Linux Audio

Check our new training course

Loading...
v5.9
   1/* SPDX-License-Identifier: GPL-2.0-or-later */
   2/*
   3 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   4 *		operating system.  INET is implemented using the  BSD Socket
   5 *		interface as the means of communication with the user level.
   6 *
   7 *		Definitions for the TCP module.
   8 *
   9 * Version:	@(#)tcp.h	1.0.5	05/23/93
  10 *
  11 * Authors:	Ross Biro
  12 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
 
 
 
 
 
  13 */
  14#ifndef _TCP_H
  15#define _TCP_H
  16
  17#define FASTRETRANS_DEBUG 1
  18
  19#include <linux/list.h>
  20#include <linux/tcp.h>
  21#include <linux/bug.h>
  22#include <linux/slab.h>
  23#include <linux/cache.h>
  24#include <linux/percpu.h>
  25#include <linux/skbuff.h>
 
  26#include <linux/kref.h>
  27#include <linux/ktime.h>
  28#include <linux/indirect_call_wrapper.h>
  29
  30#include <net/inet_connection_sock.h>
  31#include <net/inet_timewait_sock.h>
  32#include <net/inet_hashtables.h>
  33#include <net/checksum.h>
  34#include <net/request_sock.h>
  35#include <net/sock_reuseport.h>
  36#include <net/sock.h>
  37#include <net/snmp.h>
  38#include <net/ip.h>
  39#include <net/tcp_states.h>
  40#include <net/inet_ecn.h>
  41#include <net/dst.h>
  42#include <net/mptcp.h>
  43
  44#include <linux/seq_file.h>
  45#include <linux/memcontrol.h>
  46#include <linux/bpf-cgroup.h>
  47#include <linux/siphash.h>
  48
  49extern struct inet_hashinfo tcp_hashinfo;
  50
  51extern struct percpu_counter tcp_orphan_count;
  52void tcp_time_wait(struct sock *sk, int state, int timeo);
  53
  54#define MAX_TCP_HEADER	L1_CACHE_ALIGN(128 + MAX_HEADER)
  55#define MAX_TCP_OPTION_SPACE 40
  56#define TCP_MIN_SND_MSS		48
  57#define TCP_MIN_GSO_SIZE	(TCP_MIN_SND_MSS - MAX_TCP_OPTION_SPACE)
  58
  59/*
  60 * Never offer a window over 32767 without using window scaling. Some
  61 * poor stacks do signed 16bit maths!
  62 */
  63#define MAX_TCP_WINDOW		32767U
  64
  65/* Minimal accepted MSS. It is (60+60+8) - (20+20). */
  66#define TCP_MIN_MSS		88U
  67
  68/* The initial MTU to use for probing */
  69#define TCP_BASE_MSS		1024
  70
  71/* probing interval, default to 10 minutes as per RFC4821 */
  72#define TCP_PROBE_INTERVAL	600
  73
  74/* Specify interval when tcp mtu probing will stop */
  75#define TCP_PROBE_THRESHOLD	8
  76
  77/* After receiving this amount of duplicate ACKs fast retransmit starts. */
  78#define TCP_FASTRETRANS_THRESH 3
  79
  80/* Maximal number of ACKs sent quickly to accelerate slow-start. */
  81#define TCP_MAX_QUICKACKS	16U
  82
  83/* Maximal number of window scale according to RFC1323 */
  84#define TCP_MAX_WSCALE		14U
  85
  86/* urg_data states */
  87#define TCP_URG_VALID	0x0100
  88#define TCP_URG_NOTYET	0x0200
  89#define TCP_URG_READ	0x0400
  90
  91#define TCP_RETR1	3	/*
  92				 * This is how many retries it does before it
  93				 * tries to figure out if the gateway is
  94				 * down. Minimal RFC value is 3; it corresponds
  95				 * to ~3sec-8min depending on RTO.
  96				 */
  97
  98#define TCP_RETR2	15	/*
  99				 * This should take at least
 100				 * 90 minutes to time out.
 101				 * RFC1122 says that the limit is 100 sec.
 102				 * 15 is ~13-30min depending on RTO.
 103				 */
 104
 105#define TCP_SYN_RETRIES	 6	/* This is how many retries are done
 106				 * when active opening a connection.
 107				 * RFC1122 says the minimum retry MUST
 108				 * be at least 180secs.  Nevertheless
 109				 * this value is corresponding to
 110				 * 63secs of retransmission with the
 111				 * current initial RTO.
 112				 */
 113
 114#define TCP_SYNACK_RETRIES 5	/* This is how may retries are done
 115				 * when passive opening a connection.
 116				 * This is corresponding to 31secs of
 117				 * retransmission with the current
 118				 * initial RTO.
 119				 */
 120
 121#define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
 122				  * state, about 60 seconds	*/
 123#define TCP_FIN_TIMEOUT	TCP_TIMEWAIT_LEN
 124                                 /* BSD style FIN_WAIT2 deadlock breaker.
 125				  * It used to be 3min, new value is 60sec,
 126				  * to combine FIN-WAIT-2 timeout with
 127				  * TIME-WAIT timer.
 128				  */
 129#define TCP_FIN_TIMEOUT_MAX (120 * HZ) /* max TCP_LINGER2 value (two minutes) */
 130
 131#define TCP_DELACK_MAX	((unsigned)(HZ/5))	/* maximal time to delay before sending an ACK */
 132#if HZ >= 100
 133#define TCP_DELACK_MIN	((unsigned)(HZ/25))	/* minimal time to delay before sending an ACK */
 134#define TCP_ATO_MIN	((unsigned)(HZ/25))
 135#else
 136#define TCP_DELACK_MIN	4U
 137#define TCP_ATO_MIN	4U
 138#endif
 139#define TCP_RTO_MAX	((unsigned)(120*HZ))
 140#define TCP_RTO_MIN	((unsigned)(HZ/5))
 141#define TCP_TIMEOUT_MIN	(2U) /* Min timeout for TCP timers in jiffies */
 142#define TCP_TIMEOUT_INIT ((unsigned)(1*HZ))	/* RFC6298 2.1 initial RTO value	*/
 143#define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ))	/* RFC 1122 initial RTO value, now
 144						 * used as a fallback RTO for the
 145						 * initial data transmission if no
 146						 * valid RTT sample has been acquired,
 147						 * most likely due to retrans in 3WHS.
 148						 */
 149
 150#define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
 151					                 * for local resources.
 152					                 */
 
 153#define TCP_KEEPALIVE_TIME	(120*60*HZ)	/* two hours */
 154#define TCP_KEEPALIVE_PROBES	9		/* Max of 9 keepalive probes	*/
 155#define TCP_KEEPALIVE_INTVL	(75*HZ)
 156
 157#define MAX_TCP_KEEPIDLE	32767
 158#define MAX_TCP_KEEPINTVL	32767
 159#define MAX_TCP_KEEPCNT		127
 160#define MAX_TCP_SYNCNT		127
 161
 162#define TCP_SYNQ_INTERVAL	(HZ/5)	/* Period of SYNACK timer */
 163
 164#define TCP_PAWS_24DAYS	(60 * 60 * 24 * 24)
 165#define TCP_PAWS_MSL	60		/* Per-host timestamps are invalidated
 166					 * after this time. It should be equal
 167					 * (or greater than) TCP_TIMEWAIT_LEN
 168					 * to provide reliability equal to one
 169					 * provided by timewait state.
 170					 */
 171#define TCP_PAWS_WINDOW	1		/* Replay window for per-host
 172					 * timestamps. It must be less than
 173					 * minimal timewait lifetime.
 174					 */
 175/*
 176 *	TCP option
 177 */
 178
 179#define TCPOPT_NOP		1	/* Padding */
 180#define TCPOPT_EOL		0	/* End of options */
 181#define TCPOPT_MSS		2	/* Segment size negotiating */
 182#define TCPOPT_WINDOW		3	/* Window scaling */
 183#define TCPOPT_SACK_PERM        4       /* SACK Permitted */
 184#define TCPOPT_SACK             5       /* SACK Block */
 185#define TCPOPT_TIMESTAMP	8	/* Better RTT estimations/PAWS */
 186#define TCPOPT_MD5SIG		19	/* MD5 Signature (RFC2385) */
 187#define TCPOPT_MPTCP		30	/* Multipath TCP (RFC6824) */
 188#define TCPOPT_FASTOPEN		34	/* Fast open (RFC7413) */
 189#define TCPOPT_EXP		254	/* Experimental */
 190/* Magic number to be after the option value for sharing TCP
 191 * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
 192 */
 193#define TCPOPT_FASTOPEN_MAGIC	0xF989
 194#define TCPOPT_SMC_MAGIC	0xE2D4C3D9
 195
 196/*
 197 *     TCP option lengths
 198 */
 199
 200#define TCPOLEN_MSS            4
 201#define TCPOLEN_WINDOW         3
 202#define TCPOLEN_SACK_PERM      2
 203#define TCPOLEN_TIMESTAMP      10
 204#define TCPOLEN_MD5SIG         18
 205#define TCPOLEN_FASTOPEN_BASE  2
 206#define TCPOLEN_EXP_FASTOPEN_BASE  4
 207#define TCPOLEN_EXP_SMC_BASE   6
 208
 209/* But this is what stacks really send out. */
 210#define TCPOLEN_TSTAMP_ALIGNED		12
 211#define TCPOLEN_WSCALE_ALIGNED		4
 212#define TCPOLEN_SACKPERM_ALIGNED	4
 213#define TCPOLEN_SACK_BASE		2
 214#define TCPOLEN_SACK_BASE_ALIGNED	4
 215#define TCPOLEN_SACK_PERBLOCK		8
 216#define TCPOLEN_MD5SIG_ALIGNED		20
 217#define TCPOLEN_MSS_ALIGNED		4
 218#define TCPOLEN_EXP_SMC_BASE_ALIGNED	8
 219
 220/* Flags in tp->nonagle */
 221#define TCP_NAGLE_OFF		1	/* Nagle's algo is disabled */
 222#define TCP_NAGLE_CORK		2	/* Socket is corked	    */
 223#define TCP_NAGLE_PUSH		4	/* Cork is overridden for already queued data */
 224
 225/* TCP thin-stream limits */
 226#define TCP_THIN_LINEAR_RETRIES 6       /* After 6 linear retries, do exp. backoff */
 227
 228/* TCP initial congestion window as per rfc6928 */
 229#define TCP_INIT_CWND		10
 230
 231/* Bit Flags for sysctl_tcp_fastopen */
 232#define	TFO_CLIENT_ENABLE	1
 233#define	TFO_SERVER_ENABLE	2
 234#define	TFO_CLIENT_NO_COOKIE	4	/* Data in SYN w/o cookie option */
 235
 236/* Accept SYN data w/o any cookie option */
 237#define	TFO_SERVER_COOKIE_NOT_REQD	0x200
 238
 239/* Force enable TFO on all listeners, i.e., not requiring the
 240 * TCP_FASTOPEN socket option.
 241 */
 242#define	TFO_SERVER_WO_SOCKOPT1	0x400
 243
 
 244
 245/* sysctl variables for tcp */
 
 
 
 
 
 
 
 
 246extern int sysctl_tcp_max_orphans;
 
 
 
 
 247extern long sysctl_tcp_mem[3];
 248
 249#define TCP_RACK_LOSS_DETECTION  0x1 /* Use RACK to detect losses */
 250#define TCP_RACK_STATIC_REO_WND  0x2 /* Use static RACK reo wnd */
 251#define TCP_RACK_NO_DUPTHRESH    0x4 /* Do not use DUPACK threshold in RACK */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 252
 253extern atomic_long_t tcp_memory_allocated;
 254extern struct percpu_counter tcp_sockets_allocated;
 255extern unsigned long tcp_memory_pressure;
 256
 257/* optimized version of sk_under_memory_pressure() for TCP sockets */
 258static inline bool tcp_under_memory_pressure(const struct sock *sk)
 259{
 260	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
 261	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
 262		return true;
 263
 264	return READ_ONCE(tcp_memory_pressure);
 265}
 266/*
 267 * The next routines deal with comparing 32 bit unsigned ints
 268 * and worry about wraparound (automatic with unsigned arithmetic).
 269 */
 270
 271static inline bool before(__u32 seq1, __u32 seq2)
 272{
 273        return (__s32)(seq1-seq2) < 0;
 274}
 275#define after(seq2, seq1) 	before(seq1, seq2)
 276
 277/* is s2<=s1<=s3 ? */
 278static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
 279{
 280	return seq3 - seq2 >= seq1 - seq2;
 281}
 282
 283static inline bool tcp_out_of_memory(struct sock *sk)
 284{
 285	if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
 286	    sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
 287		return true;
 288	return false;
 289}
 290
 291void sk_forced_mem_schedule(struct sock *sk, int size);
 292
 293static inline bool tcp_too_many_orphans(struct sock *sk, int shift)
 294{
 295	struct percpu_counter *ocp = sk->sk_prot->orphan_count;
 296	int orphans = percpu_counter_read_positive(ocp);
 297
 298	if (orphans << shift > sysctl_tcp_max_orphans) {
 299		orphans = percpu_counter_sum_positive(ocp);
 300		if (orphans << shift > sysctl_tcp_max_orphans)
 301			return true;
 302	}
 303	return false;
 304}
 305
 306bool tcp_check_oom(struct sock *sk, int shift);
 307
 308
 309extern struct proto tcp_prot;
 310
 311#define TCP_INC_STATS(net, field)	SNMP_INC_STATS((net)->mib.tcp_statistics, field)
 312#define __TCP_INC_STATS(net, field)	__SNMP_INC_STATS((net)->mib.tcp_statistics, field)
 313#define TCP_DEC_STATS(net, field)	SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
 314#define TCP_ADD_STATS(net, field, val)	SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
 315
 316void tcp_tasklet_init(void);
 317
 318int tcp_v4_err(struct sk_buff *skb, u32);
 319
 320void tcp_shutdown(struct sock *sk, int how);
 321
 322int tcp_v4_early_demux(struct sk_buff *skb);
 323int tcp_v4_rcv(struct sk_buff *skb);
 324
 325int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
 326int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
 327int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size);
 328int tcp_sendpage(struct sock *sk, struct page *page, int offset, size_t size,
 329		 int flags);
 330int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
 331			size_t size, int flags);
 332ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
 333		 size_t size, int flags);
 334int tcp_send_mss(struct sock *sk, int *size_goal, int flags);
 335void tcp_push(struct sock *sk, int flags, int mss_now, int nonagle,
 336	      int size_goal);
 337void tcp_release_cb(struct sock *sk);
 338void tcp_wfree(struct sk_buff *skb);
 339void tcp_write_timer_handler(struct sock *sk);
 340void tcp_delack_timer_handler(struct sock *sk);
 341int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg);
 342int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
 343void tcp_rcv_established(struct sock *sk, struct sk_buff *skb);
 
 344void tcp_rcv_space_adjust(struct sock *sk);
 345int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
 346void tcp_twsk_destructor(struct sock *sk);
 347ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
 348			struct pipe_inode_info *pipe, size_t len,
 349			unsigned int flags);
 350
 351void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks);
 352static inline void tcp_dec_quickack_mode(struct sock *sk,
 353					 const unsigned int pkts)
 354{
 355	struct inet_connection_sock *icsk = inet_csk(sk);
 356
 357	if (icsk->icsk_ack.quick) {
 358		if (pkts >= icsk->icsk_ack.quick) {
 359			icsk->icsk_ack.quick = 0;
 360			/* Leaving quickack mode we deflate ATO. */
 361			icsk->icsk_ack.ato   = TCP_ATO_MIN;
 362		} else
 363			icsk->icsk_ack.quick -= pkts;
 364	}
 365}
 366
 367#define	TCP_ECN_OK		1
 368#define	TCP_ECN_QUEUE_CWR	2
 369#define	TCP_ECN_DEMAND_CWR	4
 370#define	TCP_ECN_SEEN		8
 371
 372enum tcp_tw_status {
 373	TCP_TW_SUCCESS = 0,
 374	TCP_TW_RST = 1,
 375	TCP_TW_ACK = 2,
 376	TCP_TW_SYN = 3
 377};
 378
 379
 380enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
 381					      struct sk_buff *skb,
 382					      const struct tcphdr *th);
 383struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
 384			   struct request_sock *req, bool fastopen,
 385			   bool *lost_race);
 386int tcp_child_process(struct sock *parent, struct sock *child,
 387		      struct sk_buff *skb);
 388void tcp_enter_loss(struct sock *sk);
 389void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag);
 390void tcp_clear_retrans(struct tcp_sock *tp);
 391void tcp_update_metrics(struct sock *sk);
 392void tcp_init_metrics(struct sock *sk);
 393void tcp_metrics_init(void);
 394bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst);
 
 
 
 
 
 395void tcp_close(struct sock *sk, long timeout);
 396void tcp_init_sock(struct sock *sk);
 397void tcp_init_transfer(struct sock *sk, int bpf_op);
 398__poll_t tcp_poll(struct file *file, struct socket *sock,
 399		      struct poll_table_struct *wait);
 400int tcp_getsockopt(struct sock *sk, int level, int optname,
 401		   char __user *optval, int __user *optlen);
 402int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
 403		   unsigned int optlen);
 
 
 
