Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Generic pwmlib implementation
   4 *
   5 * Copyright (C) 2011 Sascha Hauer <s.hauer@pengutronix.de>
   6 * Copyright (C) 2011-2012 Avionic Design GmbH
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   7 */
   8
   9#include <linux/acpi.h>
  10#include <linux/module.h>
  11#include <linux/pwm.h>
  12#include <linux/radix-tree.h>
  13#include <linux/list.h>
  14#include <linux/mutex.h>
  15#include <linux/err.h>
  16#include <linux/slab.h>
  17#include <linux/device.h>
  18#include <linux/debugfs.h>
  19#include <linux/seq_file.h>
  20
  21#include <dt-bindings/pwm/pwm.h>
  22
  23#define CREATE_TRACE_POINTS
  24#include <trace/events/pwm.h>
  25
  26#define MAX_PWMS 1024
  27
  28static DEFINE_MUTEX(pwm_lookup_lock);
  29static LIST_HEAD(pwm_lookup_list);
  30static DEFINE_MUTEX(pwm_lock);
  31static LIST_HEAD(pwm_chips);
  32static DECLARE_BITMAP(allocated_pwms, MAX_PWMS);
  33static RADIX_TREE(pwm_tree, GFP_KERNEL);
  34
  35static struct pwm_device *pwm_to_device(unsigned int pwm)
  36{
  37	return radix_tree_lookup(&pwm_tree, pwm);
  38}
  39
  40static int alloc_pwms(int pwm, unsigned int count)
  41{
  42	unsigned int from = 0;
  43	unsigned int start;
  44
  45	if (pwm >= MAX_PWMS)
  46		return -EINVAL;
  47
  48	if (pwm >= 0)
  49		from = pwm;
  50
  51	start = bitmap_find_next_zero_area(allocated_pwms, MAX_PWMS, from,
  52					   count, 0);
  53
  54	if (pwm >= 0 && start != pwm)
  55		return -EEXIST;
  56
  57	if (start + count > MAX_PWMS)
  58		return -ENOSPC;
  59
  60	return start;
  61}
  62
  63static void free_pwms(struct pwm_chip *chip)
  64{
  65	unsigned int i;
  66
  67	for (i = 0; i < chip->npwm; i++) {
  68		struct pwm_device *pwm = &chip->pwms[i];
  69
  70		radix_tree_delete(&pwm_tree, pwm->pwm);
  71	}
  72
  73	bitmap_clear(allocated_pwms, chip->base, chip->npwm);
  74
  75	kfree(chip->pwms);
  76	chip->pwms = NULL;
  77}
  78
  79static struct pwm_chip *pwmchip_find_by_name(const char *name)
  80{
  81	struct pwm_chip *chip;
  82
  83	if (!name)
  84		return NULL;
  85
  86	mutex_lock(&pwm_lock);
  87
  88	list_for_each_entry(chip, &pwm_chips, list) {
  89		const char *chip_name = dev_name(chip->dev);
  90
  91		if (chip_name && strcmp(chip_name, name) == 0) {
  92			mutex_unlock(&pwm_lock);
  93			return chip;
  94		}
  95	}
  96
  97	mutex_unlock(&pwm_lock);
  98
  99	return NULL;
 100}
 101
 102static int pwm_device_request(struct pwm_device *pwm, const char *label)
 103{
 104	int err;
 105
 106	if (test_bit(PWMF_REQUESTED, &pwm->flags))
 107		return -EBUSY;
 108
 109	if (!try_module_get(pwm->chip->ops->owner))
 110		return -ENODEV;
 111
 112	if (pwm->chip->ops->request) {
 113		err = pwm->chip->ops->request(pwm->chip, pwm);
 114		if (err) {
 115			module_put(pwm->chip->ops->owner);
 116			return err;
 117		}
 118	}
 119
 120	if (pwm->chip->ops->get_state) {
 121		pwm->chip->ops->get_state(pwm->chip, pwm, &pwm->state);
 122		trace_pwm_get(pwm, &pwm->state);
 123
 124		if (IS_ENABLED(CONFIG_PWM_DEBUG))
 125			pwm->last = pwm->state;
 126	}
 127
 128	set_bit(PWMF_REQUESTED, &pwm->flags);
 129	pwm->label = label;
 130
 131	return 0;
 132}
 133
 134struct pwm_device *
 135of_pwm_xlate_with_flags(struct pwm_chip *pc, const struct of_phandle_args *args)
 136{
 137	struct pwm_device *pwm;
 138
 139	/* check, whether the driver supports a third cell for flags */
 140	if (pc->of_pwm_n_cells < 3)
 141		return ERR_PTR(-EINVAL);
 142
 143	/* flags in the third cell are optional */
 144	if (args->args_count < 2)
 145		return ERR_PTR(-EINVAL);
 146
 147	if (args->args[0] >= pc->npwm)
 148		return ERR_PTR(-EINVAL);
 149
 150	pwm = pwm_request_from_chip(pc, args->args[0], NULL);
 151	if (IS_ERR(pwm))
 152		return pwm;
 153
 154	pwm->args.period = args->args[1];
 155	pwm->args.polarity = PWM_POLARITY_NORMAL;
 156
 157	if (args->args_count > 2 && args->args[2] & PWM_POLARITY_INVERTED)
 158		pwm->args.polarity = PWM_POLARITY_INVERSED;
 
 
 159
 160	return pwm;
 161}
 162EXPORT_SYMBOL_GPL(of_pwm_xlate_with_flags);
 163
 164static struct pwm_device *
 165of_pwm_simple_xlate(struct pwm_chip *pc, const struct of_phandle_args *args)
 166{
 167	struct pwm_device *pwm;
 168
 169	/* sanity check driver support */
 170	if (pc->of_pwm_n_cells < 2)
 171		return ERR_PTR(-EINVAL);
 172
 173	/* all cells are required */
 174	if (args->args_count != pc->of_pwm_n_cells)
 175		return ERR_PTR(-EINVAL);
 176
 177	if (args->args[0] >= pc->npwm)
 178		return ERR_PTR(-EINVAL);
 179
 180	pwm = pwm_request_from_chip(pc, args->args[0], NULL);
 181	if (IS_ERR(pwm))
 182		return pwm;
 183
 184	pwm->args.period = args->args[1];
 185
 186	return pwm;
 187}
 188
 189static void of_pwmchip_add(struct pwm_chip *chip)
 190{
 191	if (!chip->dev || !chip->dev->of_node)
 192		return;
 193
 194	if (!chip->of_xlate) {
 195		chip->of_xlate = of_pwm_simple_xlate;
 196		chip->of_pwm_n_cells = 2;
 197	}
 198
 199	of_node_get(chip->dev->of_node);
 200}
 201
 202static void of_pwmchip_remove(struct pwm_chip *chip)
 203{
 204	if (chip->dev)
 205		of_node_put(chip->dev->of_node);
 206}
 207
 208/**
 209 * pwm_set_chip_data() - set private chip data for a PWM
 210 * @pwm: PWM device
 211 * @data: pointer to chip-specific data
 212 *
 213 * Returns: 0 on success or a negative error code on failure.
 214 */
 215int pwm_set_chip_data(struct pwm_device *pwm, void *data)
 216{
 217	if (!pwm)
 218		return -EINVAL;
 219
 220	pwm->chip_data = data;
 221
 222	return 0;
 223}
 224EXPORT_SYMBOL_GPL(pwm_set_chip_data);
 225
 226/**
 227 * pwm_get_chip_data() - get private chip data for a PWM
 228 * @pwm: PWM device
 229 *
 230 * Returns: A pointer to the chip-private data for the PWM device.
 231 */
 232void *pwm_get_chip_data(struct pwm_device *pwm)
 233{
 234	return pwm ? pwm->chip_data : NULL;
 235}
 236EXPORT_SYMBOL_GPL(pwm_get_chip_data);
 237
 238static bool pwm_ops_check(const struct pwm_chip *chip)
 239{
 240
 241	const struct pwm_ops *ops = chip->ops;
 242
 243	/* driver supports legacy, non-atomic operation */
 244	if (ops->config && ops->enable && ops->disable) {
 245		if (IS_ENABLED(CONFIG_PWM_DEBUG))
 246			dev_warn(chip->dev,
 247				 "Driver needs updating to atomic API\n");
 248
 249		return true;
 250	}
 251
 252	if (!ops->apply)
 253		return false;
 254
 255	if (IS_ENABLED(CONFIG_PWM_DEBUG) && !ops->get_state)
 256		dev_warn(chip->dev,
 257			 "Please implement the .get_state() callback\n");
 258
 259	return true;
 260}
 261
 262/**
 263 * pwmchip_add_with_polarity() - register a new PWM chip
 264 * @chip: the PWM chip to add
 265 * @polarity: initial polarity of PWM channels
 266 *
 267 * Register a new PWM chip. If chip->base < 0 then a dynamically assigned base
 268 * will be used. The initial polarity for all channels is specified by the
 269 * @polarity parameter.
 270 *
 271 * Returns: 0 on success or a negative error code on failure.
 272 */
 273int pwmchip_add_with_polarity(struct pwm_chip *chip,
 274			      enum pwm_polarity polarity)
 275{
 276	struct pwm_device *pwm;
 277	unsigned int i;
 278	int ret;
 279
 280	if (!chip || !chip->dev || !chip->ops || !chip->npwm)
 281		return -EINVAL;
 282
 283	if (!pwm_ops_check(chip))
 284		return -EINVAL;
 285
 286	mutex_lock(&pwm_lock);
 287
 288	ret = alloc_pwms(chip->base, chip->npwm);
 289	if (ret < 0)
 290		goto out;
 291
 292	chip->pwms = kcalloc(chip->npwm, sizeof(*pwm), GFP_KERNEL);
 293	if (!chip->pwms) {
 294		ret = -ENOMEM;
 295		goto out;
 296	}
 297
 298	chip->base = ret;
 299
 300	for (i = 0; i < chip->npwm; i++) {
 301		pwm = &chip->pwms[i];
 302
 303		pwm->chip = chip;
 304		pwm->pwm = chip->base + i;
 305		pwm->hwpwm = i;
 306		pwm->state.polarity = polarity;
 307
 
 
 
