsn(&ulpq->asoc->peer.tsn_map);
 599		if (TSN_lte(ctsn, ctsnap))
 600			retval = sctp_ulpq_retrieve_partial(ulpq);
 601	}
 602
 603	return retval;
 604}
 605
 606/* Retrieve the first part (sequential fragments) for partial delivery.  */
 607static struct sctp_ulpevent *sctp_ulpq_retrieve_first(struct sctp_ulpq *ulpq)
 608{
 609	struct sk_buff *pos, *last_frag, *first_frag;
 610	struct sctp_ulpevent *cevent;
 611	__u32 ctsn, next_tsn;
 612	struct sctp_ulpevent *retval;
 613
 614	/* The chunks are held in the reasm queue sorted by TSN.
 615	 * Walk through the queue sequentially and look for a sequence of
 616	 * fragmented chunks that start a datagram.
 617	 */
 618
 619	if (skb_queue_empty(&ulpq->reasm))
 620		return NULL;
 621
 622	last_frag = first_frag = NULL;
 623	retval = NULL;
 624	next_tsn = 0;
 625
 626	skb_queue_walk(&ulpq->reasm, pos) {
 627		cevent = sctp_skb2event(pos);
 628		ctsn = cevent->tsn;
 629
 630		switch (cevent->msg_flags & SCTP_DATA_FRAG_MASK) {
 631		case SCTP_DATA_FIRST_FRAG:
 632			if (!first_frag) {
 633				first_frag = pos;
 634				next_tsn = ctsn + 1;
 635				last_frag = pos;
 636			} else
 637				goto done;
 638			break;
 639
 640		case SCTP_DATA_MIDDLE_FRAG:
 641			if (!first_frag)
 642				return NULL;
 643			if (ctsn == next_tsn) {
 644				next_tsn++;
 645				last_frag = pos;
 646			} else
 647				goto done;
 648			break;
 649
 650		case SCTP_DATA_LAST_FRAG:
 651			if (!first_frag)
 652				return NULL;
 653			else
 654				goto done;
 655			break;
 656
 657		default:
 658			return NULL;
 659		}
 660	}
 661
 662	/* We have the reassembled event. There is no need to look
 663	 * further.
 664	 */
 665done:
 666	retval = sctp_make_reassembled_event(ulpq->asoc->base.net, &ulpq->reasm,
 667					     first_frag, last_frag);
 668	return retval;
 669}
 670
 671/*
 672 * Flush out stale fragments from the reassembly queue when processing
 673 * a Forward TSN.
 674 *
 675 * RFC 3758, Section 3.6
 676 *
 677 * After receiving and processing a FORWARD TSN, the data receiver MUST
 678 * take cautions in updating its re-assembly queue.  The receiver MUST
 679 * remove any partially reassembled message, which is still missing one
 680 * or more TSNs earlier than or equal to the new cumulative TSN point.
 681 * In the event that the receiver has invoked the partial delivery API,
 682 * a notification SHOULD also be generated to inform the upper layer API
 683 * that the message being partially delivered will NOT be completed.
 684 */
 685void sctp_ulpq_reasm_flushtsn(struct sctp_ulpq *ulpq, __u32 fwd_tsn)
 686{
 687	struct sk_buff *pos, *tmp;
 688	struct sctp_ulpevent *event;
 689	__u32 tsn;
 690
 691	if (skb_queue_empty(&ulpq->reasm))
 692		return;
 693
 694	skb_queue_walk_safe(&ulpq->reasm, pos, tmp) {
 695		event = sctp_skb2event(pos);
 696		tsn = event->tsn;
 697
 698		/* Since the entire message must be abandoned by the
 699		 * sender (item A3 in Section 3.5, RFC 3758), we can
 700		 * free all fragments on the list that are less then
 701		 * or equal to ctsn_point
 702		 */
 703		if (TSN_lte(tsn, fwd_tsn)) {
 704			__skb_unlink(pos, &ulpq->reasm);
 705			sctp_ulpevent_free(event);
 706		} else
 707			break;
 708	}
 709}
 710
 711/*
 712 * Drain the reassembly queue.  If we just cleared parted delivery, it
 713 * is possible that the reassembly queue will contain already reassembled
 714 * messages.  Retrieve any such messages and give them to the user.
 715 */
 716static void sctp_ulpq_reasm_drain(struct sctp_ulpq *ulpq)
 717{
 718	struct sctp_ulpevent *event = NULL;
 
 719
 720	if (skb_queue_empty(&ulpq->reasm))
 721		return;
 722
 723	while ((event = sctp_ulpq_retrieve_reassembled(ulpq)) != NULL) {
 724		struct sk_buff_head temp;
 725
 726		skb_queue_head_init(&temp);
 727		__skb_queue_tail(&temp, sctp_event2skb(event));
 728
 729		/* Do ordering if needed.  */
 730		if (event->msg_flags & MSG_EOR)
 
 
 
 731			event = sctp_ulpq_order(ulpq, event);
 