 
 404void tcp_set_keepalive(struct sock *sk, int val);
 405void tcp_syn_ack_timeout(const struct request_sock *req);
 406int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
 407		int flags, int *addr_len);
 408int tcp_set_rcvlowat(struct sock *sk, int val);
 409void tcp_data_ready(struct sock *sk);
 410#ifdef CONFIG_MMU
 411int tcp_mmap(struct file *file, struct socket *sock,
 412	     struct vm_area_struct *vma);
 413#endif
 414void tcp_parse_options(const struct net *net, const struct sk_buff *skb,
 415		       struct tcp_options_received *opt_rx,
 416		       int estab, struct tcp_fastopen_cookie *foc);
 417const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
 418
 419/*
 420 *	BPF SKB-less helpers
 421 */
 422u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph,
 423			 struct tcphdr *th, u32 *cookie);
 424u16 tcp_v6_get_syncookie(struct sock *sk, struct ipv6hdr *iph,
 425			 struct tcphdr *th, u32 *cookie);
 426u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
 427			  const struct tcp_request_sock_ops *af_ops,
 428			  struct sock *sk, struct tcphdr *th);
 429/*
 430 *	TCP v4 functions exported for the inet6 API
 431 */
 432
 433void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
 434void tcp_v4_mtu_reduced(struct sock *sk);
 435void tcp_req_err(struct sock *sk, u32 seq, bool abort);
 436void tcp_ld_RTO_revert(struct sock *sk, u32 seq);
 437int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
 438struct sock *tcp_create_openreq_child(const struct sock *sk,
 439				      struct request_sock *req,
 440				      struct sk_buff *skb);
 441void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
 442struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
 443				  struct request_sock *req,
 444				  struct dst_entry *dst,
 445				  struct request_sock *req_unhash,
 446				  bool *own_req);
 447int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
 448int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
 449int tcp_connect(struct sock *sk);
 450enum tcp_synack_type {
 451	TCP_SYNACK_NORMAL,
 452	TCP_SYNACK_FASTOPEN,
 453	TCP_SYNACK_COOKIE,
 454};
 455struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
 456				struct request_sock *req,
 457				struct tcp_fastopen_cookie *foc,
 458				enum tcp_synack_type synack_type);
 459int tcp_disconnect(struct sock *sk, int flags);
 460
 461void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
 462int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
 463void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
 464
 465/* From syncookies.c */
 466struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
 467				 struct request_sock *req,
 468				 struct dst_entry *dst, u32 tsoff);
 469int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
 470		      u32 cookie);
 471struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
 472struct request_sock *cookie_tcp_reqsk_alloc(const struct request_sock_ops *ops,
 473					    struct sock *sk, struct sk_buff *skb);
 474#ifdef CONFIG_SYN_COOKIES
 475
 476/* Syncookies use a monotonic timer which increments every 60 seconds.
 477 * This counter is used both as a hash input and partially encoded into
 478 * the cookie value.  A cookie is only validated further if the delta
 479 * between the current counter value and the encoded one is less than this,
 480 * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
 481 * the counter advances immediately after a cookie is generated).
 482 */
 483#define MAX_SYNCOOKIE_AGE	2
 484#define TCP_SYNCOOKIE_PERIOD	(60 * HZ)
 485#define TCP_SYNCOOKIE_VALID	(MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
 486
 487/* syncookies: remember time of last synqueue overflow
 488 * But do not dirty this field too often (once per second is enough)
 489 * It is racy as we do not hold a lock, but race is very minor.
 490 */
 491static inline void tcp_synq_overflow(const struct sock *sk)
 492{
 493	unsigned int last_overflow;
 494	unsigned int now = jiffies;
 495
 496	if (sk->sk_reuseport) {
 497		struct sock_reuseport *reuse;
 498
 499		reuse = rcu_dereference(sk->sk_reuseport_cb);
 500		if (likely(reuse)) {
 501			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
 502			if (!time_between32(now, last_overflow,
 503					    last_overflow + HZ))
 504				WRITE_ONCE(reuse->synq_overflow_ts, now);
 505			return;
 506		}
 507	}
 508
 509	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
 510	if (!time_between32(now, last_overflow, last_overflow + HZ))
 511		WRITE_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp, now);
 512}
 513
 514/* syncookies: no recent synqueue overflow on this listening socket? */
 515static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
 516{
 517	unsigned int last_overflow;
 518	unsigned int now = jiffies;
 519
 520	if (sk->sk_reuseport) {
 521		struct sock_reuseport *reuse;
 522
 523		reuse = rcu_dereference(sk->sk_reuseport_cb);
 524		if (likely(reuse)) {
 525			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
 526			return !time_between32(now, last_overflow - HZ,
 527					       last_overflow +
 528					       TCP_SYNCOOKIE_VALID);
 529		}
 530	}
 531
 532	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
 533
 534	/* If last_overflow <= jiffies <= last_overflow + TCP_SYNCOOKIE_VALID,
 535	 * then we're under synflood. However, we have to use
 536	 * 'last_overflow - HZ' as lower bound. That's because a concurrent
 537	 * tcp_synq_overflow() could update .ts_recent_stamp after we read
 538	 * jiffies but before we store .ts_recent_stamp into last_overflow,
 539	 * which could lead to rejecting a valid syncookie.
 540	 */
 541	return !time_between32(now, last_overflow - HZ,
 542			       last_overflow + TCP_SYNCOOKIE_VALID);
 543}
 544
 545static inline u32 tcp_cookie_time(void)
 546{
 547	u64 val = get_jiffies_64();
 548
 549	do_div(val, TCP_SYNCOOKIE_PERIOD);
 550	return val;
 551}
 552
 553u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
 554			      u16 *mssp);
 555__u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
 556u64 cookie_init_timestamp(struct request_sock *req, u64 now);
 557bool cookie_timestamp_decode(const struct net *net,
 558			     struct tcp_options_received *opt);
 559bool cookie_ecn_ok(const struct tcp_options_received *opt,
 560		   const struct net *net, const struct dst_entry *dst);
 561
 562/* From net/ipv6/syncookies.c */
 563int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th,
 564		      u32 cookie);
 565struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
 566
 567u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
 568			      const struct tcphdr *th, u16 *mssp);
 569__u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
 570#endif
 571/* tcp_output.c */
 572
 
 
 573void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
 574			       int nonagle);
 
 575int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
 576int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
 577void tcp_retransmit_timer(struct sock *sk);
 578void tcp_xmit_retransmit_queue(struct sock *);
 579void tcp_simple_retransmit(struct sock *);
 580void tcp_enter_recovery(struct sock *sk, bool ece_ack);
 581int tcp_trim_head(struct sock *, struct sk_buff *, u32);
 582enum tcp_queue {
 583	TCP_FRAG_IN_WRITE_QUEUE,
 584	TCP_FRAG_IN_RTX_QUEUE,
 585};
 586int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
 587		 struct sk_buff *skb, u32 len,
 588		 unsigned int mss_now, gfp_t gfp);
 589
 590void tcp_send_probe0(struct sock *);
 591void tcp_send_partial(struct sock *);
 592int tcp_write_wakeup(struct sock *, int mib);
 593void tcp_send_fin(struct sock *sk);
 594void tcp_send_active_reset(struct sock *sk, gfp_t priority);
 595int tcp_send_synack(struct sock *);
 596void tcp_push_one(struct sock *, unsigned int mss_now);
 597void __tcp_send_ack(struct sock *sk, u32 rcv_nxt);
 598void tcp_send_ack(struct sock *sk);
 599void tcp_send_delayed_ack(struct sock *sk);
 600void tcp_send_loss_probe(struct sock *sk);
 601bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto);
 602void tcp_skb_collapse_tstamp(struct sk_buff *skb,
 603			     const struct sk_buff *next_skb);
 604
 605/* tcp_input.c */
 
 606void tcp_rearm_rto(struct sock *sk);
 607void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
 608void tcp_reset(struct sock *sk);
 609void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb);
 610void tcp_fin(struct sock *sk);
 611
 612/* tcp_timer.c */
 613void tcp_init_xmit_timers(struct sock *);
 614static inline void tcp_clear_xmit_timers(struct sock *sk)
 615{
 616	if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1)
 617		__sock_put(sk);
 618
 619	if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1)
 620		__sock_put(sk);
 621
 622	inet_csk_clear_xmit_timers(sk);
 623}
 624
 625unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
 626unsigned int tcp_current_mss(struct sock *sk);
 627
 628/* Bound MSS / TSO packet size with the half of the window */
 629static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
 630{
 631	int cutoff;
 632
 633	/* When peer uses tiny windows, there is no use in packetizing
 634	 * to sub-MSS pieces for the sake of SWS or making sure there
 635	 * are enough packets in the pipe for fast recovery.
 636	 *
 637	 * On the other hand, for extremely large MSS devices, handling
 638	 * smaller than MSS windows in this way does make sense.
 639	 */
 640	if (tp->max_window > TCP_MSS_DEFAULT)
 641		cutoff = (tp->max_window >> 1);
 642	else
 643		cutoff = tp->max_window;
 644
 645	if (cutoff && pktsize > cutoff)
 646		return max_t(int, cutoff, 68U - tp->tcp_header_len);
 647	else
 648		return pktsize;
 649}
 650
 651/* tcp.c */
 652void tcp_get_info(struct sock *, struct tcp_info *);
 653
 654/* Read 'sendfile()'-style from a TCP socket */
 655int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
 656		  sk_read_actor_t recv_actor);
 657
 658void tcp_initialize_rcv_mss(struct sock *sk);
 659
 660int tcp_mtu_to_mss(struct sock *sk, int pmtu);
 661int tcp_mss_to_mtu(struct sock *sk, int mss);
 662void tcp_mtup_init(struct sock *sk);
 
 663
 664static inline void tcp_bound_rto(const struct sock *sk)
 665{
 666	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
 667		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
 668}
 669
 670static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
 671{
 672	return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
 673}
 674
 675static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
 676{
 677	tp->pred_flags = htonl((tp->tcp_header_len << 26) |
 678			       ntohl(TCP_FLAG_ACK) |
 679			       snd_wnd);
 680}
 681
 682static inline void tcp_fast_path_on(struct tcp_sock *tp)
 683{
 684	__tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
 685}
 686
 687static inline void tcp_fast_path_check(struct sock *sk)
 688{
 689	struct tcp_sock *tp = tcp_sk(sk);
 690
 691	if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
 692	    tp->rcv_wnd &&
 693	    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
 694	    !tp->urg_data)
 695		tcp_fast_path_on(tp);
 696}
 697
 698/* Compute the actual rto_min value */
 699static inline u32 tcp_rto_min(struct sock *sk)
 700{
 701	const struct dst_entry *dst = __sk_dst_get(sk);
 702	u32 rto_min = TCP_RTO_MIN;
 703
 704	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
 705		rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
 706	return rto_min;
 707}
 708
 709static inline u32 tcp_rto_min_us(struct sock *sk)
 710{
 711	return jiffies_to_usecs(tcp_rto_min(sk));
 712}
 713
 714static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
 715{
 716	return dst_metric_locked(dst, RTAX_CC_ALGO);
 717}
 718
 719/* Minimum RTT in usec. ~0 means not available. */
 720static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
 721{
 722	return minmax_get(&tp->rtt_min);
 723}
 724
 725/* Compute the actual receive window we are currently advertising.
 726 * Rcv_nxt can be after the window if our peer push more data
 727 * than the offered window.
 728 */
 729static inline u32 tcp_receive_window(const struct tcp_sock *tp)
 730{
 731	s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
 732
 733	if (win < 0)
 734		win = 0;
 735	return (u32) win;
 736}
 737
 738/* Choose a new window, without checks for shrinking, and without
 739 * scaling applied to the result.  The caller does these things
 740 * if necessary.  This is a "raw" window selection.
 741 */
 742u32 __tcp_select_window(struct sock *sk);
 743
 744void tcp_send_window_probe(struct sock *sk);
 745
 746/* TCP uses 32bit jiffies to save some space.
 747 * Note that this is different from tcp_time_stamp, which
 748 * historically has been the same until linux-4.13.
 749 */
 750#define tcp_jiffies32 ((u32)jiffies)
 751
 752/*
 753 * Deliver a 32bit value for TCP timestamp option (RFC 7323)
 754 * It is no longer tied to jiffies, but to 1 ms clock.
 755 * Note: double check if you want to use tcp_jiffies32 instead of this.
 756 */
 757#define TCP_TS_HZ	1000
 758
 759static inline u64 tcp_clock_ns(void)
 760{
 761	return ktime_get_ns();
 762}
 763
 764static inline u64 tcp_clock_us(void)
 765{
 766	return div_u64(tcp_clock_ns(), NSEC_PER_USEC);
 767}
 768
 769/* This should only be used in contexts where tp->tcp_mstamp is up to date */
 770static inline u32 tcp_time_stamp(const struct tcp_sock *tp)
 771{
 772	return div_u64(tp->tcp_mstamp, USEC_PER_SEC / TCP_TS_HZ);
 773}
 774
 775/* Convert a nsec timestamp into TCP TSval timestamp (ms based currently) */
 776static inline u32 tcp_ns_to_ts(u64 ns)
 777{
 778	return div_u64(ns, NSEC_PER_SEC / TCP_TS_HZ);
 779}
 780
 781/* Could use tcp_clock_us() / 1000, but this version uses a single divide */
 782static inline u32 tcp_time_stamp_raw(void)
 783{
 784	return tcp_ns_to_ts(tcp_clock_ns());
 785}
 786
 787void tcp_mstamp_refresh(struct tcp_sock *tp);
 788
 789static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0)
 790{
 791	return max_t(s64, t1 - t0, 0);
 792}
 793
 794static inline u32 tcp_skb_timestamp(const struct sk_buff *skb)
 795{
 796	return tcp_ns_to_ts(skb->skb_mstamp_ns);
 797}
 798
 799/* provide the departure time in us unit */
 800static inline u64 tcp_skb_timestamp_us(const struct sk_buff *skb)
 801{
 802	return div_u64(skb->skb_mstamp_ns, NSEC_PER_USEC);
 803}
 804
 805
 806#define tcp_flag_byte(th) (((u_int8_t *)th)[13])
 807
 808#define TCPHDR_FIN 0x01
 809#define TCPHDR_SYN 0x02
 810#define TCPHDR_RST 0x04
 811#define TCPHDR_PSH 0x08
 812#define TCPHDR_ACK 0x10
 813#define TCPHDR_URG 0x20
 814#define TCPHDR_ECE 0x40
 815#define TCPHDR_CWR 0x80
 816
 817#define TCPHDR_SYN_ECN	(TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
 818
 819/* This is what the send packet queuing engine uses to pass
 820 * TCP per-packet control information to the transmission code.
 821 * We also store the host-order sequence numbers in here too.
 822 * This is 44 bytes if IPV6 is enabled.
 823 * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
 824 */
 825struct tcp_skb_cb {
 826	__u32		seq;		/* Starting sequence number	*/
 827	__u32		end_seq;	/* SEQ + FIN + SYN + datalen	*/
 828	union {
 829		/* Note : tcp_tw_isn is used in input path only
 830		 *	  (isn chosen by tcp_timewait_state_process())
 831		 *
 832		 * 	  tcp_gso_segs/size are used in write queue only,
 833		 *	  cf tcp_skb_pcount()/tcp_skb_mss()
 834		 */
 835		__u32		tcp_tw_isn;
 836		struct {
 837			u16	tcp_gso_segs;
 838			u16	tcp_gso_size;
 839		};
 840	};
 841	__u8		tcp_flags;	/* TCP header flags. (tcp[13])	*/
 842
 843	__u8		sacked;		/* State flags for SACK.	*/
 844#define TCPCB_SACKED_ACKED	0x01	/* SKB ACK'd by a SACK block	*/
 845#define TCPCB_SACKED_RETRANS	0x02	/* SKB retransmitted		*/
 846#define TCPCB_LOST		0x04	/* SKB is lost			*/
 847#define TCPCB_TAGBITS		0x07	/* All tag bits			*/
 848#define TCPCB_REPAIRED		0x10	/* SKB repaired (no skb_mstamp_ns)	*/
 849#define TCPCB_EVER_RETRANS	0x80	/* Ever retransmitted frame	*/
 850#define TCPCB_RETRANS		(TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \
 851				TCPCB_REPAIRED)
 852
 853	__u8		ip_dsfield;	/* IPv4 tos or IPv6 dsfield	*/
 854	__u8		txstamp_ack:1,	/* Record TX timestamp for ack? */
 855			eor:1,		/* Is skb MSG_EOR marked? */
 856			has_rxtstamp:1,	/* SKB has a RX timestamp	*/
 857			unused:5;
 858	__u32		ack_seq;	/* Sequence number ACK'd	*/
 859	union {
 860		struct {
 861			/* There is space for up to 24 bytes */
 862			__u32 in_flight:30,/* Bytes in flight at transmit */
 863			      is_app_limited:1, /* cwnd not fully used? */
 864			      unused:1;
 865			/* pkts S/ACKed so far upon tx of skb, incl retrans: */
 866			__u32 delivered;
 867			/* start of send pipeline phase */
 868			u64 first_tx_mstamp;
 869			/* when we reached the "delivered" count */
 870			u64 delivered_mstamp;
 871		} tx;   /* only used for outgoing skbs */
 872		union {
 873			struct inet_skb_parm	h4;
 874#if IS_ENABLED(CONFIG_IPV6)
 875			struct inet6_skb_parm	h6;
 876#endif
 877		} header;	/* For incoming skbs */
 878		struct {
 879			__u32 flags;
 880			struct sock *sk_redir;
 881			void *data_end;
 882		} bpf;
 883	};
 884};
 885
 886#define TCP_SKB_CB(__skb)	((struct tcp_skb_cb *)&((__skb)->cb[0]))
 887
 888static inline void bpf_compute_data_end_sk_skb(struct sk_buff *skb)
 889{
 890	TCP_SKB_CB(skb)->bpf.data_end = skb->data + skb_headlen(skb);
 891}
 892
 893static inline bool tcp_skb_bpf_ingress(const struct sk_buff *skb)
 894{
 895	return TCP_SKB_CB(skb)->bpf.flags & BPF_F_INGRESS;
 896}
 897
 898static inline struct sock *tcp_skb_bpf_redirect_fetch(struct sk_buff *skb)
 899{
 900	return TCP_SKB_CB(skb)->bpf.sk_redir;
 901}
 902
 903static inline void tcp_skb_bpf_redirect_clear(struct sk_buff *skb)
 904{
 905	TCP_SKB_CB(skb)->bpf.sk_redir = NULL;
 906}
 907
 908extern const struct inet_connection_sock_af_ops ipv4_specific;
 909
 910#if IS_ENABLED(CONFIG_IPV6)
 911/* This is the variant of inet6_iif() that must be used by TCP,
 912 * as TCP moves IP6CB into a different location in skb->cb[]
 913 */
 914static inline int tcp_v6_iif(const struct sk_buff *skb)
 915{
 916	return TCP_SKB_CB(skb)->header.h6.iif;
 917}
 918
 919static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb)
 920{
 921	bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
 922
 923	return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
 924}
 925
 926/* TCP_SKB_CB reference means this can not be used from early demux */
 927static inline int tcp_v6_sdif(const struct sk_buff *skb)
 928{
 929#if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
 930	if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags))
 931		return TCP_SKB_CB(skb)->header.h6.iif;
 932#endif
 933	return 0;
 934}
 935
 936extern const struct inet_connection_sock_af_ops ipv6_specific;
 937
 938INDIRECT_CALLABLE_DECLARE(void tcp_v6_send_check(struct sock *sk, struct sk_buff *skb));
 939INDIRECT_CALLABLE_DECLARE(int tcp_v6_rcv(struct sk_buff *skb));
 940INDIRECT_CALLABLE_DECLARE(void tcp_v6_early_demux(struct sk_buff *skb));
 941
 942#endif
 943
 
 944static inline bool inet_exact_dif_match(struct net *net, struct sk_buff *skb)
 945{
 946#if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
 947	if (!net->ipv4.sysctl_tcp_l3mdev_accept &&
 948	    skb && ipv4_l3mdev_skb(IPCB(skb)->flags))
 949		return true;
 950#endif
 951	return false;
 952}
 953
 954/* TCP_SKB_CB reference means this can not be used from early demux */
 955static inline int tcp_v4_sdif(struct sk_buff *skb)
 956{
 957#if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
 958	if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
 959		return TCP_SKB_CB(skb)->header.h4.iif;
 960#endif
 961	return 0;
 962}
 963
 964/* Due to TSO, an SKB can be composed of multiple actual
 965 * packets.  To keep these tracked properly, we use this.
 966 */
 967static inline int tcp_skb_pcount(const struct sk_buff *skb)
 968{
 969	return TCP_SKB_CB(skb)->tcp_gso_segs;
 970}
 971
 972static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
 973{
 974	TCP_SKB_CB(skb)->tcp_gso_segs = segs;
 975}
 976
 977static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
 978{
 979	TCP_SKB_CB(skb)->tcp_gso_segs += segs;
 980}
 981
 982/* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
 983static inline int tcp_skb_mss(const struct sk_buff *skb)
 984{
 985	return TCP_SKB_CB(skb)->tcp_gso_size;
 986}
 987
 988static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
 989{
 990	return likely(!TCP_SKB_CB(skb)->eor);
 991}
 992
 993static inline bool tcp_skb_can_collapse(const struct sk_buff *to,
 994					const struct sk_buff *from)
 995{
 996	return likely(tcp_skb_can_collapse_to(to) &&
 997		      mptcp_skb_can_collapse(to, from));
 998}
 999
1000/* Events passed to congestion control interface */
1001enum tcp_ca_event {
1002	CA_EVENT_TX_START,	/* first transmit when no packets in flight */
1003	CA_EVENT_CWND_RESTART,	/* congestion window restart */
1004	CA_EVENT_COMPLETE_CWR,	/* end of congestion recovery */
1005	CA_EVENT_LOSS,		/* loss timeout */
1006	CA_EVENT_ECN_NO_CE,	/* ECT set, but not CE marked */
1007	CA_EVENT_ECN_IS_CE,	/* received CE marked IP packet */
 