 308		radix_tree_insert(&pwm_tree, pwm->pwm, pwm);
 309	}
 310
 311	bitmap_set(allocated_pwms, chip->base, chip->npwm);
 312
 313	INIT_LIST_HEAD(&chip->list);
 314	list_add(&chip->list, &pwm_chips);
 315
 316	ret = 0;
 317
 318	if (IS_ENABLED(CONFIG_OF))
 319		of_pwmchip_add(chip);
 320
 
 
 321out:
 322	mutex_unlock(&pwm_lock);
 323
 324	if (!ret)
 325		pwmchip_sysfs_export(chip);
 326
 327	return ret;
 328}
 329EXPORT_SYMBOL_GPL(pwmchip_add_with_polarity);
 330
 331/**
 332 * pwmchip_add() - register a new PWM chip
 333 * @chip: the PWM chip to add
 334 *
 335 * Register a new PWM chip. If chip->base < 0 then a dynamically assigned base
 336 * will be used. The initial polarity for all channels is normal.
 337 *
 338 * Returns: 0 on success or a negative error code on failure.
 339 */
 340int pwmchip_add(struct pwm_chip *chip)
 341{
 342	return pwmchip_add_with_polarity(chip, PWM_POLARITY_NORMAL);
 343}
 344EXPORT_SYMBOL_GPL(pwmchip_add);
 345
 346/**
 347 * pwmchip_remove() - remove a PWM chip
 348 * @chip: the PWM chip to remove
 349 *
 350 * Removes a PWM chip. This function may return busy if the PWM chip provides
 351 * a PWM device that is still requested.
 352 *
 353 * Returns: 0 on success or a negative error code on failure.
 354 */
 355int pwmchip_remove(struct pwm_chip *chip)
 356{
 357	unsigned int i;
 358	int ret = 0;
 359
 360	pwmchip_sysfs_unexport(chip);
 361
 362	mutex_lock(&pwm_lock);
 363
 364	for (i = 0; i < chip->npwm; i++) {
 365		struct pwm_device *pwm = &chip->pwms[i];
 366
 367		if (test_bit(PWMF_REQUESTED, &pwm->flags)) {
 368			ret = -EBUSY;
 369			goto out;
 370		}
 371	}
 372
 373	list_del_init(&chip->list);
 374
 375	if (IS_ENABLED(CONFIG_OF))
 376		of_pwmchip_remove(chip);
 377
 378	free_pwms(chip);
 379
 
 
 380out:
 381	mutex_unlock(&pwm_lock);
 382	return ret;
 383}
 384EXPORT_SYMBOL_GPL(pwmchip_remove);
 385
 386/**
 387 * pwm_request() - request a PWM device
 388 * @pwm: global PWM device index
 389 * @label: PWM device label
 390 *
 391 * This function is deprecated, use pwm_get() instead.
 392 *
 393 * Returns: A pointer to a PWM device or an ERR_PTR()-encoded error code on
 394 * failure.
 395 */
 396struct pwm_device *pwm_request(int pwm, const char *label)
 397{
 398	struct pwm_device *dev;
 399	int err;
 400
 401	if (pwm < 0 || pwm >= MAX_PWMS)
 402		return ERR_PTR(-EINVAL);
 403
 404	mutex_lock(&pwm_lock);
 405
 406	dev = pwm_to_device(pwm);
 407	if (!dev) {
 408		dev = ERR_PTR(-EPROBE_DEFER);
 409		goto out;
 410	}
 411
 412	err = pwm_device_request(dev, label);
 413	if (err < 0)
 414		dev = ERR_PTR(err);
 415
 416out:
 417	mutex_unlock(&pwm_lock);
 418
 419	return dev;
 420}
 421EXPORT_SYMBOL_GPL(pwm_request);
 422
 423/**
 424 * pwm_request_from_chip() - request a PWM device relative to a PWM chip
 425 * @chip: PWM chip
 426 * @index: per-chip index of the PWM to request
 427 * @label: a literal description string of this PWM
 428 *
 429 * Returns: A pointer to the PWM device at the given index of the given PWM
 430 * chip. A negative error code is returned if the index is not valid for the
 431 * specified PWM chip or if the PWM device cannot be requested.
 432 */
 433struct pwm_device *pwm_request_from_chip(struct pwm_chip *chip,
 434					 unsigned int index,
 435					 const char *label)
 436{
 437	struct pwm_device *pwm;
 438	int err;
 439
 440	if (!chip || index >= chip->npwm)
 441		return ERR_PTR(-EINVAL);
 442
 443	mutex_lock(&pwm_lock);
 444	pwm = &chip->pwms[index];
 445
 446	err = pwm_device_request(pwm, label);
 447	if (err < 0)
 448		pwm = ERR_PTR(err);
 449
 450	mutex_unlock(&pwm_lock);
 451	return pwm;
 452}
 453EXPORT_SYMBOL_GPL(pwm_request_from_chip);
 454
 455/**
 456 * pwm_free() - free a PWM device
 457 * @pwm: PWM device
 458 *
 459 * This function is deprecated, use pwm_put() instead.
 460 */
 461void pwm_free(struct pwm_device *pwm)
 462{
 463	pwm_put(pwm);
 464}
 465EXPORT_SYMBOL_GPL(pwm_free);
 466
 467static void pwm_apply_state_debug(struct pwm_device *pwm,
 468				  const struct pwm_state *state)
 469{
 470	struct pwm_state *last = &pwm->last;
 471	struct pwm_chip *chip = pwm->chip;
 472	struct pwm_state s1, s2;
 473	int err;
 474
 475	if (!IS_ENABLED(CONFIG_PWM_DEBUG))
 476		return;
 477
 478	/* No reasonable diagnosis possible without .get_state() */
 479	if (!chip->ops->get_state)
 480		return;
 481
 482	/*
 483	 * *state was just applied. Read out the hardware state and do some
 484	 * checks.
 485	 */
 486
 487	chip->ops->get_state(chip, pwm, &s1);
 488	trace_pwm_get(pwm, &s1);
 489
 490	/*
 491	 * The lowlevel driver either ignored .polarity (which is a bug) or as
 492	 * best effort inverted .polarity and fixed .duty_cycle respectively.
 493	 * Undo this inversion and fixup for further tests.
 494	 */
 495	if (s1.enabled && s1.polarity != state->polarity) {
 496		s2.polarity = state->polarity;
 497		s2.duty_cycle = s1.period - s1.duty_cycle;
 498		s2.period = s1.period;
 499		s2.enabled = s1.enabled;
 500	} else {
 501		s2 = s1;
 502	}
 503
 504	if (s2.polarity != state->polarity &&
 505	    state->duty_cycle < state->period)
 506		dev_warn(chip->dev, ".apply ignored .polarity\n");
 507
 508	if (state->enabled &&
 509	    last->polarity == state->polarity &&
 510	    last->period > s2.period &&
 511	    last->period <= state->period)
 512		dev_warn(chip->dev,
 513			 ".apply didn't pick the best available period (requested: %llu, applied: %llu, possible: %llu)\n",
 514			 state->period, s2.period, last->period);
 515
 516	if (state->enabled && state->period < s2.period)
 517		dev_warn(chip->dev,
 518			 ".apply is supposed to round down period (requested: %llu, applied: %llu)\n",
 519			 state->period, s2.period);
 520
 521	if (state->enabled &&
 522	    last->polarity == state->polarity &&
 523	    last->period == s2.period &&
 524	    last->duty_cycle > s2.duty_cycle &&
 525	    last->duty_cycle <= state->duty_cycle)
 526		dev_warn(chip->dev,
 527			 ".apply didn't pick the best available duty cycle (requested: %llu/%llu, applied: %llu/%llu, possible: %llu/%llu)\n",
 528			 state->duty_cycle, state->period,
 529			 s2.duty_cycle, s2.period,
 530			 last->duty_cycle, last->period);
 531
 532	if (state->enabled && state->duty_cycle < s2.duty_cycle)
 533		dev_warn(chip->dev,
 534			 ".apply is supposed to round down duty_cycle (requested: %llu/%llu, applied: %llu/%llu)\n",
 535			 state->duty_cycle, state->period,
 536			 s2.duty_cycle, s2.period);
 537
 538	if (!state->enabled && s2.enabled && s2.duty_cycle > 0)
 539		dev_warn(chip->dev,
 540			 "requested disabled, but yielded enabled with duty > 0\n");
 541
 542	/* reapply the state that the driver reported being configured. */
 543	err = chip->ops->apply(chip, pwm, &s1);
 544	if (err) {
 545		*last = s1;
 546		dev_err(chip->dev, "failed to reapply current setting\n");
 547		return;
 548	}
 549
 550	trace_pwm_apply(pwm, &s1);
 551
 552	chip->ops->get_state(chip, pwm, last);
 553	trace_pwm_get(pwm, last);
 554
 555	/* reapplication of the current state should give an exact match */
 556	if (s1.enabled != last->enabled ||
 557	    s1.polarity != last->polarity ||
 558	    (s1.enabled && s1.period != last->period) ||
 559	    (s1.enabled && s1.duty_cycle != last->duty_cycle)) {
 560		dev_err(chip->dev,
 561			".apply is not idempotent (ena=%d pol=%d %llu/%llu) -> (ena=%d pol=%d %llu/%llu)\n",
 562			s1.enabled, s1.polarity, s1.duty_cycle, s1.period,
 563			last->enabled, last->polarity, last->duty_cycle,
 564			last->period);
 565	}
 566}
 567
 568/**
 569 * pwm_apply_state() - atomically apply a new state to a PWM device
 570 * @pwm: PWM device
 571 * @state: new state to apply
 