 732
 733		/* Send event to the ULP.  'event' is the
 734		 * sctp_ulpevent for  very first SKB on the  temp' list.
 735		 */
 736		if (event)
 737			sctp_ulpq_tail_event(ulpq, &temp);
 738	}
 739}
 740
 741
 742/* Helper function to gather skbs that have possibly become
 743 * ordered by an an incoming chunk.
 744 */
 745static void sctp_ulpq_retrieve_ordered(struct sctp_ulpq *ulpq,
 746					      struct sctp_ulpevent *event)
 747{
 748	struct sk_buff_head *event_list;
 749	struct sk_buff *pos, *tmp;
 750	struct sctp_ulpevent *cevent;
 751	struct sctp_stream *stream;
 752	__u16 sid, csid, cssn;
 753
 754	sid = event->stream;
 755	stream  = &ulpq->asoc->stream;
 756
 757	event_list = (struct sk_buff_head *) sctp_event2skb(event)->prev;
 758
 759	/* We are holding the chunks by stream, by SSN.  */
 760	sctp_skb_for_each(pos, &ulpq->lobby, tmp) {
 761		cevent = (struct sctp_ulpevent *) pos->cb;
 762		csid = cevent->stream;
 763		cssn = cevent->ssn;
 764
 765		/* Have we gone too far?  */
 766		if (csid > sid)
 767			break;
 768
 769		/* Have we not gone far enough?  */
 770		if (csid < sid)
 771			continue;
 772
 773		if (cssn != sctp_ssn_peek(stream, in, sid))
 774			break;
 775
 776		/* Found it, so mark in the stream. */
 777		sctp_ssn_next(stream, in, sid);
 778
 779		__skb_unlink(pos, &ulpq->lobby);
 780
 781		/* Attach all gathered skbs to the event.  */
 782		__skb_queue_tail(event_list, pos);
 783	}
 784}
 785
 786/* Helper function to store chunks needing ordering.  */
 787static void sctp_ulpq_store_ordered(struct sctp_ulpq *ulpq,
 788					   struct sctp_ulpevent *event)
 789{
 790	struct sk_buff *pos;
 791	struct sctp_ulpevent *cevent;
 792	__u16 sid, csid;
 793	__u16 ssn, cssn;
 794
 795	pos = skb_peek_tail(&ulpq->lobby);
 796	if (!pos) {
 797		__skb_queue_tail(&ulpq->lobby, sctp_event2skb(event));
 798		return;
 799	}
 800
 801	sid = event->stream;
 802	ssn = event->ssn;
 803
 804	cevent = (struct sctp_ulpevent *) pos->cb;
 805	csid = cevent->stream;
 806	cssn = cevent->ssn;
 807	if (sid > csid) {
 808		__skb_queue_tail(&ulpq->lobby, sctp_event2skb(event));
 809		return;
 810	}
 811
 812	if ((sid == csid) && SSN_lt(cssn, ssn)) {
 813		__skb_queue_tail(&ulpq->lobby, sctp_event2skb(event));
 814		return;
 815	}
 816
 817	/* Find the right place in this list.  We store them by
 818	 * stream ID and then by SSN.
 819	 */
 820	skb_queue_walk(&ulpq->lobby, pos) {
 821		cevent = (struct sctp_ulpevent *) pos->cb;
 822		csid = cevent->stream;
 823		cssn = cevent->ssn;
 824
 825		if (csid > sid)
 826			break;
 827		if (csid == sid && SSN_lt(ssn, cssn))
 828			break;
 829	}
 830
 831
 832	/* Insert before pos. */
 833	__skb_queue_before(&ulpq->lobby, pos, sctp_event2skb(event));
 834}
 835
 836static struct sctp_ulpevent *sctp_ulpq_order(struct sctp_ulpq *ulpq,
 837					     struct sctp_ulpevent *event)
 838{
 839	__u16 sid, ssn;
 840	struct sctp_stream *stream;
 841
 842	/* Check if this message needs ordering.  */
 843	if (event->msg_flags & SCTP_DATA_UNORDERED)
 844		return event;
 845
 846	/* Note: The stream ID must be verified before this routine.  */
 847	sid = event->stream;
 848	ssn = event->ssn;
 849	stream  = &ulpq->asoc->stream;
 850
 851	/* Is this the expected SSN for this stream ID?  */
 852	if (ssn != sctp_ssn_peek(stream, in, sid)) {
 853		/* We've received something out of order, so find where it
 854		 * needs to be placed.  We order by stream and then by SSN.
 855		 */
 856		sctp_ulpq_store_ordered(ulpq, event);
 857		return NULL;
 858	}
 859
 860	/* Mark that the next chunk has been found.  */
 861	sctp_ssn_next(stream, in, sid);
 862
 863	/* Go find any other chunks that were waiting for
 864	 * ordering.
 865	 */
 866	sctp_ulpq_retrieve_ordered(ulpq, event);
 867
 868	return event;
 869}
 870
 871/* Helper function to gather skbs that have possibly become
 872 * ordered by forward tsn skipping their dependencies.
 873 */
 874static void sctp_ulpq_reap_ordered(struct sctp_ulpq *ulpq, __u16 sid)
 875{
 876	struct sk_buff *pos, *tmp;
 877	struct sctp_ulpevent *cevent;
 878	struct sctp_ulpevent *event;
 879	struct sctp_stream *stream;
 880	struct sk_buff_head temp;
 881	struct sk_buff_head *lobby = &ulpq->lobby;
 882	__u16 csid, cssn;
 883
 884	stream = &ulpq->asoc->stream;
 885
 886	/* We are holding the chunks by stream, by SSN.  */
 887	skb_queue_head_init(&temp);
 888	event = NULL;
 889	sctp_skb_for_each(pos, lobby, tmp) {
 890		cevent = (struct sctp_ulpevent *) pos->cb;
 891		csid = cevent->stream;
 892		cssn = cevent->ssn;
 893
 894		/* Have we gone too far?  */
 895		if (csid > sid)
 896			break;
 897
 898		/* Have we not gone far enough?  */
 899		if (csid < sid)
 900			continue;
 901
 902		/* see if this ssn has been marked by skipping */
 903		if (!SSN_lt(cssn, sctp_ssn_peek(stream, in, csid)))
 904			break;
 905
 906		__skb_unlink(pos, lobby);
 907		if (!event)
 908			/* Create a temporary list to collect chunks on.  */
 909			event = sctp_skb2event(pos);
 910
 911		/* Attach all gathered skbs to the event.  */
 912		__skb_queue_tail(&temp, pos);
 913	}
 914
 915	/* If we didn't reap any data, see if the next expected SSN
 916	 * is next on the queue and if so, use that.
 917	 */
 918	if (event == NULL && pos != (struct sk_buff *)lobby) {
 919		cevent = (struct sctp_ulpevent *) pos->cb;
 920		csid = cevent->stream;
 921		cssn = cevent->ssn;
 922
 923		if (csid == sid && cssn == sctp_ssn_peek(stream, in, csid)) {
 924			sctp_ssn_next(stream, in, csid);
 925			__skb_unlink(pos, lobby);
 926			__skb_queue_tail(&temp, pos);
 927			event = sctp_skb2event(pos);
 928		}
 929	}
 930
 931	/* Send event to the ULP.  'event' is the sctp_ulpevent for
 932	 * very first SKB on the 'temp' list.
 933	 */
 934	if (event) {
 935		/* see if we have more ordered that we can deliver */
 936		sctp_ulpq_retrieve_ordered(ulpq, event);
 937		sctp_ulpq_tail_event(ulpq, &temp);
 938	}
 939}
 940
 941/* Skip over an SSN. This is used during the processing of
 942 * Forwared TSN chunk to skip over the abandoned ordered data
 943 */
 944void sctp_ulpq_skip(struct sctp_ulpq *ulpq, __u16 sid, __u16 ssn)
 945{
 946	struct sctp_stream *stream;
 947
 948	/* Note: The stream ID must be verified before this routine.  */
 949	stream  = &ulpq->asoc->stream;
 950
 951	/* Is this an old SSN?  If so ignore. */
 952	if (SSN_lt(ssn, sctp_ssn_peek(stream, in, sid)))
 953		return;
 954
 955	/* Mark that we are no longer expecting this SSN or lower. */
 956	sctp_ssn_skip(stream, in, sid, ssn);
 957
 958	/* Go find any other chunks that were waiting for
 959	 * ordering and deliver them if needed.
 960	 */
 961	sctp_ulpq_reap_ordered(ulpq, sid);
 962}
 963
 964__u16 sctp_ulpq_renege_list(struct sctp_ulpq *ulpq, struct sk_buff_head *list,
 965			    __u16 needed)
 966{
 967	__u16 freed = 0;
 968	__u32 tsn, last_tsn;
 969	struct sk_buff *skb, *flist, *last;
 970	struct sctp_ulpevent *event;
 971	struct sctp_tsnmap *tsnmap;
 972
 973	tsnmap = &ulpq->asoc->peer.tsn_map;
 974
 975	while ((skb = skb_peek_tail(list)) != NULL) {
 976		event = sctp_skb2event(skb);
 977		tsn = event->tsn;
 978
 979		/* Don't renege below the Cumulative TSN ACK Point. */
 980		if (TSN_lte(tsn, sctp_tsnmap_get_ctsn(tsnmap)))
 981			break;
 982
 983		/* Events in ordering queue may have multiple fragments
 984		 * corresponding to additional TSNs.  Sum the total
 985		 * freed space; find the last TSN.
 986		 */
 987		freed += skb_headlen(skb);
 988		flist = skb_shinfo(skb)->frag_list;
 989		for (last = flist; flist; flist = flist->next) {
 990			last = flist;
 991			freed += skb_headlen(last);
 992		}
 993		if (last)
 994			last_tsn = sctp_skb2event(last)->tsn;
 995		else
 996			last_tsn = tsn;
 997
 998		/* Unlink the event, then renege all applicable TSNs. */
 999		__skb_unlink(skb, list);
1000		sctp_ulpevent_free(event);
1001		while (TSN_lte(tsn, last_tsn)) {
1002			sctp_tsnmap_renege(tsnmap, tsn);
1003			tsn++;
1004		}
1005		if (freed >= needed)
1006			return freed;
1007	}
1008
1009	return freed;
1010}
1011
1012/* Renege 'needed' bytes from the ordering queue. */
1013static __u16 sctp_ulpq_renege_order(struct sctp_ulpq *ulpq, __u16 needed)
1014{
1015	return sctp_ulpq_renege_list(ulpq, &ulpq->lobby, needed);
1016}
1017
1018/* Renege 'needed' bytes from the reassembly queue. */
1019static __u16 sctp_ulpq_renege_frags(struct sctp_ulpq *ulpq, __u16 needed)
1020{
1021	return sctp_ulpq_renege_list(ulpq, &ulpq->reasm, needed);
1022}
1023
1024/* Partial deliver the first message as there is pressure on rwnd. */
1025void sctp_ulpq_partial_delivery(struct sctp_ulpq *ulpq,
1026				gfp_t gfp)
1027{
1028	struct sctp_ulpevent *event;
1029	struct sctp_association *asoc;
1030	struct sctp_sock *sp;
1031	__u32 ctsn;
1032	struct sk_buff *skb;
1033
1034	asoc = ulpq->asoc;
1035	sp = sctp_sk(asoc->base.sk);
1036
1037	/* If the association is already in Partial Delivery mode
1038	 * we have nothing to do.
1039	 */
1040	if (ulpq->pd_mode)
1041		return;
1042
1043	/* Data must be at or below the Cumulative TSN ACK Point to
1044	 * start partial delivery.
1045	 */
1046	skb = skb_peek(&asoc->ulpq.reasm);
1047	if (skb != NULL) {
1048		ctsn = sctp_skb2event(skb)->tsn;
1049		if (!TSN_lte(ctsn, sctp_tsnmap_get_ctsn(&asoc->peer.tsn_map)))
1050			return;
1051	}
1052
1053	/* If the user enabled fragment interleave socket option,
1054	 * multiple associations can enter partial delivery.
1055	 * Otherwise, we can only enter partial delivery if the
1056	 * socket is not in partial deliver mode.
1057	 */
1058	if (sp->frag_interleave || atomic_read(&sp->pd_mode) == 0) {
1059		/* Is partial delivery possible?  */
1060		event = sctp_ulpq_retrieve_first(ulpq);
1061		/* Send event to the ULP.   */
1062		if (event) {
1063			struct sk_buff_head temp;
1064
1065			skb_queue_head_init(&temp);
1066			__skb_queue_tail(&temp, sctp_event2skb(event));
1067			sctp_ulpq_tail_event(ulpq, &temp);
1068			sctp_ulpq_set_pd(ulpq);
1069			return;
1070		}
1071	}
1072}
1073
1074/* Renege some packets to make room for an incoming chunk.  */
1075void sctp_ulpq_renege(struct sctp_ulpq *ulpq, struct sctp_chunk *chunk,
1076		      gfp_t gfp)
1077{
1078	struct sctp_association *asoc = ulpq->asoc;
1079	__u32 freed = 0;
1080	__u16 needed;
 