 
1008};
1009
1010/* Information about inbound ACK, passed to cong_ops->in_ack_event() */
1011enum tcp_ca_ack_event_flags {
1012	CA_ACK_SLOWPATH		= (1 << 0),	/* In slow path processing */
1013	CA_ACK_WIN_UPDATE	= (1 << 1),	/* ACK updated window */
1014	CA_ACK_ECE		= (1 << 2),	/* ECE bit is set on ack */
1015};
1016
1017/*
1018 * Interface for adding new TCP congestion control handlers
1019 */
1020#define TCP_CA_NAME_MAX	16
1021#define TCP_CA_MAX	128
1022#define TCP_CA_BUF_MAX	(TCP_CA_NAME_MAX*TCP_CA_MAX)
1023
1024#define TCP_CA_UNSPEC	0
1025
1026/* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
1027#define TCP_CONG_NON_RESTRICTED 0x1
1028/* Requires ECN/ECT set on all packets */
1029#define TCP_CONG_NEEDS_ECN	0x2
1030#define TCP_CONG_MASK	(TCP_CONG_NON_RESTRICTED | TCP_CONG_NEEDS_ECN)
1031
1032union tcp_cc_info;
1033
1034struct ack_sample {
1035	u32 pkts_acked;
1036	s32 rtt_us;
1037	u32 in_flight;
1038};
1039
1040/* A rate sample measures the number of (original/retransmitted) data
1041 * packets delivered "delivered" over an interval of time "interval_us".
1042 * The tcp_rate.c code fills in the rate sample, and congestion
1043 * control modules that define a cong_control function to run at the end
1044 * of ACK processing can optionally chose to consult this sample when
1045 * setting cwnd and pacing rate.
1046 * A sample is invalid if "delivered" or "interval_us" is negative.
1047 */
1048struct rate_sample {
1049	u64  prior_mstamp; /* starting timestamp for interval */
1050	u32  prior_delivered;	/* tp->delivered at "prior_mstamp" */
1051	s32  delivered;		/* number of packets delivered over interval */
1052	long interval_us;	/* time for tp->delivered to incr "delivered" */
1053	u32 snd_interval_us;	/* snd interval for delivered packets */
1054	u32 rcv_interval_us;	/* rcv interval for delivered packets */
1055	long rtt_us;		/* RTT of last (S)ACKed packet (or -1) */
1056	int  losses;		/* number of packets marked lost upon ACK */
1057	u32  acked_sacked;	/* number of packets newly (S)ACKed upon ACK */
1058	u32  prior_in_flight;	/* in flight before this ACK */
1059	bool is_app_limited;	/* is sample from packet with bubble in pipe? */
1060	bool is_retrans;	/* is sample from retransmission? */
1061	bool is_ack_delayed;	/* is this (likely) a delayed ACK? */
1062};
1063
1064struct tcp_congestion_ops {
1065	struct list_head	list;
1066	u32 key;
1067	u32 flags;
1068
1069	/* initialize private data (optional) */
1070	void (*init)(struct sock *sk);
1071	/* cleanup private data  (optional) */
1072	void (*release)(struct sock *sk);
1073
1074	/* return slow start threshold (required) */
1075	u32 (*ssthresh)(struct sock *sk);
1076	/* do new cwnd calculation (required) */
1077	void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
1078	/* call before changing ca_state (optional) */
1079	void (*set_state)(struct sock *sk, u8 new_state);
1080	/* call when cwnd event occurs (optional) */
1081	void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
1082	/* call when ack arrives (optional) */
1083	void (*in_ack_event)(struct sock *sk, u32 flags);
1084	/* new value of cwnd after loss (required) */
1085	u32  (*undo_cwnd)(struct sock *sk);
1086	/* hook for packet ack accounting (optional) */
1087	void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
1088	/* override sysctl_tcp_min_tso_segs */
1089	u32 (*min_tso_segs)(struct sock *sk);
1090	/* returns the multiplier used in tcp_sndbuf_expand (optional) */
1091	u32 (*sndbuf_expand)(struct sock *sk);
1092	/* call when packets are delivered to update cwnd and pacing rate,
1093	 * after all the ca_state processing. (optional)
1094	 */
1095	void (*cong_control)(struct sock *sk, const struct rate_sample *rs);
1096	/* get info for inet_diag (optional) */
1097	size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
1098			   union tcp_cc_info *info);
1099
1100	char 		name[TCP_CA_NAME_MAX];
1101	struct module 	*owner;
1102};
1103
1104int tcp_register_congestion_control(struct tcp_congestion_ops *type);
1105void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
1106
1107void tcp_assign_congestion_control(struct sock *sk);
1108void tcp_init_congestion_control(struct sock *sk);
1109void tcp_cleanup_congestion_control(struct sock *sk);
1110int tcp_set_default_congestion_control(struct net *net, const char *name);
1111void tcp_get_default_congestion_control(struct net *net, char *name);
1112void tcp_get_available_congestion_control(char *buf, size_t len);
1113void tcp_get_allowed_congestion_control(char *buf, size_t len);
1114int tcp_set_allowed_congestion_control(char *allowed);
1115int tcp_set_congestion_control(struct sock *sk, const char *name, bool load,
1116			       bool reinit, bool cap_net_admin);
1117u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
1118void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
1119
1120u32 tcp_reno_ssthresh(struct sock *sk);
1121u32 tcp_reno_undo_cwnd(struct sock *sk);
1122void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
1123extern struct tcp_congestion_ops tcp_reno;
1124
1125struct tcp_congestion_ops *tcp_ca_find(const char *name);
1126struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
1127u32 tcp_ca_get_key_by_name(struct net *net, const char *name, bool *ecn_ca);
1128#ifdef CONFIG_INET
1129char *tcp_ca_get_name_by_key(u32 key, char *buffer);
1130#else
1131static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
1132{
1133	return NULL;
1134}
1135#endif
1136
1137static inline bool tcp_ca_needs_ecn(const struct sock *sk)
1138{
1139	const struct inet_connection_sock *icsk = inet_csk(sk);
1140
1141	return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
1142}
1143
1144static inline void tcp_set_ca_state(struct sock *sk, const u8 ca_state)
1145{
1146	struct inet_connection_sock *icsk = inet_csk(sk);
1147
1148	if (icsk->icsk_ca_ops->set_state)
1149		icsk->icsk_ca_ops->set_state(sk, ca_state);
1150	icsk->icsk_ca_state = ca_state;
1151}
1152
1153static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
1154{
1155	const struct inet_connection_sock *icsk = inet_csk(sk);
1156
1157	if (icsk->icsk_ca_ops->cwnd_event)
1158		icsk->icsk_ca_ops->cwnd_event(sk, event);
1159}
1160
1161/* From tcp_rate.c */
1162void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
1163void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
1164			    struct rate_sample *rs);
1165void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
1166		  bool is_sack_reneg, struct rate_sample *rs);
1167void tcp_rate_check_app_limited(struct sock *sk);
1168
1169/* These functions determine how the current flow behaves in respect of SACK
1170 * handling. SACK is negotiated with the peer, and therefore it can vary
1171 * between different flows.
1172 *
1173 * tcp_is_sack - SACK enabled
1174 * tcp_is_reno - No SACK
 
1175 */
1176static inline int tcp_is_sack(const struct tcp_sock *tp)
1177{
1178	return likely(tp->rx_opt.sack_ok);
1179}
1180
1181static inline bool tcp_is_reno(const struct tcp_sock *tp)
1182{
1183	return !tcp_is_sack(tp);
1184}
1185
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1186static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1187{
1188	return tp->sacked_out + tp->lost_out;
1189}
1190
1191/* This determines how many packets are "in the network" to the best
1192 * of our knowledge.  In many cases it is conservative, but where
1193 * detailed information is available from the receiver (via SACK
1194 * blocks etc.) we can make more aggressive calculations.
1195 *
1196 * Use this for decisions involving congestion control, use just
1197 * tp->packets_out to determine if the send queue is empty or not.
1198 *
1199 * Read this equation as:
1200 *
1201 *	"Packets sent once on transmission queue" MINUS
1202 *	"Packets left network, but not honestly ACKed yet" PLUS
1203 *	"Packets fast retransmitted"
1204 */
1205static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1206{
1207	return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1208}
1209
1210#define TCP_INFINITE_SSTHRESH	0x7fffffff
1211
1212static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1213{
1214	return tp->snd_cwnd < tp->snd_ssthresh;
1215}
1216
1217static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1218{
1219	return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1220}
1221
1222static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1223{
1224	return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1225	       (1 << inet_csk(sk)->icsk_ca_state);
1226}
1227
1228/* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1229 * The exception is cwnd reduction phase, when cwnd is decreasing towards
1230 * ssthresh.
1231 */
1232static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1233{
1234	const struct tcp_sock *tp = tcp_sk(sk);
1235
1236	if (tcp_in_cwnd_reduction(sk))
1237		return tp->snd_ssthresh;
1238	else
1239		return max(tp->snd_ssthresh,
1240			   ((tp->snd_cwnd >> 1) +
1241			    (tp->snd_cwnd >> 2)));
1242}
1243
1244/* Use define here intentionally to get WARN_ON location shown at the caller */
1245#define tcp_verify_left_out(tp)	WARN_ON(tcp_left_out(tp) > tp->packets_out)
1246
1247void tcp_enter_cwr(struct sock *sk);
1248__u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1249
1250/* The maximum number of MSS of available cwnd for which TSO defers
1251 * sending if not using sysctl_tcp_tso_win_divisor.
1252 */
1253static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1254{
1255	return 3;
1256}
1257
1258/* Returns end sequence number of the receiver's advertised window */
1259static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1260{
1261	return tp->snd_una + tp->snd_wnd;
1262}
1263
1264/* We follow the spirit of RFC2861 to validate cwnd but implement a more
1265 * flexible approach. The RFC suggests cwnd should not be raised unless
1266 * it was fully used previously. And that's exactly what we do in
1267 * congestion avoidance mode. But in slow start we allow cwnd to grow
1268 * as long as the application has used half the cwnd.
1269 * Example :
1270 *    cwnd is 10 (IW10), but application sends 9 frames.
1271 *    We allow cwnd to reach 18 when all frames are ACKed.
1272 * This check is safe because it's as aggressive as slow start which already
1273 * risks 100% overshoot. The advantage is that we discourage application to
1274 * either send more filler packets or data to artificially blow up the cwnd
1275 * usage, and allow application-limited process to probe bw more aggressively.
1276 */
1277static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1278{
1279	const struct tcp_sock *tp = tcp_sk(sk);
1280
1281	/* If in slow start, ensure cwnd grows to twice what was ACKed. */
1282	if (tcp_in_slow_start(tp))
1283		return tp->snd_cwnd < 2 * tp->max_packets_out;
1284
1285	return tp->is_cwnd_limited;
1286}
1287
1288/* BBR congestion control needs pacing.
1289 * Same remark for SO_MAX_PACING_RATE.
1290 * sch_fq packet scheduler is efficiently handling pacing,
1291 * but is not always installed/used.
1292 * Return true if TCP stack should pace packets itself.
1293 */
1294static inline bool tcp_needs_internal_pacing(const struct sock *sk)
1295{
1296	return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
1297}
1298
1299/* Estimates in how many jiffies next packet for this flow can be sent.
1300 * Scheduling a retransmit timer too early would be silly.
1301 */
1302static inline unsigned long tcp_pacing_delay(const struct sock *sk)
1303{
1304	s64 delay = tcp_sk(sk)->tcp_wstamp_ns - tcp_sk(sk)->tcp_clock_cache;
1305
1306	return delay > 0 ? nsecs_to_jiffies(delay) : 0;
1307}
1308
1309static inline void tcp_reset_xmit_timer(struct sock *sk,
1310					const int what,
1311					unsigned long when,
1312					const unsigned long max_when)
1313{
1314	inet_csk_reset_xmit_timer(sk, what, when + tcp_pacing_delay(sk),
1315				  max_when);
1316}
1317
1318/* Something is really bad, we could not queue an additional packet,
1319 * because qdisc is full or receiver sent a 0 window, or we are paced.
1320 * We do not want to add fuel to the fire, or abort too early,
1321 * so make sure the timer we arm now is at least 200ms in the future,
1322 * regardless of current icsk_rto value (as it could be ~2ms)
1323 */
1324static inline unsigned long tcp_probe0_base(const struct sock *sk)
1325{
1326	return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1327}
1328
1329/* Variant of inet_csk_rto_backoff() used for zero window probes */
1330static inline unsigned long tcp_probe0_when(const struct sock *sk,
1331					    unsigned long max_when)
1332{
1333	u64 when = (u64)tcp_probe0_base(sk) << inet_csk(sk)->icsk_backoff;
1334
1335	return (unsigned long)min_t(u64, when, max_when);
1336}
1337
1338static inline void tcp_check_probe_timer(struct sock *sk)
1339{
1340	if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1341		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1342				     tcp_probe0_base(sk), TCP_RTO_MAX);
1343}
1344
1345static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1346{
1347	tp->snd_wl1 = seq;
1348}
1349
1350static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1351{
1352	tp->snd_wl1 = seq;
1353}
1354
1355/*
1356 * Calculate(/check) TCP checksum
1357 */
1358static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1359				   __be32 daddr, __wsum base)
1360{
1361	return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_TCP, base);
 
 
 
 
 
1362}
1363
1364static inline bool tcp_checksum_complete(struct sk_buff *skb)
1365{
1366	return !skb_csum_unnecessary(skb) &&
1367		__skb_checksum_complete(skb);
 
 
 
 
 
 
 
 
 
 
1368}
1369
 
1370bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb);
1371int tcp_filter(struct sock *sk, struct sk_buff *skb);
 
 
 
 
 
 
 
 
 
 
1372void tcp_set_state(struct sock *sk, int state);
 
1373void tcp_done(struct sock *sk);
 
1374int tcp_abort(struct sock *sk, int err);
1375
1376static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1377{
1378	rx_opt->dsack = 0;
1379	rx_opt->num_sacks = 0;
1380}
1381
 
1382void tcp_cwnd_restart(struct sock *sk, s32 delta);
1383
1384static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1385{
1386	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1387	struct tcp_sock *tp = tcp_sk(sk);
1388	s32 delta;
1389
1390	if (!sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle || tp->packets_out ||
1391	    ca_ops->cong_control)
1392		return;
1393	delta = tcp_jiffies32 - tp->lsndtime;
1394	if (delta > inet_csk(sk)->icsk_rto)
1395		tcp_cwnd_restart(sk, delta);
1396}
1397
1398/* Determine a window scaling and initial window to offer. */
1399void tcp_select_initial_window(const struct sock *sk, int __space,
1400			       __u32 mss, __u32 *rcv_wnd,
1401			       __u32 *window_clamp, int wscale_ok,
1402			       __u8 *rcv_wscale, __u32 init_rcv_wnd);
1403
1404static inline int tcp_win_from_space(const struct sock *sk, int space)
1405{
1406	int tcp_adv_win_scale = sock_net(sk)->ipv4.sysctl_tcp_adv_win_scale;
1407
1408	return tcp_adv_win_scale <= 0 ?
1409		(space>>(-tcp_adv_win_scale)) :
1410		space - (space>>tcp_adv_win_scale);
1411}
1412
1413/* Note: caller must be prepared to deal with negative returns */
1414static inline int tcp_space(const struct sock *sk)
1415{
1416	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf) -
1417				  READ_ONCE(sk->sk_backlog.len) -
1418				  atomic_read(&sk->sk_rmem_alloc));
1419}
1420
1421static inline int tcp_full_space(const struct sock *sk)
1422{
1423	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf));
1424}
1425
1426/* We provision sk_rcvbuf around 200% of sk_rcvlowat.
1427 * If 87.5 % (7/8) of the space has been consumed, we want to override
1428 * SO_RCVLOWAT constraint, since we are receiving skbs with too small
1429 * len/truesize ratio.
1430 */
1431static inline bool tcp_rmem_pressure(const struct sock *sk)
1432{
1433	int rcvbuf = READ_ONCE(sk->sk_rcvbuf);
1434	int threshold = rcvbuf - (rcvbuf >> 3);
1435
1436	return atomic_read(&sk->sk_rmem_alloc) > threshold;
1437}
1438
1439extern void tcp_openreq_init_rwin(struct request_sock *req,
1440				  const struct sock *sk_listener,
1441				  const struct dst_entry *dst);
1442
1443void tcp_enter_memory_pressure(struct sock *sk);
1444void tcp_leave_memory_pressure(struct sock *sk);
1445
1446static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1447{
1448	struct net *net = sock_net((struct sock *)tp);
1449
1450	return tp->keepalive_intvl ? : net->ipv4.sysctl_tcp_keepalive_intvl;
1451}
1452
1453static inline int keepalive_time_when(const struct tcp_sock *tp)
1454{
1455	struct net *net = sock_net((struct sock *)tp);
1456
1457	return tp->keepalive_time ? : net->ipv4.sysctl_tcp_keepalive_time;
1458}
1459
1460static inline int keepalive_probes(const struct tcp_sock *tp)
1461{
1462	struct net *net = sock_net((struct sock *)tp);
1463
1464	return tp->keepalive_probes ? : net->ipv4.sysctl_tcp_keepalive_probes;
1465}
1466
1467static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1468{
1469	const struct inet_connection_sock *icsk = &tp->inet_conn;
1470
1471	return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime,
1472			  tcp_jiffies32 - tp->rcv_tstamp);
1473}
1474
1475static inline int tcp_fin_time(const struct sock *sk)
1476{
1477	int fin_timeout = tcp_sk(sk)->linger2 ? : sock_net(sk)->ipv4.sysctl_tcp_fin_timeout;
1478	const int rto = inet_csk(sk)->icsk_rto;
1479
1480	if (fin_timeout < (rto << 2) - (rto >> 1))
1481		fin_timeout = (rto << 2) - (rto >> 1);
1482
1483	return fin_timeout;
1484}
1485
1486static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1487				  int paws_win)
1488{
1489	if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1490		return true;
1491	if (unlikely(!time_before32(ktime_get_seconds(),
1492				    rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS)))
1493		return true;
1494	/*
1495	 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1496	 * then following tcp messages have valid values. Ignore 0 value,
1497	 * or else 'negative' tsval might forbid us to accept their packets.
1498	 */
1499	if (!rx_opt->ts_recent)
1500		return true;
1501	return false;
1502}
1503
1504static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1505				   int rst)
1506{
1507	if (tcp_paws_check(rx_opt, 0))
1508		return false;
1509
1510	/* RST segments are not recommended to carry timestamp,
1511	   and, if they do, it is recommended to ignore PAWS because
1512	   "their cleanup function should take precedence over timestamps."
1513	   Certainly, it is mistake. It is necessary to understand the reasons
1514	   of this constraint to relax it: if peer reboots, clock may go
1515	   out-of-sync and half-open connections will not be reset.
1516	   Actually, the problem would be not existing if all
1517	   the implementations followed draft about maintaining clock
1518	   via reboots. Linux-2.2 DOES NOT!
1519
1520	   However, we can relax time bounds for RST segments to MSL.
1521	 */
1522	if (rst && !time_before32(ktime_get_seconds(),
1523				  rx_opt->ts_recent_stamp + TCP_PAWS_MSL))
1524		return false;
1525	return true;
1526}
1527
1528bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1529			  int mib_idx, u32 *last_oow_ack_time);
1530
1531static inline void tcp_mib_init(struct net *net)
1532{
1533	/* See RFC 2012 */
1534	TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1535	TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1536	TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1537	TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1538}
1539
1540/* from STCP */
1541static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1542{
1543	tp->lost_skb_hint = NULL;
1544}
1545
1546static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1547{
1548	tcp_clear_retrans_hints_partial(tp);
1549	tp->retransmit_skb_hint = NULL;
1550}
1551
1552union tcp_md5_addr {
1553	struct in_addr  a4;
1554#if IS_ENABLED(CONFIG_IPV6)
1555	struct in6_addr	a6;
1556#endif
1557};
1558
1559/* - key database */
1560struct tcp_md5sig_key {
1561	struct hlist_node	node;
1562	u8			keylen;
1563	u8			family; /* AF_INET or AF_INET6 */
1564	u8			prefixlen;
1565	union tcp_md5_addr	addr;
1566	int			l3index; /* set if key added with L3 scope */
1567	u8			key[TCP_MD5SIG_MAXKEYLEN];
1568	struct rcu_head		rcu;
1569};
1570
1571/* - sock block */
1572struct tcp_md5sig_info {
1573	struct hlist_head	head;
1574	struct rcu_head		rcu;
1575};
1576
1577/* - pseudo header */
1578struct tcp4_pseudohdr {
1579	__be32		saddr;
1580	__be32		daddr;
1581	__u8		pad;
1582	__u8		protocol;
1583	__be16		len;
1584};
1585
1586struct tcp6_pseudohdr {
1587	struct in6_addr	saddr;
1588	struct in6_addr daddr;
1589	__be32		len;
1590	__be32		protocol;	/* including padding */
1591};
1592
1593union tcp_md5sum_block {
1594	struct tcp4_pseudohdr ip4;
1595#if IS_ENABLED(CONFIG_IPV6)
1596	struct tcp6_pseudohdr ip6;
1597#endif
1598};
1599
1600/* - pool: digest algorithm, hash description and scratch buffer */
1601struct tcp_md5sig_pool {
1602	struct ahash_request	*md5_req;
1603	void			*scratch;
1604};
1605
1606/* - functions */
1607int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1608			const struct sock *sk, const struct sk_buff *skb);
1609int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1610		   int family, u8 prefixlen, int l3index,
1611		   const u8 *newkey, u8 newkeylen, gfp_t gfp);
1612int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1613		   int family, u8 prefixlen, int l3index);
1614struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1615					 const struct sock *addr_sk);
1616
1617#ifdef CONFIG_TCP_MD5SIG
1618#include <linux/jump_label.h>
1619extern struct static_key_false tcp_md5_needed;
1620struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index,
1621					   const union tcp_md5_addr *addr,
1622					   int family);
1623static inline struct tcp_md5sig_key *
1624tcp_md5_do_lookup(const struct sock *sk, int l3index,
1625		  const union tcp_md5_addr *addr, int family)
1626{
1627	if (!static_branch_unlikely(&tcp_md5_needed))
1628		return NULL;
1629	return __tcp_md5_do_lookup(sk, l3index, addr, family);
1630}
1631
1632#define tcp_twsk_md5_key(twsk)	((twsk)->tw_md5_key)
1633#else
1634static inline struct tcp_md5sig_key *
1635tcp_md5_do_lookup(const struct sock *sk, int l3index,
1636		  const union tcp_md5_addr *addr, int family)
1637{
1638	return NULL;
1639}
1640#define tcp_twsk_md5_key(twsk)	NULL
1641#endif
1642
1643bool tcp_alloc_md5sig_pool(void);
1644
1645struct tcp_md5sig_pool *tcp_get_md5sig_pool(void);
1646static inline void tcp_put_md5sig_pool(void)
1647{
1648	local_bh_enable();
1649}
1650
1651int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1652			  unsigned int header_len);
1653int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1654		     const struct tcp_md5sig_key *key);
1655
1656/* From tcp_fastopen.c */
1657void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1658			    struct tcp_fastopen_cookie *cookie);
 