 
 572 */
 573int pwm_apply_state(struct pwm_device *pwm, const struct pwm_state *state)
 574{
 575	struct pwm_chip *chip;
 576	int err;
 577
 578	if (!pwm || !state || !state->period ||
 579	    state->duty_cycle > state->period)
 580		return -EINVAL;
 581
 582	chip = pwm->chip;
 583
 584	if (state->period == pwm->state.period &&
 585	    state->duty_cycle == pwm->state.duty_cycle &&
 586	    state->polarity == pwm->state.polarity &&
 587	    state->enabled == pwm->state.enabled)
 588		return 0;
 589
 590	if (chip->ops->apply) {
 591		err = chip->ops->apply(chip, pwm, state);
 592		if (err)
 593			return err;
 594
 595		trace_pwm_apply(pwm, state);
 596
 597		pwm->state = *state;
 598
 599		/*
 600		 * only do this after pwm->state was applied as some
 601		 * implementations of .get_state depend on this
 602		 */
 603		pwm_apply_state_debug(pwm, state);
 604	} else {
 605		/*
 606		 * FIXME: restore the initial state in case of error.
 607		 */
 608		if (state->polarity != pwm->state.polarity) {
 609			if (!chip->ops->set_polarity)
 610				return -ENOTSUPP;
 611
 612			/*
 613			 * Changing the polarity of a running PWM is
 614			 * only allowed when the PWM driver implements
 615			 * ->apply().
 616			 */
 617			if (pwm->state.enabled) {
 618				chip->ops->disable(chip, pwm);
 619				pwm->state.enabled = false;
 620			}
 621
 622			err = chip->ops->set_polarity(chip, pwm,
 623						      state->polarity);
 624			if (err)
 625				return err;
 626
 627			pwm->state.polarity = state->polarity;
 628		}
 629
 630		if (state->period != pwm->state.period ||
 631		    state->duty_cycle != pwm->state.duty_cycle) {
 632			err = chip->ops->config(pwm->chip, pwm,
 633						state->duty_cycle,
 634						state->period);
 635			if (err)
 636				return err;
 637
 638			pwm->state.duty_cycle = state->duty_cycle;
 639			pwm->state.period = state->period;
 640		}
 641
 642		if (state->enabled != pwm->state.enabled) {
 643			if (state->enabled) {
 644				err = chip->ops->enable(chip, pwm);
 645				if (err)
 646					return err;
 647			} else {
 648				chip->ops->disable(chip, pwm);
 649			}
 650
 651			pwm->state.enabled = state->enabled;
 652		}
 653	}
 654
 655	return 0;
 656}
 657EXPORT_SYMBOL_GPL(pwm_apply_state);
 658
 659/**
 660 * pwm_capture() - capture and report a PWM signal
 661 * @pwm: PWM device
 662 * @result: structure to fill with capture result
 663 * @timeout: time to wait, in milliseconds, before giving up on capture
 664 *
 665 * Returns: 0 on success or a negative error code on failure.
 666 */
 667int pwm_capture(struct pwm_device *pwm, struct pwm_capture *result,
 668		unsigned long timeout)
 669{
 670	int err;
 671
 672	if (!pwm || !pwm->chip->ops)
 673		return -EINVAL;
 674
 675	if (!pwm->chip->ops->capture)
 676		return -ENOSYS;
 677
 678	mutex_lock(&pwm_lock);
 679	err = pwm->chip->ops->capture(pwm->chip, pwm, result, timeout);
 680	mutex_unlock(&pwm_lock);
 681
 682	return err;
 683}
 684EXPORT_SYMBOL_GPL(pwm_capture);
 685
 686/**
 687 * pwm_adjust_config() - adjust the current PWM config to the PWM arguments
 688 * @pwm: PWM device
 689 *
 690 * This function will adjust the PWM config to the PWM arguments provided
 691 * by the DT or PWM lookup table. This is particularly useful to adapt
 692 * the bootloader config to the Linux one.
 693 */
 694int pwm_adjust_config(struct pwm_device *pwm)
 695{
 696	struct pwm_state state;
 697	struct pwm_args pargs;
 698
 699	pwm_get_args(pwm, &pargs);
 700	pwm_get_state(pwm, &state);
 701
 702	/*
 703	 * If the current period is zero it means that either the PWM driver
 704	 * does not support initial state retrieval or the PWM has not yet
 705	 * been configured.
 706	 *
 707	 * In either case, we setup the new period and polarity, and assign a
 708	 * duty cycle of 0.
 709	 */
 710	if (!state.period) {
 711		state.duty_cycle = 0;
 712		state.period = pargs.period;
 713		state.polarity = pargs.polarity;
 714
 715		return pwm_apply_state(pwm, &state);
 716	}
 717
 718	/*
 719	 * Adjust the PWM duty cycle/period based on the period value provided
 720	 * in PWM args.
 721	 */
 722	if (pargs.period != state.period) {
 723		u64 dutycycle = (u64)state.duty_cycle * pargs.period;
 724
 725		do_div(dutycycle, state.period);
 726		state.duty_cycle = dutycycle;
 727		state.period = pargs.period;
 728	}
 729
 730	/*
 731	 * If the polarity changed, we should also change the duty cycle.
 732	 */
 733	if (pargs.polarity != state.polarity) {
 734		state.polarity = pargs.polarity;
 735		state.duty_cycle = state.period - state.duty_cycle;
 736	}
 737
 738	return pwm_apply_state(pwm, &state);
 739}
 740EXPORT_SYMBOL_GPL(pwm_adjust_config);
 741
 742static struct pwm_chip *of_node_to_pwmchip(struct device_node *np)
 743{
 744	struct pwm_chip *chip;
 745
 746	mutex_lock(&pwm_lock);
 747
 748	list_for_each_entry(chip, &pwm_chips, list)
 749		if (chip->dev && chip->dev->of_node == np) {
 750			mutex_unlock(&pwm_lock);
 751			return chip;
 752		}
 753
 754	mutex_unlock(&pwm_lock);
 755
 756	return ERR_PTR(-EPROBE_DEFER);
 757}
 758
 759static struct device_link *pwm_device_link_add(struct device *dev,
 760					       struct pwm_device *pwm)
 761{
 762	struct device_link *dl;
 763
 764	if (!dev) {
 765		/*
 766		 * No device for the PWM consumer has been provided. It may
 767		 * impact the PM sequence ordering: the PWM supplier may get
 768		 * suspended before the consumer.
 769		 */
 770		dev_warn(pwm->chip->dev,
 771			 "No consumer device specified to create a link to\n");
 772		return NULL;
 773	}
 774
 775	dl = device_link_add(dev, pwm->chip->dev, DL_FLAG_AUTOREMOVE_CONSUMER);
 776	if (!dl) {
 777		dev_err(dev, "failed to create device link to %s\n",
 778			dev_name(pwm->chip->dev));
 779		return ERR_PTR(-EINVAL);
 780	}
 781
 782	return dl;
 783}
 784
 785/**
 786 * of_pwm_get() - request a PWM via the PWM framework
 787 * @dev: device for PWM consumer
 788 * @np: device node to get the PWM from
 789 * @con_id: consumer name
 790 *
 791 * Returns the PWM device parsed from the phandle and index specified in the
 792 * "pwms" property of a device tree node or a negative error-code on failure.
 793 * Values parsed from the device tree are stored in the returned PWM device
 794 * object.
 795 *
 796 * If con_id is NULL, the first PWM device listed in the "pwms" property will
 797 * be requested. Otherwise the "pwm-names" property is used to do a reverse
 798 * lookup of the PWM index. This also means that the "pwm-names" property
 799 * becomes mandatory for devices that look up the PWM device via the con_id
 800 * parameter.
 801 *
 802 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
 803 * error code on failure.
 804 */
 805struct pwm_device *of_pwm_get(struct device *dev, struct device_node *np,
 806			      const char *con_id)
 807{
 808	struct pwm_device *pwm = NULL;
 809	struct of_phandle_args args;
 810	struct device_link *dl;
 811	struct pwm_chip *pc;
 812	int index = 0;
 813	int err;
 814
 815	if (con_id) {
 816		index = of_property_match_string(np, "pwm-names", con_id);
 817		if (index < 0)
 818			return ERR_PTR(index);
 819	}
 820
 821	err = of_parse_phandle_with_args(np, "pwms", "#pwm-cells", index,
 822					 &args);
 823	if (err) {
 824		pr_err("%s(): can't parse \"pwms\" property\n", __func__);
 825		return ERR_PTR(err);
 826	}
 827
 828	pc = of_node_to_pwmchip(args.np);
 829	if (IS_ERR(pc)) {
 830		if (PTR_ERR(pc) != -EPROBE_DEFER)
 831			pr_err("%s(): PWM chip not found\n", __func__);
 832
 833		pwm = ERR_CAST(pc);
 834		goto put;
 835	}
 836
 837	pwm = pc->of_xlate(pc, &args);
 838	if (IS_ERR(pwm))
 
 
 839		goto put;
 