1081
1082	needed = ntohs(chunk->chunk_hdr->length) -
1083		 sizeof(struct sctp_data_chunk);
 
 
 
 
 
1084
1085	if (skb_queue_empty(&asoc->base.sk->sk_receive_queue)) {
1086		freed = sctp_ulpq_renege_order(ulpq, needed);
1087		if (freed < needed)
1088			freed += sctp_ulpq_renege_frags(ulpq, needed - freed);
 
1089	}
1090	/* If able to free enough room, accept this chunk. */
1091	if (sk_rmem_schedule(asoc->base.sk, chunk->skb, needed) &&
1092	    freed >= needed) {
1093		int retval = sctp_ulpq_tail_data(ulpq, chunk, gfp);
1094		/*
1095		 * Enter partial delivery if chunk has not been
1096		 * delivered; otherwise, drain the reassembly queue.
1097		 */
1098		if (retval <= 0)
1099			sctp_ulpq_partial_delivery(ulpq, gfp);
1100		else if (retval == 1)
1101			sctp_ulpq_reasm_drain(ulpq);
1102	}
1103
1104	sk_mem_reclaim(asoc->base.sk);
1105}
1106
1107
1108
1109/* Notify the application if an association is aborted and in
1110 * partial delivery mode.  Send up any pending received messages.
1111 */
1112void sctp_ulpq_abort_pd(struct sctp_ulpq *ulpq, gfp_t gfp)
1113{
1114	struct sctp_ulpevent *ev = NULL;
1115	struct sctp_sock *sp;
1116	struct sock *sk;
 
1117
1118	if (!ulpq->pd_mode)
1119		return;
1120
1121	sk = ulpq->asoc->base.sk;
1122	sp = sctp_sk(sk);
1123	if (sctp_ulpevent_type_enabled(ulpq->asoc->subscribe,
1124				       SCTP_PARTIAL_DELIVERY_EVENT))
1125		ev = sctp_ulpevent_make_pdapi(ulpq->asoc,
1126					      SCTP_PARTIAL_DELIVERY_ABORTED,
1127					      0, 0, 0, gfp);
1128	if (ev)
1129		__skb_queue_tail(&sk->sk_receive_queue, sctp_event2skb(ev));
1130
1131	/* If there is data waiting, send it up the socket now. */
1132	if ((sctp_ulpq_clear_pd(ulpq) || ev) && !sp->data_ready_signalled) {
1133		sp->data_ready_signalled = 1;
1134		sk->sk_data_ready(sk);
1135	}
1136}
v4.10.11
 
   1/* SCTP kernel implementation
   2 * (C) Copyright IBM Corp. 2001, 2004
   3 * Copyright (c) 1999-2000 Cisco, Inc.
   4 * Copyright (c) 1999-2001 Motorola, Inc.
   5 * Copyright (c) 2001 Intel Corp.
   6 * Copyright (c) 2001 Nokia, Inc.
   7 * Copyright (c) 2001 La Monte H.P. Yarroll
   8 *
   9 * This abstraction carries sctp events to the ULP (sockets).
  10 *
  11 * This SCTP implementation is free software;
  12 * you can redistribute it and/or modify it under the terms of
  13 * the GNU General Public License as published by
  14 * the Free Software Foundation; either version 2, or (at your option)
  15 * any later version.
  16 *
  17 * This SCTP implementation is distributed in the hope that it
  18 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
  19 *                 ************************
  20 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
  21 * See the GNU General Public License for more details.
  22 *
  23 * You should have received a copy of the GNU General Public License
  24 * along with GNU CC; see the file COPYING.  If not, see
  25 * <http://www.gnu.org/licenses/>.
  26 *
  27 * Please send any bug reports or fixes you make to the
  28 * email address(es):
  29 *    lksctp developers <linux-sctp@vger.kernel.org>
  30 *
  31 * Written or modified by:
  32 *    Jon Grimm             <jgrimm@us.ibm.com>
  33 *    La Monte H.P. Yarroll <piggy@acm.org>
  34 *    Sridhar Samudrala     <sri@us.ibm.com>
  35 */
  36
  37#include <linux/slab.h>
  38#include <linux/types.h>
  39#include <linux/skbuff.h>
  40#include <net/sock.h>
  41#include <net/busy_poll.h>
  42#include <net/sctp/structs.h>
  43#include <net/sctp/sctp.h>
  44#include <net/sctp/sm.h>
  45
  46/* Forward declarations for internal helpers.  */
  47static struct sctp_ulpevent *sctp_ulpq_reasm(struct sctp_ulpq *ulpq,
  48					      struct sctp_ulpevent *);
  49static struct sctp_ulpevent *sctp_ulpq_order(struct sctp_ulpq *,
  50					      struct sctp_ulpevent *);
  51static void sctp_ulpq_reasm_drain(struct sctp_ulpq *ulpq);
  52
  53/* 1st Level Abstractions */
  54
  55/* Initialize a ULP queue from a block of memory.  */
  56struct sctp_ulpq *sctp_ulpq_init(struct sctp_ulpq *ulpq,
  57				 struct sctp_association *asoc)
  58{
  59	memset(ulpq, 0, sizeof(struct sctp_ulpq));
  60
  61	ulpq->asoc = asoc;
  62	skb_queue_head_init(&ulpq->reasm);
 
  63	skb_queue_head_init(&ulpq->lobby);
  64	ulpq->pd_mode  = 0;
  65
  66	return ulpq;
  67}
  68
  69
  70/* Flush the reassembly and ordering queues.  */
  71void sctp_ulpq_flush(struct sctp_ulpq *ulpq)
  72{
  73	struct sk_buff *skb;
  74	struct sctp_ulpevent *event;
  75
  76	while ((skb = __skb_dequeue(&ulpq->lobby)) != NULL) {
  77		event = sctp_skb2event(skb);
  78		sctp_ulpevent_free(event);
  79	}
  80
  81	while ((skb = __skb_dequeue(&ulpq->reasm)) != NULL) {
  82		event = sctp_skb2event(skb);
  83		sctp_ulpevent_free(event);
  84	}
  85
 