1659void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1660			    struct tcp_fastopen_cookie *cookie, bool syn_lost,
1661			    u16 try_exp);
1662struct tcp_fastopen_request {
1663	/* Fast Open cookie. Size 0 means a cookie request */
1664	struct tcp_fastopen_cookie	cookie;
1665	struct msghdr			*data;  /* data in MSG_FASTOPEN */
1666	size_t				size;
1667	int				copied;	/* queued in tcp_connect() */
1668	struct ubuf_info		*uarg;
1669};
1670void tcp_free_fastopen_req(struct tcp_sock *tp);
1671void tcp_fastopen_destroy_cipher(struct sock *sk);
1672void tcp_fastopen_ctx_destroy(struct net *net);
1673int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
1674			      void *primary_key, void *backup_key);
1675int tcp_fastopen_get_cipher(struct net *net, struct inet_connection_sock *icsk,
1676			    u64 *key);
1677void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
1678struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1679			      struct request_sock *req,
1680			      struct tcp_fastopen_cookie *foc,
1681			      const struct dst_entry *dst);
1682void tcp_fastopen_init_key_once(struct net *net);
1683bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
1684			     struct tcp_fastopen_cookie *cookie);
1685bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
1686#define TCP_FASTOPEN_KEY_LENGTH sizeof(siphash_key_t)
1687#define TCP_FASTOPEN_KEY_MAX 2
1688#define TCP_FASTOPEN_KEY_BUF_LENGTH \
1689	(TCP_FASTOPEN_KEY_LENGTH * TCP_FASTOPEN_KEY_MAX)
1690
1691/* Fastopen key context */
1692struct tcp_fastopen_context {
1693	siphash_key_t	key[TCP_FASTOPEN_KEY_MAX];
1694	int		num;
1695	struct rcu_head	rcu;
1696};
1697
1698extern unsigned int sysctl_tcp_fastopen_blackhole_timeout;
1699void tcp_fastopen_active_disable(struct sock *sk);
1700bool tcp_fastopen_active_should_disable(struct sock *sk);
1701void tcp_fastopen_active_disable_ofo_check(struct sock *sk);
1702void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired);
1703
1704/* Caller needs to wrap with rcu_read_(un)lock() */
1705static inline
1706struct tcp_fastopen_context *tcp_fastopen_get_ctx(const struct sock *sk)
1707{
1708	struct tcp_fastopen_context *ctx;
1709
1710	ctx = rcu_dereference(inet_csk(sk)->icsk_accept_queue.fastopenq.ctx);
1711	if (!ctx)
1712		ctx = rcu_dereference(sock_net(sk)->ipv4.tcp_fastopen_ctx);
1713	return ctx;
1714}
1715
1716static inline
1717bool tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie *foc,
1718			       const struct tcp_fastopen_cookie *orig)
1719{
1720	if (orig->len == TCP_FASTOPEN_COOKIE_SIZE &&
1721	    orig->len == foc->len &&
1722	    !memcmp(orig->val, foc->val, foc->len))
1723		return true;
1724	return false;
1725}
1726
1727static inline
1728int tcp_fastopen_context_len(const struct tcp_fastopen_context *ctx)
1729{
1730	return ctx->num;
1731}
1732
1733/* Latencies incurred by various limits for a sender. They are
1734 * chronograph-like stats that are mutually exclusive.
1735 */
1736enum tcp_chrono {
1737	TCP_CHRONO_UNSPEC,
1738	TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
1739	TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
1740	TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
1741	__TCP_CHRONO_MAX,
1742};
1743
1744void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
1745void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
1746
1747/* This helper is needed, because skb->tcp_tsorted_anchor uses
1748 * the same memory storage than skb->destructor/_skb_refdst
1749 */
1750static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb)
1751{
1752	skb->destructor = NULL;
1753	skb->_skb_refdst = 0UL;
1754}
1755
1756#define tcp_skb_tsorted_save(skb) {		\
1757	unsigned long _save = skb->_skb_refdst;	\
1758	skb->_skb_refdst = 0UL;
1759
1760#define tcp_skb_tsorted_restore(skb)		\
1761	skb->_skb_refdst = _save;		\
1762}
1763
1764void tcp_write_queue_purge(struct sock *sk);
1765
1766static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk)
1767{
1768	return skb_rb_first(&sk->tcp_rtx_queue);
1769}
1770
1771static inline struct sk_buff *tcp_rtx_queue_tail(const struct sock *sk)
1772{
1773	return skb_rb_last(&sk->tcp_rtx_queue);
1774}
1775
1776static inline struct sk_buff *tcp_write_queue_head(const struct sock *sk)
 
1777{
1778	return skb_peek(&sk->sk_write_queue);
1779}
1780
1781static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
 
1782{
1783	return skb_peek_tail(&sk->sk_write_queue);
1784}
1785
 
 
 
 
 
 
1786#define tcp_for_write_queue_from_safe(skb, tmp, sk)			\
1787	skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1788
1789static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1790{
1791	return skb_peek(&sk->sk_write_queue);
1792}
1793
1794static inline bool tcp_skb_is_last(const struct sock *sk,
1795				   const struct sk_buff *skb)
1796{
1797	return skb_queue_is_last(&sk->sk_write_queue, skb);
1798}
1799
1800/**
1801 * tcp_write_queue_empty - test if any payload (or FIN) is available in write queue
1802 * @sk: socket
1803 *
1804 * Since the write queue can have a temporary empty skb in it,
1805 * we must not use "return skb_queue_empty(&sk->sk_write_queue)"
1806 */
1807static inline bool tcp_write_queue_empty(const struct sock *sk)
1808{
1809	const struct tcp_sock *tp = tcp_sk(sk);
 
 
 
 
1810
1811	return tp->write_seq == tp->snd_nxt;
 
 
 
 
 
 
 
1812}
1813
1814static inline bool tcp_rtx_queue_empty(const struct sock *sk)
1815{
1816	return RB_EMPTY_ROOT(&sk->tcp_rtx_queue);
1817}
1818
1819static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk)
1820{
1821	return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk);
1822}
1823
1824static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1825{
1826	__skb_queue_tail(&sk->sk_write_queue, skb);
1827
1828	/* Queue it, remembering where we must start sending. */
1829	if (sk->sk_write_queue.next == skb)
 
1830		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1831}
1832
1833/* Insert new before skb on the write queue of sk.  */
1834static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1835						  struct sk_buff *skb,
1836						  struct sock *sk)
1837{
1838	__skb_queue_before(&sk->sk_write_queue, skb, new);
 
 
 
1839}
1840
1841static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1842{
1843	tcp_skb_tsorted_anchor_cleanup(skb);
1844	__skb_unlink(skb, &sk->sk_write_queue);
1845}
1846
1847void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb);
1848
1849static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk)
1850{
1851	tcp_skb_tsorted_anchor_cleanup(skb);
1852	rb_erase(&skb->rbnode, &sk->tcp_rtx_queue);
1853}
1854
1855static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk)
1856{
1857	list_del(&skb->tcp_tsorted_anchor);
1858	tcp_rtx_queue_unlink(skb, sk);
1859	sk_wmem_free_skb(sk, skb);
1860}
1861
1862static inline void tcp_push_pending_frames(struct sock *sk)
1863{
1864	if (tcp_send_head(sk)) {
1865		struct tcp_sock *tp = tcp_sk(sk);
1866
1867		__tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1868	}
1869}
1870
1871/* Start sequence of the skb just after the highest skb with SACKed
1872 * bit, valid only if sacked_out > 0 or when the caller has ensured
1873 * validity by itself.
1874 */
1875static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1876{
1877	if (!tp->sacked_out)
1878		return tp->snd_una;
1879
1880	if (tp->highest_sack == NULL)
1881		return tp->snd_nxt;
1882
1883	return TCP_SKB_CB(tp->highest_sack)->seq;
1884}
1885
1886static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1887{
1888	tcp_sk(sk)->highest_sack = skb_rb_next(skb);
 
1889}
1890
1891static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1892{
1893	return tcp_sk(sk)->highest_sack;
1894}
1895
1896static inline void tcp_highest_sack_reset(struct sock *sk)
1897{
1898	tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk);
1899}
1900
1901/* Called when old skb is about to be deleted and replaced by new skb */
1902static inline void tcp_highest_sack_replace(struct sock *sk,
1903					    struct sk_buff *old,
1904					    struct sk_buff *new)
1905{
1906	if (old == tcp_highest_sack(sk))
1907		tcp_sk(sk)->highest_sack = new;
1908}
1909
1910/* This helper checks if socket has IP_TRANSPARENT set */
1911static inline bool inet_sk_transparent(const struct sock *sk)
1912{
1913	switch (sk->sk_state) {
1914	case TCP_TIME_WAIT:
1915		return inet_twsk(sk)->tw_transparent;
1916	case TCP_NEW_SYN_RECV:
1917		return inet_rsk(inet_reqsk(sk))->no_srccheck;
1918	}
1919	return inet_sk(sk)->transparent;
1920}
1921
1922/* Determines whether this is a thin stream (which may suffer from
1923 * increased latency). Used to trigger latency-reducing mechanisms.
1924 */
1925static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
1926{
1927	return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
1928}
1929
1930/* /proc */
1931enum tcp_seq_states {
1932	TCP_SEQ_STATE_LISTENING,
1933	TCP_SEQ_STATE_ESTABLISHED,
1934};
1935
1936void *tcp_seq_start(struct seq_file *seq, loff_t *pos);
1937void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos);
1938void tcp_seq_stop(struct seq_file *seq, void *v);
1939
1940struct tcp_seq_afinfo {
 
1941	sa_family_t			family;
 
 
1942};
1943
1944struct tcp_iter_state {
1945	struct seq_net_private	p;
 
1946	enum tcp_seq_states	state;
1947	struct sock		*syn_wait_sk;
1948	struct tcp_seq_afinfo	*bpf_seq_afinfo;
1949	int			bucket, offset, sbucket, num;
1950	loff_t			last_pos;
1951};
1952
 
 
 
1953extern struct request_sock_ops tcp_request_sock_ops;
1954extern struct request_sock_ops tcp6_request_sock_ops;
1955
1956void tcp_v4_destroy_sock(struct sock *sk);
1957
1958struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
1959				netdev_features_t features);
1960struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb);
1961INDIRECT_CALLABLE_DECLARE(int tcp4_gro_complete(struct sk_buff *skb, int thoff));
1962INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp4_gro_receive(struct list_head *head, struct sk_buff *skb));
1963INDIRECT_CALLABLE_DECLARE(int tcp6_gro_complete(struct sk_buff *skb, int thoff));
1964INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp6_gro_receive(struct list_head *head, struct sk_buff *skb));
1965int tcp_gro_complete(struct sk_buff *skb);
1966
1967void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
1968
1969static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
1970{
1971	struct net *net = sock_net((struct sock *)tp);
1972	return tp->notsent_lowat ?: net->ipv4.sysctl_tcp_notsent_lowat;
1973}
1974
1975/* @wake is one when sk_stream_write_space() calls us.
1976 * This sends EPOLLOUT only if notsent_bytes is half the limit.
1977 * This mimics the strategy used in sock_def_write_space().
1978 */
1979static inline bool tcp_stream_memory_free(const struct sock *sk, int wake)
1980{
1981	const struct tcp_sock *tp = tcp_sk(sk);
1982	u32 notsent_bytes = READ_ONCE(tp->write_seq) -
1983			    READ_ONCE(tp->snd_nxt);
1984
1985	return (notsent_bytes << wake) < tcp_notsent_lowat(tp);
1986}
1987
1988#ifdef CONFIG_PROC_FS
1989int tcp4_proc_init(void);
1990void tcp4_proc_exit(void);
1991#endif
1992
1993int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
1994int tcp_conn_request(struct request_sock_ops *rsk_ops,
1995		     const struct tcp_request_sock_ops *af_ops,
1996		     struct sock *sk, struct sk_buff *skb);
1997
1998/* TCP af-specific functions */
1999struct tcp_sock_af_ops {
2000#ifdef CONFIG_TCP_MD5SIG
2001	struct tcp_md5sig_key	*(*md5_lookup) (const struct sock *sk,
2002						const struct sock *addr_sk);
2003	int		(*calc_md5_hash)(char *location,
2004					 const struct tcp_md5sig_key *md5,
2005					 const struct sock *sk,
2006					 const struct sk_buff *skb);
2007	int		(*md5_parse)(struct sock *sk,
2008				     int optname,
2009				     sockptr_t optval,
2010				     int optlen);
2011#endif
2012};
2013
2014struct tcp_request_sock_ops {
2015	u16 mss_clamp;
2016#ifdef CONFIG_TCP_MD5SIG
2017	struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
2018						 const struct sock *addr_sk);
2019	int		(*calc_md5_hash) (char *location,
2020					  const struct tcp_md5sig_key *md5,
2021					  const struct sock *sk,
2022					  const struct sk_buff *skb);
2023#endif
2024	void (*init_req)(struct request_sock *req,
2025			 const struct sock *sk_listener,
2026			 struct sk_buff *skb);
2027#ifdef CONFIG_SYN_COOKIES
2028	__u32 (*cookie_init_seq)(const struct sk_buff *skb,
2029				 __u16 *mss);
2030#endif
2031	struct dst_entry *(*route_req)(const struct sock *sk, struct flowi *fl,
2032				       const struct request_sock *req);
2033	u32 (*init_seq)(const struct sk_buff *skb);
2034	u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb);
2035	int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
2036			   struct flowi *fl, struct request_sock *req,
2037			   struct tcp_fastopen_cookie *foc,
2038			   enum tcp_synack_type synack_type);
2039};
2040
2041extern const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops;
2042#if IS_ENABLED(CONFIG_IPV6)
2043extern const struct tcp_request_sock_ops tcp_request_sock_ipv6_ops;
2044#endif
2045
2046#ifdef CONFIG_SYN_COOKIES
2047static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2048					 const struct sock *sk, struct sk_buff *skb,
2049					 __u16 *mss)
2050{
2051	tcp_synq_overflow(sk);
2052	__NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
2053	return ops->cookie_init_seq(skb, mss);
2054}
2055#else
2056static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2057					 const struct sock *sk, struct sk_buff *skb,
2058					 __u16 *mss)
2059{
2060	return 0;
2061}
2062#endif
2063
2064int tcpv4_offload_init(void);
2065
2066void tcp_v4_init(void);
2067void tcp_init(void);
2068
2069/* tcp_recovery.c */
2070void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb);
2071void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced);
2072extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb,
2073				u32 reo_wnd);
2074extern void tcp_rack_mark_lost(struct sock *sk);
2075extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
2076			     u64 xmit_time);
2077extern void tcp_rack_reo_timeout(struct sock *sk);
2078extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs);
2079
2080/* At how many usecs into the future should the RTO fire? */
2081static inline s64 tcp_rto_delta_us(const struct sock *sk)
2082{
2083	const struct sk_buff *skb = tcp_rtx_queue_head(sk);
2084	u32 rto = inet_csk(sk)->icsk_rto;
2085	u64 rto_time_stamp_us = tcp_skb_timestamp_us(skb) + jiffies_to_usecs(rto);
2086
2087	return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp;
2088}
 
 
 
 
 
 
 