 840
 841	dl = pwm_device_link_add(dev, pwm);
 842	if (IS_ERR(dl)) {
 843		/* of_xlate ended up calling pwm_request_from_chip() */
 844		pwm_free(pwm);
 845		pwm = ERR_CAST(dl);
 846		goto put;
 847	}
 848
 849	/*
 850	 * If a consumer name was not given, try to look it up from the
 851	 * "pwm-names" property if it exists. Otherwise use the name of
 852	 * the user device node.
 853	 */
 854	if (!con_id) {
 855		err = of_property_read_string_index(np, "pwm-names", index,
 856						    &con_id);
 857		if (err < 0)
 858			con_id = np->name;
 859	}
 860
 861	pwm->label = con_id;
 862
 863put:
 864	of_node_put(args.np);
 865
 866	return pwm;
 867}
 868EXPORT_SYMBOL_GPL(of_pwm_get);
 869
 870#if IS_ENABLED(CONFIG_ACPI)
 871static struct pwm_chip *device_to_pwmchip(struct device *dev)
 872{
 873	struct pwm_chip *chip;
 874
 875	mutex_lock(&pwm_lock);
 876
 877	list_for_each_entry(chip, &pwm_chips, list) {
 878		struct acpi_device *adev = ACPI_COMPANION(chip->dev);
 879
 880		if ((chip->dev == dev) || (adev && &adev->dev == dev)) {
 881			mutex_unlock(&pwm_lock);
 882			return chip;
 883		}
 884	}
 885
 886	mutex_unlock(&pwm_lock);
 887
 888	return ERR_PTR(-EPROBE_DEFER);
 889}
 890#endif
 891
 892/**
 893 * acpi_pwm_get() - request a PWM via parsing "pwms" property in ACPI
 894 * @fwnode: firmware node to get the "pwm" property from
 895 *
 896 * Returns the PWM device parsed from the fwnode and index specified in the
 897 * "pwms" property or a negative error-code on failure.
 898 * Values parsed from the device tree are stored in the returned PWM device
 899 * object.
 900 *
 901 * This is analogous to of_pwm_get() except con_id is not yet supported.
 902 * ACPI entries must look like
 903 * Package () {"pwms", Package ()
 904 *     { <PWM device reference>, <PWM index>, <PWM period> [, <PWM flags>]}}
 905 *
 906 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
 907 * error code on failure.
 908 */
 909static struct pwm_device *acpi_pwm_get(struct fwnode_handle *fwnode)
 910{
 911	struct pwm_device *pwm = ERR_PTR(-ENODEV);
 912#if IS_ENABLED(CONFIG_ACPI)
 913	struct fwnode_reference_args args;
 914	struct acpi_device *acpi;
 915	struct pwm_chip *chip;
 916	int ret;
 917
 918	memset(&args, 0, sizeof(args));
 919
 920	ret = __acpi_node_get_property_reference(fwnode, "pwms", 0, 3, &args);
 921	if (ret < 0)
 922		return ERR_PTR(ret);
 923
 924	acpi = to_acpi_device_node(args.fwnode);
 925	if (!acpi)
 926		return ERR_PTR(-EINVAL);
 927
 928	if (args.nargs < 2)
 929		return ERR_PTR(-EPROTO);
 930
 931	chip = device_to_pwmchip(&acpi->dev);
 932	if (IS_ERR(chip))
 933		return ERR_CAST(chip);
 934
 935	pwm = pwm_request_from_chip(chip, args.args[0], NULL);
 936	if (IS_ERR(pwm))
 937		return pwm;
 938
 939	pwm->args.period = args.args[1];
 940	pwm->args.polarity = PWM_POLARITY_NORMAL;
 941
 942	if (args.nargs > 2 && args.args[2] & PWM_POLARITY_INVERTED)
 943		pwm->args.polarity = PWM_POLARITY_INVERSED;
 944#endif
 945
 946	return pwm;
 947}
 948
 949/**
 950 * pwm_add_table() - register PWM device consumers
 951 * @table: array of consumers to register
 952 * @num: number of consumers in table
 953 */
 954void pwm_add_table(struct pwm_lookup *table, size_t num)
 955{
 956	mutex_lock(&pwm_lookup_lock);
 957
 958	while (num--) {
 959		list_add_tail(&table->list, &pwm_lookup_list);
 960		table++;
 961	}
 962
 963	mutex_unlock(&pwm_lookup_lock);
 964}
 965
 966/**
 967 * pwm_remove_table() - unregister PWM device consumers
 968 * @table: array of consumers to unregister
 969 * @num: number of consumers in table
 970 */
 971void pwm_remove_table(struct pwm_lookup *table, size_t num)
 972{
 973	mutex_lock(&pwm_lookup_lock);
 974
 975	while (num--) {
 976		list_del(&table->list);
 977		table++;
 978	}
 979
 980	mutex_unlock(&pwm_lookup_lock);
 981}
 982
 983/**
 984 * pwm_get() - look up and request a PWM device
 985 * @dev: device for PWM consumer
 986 * @con_id: consumer name
 987 *
 988 * Lookup is first attempted using DT. If the device was not instantiated from
 989 * a device tree, a PWM chip and a relative index is looked up via a table
 990 * supplied by board setup code (see pwm_add_table()).
 991 *
 992 * Once a PWM chip has been found the specified PWM device will be requested
 993 * and is ready to be used.
 994 *
 995 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
 996 * error code on failure.
 997 */
 998struct pwm_device *pwm_get(struct device *dev, const char *con_id)
 999{
 
1000	const char *dev_id = dev ? dev_name(dev) : NULL;
1001	struct pwm_device *pwm;
1002	struct pwm_chip *chip;
1003	struct device_link *dl;
1004	unsigned int best = 0;
1005	struct pwm_lookup *p, *chosen = NULL;
1006	unsigned int match;
1007	int err;
1008
1009	/* look up via DT first */
1010	if (IS_ENABLED(CONFIG_OF) && dev && dev->of_node)
1011		return of_pwm_get(dev, dev->of_node, con_id);
1012
1013	/* then lookup via ACPI */
1014	if (dev && is_acpi_node(dev->fwnode)) {
1015		pwm = acpi_pwm_get(dev->fwnode);
1016		if (!IS_ERR(pwm) || PTR_ERR(pwm) != -ENOENT)
1017			return pwm;
1018	}
1019
1020	/*
1021	 * We look up the provider in the static table typically provided by
1022	 * board setup code. We first try to lookup the consumer device by
1023	 * name. If the consumer device was passed in as NULL or if no match
1024	 * was found, we try to find the consumer by directly looking it up
1025	 * by name.
1026	 *
1027	 * If a match is found, the provider PWM chip is looked up by name
1028	 * and a PWM device is requested using the PWM device per-chip index.
1029	 *
1030	 * The lookup algorithm was shamelessly taken from the clock
1031	 * framework:
1032	 *
1033	 * We do slightly fuzzy matching here:
1034	 *  An entry with a NULL ID is assumed to be a wildcard.
1035	 *  If an entry has a device ID, it must match
1036	 *  If an entry has a connection ID, it must match
1037	 * Then we take the most specific entry - with the following order
1038	 * of precedence: dev+con > dev only > con only.
1039	 */
1040	mutex_lock(&pwm_lookup_lock);
1041
1042	list_for_each_entry(p, &pwm_lookup_list, list) {
1043		match = 0;
1044
1045		if (p->dev_id) {
1046			if (!dev_id || strcmp(p->dev_id, dev_id))
1047				continue;
1048
1049			match += 2;
1050		}
1051
1052		if (p->con_id) {
1053			if (!con_id || strcmp(p->con_id, con_id))
1054				continue;
1055
1056			match += 1;
1057		}
1058
1059		if (match > best) {
1060			chosen = p;
1061
1062			if (match != 3)
1063				best = match;
1064			else
1065				break;
1066		}
1067	}
1068
1069	mutex_unlock(&pwm_lookup_lock);
1070
1071	if (!chosen)
1072		return ERR_PTR(-ENODEV);
1073
1074	chip = pwmchip_find_by_name(chosen->provider);
1075
1076	/*
1077	 * If the lookup entry specifies a module, load the module and retry
1078	 * the PWM chip lookup. This can be used to work around driver load
1079	 * ordering issues if driver's can't be made to properly support the
1080	 * deferred probe mechanism.
1081	 */
1082	if (!chip && chosen->module) {
1083		err = request_module(chosen->module);
1084		if (err == 0)
1085			chip = pwmchip_find_by_name(chosen->provider);
1086	}
1087
 
1088	if (!chip)
1089		return ERR_PTR(-EPROBE_DEFER);
1090
1091	pwm = pwm_request_from_chip(chip, chosen->index, con_id ?: dev_id);
1092	if (IS_ERR(pwm))
1093		return pwm;
1094
1095	dl = pwm_device_link_add(dev, pwm);
1096	if (IS_ERR(dl)) {
1097		pwm_free(pwm);
1098		return ERR_CAST(dl);
1099	}
1100
1101	pwm->args.period = chosen->period;
1102	pwm->args.polarity = chosen->polarity;
1103
 
 
1104	return pwm;
1105}
1106EXPORT_SYMBOL_GPL(pwm_get);
1107
1108/**
1109 * pwm_put() - release a PWM device
1110 * @pwm: PWM device
1111 */
1112void pwm_put(struct pwm_device *pwm)
1113{
1114	if (!pwm)
1115		return;
1116
1117	mutex_lock(&pwm_lock);
1118
1119	if (!test_and_clear_bit(PWMF_REQUESTED, &pwm->flags)) {
1120		pr_warn("PWM device already freed\n");
1121		goto out;
1122	}
1123
1124	if (pwm->chip->ops->free)
1125		pwm->chip->ops->free(pwm->chip, pwm);
1126
1127	pwm_set_chip_data(pwm, NULL);
1128	pwm->label = NULL;
1129
1130	module_put(pwm->chip->ops->owner);
1131out:
1132	mutex_unlock(&pwm_lock);
1133}
1134EXPORT_SYMBOL_GPL(pwm_put);
1135
1136static void devm_pwm_release(struct device *dev, void *res)
1137{
1138	pwm_put(*(struct pwm_device **)res);
1139}
1140
1141/**
1142 * devm_pwm_get() - resource managed pwm_get()
1143 * @dev: device for PWM consumer
1144 * @con_id: consumer name
1145 *
1146 * This function performs like pwm_get() but the acquired PWM device will
1147 * automatically be released on driver detach.
1148 *
1149 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1150 * error code on failure.
1151 */
1152struct pwm_device *devm_pwm_get(struct device *dev, const char *con_id)
1153{
1154	struct pwm_device **ptr, *pwm;
1155
1156	ptr = devres_alloc(devm_pwm_release, sizeof(*ptr), GFP_KERNEL);
1157	if (!ptr)
1158		return ERR_PTR(-ENOMEM);
1159
1160	pwm = pwm_get(dev, con_id);
1161	if (!IS_ERR(pwm)) {
1162		*ptr = pwm;
1163		devres_add(dev, ptr);
1164	} else {
1165		devres_free(ptr);
1166	}
1167
1168	return pwm;
1169}
1170EXPORT_SYMBOL_GPL(devm_pwm_get);
1171
1172/**
1173 * devm_of_pwm_get() - resource managed of_pwm_get()
1174 * @dev: device for PWM consumer
1175 * @np: device node to get the PWM from
1176 * @con_id: consumer name
1177 *
1178 * This function performs like of_pwm_get() but the acquired PWM device will
1179 * automatically be released on driver detach.
1180 *
1181 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1182 * error code on failure.
1183 */
1184struct pwm_device *devm_of_pwm_get(struct device *dev, struct device_node *np,
1185				   const char *con_id)
1186{
1187	struct pwm_device **ptr, *pwm;
1188
1189	ptr = devres_alloc(devm_pwm_release, sizeof(*ptr), GFP_KERNEL);
1190	if (!ptr)
1191		return ERR_PTR(-ENOMEM);
1192
1193	pwm = of_pwm_get(dev, np, con_id);
1194	if (!IS_ERR(pwm)) {
1195		*ptr = pwm;
1196		devres_add(dev, ptr);
1197	} else {
1198		devres_free(ptr);
1199	}
1200
1201	return pwm;
1202}
1203EXPORT_SYMBOL_GPL(devm_of_pwm_get);
1204
1205/**
1206 * devm_fwnode_pwm_get() - request a resource managed PWM from firmware node
1207 * @dev: device for PWM consumer
1208 * @fwnode: firmware node to get the PWM from
1209 * @con_id: consumer name
1210 *
1211 * Returns the PWM device parsed from the firmware node. See of_pwm_get() and
1212 * acpi_pwm_get() for a detailed description.
1213 *
1214 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1215 * error code on failure.
1216 */
1217struct pwm_device *devm_fwnode_pwm_get(struct device *dev,
1218				       struct fwnode_handle *fwnode,
1219				       const char *con_id)
1220{
1221	struct pwm_device **ptr, *pwm = ERR_PTR(-ENODEV);
1222
1223	ptr = devres_alloc(devm_pwm_release, sizeof(*ptr), GFP_KERNEL);
1224	if (!ptr)
1225		return ERR_PTR(-ENOMEM);
1226
1227	if (is_of_node(fwnode))
1228		pwm = of_pwm_get(dev, to_of_node(fwnode), con_id);
1229	else if (is_acpi_node(fwnode))
1230		pwm = acpi_pwm_get(fwnode);
1231
1232	if (!IS_ERR(pwm)) {
1233		*ptr = pwm;
1234		devres_add(dev, ptr);
1235	} else {
1236		devres_free(ptr);
1237	}
1238
1239	return pwm;
1240}
1241EXPORT_SYMBOL_GPL(devm_fwnode_pwm_get);
1242
1243static int devm_pwm_match(struct device *dev, void *res, void *data)
1244{
1245	struct pwm_device **p = res;
1246
1247	if (WARN_ON(!p || !*p))
1248		return 0;
1249
1250	return *p == data;
1251}
1252
1253/**
1254 * devm_pwm_put() - resource managed pwm_put()
1255 * @dev: device for PWM consumer
1256 * @pwm: PWM device
1257 *
1258 * Release a PWM previously allocated using devm_pwm_get(). Calling this
1259 * function is usually not needed because devm-allocated resources are
1260 * automatically released on driver detach.
1261 */
1262void devm_pwm_put(struct device *dev, struct pwm_device *pwm)
1263{
1264	WARN_ON(devres_release(dev, devm_pwm_release, devm_pwm_match, pwm));
1265}
1266EXPORT_SYMBOL_GPL(devm_pwm_put);
1267
 