 
 
 
  86}
  87
  88/* Dispose of a ulpqueue.  */
  89void sctp_ulpq_free(struct sctp_ulpq *ulpq)
  90{
  91	sctp_ulpq_flush(ulpq);
  92}
  93
  94/* Process an incoming DATA chunk.  */
  95int sctp_ulpq_tail_data(struct sctp_ulpq *ulpq, struct sctp_chunk *chunk,
  96			gfp_t gfp)
  97{
  98	struct sk_buff_head temp;
  99	struct sctp_ulpevent *event;
 100	int event_eor = 0;
 101
 102	/* Create an event from the incoming chunk. */
 103	event = sctp_ulpevent_make_rcvmsg(chunk->asoc, chunk, gfp);
 104	if (!event)
 105		return -ENOMEM;
 106
 
 
 
 107	/* Do reassembly if needed.  */
 108	event = sctp_ulpq_reasm(ulpq, event);
 109
 110	/* Do ordering if needed.  */
 111	if ((event) && (event->msg_flags & MSG_EOR)) {
 112		/* Create a temporary list to collect chunks on.  */
 113		skb_queue_head_init(&temp);
 114		__skb_queue_tail(&temp, sctp_event2skb(event));
 115
 116		event = sctp_ulpq_order(ulpq, event);
 
 117	}
 118
 119	/* Send event to the ULP.  'event' is the sctp_ulpevent for
 120	 * very first SKB on the 'temp' list.
 121	 */
 122	if (event) {
 123		event_eor = (event->msg_flags & MSG_EOR) ? 1 : 0;
 124		sctp_ulpq_tail_event(ulpq, event);
 125	}
 126
 127	return event_eor;
 128}
 129
 130/* Add a new event for propagation to the ULP.  */
 131/* Clear the partial delivery mode for this socket.   Note: This
 132 * assumes that no association is currently in partial delivery mode.
 133 */
 134int sctp_clear_pd(struct sock *sk, struct sctp_association *asoc)
 135{
 136	struct sctp_sock *sp = sctp_sk(sk);
 137
 138	if (atomic_dec_and_test(&sp->pd_mode)) {
 139		/* This means there are no other associations in PD, so
 140		 * we can go ahead and clear out the lobby in one shot
 141		 */
 142		if (!skb_queue_empty(&sp->pd_lobby)) {
 143			skb_queue_splice_tail_init(&sp->pd_lobby,
 144						   &sk->sk_receive_queue);
 145			return 1;
 146		}
 147	} else {
 148		/* There are other associations in PD, so we only need to
 149		 * pull stuff out of the lobby that belongs to the
 150		 * associations that is exiting PD (all of its notifications
 151		 * are posted here).
 152		 */
 153		if (!skb_queue_empty(&sp->pd_lobby) && asoc) {
 154			struct sk_buff *skb, *tmp;
 155			struct sctp_ulpevent *event;
 156
 157			sctp_skb_for_each(skb, &sp->pd_lobby, tmp) {
 158				event = sctp_skb2event(skb);
 159				if (event->asoc == asoc) {
 160					__skb_unlink(skb, &sp->pd_lobby);
 161					__skb_queue_tail(&sk->sk_receive_queue,
 162							 skb);
 163				}
 164			}
 165		}
 166	}
 167
 168	return 0;
 169}
 170
 171/* Set the pd_mode on the socket and ulpq */
 172static void sctp_ulpq_set_pd(struct sctp_ulpq *ulpq)
 173{
 174	struct sctp_sock *sp = sctp_sk(ulpq->asoc->base.sk);
 175
 176	atomic_inc(&sp->pd_mode);
 177	ulpq->pd_mode = 1;
 178}
 179
 180/* Clear the pd_mode and restart any pending messages waiting for delivery. */
 181static int sctp_ulpq_clear_pd(struct sctp_ulpq *ulpq)
 182{
 183	ulpq->pd_mode = 0;
 184	sctp_ulpq_reasm_drain(ulpq);
 185	return sctp_clear_pd(ulpq->asoc->base.sk, ulpq->asoc);
 186}
 187
 188/* If the SKB of 'event' is on a list, it is the first such member
 189 * of that list.
 190 */
 191int sctp_ulpq_tail_event(struct sctp_ulpq *ulpq, struct sctp_ulpevent *event)
 192{
 193	struct sock *sk = ulpq->asoc->base.sk;
 194	struct sctp_sock *sp = sctp_sk(sk);
 195	struct sk_buff_head *queue, *skb_list;
 196	struct sk_buff *skb = sctp_event2skb(event);
 
 197	int clear_pd = 0;
 198
 199	skb_list = (struct sk_buff_head *) skb->prev;
 
 200
 201	/* If the socket is just going to throw this away, do not
 202	 * even try to deliver it.
 203	 */
 204	if (sk->sk_shutdown & RCV_SHUTDOWN &&
 205	    (sk->sk_shutdown & SEND_SHUTDOWN ||
 206	     !sctp_ulpevent_is_notification(event)))
 207		goto out_free;
 208
 209	if (!sctp_ulpevent_is_notification(event)) {
 210		sk_mark_napi_id(sk, skb);
 211		sk_incoming_cpu_update(sk);
 212	}
 213	/* Check if the user wishes to receive this event.  */
 214	if (!sctp_ulpevent_is_enabled(event, &sp->subscribe))
 215		goto out_free;
 216
 217	/* If we are in partial delivery mode, post to the lobby until
 218	 * partial delivery is cleared, unless, of course _this_ is
 219	 * the association the cause of the partial delivery.
 220	 */
 221
 222	if (atomic_read(&sp->pd_mode) == 0) {
 223		queue = &sk->sk_receive_queue;
 224	} else {
 225		if (ulpq->pd_mode) {
 226			/* If the association is in partial delivery, we
 227			 * need to finish delivering the partially processed
 228			 * packet before passing any other data.  This is
 229			 * because we don't truly support stream interleaving.
 230			 */
 231			if ((event->msg_flags & MSG_NOTIFICATION) ||
 232			    (SCTP_DATA_NOT_FRAG ==
 233				    (event->msg_flags & SCTP_DATA_FRAG_MASK)))
 234				queue = &sp->pd_lobby;
 235			else {
 236				clear_pd = event->msg_flags & MSG_EOR;
 237				queue = &sk->sk_receive_queue;
 238			}
 239		} else {
 240			/*
 241			 * If fragment interleave is enabled, we
 242			 * can queue this to the receive queue instead
 243			 * of the lobby.
 244			 */
 245			if (sp->frag_interleave)
 246				queue = &sk->sk_receive_queue;
 247			else
 248				queue = &sp->pd_lobby;
 249		}
 250	}
 251
 252	/* If we are harvesting multiple skbs they will be
 253	 * collected on a list.
 254	 */
 255	if (skb_list)
 256		skb_queue_splice_tail_init(skb_list, queue);
 257	else
 258		__skb_queue_tail(queue, skb);
 259
 260	/* Did we just complete partial delivery and need to get
 261	 * rolling again?  Move pending data to the receive
 262	 * queue.
 263	 */
 264	if (clear_pd)
 265		sctp_ulpq_clear_pd(ulpq);
 266
 267	if (queue == &sk->sk_receive_queue && !sp->data_ready_signalled) {
 268		sp->data_ready_signalled = 1;
 