 
2089
2090/*
2091 * Save and compile IPv4 options, return a pointer to it
2092 */
2093static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net,
2094							 struct sk_buff *skb)
2095{
2096	const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
2097	struct ip_options_rcu *dopt = NULL;
2098
2099	if (opt->optlen) {
2100		int opt_size = sizeof(*dopt) + opt->optlen;
2101
2102		dopt = kmalloc(opt_size, GFP_ATOMIC);
2103		if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) {
2104			kfree(dopt);
2105			dopt = NULL;
2106		}
2107	}
2108	return dopt;
2109}
2110
2111/* locally generated TCP pure ACKs have skb->truesize == 2
2112 * (check tcp_send_ack() in net/ipv4/tcp_output.c )
2113 * This is much faster than dissecting the packet to find out.
2114 * (Think of GRE encapsulations, IPv4, IPv6, ...)
2115 */
2116static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
2117{
2118	return skb->truesize == 2;
2119}
2120
2121static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
2122{
2123	skb->truesize = 2;
2124}
2125
2126static inline int tcp_inq(struct sock *sk)
2127{
2128	struct tcp_sock *tp = tcp_sk(sk);
2129	int answ;
2130
2131	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
2132		answ = 0;
2133	} else if (sock_flag(sk, SOCK_URGINLINE) ||
2134		   !tp->urg_data ||
2135		   before(tp->urg_seq, tp->copied_seq) ||
2136		   !before(tp->urg_seq, tp->rcv_nxt)) {
2137
2138		answ = tp->rcv_nxt - tp->copied_seq;
2139
2140		/* Subtract 1, if FIN was received */
2141		if (answ && sock_flag(sk, SOCK_DONE))
2142			answ--;
2143	} else {
2144		answ = tp->urg_seq - tp->copied_seq;
2145	}
2146
2147	return answ;
2148}
2149
2150int tcp_peek_len(struct socket *sock);
2151
2152static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
2153{
2154	u16 segs_in;
2155
2156	segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2157	tp->segs_in += segs_in;
2158	if (skb->len > tcp_hdrlen(skb))
2159		tp->data_segs_in += segs_in;
2160}
2161
2162/*
2163 * TCP listen path runs lockless.
2164 * We forced "struct sock" to be const qualified to make sure
2165 * we don't modify one of its field by mistake.
2166 * Here, we increment sk_drops which is an atomic_t, so we can safely
2167 * make sock writable again.
2168 */
2169static inline void tcp_listendrop(const struct sock *sk)
2170{
2171	atomic_inc(&((struct sock *)sk)->sk_drops);
2172	__NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
2173}
2174
2175enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer);
2176
2177/*
2178 * Interface for adding Upper Level Protocols over TCP
2179 */
2180
2181#define TCP_ULP_NAME_MAX	16
2182#define TCP_ULP_MAX		128
2183#define TCP_ULP_BUF_MAX		(TCP_ULP_NAME_MAX*TCP_ULP_MAX)
2184
2185struct tcp_ulp_ops {
2186	struct list_head	list;
2187
2188	/* initialize ulp */
2189	int (*init)(struct sock *sk);
2190	/* update ulp */
2191	void (*update)(struct sock *sk, struct proto *p,
2192		       void (*write_space)(struct sock *sk));
2193	/* cleanup ulp */
2194	void (*release)(struct sock *sk);
2195	/* diagnostic */
2196	int (*get_info)(const struct sock *sk, struct sk_buff *skb);
2197	size_t (*get_info_size)(const struct sock *sk);
2198	/* clone ulp */
2199	void (*clone)(const struct request_sock *req, struct sock *newsk,
2200		      const gfp_t priority);
2201
2202	char		name[TCP_ULP_NAME_MAX];
2203	struct module	*owner;
2204};
2205int tcp_register_ulp(struct tcp_ulp_ops *type);
2206void tcp_unregister_ulp(struct tcp_ulp_ops *type);
2207int tcp_set_ulp(struct sock *sk, const char *name);
2208void tcp_get_available_ulp(char *buf, size_t len);
2209void tcp_cleanup_ulp(struct sock *sk);
2210void tcp_update_ulp(struct sock *sk, struct proto *p,
2211		    void (*write_space)(struct sock *sk));
2212
2213#define MODULE_ALIAS_TCP_ULP(name)				\
2214	__MODULE_INFO(alias, alias_userspace, name);		\
2215	__MODULE_INFO(alias, alias_tcp_ulp, "tcp-ulp-" name)
2216
2217struct sk_msg;
2218struct sk_psock;
2219
2220#ifdef CONFIG_BPF_STREAM_PARSER
2221struct proto *tcp_bpf_get_proto(struct sock *sk, struct sk_psock *psock);
2222void tcp_bpf_clone(const struct sock *sk, struct sock *newsk);
2223#else
2224static inline void tcp_bpf_clone(const struct sock *sk, struct sock *newsk)
2225{
2226}
2227#endif /* CONFIG_BPF_STREAM_PARSER */
2228
2229#ifdef CONFIG_NET_SOCK_MSG
2230int tcp_bpf_sendmsg_redir(struct sock *sk, struct sk_msg *msg, u32 bytes,
2231			  int flags);
2232int __tcp_bpf_recvmsg(struct sock *sk, struct sk_psock *psock,
2233		      struct msghdr *msg, int len, int flags);
2234#endif /* CONFIG_NET_SOCK_MSG */
2235
2236/* Call BPF_SOCK_OPS program that returns an int. If the return value
2237 * is < 0, then the BPF op failed (for example if the loaded BPF
2238 * program does not support the chosen operation or there is no BPF
2239 * program loaded).
2240 */
2241#ifdef CONFIG_BPF
2242static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2243{
2244	struct bpf_sock_ops_kern sock_ops;
2245	int ret;
2246
2247	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
2248	if (sk_fullsock(sk)) {
2249		sock_ops.is_fullsock = 1;
2250		sock_owned_by_me(sk);
2251	}
2252
2253	sock_ops.sk = sk;
2254	sock_ops.op = op;
2255	if (nargs > 0)
2256		memcpy(sock_ops.args, args, nargs * sizeof(*args));
2257
2258	ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
2259	if (ret == 0)
2260		ret = sock_ops.reply;
2261	else
2262		ret = -1;
2263	return ret;
2264}
2265
2266static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2267{
2268	u32 args[2] = {arg1, arg2};
2269
2270	return tcp_call_bpf(sk, op, 2, args);
2271}
2272
2273static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2274				    u32 arg3)
2275{
2276	u32 args[3] = {arg1, arg2, arg3};
2277
2278	return tcp_call_bpf(sk, op, 3, args);
2279}
2280
2281#else
2282static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2283{
2284	return -EPERM;
2285}
2286
2287static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2288{
2289	return -EPERM;
2290}
2291
2292static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2293				    u32 arg3)
2294{
2295	return -EPERM;
2296}
2297
2298#endif
2299
2300static inline u32 tcp_timeout_init(struct sock *sk)
2301{
2302	int timeout;
2303
2304	timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL);
2305
2306	if (timeout <= 0)
2307		timeout = TCP_TIMEOUT_INIT;
2308	return timeout;
2309}
2310
2311static inline u32 tcp_rwnd_init_bpf(struct sock *sk)
2312{
2313	int rwnd;
2314
2315	rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL);
2316
2317	if (rwnd < 0)
2318		rwnd = 0;
2319	return rwnd;
2320}
2321
2322static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk)
2323{
2324	return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1);
2325}
2326
2327static inline void tcp_bpf_rtt(struct sock *sk)
2328{
2329	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_RTT_CB_FLAG))
2330		tcp_call_bpf(sk, BPF_SOCK_OPS_RTT_CB, 0, NULL);
2331}
2332
2333#if IS_ENABLED(CONFIG_SMC)
2334extern struct static_key_false tcp_have_smc;
2335#endif
2336
2337#if IS_ENABLED(CONFIG_TLS_DEVICE)
2338void clean_acked_data_enable(struct inet_connection_sock *icsk,
2339			     void (*cad)(struct sock *sk, u32 ack_seq));
2340void clean_acked_data_disable(struct inet_connection_sock *icsk);
2341void clean_acked_data_flush(void);
2342#endif
2343
2344DECLARE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
2345static inline void tcp_add_tx_delay(struct sk_buff *skb,
2346				    const struct tcp_sock *tp)
2347{
2348	if (static_branch_unlikely(&tcp_tx_delay_enabled))
2349		skb->skb_mstamp_ns += (u64)tp->tcp_tx_delay * NSEC_PER_USEC;
2350}
2351
2352/* Compute Earliest Departure Time for some control packets
2353 * like ACK or RST for TIME_WAIT or non ESTABLISHED sockets.
2354 */
2355static inline u64 tcp_transmit_time(const struct sock *sk)
2356{
2357	if (static_branch_unlikely(&tcp_tx_delay_enabled)) {
2358		u32 delay = (sk->sk_state == TCP_TIME_WAIT) ?
2359			tcp_twsk(sk)->tw_tx_delay : tcp_sk(sk)->tcp_tx_delay;
2360
2361		return tcp_clock_ns() + (u64)delay * NSEC_PER_USEC;
2362	}
2363	return 0;
2364}
2365
2366#endif	/* _TCP_H */
v4.10.11
 
   1/*
   2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   3 *		operating system.  INET is implemented using the  BSD Socket
   4 *		interface as the means of communication with the user level.
   5 *
   6 *		Definitions for the TCP module.
   7 *
   8 * Version:	@(#)tcp.h	1.0.5	05/23/93
   9 *
  10 * Authors:	Ross Biro
  11 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  12 *
  13 *		This program is free software; you can redistribute it and/or
  14 *		modify it under the terms of the GNU General Public License
  15 *		as published by the Free Software Foundation; either version
  16 *		2 of the License, or (at your option) any later version.
  17 */
  18#ifndef _TCP_H
  19#define _TCP_H
  20
  21#define FASTRETRANS_DEBUG 1
  22
  23#include <linux/list.h>
  24#include <linux/tcp.h>
  25#include <linux/bug.h>
  26#include <linux/slab.h>
  27#include <linux/cache.h>
  28#include <linux/percpu.h>
  29#include <linux/skbuff.h>
  30#include <linux/cryptohash.h>
  31#include <linux/kref.h>
  32#include <linux/ktime.h>
 
  33
  34#include <net/inet_connection_sock.h>
  35#include <net/inet_timewait_sock.h>
  36#include <net/inet_hashtables.h>
  37#include <net/checksum.h>
  38#include <net/request_sock.h>
 
  39#include <net/sock.h>
  40#include <net/snmp.h>
  41#include <net/ip.h>
  42#include <net/tcp_states.h>
  43#include <net/inet_ecn.h>
  44#include <net/dst.h>
 
  45
  46#include <linux/seq_file.h>
  47#include <linux/memcontrol.h>
 
 
  48
  49extern struct inet_hashinfo tcp_hashinfo;
  50
  51extern struct percpu_counter tcp_orphan_count;
  52void tcp_time_wait(struct sock *sk, int state, int timeo);
  53
  54#define MAX_TCP_HEADER	(128 + MAX_HEADER)
  55#define MAX_TCP_OPTION_SPACE 40
 
 
  56
  57/*
  58 * Never offer a window over 32767 without using window scaling. Some
  59 * poor stacks do signed 16bit maths!
  60 */
  61#define MAX_TCP_WINDOW		32767U
  62
  63/* Minimal accepted MSS. It is (60+60+8) - (20+20). */
  64#define TCP_MIN_MSS		88U
  65
  66/* The least MTU to use for probing */
  67#define TCP_BASE_MSS		1024
  68
  69/* probing interval, default to 10 minutes as per RFC4821 */
  70#define TCP_PROBE_INTERVAL	600
  71
  72/* Specify interval when tcp mtu probing will stop */
  73#define TCP_PROBE_THRESHOLD	8
  74
  75/* After receiving this amount of duplicate ACKs fast retransmit starts. */
  76#define TCP_FASTRETRANS_THRESH 3
  77
  78/* Maximal number of ACKs sent quickly to accelerate slow-start. */
  79#define TCP_MAX_QUICKACKS	16U
  80
 
 
 
  81/* urg_data states */
  82#define TCP_URG_VALID	0x0100
  83#define TCP_URG_NOTYET	0x0200
  84#define TCP_URG_READ	0x0400
  85
  86#define TCP_RETR1	3	/*
  87				 * This is how many retries it does before it
  88				 * tries to figure out if the gateway is
  89				 * down. Minimal RFC value is 3; it corresponds
  90				 * to ~3sec-8min depending on RTO.
  91				 */
  92
  93#define TCP_RETR2	15	/*
  94				 * This should take at least
  95				 * 90 minutes to time out.
  96				 * RFC1122 says that the limit is 100 sec.
  97				 * 15 is ~13-30min depending on RTO.
  98				 */
  99
 100#define TCP_SYN_RETRIES	 6	/* This is how many retries are done
 101				 * when active opening a connection.
 102				 * RFC1122 says the minimum retry MUST
 103				 * be at least 180secs.  Nevertheless
 104				 * this value is corresponding to
 105				 * 63secs of retransmission with the
 106				 * current initial RTO.
 107				 */
 108
 109#define TCP_SYNACK_RETRIES 5	/* This is how may retries are done
 110				 * when passive opening a connection.
 111				 * This is corresponding to 31secs of
 112				 * retransmission with the current
 113				 * initial RTO.
 114				 */
 115
 116#define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
 117				  * state, about 60 seconds	*/
 118#define TCP_FIN_TIMEOUT	TCP_TIMEWAIT_LEN
 119                                 /* BSD style FIN_WAIT2 deadlock breaker.
 120				  * It used to be 3min, new value is 60sec,
 121				  * to combine FIN-WAIT-2 timeout with
 122				  * TIME-WAIT timer.
 123				  */
 
 124
 125#define TCP_DELACK_MAX	((unsigned)(HZ/5))	/* maximal time to delay before sending an ACK */
 126#if HZ >= 100
 127#define TCP_DELACK_MIN	((unsigned)(HZ/25))	/* minimal time to delay before sending an ACK */
 128#define TCP_ATO_MIN	((unsigned)(HZ/25))
 129#else
 130#define TCP_DELACK_MIN	4U
 131#define TCP_ATO_MIN	4U
 132#endif
 133#define TCP_RTO_MAX	((unsigned)(120*HZ))
 134#define TCP_RTO_MIN	((unsigned)(HZ/5))
 
 135#define TCP_TIMEOUT_INIT ((unsigned)(1*HZ))	/* RFC6298 2.1 initial RTO value	*/
 136#define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ))	/* RFC 1122 initial RTO value, now
 137						 * used as a fallback RTO for the
 138						 * initial data transmission if no
 139						 * valid RTT sample has been acquired,
 140						 * most likely due to retrans in 3WHS.
 141						 */
 142
 143#define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
 144					                 * for local resources.
 145					                 */
 146
 147#define TCP_KEEPALIVE_TIME	(120*60*HZ)	/* two hours */
 148#define TCP_KEEPALIVE_PROBES	9		/* Max of 9 keepalive probes	*/
 149#define TCP_KEEPALIVE_INTVL	(75*HZ)
 150
 151#define MAX_TCP_KEEPIDLE	32767
 152#define MAX_TCP_KEEPINTVL	32767
 153#define MAX_TCP_KEEPCNT		127
 154#define MAX_TCP_SYNCNT		127
 155
 156#define TCP_SYNQ_INTERVAL	(HZ/5)	/* Period of SYNACK timer */
 157
 158#define TCP_PAWS_24DAYS	(60 * 60 * 24 * 24)
 159#define TCP_PAWS_MSL	60		/* Per-host timestamps are invalidated
 160					 * after this time. It should be equal
 161					 * (or greater than) TCP_TIMEWAIT_LEN
 162					 * to provide reliability equal to one
 163					 * provided by timewait state.
 164					 */
 165#define TCP_PAWS_WINDOW	1		/* Replay window for per-host
 166					 * timestamps. It must be less than
 167					 * minimal timewait lifetime.
 168					 */
 169/*
 170 *	TCP option
 171 */
 172
 173#define TCPOPT_NOP		1	/* Padding */
 174#define TCPOPT_EOL		0	/* End of options */
 175#define TCPOPT_MSS		2	/* Segment size negotiating */
 176#define TCPOPT_WINDOW		3	/* Window scaling */
 177#define TCPOPT_SACK_PERM        4       /* SACK Permitted */
 178#define TCPOPT_SACK             5       /* SACK Block */
 179#define TCPOPT_TIMESTAMP	8	/* Better RTT estimations/PAWS */
 180#define TCPOPT_MD5SIG		19	/* MD5 Signature (RFC2385) */
 
 181#define TCPOPT_FASTOPEN		34	/* Fast open (RFC7413) */
 182#define TCPOPT_EXP		254	/* Experimental */
 183/* Magic number to be after the option value for sharing TCP
 184 * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
 185 */
 186#define TCPOPT_FASTOPEN_MAGIC	0xF989
 
 187
 188/*
 189 *     TCP option lengths
 190 */
 191
 192#define TCPOLEN_MSS            4
 193#define TCPOLEN_WINDOW         3
 194#define TCPOLEN_SACK_PERM      2
 195#define TCPOLEN_TIMESTAMP      10
 196#define TCPOLEN_MD5SIG         18
 197#define TCPOLEN_FASTOPEN_BASE  2
 198#define TCPOLEN_EXP_FASTOPEN_BASE  4
 
 199
 200/* But this is what stacks really send out. */
 201#define TCPOLEN_TSTAMP_ALIGNED		12
 202#define TCPOLEN_WSCALE_ALIGNED		4
 203#define TCPOLEN_SACKPERM_ALIGNED	4
 204#define TCPOLEN_SACK_BASE		2
 205#define TCPOLEN_SACK_BASE_ALIGNED	4
 206#define TCPOLEN_SACK_PERBLOCK		8
 207#define TCPOLEN_MD5SIG_ALIGNED		20
 208#define TCPOLEN_MSS_ALIGNED		4
 
 209
 210/* Flags in tp->nonagle */
 211#define TCP_NAGLE_OFF		1	/* Nagle's algo is disabled */
 212#define TCP_NAGLE_CORK		2	/* Socket is corked	    */
 213#define TCP_NAGLE_PUSH		4	/* Cork is overridden for already queued data */
 214
 215/* TCP thin-stream limits */
 216#define TCP_THIN_LINEAR_RETRIES 6       /* After 6 linear retries, do exp. backoff */
 217
 218/* TCP initial congestion window as per rfc6928 */
 219#define TCP_INIT_CWND		10
 220
 221/* Bit Flags for sysctl_tcp_fastopen */
 222#define	TFO_CLIENT_ENABLE	1
 223#define	TFO_SERVER_ENABLE	2
 224#define	TFO_CLIENT_NO_COOKIE	4	/* Data in SYN w/o cookie option */
 225
 226/* Accept SYN data w/o any cookie option */
 227#define	TFO_SERVER_COOKIE_NOT_REQD	0x200
 228
 229/* Force enable TFO on all listeners, i.e., not requiring the
 230 * TCP_FASTOPEN socket option.
 231 */
 232#define	TFO_SERVER_WO_SOCKOPT1	0x400
 233
 234extern struct inet_timewait_death_row tcp_death_row;
 235
 236/* sysctl variables for tcp */
 237extern int sysctl_tcp_timestamps;
 238extern int sysctl_tcp_window_scaling;
 239extern int sysctl_tcp_sack;
 240extern int sysctl_tcp_fastopen;
 241extern int sysctl_tcp_retrans_collapse;
 242extern int sysctl_tcp_stdurg;
 243extern int sysctl_tcp_rfc1337;
 244extern int sysctl_tcp_abort_on_overflow;
 245extern int sysctl_tcp_max_orphans;
 246extern int sysctl_tcp_fack;
 247extern int sysctl_tcp_reordering;
 248extern int sysctl_tcp_max_reordering;
 249extern int sysctl_tcp_dsack;
 250extern long sysctl_tcp_mem[3];
 251extern int sysctl_tcp_wmem[3];
 252extern int sysctl_tcp_rmem[3];
 253extern int sysctl_tcp_app_win;
 254extern int sysctl_tcp_adv_win_scale;
 255extern int sysctl_tcp_frto;
 256extern int sysctl_tcp_low_latency;
 257extern int sysctl_tcp_nometrics_save;
 258extern int sysctl_tcp_moderate_rcvbuf;
 259extern int sysctl_tcp_tso_win_divisor;
 260extern int sysctl_tcp_workaround_signed_windows;
 261extern int sysctl_tcp_slow_start_after_idle;
 262extern int sysctl_tcp_thin_linear_timeouts;
 263extern int sysctl_tcp_thin_dupack;
 264extern int sysctl_tcp_early_retrans;
 265extern int sysctl_tcp_limit_output_bytes;
 266extern int sysctl_tcp_challenge_ack_limit;
 267extern int sysctl_tcp_min_tso_segs;
 268extern int sysctl_tcp_min_rtt_wlen;
 269extern int sysctl_tcp_autocorking;
 270extern int sysctl_tcp_invalid_ratelimit;
 271extern int sysctl_tcp_pacing_ss_ratio;
 272extern int sysctl_tcp_pacing_ca_ratio;
 273
 274extern atomic_long_t tcp_memory_allocated;
 275extern struct percpu_counter tcp_sockets_allocated;
 276extern int tcp_memory_pressure;
 277
 278/* optimized version of sk_under_memory_pressure() for TCP sockets */
 279static inline bool tcp_under_memory_pressure(const struct sock *sk)
 280{
 281	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
 282	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
 283		return true;
 284
 285	return tcp_memory_pressure;
 286}
 287/*
 288 * The next routines deal with comparing 32 bit unsigned ints
 289 * and worry about wraparound (automatic with unsigned arithmetic).
 290 */
 291
 292static inline bool before(__u32 seq1, __u32 seq2)
 293{
 294        return (__s32)(seq1-seq2) < 0;
 295}
 296#define after(seq2, seq1) 	before(seq1, seq2)
 297
 298/* is s2<=s1<=s3 ? */
 299static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
 300{
 301	return seq3 - seq2 >= seq1 - seq2;
 302}
 303
 304static inline bool tcp_out_of_memory(struct sock *sk)
 305{
 306	if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
 307	    sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
 308		return true;
 309	return false;
 310}
 311
 312void sk_forced_mem_schedule(struct sock *sk, int size);
 313
 314static inline bool tcp_too_many_orphans(struct sock *sk, int shift)
 315{
 316	struct percpu_counter *ocp = sk->sk_prot->orphan_count;
 317	int orphans = percpu_counter_read_positive(ocp);
 318
 319	if (orphans << shift > sysctl_tcp_max_orphans) {
 320		orphans = percpu_counter_sum_positive(ocp);
 321		if (orphans << shift > sysctl_tcp_max_orphans)
 322			return true;
 323	}
 324	return false;
 325}
 326
 327bool tcp_check_oom(struct sock *sk, int shift);
 328
 329
 330extern struct proto tcp_prot;
 331
 332#define TCP_INC_STATS(net, field)	SNMP_INC_STATS((net)->mib.tcp_statistics, field)
 333#define __TCP_INC_STATS(net, field)	__SNMP_INC_STATS((net)->mib.tcp_statistics, field)
 334#define TCP_DEC_STATS(net, field)	SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
 335#define TCP_ADD_STATS(net, field, val)	SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
 336
 337void tcp_tasklet_init(void);
 338
 339void tcp_v4_err(struct sk_buff *skb, u32);
 340
 341void tcp_shutdown(struct sock *sk, int how);
 342
 343void tcp_v4_early_demux(struct sk_buff *skb);
 344int tcp_v4_rcv(struct sk_buff *skb);
 345
 346int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
 347int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
 