 
 
 
 
 
 
 
 
 
 
 
1268#ifdef CONFIG_DEBUG_FS
1269static void pwm_dbg_show(struct pwm_chip *chip, struct seq_file *s)
1270{
1271	unsigned int i;
1272
1273	for (i = 0; i < chip->npwm; i++) {
1274		struct pwm_device *pwm = &chip->pwms[i];
1275		struct pwm_state state;
1276
1277		pwm_get_state(pwm, &state);
1278
1279		seq_printf(s, " pwm-%-3d (%-20.20s):", i, pwm->label);
1280
1281		if (test_bit(PWMF_REQUESTED, &pwm->flags))
1282			seq_puts(s, " requested");
1283
1284		if (state.enabled)
1285			seq_puts(s, " enabled");
1286
1287		seq_printf(s, " period: %llu ns", state.period);
1288		seq_printf(s, " duty: %llu ns", state.duty_cycle);
1289		seq_printf(s, " polarity: %s",
1290			   state.polarity ? "inverse" : "normal");
1291
1292		seq_puts(s, "\n");
1293	}
1294}
1295
1296static void *pwm_seq_start(struct seq_file *s, loff_t *pos)
1297{
1298	mutex_lock(&pwm_lock);
1299	s->private = "";
1300
1301	return seq_list_start(&pwm_chips, *pos);
1302}
1303
1304static void *pwm_seq_next(struct seq_file *s, void *v, loff_t *pos)
1305{
1306	s->private = "\n";
1307
1308	return seq_list_next(v, &pwm_chips, pos);
1309}
1310
1311static void pwm_seq_stop(struct seq_file *s, void *v)
1312{
1313	mutex_unlock(&pwm_lock);
1314}
1315
1316static int pwm_seq_show(struct seq_file *s, void *v)
1317{
1318	struct pwm_chip *chip = list_entry(v, struct pwm_chip, list);
1319
1320	seq_printf(s, "%s%s/%s, %d PWM device%s\n", (char *)s->private,
1321		   chip->dev->bus ? chip->dev->bus->name : "no-bus",
1322		   dev_name(chip->dev), chip->npwm,
1323		   (chip->npwm != 1) ? "s" : "");
1324
1325	pwm_dbg_show(chip, s);
 
 
 
1326
1327	return 0;
1328}
1329
1330static const struct seq_operations pwm_seq_ops = {
1331	.start = pwm_seq_start,
1332	.next = pwm_seq_next,
1333	.stop = pwm_seq_stop,
1334	.show = pwm_seq_show,
1335};
1336
1337static int pwm_seq_open(struct inode *inode, struct file *file)
1338{
1339	return seq_open(file, &pwm_seq_ops);
1340}
1341
1342static const struct file_operations pwm_debugfs_ops = {
1343	.owner = THIS_MODULE,
1344	.open = pwm_seq_open,
1345	.read = seq_read,
1346	.llseek = seq_lseek,
1347	.release = seq_release,
1348};
1349
1350static int __init pwm_debugfs_init(void)
1351{
1352	debugfs_create_file("pwm", S_IFREG | S_IRUGO, NULL, NULL,
1353			    &pwm_debugfs_ops);
1354
1355	return 0;
1356}
1357subsys_initcall(pwm_debugfs_init);
1358#endif /* CONFIG_DEBUG_FS */
v4.10.11
 
   1/*
   2 * Generic pwmlib implementation
   3 *
   4 * Copyright (C) 2011 Sascha Hauer <s.hauer@pengutronix.de>
   5 * Copyright (C) 2011-2012 Avionic Design GmbH
   6 *
   7 *  This program is free software; you can redistribute it and/or modify
   8 *  it under the terms of the GNU General Public License as published by
   9 *  the Free Software Foundation; either version 2, or (at your option)
  10 *  any later version.
  11 *
  12 *  This program is distributed in the hope that it will be useful,
  13 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
  14 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  15 *  GNU General Public License for more details.
  16 *
  17 *  You should have received a copy of the GNU General Public License
  18 *  along with this program; see the file COPYING.  If not, write to
  19 *  the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
  20 */
  21
 
  22#include <linux/module.h>
  23#include <linux/pwm.h>
  24#include <linux/radix-tree.h>
  25#include <linux/list.h>
  26#include <linux/mutex.h>
  27#include <linux/err.h>
  28#include <linux/slab.h>
  29#include <linux/device.h>
  30#include <linux/debugfs.h>
  31#include <linux/seq_file.h>
  32
  33#include <dt-bindings/pwm/pwm.h>
  34
 
 
 
  35#define MAX_PWMS 1024
  36
  37static DEFINE_MUTEX(pwm_lookup_lock);
  38static LIST_HEAD(pwm_lookup_list);
  39static DEFINE_MUTEX(pwm_lock);
  40static LIST_HEAD(pwm_chips);
  41static DECLARE_BITMAP(allocated_pwms, MAX_PWMS);
  42static RADIX_TREE(pwm_tree, GFP_KERNEL);
  43
  44static struct pwm_device *pwm_to_device(unsigned int pwm)
  45{
  46	return radix_tree_lookup(&pwm_tree, pwm);
  47}
  48
  49static int alloc_pwms(int pwm, unsigned int count)
  50{
  51	unsigned int from = 0;
  52	unsigned int start;
  53
  54	if (pwm >= MAX_PWMS)
  55		return -EINVAL;
  56
  57	if (pwm >= 0)
  58		from = pwm;
  59
  60	start = bitmap_find_next_zero_area(allocated_pwms, MAX_PWMS, from,
  61					   count, 0);
  62
  63	if (pwm >= 0 && start != pwm)
  64		return -EEXIST;
  65
  66	if (start + count > MAX_PWMS)
  67		return -ENOSPC;
  68
  69	return start;
  70}
  71
  72static void free_pwms(struct pwm_chip *chip)
  73{
  74	unsigned int i;
  75
  76	for (i = 0; i < chip->npwm; i++) {
  77		struct pwm_device *pwm = &chip->pwms[i];
  78
  79		radix_tree_delete(&pwm_tree, pwm->pwm);
  80	}
  81
  82	bitmap_clear(allocated_pwms, chip->base, chip->npwm);
  83
  84	kfree(chip->pwms);
  85	chip->pwms = NULL;
  86}
  87
  88static struct pwm_chip *pwmchip_find_by_name(const char *name)
  89{
  90	struct pwm_chip *chip;
  91
  92	if (!name)
  93		return NULL;
  94
  95	mutex_lock(&pwm_lock);
  96
  97	list_for_each_entry(chip, &pwm_chips, list) {
  98		const char *chip_name = dev_name(chip->dev);
  99
 100		if (chip_name && strcmp(chip_name, name) == 0) {
 101			mutex_unlock(&pwm_lock);
 102			return chip;
 103		}
 104	}
 105
 106	mutex_unlock(&pwm_lock);
 107
 108	return NULL;
 109}
 110
 111static int pwm_device_request(struct pwm_device *pwm, const char *label)
 112{
 113	int err;
 114
 115	if (test_bit(PWMF_REQUESTED, &pwm->flags))
 116		return -EBUSY;
 117
 118	if (!try_module_get(pwm->chip->ops->owner))
 119		return -ENODEV;
 120
 121	if (pwm->chip->ops->request) {
 122		err = pwm->chip->ops->request(pwm->chip, pwm);
 123		if (err) {
 124			module_put(pwm->chip->ops->owner);
 125			return err;
 126		}
 127	}
 128
 
 
 
 
 
 
 
 
 129	set_bit(PWMF_REQUESTED, &pwm->flags);
 130	pwm->label = label;
 131
 132	return 0;
 133}
 134
 135struct pwm_device *
 136of_pwm_xlate_with_flags(struct pwm_chip *pc, const struct of_phandle_args *args)
 137{
 138	struct pwm_device *pwm;
 139
 
 140	if (pc->of_pwm_n_cells < 3)
 141		return ERR_PTR(-EINVAL);
 142
 
 
 
 
 143	if (args->args[0] >= pc->npwm)
 144		return ERR_PTR(-EINVAL);
 145
 146	pwm = pwm_request_from_chip(pc, args->args[0], NULL);
 147	if (IS_ERR(pwm))
 148		return pwm;
 149
 150	pwm->args.period = args->args[1];
 