 269		sk->sk_data_ready(sk);
 270	}
 271	return 1;
 272
 273out_free:
 274	if (skb_list)
 275		sctp_queue_purge_ulpevents(skb_list);
 276	else
 277		sctp_ulpevent_free(event);
 278
 279	return 0;
 280}
 281
 282/* 2nd Level Abstractions */
 283
 284/* Helper function to store chunks that need to be reassembled.  */
 285static void sctp_ulpq_store_reasm(struct sctp_ulpq *ulpq,
 286					 struct sctp_ulpevent *event)
 287{
 288	struct sk_buff *pos;
 289	struct sctp_ulpevent *cevent;
 290	__u32 tsn, ctsn;
 291
 292	tsn = event->tsn;
 293
 294	/* See if it belongs at the end. */
 295	pos = skb_peek_tail(&ulpq->reasm);
 296	if (!pos) {
 297		__skb_queue_tail(&ulpq->reasm, sctp_event2skb(event));
 298		return;
 299	}
 300
 301	/* Short circuit just dropping it at the end. */
 302	cevent = sctp_skb2event(pos);
 303	ctsn = cevent->tsn;
 304	if (TSN_lt(ctsn, tsn)) {
 305		__skb_queue_tail(&ulpq->reasm, sctp_event2skb(event));
 306		return;
 307	}
 308
 309	/* Find the right place in this list. We store them by TSN.  */
 310	skb_queue_walk(&ulpq->reasm, pos) {
 311		cevent = sctp_skb2event(pos);
 312		ctsn = cevent->tsn;
 313
 314		if (TSN_lt(tsn, ctsn))
 315			break;
 316	}
 317
 318	/* Insert before pos. */
 319	__skb_queue_before(&ulpq->reasm, pos, sctp_event2skb(event));
 320
 321}
 322
 323/* Helper function to return an event corresponding to the reassembled
 324 * datagram.
 325 * This routine creates a re-assembled skb given the first and last skb's
 326 * as stored in the reassembly queue. The skb's may be non-linear if the sctp
 327 * payload was fragmented on the way and ip had to reassemble them.
 328 * We add the rest of skb's to the first skb's fraglist.
 329 */
 330static struct sctp_ulpevent *sctp_make_reassembled_event(struct net *net,
 331	struct sk_buff_head *queue, struct sk_buff *f_frag,
 332	struct sk_buff *l_frag)
 