 348int tcp_sendpage(struct sock *sk, struct page *page, int offset, size_t size,
 349		 int flags);
 
 
 
 
 
 
 
 350void tcp_release_cb(struct sock *sk);
 351void tcp_wfree(struct sk_buff *skb);
 352void tcp_write_timer_handler(struct sock *sk);
 353void tcp_delack_timer_handler(struct sock *sk);
 354int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg);
 355int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
 356void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
 357			 const struct tcphdr *th, unsigned int len);
 358void tcp_rcv_space_adjust(struct sock *sk);
 359int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
 360void tcp_twsk_destructor(struct sock *sk);
 361ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
 362			struct pipe_inode_info *pipe, size_t len,
 363			unsigned int flags);
 364
 
 365static inline void tcp_dec_quickack_mode(struct sock *sk,
 366					 const unsigned int pkts)
 367{
 368	struct inet_connection_sock *icsk = inet_csk(sk);
 369
 370	if (icsk->icsk_ack.quick) {
 371		if (pkts >= icsk->icsk_ack.quick) {
 372			icsk->icsk_ack.quick = 0;
 373			/* Leaving quickack mode we deflate ATO. */
 374			icsk->icsk_ack.ato   = TCP_ATO_MIN;
 375		} else
 376			icsk->icsk_ack.quick -= pkts;
 377	}
 378}
 379
 380#define	TCP_ECN_OK		1
 381#define	TCP_ECN_QUEUE_CWR	2
 382#define	TCP_ECN_DEMAND_CWR	4
 383#define	TCP_ECN_SEEN		8
 384
 385enum tcp_tw_status {
 386	TCP_TW_SUCCESS = 0,
 387	TCP_TW_RST = 1,
 388	TCP_TW_ACK = 2,
 389	TCP_TW_SYN = 3
 390};
 391
 392
 393enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
 394					      struct sk_buff *skb,
 395					      const struct tcphdr *th);
 396struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
 397			   struct request_sock *req, bool fastopen);
 
 398int tcp_child_process(struct sock *parent, struct sock *child,
 399		      struct sk_buff *skb);
 400void tcp_enter_loss(struct sock *sk);
 
 401void tcp_clear_retrans(struct tcp_sock *tp);
 402void tcp_update_metrics(struct sock *sk);
 403void tcp_init_metrics(struct sock *sk);
 404void tcp_metrics_init(void);
 405bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst,
 406			bool paws_check, bool timestamps);
 407bool tcp_remember_stamp(struct sock *sk);
 408bool tcp_tw_remember_stamp(struct inet_timewait_sock *tw);
 409void tcp_fetch_timewait_stamp(struct sock *sk, struct dst_entry *dst);
 410void tcp_disable_fack(struct tcp_sock *tp);
 411void tcp_close(struct sock *sk, long timeout);
 412void tcp_init_sock(struct sock *sk);
 413unsigned int tcp_poll(struct file *file, struct socket *sock,
 
 414		      struct poll_table_struct *wait);
 415int tcp_getsockopt(struct sock *sk, int level, int optname,
 416		   char __user *optval, int __user *optlen);
 417int tcp_setsockopt(struct sock *sk, int level, int optname,
 418		   char __user *optval, unsigned int optlen);
 419int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
 420			  char __user *optval, int __user *optlen);
 421int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
 422			  char __user *optval, unsigned int optlen);
 423void tcp_set_keepalive(struct sock *sk, int val);
 424void tcp_syn_ack_timeout(const struct request_sock *req);
 425int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
 426		int flags, int *addr_len);
 427void tcp_parse_options(const struct sk_buff *skb,
 
 
 
 
 
 
 428		       struct tcp_options_received *opt_rx,
 429		       int estab, struct tcp_fastopen_cookie *foc);
 430const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
 431
 432/*
 
 
 
 
 
 
 
 
 
 
 433 *	TCP v4 functions exported for the inet6 API
 434 */
 435
 436void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
 437void tcp_v4_mtu_reduced(struct sock *sk);
 438void tcp_req_err(struct sock *sk, u32 seq, bool abort);
 
 439int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
 440struct sock *tcp_create_openreq_child(const struct sock *sk,
 441				      struct request_sock *req,
 442				      struct sk_buff *skb);
 443void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
 444struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
 445				  struct request_sock *req,
 446				  struct dst_entry *dst,
 447				  struct request_sock *req_unhash,
 448				  bool *own_req);
 449int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
 450int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
 451int tcp_connect(struct sock *sk);
 452enum tcp_synack_type {
 453	TCP_SYNACK_NORMAL,
 454	TCP_SYNACK_FASTOPEN,
 455	TCP_SYNACK_COOKIE,
 456};
 457struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
 458				struct request_sock *req,
 459				struct tcp_fastopen_cookie *foc,
 460				enum tcp_synack_type synack_type);
 461int tcp_disconnect(struct sock *sk, int flags);
 462
 463void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
 464int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
 465void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
 466
 467/* From syncookies.c */
 468struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
 469				 struct request_sock *req,
 470				 struct dst_entry *dst);
 471int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
 472		      u32 cookie);
 473struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
 
 
 474#ifdef CONFIG_SYN_COOKIES
 475
 476/* Syncookies use a monotonic timer which increments every 60 seconds.
 477 * This counter is used both as a hash input and partially encoded into
 478 * the cookie value.  A cookie is only validated further if the delta
 479 * between the current counter value and the encoded one is less than this,
 480 * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
 481 * the counter advances immediately after a cookie is generated).
 482 */
 483#define MAX_SYNCOOKIE_AGE	2
 484#define TCP_SYNCOOKIE_PERIOD	(60 * HZ)
 485#define TCP_SYNCOOKIE_VALID	(MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
 486
 487/* syncookies: remember time of last synqueue overflow
 488 * But do not dirty this field too often (once per second is enough)
 489 * It is racy as we do not hold a lock, but race is very minor.
 490 */
 491static inline void tcp_synq_overflow(const struct sock *sk)
 492{
 493	unsigned long last_overflow = tcp_sk(sk)->rx_opt.ts_recent_stamp;
 494	unsigned long now = jiffies;
 495
 496	if (time_after(now, last_overflow + HZ))
 497		tcp_sk(sk)->rx_opt.ts_recent_stamp = now;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 498}
 499
 500/* syncookies: no recent synqueue overflow on this listening socket? */
 501static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
 502{
 503	unsigned long last_overflow = tcp_sk(sk)->rx_opt.ts_recent_stamp;
 
 
 
 
 
 
 
 
 
 
 
 
 
 504
 505	return time_after(jiffies, last_overflow + TCP_SYNCOOKIE_VALID);
 
 
 
 
 
 
 
 
 
 
 506}
 507
 508static inline u32 tcp_cookie_time(void)
 509{
 510	u64 val = get_jiffies_64();
 511
 512	do_div(val, TCP_SYNCOOKIE_PERIOD);
 513	return val;
 514}
 515
 516u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
 517			      u16 *mssp);
 518__u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
 519__u32 cookie_init_timestamp(struct request_sock *req);
 520bool cookie_timestamp_decode(struct tcp_options_received *opt);
 
 521bool cookie_ecn_ok(const struct tcp_options_received *opt,
 522		   const struct net *net, const struct dst_entry *dst);
 523
 524/* From net/ipv6/syncookies.c */
 525int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th,
 526		      u32 cookie);
 527struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
 528
 529u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
 530			      const struct tcphdr *th, u16 *mssp);
 531__u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
 532#endif
 533/* tcp_output.c */
 534
 535u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
 536		     int min_tso_segs);
 537void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
 538			       int nonagle);
 539bool tcp_may_send_now(struct sock *sk);
 540int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
 541int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
 542void tcp_retransmit_timer(struct sock *sk);
 543void tcp_xmit_retransmit_queue(struct sock *);
 544void tcp_simple_retransmit(struct sock *);
 
 545int tcp_trim_head(struct sock *, struct sk_buff *, u32);
 546int tcp_fragment(struct sock *, struct sk_buff *, u32, unsigned int, gfp_t);
 
 
 
 
 
 
 547
 548void tcp_send_probe0(struct sock *);
 549void tcp_send_partial(struct sock *);
 550int tcp_write_wakeup(struct sock *, int mib);
 551void tcp_send_fin(struct sock *sk);
 552void tcp_send_active_reset(struct sock *sk, gfp_t priority);
 553int tcp_send_synack(struct sock *);
 554void tcp_push_one(struct sock *, unsigned int mss_now);
 
 555void tcp_send_ack(struct sock *sk);
 556void tcp_send_delayed_ack(struct sock *sk);
 557void tcp_send_loss_probe(struct sock *sk);
 558bool tcp_schedule_loss_probe(struct sock *sk);
 559void tcp_skb_collapse_tstamp(struct sk_buff *skb,
 560			     const struct sk_buff *next_skb);
 561
 562/* tcp_input.c */
 563void tcp_resume_early_retransmit(struct sock *sk);
 564void tcp_rearm_rto(struct sock *sk);
 565void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
 566void tcp_reset(struct sock *sk);
 567void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb);
 568void tcp_fin(struct sock *sk);
 569
 570/* tcp_timer.c */
 571void tcp_init_xmit_timers(struct sock *);
 572static inline void tcp_clear_xmit_timers(struct sock *sk)
 573{
 
 
 
 
 
 
 574	inet_csk_clear_xmit_timers(sk);
 575}
 576
 577unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
 578unsigned int tcp_current_mss(struct sock *sk);
 579
 580/* Bound MSS / TSO packet size with the half of the window */
 581static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
 582{
 583	int cutoff;
 584
 585	/* When peer uses tiny windows, there is no use in packetizing
 586	 * to sub-MSS pieces for the sake of SWS or making sure there
 587	 * are enough packets in the pipe for fast recovery.
 588	 *
 589	 * On the other hand, for extremely large MSS devices, handling
 590	 * smaller than MSS windows in this way does make sense.
 591	 */
 592	if (tp->max_window > TCP_MSS_DEFAULT)
 593		cutoff = (tp->max_window >> 1);
 594	else
 595		cutoff = tp->max_window;
 596
 597	if (cutoff && pktsize > cutoff)
 598		return max_t(int, cutoff, 68U - tp->tcp_header_len);
 599	else
 600		return pktsize;
 601}
 602
 603/* tcp.c */
 604void tcp_get_info(struct sock *, struct tcp_info *);
 605
 606/* Read 'sendfile()'-style from a TCP socket */
 607int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
 608		  sk_read_actor_t recv_actor);
 609
 610void tcp_initialize_rcv_mss(struct sock *sk);
 611
 612int tcp_mtu_to_mss(struct sock *sk, int pmtu);
 613int tcp_mss_to_mtu(struct sock *sk, int mss);
 614void tcp_mtup_init(struct sock *sk);
 615void tcp_init_buffer_space(struct sock *sk);
 616
 617static inline void tcp_bound_rto(const struct sock *sk)
 618{
 619	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
 620		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
 621}
 622
 623static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
 624{
 625	return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
 626}
 627
 628static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
 629{
 630	tp->pred_flags = htonl((tp->tcp_header_len << 26) |
 631			       ntohl(TCP_FLAG_ACK) |
 632			       snd_wnd);
 633}
 634
 635static inline void tcp_fast_path_on(struct tcp_sock *tp)
 636{
 637	__tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
 638}
 639
 640static inline void tcp_fast_path_check(struct sock *sk)
 641{
 642	struct tcp_sock *tp = tcp_sk(sk);
 643
 644	if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
 645	    tp->rcv_wnd &&
 646	    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
 647	    !tp->urg_data)
 648		tcp_fast_path_on(tp);
 649}
 650
 651/* Compute the actual rto_min value */
 652static inline u32 tcp_rto_min(struct sock *sk)
 653{
 654	const struct dst_entry *dst = __sk_dst_get(sk);
 655	u32 rto_min = TCP_RTO_MIN;
 656
 657	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
 658		rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
 659	return rto_min;
 660}
 661
 662static inline u32 tcp_rto_min_us(struct sock *sk)
 663{
 664	return jiffies_to_usecs(tcp_rto_min(sk));
 665}
 666
 667static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
 668{
 669	return dst_metric_locked(dst, RTAX_CC_ALGO);
 670}
 671
 672/* Minimum RTT in usec. ~0 means not available. */
 673static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
 674{
 675	return minmax_get(&tp->rtt_min);
 676}
 677
 678/* Compute the actual receive window we are currently advertising.
 679 * Rcv_nxt can be after the window if our peer push more data
 680 * than the offered window.
 681 */
 682static inline u32 tcp_receive_window(const struct tcp_sock *tp)
 683{
 684	s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
 685
 686	if (win < 0)
 687		win = 0;
 688	return (u32) win;
 689}
 690
 691/* Choose a new window, without checks for shrinking, and without
 692 * scaling applied to the result.  The caller does these things
 693 * if necessary.  This is a "raw" window selection.
 694 */
 695u32 __tcp_select_window(struct sock *sk);
 696
 697void tcp_send_window_probe(struct sock *sk);
 698
 699/* TCP timestamps are only 32-bits, this causes a slight
 700 * complication on 64-bit systems since we store a snapshot
 701 * of jiffies in the buffer control blocks below.  We decided
 702 * to use only the low 32-bits of jiffies and hide the ugly
 703 * casts with the following macro.
 
 
 
 
 
 704 */
 705#define tcp_time_stamp		((__u32)(jiffies))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 706
 707static inline u32 tcp_skb_timestamp(const struct sk_buff *skb)
 708{
 709	return skb->skb_mstamp.stamp_jiffies;
 
 
 
 
 
 
 710}
 711
 712
 713#define tcp_flag_byte(th) (((u_int8_t *)th)[13])
 714
 715#define TCPHDR_FIN 0x01
 716#define TCPHDR_SYN 0x02
 717#define TCPHDR_RST 0x04
 718#define TCPHDR_PSH 0x08
 719#define TCPHDR_ACK 0x10
 720#define TCPHDR_URG 0x20
 721#define TCPHDR_ECE 0x40
 722#define TCPHDR_CWR 0x80
 723
 724#define TCPHDR_SYN_ECN	(TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
 725
 726/* This is what the send packet queuing engine uses to pass
 727 * TCP per-packet control information to the transmission code.
 728 * We also store the host-order sequence numbers in here too.
 729 * This is 44 bytes if IPV6 is enabled.
 730 * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
 731 */
 732struct tcp_skb_cb {
 733	__u32		seq;		/* Starting sequence number	*/
 734	__u32		end_seq;	/* SEQ + FIN + SYN + datalen	*/
 735	union {
 736		/* Note : tcp_tw_isn is used in input path only
 737		 *	  (isn chosen by tcp_timewait_state_process())
 738		 *
 739		 * 	  tcp_gso_segs/size are used in write queue only,
 740		 *	  cf tcp_skb_pcount()/tcp_skb_mss()
 741		 */
 742		__u32		tcp_tw_isn;
 743		struct {
 744			u16	tcp_gso_segs;
 745			u16	tcp_gso_size;
 746		};
 747	};
 748	__u8		tcp_flags;	/* TCP header flags. (tcp[13])	*/
 749
 750	__u8		sacked;		/* State flags for SACK/FACK.	*/
 751#define TCPCB_SACKED_ACKED	0x01	/* SKB ACK'd by a SACK block	*/
 752#define TCPCB_SACKED_RETRANS	0x02	/* SKB retransmitted		*/
 753#define TCPCB_LOST		0x04	/* SKB is lost			*/
 754#define TCPCB_TAGBITS		0x07	/* All tag bits			*/
 755#define TCPCB_REPAIRED		0x10	/* SKB repaired (no skb_mstamp)	*/
 756#define TCPCB_EVER_RETRANS	0x80	/* Ever retransmitted frame	*/
 757#define TCPCB_RETRANS		(TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \
 758				TCPCB_REPAIRED)
 759
 760	__u8		ip_dsfield;	/* IPv4 tos or IPv6 dsfield	*/
 761	__u8		txstamp_ack:1,	/* Record TX timestamp for ack? */
 762			eor:1,		/* Is skb MSG_EOR marked? */
 763			unused:6;
 
 764	__u32		ack_seq;	/* Sequence number ACK'd	*/
 765	union {
 766		struct {
 767			/* There is space for up to 24 bytes */
 768			__u32 in_flight:30,/* Bytes in flight at transmit */
 769			      is_app_limited:1, /* cwnd not fully used? */
 770			      unused:1;
 771			/* pkts S/ACKed so far upon tx of skb, incl retrans: */
 772			__u32 delivered;
 773			/* start of send pipeline phase */
 774			struct skb_mstamp first_tx_mstamp;
 775			/* when we reached the "delivered" count */
 776			struct skb_mstamp delivered_mstamp;
 777		} tx;   /* only used for outgoing skbs */
 778		union {
 779			struct inet_skb_parm	h4;
 780#if IS_ENABLED(CONFIG_IPV6)
 781			struct inet6_skb_parm	h6;
 782#endif
 783		} header;	/* For incoming skbs */
 
 
 
 
 
 784	};
 785};
 786
 787#define TCP_SKB_CB(__skb)	((struct tcp_skb_cb *)&((__skb)->cb[0]))
 788
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 789
 790#if IS_ENABLED(CONFIG_IPV6)
 791/* This is the variant of inet6_iif() that must be used by TCP,
 792 * as TCP moves IP6CB into a different location in skb->cb[]
 793 */
 794static inline int tcp_v6_iif(const struct sk_buff *skb)
 795{
 
 
 
 
 
 796	bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
 797
 798	return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
 799}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 800#endif
 801
 802/* TCP_SKB_CB reference means this can not be used from early demux */
 803static inline bool inet_exact_dif_match(struct net *net, struct sk_buff *skb)
 804{
 805#if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
 806	if (!net->ipv4.sysctl_tcp_l3mdev_accept &&
 807	    skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
 808		return true;
 809#endif
 810	return false;
 811}
 812
 
 
 
 
 
 
 
 
 