 151
 152	if (args->args[2] & PWM_POLARITY_INVERTED)
 153		pwm->args.polarity = PWM_POLARITY_INVERSED;
 154	else
 155		pwm->args.polarity = PWM_POLARITY_NORMAL;
 156
 157	return pwm;
 158}
 159EXPORT_SYMBOL_GPL(of_pwm_xlate_with_flags);
 160
 161static struct pwm_device *
 162of_pwm_simple_xlate(struct pwm_chip *pc, const struct of_phandle_args *args)
 163{
 164	struct pwm_device *pwm;
 165
 
 166	if (pc->of_pwm_n_cells < 2)
 167		return ERR_PTR(-EINVAL);
 168
 
 
 
 
 169	if (args->args[0] >= pc->npwm)
 170		return ERR_PTR(-EINVAL);
 171
 172	pwm = pwm_request_from_chip(pc, args->args[0], NULL);
 173	if (IS_ERR(pwm))
 174		return pwm;
 175
 176	pwm->args.period = args->args[1];
 177
 178	return pwm;
 179}
 180
 181static void of_pwmchip_add(struct pwm_chip *chip)
 182{
 183	if (!chip->dev || !chip->dev->of_node)
 184		return;
 185
 186	if (!chip->of_xlate) {
 187		chip->of_xlate = of_pwm_simple_xlate;
 188		chip->of_pwm_n_cells = 2;
 189	}
 190
 191	of_node_get(chip->dev->of_node);
 192}
 193
 194static void of_pwmchip_remove(struct pwm_chip *chip)
 195{
 196	if (chip->dev)
 197		of_node_put(chip->dev->of_node);
 198}
 199
 200/**
 201 * pwm_set_chip_data() - set private chip data for a PWM
 202 * @pwm: PWM device
 203 * @data: pointer to chip-specific data
 204 *
 205 * Returns: 0 on success or a negative error code on failure.
 206 */
 207int pwm_set_chip_data(struct pwm_device *pwm, void *data)
 208{
 209	if (!pwm)
 210		return -EINVAL;
 211
 212	pwm->chip_data = data;
 213
 214	return 0;
 215}
 216EXPORT_SYMBOL_GPL(pwm_set_chip_data);
 217
 218/**
 219 * pwm_get_chip_data() - get private chip data for a PWM
 220 * @pwm: PWM device
 221 *
 222 * Returns: A pointer to the chip-private data for the PWM device.
 223 */
 224void *pwm_get_chip_data(struct pwm_device *pwm)
 225{
 226	return pwm ? pwm->chip_data : NULL;
 227}
 228EXPORT_SYMBOL_GPL(pwm_get_chip_data);
 229
 230static bool pwm_ops_check(const struct pwm_ops *ops)
 231{
 
 
 
 232	/* driver supports legacy, non-atomic operation */
 233	if (ops->config && ops->enable && ops->disable)
 
 
 
 
 234		return true;
 
 
 
 
 235
 236	/* driver supports atomic operation */
 237	if (ops->apply)
 238		return true;
 239
 240	return false;
 241}
 242
 243/**
 244 * pwmchip_add_with_polarity() - register a new PWM chip
 245 * @chip: the PWM chip to add
 246 * @polarity: initial polarity of PWM channels
 247 *
 248 * Register a new PWM chip. If chip->base < 0 then a dynamically assigned base
 249 * will be used. The initial polarity for all channels is specified by the
 250 * @polarity parameter.
 251 *
 252 * Returns: 0 on success or a negative error code on failure.
 253 */
 254int pwmchip_add_with_polarity(struct pwm_chip *chip,
 255			      enum pwm_polarity polarity)
 256{
 257	struct pwm_device *pwm;
 258	unsigned int i;
 259	int ret;
 260
 261	if (!chip || !chip->dev || !chip->ops || !chip->npwm)
 262		return -EINVAL;
 263
 264	if (!pwm_ops_check(chip->ops))
 265		return -EINVAL;
 266
 267	mutex_lock(&pwm_lock);
 268
 269	ret = alloc_pwms(chip->base, chip->npwm);
 270	if (ret < 0)
 271		goto out;
 272
 273	chip->pwms = kcalloc(chip->npwm, sizeof(*pwm), GFP_KERNEL);
 274	if (!chip->pwms) {
 275		ret = -ENOMEM;
 276		goto out;
 277	}
 278
 279	chip->base = ret;
 280
 281	for (i = 0; i < chip->npwm; i++) {
 282		pwm = &chip->pwms[i];
 283
 284		pwm->chip = chip;
 285		pwm->pwm = chip->base + i;
 286		pwm->hwpwm = i;
 287		pwm->state.polarity = polarity;
 288
 289		if (chip->ops->get_state)
 290			chip->ops->get_state(chip, pwm, &pwm->state);
 291
 292		radix_tree_insert(&pwm_tree, pwm->pwm, pwm);
 293	}
 294
 295	bitmap_set(allocated_pwms, chip->base, chip->npwm);
 296
 297	INIT_LIST_HEAD(&chip->list);
 298	list_add(&chip->list, &pwm_chips);
 299
 300	ret = 0;
 301
 302	if (IS_ENABLED(CONFIG_OF))
 303		of_pwmchip_add(chip);
 304
 305	pwmchip_sysfs_export(chip);
 306
 307out:
 308	mutex_unlock(&pwm_lock);
 
 
 
 
 309	return ret;
 310}
 311EXPORT_SYMBOL_GPL(pwmchip_add_with_polarity);
 312
 313/**
 314 * pwmchip_add() - register a new PWM chip
 315 * @chip: the PWM chip to add
 316 *
 317 * Register a new PWM chip. If chip->base < 0 then a dynamically assigned base
 318 * will be used. The initial polarity for all channels is normal.
 319 *
 320 * Returns: 0 on success or a negative error code on failure.
 321 */
 322int pwmchip_add(struct pwm_chip *chip)
 323{
 324	return pwmchip_add_with_polarity(chip, PWM_POLARITY_NORMAL);
 325}
 326EXPORT_SYMBOL_GPL(pwmchip_add);
 327
 328/**
 329 * pwmchip_remove() - remove a PWM chip
 330 * @chip: the PWM chip to remove
 331 *
 332 * Removes a PWM chip. This function may return busy if the PWM chip provides
 333 * a PWM device that is still requested.
 334 *
 335 * Returns: 0 on success or a negative error code on failure.
 336 */
 337int pwmchip_remove(struct pwm_chip *chip)
 338{
 339	unsigned int i;
 340	int ret = 0;
 341
 342	pwmchip_sysfs_unexport_children(chip);
 343
 344	mutex_lock(&pwm_lock);
 345
 346	for (i = 0; i < chip->npwm; i++) {
 347		struct pwm_device *pwm = &chip->pwms[i];
 348
 349		if (test_bit(PWMF_REQUESTED, &pwm->flags)) {
 350			ret = -EBUSY;
 351			goto out;
 352		}
 353	}
 354
 355	list_del_init(&chip->list);
 356
 357	if (IS_ENABLED(CONFIG_OF))
 358		of_pwmchip_remove(chip);
 359
 360	free_pwms(chip);
 361
 362	pwmchip_sysfs_unexport(chip);
 363
 364out:
 365	mutex_unlock(&pwm_lock);
 366	return ret;
 367}
 368EXPORT_SYMBOL_GPL(pwmchip_remove);
 369
 370/**
 371 * pwm_request() - request a PWM device
 372 * @pwm: global PWM device index
 373 * @label: PWM device label
 374 *
 375 * This function is deprecated, use pwm_get() instead.
 376 *
 377 * Returns: A pointer to a PWM device or an ERR_PTR()-encoded error code on
 378 * failure.
 379 */
 380struct pwm_device *pwm_request(int pwm, const char *label)
 381{
 382	struct pwm_device *dev;
 383	int err;
 384
 385	if (pwm < 0 || pwm >= MAX_PWMS)
 386		return ERR_PTR(-EINVAL);
 387
 388	mutex_lock(&pwm_lock);
 389
 390	dev = pwm_to_device(pwm);
 391	if (!dev) {
 392		dev = ERR_PTR(-EPROBE_DEFER);
 393		goto out;
 394	}
 395
 396	err = pwm_device_request(dev, label);
 397	if (err < 0)
 398		dev = ERR_PTR(err);
 399
 400out:
 401	mutex_unlock(&pwm_lock);
 402
 403	return dev;
 404}
 405EXPORT_SYMBOL_GPL(pwm_request);
 406
 407/**
 408 * pwm_request_from_chip() - request a PWM device relative to a PWM chip
 409 * @chip: PWM chip
 410 * @index: per-chip index of the PWM to request
 411 * @label: a literal description string of this PWM
 412 *
 413 * Returns: A pointer to the PWM device at the given index of the given PWM
 414 * chip. A negative error code is returned if the index is not valid for the
 415 * specified PWM chip or if the PWM device cannot be requested.
 416 */
 417struct pwm_device *pwm_request_from_chip(struct pwm_chip *chip,
 418					 unsigned int index,
 419					 const char *label)
 420{
 421	struct pwm_device *pwm;
 422	int err;
 423
 424	if (!chip || index >= chip->npwm)
 425		return ERR_PTR(-EINVAL);
 426
 427	mutex_lock(&pwm_lock);
 428	pwm = &chip->pwms[index];
 429
 430	err = pwm_device_request(pwm, label);
 431	if (err < 0)
 432		pwm = ERR_PTR(err);
 433
 434	mutex_unlock(&pwm_lock);
 435	return pwm;
 436}
 437EXPORT_SYMBOL_GPL(pwm_request_from_chip);
 438
 439/**
 440 * pwm_free() - free a PWM device
 441 * @pwm: PWM device
 442 *
 443 * This function is deprecated, use pwm_put() instead.
 444 */
 445void pwm_free(struct pwm_device *pwm)
 446{
 447	pwm_put(pwm);
 448}
 449EXPORT_SYMBOL_GPL(pwm_free);
 450
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 451/**
 452 * pwm_apply_state() - atomically apply a new state to a PWM device
 453 * @pwm: PWM device
 454 * @state: new state to apply. This can be adjusted by the PWM driver
 455 *	   if the requested config is not achievable, for example,
 456 *	   ->duty_cycle and ->period might be approximated.
 457 */
 458int pwm_apply_state(struct pwm_device *pwm, struct pwm_state *state)
 459{
 