 333{
 334	struct sk_buff *pos;
 335	struct sk_buff *new = NULL;
 336	struct sctp_ulpevent *event;
 337	struct sk_buff *pnext, *last;
 338	struct sk_buff *list = skb_shinfo(f_frag)->frag_list;
 339
 340	/* Store the pointer to the 2nd skb */
 341	if (f_frag == l_frag)
 342		pos = NULL;
 343	else
 344		pos = f_frag->next;
 345
 346	/* Get the last skb in the f_frag's frag_list if present. */
 347	for (last = list; list; last = list, list = list->next)
 348		;
 349
 350	/* Add the list of remaining fragments to the first fragments
 351	 * frag_list.
 352	 */
 353	if (last)
 354		last->next = pos;
 355	else {
 356		if (skb_cloned(f_frag)) {
 357			/* This is a cloned skb, we can't just modify
 358			 * the frag_list.  We need a new skb to do that.
 359			 * Instead of calling skb_unshare(), we'll do it
 360			 * ourselves since we need to delay the free.
 361			 */
 362			new = skb_copy(f_frag, GFP_ATOMIC);
 363			if (!new)
 364				return NULL;	/* try again later */
 365
 366			sctp_skb_set_owner_r(new, f_frag->sk);
 367
 368			skb_shinfo(new)->frag_list = pos;
 369		} else
 370			skb_shinfo(f_frag)->frag_list = pos;
 371	}
 372
 373	/* Remove the first fragment from the reassembly queue.  */
 374	__skb_unlink(f_frag, queue);
 375
 376	/* if we did unshare, then free the old skb and re-assign */
 377	if (new) {
 378		kfree_skb(f_frag);
 379		f_frag = new;
 380	}
 381
 382	while (pos) {
 383
 384		pnext = pos->next;
 385
 386		/* Update the len and data_len fields of the first fragment. */
 387		f_frag->len += pos->len;
 388		f_frag->data_len += pos->len;
 389
 390		/* Remove the fragment from the reassembly queue.  */
 391		__skb_unlink(pos, queue);
 392
 393		/* Break if we have reached the last fragment.  */
 394		if (pos == l_frag)
 395			break;
 396		pos->next = pnext;
 397		pos = pnext;
 398	}
 399
 400	event = sctp_skb2event(f_frag);
 401	SCTP_INC_STATS(net, SCTP_MIB_REASMUSRMSGS);
 402
 403	return event;
 404}
 405
 406
 407/* Helper function to check if an incoming chunk has filled up the last
 408 * missing fragment in a SCTP datagram and return the corresponding event.
 409 */
 410static struct sctp_ulpevent *sctp_ulpq_retrieve_reassembled(struct sctp_ulpq *ulpq)
 411{
 412	struct sk_buff *pos;
 413	struct sctp_ulpevent *cevent;
 414	struct sk_buff *first_frag = NULL;
 415	__u32 ctsn, next_tsn;
 416	struct sctp_ulpevent *retval = NULL;
 417	struct sk_buff *pd_first = NULL;
 418	struct sk_buff *pd_last = NULL;
 419	size_t pd_len = 0;
 420	struct sctp_association *asoc;
 421	u32 pd_point;
 422
 423	/* Initialized to 0 just to avoid compiler warning message.  Will
 424	 * never be used with this value. It is referenced only after it
 425	 * is set when we find the first fragment of a message.
 426	 */
 427	next_tsn = 0;
 428
 429	/* The chunks are held in the reasm queue sorted by TSN.
 430	 * Walk through the queue sequentially and look for a sequence of
 431	 * fragmented chunks that complete a datagram.
 432	 * 'first_frag' and next_tsn are reset when we find a chunk which
 433	 * is the first fragment of a datagram. Once these 2 fields are set
 434	 * we expect to find the remaining middle fragments and the last
 435	 * fragment in order. If not, first_frag is reset to NULL and we
 436	 * start the next pass when we find another first fragment.
 437	 *
 438	 * There is a potential to do partial delivery if user sets
 439	 * SCTP_PARTIAL_DELIVERY_POINT option. Lets count some things here
 440	 * to see if can do PD.
 441	 */
 442	skb_queue_walk(&ulpq->reasm, pos) {
 443		cevent = sctp_skb2event(pos);
 444		ctsn = cevent->tsn;
 445
 446		switch (cevent->msg_flags & SCTP_DATA_FRAG_MASK) {
 447		case SCTP_DATA_FIRST_FRAG:
 448			/* If this "FIRST_FRAG" is the first
 449			 * element in the queue, then count it towards
 450			 * possible PD.
 451			 */
 452			if (pos == ulpq->reasm.next) {
 453			    pd_first = pos;
 454			    pd_last = pos;
 455			    pd_len = pos->len;
 456			} else {
 457			    pd_first = NULL;
 458			    pd_last = NULL;
 459			    pd_len = 0;
 460			}
 461
 462			first_frag = pos;
 463			next_tsn = ctsn + 1;
 464			break;
 465
 466		case SCTP_DATA_MIDDLE_FRAG:
 467			if ((first_frag) && (ctsn == next_tsn)) {
 468				next_tsn++;
 469				if (pd_first) {
 470				    pd_last = pos;
 471				    pd_len += pos->len;
 472				}
 473			} else
 474				first_frag = NULL;
 475			break;
 476
 477		case SCTP_DATA_LAST_FRAG:
 478			if (first_frag && (ctsn == next_tsn))
 479				goto found;
 480			else
 481				first_frag = NULL;
 482			break;
 483		}
 484	}
 485
 486	asoc = ulpq->asoc;
 487	if (pd_first) {
 488		/* Make sure we can enter partial deliver.
 489		 * We can trigger partial delivery only if framgent
 490		 * interleave is set, or the socket is not already
 491		 * in  partial delivery.
 492		 */
 493		if (!sctp_sk(asoc->base.sk)->frag_interleave &&
 494		    atomic_read(&sctp_sk(asoc->base.sk)->pd_mode))
 495			goto done;
 496
 497		cevent = sctp_skb2event(pd_first);
 498		pd_point = sctp_sk(asoc->base.sk)->pd_point;
 499		if (pd_point && pd_point <= pd_len) {
 500			retval = sctp_make_reassembled_event(sock_net(asoc->base.sk),
 501							     &ulpq->reasm,
 502							     pd_first,
 503							     pd_last);
 504			if (retval)
 505				sctp_ulpq_set_pd(ulpq);
 506		}
 507	}
 508done:
 509	return retval;
 510found:
 511	retval = sctp_make_reassembled_event(sock_net(ulpq->asoc->base.sk),
 512					     &ulpq->reasm, first_frag, pos);
 513	if (retval)
 514		retval->msg_flags |= MSG_EOR;
 515	goto done;
 516}
 517
 518/* Retrieve the next set of fragments of a partial message. */
 519static struct sctp_ulpevent *sctp_ulpq_retrieve_partial(struct sctp_ulpq *ulpq)
 520{
 521	struct sk_buff *pos, *last_frag, *first_frag;
 522	struct sctp_ulpevent *cevent;
 523	__u32 ctsn, next_tsn;
 524	int is_last;
 525	struct sctp_ulpevent *retval;
 526
 527	/* The chunks are held in the reasm queue sorted by TSN.
 528	 * Walk through the queue sequentially and look for the first
 529	 * sequence of fragmented chunks.
 530	 */
 531
 532	if (skb_queue_empty(&ulpq->reasm))
 533		return NULL;
 534
 535	last_frag = first_frag = NULL;
 536	retval = NULL;
 537	next_tsn = 0;
 538	is_last = 0;
 539
 540	skb_queue_walk(&ulpq->reasm, pos) {
 541		cevent = sctp_skb2event(pos);
 542		ctsn = cevent->tsn;
 543
 544		switch (cevent->msg_flags & SCTP_DATA_FRAG_MASK) {
 545		case SCTP_DATA_FIRST_FRAG:
 546			if (!first_frag)
 547				return NULL;
 548			goto done;
 549		case SCTP_DATA_MIDDLE_FRAG:
 550			if (!first_frag) {
 551				first_frag = pos;
 552				next_tsn = ctsn + 1;
 553				last_frag = pos;
 554			} else if (next_tsn == ctsn) {
 555				next_tsn++;
 556				last_frag = pos;
 557			} else
 558				goto done;
 559			break;
 560		case SCTP_DATA_LAST_FRAG:
 561			if (!first_frag)
 562				first_frag = pos;
 563			else if (ctsn != next_tsn)
 564				goto done;
 565			last_frag = pos;
 566			is_last = 1;
 567			goto done;
 568		default:
 569			return NULL;
 570		}
 571	}
 572
 573	/* We have the reassembled event. There is no need to look
 574	 * further.
 575	 */
 576done:
 577	retval = sctp_make_reassembled_event(sock_net(ulpq->asoc->base.sk),
 578					&ulpq->reasm, first_frag, last_frag);
 579	if (retval && is_last)
 580		retval->msg_flags |= MSG_EOR;
 581
 582	return retval;
 583}
 584
 585
 586/* Helper function to reassemble chunks.  Hold chunks on the reasm queue that
 587 * need reassembling.
 588 */
 589static struct sctp_ulpevent *sctp_ulpq_reasm(struct sctp_ulpq *ulpq,
 590						struct sctp_ulpevent *event)
 591{
 592	struct sctp_ulpevent *retval = NULL;
 593
 594	/* Check if this is part of a fragmented message.  */
 595	if (SCTP_DATA_NOT_FRAG == (event->msg_flags & SCTP_DATA_FRAG_MASK)) {
 596		event->msg_flags |= MSG_EOR;
 597		return event;
 598	}
 599
 600	sctp_ulpq_store_reasm(ulpq, event);
 601	if (!ulpq->pd_mode)
 602		retval = sctp_ulpq_retrieve_reassembled(ulpq);
 603	else {
 604		__u32 ctsn, ctsnap;
 605
 606		/* Do not even bother unless this is the next tsn to
 607		 * be delivered.
 608		 */
 609		ctsn = event->tsn;
 610		ctsnap = sctp_tsnmap_get_ctsn(&ulpq->asoc->peer.tsn_map);
 611		if (TSN_lte(ctsn, ctsnap))
 612			retval = sctp_ulpq_retrieve_partial(ulpq);
 613	}
 614
 615	return retval;
 616}
 617
 618/* Retrieve the first part (sequential fragments) for partial delivery.  */
 619static struct sctp_ulpevent *sctp_ulpq_retrieve_first(struct sctp_ulpq *ulpq)
 620{
 621	struct sk_buff *pos, *last_frag, *first_frag;
 622	struct sctp_ulpevent *cevent;
 623	__u32 ctsn, next_tsn;
 624	struct sctp_ulpevent *retval;
 625
 626	/* The chunks are held in the reasm queue sorted by TSN.
 627	 * Walk through the queue sequentially and look for a sequence of
 628	 * fragmented chunks that start a datagram.
 629	 */
 630
 631	if (skb_queue_empty(&ulpq->reasm))
 632		return NULL;
 633
 634	last_frag = first_frag = NULL;
 635	retval = NULL;
 636	next_tsn = 0;
 637
 638	skb_queue_walk(&ulpq->reasm, pos) {
 639		cevent = sctp_skb2event(pos);
 640		ctsn = cevent->tsn;
 641
 642		switch (cevent->msg_flags & SCTP_DATA_FRAG_MASK) {
 643		case SCTP_DATA_FIRST_FRAG:
 644			if (!first_frag) {
 645				first_frag = pos;
 646				next_tsn = ctsn + 1;
 647				last_frag = pos;
 648			} else
 649				goto done;
 650			break;
 651
 652		case SCTP_DATA_MIDDLE_FRAG:
 653			if (!first_frag)
 654				return NULL;
 655			if (ctsn == next_tsn) {
 656				next_tsn++;
 657				last_frag = pos;
 658			} else
 659				goto done;
 660			break;
 661
 662		case SCTP_DATA_LAST_FRAG:
 663			if (!first_frag)
 664				return NULL;
 665			else
 666				goto done;
 667			break;
 668
 669		default:
 670			return NULL;
 671		}
 672	}
 673
 674	/* We have the reassembled event. There is no need to look
 675	 * further.
 676	 */
 677done:
 678	retval = sctp_make_reassembled_event(sock_net(ulpq->asoc->base.sk),
 679					&ulpq->reasm, first_frag, last_frag);
 680	return retval;
 681}
 682
 683/*
 684 * Flush out stale fragments from the reassembly queue when processing
 685 * a Forward TSN.
 686 *
 687 * RFC 3758, Section 3.6
 688 *
 689 * After receiving and processing a FORWARD TSN, the data receiver MUST
 690 * take cautions in updating its re-assembly queue.  The receiver MUST
 691 * remove any partially reassembled message, which is still missing one
 692 * or more TSNs earlier than or equal to the new cumulative TSN point.
 693 * In the event that the receiver has invoked the partial delivery API,
 694 * a notification SHOULD also be generated to inform the upper layer API
 695 * that the message being partially delivered will NOT be completed.
 696 */
 697void sctp_ulpq_reasm_flushtsn(struct sctp_ulpq *ulpq, __u32 fwd_tsn)
 698{
 699	struct sk_buff *pos, *tmp;
 700	struct sctp_ulpevent *event;
 701	__u32 tsn;
 702
 703	if (skb_queue_empty(&ulpq->reasm))
 704		return;
 705
 706	skb_queue_walk_safe(&ulpq->reasm, pos, tmp) {
 707		event = sctp_skb2event(pos);
 708		tsn = event->tsn;
 709
 710		/* Since the entire message must be abandoned by the
 711		 * sender (item A3 in Section 3.5, RFC 3758), we can
 712		 * free all fragments on the list that are less then
 713		 * or equal to ctsn_point
 714		 */
 715		if (TSN_lte(tsn, fwd_tsn)) {
 716			__skb_unlink(pos, &ulpq->reasm);
 717			sctp_ulpevent_free(event);
 718		} else
 719			break;
 720	}
 721}
 722
 723/*
 724 * Drain the reassembly queue.  If we just cleared parted delivery, it
 725 * is possible that the reassembly queue will contain already reassembled
 726 * messages.  Retrieve any such messages and give them to the user.
 727 */
 728static void sctp_ulpq_reasm_drain(struct sctp_ulpq *ulpq)
 729{
 730	struct sctp_ulpevent *event = NULL;
 731	struct sk_buff_head temp;
 732
 733	if (skb_queue_empty(&ulpq->reasm))
 734		return;
 735
 736	while ((event = sctp_ulpq_retrieve_reassembled(ulpq)) != NULL) {
 