 
 813/* Due to TSO, an SKB can be composed of multiple actual
 814 * packets.  To keep these tracked properly, we use this.
 815 */
 816static inline int tcp_skb_pcount(const struct sk_buff *skb)
 817{
 818	return TCP_SKB_CB(skb)->tcp_gso_segs;
 819}
 820
 821static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
 822{
 823	TCP_SKB_CB(skb)->tcp_gso_segs = segs;
 824}
 825
 826static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
 827{
 828	TCP_SKB_CB(skb)->tcp_gso_segs += segs;
 829}
 830
 831/* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
 832static inline int tcp_skb_mss(const struct sk_buff *skb)
 833{
 834	return TCP_SKB_CB(skb)->tcp_gso_size;
 835}
 836
 837static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
 838{
 839	return likely(!TCP_SKB_CB(skb)->eor);
 840}
 841
 
 
 
 
 
 
 
 842/* Events passed to congestion control interface */
 843enum tcp_ca_event {
 844	CA_EVENT_TX_START,	/* first transmit when no packets in flight */
 845	CA_EVENT_CWND_RESTART,	/* congestion window restart */
 846	CA_EVENT_COMPLETE_CWR,	/* end of congestion recovery */
 847	CA_EVENT_LOSS,		/* loss timeout */
 848	CA_EVENT_ECN_NO_CE,	/* ECT set, but not CE marked */
 849	CA_EVENT_ECN_IS_CE,	/* received CE marked IP packet */
 850	CA_EVENT_DELAYED_ACK,	/* Delayed ack is sent */
 851	CA_EVENT_NON_DELAYED_ACK,
 852};
 853
 854/* Information about inbound ACK, passed to cong_ops->in_ack_event() */
 855enum tcp_ca_ack_event_flags {
 856	CA_ACK_SLOWPATH		= (1 << 0),	/* In slow path processing */
 857	CA_ACK_WIN_UPDATE	= (1 << 1),	/* ACK updated window */
 858	CA_ACK_ECE		= (1 << 2),	/* ECE bit is set on ack */
 859};
 860
 861/*
 862 * Interface for adding new TCP congestion control handlers
 863 */
 864#define TCP_CA_NAME_MAX	16
 865#define TCP_CA_MAX	128
 866#define TCP_CA_BUF_MAX	(TCP_CA_NAME_MAX*TCP_CA_MAX)
 867
 868#define TCP_CA_UNSPEC	0
 869
 870/* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
 871#define TCP_CONG_NON_RESTRICTED 0x1
 872/* Requires ECN/ECT set on all packets */
 873#define TCP_CONG_NEEDS_ECN	0x2
 
 874
 875union tcp_cc_info;
 876
 877struct ack_sample {
 878	u32 pkts_acked;
 879	s32 rtt_us;
 880	u32 in_flight;
 881};
 882
 883/* A rate sample measures the number of (original/retransmitted) data
 884 * packets delivered "delivered" over an interval of time "interval_us".
 885 * The tcp_rate.c code fills in the rate sample, and congestion
 886 * control modules that define a cong_control function to run at the end
 887 * of ACK processing can optionally chose to consult this sample when
 888 * setting cwnd and pacing rate.
 889 * A sample is invalid if "delivered" or "interval_us" is negative.
 890 */
 891struct rate_sample {
 892	struct	skb_mstamp prior_mstamp; /* starting timestamp for interval */
 893	u32  prior_delivered;	/* tp->delivered at "prior_mstamp" */
 894	s32  delivered;		/* number of packets delivered over interval */
 895	long interval_us;	/* time for tp->delivered to incr "delivered" */
 
 
 896	long rtt_us;		/* RTT of last (S)ACKed packet (or -1) */
 897	int  losses;		/* number of packets marked lost upon ACK */
 898	u32  acked_sacked;	/* number of packets newly (S)ACKed upon ACK */
 899	u32  prior_in_flight;	/* in flight before this ACK */
 900	bool is_app_limited;	/* is sample from packet with bubble in pipe? */
 901	bool is_retrans;	/* is sample from retransmission? */
 
 902};
 903
 904struct tcp_congestion_ops {
 905	struct list_head	list;
 906	u32 key;
 907	u32 flags;
 908
 909	/* initialize private data (optional) */
 910	void (*init)(struct sock *sk);
 911	/* cleanup private data  (optional) */
 912	void (*release)(struct sock *sk);
 913
 914	/* return slow start threshold (required) */
 915	u32 (*ssthresh)(struct sock *sk);
 916	/* do new cwnd calculation (required) */
 917	void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
 918	/* call before changing ca_state (optional) */
 919	void (*set_state)(struct sock *sk, u8 new_state);
 920	/* call when cwnd event occurs (optional) */
 921	void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
 922	/* call when ack arrives (optional) */
 923	void (*in_ack_event)(struct sock *sk, u32 flags);
 924	/* new value of cwnd after loss (optional) */
 925	u32  (*undo_cwnd)(struct sock *sk);
 926	/* hook for packet ack accounting (optional) */
 927	void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
 928	/* suggest number of segments for each skb to transmit (optional) */
 929	u32 (*tso_segs_goal)(struct sock *sk);
 930	/* returns the multiplier used in tcp_sndbuf_expand (optional) */
 931	u32 (*sndbuf_expand)(struct sock *sk);
 932	/* call when packets are delivered to update cwnd and pacing rate,
 933	 * after all the ca_state processing. (optional)
 934	 */
 935	void (*cong_control)(struct sock *sk, const struct rate_sample *rs);
 936	/* get info for inet_diag (optional) */
 937	size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
 938			   union tcp_cc_info *info);
 939
 940	char 		name[TCP_CA_NAME_MAX];
 941	struct module 	*owner;
 942};
 943
 944int tcp_register_congestion_control(struct tcp_congestion_ops *type);
 945void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
 946
 947void tcp_assign_congestion_control(struct sock *sk);
 948void tcp_init_congestion_control(struct sock *sk);
 949void tcp_cleanup_congestion_control(struct sock *sk);
 950int tcp_set_default_congestion_control(const char *name);
 951void tcp_get_default_congestion_control(char *name);
 952void tcp_get_available_congestion_control(char *buf, size_t len);
 953void tcp_get_allowed_congestion_control(char *buf, size_t len);
 954int tcp_set_allowed_congestion_control(char *allowed);
 955int tcp_set_congestion_control(struct sock *sk, const char *name);
 
 956u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
 957void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
 958
 959u32 tcp_reno_ssthresh(struct sock *sk);
 960u32 tcp_reno_undo_cwnd(struct sock *sk);
 961void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
 962extern struct tcp_congestion_ops tcp_reno;
 963
 
 964struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
 965u32 tcp_ca_get_key_by_name(const char *name, bool *ecn_ca);
 966#ifdef CONFIG_INET
 967char *tcp_ca_get_name_by_key(u32 key, char *buffer);
 968#else
 969static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
 970{
 971	return NULL;
 972}
 973#endif
 974
 975static inline bool tcp_ca_needs_ecn(const struct sock *sk)
 976{
 977	const struct inet_connection_sock *icsk = inet_csk(sk);
 978
 979	return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
 980}
 981
 982static inline void tcp_set_ca_state(struct sock *sk, const u8 ca_state)
 983{
 984	struct inet_connection_sock *icsk = inet_csk(sk);
 985
 986	if (icsk->icsk_ca_ops->set_state)
 987		icsk->icsk_ca_ops->set_state(sk, ca_state);
 988	icsk->icsk_ca_state = ca_state;
 989}
 990
 991static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
 992{
 993	const struct inet_connection_sock *icsk = inet_csk(sk);
 994
 995	if (icsk->icsk_ca_ops->cwnd_event)
 996		icsk->icsk_ca_ops->cwnd_event(sk, event);
 997}
 998
 999/* From tcp_rate.c */
1000void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
1001void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
1002			    struct rate_sample *rs);
1003void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
1004		  struct skb_mstamp *now, struct rate_sample *rs);
1005void tcp_rate_check_app_limited(struct sock *sk);
1006
1007/* These functions determine how the current flow behaves in respect of SACK
1008 * handling. SACK is negotiated with the peer, and therefore it can vary
1009 * between different flows.
1010 *
1011 * tcp_is_sack - SACK enabled
1012 * tcp_is_reno - No SACK
1013 * tcp_is_fack - FACK enabled, implies SACK enabled
1014 */
1015static inline int tcp_is_sack(const struct tcp_sock *tp)
1016{
1017	return tp->rx_opt.sack_ok;
1018}
1019
1020static inline bool tcp_is_reno(const struct tcp_sock *tp)
1021{
1022	return !tcp_is_sack(tp);
1023}
1024
1025static inline bool tcp_is_fack(const struct tcp_sock *tp)
1026{
1027	return tp->rx_opt.sack_ok & TCP_FACK_ENABLED;
1028}
1029
1030static inline void tcp_enable_fack(struct tcp_sock *tp)
1031{
1032	tp->rx_opt.sack_ok |= TCP_FACK_ENABLED;
1033}
1034
1035/* TCP early-retransmit (ER) is similar to but more conservative than
1036 * the thin-dupack feature.  Enable ER only if thin-dupack is disabled.
1037 */
1038static inline void tcp_enable_early_retrans(struct tcp_sock *tp)
1039{
1040	struct net *net = sock_net((struct sock *)tp);
1041
1042	tp->do_early_retrans = sysctl_tcp_early_retrans &&
1043		sysctl_tcp_early_retrans < 4 && !sysctl_tcp_thin_dupack &&
1044		net->ipv4.sysctl_tcp_reordering == 3;
1045}
1046
1047static inline void tcp_disable_early_retrans(struct tcp_sock *tp)
1048{
1049	tp->do_early_retrans = 0;
1050}
1051
1052static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1053{
1054	return tp->sacked_out + tp->lost_out;
1055}
1056
1057/* This determines how many packets are "in the network" to the best
1058 * of our knowledge.  In many cases it is conservative, but where
1059 * detailed information is available from the receiver (via SACK
1060 * blocks etc.) we can make more aggressive calculations.
1061 *
1062 * Use this for decisions involving congestion control, use just
1063 * tp->packets_out to determine if the send queue is empty or not.
1064 *
1065 * Read this equation as:
1066 *
1067 *	"Packets sent once on transmission queue" MINUS
1068 *	"Packets left network, but not honestly ACKed yet" PLUS
1069 *	"Packets fast retransmitted"
1070 */
1071static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1072{
1073	return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1074}
1075
1076#define TCP_INFINITE_SSTHRESH	0x7fffffff
1077
1078static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1079{
1080	return tp->snd_cwnd < tp->snd_ssthresh;
1081}
1082
1083static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1084{
1085	return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1086}
1087
1088static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1089{
1090	return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1091	       (1 << inet_csk(sk)->icsk_ca_state);
1092}
1093
1094/* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1095 * The exception is cwnd reduction phase, when cwnd is decreasing towards
1096 * ssthresh.
1097 */
1098static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1099{
1100	const struct tcp_sock *tp = tcp_sk(sk);
1101
1102	if (tcp_in_cwnd_reduction(sk))
1103		return tp->snd_ssthresh;
1104	else
1105		return max(tp->snd_ssthresh,
1106			   ((tp->snd_cwnd >> 1) +
1107			    (tp->snd_cwnd >> 2)));
1108}
1109
1110/* Use define here intentionally to get WARN_ON location shown at the caller */
1111#define tcp_verify_left_out(tp)	WARN_ON(tcp_left_out(tp) > tp->packets_out)
1112
1113void tcp_enter_cwr(struct sock *sk);
1114__u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1115
1116/* The maximum number of MSS of available cwnd for which TSO defers
1117 * sending if not using sysctl_tcp_tso_win_divisor.
1118 */
1119static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1120{
1121	return 3;
1122}
1123
1124/* Returns end sequence number of the receiver's advertised window */
1125static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1126{
1127	return tp->snd_una + tp->snd_wnd;
1128}
1129
1130/* We follow the spirit of RFC2861 to validate cwnd but implement a more
1131 * flexible approach. The RFC suggests cwnd should not be raised unless
1132 * it was fully used previously. And that's exactly what we do in
1133 * congestion avoidance mode. But in slow start we allow cwnd to grow
1134 * as long as the application has used half the cwnd.
1135 * Example :
1136 *    cwnd is 10 (IW10), but application sends 9 frames.
1137 *    We allow cwnd to reach 18 when all frames are ACKed.
1138 * This check is safe because it's as aggressive as slow start which already
1139 * risks 100% overshoot. The advantage is that we discourage application to
1140 * either send more filler packets or data to artificially blow up the cwnd
1141 * usage, and allow application-limited process to probe bw more aggressively.
1142 */
1143static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1144{
1145	const struct tcp_sock *tp = tcp_sk(sk);
1146
1147	/* If in slow start, ensure cwnd grows to twice what was ACKed. */
1148	if (tcp_in_slow_start(tp))
1149		return tp->snd_cwnd < 2 * tp->max_packets_out;
1150
1151	return tp->is_cwnd_limited;
1152}
1153
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1154/* Something is really bad, we could not queue an additional packet,
1155 * because qdisc is full or receiver sent a 0 window.
1156 * We do not want to add fuel to the fire, or abort too early,
1157 * so make sure the timer we arm now is at least 200ms in the future,
1158 * regardless of current icsk_rto value (as it could be ~2ms)
1159 */
1160static inline unsigned long tcp_probe0_base(const struct sock *sk)
1161{
1162	return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1163}
1164
1165/* Variant of inet_csk_rto_backoff() used for zero window probes */
1166static inline unsigned long tcp_probe0_when(const struct sock *sk,
1167					    unsigned long max_when)
1168{
1169	u64 when = (u64)tcp_probe0_base(sk) << inet_csk(sk)->icsk_backoff;
1170
1171	return (unsigned long)min_t(u64, when, max_when);
1172}
1173
1174static inline void tcp_check_probe_timer(struct sock *sk)
1175{
1176	if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1177		inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1178					  tcp_probe0_base(sk), TCP_RTO_MAX);
1179}
1180
1181static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1182{
1183	tp->snd_wl1 = seq;
1184}
1185
1186static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1187{
1188	tp->snd_wl1 = seq;
1189}
1190
1191/*
1192 * Calculate(/check) TCP checksum
1193 */
1194static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1195				   __be32 daddr, __wsum base)
1196{
1197	return csum_tcpudp_magic(saddr,daddr,len,IPPROTO_TCP,base);
1198}
1199
1200static inline __sum16 __tcp_checksum_complete(struct sk_buff *skb)
1201{
1202	return __skb_checksum_complete(skb);
1203}
1204
1205static inline bool tcp_checksum_complete(struct sk_buff *skb)
1206{
1207	return !skb_csum_unnecessary(skb) &&
1208		__tcp_checksum_complete(skb);
1209}
1210
1211/* Prequeue for VJ style copy to user, combined with checksumming. */
1212
1213static inline void tcp_prequeue_init(struct tcp_sock *tp)
1214{
1215	tp->ucopy.task = NULL;
1216	tp->ucopy.len = 0;
1217	tp->ucopy.memory = 0;
1218	skb_queue_head_init(&tp->ucopy.prequeue);
1219}
1220
1221bool tcp_prequeue(struct sock *sk, struct sk_buff *skb);
1222bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb);
1223int tcp_filter(struct sock *sk, struct sk_buff *skb);
1224
1225#undef STATE_TRACE
1226
1227#ifdef STATE_TRACE
1228static const char *statename[]={
1229	"Unused","Established","Syn Sent","Syn Recv",
1230	"Fin Wait 1","Fin Wait 2","Time Wait", "Close",
1231	"Close Wait","Last ACK","Listen","Closing"
1232};
1233#endif
1234void tcp_set_state(struct sock *sk, int state);
1235
1236void tcp_done(struct sock *sk);
1237
1238int tcp_abort(struct sock *sk, int err);
1239
1240static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1241{
1242	rx_opt->dsack = 0;
1243	rx_opt->num_sacks = 0;
1244}
1245
1246u32 tcp_default_init_rwnd(u32 mss);
1247void tcp_cwnd_restart(struct sock *sk, s32 delta);
1248
1249static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1250{
 
1251	struct tcp_sock *tp = tcp_sk(sk);
1252	s32 delta;
1253
1254	if (!sysctl_tcp_slow_start_after_idle || tp->packets_out)
 
1255		return;
1256	delta = tcp_time_stamp - tp->lsndtime;
1257	if (delta > inet_csk(sk)->icsk_rto)
1258		tcp_cwnd_restart(sk, delta);
1259}
1260
1261/* Determine a window scaling and initial window to offer. */
1262void tcp_select_initial_window(int __space, __u32 mss, __u32 *rcv_wnd,
 
1263			       __u32 *window_clamp, int wscale_ok,
1264			       __u8 *rcv_wscale, __u32 init_rcv_wnd);
1265
1266static inline int tcp_win_from_space(int space)
1267{
1268	return sysctl_tcp_adv_win_scale<=0 ?
1269		(space>>(-sysctl_tcp_adv_win_scale)) :
1270		space - (space>>sysctl_tcp_adv_win_scale);
 
 
1271}
1272
1273/* Note: caller must be prepared to deal with negative returns */
1274static inline int tcp_space(const struct sock *sk)
1275{
1276	return tcp_win_from_space(sk->sk_rcvbuf -
 
1277				  atomic_read(&sk->sk_rmem_alloc));
1278}
1279
1280static inline int tcp_full_space(const struct sock *sk)
1281{
1282	return tcp_win_from_space(sk->sk_rcvbuf);
 
 
 
 
 
 
 
 
 
 
 
 
 
1283}
1284
1285extern void tcp_openreq_init_rwin(struct request_sock *req,
1286				  const struct sock *sk_listener,
1287				  const struct dst_entry *dst);
1288
1289void tcp_enter_memory_pressure(struct sock *sk);
 
1290
1291static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1292{
1293	struct net *net = sock_net((struct sock *)tp);
1294
1295	return tp->keepalive_intvl ? : net->ipv4.sysctl_tcp_keepalive_intvl;
1296}
1297
1298static inline int keepalive_time_when(const struct tcp_sock *tp)
1299{
1300	struct net *net = sock_net((struct sock *)tp);
1301
1302	return tp->keepalive_time ? : net->ipv4.sysctl_tcp_keepalive_time;
1303}
1304
1305static inline int keepalive_probes(const struct tcp_sock *tp)
1306{
1307	struct net *net = sock_net((struct sock *)tp);
1308
1309	return tp->keepalive_probes ? : net->ipv4.sysctl_tcp_keepalive_probes;
1310}
1311
1312static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1313{
1314	const struct inet_connection_sock *icsk = &tp->inet_conn;
1315
1316	return min_t(u32, tcp_time_stamp - icsk->icsk_ack.lrcvtime,
1317			  tcp_time_stamp - tp->rcv_tstamp);
1318}
1319
1320static inline int tcp_fin_time(const struct sock *sk)
1321{
1322	int fin_timeout = tcp_sk(sk)->linger2 ? : sock_net(sk)->ipv4.sysctl_tcp_fin_timeout;
1323	const int rto = inet_csk(sk)->icsk_rto;
1324
1325	if (fin_timeout < (rto << 2) - (rto >> 1))
1326		fin_timeout = (rto << 2) - (rto >> 1);
1327
1328	return fin_timeout;
1329}
1330
1331static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1332				  int paws_win)
1333{
1334	if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1335		return true;
1336	if (unlikely(get_seconds() >= rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS))
 
1337		return true;
1338	/*
1339	 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1340	 * then following tcp messages have valid values. Ignore 0 value,
1341	 * or else 'negative' tsval might forbid us to accept their packets.
1342	 */
1343	if (!rx_opt->ts_recent)
1344		return true;
1345	return false;
1346}
1347
1348static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1349				   int rst)
1350{
1351	if (tcp_paws_check(rx_opt, 0))
1352		return false;
1353
1354	/* RST segments are not recommended to carry timestamp,
1355	   and, if they do, it is recommended to ignore PAWS because
1356	   "their cleanup function should take precedence over timestamps."
1357	   Certainly, it is mistake. It is necessary to understand the reasons
1358	   of this constraint to relax it: if peer reboots, clock may go
1359	   out-of-sync and half-open connections will not be reset.
1360	   Actually, the problem would be not existing if all
1361	   the implementations followed draft about maintaining clock
1362	   via reboots. Linux-2.2 DOES NOT!
1363
1364	   However, we can relax time bounds for RST segments to MSL.
1365	 */
1366	if (rst && get_seconds() >= rx_opt->ts_recent_stamp + TCP_PAWS_MSL)
 