 460	int err;
 461
 462	if (!pwm || !state || !state->period ||
 463	    state->duty_cycle > state->period)
 464		return -EINVAL;
 465
 466	if (!memcmp(state, &pwm->state, sizeof(*state)))
 
 
 
 
 
 467		return 0;
 468
 469	if (pwm->chip->ops->apply) {
 470		err = pwm->chip->ops->apply(pwm->chip, pwm, state);
 471		if (err)
 472			return err;
 473
 
 
 474		pwm->state = *state;
 
 
 
 
 
 
 475	} else {
 476		/*
 477		 * FIXME: restore the initial state in case of error.
 478		 */
 479		if (state->polarity != pwm->state.polarity) {
 480			if (!pwm->chip->ops->set_polarity)
 481				return -ENOTSUPP;
 482
 483			/*
 484			 * Changing the polarity of a running PWM is
 485			 * only allowed when the PWM driver implements
 486			 * ->apply().
 487			 */
 488			if (pwm->state.enabled) {
 489				pwm->chip->ops->disable(pwm->chip, pwm);
 490				pwm->state.enabled = false;
 491			}
 492
 493			err = pwm->chip->ops->set_polarity(pwm->chip, pwm,
 494							   state->polarity);
 495			if (err)
 496				return err;
 497
 498			pwm->state.polarity = state->polarity;
 499		}
 500
 501		if (state->period != pwm->state.period ||
 502		    state->duty_cycle != pwm->state.duty_cycle) {
 503			err = pwm->chip->ops->config(pwm->chip, pwm,
 504						     state->duty_cycle,
 505						     state->period);
 506			if (err)
 507				return err;
 508
 509			pwm->state.duty_cycle = state->duty_cycle;
 510			pwm->state.period = state->period;
 511		}
 512
 513		if (state->enabled != pwm->state.enabled) {
 514			if (state->enabled) {
 515				err = pwm->chip->ops->enable(pwm->chip, pwm);
 516				if (err)
 517					return err;
 518			} else {
 519				pwm->chip->ops->disable(pwm->chip, pwm);
 520			}
 521
 522			pwm->state.enabled = state->enabled;
 523		}
 524	}
 525
 526	return 0;
 527}
 528EXPORT_SYMBOL_GPL(pwm_apply_state);
 529
 530/**
 531 * pwm_capture() - capture and report a PWM signal
 532 * @pwm: PWM device
 533 * @result: structure to fill with capture result
 534 * @timeout: time to wait, in milliseconds, before giving up on capture
 535 *
 536 * Returns: 0 on success or a negative error code on failure.
 537 */
 538int pwm_capture(struct pwm_device *pwm, struct pwm_capture *result,
 539		unsigned long timeout)
 540{
 541	int err;
 542
 543	if (!pwm || !pwm->chip->ops)
 544		return -EINVAL;
 545
 546	if (!pwm->chip->ops->capture)
 547		return -ENOSYS;
 548
 549	mutex_lock(&pwm_lock);
 550	err = pwm->chip->ops->capture(pwm->chip, pwm, result, timeout);
 551	mutex_unlock(&pwm_lock);
 552
 553	return err;
 554}
 555EXPORT_SYMBOL_GPL(pwm_capture);
 556
 557/**
 558 * pwm_adjust_config() - adjust the current PWM config to the PWM arguments
 559 * @pwm: PWM device
 560 *
 561 * This function will adjust the PWM config to the PWM arguments provided
 562 * by the DT or PWM lookup table. This is particularly useful to adapt
 563 * the bootloader config to the Linux one.
 564 */
 565int pwm_adjust_config(struct pwm_device *pwm)
 566{
 567	struct pwm_state state;
 568	struct pwm_args pargs;
 569
 570	pwm_get_args(pwm, &pargs);
 571	pwm_get_state(pwm, &state);
 572
 573	/*
 574	 * If the current period is zero it means that either the PWM driver
 575	 * does not support initial state retrieval or the PWM has not yet
 576	 * been configured.
 577	 *
 578	 * In either case, we setup the new period and polarity, and assign a
 579	 * duty cycle of 0.
 580	 */
 581	if (!state.period) {
 582		state.duty_cycle = 0;
 583		state.period = pargs.period;
 584		state.polarity = pargs.polarity;
 585
 586		return pwm_apply_state(pwm, &state);
 587	}
 588
 589	/*
 590	 * Adjust the PWM duty cycle/period based on the period value provided
 591	 * in PWM args.
 592	 */
 593	if (pargs.period != state.period) {
 594		u64 dutycycle = (u64)state.duty_cycle * pargs.period;
 595
 596		do_div(dutycycle, state.period);
 597		state.duty_cycle = dutycycle;
 598		state.period = pargs.period;
 599	}
 600
 601	/*
 602	 * If the polarity changed, we should also change the duty cycle.
 603	 */
 604	if (pargs.polarity != state.polarity) {
 605		state.polarity = pargs.polarity;
 606		state.duty_cycle = state.period - state.duty_cycle;
 607	}
 608
 609	return pwm_apply_state(pwm, &state);
 610}
 611EXPORT_SYMBOL_GPL(pwm_adjust_config);
 612
 613static struct pwm_chip *of_node_to_pwmchip(struct device_node *np)
 614{
 615	struct pwm_chip *chip;
 616
 617	mutex_lock(&pwm_lock);
 618
 619	list_for_each_entry(chip, &pwm_chips, list)
 620		if (chip->dev && chip->dev->of_node == np) {
 621			mutex_unlock(&pwm_lock);
 622			return chip;
 623		}
 624
 625	mutex_unlock(&pwm_lock);
 626
 627	return ERR_PTR(-EPROBE_DEFER);
 628}
 629
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 630/**
 631 * of_pwm_get() - request a PWM via the PWM framework
 
 632 * @np: device node to get the PWM from
 633 * @con_id: consumer name
 634 *
 635 * Returns the PWM device parsed from the phandle and index specified in the
 636 * "pwms" property of a device tree node or a negative error-code on failure.
 637 * Values parsed from the device tree are stored in the returned PWM device
 638 * object.
 639 *
 640 * If con_id is NULL, the first PWM device listed in the "pwms" property will
 641 * be requested. Otherwise the "pwm-names" property is used to do a reverse
 642 * lookup of the PWM index. This also means that the "pwm-names" property
 643 * becomes mandatory for devices that look up the PWM device via the con_id
 644 * parameter.
 645 *
 646 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
 647 * error code on failure.
 648 */
 649struct pwm_device *of_pwm_get(struct device_node *np, const char *con_id)
 
 650{
 651	struct pwm_device *pwm = NULL;
 652	struct of_phandle_args args;
 
 653	struct pwm_chip *pc;
 654	int index = 0;
 655	int err;
 656
 657	if (con_id) {
 658		index = of_property_match_string(np, "pwm-names", con_id);
 659		if (index < 0)
 660			return ERR_PTR(index);
 661	}
 662
 663	err = of_parse_phandle_with_args(np, "pwms", "#pwm-cells", index,
 664					 &args);
 665	if (err) {
 666		pr_debug("%s(): can't parse \"pwms\" property\n", __func__);
 667		return ERR_PTR(err);
 668	}
 669
 670	pc = of_node_to_pwmchip(args.np);
 671	if (IS_ERR(pc)) {
 672		pr_debug("%s(): PWM chip not found\n", __func__);
 
 
 673		pwm = ERR_CAST(pc);
 674		goto put;
 675	}
 676
 677	if (args.args_count != pc->of_pwm_n_cells) {
 678		pr_debug("%s: wrong #pwm-cells for %s\n", np->full_name,
 679			 args.np->full_name);
 680		pwm = ERR_PTR(-EINVAL);
 681		goto put;
 682	}
 683
 684	pwm = pc->of_xlate(pc, &args);
 685	if (IS_ERR(pwm))
 
 
 
 686		goto put;
 
 687
 688	/*
 689	 * If a consumer name was not given, try to look it up from the
 690	 * "pwm-names" property if it exists. Otherwise use the name of
 691	 * the user device node.
 692	 */
 693	if (!con_id) {
 694		err = of_property_read_string_index(np, "pwm-names", index,
 695						    &con_id);
 696		if (err < 0)
 697			con_id = np->name;
 698	}
 699
 700	pwm->label = con_id;
 701
 702put:
 703	of_node_put(args.np);
 704
 705	return pwm;
 706}
 707EXPORT_SYMBOL_GPL(of_pwm_get);
 708
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 709/**
 710 * pwm_add_table() - register PWM device consumers
 711 * @table: array of consumers to register
 712 * @num: number of consumers in table
 713 */
 714void pwm_add_table(struct pwm_lookup *table, size_t num)
 715{
 716	mutex_lock(&pwm_lookup_lock);
 717
 718	while (num--) {
 719		list_add_tail(&table->list, &pwm_lookup_list);
 720		table++;
 721	}
 722
 723	mutex_unlock(&pwm_lookup_lock);
 724}
 725
 726/**
 727 * pwm_remove_table() - unregister PWM device consumers
 728 * @table: array of consumers to unregister
 729 * @num: number of consumers in table
 730 */
 731void pwm_remove_table(struct pwm_lookup *table, size_t num)
 732{
 733	mutex_lock(&pwm_lookup_lock);
 734
 735	while (num--) {
 736		list_del(&table->list);
 737		table++;
 738	}
 739
 740	mutex_unlock(&pwm_lookup_lock);
 741}
 742
 743/**
 744 * pwm_get() - look up and request a PWM device
 745 * @dev: device for PWM consumer
 746 * @con_id: consumer name
 747 *
 748 * Lookup is first attempted using DT. If the device was not instantiated from
 749 * a device tree, a PWM chip and a relative index is looked up via a table
 750 * supplied by board setup code (see pwm_add_table()).
 751 *
 752 * Once a PWM chip has been found the specified PWM device will be requested
 753 * and is ready to be used.
 754 *
 755 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
 756 * error code on failure.
 757 */
 758struct pwm_device *pwm_get(struct device *dev, const char *con_id)
 759{
 760	struct pwm_device *pwm = ERR_PTR(-EPROBE_DEFER);
 761	const char *dev_id = dev ? dev_name(dev) : NULL;
 762	struct pwm_chip *chip = NULL;
 