 
 
 
 
 737		/* Do ordering if needed.  */
 738		if ((event) && (event->msg_flags & MSG_EOR)) {
 739			skb_queue_head_init(&temp);
 740			__skb_queue_tail(&temp, sctp_event2skb(event));
 741
 742			event = sctp_ulpq_order(ulpq, event);
 743		}
 744
 745		/* Send event to the ULP.  'event' is the
 746		 * sctp_ulpevent for  very first SKB on the  temp' list.
 747		 */
 748		if (event)
 749			sctp_ulpq_tail_event(ulpq, event);
 750	}
 751}
 752
 753
 754/* Helper function to gather skbs that have possibly become
 755 * ordered by an an incoming chunk.
 756 */
 757static void sctp_ulpq_retrieve_ordered(struct sctp_ulpq *ulpq,
 758					      struct sctp_ulpevent *event)
 759{
 760	struct sk_buff_head *event_list;
 761	struct sk_buff *pos, *tmp;
 762	struct sctp_ulpevent *cevent;
 763	struct sctp_stream *in;
 764	__u16 sid, csid, cssn;
 765
 766	sid = event->stream;
 767	in  = &ulpq->asoc->ssnmap->in;
 768
 769	event_list = (struct sk_buff_head *) sctp_event2skb(event)->prev;
 770
 771	/* We are holding the chunks by stream, by SSN.  */
 772	sctp_skb_for_each(pos, &ulpq->lobby, tmp) {
 773		cevent = (struct sctp_ulpevent *) pos->cb;
 774		csid = cevent->stream;
 775		cssn = cevent->ssn;
 776
 777		/* Have we gone too far?  */
 778		if (csid > sid)
 779			break;
 780
 781		/* Have we not gone far enough?  */
 782		if (csid < sid)
 783			continue;
 784
 785		if (cssn != sctp_ssn_peek(in, sid))
 786			break;
 787
 788		/* Found it, so mark in the ssnmap. */
 789		sctp_ssn_next(in, sid);
 790
 791		__skb_unlink(pos, &ulpq->lobby);
 792
 793		/* Attach all gathered skbs to the event.  */
 794		__skb_queue_tail(event_list, pos);
 795	}
 796}
 797
 798/* Helper function to store chunks needing ordering.  */
 799static void sctp_ulpq_store_ordered(struct sctp_ulpq *ulpq,
 800					   struct sctp_ulpevent *event)
 801{
 802	struct sk_buff *pos;
 803	struct sctp_ulpevent *cevent;
 804	__u16 sid, csid;
 805	__u16 ssn, cssn;
 806
 807	pos = skb_peek_tail(&ulpq->lobby);
 808	if (!pos) {
 809		__skb_queue_tail(&ulpq->lobby, sctp_event2skb(event));
 810		return;
 811	}
 812
 813	sid = event->stream;
 814	ssn = event->ssn;
 815
 816	cevent = (struct sctp_ulpevent *) pos->cb;
 817	csid = cevent->stream;
 818	cssn = cevent->ssn;
 819	if (sid > csid) {
 820		__skb_queue_tail(&ulpq->lobby, sctp_event2skb(event));
 821		return;
 822	}
 823
 824	if ((sid == csid) && SSN_lt(cssn, ssn)) {
 825		__skb_queue_tail(&ulpq->lobby, sctp_event2skb(event));
 826		return;
 827	}
 828
 829	/* Find the right place in this list.  We store them by
 830	 * stream ID and then by SSN.
 831	 */
 832	skb_queue_walk(&ulpq->lobby, pos) {
 833		cevent = (struct sctp_ulpevent *) pos->cb;
 834		csid = cevent->stream;
 835		cssn = cevent->ssn;
 836
 837		if (csid > sid)
 838			break;
 839		if (csid == sid && SSN_lt(ssn, cssn))
 840			break;
 841	}
 842
 843
 844	/* Insert before pos. */
 845	__skb_queue_before(&ulpq->lobby, pos, sctp_event2skb(event));
 846}
 847
 848static struct sctp_ulpevent *sctp_ulpq_order(struct sctp_ulpq *ulpq,
 849					     struct sctp_ulpevent *event)
 850{
 851	__u16 sid, ssn;
 852	struct sctp_stream *in;
 853
 854	/* Check if this message needs ordering.  */
 855	if (SCTP_DATA_UNORDERED & event->msg_flags)
 856		return event;
 857
 858	/* Note: The stream ID must be verified before this routine.  */
 859	sid = event->stream;
 860	ssn = event->ssn;
 861	in  = &ulpq->asoc->ssnmap->in;
 862
 863	/* Is this the expected SSN for this stream ID?  */
 864	if (ssn != sctp_ssn_peek(in, sid)) {
 865		/* We've received something out of order, so find where it
 866		 * needs to be placed.  We order by stream and then by SSN.
 867		 */
 868		sctp_ulpq_store_ordered(ulpq, event);
 869		return NULL;
 870	}
 871
 872	/* Mark that the next chunk has been found.  */
 873	sctp_ssn_next(in, sid);
 874
 875	/* Go find any other chunks that were waiting for
 876	 * ordering.
 877	 */
 878	sctp_ulpq_retrieve_ordered(ulpq, event);
 879
 880	return event;
 881}
 882
 883/* Helper function to gather skbs that have possibly become
 884 * ordered by forward tsn skipping their dependencies.
 885 */
 886static void sctp_ulpq_reap_ordered(struct sctp_ulpq *ulpq, __u16 sid)
 887{
 888	struct sk_buff *pos, *tmp;
 889	struct sctp_ulpevent *cevent;
 890	struct sctp_ulpevent *event;
 891	struct sctp_stream *in;
 892	struct sk_buff_head temp;
 893	struct sk_buff_head *lobby = &ulpq->lobby;
 894	__u16 csid, cssn;
 895
 896	in  = &ulpq->asoc->ssnmap->in;
 897
 898	/* We are holding the chunks by stream, by SSN.  */
 899	skb_queue_head_init(&temp);
 900	event = NULL;
 901	sctp_skb_for_each(pos, lobby, tmp) {
 902		cevent = (struct sctp_ulpevent *) pos->cb;
 903		csid = cevent->stream;
 904		cssn = cevent->ssn;
 905
 906		/* Have we gone too far?  */
 907		if (csid > sid)
 908			break;
 909
 910		/* Have we not gone far enough?  */
 911		if (csid < sid)
 912			continue;
 913
 914		/* see if this ssn has been marked by skipping */
 915		if (!SSN_lt(cssn, sctp_ssn_peek(in, csid)))
 916			break;
 917
 918		__skb_unlink(pos, lobby);
 919		if (!event)
 920			/* Create a temporary list to collect chunks on.  */
 921			event = sctp_skb2event(pos);
 922
 923		/* Attach all gathered skbs to the event.  */
 924		__skb_queue_tail(&temp, pos);
 925	}
 926
 927	/* If we didn't reap any data, see if the next expected SSN
 928	 * is next on the queue and if so, use that.
 929	 */
 930	if (event == NULL && pos != (struct sk_buff *)lobby) {
 931		cevent = (struct sctp_ulpevent *) pos->cb;
 932		csid = cevent->stream;
 933		cssn = cevent->ssn;
 934
 935		if (csid == sid && cssn == sctp_ssn_peek(in, csid)) {
 936			sctp_ssn_next(in, csid);
 937			__skb_unlink(pos, lobby);
 938			__skb_queue_tail(&temp, pos);
 939			event = sctp_skb2event(pos);
 940		}
 941	}
 942
 943	/* Send event to the ULP.  'event' is the sctp_ulpevent for
 944	 * very first SKB on the 'temp' list.
 945	 */
 946	if (event) {
 947		/* see if we have more ordered that we can deliver */
 948		sctp_ulpq_retrieve_ordered(ulpq, event);
 949		sctp_ulpq_tail_event(ulpq, event);
 950	}
 951}
 952
 953/* Skip over an SSN. This is used during the processing of
 954 * Forwared TSN chunk to skip over the abandoned ordered data
 955 */
 956void sctp_ulpq_skip(struct sctp_ulpq *ulpq, __u16 sid, __u16 ssn)
 957{
 958	struct sctp_stream *in;
 959
 960	/* Note: The stream ID must be verified before this routine.  */
 961	in  = &ulpq->asoc->ssnmap->in;
 962
 963	/* Is this an old SSN?  If so ignore. */
 964	if (SSN_lt(ssn, sctp_ssn_peek(in, sid)))
 965		return;
 966
 967	/* Mark that we are no longer expecting this SSN or lower. */
 968	sctp_ssn_skip(in, sid, ssn);
 969
 970	/* Go find any other chunks that were waiting for
 971	 * ordering and deliver them if needed.
 972	 */
 973	sctp_ulpq_reap_ordered(ulpq, sid);
 974}
 975
 976static __u16 sctp_ulpq_renege_list(struct sctp_ulpq *ulpq,
 977		struct sk_buff_head *list, __u16 needed)
 978{
 979	__u16 freed = 0;
 980	__u32 tsn, last_tsn;
 981	struct sk_buff *skb, *flist, *last;
 982	struct sctp_ulpevent *event;
 983	struct sctp_tsnmap *tsnmap;
 984
 985	tsnmap = &ulpq->asoc->peer.tsn_map;
 986
 987	while ((skb = skb_peek_tail(list)) != NULL) {
 988		event = sctp_skb2event(skb);
 989		tsn = event->tsn;
 990
 991		/* Don't renege below the Cumulative TSN ACK Point. */
 992		if (TSN_lte(tsn, sctp_tsnmap_get_ctsn(tsnmap)))
 993			break;
 994
 995		/* Events in ordering queue may have multiple fragments
 996		 * corresponding to additional TSNs.  Sum the total
 997		 * freed space; find the last TSN.
 998		 */
 999		freed += skb_headlen(skb);
1000		flist = skb_shinfo(skb)->frag_list;
1001		for (last = flist; flist; flist = flist->next) {
1002			last = flist;
1003			freed += skb_headlen(last);
1004		}
1005		if (last)
1006			last_tsn = sctp_skb2event(last)->tsn;
1007		else
1008			last_tsn = tsn;
1009
1010		/* Unlink the event, then renege all applicable TSNs. */
1011		__skb_unlink(skb, list);
1012		sctp_ulpevent_free(event);
1013		while (TSN_lte(tsn, last_tsn)) {
1014			sctp_tsnmap_renege(tsnmap, tsn);
1015			tsn++;
1016		}
1017		if (freed >= needed)
1018			return freed;
1019	}
1020
1021	return freed;
1022}
1023
1024/* Renege 'needed' bytes from the ordering queue. */
1025static __u16 sctp_ulpq_renege_order(struct sctp_ulpq *ulpq, __u16 needed)
1026{
1027	return sctp_ulpq_renege_list(ulpq, &ulpq->lobby, needed);
1028}
1029
1030/* Renege 'needed' bytes from the reassembly queue. */
1031static __u16 sctp_ulpq_renege_frags(struct sctp_ulpq *ulpq, __u16 needed)
1032{
1033	return sctp_ulpq_renege_list(ulpq, &ulpq->reasm, needed);
1034}
1035
1036/* Partial deliver the first message as there is pressure on rwnd. */
1037void sctp_ulpq_partial_delivery(struct sctp_ulpq *ulpq,
1038				gfp_t gfp)
1039{
1040	struct sctp_ulpevent *event;
1041	struct sctp_association *asoc;
1042	struct sctp_sock *sp;
1043	__u32 ctsn;
1044	struct sk_buff *skb;
1045
1046	asoc = ulpq->asoc;
1047	sp = sctp_sk(asoc->base.sk);
1048
1049	/* If the association is already in Partial Delivery mode
1050	 * we have nothing to do.
1051	 */
1052	if (ulpq->pd_mode)
1053		return;
1054
1055	/* Data must be at or below the Cumulative TSN ACK Point to
1056	 * start partial delivery.
1057	 */
1058	skb = skb_peek(&asoc->ulpq.reasm);
1059	if (skb != NULL) {
1060		ctsn = sctp_skb2event(skb)->tsn;
1061		if (!TSN_lte(ctsn, sctp_tsnmap_get_ctsn(&asoc->peer.tsn_map)))
1062			return;
1063	}
1064
1065	/* If the user enabled fragment interleave socket option,
1066	 * multiple associations can enter partial delivery.
1067	 * Otherwise, we can only enter partial delivery if the
1068	 * socket is not in partial deliver mode.
1069	 */
1070	if (sp->frag_interleave || atomic_read(&sp->pd_mode) == 0) {
1071		/* Is partial delivery possible?  */
1072		event = sctp_ulpq_retrieve_first(ulpq);
1073		/* Send event to the ULP.   */
1074		if (event) {
1075			sctp_ulpq_tail_event(ulpq, event);
 