1367		return false;
1368	return true;
1369}
1370
1371bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1372			  int mib_idx, u32 *last_oow_ack_time);
1373
1374static inline void tcp_mib_init(struct net *net)
1375{
1376	/* See RFC 2012 */
1377	TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1378	TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1379	TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1380	TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1381}
1382
1383/* from STCP */
1384static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1385{
1386	tp->lost_skb_hint = NULL;
1387}
1388
1389static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1390{
1391	tcp_clear_retrans_hints_partial(tp);
1392	tp->retransmit_skb_hint = NULL;
1393}
1394
1395union tcp_md5_addr {
1396	struct in_addr  a4;
1397#if IS_ENABLED(CONFIG_IPV6)
1398	struct in6_addr	a6;
1399#endif
1400};
1401
1402/* - key database */
1403struct tcp_md5sig_key {
1404	struct hlist_node	node;
1405	u8			keylen;
1406	u8			family; /* AF_INET or AF_INET6 */
 
1407	union tcp_md5_addr	addr;
 
1408	u8			key[TCP_MD5SIG_MAXKEYLEN];
1409	struct rcu_head		rcu;
1410};
1411
1412/* - sock block */
1413struct tcp_md5sig_info {
1414	struct hlist_head	head;
1415	struct rcu_head		rcu;
1416};
1417
1418/* - pseudo header */
1419struct tcp4_pseudohdr {
1420	__be32		saddr;
1421	__be32		daddr;
1422	__u8		pad;
1423	__u8		protocol;
1424	__be16		len;
1425};
1426
1427struct tcp6_pseudohdr {
1428	struct in6_addr	saddr;
1429	struct in6_addr daddr;
1430	__be32		len;
1431	__be32		protocol;	/* including padding */
1432};
1433
1434union tcp_md5sum_block {
1435	struct tcp4_pseudohdr ip4;
1436#if IS_ENABLED(CONFIG_IPV6)
1437	struct tcp6_pseudohdr ip6;
1438#endif
1439};
1440
1441/* - pool: digest algorithm, hash description and scratch buffer */
1442struct tcp_md5sig_pool {
1443	struct ahash_request	*md5_req;
1444	void			*scratch;
1445};
1446
1447/* - functions */
1448int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1449			const struct sock *sk, const struct sk_buff *skb);
1450int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1451		   int family, const u8 *newkey, u8 newkeylen, gfp_t gfp);
 
1452int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1453		   int family);
1454struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1455					 const struct sock *addr_sk);
1456
1457#ifdef CONFIG_TCP_MD5SIG
1458struct tcp_md5sig_key *tcp_md5_do_lookup(const struct sock *sk,
1459					 const union tcp_md5_addr *addr,
1460					 int family);
 
 
 
 
 
 
 
 
 
 
 
1461#define tcp_twsk_md5_key(twsk)	((twsk)->tw_md5_key)
1462#else
1463static inline struct tcp_md5sig_key *tcp_md5_do_lookup(const struct sock *sk,
1464					 const union tcp_md5_addr *addr,
1465					 int family)
1466{
1467	return NULL;
1468}
1469#define tcp_twsk_md5_key(twsk)	NULL
1470#endif
1471
1472bool tcp_alloc_md5sig_pool(void);
1473
1474struct tcp_md5sig_pool *tcp_get_md5sig_pool(void);
1475static inline void tcp_put_md5sig_pool(void)
1476{
1477	local_bh_enable();
1478}
1479
1480int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1481			  unsigned int header_len);
1482int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1483		     const struct tcp_md5sig_key *key);
1484
1485/* From tcp_fastopen.c */
1486void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1487			    struct tcp_fastopen_cookie *cookie, int *syn_loss,
1488			    unsigned long *last_syn_loss);
1489void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1490			    struct tcp_fastopen_cookie *cookie, bool syn_lost,
1491			    u16 try_exp);
1492struct tcp_fastopen_request {
1493	/* Fast Open cookie. Size 0 means a cookie request */
1494	struct tcp_fastopen_cookie	cookie;
1495	struct msghdr			*data;  /* data in MSG_FASTOPEN */
1496	size_t				size;
1497	int				copied;	/* queued in tcp_connect() */
 
1498};
1499void tcp_free_fastopen_req(struct tcp_sock *tp);
1500
1501extern struct tcp_fastopen_context __rcu *tcp_fastopen_ctx;
1502int tcp_fastopen_reset_cipher(void *key, unsigned int len);
 
 
 
1503void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
1504struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1505			      struct request_sock *req,
1506			      struct tcp_fastopen_cookie *foc,
1507			      struct dst_entry *dst);
1508void tcp_fastopen_init_key_once(bool publish);
1509#define TCP_FASTOPEN_KEY_LENGTH 16
 
 
 
 
 
 
1510
1511/* Fastopen key context */
1512struct tcp_fastopen_context {
1513	struct crypto_cipher	*tfm;
1514	__u8			key[TCP_FASTOPEN_KEY_LENGTH];
1515	struct rcu_head		rcu;
1516};
1517
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1518/* Latencies incurred by various limits for a sender. They are
1519 * chronograph-like stats that are mutually exclusive.
1520 */
1521enum tcp_chrono {
1522	TCP_CHRONO_UNSPEC,
1523	TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
1524	TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
1525	TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
1526	__TCP_CHRONO_MAX,
1527};
1528
1529void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
1530void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
1531
1532/* write queue abstraction */
1533static inline void tcp_write_queue_purge(struct sock *sk)
 
 
1534{
1535	struct sk_buff *skb;
 
 
1536
1537	tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
1538	while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL)
1539		sk_wmem_free_skb(sk, skb);
1540	sk_mem_reclaim(sk);
1541	tcp_clear_all_retrans_hints(tcp_sk(sk));
 
1542}
1543
1544static inline struct sk_buff *tcp_write_queue_head(const struct sock *sk)
 
 
1545{
1546	return skb_peek(&sk->sk_write_queue);
1547}
1548
1549static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1550{
1551	return skb_peek_tail(&sk->sk_write_queue);
1552}
1553
1554static inline struct sk_buff *tcp_write_queue_next(const struct sock *sk,
1555						   const struct sk_buff *skb)
1556{
1557	return skb_queue_next(&sk->sk_write_queue, skb);
1558}
1559
1560static inline struct sk_buff *tcp_write_queue_prev(const struct sock *sk,
1561						   const struct sk_buff *skb)
1562{
1563	return skb_queue_prev(&sk->sk_write_queue, skb);
1564}
1565
1566#define tcp_for_write_queue(skb, sk)					\
1567	skb_queue_walk(&(sk)->sk_write_queue, skb)
1568
1569#define tcp_for_write_queue_from(skb, sk)				\
1570	skb_queue_walk_from(&(sk)->sk_write_queue, skb)
1571
1572#define tcp_for_write_queue_from_safe(skb, tmp, sk)			\
1573	skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1574
1575static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1576{
1577	return sk->sk_send_head;
1578}
1579
1580static inline bool tcp_skb_is_last(const struct sock *sk,
1581				   const struct sk_buff *skb)
1582{
1583	return skb_queue_is_last(&sk->sk_write_queue, skb);
1584}
1585
1586static inline void tcp_advance_send_head(struct sock *sk, const struct sk_buff *skb)
 
 
 
 
 
 
 
1587{
1588	if (tcp_skb_is_last(sk, skb))
1589		sk->sk_send_head = NULL;
1590	else
1591		sk->sk_send_head = tcp_write_queue_next(sk, skb);
1592}
1593
1594static inline void tcp_check_send_head(struct sock *sk, struct sk_buff *skb_unlinked)
1595{
1596	if (sk->sk_send_head == skb_unlinked) {
1597		sk->sk_send_head = NULL;
1598		tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
1599	}
1600	if (tcp_sk(sk)->highest_sack == skb_unlinked)
1601		tcp_sk(sk)->highest_sack = NULL;
1602}
1603
1604static inline void tcp_init_send_head(struct sock *sk)
1605{
1606	sk->sk_send_head = NULL;
1607}
1608
1609static inline void __tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1610{
1611	__skb_queue_tail(&sk->sk_write_queue, skb);
1612}
1613
1614static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1615{
1616	__tcp_add_write_queue_tail(sk, skb);
1617
1618	/* Queue it, remembering where we must start sending. */
1619	if (sk->sk_send_head == NULL) {
1620		sk->sk_send_head = skb;
1621		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
1622
1623		if (tcp_sk(sk)->highest_sack == NULL)
1624			tcp_sk(sk)->highest_sack = skb;
1625	}
1626}
1627
1628static inline void __tcp_add_write_queue_head(struct sock *sk, struct sk_buff *skb)
1629{
1630	__skb_queue_head(&sk->sk_write_queue, skb);
1631}
1632
1633/* Insert buff after skb on the write queue of sk.  */
1634static inline void tcp_insert_write_queue_after(struct sk_buff *skb,
1635						struct sk_buff *buff,
1636						struct sock *sk)
1637{
1638	__skb_queue_after(&sk->sk_write_queue, skb, buff);
1639}
1640
1641/* Insert new before skb on the write queue of sk.  */
1642static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1643						  struct sk_buff *skb,
1644						  struct sock *sk)
1645{
1646	__skb_queue_before(&sk->sk_write_queue, skb, new);
1647
1648	if (sk->sk_send_head == skb)
1649		sk->sk_send_head = new;
1650}
1651
1652static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1653{
 
1654	__skb_unlink(skb, &sk->sk_write_queue);
1655}
1656
1657static inline bool tcp_write_queue_empty(struct sock *sk)
 
 
 
 
 
 
 
 
1658{
1659	return skb_queue_empty(&sk->sk_write_queue);
 
 
1660}
1661
1662static inline void tcp_push_pending_frames(struct sock *sk)
1663{
1664	if (tcp_send_head(sk)) {
1665		struct tcp_sock *tp = tcp_sk(sk);
1666
1667		__tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1668	}
1669}
1670
1671/* Start sequence of the skb just after the highest skb with SACKed
1672 * bit, valid only if sacked_out > 0 or when the caller has ensured
1673 * validity by itself.
1674 */
1675static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1676{
1677	if (!tp->sacked_out)
1678		return tp->snd_una;
1679
1680	if (tp->highest_sack == NULL)
1681		return tp->snd_nxt;
1682
1683	return TCP_SKB_CB(tp->highest_sack)->seq;
1684}
1685
1686static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1687{
1688	tcp_sk(sk)->highest_sack = tcp_skb_is_last(sk, skb) ? NULL :
1689						tcp_write_queue_next(sk, skb);
1690}
1691
1692static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1693{
1694	return tcp_sk(sk)->highest_sack;
1695}
1696
1697static inline void tcp_highest_sack_reset(struct sock *sk)
1698{
1699	tcp_sk(sk)->highest_sack = tcp_write_queue_head(sk);
1700}
1701
1702/* Called when old skb is about to be deleted (to be combined with new skb) */
1703static inline void tcp_highest_sack_combine(struct sock *sk,
1704					    struct sk_buff *old,
1705					    struct sk_buff *new)
1706{
1707	if (tcp_sk(sk)->sacked_out && (old == tcp_sk(sk)->highest_sack))
1708		tcp_sk(sk)->highest_sack = new;
1709}
1710
1711/* This helper checks if socket has IP_TRANSPARENT set */
1712static inline bool inet_sk_transparent(const struct sock *sk)
1713{
1714	switch (sk->sk_state) {
1715	case TCP_TIME_WAIT:
1716		return inet_twsk(sk)->tw_transparent;
1717	case TCP_NEW_SYN_RECV:
1718		return inet_rsk(inet_reqsk(sk))->no_srccheck;
1719	}
1720	return inet_sk(sk)->transparent;
1721}
1722
1723/* Determines whether this is a thin stream (which may suffer from
1724 * increased latency). Used to trigger latency-reducing mechanisms.
1725 */
1726static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
1727{
1728	return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
1729}
1730
1731/* /proc */
1732enum tcp_seq_states {
1733	TCP_SEQ_STATE_LISTENING,
1734	TCP_SEQ_STATE_ESTABLISHED,
1735};
1736
1737int tcp_seq_open(struct inode *inode, struct file *file);
 
 
1738
1739struct tcp_seq_afinfo {
1740	char				*name;
1741	sa_family_t			family;
1742	const struct file_operations	*seq_fops;
1743	struct seq_operations		seq_ops;
1744};
1745
1746struct tcp_iter_state {
1747	struct seq_net_private	p;
1748	sa_family_t		family;
1749	enum tcp_seq_states	state;
1750	struct sock		*syn_wait_sk;
 
1751	int			bucket, offset, sbucket, num;
1752	loff_t			last_pos;
1753};
1754
1755int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo);
1756void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo);
1757
1758extern struct request_sock_ops tcp_request_sock_ops;
1759extern struct request_sock_ops tcp6_request_sock_ops;
1760
1761void tcp_v4_destroy_sock(struct sock *sk);
1762
1763struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
1764				netdev_features_t features);
1765struct sk_buff **tcp_gro_receive(struct sk_buff **head, struct sk_buff *skb);
 
 
 
 
1766int tcp_gro_complete(struct sk_buff *skb);
1767
1768void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
1769
1770static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
1771{
1772	struct net *net = sock_net((struct sock *)tp);
1773	return tp->notsent_lowat ?: net->ipv4.sysctl_tcp_notsent_lowat;
1774}
1775
1776static inline bool tcp_stream_memory_free(const struct sock *sk)
 
 
 
 
1777{
1778	const struct tcp_sock *tp = tcp_sk(sk);
1779	u32 notsent_bytes = tp->write_seq - tp->snd_nxt;
 
1780
1781	return notsent_bytes < tcp_notsent_lowat(tp);
1782}
1783
1784#ifdef CONFIG_PROC_FS
1785int tcp4_proc_init(void);
1786void tcp4_proc_exit(void);
1787#endif
1788
1789int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
1790int tcp_conn_request(struct request_sock_ops *rsk_ops,
1791		     const struct tcp_request_sock_ops *af_ops,
1792		     struct sock *sk, struct sk_buff *skb);
1793
1794/* TCP af-specific functions */
1795struct tcp_sock_af_ops {
1796#ifdef CONFIG_TCP_MD5SIG
1797	struct tcp_md5sig_key	*(*md5_lookup) (const struct sock *sk,
1798						const struct sock *addr_sk);
1799	int		(*calc_md5_hash)(char *location,
1800					 const struct tcp_md5sig_key *md5,
1801					 const struct sock *sk,
1802					 const struct sk_buff *skb);
1803	int		(*md5_parse)(struct sock *sk,
1804				     char __user *optval,
 
1805				     int optlen);
1806#endif
1807};
1808
1809struct tcp_request_sock_ops {
1810	u16 mss_clamp;
1811#ifdef CONFIG_TCP_MD5SIG
1812	struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
1813						 const struct sock *addr_sk);
1814	int		(*calc_md5_hash) (char *location,
1815					  const struct tcp_md5sig_key *md5,
1816					  const struct sock *sk,
1817					  const struct sk_buff *skb);
1818#endif
1819	void (*init_req)(struct request_sock *req,
1820			 const struct sock *sk_listener,
1821			 struct sk_buff *skb);
1822#ifdef CONFIG_SYN_COOKIES
1823	__u32 (*cookie_init_seq)(const struct sk_buff *skb,
1824				 __u16 *mss);
1825#endif
1826	struct dst_entry *(*route_req)(const struct sock *sk, struct flowi *fl,
1827				       const struct request_sock *req,
1828				       bool *strict);
1829	__u32 (*init_seq)(const struct sk_buff *skb, u32 *tsoff);
1830	int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
1831			   struct flowi *fl, struct request_sock *req,
1832			   struct tcp_fastopen_cookie *foc,
1833			   enum tcp_synack_type synack_type);
1834};
1835
 
 
 
 
 
1836#ifdef CONFIG_SYN_COOKIES
1837static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
1838					 const struct sock *sk, struct sk_buff *skb,
1839					 __u16 *mss)
1840{
1841	tcp_synq_overflow(sk);
1842	__NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
1843	return ops->cookie_init_seq(skb, mss);
1844}
1845#else
1846static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
1847					 const struct sock *sk, struct sk_buff *skb,
1848					 __u16 *mss)
1849{
1850	return 0;
1851}
1852#endif
1853
1854int tcpv4_offload_init(void);
1855
1856void tcp_v4_init(void);
1857void tcp_init(void);
1858
1859/* tcp_recovery.c */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1860
1861/* Flags to enable various loss recovery features. See below */
1862extern int sysctl_tcp_recovery;
1863
1864/* Use TCP RACK to detect (some) tail and retransmit losses */
1865#define TCP_RACK_LOST_RETRANS  0x1
1866
1867extern int tcp_rack_mark_lost(struct sock *sk);
1868
1869extern void tcp_rack_advance(struct tcp_sock *tp,
1870			     const struct skb_mstamp *xmit_time, u8 sacked);
1871
1872/*
1873 * Save and compile IPv4 options, return a pointer to it
1874 */
1875static inline struct ip_options_rcu *tcp_v4_save_options(struct sk_buff *skb)
 
1876{
1877	const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
1878	struct ip_options_rcu *dopt = NULL;
1879
1880	if (opt->optlen) {
1881		int opt_size = sizeof(*dopt) + opt->optlen;
1882
1883		dopt = kmalloc(opt_size, GFP_ATOMIC);
1884		if (dopt && __ip_options_echo(&dopt->opt, skb, opt)) {
1885			kfree(dopt);
1886			dopt = NULL;
1887		}
1888	}
1889	return dopt;
1890}
1891
1892/* locally generated TCP pure ACKs have skb->truesize == 2
1893 * (check tcp_send_ack() in net/ipv4/tcp_output.c )
1894 * This is much faster than dissecting the packet to find out.
1895 * (Think of GRE encapsulations, IPv4, IPv6, ...)
1896 */
1897static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
1898{
1899	return skb->truesize == 2;
1900}
1901
1902static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
1903{
1904	skb->truesize = 2;
1905}
1906
1907static inline int tcp_inq(struct sock *sk)
1908{
1909	struct tcp_sock *tp = tcp_sk(sk);
1910	int answ;
1911
1912	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
1913		answ = 0;
1914	} else if (sock_flag(sk, SOCK_URGINLINE) ||
1915		   !tp->urg_data ||
1916		   before(tp->urg_seq, tp->copied_seq) ||
1917		   !before(tp->urg_seq, tp->rcv_nxt)) {
1918
1919		answ = tp->rcv_nxt - tp->copied_seq;
1920
1921		/* Subtract 1, if FIN was received */
1922		if (answ && sock_flag(sk, SOCK_DONE))
1923			answ--;
1924	} else {
1925		answ = tp->urg_seq - tp->copied_seq;
1926	}
1927
1928	return answ;
1929}
1930
1931int tcp_peek_len(struct socket *sock);
1932
1933static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
1934{
1935	u16 segs_in;
1936
1937	segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
1938	tp->segs_in += segs_in;
1939	if (skb->len > tcp_hdrlen(skb))
1940		tp->data_segs_in += segs_in;
1941}
1942
1943/*
1944 * TCP listen path runs lockless.
1945 * We forced "struct sock" to be const qualified to make sure
1946 * we don't modify one of its field by mistake.
1947 * Here, we increment sk_drops which is an atomic_t, so we can safely
1948 * make sock writable again.
1949 */
1950static inline void tcp_listendrop(const struct sock *sk)
1951{
1952	atomic_inc(&((struct sock *)sk)->sk_drops);
1953	__NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1954}
1955
1956#endif	/* _TCP_H */