 
 763	unsigned int best = 0;
 764	struct pwm_lookup *p, *chosen = NULL;
 765	unsigned int match;
 
 766
 767	/* look up via DT first */
 768	if (IS_ENABLED(CONFIG_OF) && dev && dev->of_node)
 769		return of_pwm_get(dev->of_node, con_id);
 
 
 
 
 
 
 
 770
 771	/*
 772	 * We look up the provider in the static table typically provided by
 773	 * board setup code. We first try to lookup the consumer device by
 774	 * name. If the consumer device was passed in as NULL or if no match
 775	 * was found, we try to find the consumer by directly looking it up
 776	 * by name.
 777	 *
 778	 * If a match is found, the provider PWM chip is looked up by name
 779	 * and a PWM device is requested using the PWM device per-chip index.
 780	 *
 781	 * The lookup algorithm was shamelessly taken from the clock
 782	 * framework:
 783	 *
 784	 * We do slightly fuzzy matching here:
 785	 *  An entry with a NULL ID is assumed to be a wildcard.
 786	 *  If an entry has a device ID, it must match
 787	 *  If an entry has a connection ID, it must match
 788	 * Then we take the most specific entry - with the following order
 789	 * of precedence: dev+con > dev only > con only.
 790	 */
 791	mutex_lock(&pwm_lookup_lock);
 792
 793	list_for_each_entry(p, &pwm_lookup_list, list) {
 794		match = 0;
 795
 796		if (p->dev_id) {
 797			if (!dev_id || strcmp(p->dev_id, dev_id))
 798				continue;
 799
 800			match += 2;
 801		}
 802
 803		if (p->con_id) {
 804			if (!con_id || strcmp(p->con_id, con_id))
 805				continue;
 806
 807			match += 1;
 808		}
 809
 810		if (match > best) {
 811			chosen = p;
 812
 813			if (match != 3)
 814				best = match;
 815			else
 816				break;
 817		}
 818	}
 819
 820	if (!chosen) {
 821		pwm = ERR_PTR(-ENODEV);
 822		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 823	}
 824
 825	chip = pwmchip_find_by_name(chosen->provider);
 826	if (!chip)
 827		goto out;
 828
 829	pwm = pwm_request_from_chip(chip, chosen->index, con_id ?: dev_id);
 830	if (IS_ERR(pwm))
 831		goto out;
 
 
 
 
 
 
 832
 833	pwm->args.period = chosen->period;
 834	pwm->args.polarity = chosen->polarity;
 835
 836out:
 837	mutex_unlock(&pwm_lookup_lock);
 838	return pwm;
 839}
 840EXPORT_SYMBOL_GPL(pwm_get);
 841
 842/**
 843 * pwm_put() - release a PWM device
 844 * @pwm: PWM device
 845 */
 846void pwm_put(struct pwm_device *pwm)
 847{
 848	if (!pwm)
 849		return;
 850
 851	mutex_lock(&pwm_lock);
 852
 853	if (!test_and_clear_bit(PWMF_REQUESTED, &pwm->flags)) {
 854		pr_warn("PWM device already freed\n");
 855		goto out;
 856	}
 857
 858	if (pwm->chip->ops->free)
 859		pwm->chip->ops->free(pwm->chip, pwm);
 860
 
 861	pwm->label = NULL;
 862
 863	module_put(pwm->chip->ops->owner);
 864out:
 865	mutex_unlock(&pwm_lock);
 866}
 867EXPORT_SYMBOL_GPL(pwm_put);
 868
 869static void devm_pwm_release(struct device *dev, void *res)
 870{
 871	pwm_put(*(struct pwm_device **)res);
 872}
 873
 874/**
 875 * devm_pwm_get() - resource managed pwm_get()
 876 * @dev: device for PWM consumer
 877 * @con_id: consumer name
 878 *
 879 * This function performs like pwm_get() but the acquired PWM device will
 880 * automatically be released on driver detach.
 881 *
 882 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
 883 * error code on failure.
 884 */
 885struct pwm_device *devm_pwm_get(struct device *dev, const char *con_id)
 886{
 887	struct pwm_device **ptr, *pwm;
 888
 889	ptr = devres_alloc(devm_pwm_release, sizeof(*ptr), GFP_KERNEL);
 890	if (!ptr)
 891		return ERR_PTR(-ENOMEM);
 892
 893	pwm = pwm_get(dev, con_id);
 894	if (!IS_ERR(pwm)) {
 895		*ptr = pwm;
 896		devres_add(dev, ptr);
 897	} else {
 898		devres_free(ptr);
 899	}
 900
 901	return pwm;
 902}
 903EXPORT_SYMBOL_GPL(devm_pwm_get);
 904
 905/**
 906 * devm_of_pwm_get() - resource managed of_pwm_get()
 907 * @dev: device for PWM consumer
 908 * @np: device node to get the PWM from
 909 * @con_id: consumer name
 910 *
 911 * This function performs like of_pwm_get() but the acquired PWM device will
 912 * automatically be released on driver detach.
 913 *
 914 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
 915 * error code on failure.
 916 */
 917struct pwm_device *devm_of_pwm_get(struct device *dev, struct device_node *np,
 918				   const char *con_id)
 919{
 920	struct pwm_device **ptr, *pwm;
 921
 922	ptr = devres_alloc(devm_pwm_release, sizeof(*ptr), GFP_KERNEL);
 923	if (!ptr)
 924		return ERR_PTR(-ENOMEM);
 925
 926	pwm = of_pwm_get(np, con_id);
 927	if (!IS_ERR(pwm)) {
 928		*ptr = pwm;
 929		devres_add(dev, ptr);
 930	} else {
 931		devres_free(ptr);
 932	}
 933
 934	return pwm;
 935}
 936EXPORT_SYMBOL_GPL(devm_of_pwm_get);
 937
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 938static int devm_pwm_match(struct device *dev, void *res, void *data)
 939{
 940	struct pwm_device **p = res;
 941
 942	if (WARN_ON(!p || !*p))
 943		return 0;
 944
 945	return *p == data;
 946}
 947
 948/**
 949 * devm_pwm_put() - resource managed pwm_put()
 950 * @dev: device for PWM consumer
 951 * @pwm: PWM device
 952 *
 953 * Release a PWM previously allocated using devm_pwm_get(). Calling this
 954 * function is usually not needed because devm-allocated resources are
 955 * automatically released on driver detach.
 956 */
 957void devm_pwm_put(struct device *dev, struct pwm_device *pwm)
 958{
 959	WARN_ON(devres_release(dev, devm_pwm_release, devm_pwm_match, pwm));
 960}
 961EXPORT_SYMBOL_GPL(devm_pwm_put);
 962
 963/**
 964  * pwm_can_sleep() - report whether PWM access will sleep
 965  * @pwm: PWM device
 966  *
 967  * Returns: True if accessing the PWM can sleep, false otherwise.
 968  */
 969bool pwm_can_sleep(struct pwm_device *pwm)
 970{
 971	return true;
 972}
 973EXPORT_SYMBOL_GPL(pwm_can_sleep);
 974
 975#ifdef CONFIG_DEBUG_FS
 976static void pwm_dbg_show(struct pwm_chip *chip, struct seq_file *s)
 977{
 978	unsigned int i;
 979
 980	for (i = 0; i < chip->npwm; i++) {
 981		struct pwm_device *pwm = &chip->pwms[i];
 982		struct pwm_state state;
 983
 984		pwm_get_state(pwm, &state);
 985
 986		seq_printf(s, " pwm-%-3d (%-20.20s):", i, pwm->label);
 987
 988		if (test_bit(PWMF_REQUESTED, &pwm->flags))
 989			seq_puts(s, " requested");
 990
 991		if (state.enabled)
 992			seq_puts(s, " enabled");
 993
 994		seq_printf(s, " period: %u ns", state.period);
 995		seq_printf(s, " duty: %u ns", state.duty_cycle);
 996		seq_printf(s, " polarity: %s",
 997			   state.polarity ? "inverse" : "normal");
 998
 999		seq_puts(s, "\n");
1000	}
1001}
1002
1003static void *pwm_seq_start(struct seq_file *s, loff_t *pos)
1004{
1005	mutex_lock(&pwm_lock);
1006	s->private = "";
1007
1008	return seq_list_start(&pwm_chips, *pos);
1009}
1010
1011static void *pwm_seq_next(struct seq_file *s, void *v, loff_t *pos)
1012{
1013	s->private = "\n";
1014
1015	return seq_list_next(v, &pwm_chips, pos);
1016}
1017
1018static void pwm_seq_stop(struct seq_file *s, void *v)
1019{
1020	mutex_unlock(&pwm_lock);
1021}
1022
1023static int pwm_seq_show(struct seq_file *s, void *v)
1024{
1025	struct pwm_chip *chip = list_entry(v, struct pwm_chip, list);
1026
1027	seq_printf(s, "%s%s/%s, %d PWM device%s\n", (char *)s->private,
1028		   chip->dev->bus ? chip->dev->bus->name : "no-bus",
1029		   dev_name(chip->dev), chip->npwm,
1030		   (chip->npwm != 1) ? "s" : "");
1031
1032	if (chip->ops->dbg_show)
1033		chip->ops->dbg_show(chip, s);
1034	else
1035		pwm_dbg_show(chip, s);
1036
1037	return 0;
1038}
1039
1040static const struct seq_operations pwm_seq_ops = {
1041	.start = pwm_seq_start,
1042	.next = pwm_seq_next,
1043	.stop = pwm_seq_stop,
1044	.show = pwm_seq_show,
1045};
1046
1047static int pwm_seq_open(struct inode *inode, struct file *file)
1048{
1049	return seq_open(file, &pwm_seq_ops);
1050}
1051
1052static const struct file_operations pwm_debugfs_ops = {
1053	.owner = THIS_MODULE,
1054	.open = pwm_seq_open,
1055	.read = seq_read,
1056	.llseek = seq_lseek,
1057	.release = seq_release,
1058};
1059
1060static int __init pwm_debugfs_init(void)
1061{
1062	debugfs_create_file("pwm", S_IFREG | S_IRUGO, NULL, NULL,
1063			    &pwm_debugfs_ops);
1064
1065	return 0;
1066}
1067subsys_initcall(pwm_debugfs_init);
1068#endif /* CONFIG_DEBUG_FS */