 
 
 
1076			sctp_ulpq_set_pd(ulpq);
1077			return;
1078		}
1079	}
1080}
1081
1082/* Renege some packets to make room for an incoming chunk.  */
1083void sctp_ulpq_renege(struct sctp_ulpq *ulpq, struct sctp_chunk *chunk,
1084		      gfp_t gfp)
1085{
1086	struct sctp_association *asoc;
1087	__u16 needed, freed;
1088
1089	asoc = ulpq->asoc;
1090
1091	if (chunk) {
1092		needed = ntohs(chunk->chunk_hdr->length);
1093		needed -= sizeof(sctp_data_chunk_t);
1094	} else
1095		needed = SCTP_DEFAULT_MAXWINDOW;
1096
1097	freed = 0;
1098
1099	if (skb_queue_empty(&asoc->base.sk->sk_receive_queue)) {
1100		freed = sctp_ulpq_renege_order(ulpq, needed);
1101		if (freed < needed) {
1102			freed += sctp_ulpq_renege_frags(ulpq, needed - freed);
1103		}
1104	}
1105	/* If able to free enough room, accept this chunk. */
1106	if (chunk && (freed >= needed)) {
1107		int retval;
1108		retval = sctp_ulpq_tail_data(ulpq, chunk, gfp);
1109		/*
1110		 * Enter partial delivery if chunk has not been
1111		 * delivered; otherwise, drain the reassembly queue.
1112		 */
1113		if (retval <= 0)
1114			sctp_ulpq_partial_delivery(ulpq, gfp);
1115		else if (retval == 1)
1116			sctp_ulpq_reasm_drain(ulpq);
1117	}
1118
1119	sk_mem_reclaim(asoc->base.sk);
1120}
1121
1122
1123
1124/* Notify the application if an association is aborted and in
1125 * partial delivery mode.  Send up any pending received messages.
1126 */
1127void sctp_ulpq_abort_pd(struct sctp_ulpq *ulpq, gfp_t gfp)
1128{
1129	struct sctp_ulpevent *ev = NULL;
 
1130	struct sock *sk;
1131	struct sctp_sock *sp;
1132
1133	if (!ulpq->pd_mode)
1134		return;
1135
1136	sk = ulpq->asoc->base.sk;
1137	sp = sctp_sk(sk);
1138	if (sctp_ulpevent_type_enabled(SCTP_PARTIAL_DELIVERY_EVENT,
1139				       &sctp_sk(sk)->subscribe))
1140		ev = sctp_ulpevent_make_pdapi(ulpq->asoc,
1141					      SCTP_PARTIAL_DELIVERY_ABORTED,
1142					      gfp);
1143	if (ev)
1144		__skb_queue_tail(&sk->sk_receive_queue, sctp_event2skb(ev));
1145
1146	/* If there is data waiting, send it up the socket now. */
1147	if ((sctp_ulpq_clear_pd(ulpq) || ev) && !sp->data_ready_signalled) {
1148		sp->data_ready_signalled = 1;
1149		sk->sk_data_ready(sk);
1150	}
1151}